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Short note Cauchy–Schwarz’ inequality and beyond

Viorel Vîjîitu

In memory of my son Horia

1 Introduction and the main result

The arithmetic-geometric mean (AGM) inequality and the Cauchy–Schwarz (CS) inequal-
ity are the most familiar inequalities in mathematics. The fact that (AGM) ) (CS) is
well known (see [1, 2] or below). However, the reverse implication has been proved only
recently [1] via calculus, and this raises the quest for an algebraic proof (see Corollary 1).

AGM Inequality. If x1; : : : ; xm are positive numbers, then� mX
jD1

xj

�
=m �

� mY
kD1

xj

�1=m
: (AGM)

CS Inequality. For any positive numbers a1; : : : ; am; b1; : : : ; bm, we have� mX
jD1

aj bj

�2
�

mX
jD1

a2j

mX
jD1

b2j : (CS)

A reformulation of (CS) which matches our purposes in this paper is the following.
For any positive numbers x1; : : : ; xm; y1; : : : ; ym, we have

p
x1y1 C � � � C

p
xmym �

p
x1 C � � � C xm

p
y1 C � � � C ym:

This version has the following advantages. On the one hand, its proof is self-generated
granting the superadditivity of the geometric mean in two dimensions, namely if

GW Œ0;1/2 ! Œ0;1/

is given by G.x; y/ D
p
xy for x; y � 0, then for any .x; y/; .x0; y0/ 2 Œ0;1/2, we have

G.x; y/C G.x0; y0/ � G.x C x0; y C y0/;

which results by squaring both sides and straightforward computations via (AGM) for
m D 2. Hence, we derive a proof of (AGM)) (CS).

On the other hand, it can be readily extended to the following general Cauchy–Schwarz
inequality, which we think is new in this form.
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Theorem 1. We have
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�1=q
(�)

for any vectors .a11; : : : ; a1m/; .a21; : : : ; a2m/; : : : ; .aq1; : : : ; aqm/ of .0;1/m.

Proof. We employ Cauchy’s trick for the proof of (AGM). Hence, let q? be a natural
power of 2 such that q? > q. Repeatedly using the second version of (CS), we obtain that
(�) holds true for any set of q? vectors of .0;1/m.

Now, let .a11; : : : ; a1m/; .a21; : : : ; a2m/; : : : ; .aq1; : : : ; aqm/ be q vectors in .0;1/m

and add the set of q? � q equal vectors .ar1; : : : ; arm/D .d1; : : : ; dm/ for qC 1 � r � q?,
where dj D .a1j � � � aqj /1=q for 1 � j � m. Since

mX
jD1

arj D

mX
jD1

dj for all r 2 ¹q C 1; : : : ; q?º

and for any integer j with 1 � j � m, we have

q?Y
lD1

alj D

� qY
kD1

akj

�
d
q?�q
j D d

q?
j :

Divide both terms of inequality (�) for the above set of q? vectors by� mX
jD1

dj

�1�q=q?
so that we get what we want.

Corollary 1. The implication “(CS)) (AGM)” holds true.

Proof. Let x1; x2; : : : ; xm be positive numbers. Apply (�) for the m vectors obtained by
cyclic permutation of the components of .x1; x2; : : : ; xm/.

Corollary 2. Let P 2 RŒX� be a polynomial with nonnegative coefficients. Then, for any
x1; x2; : : : ; xm 2 .0;1/, we have the inequality

P. m
p
x1 � � � xm/ �

m
p

P.x1/ � � � P.xm/:

Proof. Since (�) remains true also for vectors whose components are nonnegative, take
P D c�X� C c��1X��1 C � � � C c0 and apply (�) for the set of m vectors

¹.c�x
�
j ; c��1x

��1
j ; : : : ; c0/ W j D 1; : : : ; mº � R�C1:

Remark. We recast (�) granting Hadamard–Schur’s product u ? v of two vectors

u D .u1; : : : ; um/ and v D .v1; : : : ; vm/
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of Rm, which is defined by

u ? v D .u1v1; : : : ; umvm/;

and setting, for any � > 0,

kuk� D
� mX
jD1

juj j
�

�1=�
;

as follows. For any vectors u1; : : : ;uq of Rm, we have

ku1 ? � � � ? uqk1=q � ku1k1 � � � kuqk1: (\)

From this, we infer Hölder’s inequality, namely the following result.

Theorem 2. Let k 2 N and let p1; : : : ; pk ; r be positive real numbers such that

1=p1 C � � � C 1=pk D 1=r:

Then, for any vectors u1; : : : ;uk of Rm, we have

ku1 ? � � � ? ukkr � ku1kp1 � � � kukkpk : (H)

Proof. By routine arguments, it is easily seen that we only need to show (H) when r D 1,
and by continuity of the exponential function and the density of Q in R, we may also
assume that p1; : : : ; pk are positive rationals, so that we may write pj D q=�j for some
positive integers q and �j such that �1 C � � � C �k D q.

Now, by allowing repetitions in the sequence of vectors in (\), we deduce that, for
arbitrary vectors b1; : : : ;bk in Rm, we have

kb�11 ? � � � ? b�k
k
k1=q � kb1k�11 � � � kbkk

�k
1 ; (])

where, for a vector w of Rm and � 2 N, the vector w� is Hadamard–Schur’s product of w
with itself taken � times.

Then choose bj 2Rm such that b�jj D juj j
q for all j D 1; : : : ; k, where the components

of the vector juj j are the moduli of the corresponding components of uj , and extract the
q-th root of both terms in inequality (]) thus obtained so that we get (H) for r D 1 and
pj 2 Q. The proof concludes.

2 Superadditivity of geometric mean

In this section, we consider a few more or less known applications of (�). One of these is
the superadditivity of the “weighted geometric mean”, a notion mostly employed in stat-
istics and used to calculate the overall performance of an investment portfolio by assigning
weights based on the proportion of each investment’s value relative to the total portfolio
value.

Here is the definition. Letm2N. A vector wD .w1; : : : ;wm/ of Rm is called a “weight
vector” if its components are positive and sum up to 1.
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Now, given nonnegative real numbers �1; : : : ; �m, the weighted geometric mean of
.�1; : : : ; �m/ with respect to the weight vector w is given by the formula

Gw.�1; : : : ; �m/ D �1
w1 � � � �m

wm :

In case �j > 0 for all j 2 ¹1; : : : ;mº, Gw.�1; : : : ; �m/ is the exponential of the weighted
arithmetic mean of .log.�1/; : : : ; log.�m// with respect to w.

In particular, when w D .1=n; : : : ; 1=n/, we recover the ordinary geometric mean
.�1; : : : ; �n/

1=n of �1; : : : ; �n, which we denote by G.�1; : : : ; �n/.
Observe that either (�) or Corollary 2 for P D 1C X gives immediately the superad-

ditivity of the geometric mean, a result known as Minkowski’s inequality, namely, for any
vectors .x1; : : : ; xm/ and .y1; : : : ; ym/ of Œ0;1/m, we have

G.x1; : : : ; xm/C G.y1; : : : ; ym/ � G.x1 C y1; : : : ; xm C ym/: (�)

In fact, more generally, the weighted geometric mean is superadditive.

Proposition 1. Let w be a weight vector of Rm. Then, for arbitrary vectors .x1; : : : ; xm/
and .y1; : : : ; ym/ of Œ0;1/m, we have

Gw.x1; : : : ; xn/C Gw.y1; : : : ; ym/ � Gw.x1 C y1; : : : ; xm C ym/:

Proof. The inequality holds true when the weight vector w has rational components as
follows immediately from (�) by allowing repetitions in the corresponding sequences of
xj ’s and yj ’s. Then the conclusion results by the continuity of the exponentiation and the
density of Q in R.

Proposition 2. The geometric mean function GW Œ0;1/m ! R is concave.

Proof. This is a particular case of a more general straightforward fact, namely if K � Rm

is a convex cone, then any superadditive and positively homogeneous function fWK! R
of degree 1 is concave.

Proposition 3. The superadditivity of the geometric mean is equivalent to the arithmetic-
geometric mean inequality.

Proof. Granting [2, p. 34] or (�), we only need to check the implication “)”. Suppose
that x1; : : : ; xm are positive numbers, and let 'W Œ0;1/! R be given for any t � 0 by
setting

'.t/ D G.1C tx1; : : : ; 1C txm/ � tG.x1; : : : ; xm/:

The superadditivity of the geometric mean implies that ' attains its minimum, which is 1,
at t D 0; hence '0C.0/ � 0. Since

'0C.0/ D .x1 C � � � C xm/=m � G.x1; : : : ; xm/;

the conclusion follows.
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