MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Report No. 34/2025

DOL: 10.4171/OWR/2025/34

Subfactors and Applications

Organized by
Dietmar Bisch, Nashville
Terry Gannon, Edmonton

Yasuyuki Kawahigashi, Tokyo
Yoshiko Ogata, Kyoto

27 July — 1 August 2025

ABSTRACT. The theory of subfactors plays an important role in the discovery
and analysis of quantum symmetries that seem to be ubiquitous in mathe-
matics and physics. Subfactors profoundly interact with a wide range of
different areas such as quantum topology, vertex operator algebras, quantum
groups, free probability theory, quantum computing and quantum informa-
tion theory, quantum field theory, conformal field theory, tensor categories,
condensed matter physics, and, of course, operator algebras.

The aim of this workshop was to bring together an international group of
researchers from these fields to disseminate recent results and to stimulate
new collaborations. The focus was on operator algebraic, vertex operator al-
gebraic and categorical aspects of quantum symmetries and their applications
to open questions in mathematical physics. A substantial group of young
mathematicians attended the workshop and were given the opportunity to
present, their work.
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Introduction by the Organizers

The workshop Subfactors and Applications, organized by Dietmar Bisch (Nash-
ville), Terry Gannon (Edmonton), Yasuyuki Kawahgashi (Tokyo) and Yoshiko
Ogata (Kyoto) was very well attended with 48 in-person and two virtual partici-
pants. A large group attended for the first time an Oberwolfach workshop as many
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young mathematicians were invited. This created an exciting ambience with many
intense interactions among the participants.

The aim of this workshop was to bring together experts working in areas that
feature various aspects of quantum symmetries. These include the theory of sub-
factors, fusion and modular tensor categories (MTCs), quantum spin chains, alge-
braic quantum field theory (AQFT), mathematical conformal field theory (CFT),
topological field theory (TFT), topological quantum computing and topological
phases (TQC), and the theory of vertex operator algebras (VOA). The workshop
brought these communities closer together and led to many fruitful interactions.

One important theme of the workshop was recent work by different groups on
quantum spin systems and fusion category symmetries on lattices. This is inti-
mately related to the investigation of exotic states of matter, such as topological
phases or topological order. The workshop featured several talks related to this
theme, displaying various approaches to this important topic, including a more
fusion categorical approach and a more operator algebraic approach. Progress in
this direction was presented by Stefan Hollands, Corey Jones, Pieter Naaijkens,
David Penneys, Makoto Yamashita and others. We also had talks by several physi-
cists (Jeongwang Haah and Frank Verstraete) that explained how the categorical
tools and constructions are used for investigating entanglement and other exotic
properties of quantum systems.

The connection between vertex operator algebras (VOAs) and tensor categories
was another important subject of the workshop. The talks by Sebastiano Carpi,
Bin Gui and Robert McRae touched on the intriguing connections between tensor
categories and VOAs. James Tener explained recent work with André Henriques
that shows how to construct a unitary VOA from a conformal net. Cain Edie-
Michell presented work on conformal embedding categories and subfactors. Terry
Gannon animated an informal Q&A session that helped to understand the con-
nection between VOAs, modular tensor categories and subfactors. It was well
attended with many good questions and many good answers.

The third main theme of the workshop was recent results on subfactors and
planar algebras. This included the discovery of new planar algebras associated to
quadrilaterals of intermediate subfactors (talk by Junhwi Lim), and the Delannoy
planar algebra (Noah Snyder). Julio Caceres described a construction of new
commuting squares and how a graph planar algebra embedding theorem can be
used to determine that the resulting hyperfinite subfactors have Temperley-Lieb-
Jones standard invariants. Zhengwei Liu’s work on classifying exchange relation
planar algebras, and hence new subfactors, shows the power of the quantum Fourier
analysis tools that he and his group have developed. Masaki Izumi presented
work on group-subgroup subfactors that constitutes a far-reaching generalization
of Goldman’s theorem for index 2 subfactors. Intriguing ideas involving a more
categorial approach to von Neumann algebras were presented in the talks of André
Henriques, Theo Johnson-Freyd and David Reutter.

We dedicated one afternoon session to the presentation of research by partic-
ipants at the Ph.D. and postdoctoral level. The topics were wide ranging. For
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instance, Futaba Sato presented her work on heat semigroups on certain quantum
automorphism groups, Roberto Hernandez Palomares talked about interesting new
quantum graphs, and Sergio Girén Pacheco explained classification of actions of
tensor categories on Kirchberg algebras. In total, we had seven short talks during
this session.

For perspective, the workshop also covered a variety of other topics, such as
Katrin Wendland’s work on symmetries of K3 surfaces within Mathieu groups,
Catherine Meusburger’s approach to Dijkgraaf-Witten TFT with defects and Ju-
lia Plavnik’s bicrossed product construction for fusion categories that generalizes
the one for Kac algebras. Ingo Runkel talked about gauging of non-invertible sym-
metries in 3-dimensional TFT and Christoph Schweigert showed the usefulness of
tensor network states. There were several other talks on related subjects that are
listed below.

The workshop Subfactors and Applications was exciting and very successful in
stimulating new interactions between the subfactor, tensor categories and VOA
communities.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

An operator algebraic approach to fusion category symmetry
on the lattices

COREY JONES
(joint work with David E. Evans)

We propose a framework for fusion category symmetry on the (141)D lattice in
the thermodynamic limit by giving a formal interpretation of SymTFT decompo-
sitions. Our approach is based on axiomatizing physical boundary subalgebra of
quasi-local observables, and applying ideas from algebraic quantum field theory to
derive the expected categorical structures. We show that given a physical bound-
ary subalgebra B of a quasi-local algebra A, there is a canonical fusion category
that acts on A by bimodules and whose fusion ring acts by locality preserving
quantum channels on the quasi-local algebra such that B is recovered as the in-
variant operators. We give a formal definition of a topological symmetric state,
and prove a Lieb-Schultz-Mattis type theorem forcing gaplessness. Using this, we
show that for any fusion category with no fiber functor there always exists gapless
pure symmetric states on an anyon chain.

REFERENCES

[1] D.E. Evans and C. Jones, An operator algebraic approach to fusion category symmetry on
the Lattice, arXiv:2507.05185.

The symmetries of Kummer-like K3 surfaces within the
Mathieu groups

KATRIN WENDLAND

(joint work with Kasia Budzik, Anne Taormina, Mara Ungureanu
and Ida G. Zadeh)

We report on the recent preprint [2], which is motivated by Mathieu Moonshine
[3, 4, 5], an observation in conformal field theory which states that the largest
Mathieu group Masy governs the elliptic genus of K3 surfaces and which stands
unexplained to the very day. In a series of papers [13, 14, 15, 16], Taormina& KW
have proposed a conjectural explanation for Mathieu Moonshine, building on the
idea that the action of Mss combines the action of all symmetry groups of K3
surfaces; this proposal is now known by the name of symmetry surfing. It has
been successfully applied to Kummer surfaces [15, 6], where it was shown that
the symmetry groups of these special K3 surfaces naturally generate the action
of a maximal subgroup of M4 on the Niemeier lattice of type A3%. We therefore
expect that a better understanding of symmetry groups of other families of K3
surfaces will add a relevant piece to the puzzle.
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In the project presented here, we have chosen to investigate Zs-orbifold limits of
K3. For this class of Kummer-like K3 surfaces, our results provide a counterpart
to the extensive studies by Nikulin and others [10, 11, 1, 7, 9] of the geometry
and symmetries of classical Kummer surfaces. As such, the project is purely in
geometry and is hoped to be of interest independently of Mathieu Moonshine as
well.

The classical Kummer construction yields a family of K3 surfaces by means of
Zy-orbifolding any two-dimensional complex torus. For Zs-orbifold limits of K3,
one similarly uses the product T of two identical Zs-symmetric elliptic curves and
performs a Zs-orbifold construction on 7. It is well-known [12, 17, 1] that this

yields a K3 surface X = T'/Z3, and we show that all its holomorphic symplectic
automorphisms are induced by holomorphic symplectic automorphisms of the un-
derlying complex torus 7. This allows us to determine the group of holomorphic
symplectic automorphisms of Zg-orbifold limits of K3, a group which is isomorphic
to (Z3)2 X Z4.

In determining the symmetry group, a detailed analysis of the lattice of integral
homology Hs(X,Z) for Zs-orbifold limits of K3 is key. It can be constructed by
means of gluing techniques from the lattice 7, Hy(T,Z)% that is pushed forward
under orbifolding from the underlying complex torus 7', on the one hand, and
on the other hand, the lattice generated by the irreducible components of the
exceptional divisor that occurs when blowing up the quotient singularities in 7'/Zs.
Both lattices are non-primitively embedded in the integral homology of the K3
surface. The latter lattice is a root lattice of type A, and the smallest primitive
sublattice P of Hy(X,Z) containing it is the analog of the Kummer lattice IT that
has been central to Nikulin’s investigations of Kummer surfaces [10, 11]. The
lattice P had been determined before [1, 18], building on the results of [12], where
the smallest primitive sublattice K of Hy(X,Z) that contains 7. Hs(T,7Z)% was
determined. We give an independent, purely geometric derivation of the form of
the lattice K and thereby of the Kummer-like lattice P, which ultimately allows
us to track the symmetries of X as automorphisms of Ho(X,Z).

In keeping with our motivation from Mathieu Moonshine, in addition we track the
symmetry group of Zs-orbifold limits of K3 in terms of permutation groups on 12
resp. 24 elements within the Mathieu groups Mo and Moy.

To do so, as a key step, we show that every symmetry of X is already uniquely
determined by its action on the lattice P. Since we also prove that the Niemeier
lattice N of type A3? is the (unique) Niemeier lattice that has a primitive sublattice
isomorphic to P(—1), this allows us to express the symmetry group in terms of
lattice automorphisms of N. The automorphism group of N possesses a known,
natural projection to the Mathieu group Mo, given by those permutations of the
twelve factors of A3? that lift to automorphisms of N. Although the lifting of the
symmetries of X to automorphisms of IV requires choices, we can show that the
projection to Mjs yields an injection of the symmetry group into Mjs which is
independent of these choices.
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The idea to express symmetries of K3 surfaces in terms of liftings to automorphisms
of Niemeier lattices goes back to Kondo [8], who instead of the lattice P uses a
lattice whose orthogonal complement is acted on trivially by the symmetries. As
such, our idea is a variation of Kondo’s lattice techniques that Taormina&KW
introduced earlier in their study of the symmetries of Kummer surfaces and the
genesis of their symmetry surfing programme. Indeed, for Kummer surfaces and
the Kummer lattice II the analogous observations have been key for being able
to symmetry surf the moduli space of Kummer K3s, since they imply that II
faithfully carries the action of every symmetry group of a Kummer K3, and that
the combined action can be lifted to an action on the Niemeier lattice of type A4
and thereby to the action of a subgroup of May.

Since M5 is a subgroup of Msy, as a proof of concept, we are also able to construct
an embedding that yields the largest Mathieu group Ms4 when the symmetry group
of Zs-orbifold limits of K3 is combined with all symmetries of Kummer surfaces.
This last step, so far, remains ad hoc. It requires a justification through geometry
which we leave for future work.
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Tensor network states, spherical Morita contexts and extruded graphs
CHRISTOPH SCHWEIGERT

(joint work with Julian Farnsteiner, Jiirgen Fuchs, César Galindo,
Jutho Haegeman, David Jaklitsch, Laurens Lootens, Frank Verstraete)

Projected entangled pair states (PEPS) and matrix product operators (MPO) are
standard tools for the description of states in quantum information theory and
quantum many-body physics. Following [3], we explained how a PEPS tensor and
an MPO tensor can be associated to a pair consisting of a (spherical) fusion cate-
gory and an appropriate module category over it. We then showed that spherical
module categories provide the appropriate class of module categories. These no-
tions find their natural home in the theory of spherical Morita contexts which was
developed in [2] and applies beyond fusion categories to general finite categories.

Following [3], we then demonstrated that the contraction of PEPS and MPO
tensors can be understood in terms of Turaev-Viro models on manifolds with
boundary. Together with the calculus of extruded graphs developed in [1], this
insight can be used to find generalizations of the standard MPO tensors.

REFERENCES

(1] J. Farnsteiner, C. Schweigert, The evaluation of graphs on surfaces for state-sum models
with defects, SIGMA 20 (2024) 102, arXiv:2312.01946 [math.QA]

[2] J. Fuchs, C. Galindo, D. Jaklitsch and C. Schweigert, Spherical Morita contexts and relative
Serre functors, Kyoto J. Math. 65(3), 537-594

[3] L. Lootens, J. Fuchs, J. Haegeman, C. Schweigert and F. Verstraete, Matriz product operator
symmetries and intertwiners in string-nets with domain walls, SciPost Phys. 10, 053 (2021),
arXiv:2008.11187 [quant-ph]

Geometric formulation of Dijkgraaf-Witten TFT with defects
CATHERINE MEUSBURGER

Dijkgraaf-Witten TQFT can be viewed as a gauge theory based on a finite group
and is a special case of Turaev-Viro-Barrett-Westbury TQFT. We give a purely
geometric formulation of Dijkgraaf-Witten TQFT with defects of all codimensions.
It describes the stratification in terms of a graded graph and is formulated in terms
of functors from the fundamental groupoids of different strata to groupoids con-
structed from the defect data. The strata of codimension 2 and 3 give rise to
groupoid representations and intertwiners between them. This leads to an acces-
sible description of Dijkgraaf-Witten TQFT with defects that allows for direct
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computations of invariants of stratified manifolds. We apply this to describe de-
fects in Kitaev’s quantum double model.
This is joint work with Joao Faria Martins [1].

REFERENCES

[1] J. Faria Martins, C. Meusburger, A geometrical description of untwisted Dijkgraaf-Witten
TQFT with defects. arXiv preprint arXiv:2410.18049.

Complete W*-categories, and a new notion of adjoint functor
ANDRE HENRIQUES
(joint work with Dave Penneys, Nivedita)

W*-categories are the ‘many object’ versions of W*-algebras (a.k.a. von Neumann
algebras). They were introduced by Ghez, Lima and Roberts [2], but have not
been the subject of much in depth investigation since then [3] [1].

Our main observation is that complete W*-categories behave in many ways like
Hilbert spaces. Most notably, every W*-category C admits a canonical sesquilinear
functor

< s >Hilb ZUX C— Hllb,

first studied in [3], which we rename the ‘Hilb-valued inner product’. Given com-
plete W*-categories C' and D, there is an antilinear equivalence of categories

7 : Func(C, D) = Func(D, C)
called adjoint, characterised by the existence of unitary natural isomorphisms
(¢, F1(d))mib =~ (F(c), d) -

This is genuinely distinct from the usual notion of adjoint functors. There is an
extensive list of analogies between Hilbert spaces and complete W*-categories.

REFERENCES

[1] Ulrich Bunke and Alexander Engel. Additive C*-categories and K-theory. arXiv:2010.14830,
2020.

[2] P. Ghez, R. Lima, and J. E. Roberts. W *-categories. Pacific J. Math., 120(1):79-109, 1985.
MRZ808930.

[3] Shigeru Yamagami. Notes on operator categories. J. Math. Soc. Japan, 59(2):541-555, 2007.
MR2325696.
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von Neumann algebras are O(2) fixed points...somehow
THEO JOHNSON-FREYD, DAVID REUTTER

A (Wick-rotated) quantum field theory can answer questions like “what is the
expectation value of ... 7" and “what are the allowed local insertions at ... 7" We
are interested in QFTs with a choice of boundary condition. Some axioms, in the
framed 2D TQFT case:

e “Questions” are expressed by pictures.

e “Pictures” are 2D manifolds some of whose boundary strata are unglazed,
where you can glue the pictures together, whereas some boundary strata
are glazed, where glue doesn’t stick.

e Questions about expectation values are answered by (complex, say) num-
bers and questions about allowed local insertions are answered by (com-
plex, say) vector spaces.

e All strata are framed. Near the glazed boundary, the framing is product.
(Near unglazed boundaries the framing is unconstrained.

For example, point to a spot along the glazed boundary, and ask: “What are all the
valid local insertions at this boundary point, with this (product) framing?” The
answer will be automatically an associative unital algebra A. A different space:
after removing the point of insertion, the framing could rotate as it goes around
that point by n € Z full rotations; the space A,, of local insertions with n units of
framing vortex then becomes an A-A-bimodule. Moreover, @, ., A becomes a
Z-graded algebra, and it carries a degree-(—1) trace map tr: A; — C.

Another vitally important axiom in physics is called Remote Detectability. In
slogans, it says: “Anything that is consistent will other operator insertions is a
valid operator.” In the TQFT case, this implies that various pairings are perfect,
and that various natural gluing maps are isomorphisms. In the case of a framed
2D TQFT with a boundary condition, it implies that the map A,, ® 4 A, = Amin
is an isomorphism for all m,n € Z, so that in particular A; is invertible; and it
implies that the pairing 4; — AV induced by tr is an isomorphism. In other
words, A becomes a finite-dimensional separable algebra and A; becomes its Serre
bimodule.

Actual quantum field theory is not framed. To unorient the story, one can work
with pictures with no trangential structure (and whose “no tangential structure”
is product near glazed boundaries). Compared to the framed story, this supplies
extra isomorphisms, which upgrade A from a finite-dimensional separable algebra
to a x-Frobenius algebra. Algebrotopologically, one can identify a certain “relative
O(1) < O(2)” action on the “relative space” {finite-dimensional separable asso-
ciative algebras and isomorphisms} — {finite-dimensional separable associative
algebras and Morita equivalences}, and match the axioms of #-Frobenius algebra
exactly to the axioms of being a “relative O(1) < O(2)” fixed point. Compare
[SP09].

Actual quantum field theory also is not topological. The rule remains: near
glazed boundaries, local structures are required to be product; for example, we
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allow only product metrics near the boundary. In favourable circumstances, one
can hope to take a “deep UV limit” first in the space direction and then the time
direction (and in the process breaking all manifest Lorentz invariance) and produce
a “flat-space QFT with vanishing energy-momentum tensor”; from this, one can
still hope to extract an associative algebra A of boundary insertions, but there
is not enough room in the slide of your UV microscope to have framing changes.
If one also allows the O(1)2-many reflections in space and in time, then one can
produce a bit more: A becomes a *x-algebra; there is a vector space H of “states”
that can be inserted at the end of a long strip; H is an A-bimodule; H has a
symmetric bilinear form with respect to which the action of A on H is a *-action.

Another vitally important axiom in physics is called Reflection Positivity. The
boring easy part of this axiom is that reflections of questions act antiunitarily on
answers. The interesting difficult part of this axiom says: “If a closed diagram
admits a reflection symmetry, then its value is positive.” Probably there should be
also an axiom for open diagrams, but there is not yet consensus what a “positive
vector space” really is. For example, this implies that the natural sesquilinear
pairing on H built from a strip with insertions at both ends is necessarily positive-
(semi)definite. On the other hand, Remote Detectability (and the memory of the
topology on R) then comes in and says that H with this pairing is necessarily
Hilbert.

Build a strip with H’s at both ends and some A’s along the edges. These
supply closed diagrams, and hence C-valued maps on tensor products of A’s and
H’s. Equivalently, they supply maps A — (tensor product of A’s and H’s)V.
These maps are not independent: they are related by fusion of operators. So there
is some large diagram, and a map A — (colim(diagram))¥ = lim((diagram)V).
This limit ends up computing Endgyioqca)(H4), the algebra of endomorphisms of
H thought of as a right A-module. Remote detectability then says: This map A —
Endrmodca)(Ha) is an isomorphism! But H is Hilbert. So A is von Neumann.

There is (probably) not a physical construction that takes a 2D QFT and
produces a “deep UV theory” which is both Lorentz-invariant and has vanish-
ing energy-momentum tensor: the deep UV, if it exists, is likely nontrivially
conformal. But let’s suppose that someone one does have a reflection-positive
Lorentz-invariant (UV) theory on flat space with vanishing energy-momentum
tensor. The Wick-rotated version of (reflection-positive) Lorentz invariance is
O(2)-symmetry. The rule remains: every stratum must be flat; near glazed bound-
ary, the flat structure must be product. But there are now valid questions about
spaces of operator insertions at corners of nontrivial angle . Remote detectability
now says not that A — Endgrmoed(a)(Ha) is an iso, but rather that some map
A — lim((much larger diagram)¥) is an iso.

On the other hand, we like von Neumann algebras. An idea going back to
Segal [Seg04] suggests: given a von Neumann algebra A, assign to angle 6 € [0, 7]
the noncommutative LP space L>7/? (A). Remarkably, this works: a theorem of
Pavlov from [Pav17] is equivalent to the statement that These assignments satisfy
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(Reflection Positivity and) Remote Detectability. In other words, von Neumann
algebras have a secret O(2)-symmetry.

What is the “O(2)-action” on algebras that von Neumann algebras are the fixed
points of 7 LP(A) is not invertible as an A-bimodule, meaning only “part” of O(2)
acts; how to formulate “noninvertible O(2)-actions”? The LP-space “L?™/9” is
only sensible when 6 is convex (positive); what physics rules out concave angles?
Are there other reflection-positive remote-detectable flat-space Lorentz-invariant
2D QFTs with boundary, or are von Neumann algebras the exact classification?

We have no new results or solutions to these puzzles. Our hope is that, by raising
these puzzles, we will find a story that extends to higher dimensions. Perhaps, for
example, there will be “von Neumann 2-algebras” (maybe bicommutant categories
of [Hen17, HP23]?) that are selected by an O(1)3-symmetry but are secretly O(3)-
symmetric.
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Teichmiiller modular forms and holomorphic vertex operator algebras
SEBASTIANO CARPI
(joint work with Giulio Codogni)

Classical modular forms are holomorphic functions on the upper half plane H
satisfying certain functional equations related to the action of the modular group
SL(2,Z) on H [9]. They are deeply related to the geometry of the moduli space
of genus one compact complex curves. Vertex operator algebras (VOAs) give a
mathematical description of chiral two-dimensional conformal field theories (chiral
CFTs) [3]. One of the most remarkable and intriguing feature of VOAs is their
relationship with modular forms.

VOAs with trivial representation theory are called holomorphic. They give a
special important class of (modular invariant) two-dimensional CFTs. Their genus
one partition functions give rise to classical modular forms. A very important
example of holomorphic VOA is given by the moonshine VOA V! having central
charge ¢ = 24 and automorphism group isomorphic to the monster finite simple
group M, see [3, 5]. A central open problem in VOA theory is the conjecture
on the uniqueness of the moonshine VOA [3] that can be stated in the following
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way: if V = ®n€Z>0 V., is a holomorphic VOA with central charge ¢ = 24 and
weight-one subspace V; = {0} then V is isomorphic to the moonshine V.

Teichmiiller modular forms are higher genus generalizations of classical modular
forms [7]. For for genus g > 1 the upper half plane is replaced by the Teichmiiller
space T, and the higher genus modular group I'y is the (pure) mapping class group.
The quotient T,;/T'y is the moduli stack M, of genus g complex compact curves.
Examples comes from the genus g theta series Siegel modular forms O, associated
to an unimodular even positive-definite lattice L.

In [1] we study the connection between holomorphic VOAs and Teichmiiller
modular forms and analyze various consequence of this connection. This is done by
means of the concept of genus g partition functions. For a general two-dimensional
CFT defined through functional integrals of fields living on Riemann surfaces, pro-
vided that the latter functional integrals make sense and have the right mathemat-
ical properties. In the influential paper [4] Friedan and Shenker argued that a two-
dimensional CFT is completely determined by the collection Z = {Z, : g € Z>o}
of all genus g partition functions and moreover, that this allows a description of
the CFT in terms of the geometry of the moduli spaces M,.

In the case of a holomorphic VOA one can define all the genus g partition
functions as formal power series without the need of functional integrals. A central
result in [1] is the following: if V' is a holomorphic VOA with central charge ¢ then,
for every non-negative integer g, the genus g partition function of V' gives rise in
a natural way to a non-zero Teichmiiller modular form of weight ¢/2 unique up
to a multiplication by a complex number. This can be seen as a generalization of
the construction of Teichmiiller modular forms from unimodular lattices, cf. [10].
Moreover, it gives strong constraints on the partition functions of holomorphic
VOAs. As an example we prove that the validity of a weak form of the Harris-
Morrison slope conjecture about the geometry of the moduli spaces of compact
complex curves would imply that if V' is a holomorphic VOA with central charge
¢ =24 and V5 = {0} then Zy = Zy.

Another result in [1] is the clarification of the relation between unitary holo-
morphic VOAs having the same genus g partition function for all g in connection
with the conjecture in [4]. To this end, for any unitary holomorphic VOA V, we
define unitary vertex operator subalgebra PV of V naturally associated with the
collection Zy = {Zy,4: g € Z>o} of all genus g partition functions of V. It turns
out that PV C VAut(V),

If V and U are unitary we show that Zy = Zy if and only if there is a uni-
tary operator ® : V' — U restricting to a vertex operator algebra isomorphism
¢ : PV — PU and such that ®Y"(a, 2) = YY(¢(a),2)® for all a € PV. In par-
ticular, if the PV-module V' has a unique VOA structure then U and V must be
isomorphic. These relations can be also understood in terms of certain subfactors
arising from inclusions of unitary VOAs through their correspondence with con-
formal nets [2]. This is because, if V' is strongly local in the sense of [2] then the
inclusion PV C V gives rise to an inclusion of conformal nets Apy C Ay and to
a corresponding irreducible subfactor Apy (I) C Ay (I) for any interval I C S*.
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These results open new perspectives on the conjectured uniqueness of the moon-
shine VOA and relate it to other important conjectures in different areas of math-

ematics. Assume for example that PV coincide with the monster orbifold v
and that the latter is strongly rational. Then, the uniqueness of V¥ would follow
from the weak Harris-Morrison slope conjecture together with the results in [8].
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3

[4

A 1d gapped boundary of a chiral theory over a 2d
invertible subalgebra

JEONGWAN HAAH

We discuss a gapped quantum Hamiltonian in 2 + 1d with a gapped boundary
where the anyon theory of the bulk is chiral without any nontrivial boson. The
example crucially uses a subalgebra of local operators that is not an infinite tensor
product of matrix algebras [1].
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Holography for bulk-boundary local topological order
DAvID PENNEYS
(joint work with Corey Jones, Pieter Naaijkens, and Daniel Wallick)

This talk was based on two articles:

e Local topological order and boundary algebras by Corey Jones, Pieter Naai-
jkens, David Penneys, and Daniel Wallick [JNPW23], and

e Holography for bulk-boundary local topological order by Corey Jones, Pieter
Naaijkens, and David Penneys [JNP25]

Local topological order axioms. We begin with an abstract quantum system
on a lattice £, typically assumed to be Z?¢. We have a single unital C*-algebra A
called the quasi-local algebra, and to each d-dimensional rectangle A C L, we have
a unital C*-algebra A(A) C A satisfying the following axioms:
A(Q)) = (C1A7
A C A implies A(A) C A(A),
ANA =0 implies [A(A), A(A)] =0 in A, and
Ux A(A) is norm-dense in A.
This net of algebras is equipped with a net of projections pa € A(A) for each A
satisfying pa < pa whenever A C A; these projections are used instead of any
local Hamiltonian.

We give a rough sketch of the local topological order (LTO) axioms for (A4, p);
for the precise version, see [JNPW23].

e Whenever A < A (A sufficiently completely surrounds A), pa A(A)pa =
Cpa, and

e Whenever A € A (A sufficiently completely surrounds A on all but one
side), there is an algebra B(I) where I = 9A N dA which is supported
on sites near I such that paoA(A)pa = B(I)pa. This algebra B(I) is
independent of A C A beyond that I = dA N JA.

A Il A
A< A <>_S> AEA: L|<—>
2 2

One gets a canonical pure state on A by the formula paoazpa = ¥(z)pa for z € A(A)
and A < A. Choosing a half-space H C £ and setting A(H) = @ACHA(A)’ we
get a net of boundary algebras B = li_n>r1B (I) on OH, together with a quantum
channel E : A(H) — B defined by pazpa = E(z)pa for v € A(A) and A€ ACH
with OA N OA = I. One should think of this boundary algebra B as living on a
physical cut/boundary of our abstract quantum spin system.

Examples of LTOs include almost all known topologically ordered commut-
ing projector lattice models, including Kitaev’s Toric Code and Quantum Dou-
ble [Kit97, Kit03], the Levin-Wen model [LWO05], and the Walker-Wang model
[WW12]. In these cases, the boundary algebra can be described by a fusion spin




1840 Oberwolfach Report 34/2025

chain, which is an abstract 1D spin chain built from a unitary fusion category
(UFC) C and a strong tensor generator X € C. The local algebras are

B(I) = Ende(X®") #

I

and inclusion is given by tensoring with copies of idx as appropriate. One the
recovers the bulk topological order by looking at C. Jones” DHR bimodules for
this 1D fusion spin system [Jon24].

For the Walker-Wang model built from a unitary braided fusion category B,
the boundary algebra is a 2D net of algebras built from B and our strong tensor
generator X € B called a braided fusion spin system. Since B is braided, it makes
sense to take a tensor product of objects at points in a 2D plane, so for each
2D rectangle I, we can define Endg(X®7). As an aside, we remark that this
net of algebras has a canonical state corresponding to tensor powers of the map
15 — X, and in this state, the category of superselection sectors of this net of
von Neumann algebras following [BBC*25] is equivalent to the completion (in the
sense of [HNP24]) to B as a W*-category. We make the following conjectures, the
second pointed out to us by C. Jones.

Conjecture 1. The superselection sectors for this net is equivalent to the com-
pletion of B as a W* braided tensor category.

Conjecture 2. The braided fusion spin system for SU(3)1 (or possibly its reverse)
is bounded-spread isomorphic to a net of algebras from [Haa23, Fig. 1] discussed
by Jeongwan Haah in his Oberwolfach talk given just prior to this talk, i.e., the
net of algebras with local generators

z % 00 1 10 0
ST ol . X=[|100],Z=(0 ¢ 0], ¢=exp(2ri/3)
O 010 0 0 ¢2

on a 2D edge lattice with C3 spins on each edge.

Introducing a topological boundary. One can now introduce a topological
boundary for our lattice; the term ‘topological’ here is used to distinguish this
boundary from the ‘physical’ boundary cut obtained from choosing a half-space.
The LTO axioms in the presence of a topological boundary are almost identical to
the previous LTO axioms. Roughly speaking (for a precise version see [JNP25]),

e Whenever A <2 A, paA(A)pa = Cpa, and
e Whenever A €? A, there is an algebra B?(I) similar to B(I) such that
paA(A)pa = B°(I)pa.
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A Il A
Aeon. Al A A AIS?
1;5 1%3
0 0

Again, one gets a net of algebras on the physical cut/boundary at the edge of
a chosen half-space. Following [KK12], one gets topological boundaries for the
2D LTOs from our models above via module categories M for the corresponding
UFCs C, together with a choice of strong module generator W € M. For these
topological boundaries, the boundary algebra is the a fusion module spin chain,
where sites meeting the topological boundary give rise to the local algebras

w
BY(J) = Endy (W < X®/71) :
J

We then define a notion of boundary DHR-bimodule meant to capture the topo-
logical boundary excitations. We use subfactor theory to prove that that for these
fusion module spin chains, the boundary DHR bimodules give exactly the dual
category End(Me).

For our 3D Walker-Wang model from a UBFC B, we get a 2D topological
boundary from a untiary module tensor category [HPT16], i.e., a UFC C equipped
with a unitary braided central functor B — Z(C). Indeed, the half-braiding for B
with C is exactly the data needed to attach the 3D B-Walker-Wang model to the 2D
C-Levin-Wen model [HBJP23, GHK24]. For such a 2D topological boundary, the
category of boundary DHR bimodules has a canonical braiding as in [Jon24]. We
use a folding trick and our 2D result for fusion module spin chains to prove that the
2D topological boundary excitations is equivalent to the enriched center/Miger
centralizer ZB(C) = B' € Z(C) [KZ18]. Using a 3D folding trick for our original
3D Walker-Wang model for B, we get a 2D topological boundary labeled by B
for the 3D bulk labelled by B X B**V. Applying the above result, we see that the
ordinary DHR bimodules for the 3D model is given by ZB¥E™ (B) = Z,(B), the
Miiger center of B.
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Geometry of 2d Finite Logarithmic CFT
BIN Gul

In recent years, I have been collaborating with Hao Zhang on the study of the
vertex operator algebra (VOA) aspects of 2d logarithmic chiral conformal field
theory. Specifically, in a series of papers [GZ23, GZ24, GZ25a], we have developed
a systematic framework for understanding conformal blocks associated with Co-
cofinite VOAs that are not necessarily rational or self-dual.

The theory we have constructed—both in our finished work and ongoing re-
search —currently stands as the only comprehensive approach capable of system-
atically addressing the following questions:

(1) Zhu’s celebrated theorem on the modular invariance of characters for Cs-
cofinite rational VOAs does not extend to irrational VOAs. In [Miy04],
Miyamoto introduced pseudotraces of VOA modules, which do satisfy
modular invariance. While the traditional characters—defined via trace—
are well-aligned with Segal’s geometric framework for conformal field the-
ory, pseudotraces arise from intricate algebraic constructions. What is
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the geometric significance of pseudotraces, and how can they be naturally
incorporated into Segal’s geometric formulation of CFT?

Using pseudotraces, Miyamoto characterized in [Miy04] the space of vac-
uum torus conformal blocks in terms of higher Zhu algebras A, (V). How-
ever, these algebras are computationally challenging and their relationship
to the representation category Mod (V') is unclear.

In [GR19], Gainutdinov and Runkel proposed a conjecture that more
directly connects the space of vacuum torus conformal blocks to Mod(V).
Specifically, they conjectured that this space is isomorphic to the space of
symmetric linear functionals on Endy (G), where G € Mod(V) is a fixed
projective generator—with the isomorphism realized via the pseudotrace
construction. How can one prove the Gainutdinov-Runkel conjecture?

In TQFT, torus conformal blocks are studied via the Lyubashenko coend L
[Lyu96]. Specifically, the TQFT perspective predicts that if V' is strongly-
finite (i.e. Ca-cofinite, self-dual, CFT-type, N-graded), then the space of
1-pointed torus conformal block with insertion module M € Mod(V) is
isomorphic to Homy (M, L). How can this isomorphism be proved? And
how can this picture be related to pseudotraces?

From the TQFT perspective, modular functors/conformal blocks satisfy a
certain sewing-factorization property [Lyu96, FS17]. In the Cs-cofinite
rational case, this property is expressed in terms of direct sums over ir-
reducible modules, and has been established recently, e.g., in [DGT24].
In the Cs-cofinite irrational case, the sewing-factorization property is ex-
pressed in terms of coends, for example, via horizontal composition of
profunctors. How can this coend version of the sewing-factorization theo-
rem be proved in the setting of Cs-cofinite VOAs?

In the strongly-rational case, the equivalence between the categorical S-
matrices (defined by Hopf links) and the modular S-matrices (defined by
performing the modular transform 7 — —1/7) was proved in [Hua08,
HK10]. In the strongly-finite case, the categorical S-transform is defined
by the Hopf pairing of the Lyubashenko coend L. How can one prove the
equivalence of the two S-transforms in the strongly-finite case?

In our series of papers [GZ23, GZ24, GZ25a], and especially in the last one,
we completely solved Problem 4: we proved several equivalent versions of the
sewing-factorization theorems, one of which is structurally equivalent to the for-
mulation studied in the TQFT setting by [HR24], using horizontal composition of
profunctors (defined by coends).

Problem 3 is also essentially solved in [GZ25a]; see the Introduction of [GZ25a].
In particular, the Lyubashenko coend L is given a VOA interpretation in [GZ25a].

A partial answer to Problem 1 is given in [GZ24]. Full answers to Problems
1 and 2 is presented in [GZ25b]. In this paper, we use the sewing-factorization
theorem proved in [GZ25a] to show that for any Ca-cofinite VOA V| the end

E = MocM' — €Mod(VeV)
MeMod(V)
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(where M’ is the contragredient module of M) has a canonical structure of an
associative C-algebra, that the category of certain left F-modules is linearly iso-
morphic to Mod(V'), and that the space of vacuum torus conformal blocks of V' is
canonically isomorphic to the space of symmetric linear functionals on E. Using
this result, the Gainutdinov-Runkel conjecture is proved in [GZ25b].

Problem 5 will be studied in a subsequent series of papers, all based on the
sewing-factorization theorem proved in [GZ25a]. Note that our solution to Problem
3 already completes the first step towards solving Problem 5—namely, identifying
the two vector spaces on which the two S-transformations we aim to compare act.
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Planar algebras associated to cocommuting squares
JUuNHWI L1M
(joint work with Dietmar Bisch)

The ‘generalized symmetries’ of finite index II; subfactors are encoded by their
planar algebras [6], or equivalently, by their strictly pivotal 2-categories. A natu-
ral foundational question is “What minimal structure can be universally expected
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from these symmetries?” For an arbitrary subfactor N C M, the planar alge-
bra always contains the Temperley-Lieb-Jones algebra as a subalgebra [5]. When
an intermediate subfactor N C P C M is present, the planar algebra has Fuss-
Catalan-Bisch-Jones algebra, introduced by Bisch and Jones [1]. However, the
situation for a subfactor with two intermediate subfactors N C P,Q C M, re-
mains an open problem. Such an inclusion is called a quadrilateral. One of the
main difficulties of the problem is that the structure depend on the relative po-
sition of intermediate subfactors. Hence, when studying such planar algebras, a
reasonable approach would be working with a subclass of quadrilaterals with some
natural properties. The easiest class of quadrilaterals are the symmetric commut-
ing square. Due to the highest degree of commutativity, they have a simple set of
skein relations for their planar algebras [6, Lemma 2.11.2].

We studied quadrilaterals N C P,Q C M with less degree of commutativity
motivated by group-subgroup subfactor examples. They satisfy

(1) [P:N]=[Q:N]=[M:P]+1=[M:Q]+1;

(2) p2g2 = e2;

(3) prgap1 = Ap1 + (L — Nex, gipiga = A1 + (1 — N)ey for some A € (0, 1);
(4) [eplQl’tepl] =0;

(5) [eMPUIlPo;szIle e1\/1(11170172f111711\/1] =0,

where e;, p; and ¢; are the i-th Jones projection associated to N, P and @, respec-
tively, and the elements of the form ex in the fourth and fifth condition are the
projections from L?(M;) and L?(M,) onto 5panX, respectively. The second con-
dition says that N C P, C M is the cocommuting square, a quadrilateral that
has as half as much degree of commutativity of the symmetric commuting square.
In addition, in the third condition, we have a weakened version of commuting
square, where p1g1p1 and q1p1q1 are positive linear combinations of Jones projec-
tions. However, the second and the third conditions do not completely determine
the structure of the planar algebras. Hence, we also consider the first condition,
which is guaranteed to hold when N C @Q and N C P are 3-supertransitive [7,
Corollary 3.3], and the fourth and the last condition, which endow slightly more
degree of commutativity. These conditions are realized by the quadrilaterals of
fixed point algebras MT*F* <« MF* MX c M where F is a finite field and K is
a conjugate of F*. We constructed more general class of quadrilaterals satisfying
Conditions 1-5 with arbitrary integer index by using graph planar algebras.
There are diagrammatic expressions for Conditions 1-5. First, we assign the
colors to the factors N, P, () and M as follows:
N =

P= Q= M =

3

Now, for the bimodules y L?(P)p, pL*(M)m, nL*(Q)g and g L?(M) s, we assign
the following diagrams:

NL*(P)p = , PLA (M) = , NL2(Q)g = QLA (M)y = ;
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The dual bimodules of the above are expressed by horizontal reflection of the
diagrams. Note that

= WIA(P) @p LA(M)a = N IA(M)yr & NLA(Q) ®o LA(M) a1 =

Hence, there is a unitary intertwiner u : yL?(Q) ®¢g L*(M)y — ~L*(P) @p
L?(M) s that is expressed as

(1) u=><.

If we only use the diagram for u to express Conditions 1-5, the skein relations have
up to eight terms. However, the number of terms can be reduced by employing
another crossing given by

X =R

where a = [P : N]2 and 8 = [M : P]2. Note that o® = 82 + 1 by Condition 1.
The simplified skein relations are exhibited in the following proposition.

Proposition 1 ([2]). Let N C P,Q C M be an irreducible quadrilateral satisfying
Condition 1.Then Conditions 2-5 hold iff its planar algebra satisfies the following:

S
) 0
RN

QIQ

M

=B

€

=
5) L ()] ] =e [ ] | where| = or
Y%

Moreover, the unitary u together with the above skein relations form the pre-
sentation of planar algebras that are almost like the ones coming from subfactors.
The precise description is given in the following theorem:

Theorem 2 ([2]). In the planar algebra generated by the unitary u in (1), every
closed diagram can be reduced to a scalar factor. Moreover, every vector space in
the planar algebra is finite dimensional. In particular, the vector space with the
boundary coloring NPNPNP --- has the Bell number B(n)as the dimension, and

2n letters
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the one with NPMPNPMPNP - the generalized Bell number B 2(n) in the

4n letters
sense of Blasiak-Penson-Solomon [3].

In the proof of the finite dimensionality, we show that there is a 1 —1 correspon-
dence from the equivalence classes of diagrams to the set partitions and the result
of [4]. We also proved the following theorem by showing that the vector space with
the boundary coloring NPNPNP - - is isomorphic to the k-th partition algebra.

4k letters

Theorem 3. The quotient of the planar algebra generated by the unitary u in (1)
by the elements of vanishing 2-norm is a subfactor planar algebra if and only if
« € N>3. If this is the case, the tensor category generated by ny L*(M)n is Rep(Sy)

with n = o?.
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Heat semigroups on quantum automorphism groups of finite
dimensional C*-algebras

FuTtaBA SATO

We investigate heat semigroups on a kind of compact quantum group called quan-
tum automorphism groups of finite dimensional C*-algebras, denoted by Aut™(B)
defined for a pair of a finite dimensional C*-algebra B and an appropriate trace-
state called Plancherel state on B introduced by Wang in 1998 [5]. These are
important as a kind of quantum symmetries because quantum permutation groups
S and the “projective” versions of quantum orthogonal groups are included. For
quantum permutation groups, it is shown that heat semigroups on those have ul-
tracontractivity and hypercontractivity by Franz et al [2] and the concrete formula
of heat semigroups are applied to show the sharp Sobolev embedding property of
quantum permutation groups by Youn [6]. It is known that heat semigroups of
Aut™(B) have the same formula as those of S;" with dim B = n [1]. However, prop-
erties of heat semigroups and their applications to noncommutative LP-theoretical
properties have not been appeared in lierature for general Aut™(B).
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In [4], we prove the properties of heat semigroups on Aut™(B) such as hypercon-
tractivity: for each p with 2 < p < oo, there exists 7, > 0 such that ||Tiz||, < ||z]|2
for any t > 7,. Furthermore, we obtain the sharpness of the Sobolev embedding
property of Aut™(B): for any p € (1, 2], we have the Hardy-Littlewood-Sobolev
inequality

% -~
> I WlEhs | < Il
iso (L+k)%P
if and only if s > 3. In the appendix of this paper, we give another proof for the
concrete formula of heat semigroups on Aut™ (B) by considering the tube algebras
of Aut™(B) and S;.
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G-Crossed Extensions and Lattice Orbifolds
SVEN MOLLER
(joint work with César Galindo, Simon Lentner)

G-crossed braided tensor categories (or their equivariantisations, which are often
modular tensor categories) appear as categories of representations of fixed-point
vertex algebras V& under the action of some finite group G.

We develop techniques to determine these G-crossed categories in concrete ex-
amples, in particular when the original vertex algebra V' has a pointed represen-
tation category (like a lattice or Heisenberg vertex algebra), i.e. when the fusion
rules are characterised by an abelian group A equipped with a quadratic form.

Specifically, we generalise the Z/2Z-crossed Tambara—Yamagami categories,
which have only one simple object in the twisted sector (and are only non-degener-
ate for A odd), to define a class of Z/2Z-crossed categories whose untwisted and
twisted sector are parametrised by A and A/(2A4), respectively.

These give the representation categories of certain lattice Z/2Z-orbifold vertex
algebras, but in contrast to earlier results, with all categorical data (and not just
on the level of the fusion ring).
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New hyperfinite subfactors with infinite depth
Jurio CACERES
(joint work with Dietmar Bisch)

We will present new examples of irreducible, hyperfinite subfactors with trivial
standard invariant and interesting Jones indices. These are obtained by construct-
ing new finite dimensional commuting squares. We will use two graph planar alge-
bra embedding theorems and the classification of small index subfactors to show
that our commuting square subfactors cannot have finite depth. We also present
one-parameter families of commuting squares that, by a classification result of
Kawahigashi, will also yield irreducible infinite depth subfactors. This is joint
work with Dietmar Bisch.

Subfactors are inclusions of certain algebras of operators on Hilbert spaces,
that are closed under pointwise convergence on vectors. These are called von
Neumann algebras and were introduced by Murray and von Neumann in the 1930’s.
Specifically, We are interested in subfactors of the hyperfinite II; factor R, which
is a tensor product of infinitely many copies of M3(C), and can be shown to be
the unique approximately finite dimensional von Neumann algebra with a trace
and trivial center. A hyperfinite subfactor is then a unital inclusion N C M where
both N and M are isomorphic to R. In his seminal paper [13], Jones introduced
the notion of index [M : N] for a subfactor. This number behaves in a very similar
way to the index for subgroups but need not be an integer. Jones also proved the
surprising rigidity result

[M:N]e {40052 (%),n=3,4,5,...}u[4,oo]

Moreover, he showed that every index in this set is attained by a not necessarily
irreducible hyperfinite subfactor. A subfactor is called irreducible if dim N'NM =
1.

There is another invariant for subfactors, finer than the index, called the prin-
cipal graph. It is a bipartite graph that describes the standard representation
theory of the subfactor. Whenever this graph is finite we say the subfactor has
finite depth, otherwise it has infinite depth. Subfactors whose principal graph is
the Coxeter-Dynkin graph A

play a special role, and we will refer to them as As.-subfactors. One of the main
challenges in subfactor theory is classification. The most successful approach has
been by classifying the standard invariant associated to the subfactor. Jones in [10]
reinterpreted the standard invariant in terms of planar algebras. In particular, As.-
subfactors have the Temperley-Lieb-Jones planar algebra TLJ(J) as their standard
invariant, which is the “smallest” planar algebra there is. In [11] it is shown
that hyperfinite finite depth subfactors are completely classified by their standard
invariant. A complete classification of all planar algebras associated to subfactors
with index less than 5.25 can be found in [2]. Thus all finite depth subfactors of
the hyperfinite II; factor with index less than 5.25 are known. The same cannot be
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Index # of subfactors
1(5+V13) 2
~ 4.3772
(5+V17)
3+V3
1(5+/21)
5
~ 5.04892
3++v5b 11
TABLE 1. Indices of hyperfinite finite depth subfactors < 5.25

N[

NN N NN

said about infinite depth subfactors, in fact, any irreducible infinite depth subfactor
with index less than 5 has the same TLJ(0) standard invariant. In this situation,
new invariants are needed to differentiate between infinite depth subfactors with
the same index.

Given a II; factor M, Jones defined the invariant C(M) for M, where

C(M)={[M : N]: N C M irreducible subfactor}.

C(M) is known for specific II; factors M by results of Popa, Shlyakhtenko and
others, however the problem of computing C(R) is still wide open. The situation
is slightly better if we only consider finite depth irreducible hyperfinite subfactors.
Table 1 shows the list of all indices in (4,5.25] for irreducible hyperfinite finite
depth subfactors.

Except for =~ 5.04892, we realize these indices as the index of an irreducible
hyperfinite infinite depth subfactor. Our work leads us to the following conjecture

Conjecture 1. Every index of a finite depth irreducible hyperfinite subfactor is
also the index of an Ao -subfactor.

We have shown the conjecture holds for %ﬁ, ~ 4.3772, 5"’%@, 3+3, %ﬁ,

5 and 3+ v/5. The novel idea in our work is to combine a classical construction of
hyperfinite subfactors with planar algebras and fusion category techniques.
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Quantum graphs and spin models
ROBERTO HERNANDEZ PALOMARES

Spin models for singly-generated Yang-Baxter planar algebras are known to be
determined by certain highly-regular classical graphs such as the pentagon or the
Higman-Sims graph. Examples of spin models include the Jones and Kauffman
polynomials, as well as certain fiber functors. We will explore the notion of higher-
regularity for quantum graphs as well as their potential to encode spin models.
Time allowing, we will give examples of non-classical graphs enjoying these prop-
erties.
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Classifying actions of tensor categories on Kirchberg algebras
SERGIO GIRON PACHECO
(joint work with Kan Kitamura, Robert Neagu)

The Kirchberg—Phillips theorem ([4, 5]) is a cornerstone of the classification theory
for C*-algebras. In its original form, it is a KK rigidity result: two Kirchberg
algebras are stably isomorphic if and only if they are KK-equivalent. Assuming
the universal coefficient theorem (UCT), this yields a complete classification: two
UCT Kirchberg algebras are stably isomorphic if and only if they have isomorphic
K-groups, and any pair of countable abelian groups can be realised as K-groups
of such an algebra.

Recently, Gabe and Szabd established a dynamical analogue, classifying point-
wise outer actions of discrete amenable groups on Kirchberg algebras via group
equivariant KK-theory ([2]). Combined with Meyer’s result [7], this confirms
Izumi’s conjecture [8], that any two outer actions of countable torsion-free amenable



1852 Oberwolfach Report 34/2025

groups on stable Kirchberg algebras are classified by the homotopy class of the in-
duced maps on classifying spaces; a much simpler invariant than KK equivalence
classes. For example, these homotopy groups can be computed for strongly self-
absorbing C*-algebras via Dadarlat—Pennig theory [9].

In analogy with Popa’s classification results for amenable subfactors ([3]) and
it’s subsequent reformulations, it is also natural to ask for a classification of quan-
tum symmetries on Kirchberg algebras. The framework of unitary tensor category
actions provides the right language to study these symmetries, their classification
problem is also known to be closely related to the problem of classifying finite
index inclusions of C*-algebras. Moreover, the recent work of Arano, Kitamura
and Kubota [1] introduces the appropriate tensor category equivariant KK-theory.

In this talk I discuss the full analogue of Gabe and Szabd’s theorem for actions
of unitary tensor categories with countably many isomorphism classes of simple
objects (hereinafter called countable UTC’s). Specifically, if C is an amenable
countable UTC and «, 3 are outer actions of C—meaning that the associated func-
tors into the bimodule categories of the underlying C*-algebra is full-on stable
Kirchberg algebras, then o and § are equivalent if and only if they are KK¢
equivalent. Similarly, in the unital case, @ and § are (unitally) equivalent if and
only if the isomorphism in K K preserves the class of the unit in K-theory.

This KK-rigidity lays the groundwork for future classification results. For in-
stance, if C is as above and «, 8 are outer actions of C on the C*-algebra O, that
are equivariantly Os-stable in the sense of [6]-meaning that the action by bimod-
ules is equivalent to its external tensor product with Os—then they are equivalent.
In the group case, equivariant Os-stability is immediate for any outer action of a
countable torsion free amenable group on Oy. This raises a natural question: for
which unitary tensor categories does equivariant Oy stability follow automatically
from outerness?
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Superselection sectors for a poset of von Neumann algebras
DANIEL WALLICK

(joint work with Anupama Bhardwaj, Tristen Brisky, Chian Yeong Chuah, Kyle
Kawagoe, Joseph Keslin, David Penneys)

We consider spin systems on a Z? lattice, where we associate C% to each v € Z2.
These finite-dimensional Hilbert spaces represent quantum spin particles. We
can describe the entire system of interacting particles by the UHF C*-algebra
A = ®,cz2 Ma,(C). For a subset S C Z2, we associate the subalgebra g :=
Qpes Ma,(C) € 2A. We will specifically consider the case where S = AN Z? for a
cone A C R2.

The physics of this system is given by a state wg: 2 — C. From this state,
one can obtain the GNS representation my: 2 — B(H). Using this data, one can
describe anyonic excitations using a DHR~inspired machinery. This approach was
first introduced in [4] and was later expanded on in [5].

We reformulate these methods using the approach of [2] for conformal nets.
We let C denote the poset of cones in R?. Note that C is closed under taking
complements, i.e., if A € C, then A¢ € C. To each A € C, we can associate the von
Neumann algebra Rp = 7o (Apnz2)” C B(Ho). Note that if A C A, then Ry C
Ra. Furthermore, without loss of generality, we can assume that all of the algebras
R are properly infinite [6]. Finally, we assume that the von Neumann algebras
satisfy Haag duality, namely that R,. = Ra. While Haag duality is hard to show
in practice, it (or a generalization thereof) is a standard assumption in this area
[5]. These assumptions further imply that for every A € C, g, Ho is an absorbing
Ra-module [1, 3], that is, for every Ra-module », K, =, Ho = r,Ho ® =, K.

In [1], we define a superselection sector as a collection of normal unital x-
representations ma : Ry — B(H) satisfying the following axioms:

e (isotony) if A C A, then ma|gr, = ma,
e (locality) for all A € C, [maA(RA), mac(Rac)] =0, and
o (absorbing) for all A € C, m, defines an absorbing R-module.
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This definition is equivalent to the usual definition of superselection sectors for spin
systems [4, 5]. However, this definition makes sense even if the algebras R do not
originate from a quantum spin system, and it works for more general posets than
C. We show that with general geometric axioms for the poset, the superselection
sectors form a W*-braided tensor category [1]. Furthermore, we show that the
category we obtain is equivalent to the one defined for spin systems [5].
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Construct Subfactors by Classical and Quantum Computers
ZHENGWEI LIU
(joint work with Fan Lu)

We propose a new program to construct subfactors and planar algebras by classical
and quantum computers. Brand new examples are discovered in this program.
This is joint work with F. Lu, arXiv:2412.17790, and an updated version will
appear soon.

Subfactors and planar algebras describe the quantum symmetries beyond the
representation theory of groups, including quantum groups. These symmetries can
be applied to classify 1+1 quantum spin chains and the boundary of unitary 2+1
topological quantum field theory, etc. People have tried various classifications of
subfactors. However, new examples beyond the representation theory of groups
are quite rare. The first example is the Haagerup subfactor with Jones index
?""T‘/ﬁ, which was discovered from the small index classification. It remains an
open question that whether their is a Vertex operator algebra in conformal field
theory whose representation category contains the Haagerup symmetry. A generic
construction of new subfactors and planar algebras beyond group representation
theory is highly demanded.

We investigated skein theoretical classification and construction of planar alge-
bras. The planar algebras are presented by generators and parameterized relations.
First, one needs to provide an evaluation algorithm based on enough relations, so
that any closed diagram reduces to a polynomial of parameterized variables. Sec-
ondly, the value of different reductions process should be the same, which lead
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to a set of polynomial equations. Thirdly, if one wants a subfactor from the pla-
nar algebra, then ones need to verify the reflection positivity condition for certain
variables.

We consider the n dimensional 2-box space of a planar algebra as a fusion bial-
gebra. We setup the generators as its minimal idemponents. The dual data, the
quantum dimension d; and the convolution coefficients Ni’} are the O(n?) variables.
They satisfy a set of degree 2 consistency equations, such as the associativity of
the convolution. These equations are not enough to evaluate any closed diagram.
Furthermore, we setup the exchange relation for the generators with O(n?) vari-
ables af}, bfjl We derive the consistency equations as a set of O(n®) degree at
most 3 polynomial equations.

In principal, one can solve a set of polynomial equations by the Groberner
basis. However, solving polynomial equations is NP hard problem. The compu-
tational complexity of the Groberner basis algorithm to find algebraic solutions
is double exponential w.r.t. the number of variables. The computational com-
plexity to find numerical solutions is exponential. This exponential computation
complexity is a common challenge in various classification program. Experts have
introduced various methods to reduce the computational complexity, which are
successful to construct small examples. However, these methods fail to construct
large examples, due to the exponential computational growth of the computational
complexity and the limited computational resource. A typical example is that the
existence of generalized Haagerup subfactor for the group Z, remains open, which
is equivalent to solve Izumi’s polynomial equations. We need to explore more
mathematical structures behind the equations and find new algorithms to solve
them.

Our first break is proving that the fusion bialgebra has an exchange relation if
and only if the the fusion graph I'; is a forest for every i. Here I‘f ; 1s the support
function of NZ} and I'; is the bipartite graph whose the vertices j,k are connected
iff Ff'j = 1iff Nikj'- # 0. This is a very surprising correspondence between skein
relations and fusion graphs. Given forests 'y, we prove that

e The variables afj, bfjl are =1 or 0 determined by L,;

o Nikj'- is sum of the variables d, with integer coefficients determined by T,.

e All consistency equations reduces to linear equations, except the degree 2
associativity equation.

Therefore, O(n) variables reduce to n variables of quantum dimensions d; and
they satisfy O(n®) linear equations. This is a highly over determined system. Af-
ter solving linear equations, the remaining variables and the degree 2 associativity
equations can be solved for a reasonably large n. We conjecture that the forest de-
composition of the algebraic variety of the consistency equations is the irreducible
decomposition. Each irreducible component is the solution of the associativity
equation and linear equations.

We establish a computer algorithm to classify exchange relation fusion bialge-
bras:
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e Input: n, the dimension of 2-boxes;

e List all cases I'}; € {0,1}, such that every I'; is a forest.

o List conblbtency equations, solve the linear ones and then solve the asso-
ciativity equation by Grobener basis.

e Output: solutions Pfj and variables d;.

The running time of this algorithm on a personal computer is 1.2 seconds for
n <5 and a couple minutes for n = 6. The number of solutions is summarized in
the following table:

n | types of forests | algebraic solutions | subfactors
3 16 7 6

4 1.024 24 20

5 1.048,576 88 61

6 | 68,719,476,736 275 198+

The table illustrates the rareness of planar algebras and subfactors. The column
for subfactors is the number of forest types with algebraic solutions and the planar
algebra has reflection positivity for certain variables, which produce subfactors. In
general, the reflection positivity condition need to be checked case by case.

For n = 3, we obtain a brand new planar algebra with index 62> = —1, whose
principle graph is an infinite binary tree.

—
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O ......
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For n <5, all solutions are from groups, Temperley-Lieb Jones, the binary tree
planar algebras or their tensor/free product. We provide several criteria derived
from Quantum Fourier analysis to test reflection positivity. The sieving efficiency is
remarkablely 100%. All algebraic solutions passing the criteria produce subfactors.

For n = 6, there are 6 forest types which are neither groups, nor tensor/free
products. They include

a self dual planar algebra with index —2;
a self dual one with index 10;

a dual pair with index §;

a dual pair of one-parameter families.

The first unitary solution in the one-parameter family has index 6 + 2v/5 and it
produces a new infinite depth subfactor.
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The dimension 6 = 2 x 3 is the transition point that we start to see several non-
trivial examples beyond (quantum) groups and tensor /free product. We expect to
see more examples and new mathematical structures when n gets larger.

The remaining challenge is that the number of cases Ffj € {0, 1} is about on°/6
modulo the permutation symmetry S3, even though every single case is easy to
solve. It exhausted the memory of a classical computer. How to efficiently find
Pfj € {0,1} with solutions?

This problem can be solved by our new quantum algorithm of solving binary
polynomial equations. We can design a friendly Hamiltonian H, such that its
time evolution e on the state of one solution associated with Ff'j is a superpo-
sition of other solutions up to an error rate O(e) and the running time is about
O(e72). Then the measurement of the output state will be another solution in a
high probability. Repeating this sampling process, we will obtain most solutions
considering the rareness of subfactors planar algebras. This quantum algorithm
will not provide a mathematical classification. It provides a new paradigm and
machine to produce new examples.

Anyonic Spin Chains and Subfactors
STEFAN HOLLANDS

Anyonic chains are a class of spin models in which the Hilbert space of the model
is naturally defined not as a tensor product between the Hilbert space of each indi-
vidual spin, but rather in terms of the “F-symbolds” or “quantum 6j-symbols” of
some given unitary fusion category. Such chains support a variety of operators cor-
responding, e.g., to local operators such as nearest neighboring spin interactions,
as well as also “topological charges” which commute with all local operators.

In the work [1] reported in this talk, we investigated the setup of anyonic spin
chains in the case that the fusion category in question is related to an inclusion
N C M of von Neumann factors. More precisely, we assume that N carries
an action of a unitary modular tensor category Xy by endomorphisms of N,
such that the extension M of N is characterized by a Q-system [2] (“canonical
endomorphism”), 0, of the fusion category associated with A/. Then the braiding
between the irreducible objects A, i, ... in A» X induces endomorphisms af, aljf
of M called “alpha-induced” objects. These objects are in general not irreducible,
a situation characterized by the matrix Z) , = dimHom(aj, a;) of non-negative
integers.

In the setting of our work [1] the Hilbert space of the anyonic spin chain is
given for a given length 2L by the set of intertwiners H2* = Hom(#*, %), which
is also equal to the depth 2L relative commutant in the Jones tunnel associated
with the inclusion N' C M. Based on foundational work by Bockenhauer et al. [3],
we first construct a set of mutually orthogonal projectors @, for any pair (A, u)
such that Z) , # 0. The construction is possible in a canonical manner for any
L using alpha induction, and these projections give an orthogonal decomposition
H?*E = @(A’M)Hii. Each of the orthonormal subspaces HELH is shown to be
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invariant under all local operators on the spin chain. We think of these subspaces
as analogous to the “conformal block” in a putative 1 4+ 1 dimensional CF'T limit
of the chain which is generated by acting with chiral operators together with a
primary field of type (A, p) on the vacuum vector in the CFT Hilbert space.

The main result of our work [1] is a construction of defects in our setting. We
characterize a specific defect of “type D” by a specific orthogonal projector Pp
on the Hilbert space H?'t @ H?L2 of a bipartite chain. Our construction of Pp
is aimed at being parallel to a construction of transparent defects in CFT [2]. It
proceeds by first defining a set of operators Wy i, w, on the Hilbert space of the
bipartite chain, where wy,ws run through an orthonormal basis of Hom(o&r7 a;)
for each given pair (A, ). These operators have the following key properties:
(i) They mutually commute, (ii) they commute with all local operators on the
bipartite chain away from the junction, (iii) their operator algebra is precisely
equal to that of the “braided product of two full centers” in the category xXnas,
known [2] to classify defects in a CFT whose fusion category of any chiral half
Virasoro sub-theory is arX. Then we let D be the abelian operator algebra
acting on H?*1 @ H?E2 generated by the operators Wy ,.u,,ws.- A specific defect
of type D corresponds to a central projection Pp of this algebra D. Finally, the
subspace Pp(H?"* @ H?2) is supposed to contain those physical states on the
bipartite chain containing a defect of the type D. It can be seen from the algebraic
relations in D that, in a sense, a defect of type D connects primary fields on both
sides of the chain in a specific way. In the case of the anyonic spin chain based
on the Ising category, the construction of the defects is consistent with the usual
boundary conditions of the Ising primary fields across the defect.
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Exact factorizations and bicrossed product of fusion categories
JULIA PLAVNIK
(joint work with Monique Miiller, and Héxtor M. Pena Pollastri)

Fusion categories are highly structured categories that appear naturally in many
areas of mathematics and physics, such as low-dimensional topology, subfactors,
mathematical physics, and representation theory, among others. More precisely,
fusion categories are finite semisimple tensor categories. For more detailed defin-
tions, we refer to [4]. We always consider our field to be algebraically closed of
characteristic zero.

A central theme in the theory is the classification and construction of new ex-
amples. A lot of the inspiration for this comes from groups, since two important
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examples of fusion categories arise from finite groups: the so-called pointed fusion
categories, which are the categories of finite-dimensional vector spaces graded by
the group and associativity determined by a 3-cocycle, and finite-dimensional rep-
resentations of the group. For example, there are notions of nilpotent and solvable
fusion categories, which capture many of the features observed for groups but also
have some differences.

When studying fusion categories, sometimes the focus is on understanding the
fusion rules and the properties that only depend on them, that is, the Grothendieck
structure. Something very valuable is to have the other piece of data pertaining
to a fusion category: the associativity constraint, also described as 6j-symbols or
F-matrices.

For a group G, we say that it is an ezact factorization of subgroups H and K
if any element g € G can be written as g = hk, for unique h € H and k € K.
We will denote G = H e K an exact factorization of G by H and K [7], [§],
[12]. The direct product and semidirect products of groups are examples of exact
factorizations. There are examples not coming from semidirect products, such as
the symmetric group S,, = S,,_1 #C,,, where C,, denotes the cyclic group of order n.
An equivalent definition is that the intersection of H and K should be trivial and
that the order |G| = |H||K|. With this definition, it is also easy to see that this
notion is symmetric and does not depend on the order chosen for H and K. To
construct new examples of exact factorizations, a useful notion is that of matched
pairs of groups. A matched pair of groups is a collection (H, K, >, <) where H and
K are groups, >: K x H — H and <: K x H — K are left and right actions such
that (kt)<h = (k< (¢>h)) (t<h), and k>(hg) = (k> h) ((k<h)>g), forall k,t € K,
h,g € H. Then, the bicrossed product of groups (or Zappa -Zsép product) is defined
as a set as H <1 K := H x K with multiplication (h, k)(g,t) = (h(k>g), (k< g)t),
k,t € K, h,g € H. The bicrossed product is an exact factorization of groups, and
furthermore, any exact factorization of a finite group can be realized in this way.

These concepts extend beyond group theory to other algebraic contexts, such as
Hopf algebras, Lie algebras [1], and C*-algebras [3]. For fusion categories, Gelaki
introduced the notion of exact factorizations [6], and later with Basak extended it
to finite tensor categories [2].

A fusion category B is an exact factorization of fusion subcategories A and C,
and denoted B = A e C, if every simple object B € B can be written uniquely as
A® C, with A a simple object in A and C a simple object in C.

In our recent work [9], we explore exact factorizations of fusion categories from a
structural and constructive viewpoint. We show that many fundamental invariants
behave well under exact factorizations. This is true especially at the level of the
Grothendieck ring. In particular, the universal grading group and the adjoint
subcategory admit exact factorizations [9, Propositions 3.21 and 3.22]. The group
of invertibles, and the pointed subcategory admit exact factorizations as well.
More precisely, if B = .4 eC is an exact factorization of fusion categories then the
adjoint subcategory Bag = Aaq ®Caq and the pointed Bpy = Apt  Cpt subcategories
are exact factorization of fusion categories, and the universal grading group U (B) =
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U(A) e U(C) and the group of invertibles G(B) = G(A) e G(C). In particular, we
show that B is nilpotent if and only if A and C are [9, Corollary 3.26]. Other
properties, such as solvability, that in principle are not just determined by the
fusion rules are not known to be preserved under exact factorizations.

We first defined the notion of exact factorization, matched pair, and bicrossed
product for fusion rings [9, Subsections 3.3 and 3.4], and we proved that, as in
the group case, any exact factorization of fusion rings can be realized in terms
of bicrossed products [9, Theorem 3.14]. In this way, we give a complete answer
to how the Grothendieck ring of an exact factorization of fusion categories looks
like, but it is still important to find the possible categorifications, that is, the
associativity constraints. In [9, Section 4], we also defined matched pairs and bi-
crossed products A < C of fusion categories, which give rise to exact factorizations
of fusion categories, but, at the moment, it is not known if all exact factoriza-
tions arise in this way. Already, the pointed case (see [6, Example 3.6]) hints that
some cohomological data should play a role for the associativity constraint. The
adjoint subcategory (A < C)aq of the bicrossed product is the Deligne product
Aaqd B Cpq of the adjoint subcategories [9, Corollary 3.24]. Then, for any exact fac-
torization for which the universal grading groups involved are trivial, the problem
of understanding exact factorizations reduces to finding all possible associativity
constraints on the Deligne product of the fusion categories, that corresponds to a
version of the Kiinneth formula for fusion categories [5]. In [10, Theorem 3.2], we
show that when one of the subcategories of the exact factorization is the pointed
fusion category vecq of finite-dimensional G-graded vector spaces with trivial as-
sociativity, then the exact factorization can be realized as a bicrossed product.
More precisely, if B = vecg oC then B ~ vecg <1 C. It is still an open question if
a similar statement is true for a general pointed fusion category vecg. To prove
the aforementioned result, the strategy was to show that the bicrossed product
with one of the categories being vecq corresponds (under the Basak-Gelaki corre-
spondance [2, Theorem 5.1]) to a construction introduced by Natale called crossed
extension, which describe the fusion categories that fit in an abelian exact sequence
and generalize equivariantization, see [11] for more details.

Another important question is about which structures are preserved under exact
factorizations. Gelaki showed that if 5 = A e C is braided, then it is the Deligne
product AXIC and the subcategories projectively centralize each other. In work in
progress with S. Mondal, M. Miiller, and H.M.Pena Pollastri, we are looking into
exact factorizations of crossed braided categories.
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Rigidity for commutative algebras in braided tensor categories, with
applications to vertex operator algebras

ROBERT MCRAE

(joint work with Thomas Creutzig, Kenichi Shimizu, Harshit Yadav and
Jinwei Yang)

This talk was based on the paper [6], which was motivated by the problems of
rigidity and semisimplicity for braided monoidal categories of modules for vertex
operator algebras (VOAs). VOAs are an algebraic approach to the mathematical
study of two-dimensional chiral conformal quantum field theories, as the chiral
algebra of a conformal field theory is a VOA. The VOAs that appear in rational
conformal field theory are called “strongly rational,” and by a theorem of Huang
[9], the representation category of a strongly rational VOA is a semisimple mod-
ular tensor category. Most VOAs are not strongly rational, but there is still a
construction of braided monoidal structure on representation categories of more
general VOAs due to Huang-Lepowsky-Zhang that works for many examples (see
the review article [11]). However, it is in general difficult to say when such braided
monoidal categories are rigid, since unlike for Hopf algebras, for example, rigidity
is not built in to the monoidal category construction. Another question is when
braided monoidal categories of modules for VOAs are semisimple.

One way to address these questions for a VOA V is to relate the representation
theory of V to that of a known VOA, perhaps a subalgebra or extension of V. Thus
we are led to consider the situation of a VOA inclusion V' C A where A is an object
of a braided monoidal category C of V-modules. In this setting, A is a commutative
algebra in C [10], where the unit morphism ¢4 : V' — A is the inclusion and the
multiplication 4 : AQA — A is induced by the VOA structure of A. Let C4 be the
monoidal category of left A-modules in C and C¥° the braided monoidal category
of local left A-modules. Then C!¢ is precisely the category of modules for A
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considered as a VOA that are objects of C when considered as V-modules [10], and
the braided monoidal structure on C'¢ is precisely the vertex algebraic structure
of Huang-Lepowsky-Zhang [5]. Thus rigidity and semisimplicity questions for V-
modules or for A-modules are reduced to category theory.

The first question we address in [6] is when rigidity or semisimplicity of C implies
rigidity or semisimplicity of C4 and C§¢. If C is rigid and semisimple and A is
a separable algebra in C, then Kirillov and Ostrik showed quite some time ago
that C4 and C'§¢ are also rigid and semisimple [12], with the dual of an object M
of C4 given by an A-module structure on the C-dual of M. If C is ribbon, then
the question of separability largely reduces to whether the categorical dimension
of A in C is non-zero. For pseudo-unitary categories, this is no problem, but
unfortunately most ribbon categories of VOA modules are not pseudo-unitary, so
we need better criteria on A that guarantee rigidity of C4.

If C is a finite tensor category, then the solution is to consider exact rather than
separable algebras in C. A C-algebra A is exact if for any object M in C4 and
projective object P in C, the module M ® P is projective in C4. If A is an exact
commutative haploid algebra in a finite braided tensor category C, then it turns
out C4 and C}jfc are both rigid, where the dual of an A-module M is no longer
necessarily an A-module structure on the C-dual of M [14]. The idea of the proof
is to embed C4 and C¥° into the monoidal category of A-bimodules in C, which one
then identifies with the category of exact C-module endofunctors of C4, in which
duals are given by adjoint functors.

Now we can use a very recent result of Coulembier-Stroifiski-Zorman [4], which
improves on a result of Etingof-Ostrik [8], that an algebra in a finite tensor category
is exact (and thus C4 and CX¥° are rigid) if and only if it is a direct product of
simple algebras. As a corollary, if A is a simple commutative algebra in a fusion
category C, then C4 and C{° are also fusion (because then 1 is projective in C and
thus M ®1 = M is projective in C4 for any M because A is exact). This corollary

yields a very nice VOA application:

Theorem 1. Any simple N-graded VOA that contains a conformally-embedded
strongly rational subalgebra is itself strongly rational and thus has a semisimple
modular tensor category of representations.

In particular, this theorem does not require any non-vanishing categorical di-
mension condition. Of course, we also have immediate rigidity applications for
VOA extensions in non-semisimple module categories. For example, we say a VOA
is strongly finite if it has all the properties of a strongly rational VOA except that
its module category may be non-semisimple. Then:

Theorem 2. If A is an N-graded simple self-contragredient VOA extension of
a strongly finite VOA V' such that Rep(V') is rigid, then Rep(A) is rigid and is
moreover a (not necessarily semisimple) modular tensor category.

The second question we consider in [6] is the converse of the first one: If CX° is

rigid, then when are C4 and C rigid? This question is more difficult than the first,
and at the moment we have only some partial solutions, in particular [6, Theorem
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3.21]. The first problem is that we need some way to get rigidity of C4 from its
small subcategory CY°, since we want to exploit the induction (or free module)
functor from C to C4. Second, we need at least some weak duality structure on C
to get started with proving rigidity of C.

The solution to the second problem is Grothendieck-Verdier category structure,
as defined in [3], which for VOAs is given by contragredient modules [2]. Thus we
show first that if A is a commutative algebra in a Grothendieck-Verdier category
C, then C, is also a Grothendieck-Verdier category, and so is C'¢¢ if C has a ribbon
twist that squares to the identity on A. We then assume every simple object
of C4 is local and use Grothendieck-Verdier duality and induction on length to
show that if C is locally finite abelian and CX° is rigid, then C4 is also rigid. The
assumption that every simple object of C4 is local may seem strange, and it is
definitely not true in general in semisimple settings, but it does seem to hold for
free field realization-like VOA extensions in logarithmic conformal field theory that
motivated our work in [6].

Finally, we prove in [6, Theorem 3.21] that if C is a suitable Grothendieck-
Verdier category, A is a suitable commutative algebra in C, and C¢ is rigid, then
C is also rigid under some conditions. The first condition, as already mentioned,
is that every simple object of C4 is local. The second condition amounts to the
assumption that the induction functor from C to C4 commutes with Grothendieck-
Verdier duals in C and C4. Third, we need a mild non-degeneracy condition on C.
In this setting, C4 is rigid and thus so is its Drinfeld center Z(C4). Then since
induction lifts to a braided tensor functor F : C — Z(C4), rigidity of C follows
from rigidity of Z(C4) if we can show that F' is an embedding and commutes with
Grothendieck-Verdier duals in C and rigid duals in Z(C4). These two properties
of F follow from the second and third conditions above, and so indeed C is rigid.

As an application of [6, Theorem 3.21], we proved rigidity of the category of
weight modules for the affine VOA of sl at admissible levels in [7], where we
take the algebra A to be Adamovi¢’s quantum Hamiltonian reduction [1] of the
affine VOA of sly. The rigidity of this category was also proved independently and
simultaneously using analytic methods in [13].
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Every conformal net has an associated unitary VOA
JAMES TENER
(joint work with André Henriques)

Conformal nets and unitary vertex operator algebras (VOAs) are two prominent
axiomatizations of two-dimensional chiral conformal field theories, and both of
these notions have attracted substantial independent interest as mathematical ar-
eas of study. Since the two notions are supposed to axiomatize the same physical
structure, it is widely believed that they are equivalent. That is, there are expected
to be mutually inverse constructions of conformal nets from unitary VOAs, and
vice versa. A precise version of this conjecture first appeared in the landmark arti-
cle of Carpi-Kawahigashi-Longo-Weiner [CKLW18], which also provided a family
of tools and ideas for studying the VOA-to-conformal net correspondence.

In recent joint work with Henriques [HT25a], we establish one direction of
this correspondence: we show that there is a unitary VOA associated to every
conformal net. We also show that the conformal net can be recovered from the
unitary VOA from the following construction (see [CKLW18, RTT22]). Given a
unitary VOA, we say that it is AQF T-local if smeared vertex operators Y (v, f)
and Y (u,g) commute strongly when f and g have disjoint support. Here, “com-
mute strongly” means that the von Neumann algebras generated by (the closures
of) these unbounded operators commute. This is closely related to the notion of
“strong locality” considered in [CKLW18], which is the property of AQFT-locality
plus a technical “polynomial energy bounds” condition. When a unitary VOA is
AQFT-local, there is an associated conformal net whose local algebras A(I) are
generated by smeared fields Y (v, f) with f supported in the interval I (shown in
[CKLW18] for strongly local VOAs, and in [RTT22] under the weaker assumption
of AQFT-locality). It is shown in [HT25a] that the unitary VOA associated to a
conformal net is always AQFT-local, and the conformal net can be reconstructed
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from the construction outlined above. This yields an equivalence between con-
formal nets and AQFT-local unitary VOAs. Following [CKLW18], we conjecture
that every unitary VOA is AQFT-local, but this problem remains open, and new
ideas will be required.

The state-field correspondence of a unitary VOA can be encoded in a map
which assigns to every configuration of distinct points in the open unit disk of C,
each labeled by a vector of the VOA, a vector in the Hilbert space completion
of the VOA. The construction of a unitary VOA from a conformal net begins
with an analogous construction of insertions along intervals, rather than points.
More precisely, given a conformal net, the corresponding “worm insertions” are
as follows: given a collection of disjoint intervals in the unit disk, each labeled
by an element of the corresponding local algebra (in the sense of coordinate-free
conformal nets [BDH15]), we construct a vector in the vacuum Hilbert space of
the conformal net. This construction relies crucially on the fact that the vacuum
Hilbert space carries a natural representation of the semigroup of (thin) annuli,
which was studied in [HT24, HT25b]. The point insertions of the unitary VOA that
corresponds to the conformal net are then constructed as finite linear combinations
of worm insertions.
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Entanglement and bimodule categories in quantum spin chains
FRANK VERSTRAETE
(joint work with Laurens Lootens, Clement Delcamp)

The fields of entanglement theory and tensor networks have recently emerged as
central tools for characterising quantum phases of matter [1]. In this talk, I will dis-
cuss thse entanglement structure of ground states of gapped symmetric quantum
lattice models, and use this to obtain the most efficient tensor network representa-
tion of those ground states [2]. We do this by showing that degeneracies in the en-
tanglement spectrum arise through a duality transformation of the original model
to the unique dual model where the entire dual (generalised) symmetry is spon-
taneously broken and subsequently no degeneracies are present. Physically, this
duality transformation amounts to a (twisted) gauging of the unbroken symmetry
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in the original ground state. This result has strong implications for the complexity
of simulating many-body systems using variational tensor network methods. For
every phase in the phase diagram, the dual representation of the ground state
that completely breaks the symmetry minimises both the entanglement entropy
and the required number of variational parameters. We demonstrate the appli-
cability of this idea by developing a generalised density matrix renormalisation
group algorithm that works on (dual) constrained Hilbert spaces, and quantify
the computational gains obtained over traditional tensor network methods in a
perturbed Heisenberg model. Our work testifies to the usefulness of generalised
non-invertible symmetries and their formal category theoretic description for the
practical simulation of strongly correlated systems.
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Standard Subspaces and Twisted Araki-Woods Subfactors
RiCARDO CORREA DA SILVA, GANDALF LECHNER

The purpose of this talk was to describe a large family of interesting subfactors
that are often of type III, without normal conditional expectation (infinite index),
but despite these differences have various analogies with the more familiar finite
index type II;-subfactors. For instance, they require an underlying braiding and a
modular theory version of the subfactor-theoretic Fourier transform. These subfac-
tors go by the name of twisted Araki-Woods subfactors and have been introduced
in [CdSL23]. They are based on two data: an inclusion of standard subspaces and
a twist.

Inclusions of standard subspaces. A standard subspace H of a complex Hilbert
space H is a closed real subspace H C H such that HNiH = {0} and H + iH = H.
Specific examples of standard subspaces arise from von Neumann algebras M C
B(H) with cyclic separating vector Q as H := M,). Although not all standard
subspaces are of this form, the lattice Std(H) of all standard subspaces of H has
interesting structural similarities to the lattice of von Neumann subalgebras of
B(H) and subfactors:

(i) Symplectic complementation H — H' :={v € H : 0 =Im(v,h)Vh € H}
is an order-reversing involution on Std(#), resembling the commutant of
von Neumann algebras and the Bicommutant Theorem,

(ii) there is a natural notion of factor subspace, namely H € Std(H) with
HnH ={0},

(iii) proper irreducible inclusions K C H of factor subspaces K, H € Std(H)
exist (i.e. K'N H = {0}), resembling irreducible subfactors,
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(iv) any inclusion Hy C H; of standard subspaces Hy, Hy € Std(H) naturally
extends to a tower and tunnel

(1) ..CHCHyCcH CHyC...,

resembling iterations of Jones’ basic construction.

While inclusions of standard subspaces do not come with an index, and are
basically incompatible with (analogues of) conditional expectations, a good re-
placement for these missing tools is modular theory: Any H € Std(H) defines a
Tomita operator Sy : H +4iH — H +iH, given by Sy (h1 +iha) := hy — ihs, and
the polar decomposition of this closed involution defines a one-parameter group
of unitaries A%, t € R, preserving H, and an antiunitary Jy mapping H onto
H’. With this technique one for instance quickly checks that Hy := Jg, Jy, H
and H_y := Jy,Ju, Hy are standard subspaces satisfying (1). One also checks
that proper inclusions K C H can only exist for dimH = oo because K C H is
equivalent to an extension Sk C Sy of Tomita operators.

Inclusions of standard subspaces can be seen as a spatial analogue of subfactors,
and are of interest in their own right [CdSL23]. No canonical map from inclusions
of standard subspaces to inclusions of von Neumann algebras exists, which is why
we have to introduce more data to define twisted Araki-Woods subfactors.

Twisted Araki-Woods von Neumann algebras. Given a complex Hilbert
space H, an operator T = T* € B(H ® H) with ||[T']| < 1 is called a twist if the
operators Pr,, € B(H®™), n € N, iteratively defined by

PT,I =1, PT’Q =141, PT’nJrl = (1 ®PT,n)(]- +Th+ T+ ... +11- Tn)

(in standard tensor leg notation), are all positive. In case T satisfies the Yang-
Baxter equation, Pr , is the corresponding quantum symmetrizer.

Given a twist T, we consider the tensor algebra €0, -, H®" and the quo-
tient by its left ideal @n>0 ker Pr,. Completed in the scalar product given by
(Y], [®])r = 3,50 ¥]n, Prn[®]n), it becomes a Hilbert space (the T-twisted
Fock space Fr(H)), on which left tensor multiplication by ¢ € H defines an oper-
ator ap ; (§). With these definitions, the left twisted Araki-Woods von Neumann
algebra with twist 7" and standard subspace H € Std(#H) is

(2) Lo(H) = {a} (h) +ar.(h) : h e HY.

Denoting by F' the tensor flip, the von Neumann algebras L,r(H) are second
quantization factors for ¢ = 1, generated by CAR algebras for ¢ = —1, free group
factors for ¢ = 0 and H maximally abelian [Voi85], variations of free group factors
for ¢ = 0 and general standard subspace [Shl97]. So even in this very restricted
class of examples one sees type I, II, and III von Neumann algebras, commuta-
tive and noncommutative ones, hyperfinite and non-hyperfinite ones, showing that
L7 (H) depends crucially on H and T'.

From the point of view of modular theory, it is most important to understand
when the Fock vacuum 2 € Fr(#H) is cyclic and separating for L7 (H).
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F1GURE 1. Graphical representation of the crossing map.

Theorem 1. Let H € Std(H) and T € B(H ® H) be a twist such that [T, A% @
A%] =0 for allt € R. Then 2 is cyclic and separating for Lr(H) if and only if T
satisfies the Yang-Bazter equation and is crossing-symmetric w.r.t. H (explained
below).

Crossing-Symmetry. In order to define crossing-symmetry, we begin by saying
that an operator T' € B(H®?) is crossable if the equation given in terms of matrix-
coefficients

(3) (1 @ Yo, Cry (T)h3 @ ha) = (b2 @ Sprtha, T(Suibr ® 13))

defines a bounded operator Crg(T'). In case the Hilbert space is infinite dimen-
sional, one has to take into consideration that the vectors 11 and 4 must lie in
the domain of Sy and S7;, respectively. A crossable operator is called crossing-
symmetric if Cry(T) = T*.

The Yang-Baxter equation and crossing-symmetry, in the light of the theorem
above, are equivalent to a KMS condition and, in particular, the crossing-symmetry
carries all the analytic content of the KMS condition [CGL24]. Furthermore,
one can immediately recognize the connection between the crossing map and the
subfactor-theoretic Fourier transform when representing the map defined in (3) in
graphical notation, where we highlight the dependence of the standard subspace
through Sp and Sj;, in contrast with the subfactor-theoretic Fourier transform.

The behaviour of two examples of twists under the crossing map is worth
mentioning: The tensor flip F' is always crossing-symmetric independent of H.
The identity operator is crossable if and only if dimH < oo, in which case
Cru(1) = Tr(Ag)Pe, where P¢ is the orthogonal projection in the direction of
the vector £ = 221:11% en ® Sge,, which is a Temperley-Lieb projection, i.e.
(Pe@1)(1® Pe)(Pe®1) =Tr(Ag) ' P: ® 1, as one could expected from the con-
nection between the subfactor-theoretic Fourier transform and the Temperley—Lieb
algebra.

Inclusions of Twisted Araki-Woods von Neumann algebras. It turns out
that if T" satisfies the Yang-Baxter equation, right tensor multiplication by £ € H
also defines an operator denoted ar, (&) and, similarly, the right twisted Araki-
Woods von Neumann algebra Rp(H). Under the hypotheses of Theorem 1,
namely, in case T is also crossing-symmetric w.r.t. H and satisfies [T, A% @ A%] =
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0 for all ¢ € R, we can also determine the commutant of the twisted Araki-Woods
algebras as Lr(H)' = Ry (H').

Given an inclusion of standard subspaces K C H, we have the corresponding
inclusion of the von Neumann algebras Lr(K) C Lrp(H). We are interested in
knowing when such inclusion is irreducible, i.e. when the relative commutant
satisfies C(K, H) := Ly (K)' N Lyp(H) = C- 1, [CdSL23, CdSL25].

Theorem 2. Let H € Std(H) and T € B(H ® H) be a twist such that, |T|| < 1,
[T,A% © A%t] = 0 for all t € R, T satisfies the Yang-Bazter equation and is

1
crossing-symmetric w.r.t. H. Then, if A} |k is non-compact, C(K,H) =C- 1.

It follows that, if we have a twist T satisfying the hypothesis of the theorem
above for the standard subspace H and another standard subspace K C H such

that A%HK is non-compact, then both L1 (K) and L (H) are factors. It is known
that in the particular case of T = ¢F, the algebras Lr(H) are always factors
[KSW23], but for general T' the question is still open.

We remark that, for applications in Algebraic Quantum Field Theory, one is
often interested in having a large relative commutant. In that direction, we can

~1 1
say that, if in the situation of Theorem 2 it also holds that A, * A} is trace class
and its trace norm is less than 1, then the relative commutant C(K, H) is type III
in case L7 (H) is a type III factor.
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Group-subgroup subfactors revisited
MASAKI IzuMmI

It is a famous story that the classical Goldman’s theorem [1] inspired Vaughan
Jones [10] to introduce the notion of an index for a subfactor. In modern terms,
Goldman’s theorem says that every subfactor of index 2 is given by the crossed
product by the cyclic group Zs. In the case of index 3, a similar result holds in
the sense that either the subfactor is given by the crossed product by Zs if the
principal graph is Dy, or it is given by the simultaneous crossed products of the
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symmetric groups &3 > &, if the principal graph is As. In the talk, I present
far-reaching generalizations of Goleman’s type results obtained in [8].

Let G be a finite group and let H be a subgroup of G. Let a be an outer action of
G on a factor R. Then we can get an irreducible subfator R x,G D R X H, called
a group-subgroup subfactor. We always assume that there is no non-trivial normal
subgroup of GG in H as such a normal subgroup is forgotten by the group-subgroup
subfactor. Then the information of the pair G > H is completely encoded in the
transitive permutation group G acting on G/H, and (the conjugacy class of) H
can be recovered from a point stabilizer. On the other hand, if G is a transitive
permutation group acting on a finite set X, we can always get a pair of finite groups
G > H = G, satisfying the above assumption, where G, is the stabilizer of a point
x € X. Therefore when we discuss the group-subgroup subfactor arising from a
pair of finite groups, we often refer to the corresponding transitive permutation
group.

For a finite index subfactor M O N, we denote by G~ one of its principal
graphs, more precisely, the induction-reduction graph between M-N and N-N
bimodules generated by the bimodule p; My, that is, M as M-N bimodule. For
G > H, we denote by I'gs gy the graph G5y with M = RxG D N = RxH. It is
known that the tensor categorical structure of the inclusion M D N is completely
determined by G > H (see [11]). The graph I'gspy is given as follows. Let
G =11, Hg:H be the double coset decomposition, and let H; = H ﬁgngi_l. The
odd vertices of I'g~ g are identified with the irreducible representations Irr(H) of
H, and the even vertices are identified with ], Irr(H;). The edges are given by
induction and reduction between H and H;.

In general we loose some information of G > H by passing to M = R x G D
N =R x H (see [12], [7]).

Definition 1. We say that a Goldman’s type theorem holds for G > H if whenever
a subfactor P D @ satisfies Gp5g = I'¢>m, there exists a subfactor R C @) and
an outer G-action o on R such that

P=RxoGDQ=Rx,H.

Goldman’s type theorems were first shown for some classes of Frobenius groups
(see [5], 2], [3], [6]), and we recall its definition here. A transitive permutation
group on a finite set is said to be regular if the action is free. A transitive permu-
tation group G on a finite set X is said to be a Frobenius group if it is not regular
and every g € G\ {e} has at most one fixed point. Let H = G,, be a point stabi-
lizer. Then G being Frobenius is equivalent to the condition that the H-action on
X\ {z1} is free, and is further equivalent to the condition that H NgHg~ ! = {e}
for all g € G\ H. For a Frobenius group G,

K=G\ |JG.
zeX

is a normal subgroup of G, called the Frobenius kernel, and G is a semi-direct
product K x H (see [13, 8.5.5]). The point stabilizer H is called a Frobenius
complement.



Subfactors and Applications 1871

Theorem 1. Goldman’s type theorem holds for every Frobenius group.

Our original motivation for [6] is to apply the Goldman’s type theorem to the
classification of finite depth subfactors of index 5, which was established in [9].
For such an application, Frobenius groups are not enough and we needed a result
applicable to the pairs s > 204 and &5 > &4.

Let k be a natural number greater than 1. A transitive permutation group G on
a finite set X is said to be sharply k-transitive if the G-action on X¥! is regular,
where X ¥ is the set of distinct k-tuples of elements in X.

For n € N, let X,, ={1,2,...,n}. The defining action of the alternating group
A, on X, is sharply n—2-transitive. Since XT[Lnfl] and XT[Ln] are naturally identified,
the defining action of &,, on X, is both sharply n — 1 and n-transitive. Other
than these two classes, we list all the sharply k-permutation groups below.

Every sharply 2-transitive permutation group G is known to be a Frobenius
group, and hence of the form G = Z’; x H with a prime p and with a Frobenius
complement H acting on Z’; \ {0} regularly. Let ¢ = p*, and let F, be the finite
field of of order q. Then Z]; is isomorphic to F, as an additive group. Other
than 7 exceptions, the Frobenius complecment H is isomorphic to a subgroup of
Fx x Aut(F,) (see [4, Chapter XII, Section p]). The Affine group H(q) = Fy xF*
acting on [F; is a typical example of a sharply 2-permutation group. When p is an

odd prime and ¢ = p?, the field F, has an involution z7 = 2P, The group S(q)
has a Frobenius complement F as a set, but its action on F, is given as follows:

loa

ax, if a is a square in F 7,
a-x = e ;
ax?, if a is not a square in .

For example, the group S(32%) is isomorphic Z2 x Qs.

There are exactly two families of sharply 3-transitive permutation groups L(q)
and M (q), and they are transitive extensions of H(q) and S(q) respectively (see
[4, Chapter XI, Section 2]). To describe their actions, it is convenient to identify
the projective geometry PG1(q) = (F2\ {0})/F with F, U {oc}. The 3-transitive
action of L(q) = PGLy(q) is given as follows:

a b I +0b
c d Ccx+d
The group M (q) is PGL2(q) as a set, but its action on PG1(q) is given by

{(a b)]-x:{ ij—;g, if ad — be is a square in F X,

az’+b : _ : : X
c d e if ad — be is not a square in Fj.

Other than symmetric groups and alternating groups, the Mathieu groups M7
and Mo are the only sharply 4 and 5-transitive permutation groups, and their
degrees are 11 and 12 respectively (see [4, Chapter XII, Section 3]).

Conjecture 2. Golsman’s type theorem holds for every sharply k-permutation
group.

Theorem 2. The above conjecture is true for k = 2,3, 4.
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Note that PSLs(q) is a 2-transitive permutation group on PG1(q), though it is
not sharply 2-transitive.

Theorem 3. Goldman’s type theorem holds for

PSLg(q)>{<8 2 );aeF;,bqu}/{<g 2 );&:1}.
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Some recent results on superselection sector theory for topologically
ordered models

PIETER NAAIJKENS
(joint work with Alex Bols, Mahdie Hamdan, Siddharth Vadnerkar)

Kitaev’s quantum double model [5] is a prototypical example of a topologically
ordered, long-range entangled quantum system. One interesting aspect is that
such quantum systems can have anyonic excitations, whose algebraic properties
are described by a braided (in our setting, typically even modular) tensor category.
Our main goal is to obtain this tensor category from first principles for the quantum
double model, using an operator-algebraic approach.

The quantum double model can be defined for any finite group [5]. We will
consider the model for a finite group G, and defined on an infinite triangular lattice
in 2D. More precisely, write I" for the set of edges of the triangular lattice. At each
edge we put a G-dimensional Hilbert space. For any finite set of edges Ay C T,
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we define the algebra of local observables 2A(Ay) := ®weAf M,|(C). Inclusions of
sets of edges define a (unital) inclusion of the corresponding observable algebras.
Hence we get a net A — 2A(A), and its direct limit in the category of C*-algebras is
called the quasi-local algebra. The net is local in the sense that [2A(A1),2A(A2)] =0
if AN Ay = (. Of interest are regions which are called cones, which are essentially
obtained by intersecting a cone in R? with I' (see [7] for a more precise definition).
For any subset A C I', we write A€ for its complement in T'.

For the definition of the dynamics of the quantum double model we refer to [5].
For us it suffices to know that here there is a unique frustration free ground state,
and we will write my for the corresponding irreducible GNS representation. This
representation satisfies:

e (Properly infiniteness) For each cone A, my(2((A))” is an infinite factor [7].
e (Haag duality) For each cone A, mo(RA(A))" = mo(A(AC))".

At the time [2] was completed, we did not yet have a proof for Haag duality.
However, Haag duality has been proven for the quantum double model for abelian
groups [3]. We expect that the proof techniques can be generalised to non-abelian
models. More importantly, a proof of Haag duality for cones for Levin—Wen string-
net models has recently been announced [8]. This implies that at least the sufficient
condition of approximate Haag duality holds.

From the assumptions above it follows (using the Doplicher—Haag—Roberts ap-
proach) that one can define a braided C*-category A(mg) of superselection sectors
(see [7] for the most general setting). This category is an invariant of the gapped
ground state phase the initial frustration free ground state is in. It describes
physical properties (such as braiding and fusion) of the anyons in the model.

The objects of A(mg) can be identified with representations of 2 satisfying the
superselection criterion:

(1) m [ A(AS) = mo [ A(A) for all cones A.

That is, restricted to observables localised outside an arbitrary cone, the represen-
tation 7 is unitarily equivalent to my. An equivalence class of such representations
is called a sector. We say that a sector is irreducible if a representative is an
irreducible representation. These sectors correspond to the anyon types. The
morphisms in the category are intertwiners between such representations.

For each vertex with an adjacent face (such a pair is called a site), we have a
faithful unitary representation of D(G), the quantum double of the group algebra
of G. Hence it is natural to expect that the representation theory of D(G) is
related to the anyons. Our main result is that this is indeed the case [2]:

Theorem 1. Let mg be the GNS representation of the frustration free ground state
of the quantum double model for a finite group G. Then the categories Ay(my) and
Rep; D(G) of finite dimensional unitary representations of D(G) are equivalent as
braided C*-tensor categories.

The subscript in Af(m) means that we restrict to those representations 7 such
that dim Hom(7, 7) < co. We will comment on this later, but essentially it means
we restrict to having finite direct sums only. The definition of the braiding and
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other structure on Ay (m) follows the standard DHR approach [3, 7]. The first step
is showing that instead of representations satisfying (1), it is enough to consider
localised and transportable endomorphisms of some C*-algebra B D mp(2(). In
addition to the quasi-local observables, 8 contains the cone von Neumann algebras
(as long as the cone does not point in a “forbidden direction”). A monoidal product
can then be defined via composition of endomorphisms, and a braiding using the
localisation properties.

The construction of irreducible sectors is more complicated than in the abelian
case [3]. To see why, it is helpful to recall the main idea. Pairs of excitations
in the quantum double model can be created from the ground state using ribbon
operators. The corresponding state only depends on the endpoints of the ribbon,
and (in the abelian case) for each irrep of D(G) and choice of ribbon, there is a
corresponding ribbon operators whose excitations are related to the irrep (and its
conjugate). Then one can define an automorphism of 2 via p(A) := lim,, F¢, AF; |
where &, is a sequence of increasingly long ribbons obtained by moving one of its
endpoints to infinity. It can be shown that mg o p then satisfies (1).

For non-abelian irreps of D(G), however, one has to deal with multiplets of rib-
bon operators, which assemble into &k x k unitary matrices F € My (2l) of ribbon op-
erators, where k is the dimension of the corresponding irrep. Hence, following [9],
it is natural to consider amplimorphisms, i.e. *-homomorphisms u : A — M (21).
Similarly as before, we can then define u(A) = lim, o0 F¢, (A® Iy)F{ . It can be
shown that (7o ® idy) o u(A) again satisfies the selection criterion, motivating the
study of the category Amp (7o) of amplimorphism of B such that all intertwiner
spaces are finite dimensional.

The very explicit construction of amplimorphisms above enables one to explic-
itly write the so-called charge transporters as weak-operator limits of sequences
of (matrices of) ribbon operators. The charge transporters are unitary inter-
twiners from an amplimorphism localised in one cone to another amplimorphism
localised in a different cone. They are crucial in defining the braiding. Because
the commutation properties of the ribbon operators are well understood in terms
of the representation theory of D(G), this allows one to explicitly calculate the
braiding. Similarly, fusion rules are readily obtained. This gives a braided equiva-
lence between the category of (localised and transportable) amplimorphisms and
Rep; D(G). The proof is then completed by the following two observations. First,
using the properly infiniteness property of the cone algebras, the amplimorphims
can be identified with the usual DHR endomorphisms of 8. And secondly, the set
of irreducible sectors constructed above is in fact a complete set of representatives
of irreducible sectors [1].

From a theoretical point of view, it is somewhat unsatisfactory to have to re-
strict to objects with finite dimensional Hom-spaces, as this subcategory need not
be closed under the monoidal product. (In our setting, this only follows once we
have established that the irreducible sectors we construct are in fact all irreducible
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sectors, together with the fact that the fusion rules of these sectors are well under-
stood.) Alternatively, one could restrict to the sectors which admit a conjugate,
which is closed under the monoidal product [6].

Question. Under what circumstances does a conjugate sector exist?

In algebraic quantum field theory (AQFT) or for conformal nets this is auto-
matically true in important examples, such as for massive particles (see e.g. [4] for
an overview). It is also known that the existence of a conjugate for p is equivalent
to the Jones index [p(B) : B] being finite (cf. [6] and references therein). It would
be interesting to have a physically relevant criterion for the case of superselection
sectors of topologically ordered models that would guarantee this to be the case,
similar to the results in AQFT or conformal nets.
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Conformal Embedding Categories
CAIN EDIE-MICHELL
(joint work with Noah Snyder, Hans Wenzl)

Let
V(g k) CV(b,1)

be a conformal inclusion of Wess-Zumino-Witten vertex operator algebras [3]. It is
well known that V(b, 1) has the structure of an etale algebra object in Rep(V(g, k))
[4]. This in turn gives a new (non-braided) tensor category Rep(V(g, k))v(p,1), the
category of V(bh, 1)-modules internal to Rep(V(g, k)). Equivalently via Finkelberg’s
equivalence, these new categories are equivalent to Rep(Ugy(g)) 4, where A is the
image of V(h, 1) under the Finkelberg equivalence.

While the combinatorial structure of the etale algebra A is known in all cases,
the categorical structure of the multiplication map remains mysterious. This
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means that existence of the categories Rep(U,(g)) , is non-contructive, and their
structure remains mysterious in general. A research program is hence to give
presentations for the tensor categories Rep(U,(g)) , for all conformal embeddings.
Some progress towards this program has already been made by Bigelow [1], who
gave presentations for the categories coming from the conformal embeddings

V(sly,10) € V(s05,1) and V(slz,28) C V(g2, 1),

and by Liu [5] who gave presentations the categories coming from the infinite
family of conformal embeddings

V(sly, N £2) CV(slyn+1)/2,1).

In joint work with Noah Snyder we develop a new general method for giving
presentations for the categories Rep(Uy,(g)) ,. We apply this new technique to give
presentations for the infinite family of conformal embeddings

V(sly, N) C V(son2_1,1).

In addition we also construct a continuous familly of tensor categories which inter-
polates between this discrete infinite family. This interpolation category is similar
in spirit to Delignes Rep(GL;) categories [2]. We expect that our methods will
work for all remaining infinite families of conformal embeddings, and for many of
the sporadic examples as well.

While the methods developed by myself and Snyder give presentations whose
Cauchy completions recover the conformal embedding categories, the techniques
are non-constructive in the sense that the Cauchy completions are not deduced ex-
plicitly. In follow on work joint with Hans Wenzl, we explicitly deduce the structure
of these Cauchy completions, and hence the combinatorial structure of the cat-
egories Rep(Ugy(sln)) 4 for the conformal embeddings V(sly, N) € V(son2_1,1).
We obtain a classification of the simple objects in terms of strict Young diagrams,
along with certain sign choices. We also obtain explicit formulas for the fusion
rules, and quantum dimensions. A key component of our proofs in this work is
a surprising connection to the quantum isomeric Lie super algebra Uy (qx). This
connection to quantum Lie super algebras appears to be special to type A, and
does not seem to hold for conformal embeddings of other simple Lie algebras.
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The Delannoy planar algebra
NOAH SNYDER

The prototypical example of a planar algebra are the shaded Temperley-Lieb-Jones
planar algebras with some loop parameter ¢ [4, 5]. If you look at the even part of
this planar algebra it can also be described as the universal monoidal category with
a special Frobenius algebra of dimension ¢. The TLJ planar algebras have a close
relationship to Deligne’s interpolation category S; [1], where you add symmetric
crossings to the even part. This also corresponds to a universal property, namely
that Deligne’s S; is the universal symmetric monoidal category with a commutative
special Frobenius algebra.

Recently Harman and Snowden have developed a theory of measures on Oligo-
moprhic groups [2] which yields many new and interesting symmetric tensor cat-
egories. In their framework, you can recover Deligne’s S; as coming from the
infinite symmetric group together with a measure which is determined by assign-
ing ¢t as the measure of the natural numbers as an S.-set. The simplest novel
example coming from Harman-Snowden is called the Delannoy category [3] and
comes from the group of order preserving automorphisms of the real line together
with a measure coming from Euler characteristic.

In this talk, based on joint work in progress with Mikhail Khovanov, we reverse
engineer back from the Delannoy category to a diagrammatically defined planar
algebra. First, we give a diagrammatic description of the Delannoy category, using
the universal property for the Delannoy category proved by Kriz [6]. Secondly, we
see that by ignoring crossings we get a new planar algebra we call the Planar
Delannoy Category. In the paper with Khovanov, though not in this talk, we will
explain how to use the diagrams to completely describe the Delannoy category,
recovering many of the main results of [3].
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Witt-triviality of DHR bimodule categories
MAKOTO YAMASHITA
(joint work with Lucas Hataishi, David Jaklitsch, Corey Jones)

We look at nets of finite-dimensional C*-algebras Aq = (A7)sc7 on a 1-dimensional
lattice, and certain class of bimodules satisfying a localizability condition moti-
vated by the Doplicher—Haag—Roberts theory of superselection sectors. This was
introduced by Corey Jones [2], who showed that such bimodules form a unitary
braided tensor category DHR(A,). Moreover, an analogue of the Longo-Roberts
construction gives a realization of the Drinfeld center Z(C) for any unitary fusion
category C. In this joint work [1] with Lucas Hataishi, David Jaklitsch, and Corey
Jones, we looked at the possibility of DHR(A4,) in general, without knowing C
beforehand. Under a suitable assumption on the subalgebra C C A for A =\/; A;
generated by “charge transporters” between sectors realized on the positive half
line and the negative half line, we show that DHR(A,) admits nondegenerate
braiding. Moreover, assuming that the Jones basic extension for the subalgebra
By C A, generated by the observables localized in either positive or negative half
lines, is in the category DHR(A.), we show that DHR(A,) is in fact the Drinfeld
center of the fusion category associated with the negative half line.
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Gauging non-invertible symmetries in 3d topological field theory
INGO RUNKEL

1. ORBIFOLD DATA
Let C be an additive idempotent-complete ribbon category.

Definition. [1] An orbifold datum A in C is a tuple consisting of
e A € C, a symmetric Frobenius algebra which is separable (o A =idy),
e T €(C,an A-A ® A-bimodule,
e a c End(T®T), ¢ € Endaa(A), ¢ € End(1),

subject to the conditions listed in [1].

The notion of a module monoidal category (Henriques, Penneys, Tener 15,
Heinrich '23) gives a convenient way to encode some of the conditions satisfied
by an orbifold datum. Namely, let M = A-mod¢ be the category of left A-
modules in C. Then T defines a functor @ : M x M — M by taking relative
tensor products ®4 (this is well-defined, as A is separable and C idempotent-
complete). The conditions on « ensure that it defines an associator for ® ¢, so
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that M becomes a (possibly non-unital) monoidal category. There is a right C-
action turning M into a C-module category in a compatible way. The additional
conditions on A are dualisability properties of ® 4.

Related notions are higher idempotents (Douglas, Reutter '18), condensation
monads (Gaiotto, Johnson-Freyd '19), and 1-morphisms in BrTens (Brochier, Jor-
dan, Snyder '18).

Theorem. [2] From C and A as above one obtains a new additive idempotent-
complete ribbon category Cy.

For example, objects in Ca are triples (M, 11, 72), where M is an A-A-bimodule
inCand 7, : T® M — M ®T are morphisms compatible with the A-actions in a
certain way [2].

Theorem. [2, 3] Let C, D be modular fusion categories. Then:

(1) If A in C is simple, then Cp is a modular fusion category.
(2) C and D are Witt equivalent iff there is an orbifold datum A in C such
that Cy = D as linear ribbon categories.

If C is a modular fusion category and M = A-mod¢ is unital, then there is a
ribbon equivalence [3]

CR(Ch)™ = Z(M) .

In this case one can equivalently describe Cy as the reversed category of the com-
mutant of C in the Drinfeld centre of M.

2. EXAMPLES

C A Ca Ref.
any for A commutative separable | C!2°, the cat. of [1]
special Frobenius, local A-modules.

A=(AT=Aa=Aopu,...)

C = B., with A=@,cq Ay with B&, the equiva- [4, 5]
B=@®,c B, a Ag=my@mgy € Be for riantisation of B.
G-crossed rib. cat. | suitable m, € B,.

vece for S a spherical fusion Z(S) [1]
category, A = (D ,cryrs Cas
D.p.Slaxb,c),...).

vecg for H a finite-dim. semi- D(H)-mod [6]
simple Hopf algebra over C,
A=A=HT=HoH,...)

Is, the Ising (A=1¢1,...) Galois-conjugate | [7]
fusion category of C(slz,10)
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In the last example, the module monoidal catgory is M = Is@®1Is. Denoting simple
objects X in the first copy of Is by X, and in the second copy by X, one has a
Fibonacci-like product 1, @1, =1, ® 0.

3. RELATION TO 3D TFT

Given a modular fusion category C, one can define a Reshetikhin-Turaev type
three-dimensional topological field theory Z¢ for stratified bordisms. The 2-strata
(“surface defects”) are labelled by separable Frobenius algebras in C, 1-strata ( “line
defects”) by suitable modules over the algebras of adjacent surfaces, and O-strata
by morphisms. The entries A, T, « of an orbifold datum can then be represented
as decorated 2, 1, and O-strata as follows:

From this point of view, A becomes the data of a “gaugeable (possibly non-
invertible) symmetry”, and one can define a new 3d TFT Z¢/A, obtained from
Ze by “gauging A”. For example, the value of the gauged theory Z¢/A on a
closed 3-manifold M is

Ze/A(M) = Zc(M U {defect foam}) .

Here, on the right hand side one stratifies M by the dual to a triangulation and
decorates the 2, 1, O-strata by A, T, a as shown above (plus additional decorations
by 9, ¢, see [1] for details). One can then evaluate Z¢ on this stratified version
of M. By design, the conditions on A guarantee that the result is independent of
the choice of dual triangulation.

It turns out that gauging Z¢ by A and passing from C to Ca are compatible:

Theorem [8] The topological field theories Z¢ /A and Z¢, are equivalent.

4. STATE SPACES

Fix a modular fusion category C and an orbifold datum A = (A, T, o, 9, ¢) in C.
One way to obtain the vector space which the gauged TFT Z:/A assigns to a
surface X is as the ground state space of an “internal Levin-Wen model” [6].
Namely, pick a dual triangulation of the surface ¥ (i.e. 3-valent vertices, con-
tractible 2-cells). Insert a copy of T' (or T™*) at each vertex. Then the vector
space
H = Zc(XU{T or T* at each vertex})

is the state space of the internal Levin-Wen model. For each 2-cell p (“plaquette”)
of the surface, define the idempotent P, := Z¢(M,) as the linear endomorphism
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the TFT assigns to the bordism M), shown below. The Hamiltonian of the internal
Levin-Wen model is defined to be
H:=>({d-P): H—H,
P
where the sum runs over all plaquettes of X.

The left figure shows a patch of the surface ¥ containing a plaquette p, and the
right figure shows the corresponding patch of the bordims M, = ¥ x [0, 1] with a
defect stratification inserted (only) above the plaquette p.

Theorem [6] The state space Z¢/A(X) is canonically isomorphic to the ground
state space of the Hamiltonian H.
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