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Introduction by the Organizers

The Dynamische Systeme workshop was organized by M.-C. Arnaud (Paris), S.
Crovisier (Orsay), U. Hryniewicz (Aachen), M. Hutchings (Berkeley), with the
help of T. Seara (Barcelona), who represented M.-C. Arnaud on site. It brought
together 45 participants from 9 countries, representing a balanced mix of early-
career, mid-career, and senior researchers. The event covered a broad spectrum
of topics in dynamical systems, with a focus on classical Hamiltonian dynamics.
Areas covered included symplectic dynamics and geometry, billiards, celestial me-
chanics, spectral rigidity, partial hyperbolicity, ergodic theory, dynamical convex-
ity and Floer theory. Additional areas of dynamical systems were also represented.

Rafael Potrie has presented his classification of transitive partially hyperbolic
diffeomorphisms on 3-manifolds obtained with S. Fenley. It answers conjectures
due to Pujals and Hertz-Hertz-Ures. The proof is based on a general result about
transverse foliations in dimension 3.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Vincent Colin presented his joint work with U. Hryniewicz and A. Rechtman on
C∞-generic properties of Reeb flows on closed 3-manifolds. The first result states
that C∞-generically every hyperbolic periodic orbit has homoclinic connections,
thus improving on their previous result in collaboration with P. Dehornoy asserting
that C∞-generically the topological entropy is positive. The second result concerns
existence of global surfaces of section with special properties, namely, containing
prescribed sets of periodic orbits in their boundary or Legendrian links in their
interior (up to C0-small isotopy). The final result is about Legendrian knots
having finitely many geometrically distinct Reeb chords: in the presence of a
Birkhoff section, the presence of such a knot forces the Reeb flow to have exactly
two periodic orbits and, due to results of D. Cristofaro-Gardiner, U. Hryniewicz,
M. Hutchings and H. Liu, the ambient 3-manifold is a lens space and the dynamics
has the exact same symplectic features of the quotient of an irrational ellipsoid.

Pedro Salomão, in joint work with Lei Liu, studies retrograde periodic orbits of
the restricted circular three body problem. They consider the regularized (around
collisions) energy surface slightly above the energy of L1 and they prove that, for
parameter mass close to 1/2, it admits a 3− 2 − 3 foliation whose binding orbits
are the retrograde orbits around the primaries and the Lyapunov orbit in the
neck region. For energy values below the energy of L1 they prove that Birkhoff’s
retrograde orbit conjecture holds.

Karen Butt showed that the entropy of the Liouville measure for the geodesic
flow on surfaces with non-contant negative curvature is strictly increasing along
the orbits of the Ricci flow, a joint work with A. Erchenko, T. Humbert and D.
Mitsutani.

Oliver Edtmair reported on joint work with S. Seyfaddini where a positive
answer to a question of V. I. Arnold about invariance of helicity for exact volume-
preserving nowhere vanishing vector fields on homology 3-spheres is given. Their
main result asserts that if the flows of two such vector fields are topologically
conjugated then the vector fields have the same helicity.

Alessandra Nardi discussed the dynamical properties of a class of billards called
symplectic billards and has presented recent rigidity results obtained with L.
Baracco and O. Bernardi.

Agustin Moreno in a joint work with Arthur Limoge and Otto van Koert gave
a talk about a A Poincaré–Birkhoff theorem for C0-Hamiltonian maps. His mo-
tivation is the restricted three body problem where a previous result shows the
existence of an open book decomposition. The symplectic form extends is also
non-degenerate along the boundary, but the return map extends only continu-
ously, his result gives the existence of periodic points of arbitrarily large minimal
period.

Martin Leguil gave a talk about the rigidity of Anosov diffeomorphisms and
notably presented his results with A. Gogolev on the deformation rigidity of dif-
feomorphisms near De la Llave’s examples on T4.

Alberto Abbondandolo, in a joint work with Marco Mazzucchelli, studies the
length spectrum rigidity and flexibility of spheres of revolution, where the geodesic
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flow is not hyperbolic. They consider S1-invariant Riemannian metrics on S2 that
possess a unique equator, and, after defining type (p, q) geodesics, they give a
definition of isoespectral metrics that allow them to give a rigidity result: roughly
speaking if two metrics are isoespectral, then the geodesic flows are conjugated.
They also present some extra properties.

Zhiyuan Zhang has exposed his recent advances with M. Tsujii on perturbations
of the time-1 map of generic conservative Anosov flows in dimension 3, namely the
proof of the topological mixing and of the existence of a physical measure.

Immaculada Baldoma, in a joint work with A. Florio, M. Leguil and T. M-
Seara, proved that, among analytic strictly convex billiard, chaotic ones are open
and dense, showing that given a rational rotation number, the set of analytic
billiards having horseshoes associated to it are open and dense.

Basak Gürel reported on progress on the following important conjecture in
Symplectic Dynamics: The Hamiltonian flow on a star-shaped energy level in a
2n-dimensional symplectic vector space has either exactly n or infinitely many
periodic orbits. In her recent joint work with E. Cineli and V. Ginzburg, one of
the main statements is that the conjecture holds if the star-shaped energy level is
nondegenerate, dynamically convex and centrally symmetric.

Mar Giralt proved the existence of Newhouse phenomena in the Restricted
Planar Three Body Problem. In collaboration with I. Baldomá ans M. Guardia
she studied the Lyapunov orbits around L3 and their stable and unstable manifold,
and was able to prove the existence of transversal intersections for a family of
Lyapunov orbits and, for a selected one, a tangential intersection which unfolds
generically.

Sebastien Alvarez spoke about the space of surfaces of constant curvature inside
a closed negatively curved 3-manifold, a 2-dimensional analogue of the geodesic
flow. Together with B. Lowe and G. Smith he proves equidistribution properties
of these surfaces.

Levin Maier’s talk was about the interpretation of several PDEs of a Hamil-
tonian nature as magnetic geodesic flows on infinite dimensional Lie groups with
a right-invariant metric. This extends celebrated work of V. I. Arnold on the
interpretation of certain PDEs from fluid dynamics as geodesic flows on infinite-
dimensional Lie groups with a right invariant metric. Several interesting results
were presented, such as a Hopf-Rinow type theorem for energy levels above the
so-called Mañé’s critical value; it should be noted that the appropriate definition
of Mañé’s critical value was given in this new infinite-dimensional context.

Anna Florio’s talk was devoted to the notion of h-flows which generalizes Anosov
flows on non-compact manifolds. Her work with B. Schapira and A. Vaugon es-
tablishes the existence of measures maximizing the entropy under a SPR property.

Leonardo Masci reported on a Poincaré-Birkhoff type theorem for Hamiltonian
systems in a symplectic vector space, that are “linear at infinity”. A difficult
and important conjecture due to A. Abbondandolo asserts that such systems have
either exactly one or infinitely many periodic orbits. The main result of Masci’s
work provides infinitely many periodic orbits under the following assumptions: (i)
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the “linearized” dynamics at infinity is unitary and generic, and (ii) there exists
a homologically visible fixed point whose linearized dynamics is nonresonant with
the “linearized” dynamics at infinity.

Pierre Berger explained his construction of transitive analytic diffeomorphisms
of the sphere, which proves an old conjecture by Birkhoff. His talk was illustrated
by amazing animations and the proof, which follows Anosov-Katok approach, is
based on deformations of complex structures.

The meeting was held in an informal and stimulating atmosphere. The weather
was good and many participants attended the traditional walk to St. Roman on
Wednesday.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Transverse foliations and partially hyperbolic diffeomorphisms

Rafael Potrie

(joint work with Sergio Fenley)

Recently, using properties of foliations and transverse foliations in 3-manifolds,
with Sergio Fenley we were able to obtain the following result:

Theorem A. Let f : M → M be a (chain-)transitive partially hyperbolic diffeo-
morphism on a closed 3-manifold with fundamental group of exponential growth.
Then, f is a collapsed Anosov flow.

In a nutshell this means that M admits an Anosov flow ϕt and up to some
continuous surjective map h : M → M the diffeomorphism f behaves as a self-
orbit equivalence β of ϕt. That is, there is a homeomorphism β : M → M
mapping oriented orbits of ϕt to oriented orbits of ϕt so that f ◦ h = h ◦ β. As a
consequences of the techniques used in the proof and our result, we deduce that
all definitions given in [BFP] of collapsed Anosov flows coincide and we refer the
reader to that paper for more properties of such diffeomorphisms. This notion
extends the notion of discretized Anosov flows appearing in the original Pujals’
conjecture (see [BW, BFP, Mar]) to account for new examples (see [BGP, BGHP]).
The classification is complete, since every possible (at least if orientable) collapsed
Anosov flow can be realised as follows from a recent result of Bowden and Massoni.
Manifolds with smaller fundamental group had already been dealt with [HP].

It is to be emphasized that a non-trivial consequence of our result is that a 3-
manifold supporting a chain-transitive partially hyperbolic diffeomorphism must
support a transitive Anosov flow. We refer the reader to [BW, CHHU, HP, BGP,
BFP] for more context on this problem. The assumption of chain-transitivity is
not crucial, it is used to ensure that leaves of some foliations appearing in the
proof are by Gromov hyperbolic leaves, a generic assumption thanks to Candel’s
uniformization problem. In many cases, such as when f is absolutely partially
hyperbolic, dynamically coherent, homotopic to the identity, it is not hard to see
that the assumption is verified. It also holds unconditionally on hyperbolic and
Seifert 3-manifolds [HP2].

As a consequence of the previous result we also prove a conjecture due to Hertz-
Hertz-Ures ([CHHU]), see [FP2]:

Theorem B. Let f : M → M be a conservative C1+ partially hyperbolic dif-
feomorphism in a closed 3-manifold whose fundamental group is not (virtually)
solvable. Then, f is ergodic (and in fact a K-system).

The proof of Theorem A builds on the existence of branching foliations [BI]
and on a strategy first devised in the classification of partially hyperbolic diffeo-
morphisms of hyperbolic 3-manifolds ([BFFP1, BFFP2, FP]) that requires show-
ing that center curves are quasi-geodesics in their corresponding weak-stable and
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weak-unstable (branching) leaves. While the proof in the hyperbolic manifold case
achieves this through a detailed analysis of curves inside the leaves, with a crucial
and continued used of the dynamics of f and properties of the strong stable and
strong unstable foliations, the new strategy, which allows for a more general result,
relies on a different approach initiated in [FP3, FP4, BaFP].

In our work, we try to understand the geometry of the flow defined by two trans-
verse foliations and to obtain, assuming that the flowlines are not quasi-geodesic in
their corresponding leaves, that there must be some structure incompatible with
partial hyperbolicity. Our main result is then a completely general result about
transverse foliations in 3-manifolds (related to some questions in [Th]):

Theorem C. Let F1,F2 be two transverse foliations with Gromov hyperbolic
leaves in a closed 3-manifold M . Then, if G = F1 ∩ F2 is the intersected foli-

ation, it follows that either leaves of G̃ are quasi-geodesic in their corresponding

F̃1 and F̃2 leaves, or, the foliation G contains a generalized Reeb surface.

A generalized Reeb surface is a geometric object that can appear in a leaf of
F1 or F2 which is foliated by G and has some particular geometric properties
that are incompatible with the foliations coming from a partially hyperbolic dif-
feomorphism. Instead of defining properly the object, we close the summary with
a corollary of the previous result:

Corollary D. Let F1,F2 be two transverse foliations by Gromov hyperbolic leaves
and let G = F1 ∩ F2 the intersected foliation. Then, G contains a closed leaf (a
circle).
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Birkhoff sections and Reeb chords in 3-dimensional contact manifolds

Vincent Colin

(joint work with Umberto Hryniewicz and Ana Rechtman)

Let M be a closed oriented 3-manifold, ξ a co-oriented contact structure and λ a
positive contact form defining ξ, that is ξ = kerλ and λ∧dλ > 0. The Reeb vector
field Rλ of λ is defined by the equations

ιRλ
dλ = 0 and λ(Rλ) = 1.

Its flow preserves the contact structure ξ and the volume form λ ∧ dλ. A special
example of a Reeb vector field is given by the geodesic flow on the unit tangent
bundle of a Riemannian surface (Σ, g). A Reeb vector field is nondegenerate when
all its periodic orbits are nondegenerate: the transverse linearized first return map
at a point of the orbit never has 1 in its spectrum.

An important tool for studying dynamics of flows on 3-manifolds was introduced
by Poincaré and Birkhoff. A Birkhoff section for Rλ is an immersed compact
surface S with boundary such that: ∂S is a collection of periodic orbits of Rλ, the
interior of S is embedded and transverse to Rλ, and S intersects the orbit of Rλ

starting at every point of M in bounded time. In particular, in the presence of a
Birkhoff section the flow is entirely described by its first return map on S.

Beyond the classical study of periodic orbits and entropy of a Reeb flow, an
important subject is that of Reeb chords along a Legendrian curve, that are a
curve L everywhere tangent to ξ and the Reeb trajectories starting and ending on
L.

Reeb vector fields are now known to have special strong properties.

• They always have at least one periodic orbit [14] (the Weinstein conjec-
ture), and even two [6].

• A nondegenerate Reeb vector field always has either 2 or infinitely many
periodic orbits [3]; if the first Chern class of ξ is torsion, the conclusion
also holds in the degenerate case [7].
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• Generically, a Reeb flow has > 0 topological entropy [2], that is, by Katok
[11], equivalent to the existence of a homoclinic connection for a hyperbolic
Reeb orbit.

• C∞-generically, a Reeb vector field has a Birkoff section [2, 5].
• Every Legendrian curve has a Reeb chord [9, 10] (the Arnold’s chord con-
jecture).

We present several improvements of these statements, see [4]:

Theorem A. Let R be a Reeb vector field on a closed contact 3-manifold such
that:

(G1) it is strongly nondegenerate;
(G2) its periodic orbits are equidistributed with respect to the Liouville measure;
(G3) it satisfies Zehnder’s condition on elliptic periodic orbits.

Then every hyperbolic periodic orbit has a transverse homoclinic orbit in each of
the branches of its stable/unstable manifolds.

The hypothesis (G1− 3) are known to be C∞ generic among Reeb flows. With
this result at hands, we move forward to find nice Birkhoff sections.

Theorem B. Let R be a Reeb vector field satisfying the hypotheses (G1), (G2)
and (G3). Given a finite collection Γ of periodic orbits and a Legendrian link L,
there exists a Legendrian link L′ that is Legendrian isotopic to L by a C0-small
isotopy, and a Birkhoff section S for R such that

(1) Γ ⊂ ∂S;
(2) S is embedded;
(3) S contains L′ (necessarily in its interior).

Finally, we give a Reeb chord version of the “two or infinitely many Reeb
periodic orbits” theorem proven in [3] for nondegenerate Reeb vector fields and
in [8] in the general possibly degenerate case under the hypothesis that the first
Chern class of the contact structure is torsion.

Theorem C. If a Reeb vector field of a co-oriented contact structure ξ on a
closed connected 3-manifold has a Birkhoff section, then every Legendrian knot L
has infinitely many Reeb chords.

If L has finitely many geometrically distinct Reeb chords, then the Birkhoff
section is a disk or an annulus and the Reeb vector field has exactly two periodic
orbits. Moreover, there are at least two geometrically distinct Reeb chords.

In the first part of Theorem C, the infinite number of chords could come from a
periodic orbit intersecting the Legendrian knot in one point, that gives different,
but not disjoint, chords obtained by covering the periodic orbit several times. The
case of a Reeb vector field with exactly two periodic orbits was studied extensively
in [7] where it is proved that the first return map on the Birkhoff section is an
irrational pseudo-rotation, the two periodic orbits, together with their multiples,
are elliptic non-degenerate, and their actions are related to the volume of the
manifold as in the case of irrational ellipsoids. In this case, the ambient manifold
M is either a lens space or the 3-sphere.
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The proof of Theorem C relies on the existence of at least one Reeb chord
provided by Hutchings and Taubes [9, 10], together with the fact that the first
return map on a Birkhoff section has flux zero in the case of a Reeb flow.

Regarding the fact that, on one hand by a result of Alves and Mazzuchelli [1]
every geodesic flow on the unit tangent bundle of a Riemannian surface has a
Birkhoff section, and on the other hand infinitely many periodic orbits, we also
get:

Corollary D. If (Σ, g) is a closed Riemannian surface, then every Legendrian
knot in (UTΣ, λg) has infinitely many geometrically distinct Reeb (geodesic) chords.

Since the unit sphere at every point defines a Legendrian knot we get, in partic-
ular, that for every x ∈ Σ there are infinitely many distinct geodesic loops starting
and ending at x, a classical result of Serre when Σ is the 2-sphere [13].
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Finite energy foliations in the restricted three-body problem

Pedro A. S. Salomão

(joint work with Lei Liu)

This report is about the main results of the preprint [4].
The circular planar restricted three-body problem studies the motion on the

plane of a massless satellite attracted by two massive primaries that rotate along
circular trajectories around their center of mass. In a rotating systems that fixes
the primaries, this motion is governed by the Hamiltonian

Hµ(p, q) =
1

2
|p+ iq|2 − µ

|q − (1− µ)| −
1− µ

|q + µ| −
1

2
|q|2.

Here, q = q1 + iq2 ∈ C \ {−µ, 1 − µ} is the position of the satellite, and p =
p1 + ip2 ∈ C is the conjugate momentum. The mass ratio 0 < µ < 1 is the unique
parameter of the system after suitable normalizations. The primaries at −µ and
1− µ are called the moon and the earth, respectively.

For energies E < L1(µ) below the first Lagrange value, the energy surface
H−1(E) contains two components Me

µ,E ,Mm
µ,E, projecting to punctured disk-like

domains about the earth and the moon, respectively. If the energy E coincides
with the first Lagrange value L1(µ), then Me

µ,L1(µ)
and Mm

µ,L1(µ)
touch each other

at a common singularity, the first Lagrange point. For energies L1(µ) < E < L2(µ)
between the first and the second Lagrange values, the energy surface has a regular

component Me#m
µ,E corresponding to the connected sum of Me

µ,E and Mm
µ,E .

To regularize collisions with the primaries, we consider elliptic coordinates

q1 =
1

2
coshx1 cosx2, q2 =

1

2
sinhx1 sinx2,

and replace (p, q) with (y, x) satisfying pdq = ydx to obtain the regularized Hamil-
tonian

Ĥ(y, x) =
1

2

((
y1 +

sin 2x2
8

)2

+

(
y2 +

sinh 2x1
8

)2
)

+ V (x) + (1− 2µ)V̂ (x),

where

V (x) = −h cosh
2 x1

4
− coshx1

2
− sinh2(2x1)

128
+
h cos2 x2

4
− sin2(2x2)

128
,

V̂ (x) =
cosx2

2
− 1

16
(
1

2
− µ+ coshx1 cosx2)(cosh

2 x1 − cos2 x2).

The components of the regularized energy surface quotiented by the antipodal
symmetry now become smooth compact submanifolds

(1)
S3 2:1→ Me

µ,E ,Mm
µ,E ≡ RP 3, ∀E < L1(µ),

S1 × S2 2:1→ Me#m
µ,E ≡ RP 3#RP 3, ∀L1(µ) < E < L2(µ).

In [1], Albers, Frauenfelder, van Koert, and Paternain observed that for energies
up to slightly above L1(µ), these regularized energy surfaces have contact type. In
particular, the methods of pseudo-holomorphic curves apply. For energies below
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L1(µ), the flow is equivalent to a Reeb flow on RP 3 equipped with the universally
tight contact structure ξ0. Birkhoff [2] used the shooting method to prove the
existence of a retrograde orbit, i.e., a periodic orbit projecting to a simple closed
curve around the primary moving opposite to the rotating system. He raised
the question of whether the retrograde orbit bounds a disk-like global surface
of section. In the neck region of RP 3#RP 3, there exists an index-2 hyperbolic
orbit P2 = P2,µ,E , called the Lyapunov orbit. This orbit bounds a pair of closed
disks whose interior is transverse to the flow. They form a regular two-sphere S
which separates Me#m

µ,E into two components whose closures, denoted by Me
µ,E

and Mm
µ,E, are contactomorphic to (RP 3, ξ0) with an open ball removed. One can

prove using the same argument as Birkhoff that the interiors of Me
µ,E and Mm

µ,E

possess retrograde orbits P e
3 and Pm

e , respectively.

Definition 1. Consider the following terminology from [3] for E slightly above
L1(µ):

(i) A 2 − 3 foliation of Me
µ,E is a weakly convex foliation Fe of Me

µ,E, i.e.,

the regular leaves consist of the hemispheres U1, U2 in S \ P2,E, a one-
parameter family of planes asymptotic to (P e

3 )
2 and a rigid cylinder with

a positive end at (P e
3 )

2 and a negative end at P2. They are transverse to
the flow and consist of projections to Me

µ,E of a finite energy foliation in
the symplectization. A 2− 3 foliation Fm of Mm

µ,E is defined similarly.

(ii) If 2− 3 foliations Fe and Fm of Me
µ,E and Mm

µ,E exist, respectively, then

Fe ∪ Fm is called a 3− 2− 3 foliation of Me#m
µ,E .

Figure 1. The 3− 2− 3 foliation on the regularized component

Me#m
µ,E ≡ RP 3#RP 3.

The main result of this report states that for mass ratios sufficiently close to
1/2 and energies slightly above the first Lagrange value, the regularized RP 3#RP 3

component of the energy surface admits a 3− 2− 3 foliation whose binding orbits
are the retrograde orbits around the primaries and the Lyapunov orbit in the neck
region.
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Theorem A (Liu-S., 2025). The following statements hold for every (µ,E) suffi-
ciently close to (1/2,−2), with E > L1(µ):

(i) The index-2 Lyapunov orbit P2 ⊂ Me#m
µ,E is the unique contractible periodic

orbit with index ≤ 2. In particular, Me#m
µ,E is weakly convex.

(ii) The regularized Hamiltonian flow on Me#m
µ,E ≡ RP 3#RP 3 admits a 3 −

2 − 3 foliation whose binding orbits are the retrograde orbits P e
3 and Pm

3 ,
and the Lyapunov orbit P2 around the first Lagrange point.

(iii) Each chamber Me
µ,E or Mm

µ,E admits infinitely many periodic orbits and

infinitely many homoclinic orbits to the Lyapunov orbit near l1(µ). More-
over, if the stable and unstable manifolds of the Lyapunov orbit do not

coincide, then the topological entropy of the flow on Me#m
µ,E is positive.

We also prove that Birkhoff’s retrograde orbit conjecture holds for mass ratios
sufficiently close to 1/2 and every energy below the first Lagrange value.

Theorem B (Liu, S., 2025). There exists ǫ0 > 0 such that for every |µ−1/2| < ǫ0
and E < L1(µ), the following statements hold:

(i) The RP 3-components Me
µ,E and Mm

µ,E are dynamically convex, i.e., every
contractible periodic orbit has index at least 3.

(ii) Every retrograde orbit P e
3 ⊂ Me

µ,E ≡ RP 3 binds a rational open book
decomposition whose pages are disk-like global surfaces of section. More
generally, the same holds for every periodic orbit P ⊂ Me

µ,E which is
transversely isotopic to a Hopf fiber. A similar statement holds for Mm

µ,E.

(iii) Let P ′ ⊂ Me
µ,E be the simple periodic orbit corresponding to a fixed point

of the first return map associated to the global surface of section bounded
by P as in (ii). Then the Hopf link P ∪ P ′ bounds an annulus-like global
surface of section. A similar statement holds for Mm

µ,E .

The proof of the theorem above strongly relies on the theory of Hofer-Wysocki-
Zehnder on pseudo-holomorphic curves in symplectizations and the following con-
vexity estimate that controls the indices of periodic orbits.

Theorem C (Liu, S., 2025). The regularized subsets Me
1/2,E and Mm

1/2,E are

strictly convex for every E ≤ −2 = L1(1/2).
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Monotonicity of the Liouville entropy along the Ricci flow

Karen Butt

(joint work with Alena Erchenko, Tristan Humbert, Daniel Mitsutani)

Let (M, g) be a closed negatively curved surface, and let hLiou(g) denote its Liou-
ville entropy, i.e., the measure-theoretic entropy of the geodesic flow on the unit
tangent bundle SgM with respect to the Liouville measure. In the case where g
is a hyperbolic metric, i.e., a metric of constant negative curvature, hLiou(g) coin-
cides with the more familiar notion of topological entropy htop(g); in other words,
the Liouville measure is the measure of maximal entropy. By work of Bowen, the
measure of maximal entropy is given by the equidistribution of periodic orbits
(closed geodesics) [1], and one does not in general expect this to coincide with
Liouville measure in the presence of geometric asymmetries.

Indeed, Katok proved that hLiou(g) = htop(g) if and only if g is hyperbolic [5,
Corollary 2.5]. More specifically, suppose M has Euler characteristic χ < 0 and g

is a negatively curved metric on M with total area A. Let hhyp =
√
−2πχ/A, the

common value of the Liouville and topological entropies for a hyperbolic metric
on M , normalized as above. Katok proved that if g has non-constant negative
curvature, then

(1) hLiou(g) < hhyp < htop(g).

(In [5], it is also conjectured that equality of Liouville and topological entropies
characterizes negatively curved locally symmetric metrics in higher dimensions,
and this problem is not yet fully solved.)

Katok’s proof uses that in dimension 2, every metric on a surface of negative
Euler characteristic is conformally equivalent to a hyperbolic metric. This fol-
lows, for instance, from the uniformization theorem for Riemann surfaces; a more
Riemannian-geometric way to see this is using Hamilton’s Ricci flow. We recall
that in dimension 2, the normalized Ricci flow is given by

(2)
∂

∂ε
gε = −2(Kε − K̄)gε,

where Kε is the Gaussian curvature of gε and K̄ is its average value. Hyperbolic
metrics are fixed by the Ricci flow; for metrics of non-constant curvature, (2)
defines a conformal family of negatively curved metrics ε 7→ gε of fixed area con-
verging to a hyperbolic metric (of constant curvature K) as ε → ∞ [4, Theorem
3.3].

In [9], Manning considered the variation of the topological entropy along the
normalized Ricci flow for closed negatively curved surfaces. Using the second
inequality in (1), he proved the topological entropy strictly decreases along the
normalized Ricci flow [9, Theorem 1] and asks if the corresponding monotonicity
is true for the Liouville entropy [9, Question 3]. Our main result is that this is
indeed the case:

Theorem A ([2], Theorem A). Let M be a smooth closed orientable surface of
negative Euler characteristic. Let g0 be a smooth Riemannian metric on M of
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non-constant negative Gaussian curvature. Let ε 7→ gε denote the normalized
Ricci flow starting from g0. Then

ε 7→ hLiou(gε) is strictly increasing for all ε ≥ 0.

Combining this monotonicity result with Manning’s gives a new proof of Katok’s
aforementioned entropy rigidity theorem. Indeed, we have that for g non hyper-
bolic, the quantity htop(g)−hLiou(g) strictly decreases along the normalized Ricci
flow. On the other hand, the variational principle states htop(g) − hLiou(g) ≥ 0.
Hence, htop(g) − hLiou(g) > 0. Moreover, our proof of Theorem A gives a new
proof of the first inequality in (1) (shown also in [8, Theorem 1] and [11, Corollary
1]).

The key ingredient in the proof of Theorem A is a new formula for the derivative
of the Liouville entropy along an arbitrary area-preserving conformal perturbation
of a negatively curved metric on a surface:

Theorem B ([2], Theorem D). Let (M, g0) be a smooth closed negatively curved
surface. Let gε = e2ρεg0 be a C∞ area-preserving conformal perturbation of g0 and
let ρ̇0 = d

dε |ε=0 ρε. Let hLiou(ε) denote the Liouville entropy of gε. Then

d

dε

∣∣∣∣
ε=0

hLiou(ε) = −1

2

∫

SM

ρ̇0w
sdm,

where m is the Liouville measure for g0 and −ws(v) is the mean curvature of
the stable horosphere (or, strictly speaking, the geodesic curvature of the stable
horocycle) determined by v.

To prove Theorem B, we being with the well-known fact that, in negative cur-
vature, the Liouville entropy can be expressed as the average, with respect to
the Liouville measure, of the mean curvature of horospheres. (This was used by
Knieper–Weiss to show the Liouville entropy varies smoothly with respect to the
metric for negatively curved surfaces [6].) As in the work of Ledrappier–Shu [7],
we use that this mean curvature is equal to the Laplacian of the corresponding
Busemann function, and and can hence be expressed as the divergence of a vector
field closely related to the geodesic spray.

A key tool, in both their work and ours, is a decomposition of the unit tangent
bundle of the universal cover M̃ as the product of M̃ with ∂M̃ , the visual boundary
at infinity. As a consequence of this perspective, integrals of certain functions along
half-infinite orbits of the geodesic flow appear naturally in the computations. We
then use microlocal methods, more specifically, the formalism of Pollicott–Ruelle
resonances, to express these integrals in terms of resolvents of the geodesic flow,
as in the work of Faure–Guillarmou [3]. This key insight allows for dramatic
simplification of our derivative formula.

To deduce Theorem A from Theorem B, we set ρ̇0 = K0 − K in Theorem B,
and we show positivity of the resulting derivative formula using a Jensen-type
inequality. In fact, a simpler analogue of this positivity argument appears when
considering the variation of the mean root curvature along the normalized Ricci
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flow. The mean root curvature is a geometric invariant introduced by Manning [8]
which is defined for a negatively curved metric g on a closed surface M by

(3) κ(g) :=
1

A(g)

∫

M

√
−Kg dAg ,

where dAg is the Riemannian area form of g, and A(g) is the area defined by
A(g) =

∫
M
dAg .

The mean root curvature is small for metrics which concentrate curvature in
regions of small area, and is maximized strictly at metrics of constant negative
curvature, by Jensen’s inequality and the Gauss–Bonnet theorem. In addition, it
provides a lower bound for Liouville entropy: κ(g) ≤ hm(g) with equality if and
only if g is of constant negative Gaussian curvature [8, Theorem 2], [10]. Our last
result is that this quantity is also monotonically increasing along the normalized
Ricci flow:

Theorem C ([2], Theorem C). LetM be a smooth closed orientable surface of neg-
ative Euler characteristic. Let g0 be a Riemannian metric on M of non-constant
negative Gaussian curvature. Let ε 7→ gε denote the normalized Ricci flow starting
from g0. Then

ε 7→ κ(gε) is strictly increasing for all ε ≥ 0.

Acknowledgement. Karen Butt is supported by the National Science Founda-
tion Grant DMS-2402173.
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On the topological invariance of helicity

Oliver Edtmair

(joint work with Sobhan Seyfaddini)

Helicity is an invariant of exact volume preserving vector fields in dimension three.
It was introduced in [12, 11, 10] in the context of (magneto)hydrodynamics, where
it gives rise to conserved quantities. In my talk, I discussed joint work with
Sobhan Seyfaddini [5], which addresses questions raised by Arnold [1] concerning
topological properties of helicity.

Let (Y 3, µ) be a closed 3-manifold equipped with a volume form. A volume-
preserving vector field X on Y is called exact if the closed 2-form ιXω is exact. In
this case, the helicity of X is defined as

H(X) :=

∫

Y

α ∧ dα,

where α is a primitive 1-form of ιXµ. This integral turns out to be indepen-
dent of the choice of α. Clearly, helicity is invariant under volume preserving-
diffeomorphisms, i.e. H(f∗X) = H(X) for every f ∈ Diff(Y, µ).

We say that two volume-preserving vector fields X1 and X2 are topologically
conjugate if there exists a volume- and orientation-preserving homeomorphism f ∈
Homeo+(Y, µ) which intertwines their flows, i.e. which satisfies f ◦ϕt

X1
◦f−1 = ϕt

X2

for all times t. In [1], Arnold posed the following questions; see also [6, 7, 2, 8].

Question 1 (Arnold). Is helicity preserved under topological conjugacy, i.e. if
X1 and X2 are two exact volume-preserving vector fields which are topologically
conjugate, is it true that H(X1) = H(X2)? More generally, can helicity be extended
to volume-preserving topological flows?

Building on recent advances in C0 symplectic geometry [3], we resolve these
questions for flows without fixed points [5].

Theorem A. Two nowhere vanishing, exact, volume-preserving, smooth vector
fields which are topologically conjugate have the same helicity.

Moreover, helicity admits an extension to fixed-point-free, exact, volume-pre-
serving, topological flows whose flow lines have zero measure. This extension is in-
variant under conjugation by volume- and orientation-preserving homeomorphisms
and compatible with the Calabi invariant in the sense of Eq. (1), and it is uniquely
determined by these properties.

In this theorem, compatibility with the Calabi invariant has the following mean-
ing. Let (Σ, ωΣ) denote an open surface equipped with an area form ωΣ. Let
Ham(Σ) be its group of compactly supported Hamiltonian diffeomorphisms. It
was proven recently [4, 9] that the Calabi homomorphism CalΣ : Ham(Σ) → R

admits infinitely many extensions to the group of Hamiltonian homeomorphisms
Ham(Σ). Pick one such extension

CalΣ : Ham(Σ) → R.
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We prove in [5] that the Calabi extensions for different surfaces Σ can be picked
such that they are functorial with respect to area-preserving embeddings of sur-
faces.

Now, fix a topological volume-preserving flow ψt on (Y, µ) and suppose that we
have a topological volume-preserving embedding

α : ((0, 1)× Σ), dt ∧ ωΣ) →֒ (Y, µ)

which intertwines the flow on (0, 1)×Σ generated by the vector field ∂t and the flow
ψt. Consider a C0 Hamiltonian isotopy ϕt ∈ Ham(Σ) and note that its suspension
to (0, 1) × Σ is volume preserving. We refer to the tuple P := (Σ, ωΣ, α, ϕ

t) as a
plug. Given a plug P , one can define a new volume-preserving flow ψt#P on Y by
replacing the flow ψt inside im(α) with the suspension of ϕt. The compatibility
condition between our helicity extension H and the Calabi extension CalΣ is given
by

(1) H(ψt#P) = H(ψt) + CalΣ(ϕ
1).
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[8] É. Ghys, Le groupe des homéomorphismes de la sphère de dimension 2 qui respectent l’aire
et l’orientation n’est pas un groupe simple [dáprès D. Cristofaro-Gardiner, V. Humilière
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Symplectic billiards: integrability and spectral rigidity

Alessandra Nardi

(joint work with Luca Baracco and Olga Bernardi)

A mathematical billiard is a dynamical system describing the motion of a mass
point (the billiard ball) inside a planar region (the billiard table) with, in general,
piecewise smooth boundary. The ball moves with constant speed and without fric-
tion, following a rectilinear path. In the classical billiard, introduced by Birkhoff
in [8], the planar region is a convex domain (often strictly convex) with a smooth
boundary, and the law of motion is the reflection law.

In 2018, P. Albers and S. Tabachnikov introduced a new class of billiards called
symplectic billiards, see [1]. As in the Birkhoff case, the billiard table is a convex
planar region with smooth boundary, and the dynamics is described as follows.
Three points x, y, z on the boundary are three consecutive points of a symplectic
billiard orbit if and only if the tangent at the second point, y, is parallel to the
line connecting x and z (see figure below).

Both Birkhoff and symplectic billiards’ maps are monotone twist maps, preserving
an area form. Moreover, in the Birkhoff case, the generating function is the length
between two successive bounces; otherwise, in the symplectic case, the generating
function is the area of the parallelogram given by two successive bounces, i.e.,

ω(x, y) = det(x, y).

Crucial questions for any billiard dynamics include integrability, which means
the existence of a regular (i.e., at least C0) foliation of the phase-space consisting
of invariant, not null-homotopic curves. In particular, a billiard is called totally
integrable if the foliation fills the whole phase-space. A celebrated result, proved by
M. Bialy [6] in 1993, established that the only totally integrable Birkhoff billiards
are circles. More recently, L. Baracco and O. Bernardi [2] proved that, in the case
of symplectic billiards, ellipses are the only totally integrable billiard tables. It is
consequently quite natural to try to apply the previous successful frameworks to
search for other rigidity results by relaxing the total integrability assumption. In
this direction, a fundamental contribution is due to M. Bialy and A.E. Mironov
[7], proving the so-called Birkhoff–Poritsky conjecture for centrally symmetric C2

strongly-convex (i.e., with positive curvature) domains Ω. The analog result for
symplectic billiards was obtained in a joint work with L. Baracco and O. Bernardi.
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Theorem A (Theorem 1.1 in [3]). Let Ω be a centrally symmetric C2 strongly-
convex domain with boundary ∂Ω. Assume that the symplectic billiard map T :
P → P of ∂Ω has a (simple) continuous invariant curve δ ⊂ P of rotation number
1/4 (winding once around ∂Ω) and consisting only of 4-periodic orbits. If one of
the parts between δ and each boundary of the phase-space P is entirely foliated by
continuous invariant closed (not null-homotopic) curves, then ∂Ω is an ellipse.

The proof makes use of the consolidated integral approach coming from Hopf’s
method and of the affine equivariance of the symplectic billiard map in order to
take back the problem to the isoperimetric inequality.

The results mentioned above are examples of rigidity phenomena: imposing the
existence of the foliations described in the hypotheses of the previous theorems
uniquely determines the domain to be an ellipse. Alternative approaches to ex-
ploring rigidity in symplectic billiards include the use of the β-Mather functions
–whose expansion was computed in [4]– or the analysis of the area spectrum.

Let {xj}qj=0 be a periodic trajectory for the symplectic billiard map, that is,

T (xj−1, xj) = (xj , xj+1) for every j = 1, . . . q − 1, and x0 = xq. Its action is
defined as

q−1∑

j=0

ω(xj , xj+1)

and if the orbit winds once around the boundary ∂Ω, it is precisely twice the area
of the polygon of vertices {xj}q−1

j=0 . The area spectrum is defined as

A(Ω) = N{action of all closed trajectories of Φ} ∪ N{AΩ},
where AΩ is the area of Ω. From the invariance of the symplectic billiards map
under affine transformations of the plane, it is clear that given two strictly convex
domains Ω and Ω′ with the same area, if the corresponding symplectic billiard maps
TΩ and TΩ′ are conjugated by a unitary affine transformation of the plane, then
A(Ω) = A(Ω′). Then a natural question arises: is it true that if A(Ω) = A(Ω′),
then Ω and Ω′ are necessarily equal up to a unitary affine transformation of the
plane? A partial answer to this question was given in a joint work with L. Baracco
and O. Bernardi for two different classes of domains.

Theorem B (Theorem 1 and 2 in [5]). (a) Any finitely smooth axially symmetric
strictly convex domain, with everywhere positive curvature and sufficiently close to
an ellipse, and (b) any finitely smooth centrally symmetric strictly convex domain,
even-rationally integrable, with everywhere positive curvature and sufficiently close
to an ellipse, is area spectrally rigid.

This means that any family (Ωτ )τ∈[−1,1] of domains in these classes such that
A(Ωτ ) = A(Ωτ ′) for every τ, τ ′ ∈ [−1, 1], is necessarily equi-affine, i.e. for every
τ, τ ′ ∈ [−1, 1], Ωτ ′ = Bτ,τ ′Ωτ with Bτ,τ ′ unitary affine.

The analog result for Birkhoff billiards with the family of axially symmetric do-
mains that are close to the circle is due to J. de Simoi, V. Kaloshin, and Q. Wei
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[9]. The same result for symplectic billiards was obtained simultaneously and in-
dependently, for axially symmetric domains by C. Fierobe, A. Sorrentino, A. Vig
in [10] with a slightly different technique.

References

[1] A. Albers and S. Tabachnikov, Introducing symplectic billiards, Adv. Math. 333 (2018):
822–67.

[2] L. Baracco and O. Bernardi, Totally integrable symplectic billiards are ellipses, Advances in
Mathematics, Volume 454, (2024), 109873.

[3] L. Baracco, O. Bernardi and A. Nardi, Bialy-Mironov type rigidity for centrally symmetric
symplectic billiards, Nonlinearity 37, (2024), 125025.

[4] L. Baracco, O. Bernardi and A. Nardi, Higher order terms of Mather’s β-function for
symplectic and outer billiards, J. Math. Anal. Appl. 537 (2024), no. 2, Paper No. 128353,
20 pp.

[5] L. Baracco, O. Bernardi and A. Nardi, Area spectral rigidity for axially symmetric and
Radon domains, arXiv:2410.12644 (2024).

[6] M. Bialy, Convex billiards and a theorem by E. Hopf, Math. Z. 214 (1993), no. 1, 147–154.
[7] M. Bialy and A.E. Mironov, The Birkhoff-Poritsky conjecture for centrally symmetric bil-

liard tables Ann. of Math. (2), 196 (1):389–413, (2022).
[8] G.D. Birkhoff, On the periodic motions of dynamical systems, Acta Math. 50, 359–379,

(1927).
[9] J. de Simoi, V. Kaloshin and Q. Wei, Dynamical spectral rigidity among Z2-symmetric

strictly convex domains close to a circle, Appendix B coauthored with H. Hezari Ann. of
Math. (2) 186 (2017), no. 1, 277–314.

[10] C. Fierobe, A. Sorrentino and A. Vig, Deformational spectral rigidity of axially-symmetric
symplectic billiards, arXiv preprint arXiv:2410.13777 (2024).

A Poincaré–Birkhoff theorem for C
0-Hamiltonian maps

Agustin Moreno

(joint work with Arthur Limoge, Otto van Koert)

In what follows, we study the well known circular, restricted three-body problem
(CR3BP), review the existence of adapted open books, and state a fixed-point
theorem inspired by the classical Poincaré–Birkhoff theorem.

Consider three bodies: Earth (E), Moon (M) and Satellite (S), with masses
mE ,mM ,mS . One has the following cases and assumptions.

• (Restricted case) mS = 0.
• (Circular assumption) E, M move in circles.
• (Planar case) S moves in the ecliptic plane containing E, M;
• (Spatial case) S is allowed to move in R3.

The mass ratio is µ = mM

mE+mM
∈ [0, 1], and we normalize so thatmE+mM = 1,

and so µ = mM . In rotating coordinates, in which both primaries are at rest, the
Hamiltonian describing the problem is actually autonomous:

H : R3\{E,M} × R3 → R

H(q, p) =
1

2
‖p‖2 − µ

‖q −M‖ − 1− µ

‖q − E‖ + p1q2 − p2q1.
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The planar problem is the subset {p3 = q3 = 0} (invariant subproblem); the two
relevant parameters are the Jacobi constant c (the energy value), and µ.

There are precisely five critical points of H , called the Lagrangian points Li =
Li(µ), i = 1, . . . , 5, ordered so that H(L1) < H(L2) < H(L3) < H(L4) = H(L5).
The low-energy range corresponds to c < H(L1) (or slightly above). For c ∈ R,
let Σc = H−1(c). If

π : R3\{E,M} × R3 → R3\{E,M}, π(q, p) = q,

the Hill’s region of energy c is

Kc = π(Σc) ∈ R3\{E,M}.
If c < H(L1), then Kc has three connected components: a bounded one around
the Earth (KE

c ), another bounded one around the Moon (KM
c ), and an unbounded

one. Let ΣE
c = π−1(KE

c )∩Σc, Σ
M
c = π−1(KM

c )∩Σc. As c crosses H(L1), KE
c and

KM
c get glued to each other into a new connected component KE,M

c , topologically
their connected sum. These level sets are non-compact due to collisions, but can
be compactified by Moser regularization.

Contact geometry in the CR3BP. It was only recently that the modern tech-
niques from contact and symplectic geometry have been made to bear on the
CR3BP:

Theorem A ([1, 2]). If c < H(L1), the (regularized) hypersurfaces Σ
E

c ,Σ
M

c ,Σ
E

P,c,

Σ
M

P,c carry contact structures. The same holds for Σ
E,M

c ,Σ
E,M

P,c , if c ∈ (H(L1),
H(L1) + ǫ) for sufficiently small ǫ > 0.

Open book decompositions. We have the following fundamental notion from
smooth topology.

Definition 1. Let M be a closed manifold. A (concrete) open book decomposition
on M is a fibration π : M\B → S1, where B ⊂ M is a closed, codimension-2
submanifold with trivial normal bundle. We further assume that π(b, r, θ) = θ
along some collar neighbourhood B × D2 ⊂ M , where (r, θ) are polar coordinates

on the disk factor. B is the binding, and the closure of the fibers P = Pθ = π−1(θ)
are the pages, which satisfy ∂Pθ = B for every θ.

Definition 2 (Giroux). An open book on M is adapted to the dynamics of a
(positive) contact form α if:

(1) αB := α|B is a (positive) contact form for B;
(2) dα|P is a (positive) symplectic form on the interior of every page P .

Theorem B (Moreno–van Koert [4]). For any µ ∈ [0, 1], c in the low-energy
range, Σc admits a supporting open book decomposition for energies c < H(L1)
that is adapted to the dynamics. Furthermore, if µ < 1, then there is ǫ > 0 such
that the same holds for c ∈ (H(L1), H(L1)+ǫ). The binding is the planar problem.

It follows that the dynamics is encoded by a Poincaré first return map, a sym-
plectomorphism of any given page.
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A trade-off. In the setup, we have the following trade-off:

(A) Either the return map extends smoothly to the boundary, but the sym-
plectic form degenerates; or

(B) The symplectic form extends is also non-degenerate along the boundary,
but the return map extends only continuously.

The two setups are equivalent, related by a conjugation which is smooth in the
interior but only continuous at the boundary. In what follows, we choose (B).

Definition 3. Let f : (W,ω) → (W,ω) be a map on a Liouville domain, and α
contact at B = ∂W . We say that f is a C0-Hamiltonian twist map if:

• (Hamiltonian) f |int(W ) = φ1H is generated by a C1 Hamiltonian Ht :

int(W ) → R;
• (Extension) Both f and the Hamiltonian Ht admit C0 extensions to the
boundary, but not necessarily C1 extensions; and

• (Weakened Twist Condition) Near the boundary B, ht := α(XHt
) > 0,

and ht → +∞ as we approach B.

A Poincaré–Birkhoff theorem for C0-Hamiltonian maps. The following is
a higher-dimensional version of the classical Poincaré–Birkhoff theorem.

Theorem C (Limoge–Moreno [3], based on Moreno-van-Koert [5]). Let f : (W,ω)
→ (W,ω) be a C0-Hamiltonian twist map on a Liouville domain. Assume the
following:

• (fixed points) All fixed points of f are isolated (i.e. finitely many);
• (First Chern class) c1(W ) = 0 if dimW ≥ 4;
• (Symplectic cohomology) SH•(W ) is non-zero in infinitely many de-
grees.

Then f has simple interior periodic points of arbitrarily large minimal period.

There is also a version for Hamiltonian chords between Lagrangians, using
wrapped Floer cohomology [3]. We expect that the third condition can be re-
laxed to SH 6= 0, using Ginzburg’s approach to the Conley conjecture (SDMs),
and so we should obtain the following:

Theorem D (Limoge–Moreno [3]). Let Q be a closed, orientable manifild, and f :
(W,ω) → (W,ω) a C0-Hamiltonian twist map on a fiber-wise starshaped domain
W ⊂ T ∗Q. Then either f has infinitely many fixed points, or it has simple interior
periodic points of arbitrarily large minimal period.

Comparison to Moreno–van-Koert [5]. The following are the improvements
on the fixed-point theorem:

• Twist condition is relaxed, now a C1-open condition.
• The boundary degeneracy is addressed.
• Action growth in SH is used, as opposed to index growth, so that:

(1) Hamiltonian needs only be C1 and not necessarily C2.
(2) Index-definiteness is not needed.
(3) The contact structure at the boundary need not be globally trivial.
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In both results, no assumption is made on non-degeneracy of orbits (needs local
Floer homology and the mean index to deal with degenerate orbits).
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Deformational Rigidity of Anosov diffeomorphisms near
De la Llave’s example

Martin Leguil

(joint work with Andrey Gogolev, Federico Rodriguez Hertz)

We consider the following rigidity problem: given two smooth diffeomorphisms f, g
which are topologically conjugated by some homeomorphism h, namely,

(1) h ◦ f = g ◦ h,
when is it possible to show that f and g are actually smoothly conjugated?

One basic obstruction for this to hold comes from periodic points, more pre-
cisely, from their multipliers. Indeed, assuming the conjugacy map h can be chosen
C1, differentiating (1) at any periodic point p = fn(p), n ≥ 1, yields

Dgn(h(p)) = Dh(p)Dfn(p)Dh(p)−1,

hence Dfn(p), Dgn(h(p)) have the same multipliers.
For minimal systems, we may thus expect that a topological conjugacy can

always be promoted to a smooth conjugacy. Yet, the example of circle diffeomor-
phisms shows that even “almost periodic” points can be problematic to keep the
conjugacy as smooth as the systems themselves. Indeed, given two conjugated cir-
cle diffeomorphisms f and g whose orbits are “far from being periodic”, namely,
if their (common) rotation number ρ satisfies a Diophantine condition, results of
Arnold, Herman, Yoccoz, Khanin-Sinai etc. [1, 10, 15, 11] show that if f, g are Cω,
resp. C∞, then f and g are also Cω, resp. C∞-conjugated, while if ρ is Liouville,
then the conjugacy may not be very regular.

For hyperbolic systems, the picture is quite different. Indeed, assume that
f : Tk → Tk is an Anosov diffeomorphism of the torus Tk := Rk/Zk, k ≥ 2, i.e.,
there exists a Df -invariant splitting TTk = Es ⊕Eu, where the stable bundle Es,
resp. unstable bundle Eu is uniformly contracted, resp. expanded by Df . On
the one hand, by structural stability, any diffeomorphism g sufficiently C1-close
to f is Anosov, and topologically conjugated to f . On the other hand, periodic
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points of f and g are dense in Tk, and in fact, for any p = fn(p), it is easy to
choose the perturbation g such that the multipliers of g at the continuation of p are
distinct from those of f at p. In other words, for topologically conjugated Anosov
diffeomorphisms, there are plenty of obstructions to lift for the conjugacy to be
even differentiable. Yet, once it is differentiable, by some boostrap phenomenon, it
can sometimes be improved to be more regular. Moreover, in the spirit of Livshits
Theorem [12], the hope is that periodic points carry all the obstructions for the
smoothness of the conjugacy between two such systems. This was indeed shown for
Anosov diffeomorphisms on T2, and also for 3-dimensional transitive Anosov flows,
by De la Llave-Marco-Moriyón and Pollicott in a series of papers (see e.g. [3, 13]).

Let us now consider an Anosov flow Xt : M → M on some closed Riemannian
manifold M , with generator X := d

dt |t=0X
t. If Y t is generated by Y that is

a C1-small perturbation of X , then by Anosov’s structural stability, these two
flows are orbit-equivalent, that is, there exists a homeomorphism Φ: M → M
which sends Xt-orbits to Y t-orbits. In general, such orbit equivalence usually
cannot be improved to a conjugacy since the mismatch of periods of corresponding
periodic orbits provide obstructions. It is a well-known corollary of the Livshits
Theorem [12] that matching of all periods for a pair of transitive Anosov flows
is a necessary and sufficient condition for the existence of a (time preserving)
topological conjugacy.

Given two transitive Anosov flows Xt and Y t on 3-manifolds which are topo-
logically conjugated by a homeomorphism Φ,

(2) Φ ◦Xt = Y t ◦ Φ,
we can wonder whether Φ can (most of the time) be promoted to a smooth con-
jugacy. In other words, does the existence of a C0-conjugacy lift the obstructions
coming from periodic multipliers? In a joint work with A. Gogolev and F.R. Hertz,
we show that it is locally true in general, more precisely:

Theorem A (Gogolev-L.-Rodriguez Hertz [9]). Let M be a 3-manifold such that
the space A of C∞ vector fields on M which generate transitive Anosov flows is
non-empty. Then, there exists a C1-open and C∞-dense subset U ⊂ A such that
for any X ∈ U , the Anosov flow Xt generated by X is locally rigid, i.e., if Y t is
an Anosov flow whose generator Y is sufficiently C1-close to X, we have:

Xt and Y t are C0-conjugate ⇔ Xt and Y t are C∞-conjugate.

This result follows from the following result:

Theorem B (Gogolev-L.-Rodriguez Hertz [9]). Let Xt, Y t be two 3-dimensional
transitive C∞ Anosov flows which are C0-conjugate by a homeomorphism Φ as
in (2). Then, at least one of the following statements holds:

(1) Φ swaps SRB measures of the two flows, i.e., Φ∗m
+
X = m−

Y and Φ∗m
−
X =

m+
Y , where m

±
† is the positive/negative SRB measure of the flow † = X,Y ;

(2) at least one of the stable/unstable distributions Es
X , Eu

X , Es
Y , E

u
Y is of

class C1+α, α > 0;
(3) the flows Xt and Y t are C∞-conjugate.
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This result has a counterpart in finite regularity, although it requires a technical
pinching condition. Moreover, the second case of the above list where one of the
distributions is C1+ is highly non-generic. The previous statement generalizes a
previous work by Gogolev-Rodriguez Hertz when the two flows are volume pre-
serving, in which case, the conjugacy is smooth unless both flows are constant roof
suspension flows.

The basic scheme of the proof is to show that periodic multipliers can be ex-
tracted from periodic expansions unless the stable/unstable distributions exhibit
anomalous regularity. One key tool for that is the so-called templates introduced
in the work of Tsujii-Zhang [14] on exponential mixing of 3-dimensional Anosov
flows. Another important ingredient is the recent positive proportion Livshits
Theorem of Dilsavor-Marshall Reber [4] which allows to globalize the argument,
namely, it is sufficient to match multipliers for a positive set of periodic points to
fall either in the first case or the third case of the above list.

Going back to Anosov diffeomorphisms, we can wonder whether a higher-
dimensional version of the aforementioned rigidity results of De la Llave-Marco-
Moriyón and Pollicott can be obtained. In other words, if f and g are two topo-
logically conjugated Anosov diffeomorphisms with matchings multipliers, are they
smoothly conjugated? For the 2-torus, the one-dimensionality of the stable and
unstable foliations and the affine structures along their leaves plays an important
role.

It turns out De la Llave [2] produced a family of counterexamples on the torus
T4 as follows, see also [5, 6] for later expositions. Specifically, let A and B be
automorphisms of T2 induced by hyperbolic matrices in SL(2,Z). We will assume
that the smaller eigenvalues λ and µ of A and B, respectively, satisfy the following
inequalities: 0 < λ < µ < 1. Define α = logµ/ logλ and notice that α ∈ (0, 1). Let
φ0 : T

2 → T2 be a smooth function. A De la Llave diffeomorphism Lφ0
: T4 → T4

is defined as a skew-product

Lφ0
: (x, y) 7→ (Ax,By + φ0(x)), (x, y) ∈ T2 × T2.

Such diffeomorphism is Anosov and, if φ0 is homotopic to a constant, is conjugate
to the linear product automorphism L0. More generally, if φ1 is homotopic to φ0
then the corresponding De la Llave diffeomorphism Lφ1

is conjugate to Lφ0
with

conjugacy h given by
h : (x, y) 7→ (x, y + ψ(x)),

where ψ : T2 → T2 is null-homotopic. Then we can explicitly solve for ψ in terms
of φ1 − φ0 and check that ψ ∈ Cα(T2). However, for some simple choices of
φ1−φ0 (one Fourier mode) the function ψ is not in the Cα+ regularity class. Con-
sequently, the conjugacy h is merely Cα regular despite the fact that all multipliers
at corresponding periodic points of Lφ0

and Lφ1
are the same.

In an ongoing project with A. Gogolev, we show that this phenomenon is not
typical near such examples. Before stating the result, let us give some definitions.
Consider a one-parameter family of Anosov diffeomorphisms {Fs}s∈[0,1], associated
with a continuous family of conjugacies {hs}s∈[0,1], such that hs ◦ F0 = Fs ◦ hs
and h0 = id. Such family is called isospectral if for every periodic point p = Fn

0 (p)
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the linearized return maps DFn
s (hs(p)) all have the same collection of eigenvalues

for all s ∈ [0, 1]. An Anosov diffeomorphism F0 is called deformation rigid if
for any isospectral one-parameter family based at F0 the corresponding family of
conjugacies hs is, in fact, a family of C1 diffeomorphisms. Our result is then:

Theorem C (Gogolev-L. [7]). Let Lφ be a De la Llave diffeomorphism. Then
there exists a C1-small neighborhood U of Lφ and a C2-open C∞-dense subset
V ⊂ U such that each Anosov diffeomorphism F ∈ V is deformation rigid.

Note that Lφ and its perturbations have 2-dimensional stable and unstable
distributions. We consider perturbations F with a partially hyperbolic splitting,
namely the (un)stable bundle splits into the sum of a strong (un)stable and a weak
(un)stable bundles. One key step in our proof is to show that for any isospectral
family {Fs}s based at a typical perturbation F , the conjugacies {hs}s have to
preserve strong (un)stable foliations. For that, we consider leaves of these foliations
at periodic points and use periodic expansions similar to those considered in [9].
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[15] J.-C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de
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Length spectrum rigidity and flexibility of spheres of revolution

Alberto Abbondandolo

(joint work with Marco Mazzucchelli)

An important question in dynamics is to understand how much information is
encoded in the periodic orbits of a system. In the case of geodesic flows on a
negatively curved orientable closed Riemannian surface (M, g), this question is
completely answered by the celebrated rigidity theorem of Otal [6] and Croke
[4]: the map that assigns to each free homotopy class of closed loops in M the
length of the unique closed geodesic in that class determines the metric g up to
isometry. This metric rigidity phenomenon crucially relies on the hyperbolicity of
the geodesic flow. It holds more generally for Anosov geodesic flows on orientable
closed surfaces [5], but has no analogue on surfaces such as the two-sphere, where
hyperbolicity cannot occur. Indeed, the two-sphere admits a rich family of pairwise
non-isometric Zoll metrics, i.e., Riemannian metrics all of whose geodesics are
closed and of equal length. However, it is worth noting that here dynamical
rigidity still holds: the geodesic flows of any two Zoll metrics on the two-sphere
with the same common geodesic length are smoothly conjugate [1].

Motivated by the example of Zoll metrics, we undertake a case study of a special
class of metrics on the two-sphere.

We consider the unit sphere S2 ⊂ R
3 equipped with the smooth S1-action given

by rotations about the z-axis, and denote by G the set of S1-invariant Riemannian
metrics on S2 that possess a unique equator, i.e., a single S1-invariant unoriented
closed geodesic.

Any unoriented closed geodesic γ that is neither the equator nor a meridian
(i.e., a closed geodesic passing through the two fixed points of the S1-action) has
a non-zero winding number p ∈ N around the z-axis and intersects the equator
transversely 2q times, for some q ∈ N with gcd(p, q) = 1. Such a geodesic is said
to be of type (p, q). For a fixed coprime pair (p, q) ∈ N×N, we denote by Lg(p, q)
the subset of (0,+∞) consisting of the lengths of all closed geodesics of type (p, q).
This set may be empty, finite, infinite, or even uncountable.

We say that two metrics g1 and g2 in G are isospectral if their equators have
the same length and the set-valued functions Lg1 and Lg2 coincide.

Given g ∈ G, we denote by T 1
g S

2 the unit tangent bundle of (S2, g) and by Γg

the subset of T 1
g S

2 consisting of the two orbits of the geodesic flow corresponding

to the equator. The S1-action on S2 lifts to an S1-action on T 1
g S

2, under which Γg

consists of two orbits. It is easy to verify that if the geodesic flows of two metrics
in G are S1-equivariantly conjugate, then the metrics are isospectral.

Conversely, we have the following dynamical rigidity result.

Theorem A. Let g1, g2 ∈ G be isospectral smooth (resp. analytic) metrics. Then
there exists a smooth (resp. analytic) S1-equivariant diffeomorphism

h : T 1
g1S

2 \ Γg1 → T 1
g2S

2 \ Γg2

which conjugates the geodesic flows of g1 and g2. Furthermore:
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(a) If the curvature of g1 along the equator is positive, then the same holds
for g2, and h extends to a smooth (resp. analytic) conjugacy from T 1

g1S
2

to T 1
g2S

2.
(b) If the curvature of g1 along the equator does not vanish to infinite order,

then the same holds for g2, and h extends to a continuous conjugacy from
T 1
g1S

2 to T 1
g2S

2.

Explicit examples show that if the assumptions of (a) and (b) are violated,
the conjugacy may fail to extend smoothly or even continuously to the two orbits
corresponding to the equator. The diffeomorphism h can be chosen to intertwine
the contact forms whose Reeb flows are the geodesic flows of g1 and g2.

The proof of the above result relies on the integrability of the geodesic flow of
S1-invariant metrics on S2, the Birkhoff section determined by the equator, and
the following fact: a smooth real function on an interval is uniquely determined by
the set of tangent lines to its graph. As noted during the workshop, the existence
of the conjugacy outside Γgj can also be deduced from a general theorem on
integrable systems in Cieliebak’s PhD thesis [3].

Any metric g in G can be uniquely written as

g = dσ2 + r(σ)2dθ2,

where θ ∈ R/2πZ denotes the longitude angle on S2, and σ is the g-length pa-
rameter along the meridians starting from the south pole (0, 0,−1). Here, r is a
smooth function on [0,m] which is positive on (0,m), vanishes at 0 and m, and
has a unique critical point (necessarily a maximum), corresponding to the equator.
The quantity m > 0 denotes the length of the meridian arc from one pole to the
other. The condition that g is smooth (resp. analytic) is equivalent to the fact
that r extends to a smooth (resp. analytic) 2m-periodic odd function on R such
that r′(0) = 1 = −r′(m). We refer to the function r : [0,m] → R as the profile
function of g. For instance, the profile function of the round sphere with curvature
1 is given by r(σ) = sinσ on the interval [0, π].

Theorem B. Let r1 : [0,m1] → R and r2 : [0,m2] → R be the profile functions of
metrics g1, g2 ∈ G. Then g1 and g2 are isospectral if and only if for every ρ ≥ 0
we have

length ({σ ∈ [0,m1] | r1(σ) ≥ ρ}) = length ({σ ∈ [0,m2] | r2(σ) ≥ ρ}) .
In particular, for ρ = 0 we obtain m1 = m2.

The proof of the above theorem relies on the injectivity of the Abel transform.
A metric g ∈ G is said to be Z2-symmetric if it is symmetric with respect to the
reflection (x, y, z) 7→ (x, y,−z). An immediate consequence of Theorem 2 is the
following metric rigidity result for Z2-symmetric metrics in G.
Corollary C. Let g1, g2 ∈ G be isospectral Z2-symmetric metrics. Then g1 and
g2 are isometric.

Another consequence is the following metric flexibility result, which shows that
the space of metrics in G that are isospectral to a given one is extremely large
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– essentially as large as the space of Zoll metrics in G – and carries a natural
structure of an infinite-dimensional convex set.

Corollary D. For any g ∈ G there exists a unique Z2-symmetric metric S(g) ∈ G
that is isospectral to g. The fiber S−1(gs) of any Z2-symmetric smooth (resp.
analytic) metric gs whose curvature at the equator does not vanish to infinite
order can be described as follows: if gs has profile function rs : [0,m] → R, then
the smooth (resp. analytic) metrics in S−1(gs) are precisely those whose profile
function r is given by

r := rs ◦ φ,
where φ : [0,m] → [0,m] is the inverse of the diffeomorphism

[0,m] → [0,m], τ 7→ τ + ψ(τ),

with ψ : R → R an arbitrary smooth (resp. analytic) odd function satisfying ψ(m−
τ) = −ψ(τ) for every τ ∈ R, ψ′(0) = 0, and |ψ′| < 1.

Using the parameter τ = φ(σ) ∈ [0,m] and expressing the 2m-periodic even
function ψ′ as a function of cos

(
π
m ·
)
, we deduce that the metrics which are isospec-

tral to the Z2-symmetric metric gs as above are precisely those of the form

g =
(
1 + f

(
cos
(
π
mτ
)))2

dτ2 + rs(τ)
2dθ2,

where f : [−1, 1] → (−1, 1) is an odd function vanishing at 1. In the special case
m = π and rs(σ) = sinσ, we recover the classical formula for S1-invariant Zoll
metrics on S2 with all geodesics of length 2π (see [2, Corollary 4.16]).

Remark. The flexibility statement of Corollary 2 should be contrasted with the
following rigidity result of Zelditch [7] for the class of analytic metrics in G of
“simple type” (where the latter assumption includes the condition that for each
positive number L, there exists at most one S1-family of unoriented closed geodesics
of length L, thereby excluding Zoll metrics): within this class, the eigenvalues of
the Laplace–Beltrami operator determine the metric up to isometry.
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(2) 134 (1990), 151–162.
[7] S. Zelditch, The inverse spectral problem for surfaces of revolution, J. Differential Geom.

49 (1998), 207–264.



1678 Oberwolfach Report 31/2025

Perturbation of the time-1 map of a generic volume-preserving
3-dimensional Anosov flow

Zhiyuan Zhang

(joint work with Masato Tsujii)

A diffeomorphism is said to be transitive if it admits a dense orbit, and is said
to be stably transitive (also known as persistently transitive, robustly transitive in
the literatures) if this property holds for all of its small perturbations. The study
of stably transitive diffeomorphisms can be traced back to the study of Anosov,
Smale, etc. on structural stability. It is known that Anosov diffeomorphisms are
C1-stably transitive. The first C1-stable, non-Anosov, transitive diffeomorphism
is constructed by Shub [14] in 1968. Shub’s example is a skew products of derived-
from-Anosov (DA-diffeomorphsim) on T

4. In 1978, Mañé [8] constructed a C1-
stably transitive DA-Anosov diffeomorphism on T3.

It has been an open question about whether there can be stably transitive
diffeomorphism isotopic to the identity, until the solution by Bonatti-Diaz [1] in
1995, who proved that certain perturbation of the time-1 maps of Anosov flow
is C1-stably transitive. In their proof they introduce a geometric model called
“blender”, which is a special type of hyperbolic set. There are some other examples
of C1-stably transitive diffeomorphisms, for instance [10, 3, 4].

All of the above examples of stably transitive diffeomorphisms contain an abun-
dance of periodic orbits, as hyperbolic set always appear by construction or by
Katok’s horseshoe theorem. The following natural question remains open:

Question 1. Is there a stably transitive diffeomorphism without any periodic
points ?

A natural place to look for answer is among the time-1 maps of transitive
Anosov flow, as studied in [1]. The following question raised in [2] remains open.

Question 2. Let X be a transitive Anosov vector field that is not conjugate to
a suspension, and let f be the time-one map of its flow. Is f stably transitive ?
(The answer may depend on X)

As stated in [2], “A positive answer to this question would provide an initial
example of a robustly transitive diffeomorphism without periodic points.” A more
precise question about whether the time-one map of the geodesic flow on a neg-
atively curved surface can be stably transitive already appeared explicitly in [6],
[12, Problem 4] and [15, Problem 1]. Related question about whether there ex-
ists stably transitive non-Anosov affine diffeomorphism can be found in [7], [6],
[12] and [11]. The following question of Palis and Pugh is also closely related to
Question 2.

Question 3. [9, Problem 20] Can the time-one map of an Anosov flow be approx-
imated by an Axiom A diffeomorphism ?

As already pointed out in [9], if the flow is a suspension of an Anosov diffeo-
morphism the answer to the above question is Yes. In [2], Bonatti and Guelman
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proved that such approximation can be done in the C0-topology. Based on the
strategy put forth in [2], Shi has shown in [13] that every partially hyperbolic
automorphism on non-abelian T3 can be C1 approximated by structurally stable
Axiom A maps, providing a positive answer to Question 3 in the C1-topology.

In a work-in-progress with Masato Tsujii, we give a positive answer to Ques-
tion 1, and the first positive answer to Question 2 for a class of flows, albeit the
topology considered in our theorem is the Cr-topology for some large r. In fact,
our diffeomorphisms are stably topologically mixing.

Theorem A. Let r be a large integer. Let g be a volume preserving 3-dimensional
Anosov flow satisfying certain Cr-open and C∞-dense condition. Then there exists
an open neighborhood U of g1 in Diffr(M) such that the following is true for evey
f ∈ U :

1. f is topologically mixing,
2. there is an f -invariant measure νf such that for a.e. p with respect to volume,

the sequence of measures 1
N

∑N−1
n=0 δfn(p) converges to νf (in fact νf is the unique

u-Gibbs state of f),
3. if f is volume preserving, then f is exponentially mixing for the volume.

We also obtain as a corollary the following partial answer to Question 3. As far
as we know, this is the first negative answer to Question 3, in any topology.

Corollary 1. Let r be given by Theorme A, and let g be a volume preserving
Anosov flow given in Theorme A on a 3-dimensional manifold different from T

3.
Then g1 cannot be approximated in the Cr topology by Axiom A maps.

Theorem A follows quickly from our main result, Theorem B, which is about
the speed of convergence to equilibrium, proved using ideas from [16, 17] and some
newly developped analytical tools. It is worth mentioning that our proof is not
based on the discussion of central Lyapunov exponent. An interesting result in a
closely related setting was obtained by Dolgopyat [5].

Theorem B. Let M be a compact 3-manifold. There exist integers r, k > 0, and
a Cr-open and C∞-dense subset V of volume preserving Anosov flows on M such
that for any g ∈ V, there exists κg > 0 and an open neighborhood U of g1 in
Diffr(M) such that for any f ∈ U , there is an f -invariant measure νf such that
for any u, v ∈ Ck(M), we have

∣∣∣
∫
u · v ◦ fndvol −

∫
udvol

∫
vdνf

∣∣∣ < C(f)e−nκg‖u‖Ck‖v‖Ck , n ≥ 0.

In other words, we have shown that the push-forwards of a given probability
measure on M with smooth density by iterates of f will converge exponentially
fast to a (common) limit measure.
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Chaotic Dynamics in Generic Analytic Strictly Convex Billiards

Inmaculada Baldomá Barraca

(joint work with Anna Florio, Martin Leguil, Tere Mart́ınez-Seara)

The mathematical billiard maps were first introduced by Birkoff in [1]. They are
dynamical systems which describe the motion of a massless particle, which moves
among straight lines inside a closed billiard table Ω in such a way that, after the
bounce, the angle of reflection equals the angle of incidence.

Let Ω = Ω(γ) be a billiard table with ∂Ω = γ(T), for some closed curve γ, and
consider fγ the associated billiard map. We introduce
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A = T ×
[
− π

2
,
π

2

]
.

Then fγ is a map fγ : A → A such that f(s, ϕ) = (s′, ϕ′). The map fγ inherits its
regularity from γ and, in particular, if γ is an analytic curve, then fγ is analytic
in T ×

(
−π

2 ,
π
2

)
and extends continuously to A. It is also well known that fγ is a

twist map and therefore Aubry-Mather theory can be applied.

Ω

∂Ω

γ(s) γ(s′)

γ(s′′)

ϕ
ϕ

This work concerns the abundance of analytic strictly convex Birkhoff billiards
exhibiting chaotic motion through the conjugacy with the celebrated Smale horse-
shoe. Let us be more explicit. Let r > 0, we define the complexification of the
torus as

Tr = {s ∈ C : Re s ∈ T, | Im s| < r }.
Then

Cω
r (T,R

k) = {γ : Tr → Rk, real analytic on Tr and continuous on Tr }
equipped with the norm

‖γ‖r := max
s∈Tr

|γ(s)|

is a Baire Banach space. The space of analytic functions on T satisfy that

Cω(T,Rk) =
⋃

r>0

Cω
r (T,R

k).

A real analytic billiard table Ω strictly convex is characterized (non uniquely)
as an element of the open set defined by

Br = {γ ∈ Cω
r (T,R

2), γ : T →֒ R2, γ(T) a strictly convex curve}
for some r > 0, simply by means of ∂Ω = γ(T). The main result is the following.

Theorem A. Let r > 0. There exists a generic1 subset B′
r ⊂ Br such that for all

γ ∈ B′
r the following property hold.

For any rational rotation number p/q ∈ Q ∩ (0, 1), the billiard map associated
with Ω(γ) has at least one hyperbolic periodic orbit of rotation number p/q hav-
ing transverse homoclinic intersections between its stable and unstable invariant
manifolds.

In particular B′
r is a dense subset of Br.

1A property is generic if it is shared by the elements of a residual set. In turn, a residual set
is the countable intersection of open and dense sets.
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Remark 1. A consequence of Theorem A is the existence of Smale’s horseshoe
accumulating to the boundary of the billiard table.

We observe that Theorem A is a trivial consequence of the next result.

Theorem B. Let r > 0 and p/q ∈ Q ∩ (0, 1) be fixed. We denote by Vp/q
r the set

of γ ∈ Br such that the billiard map with billiard table Ω(γ) possesses a transverse
homoclinic orbit associated with an hyperbolic periodic orbit of rotation number
p/q.

Then Vp/q
r is an open and dense set of Br with the usual analytic topology,

namely the one induced by the norm ‖ · ‖r.
As a consequence the residual set

B′
r :=

⋂

p/1∈ Q∩(0,1)

Vp/q
r ⊂ Br

satisfies Theorem A.

Remark 2. In particular, Theorem B assures that the coexistence of chaotic dy-
namics with periodic orbits of any period is an open and dense phenomena for
billiard maps in the analytic category.

The openness property is clear. Indeed, on the one hand it is clear that trans-
verse homoclinic points survive after C1-perturbations, and on the other hand, a
C2-small perturbation of the curve γ defining the boundary of the billiard table
induces a C1-small perturbation of the associated billiard map. Therefore, in order
to prove Theorem B it only remains to show the density of the property of having
transverse homoclinic orbit associated with hyperbolic periodic orbits of a given
rotation number in Q ∩ (0, 1).

Theorem C. Let r > 0, p
q ∈ Q ∩ (0, 1) and γ ∈ Br. We call n(s) the unitary

outward normal vector at γ(s).
Then, for any ε > 0, there exists an analytic function λε ∈ Cω

r (T,R) – in fact,
a trigonometric polynomial – with ‖λε‖r < ε such that, letting

γε(s) = γ(s) + λε(s)n(s),

the billiard map associated to the billiard table Ω(γε) has a hyperbolic periodic orbit
of rotation number p

q with a transverse homoclinic point.

There has been several results about the genericity of the existence of transverse
homoclinic orbits in several scenarios. For Cr diffeomorphisms, we mention [10, 9,
7, 8]. When restricting to convex billiards, in the differentiable case, we highlight
the references [3, 11, 2, 4]. Finally, for analytic symplectic diffeomorphisms we
mention the works [12] by Zehnder and [5] by Genecand where it is proven that
the set of diffeomorphisms having an elliptic point and satisfying that there exist
transverse homoclinic orbits at any neightborhood of the origin, is generic in some
analytic topology.
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All these works follow (more or less) a common strategy: if the dynamical sys-
tem under consideration does not possess the desired property, a perturbation is
constructed belonging to the same class (for instance when dealing with billiards
maps, it has to be guaranteed that the perturbation is also a billiard map) and
satisfying the condition. In the differentiable world, one can choose compactly sup-
ported perturbations that modify only a small neighbourhood of the phase space.
In this way, the appropriate region is modified and moreover the perturbation
might not destroy other properties of the map.

In the analytic world, this is not possible, but this technology can be lever-
aged in order to construct analytic perturbations from these compactly supported
ones. Indeed, we combine the functional analysis tools developed in the pioneering
work [12] of Zehnder on planar twist maps to provide a methodology for construct-
ing analytic perturbations of maps in order to obtain transversality between the
invariant manifolds of hyperbolic periodic orbits, with Aubry-Mather theory, in
a similar way as in [5], which guarantees the existence of homoclinic points (not
necessarily transverse) associated with hyperbolic periodic orbits of any rational
rotation number.

Finally, besides dealing with analytic perturbation, another key difficulty in
proving Theorem C lies in the fact that any modification in the billiard table
induces a fibered perturbation of the phase space A of the billiard map fγ (see
Figure 1). In other words, even if the function ελ modifies only a small portion
of ∂Ω, the resulting effect propagates across a large region of the annulus A. We
overcome this difficulty by using Aubry-Mather theory.

Ω(γ) Ω(γε) A

Figure 1. On the left, the initial billiard table. In the middle, a
compactly supported perturbation of the billiard table, this would
correspond to a compact support function λ in Theorem C. Even
in this case, all the incidence angles are affected by the perturba-
tion. On the right, the region in the phase space A affected by
the perturbation.

Our approach is non-perturbative (we do not use Lazutkin coordinates, see [6])
and allows us to deal with invariant objects located away from the boundary of
the billiard table.
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Chaotic phenomena to L3 in the Restricted 3-Body Problem

Mar Giralt

(joint work with Inma Baldomá, Maciej J. Capiński, Marcel Guardia)

The Restricted Planar Circular 3-Body Problem (RPC3BP) models the motion of
a body of negligible mass under the gravitational influence of two massive bodies,
called the primaries, which perform circular motion and the massless body is
coplanar with them. If one assumes that the ratio between the primaries masses
µ is small, it models the dynamics of a Sun-Planet-Asteriod system.

Choosing a suitable rotating coordinate system, the position of the primaries
can be fixed at qS = (µ, 0) and qP = (µ − 1, 0) and then, the position and mo-
menta of the Asteroid, (q, p) ∈ R2 × R2, are governed by the Hamiltonian system
associated to the two degrees of freedom autonomous Hamiltonian h = h0 + µh1,
where

h0(q, p) =
||p||2
2

− qT
(

0 1
−1 0

)
p− 1

||q|| ,

µh1(q;µ) =
1

||q|| −
(1 − µ)

||q − (µ, 0)|| −
µ

||q − (µ− 1, 0)|| .
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SP

L1L2 L3

L5

L4

Figure 1. Projection onto the q-plane of the Lagrange equilib-
rium points for the RPC3BP on rotating coordinates.

One of the sources of instabilities in this setting are resonances where, typically,
hyperbolic invariant objects with invariant manifolds appear. The goal of this work
is to analyze instability phenomena at coorbital motions, that is when the Asteroid
is at 1:1 mean motion resonance with the Planet (i.e. nearly equal periods) and
performs close to circular motions. Several bodies in our Solar system belong to
such regimes.

It is a classical result that h has five critical points, L1, .., L5, called the Lagrange
points, see [8] and Figure 1. Notice that, on an inertial system of coordinates,
these points correspond to circular periodic dynamics on 1:1 resonance with the
primaries. In particular, we study the Lagrange point L3, which is a saddle-center
critical point. One can prove (see [10]) that the eigenvalues of the linearization
around L3, for µ→ 0, satisfy that

Spec(L3) = {±√
µ ν(µ),±i ω(µ)}, with

{
ν(µ) =

√
21
8 +O(µ),

ω(µ) = 1 +O(µ).

Since the ratio between the eigenvalues is O(
√
µ), the system possesses two time

scales which translates to rapidly rotating dynamics coupled with a slow hyperbolic
behavior around the critical point L3.

The main result we present studies the existence of chaotic phenomena associ-
ated to L3 and its invariant manifolds. The Lyapunov Center Theorem (see for
instance [8]) ensures the existence of a family of periodic orbits emanating from
the saddle-center L3 which, close to the equilibrium point, are hyperbolic. In par-
ticular, that there exist µ0, ̺0 > 0 small enough such that, for µ ∈ (0, µ0), the
system has a family of hyperbolic periodic orbits

Π3 = {P3,̺ periodic orbit : h(P3,̺) = ̺2 + h(L3), ̺ ∈ (0, ̺0)},

which depend regularly on ̺ ∈ (0, ̺0) and satisfy that dist(P3,̺, L3) → 0 as ̺→ 0
in the sense of Hausdorff distance. We denote by Wu(P3,̺) and W s(P3,̺) its 2-
dimensional unstable and stable manifolds. In [4], we obtain the following result.
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Theorem A. There exist µ0 > 0 and two functions ̺min, ̺max : (0, µ0) → [0, ̺0]
of the form

̺min(µ) =
6
√
2

2
|Θ|µ 1

3 e
− A√

µ

[
1 +O

(
1

| logµ|

)]
,

̺max(µ) =
6
√
2

2
|Θ|µ 1

3 e
− A√

µ

[
2 +O

(
1

| logµ|

)]
,

for certain A > 0 and Θ 6= 0. Then, for a fixed µ ∈ (0, µ0), the following state-
ments hold:

(1) For ̺∈ (̺min(µ), ̺max(µ)]: the invariant manifoldsWu(P3,̺) andW
s(P3,̺)

intersect transversally at least twice.
(2) For ̺ close to ̺min(µ), the flow f̺ unfolds generically at least one homo-

clinic quadratic tangency between Wu(P3,̺min(µ)) and W
s(P3,̺min(µ)).

By the Smale-Birkhoff homoclinic Theorem (see [9, 7]), proving the existence
of transverse intersections between Wu(P3,̺) and W

s(P3,̺) implies the existence
of chaotic motions (Smale’s horseshoes) exponentially close to L3 and its invariant
manifolds.

In addition, by [5], proving the generically unfolding of a quadratic homoclinic
tangency implies the existence of (conservative) Newhouse domains. This leads
to the existence of hyperbolic sets with Hausdorff dimension arbitrarily close to
maximal and to the existence of an infinite number of elliptic islands (see [5, 6]).

To prove this result we require an asymptotic formula for the distance between
the 1-dimensional stable and unstable manifolds of L3. To present this formula,
we introduce the classical symplectic polar coordinates where r is the radius, θ the
argument of q, R is the radial linear momentum and G is the angular momentum.
We consider as well the 3-dimensional section

Σ =
[
(r, θ, R,G) ∈ R× T× R2 : r > 1, θ =

π

2

]

and denote by (ru∗ ,
π
2 , R

u
∗ , G

u
∗) and (rs∗,

π
2 , R

s
∗, G

s
∗) the first crossing of the invariant

manifolds with this section. Then, we obtain the following result.

Theorem B. There exists µ0 > 0 such that, for µ ∈ (0, µ0),

||(ru∗ , Ru
∗ , G

u
∗ )− (rs∗, R

s
∗, G

s
∗)|| =

3
√
4µ

1

3 e
− A√

µ

[
|Θ|+O

(
1

| logµ|

)]
,

where the constant Θ ∈ C satisfies Θ 6= 0 and the constant A > 0 is given by the
real-valued integral

A =

∫ √
2−1

2

0

2

1− x

√
x

3(x+ 1)(1− 4x− 4x2)
dx ≈ 0.177744.

The asymptotic formula in the theorem is obtained in the papers [2, 3]. Then, in
[1], by means of a computer assisted proof, we show that the constant Θ is not zero.
The distance between the stable and unstable manifolds of L3 is exponentially
small with respect to

√
µ. This is due to the rapidly rotating dynamics of the
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system and it is usually known as a beyond all orders phenomenon. As a result,
classical perturbative methods (i.e the Melnikov-Poincaré method) can not be
applied.
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Towards the Reeb Hofer–Zehnder and multiplicity conjectures

Başak Z. Gürel

(joint work with Erman Çineli, Viktor L. Ginzburg)

This report is based on the work [5] dedicated to the memory of Edi Zehnder who
was a long-time co-organizer of the workshop Dynamische Systeme.

We consider the multiplicity question for prime closed orbits of Reeb flows on
the boundary of a star-shaped domain in R

2n or, equivalently, on the standard
contact sphere S2n−1 ⊂ R

2n in higher dimensions. This old and multifaceted
question originates in classical mechanics and calculus of variations and goes back
at least to Lyapunov’s times if not earlier. It was studied by Ekeland, Hofer and
Zehnder, Moser, Rabinowitz, Weinstein and many others. The following conjecture
encompasses much of what we know or can expect to be true about prime closed
orbits of Reeb flows on the boundary of 2n-dimensional star-shaped domains.

Conjecture 1 (The n-or-∞ conjecture). Let M be the boundary of a star-shaped
domain in R2n, which we assume to be smooth. Then

• Multiplicity conjecture: the Reeb flow on M has at least n prime closed
orbits;
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• Hofer–Zehnder conjecture: the Reeb flow on M has exactly n prime closed
orbits whenever the flow is a Reeb pseudo-rotation, i.e., the number of
prime closed orbits is finite.

In dimensions 2n ≥ 6, the case where the novelty of [5] lies in, very little
is known about either part of the conjecture in such a generality. For instance,
without extra conditions onM , it is not even known that there must be more than
one prime orbit or more than two if the flow is non-degenerate. The existence of
at least one orbit was proved in [19] and served as the basis of the Weinstein
conjecture, [22], later established in [21] for all contact type hypersurfaces in R

2n.
We expect the n-or-∞ conjecture to be true for a very broad class of Reeb flows
on M , but possibly not all. Once some additional restrictions on M are imposed,
usually along the lines of convexity or dynamical convexity or symmetry, much
more is known; see, e.g., [1, 2, 6, 11, 12, 14, 18].

Our first main result from [5] establishes the multiplicity conjecture for dynam-
ically convex Reeb flows and settles a conjecture usually attributed to Ekeland,
[7, p. 198]. (Dynamical convexity, introduced in [16], is the lower bound n + 1,
the same as for ellipsoids in R2n, for the Conley–Zehnder index (or its lower
semi-continuous extension) of closed orbits and, in general, less restrictive than
convexity; see, e.g., [3, 13].)

Theorem A (Multiplicity; [5]). Assume that the Reeb flow on the boundary
M2n−1 ⊂ R2n of a star-shaped domain is dynamically convex and has finitely
many prime closed orbits, i.e., the flow is a Reeb pseudo-rotation.

(i) Then the flow has at least n prime closed orbits.
(ii) If, in addition, the flow is non-degenerate, it has exactly n non-alternating

prime closed orbits, and all orbits have parity n+ 1.

As a consequence, the Reeb flow on the boundary of a star-shaped domain has at
least n prime closed orbits whenever the flow is dynamically convex.

The second main result of [5] is a higher-dimensional contact variant of Franks’
celebrated 2-or-infinity theorem, [8, 9, 17], and, viewed from the symplectic dy-
namics perspective, settles a particular case of the Reeb Hofer-Zehnder conjecture;
cf. [15, p. 263] and [20].

Theorem B (HZ-conjecture; [5]). Assume that the Reeb flow on the boundary
M2n−1 ⊂ R

2n of a centrally symmetric star-shaped domain has finitely many
prime closed orbits and is dynamically convex and non-degenerate. Then the flow
has exactly n prime closed orbits. These orbits are symmetric and non-alternating.

Strictly speaking, Theorem B is the first result establishing the n-or-∞ di-
chotomy in higher dimensions. However, from a broader perspective, another
closely related but logically independent result is [4, Thm. A] which asserts, in
particular, that a non-degenerate dynamically convex Reeb flow with a hyperbolic
closed orbit has infinitely many prime closed orbits; cf. [10].

The strategy of the proof of Theorems A and B is to compare the symplectic
homology persistence module for a dynamically convex Reeb pseudo-rotation on



Dynamische Systeme 1689

M with that of an irrational ellipsoid and show that they look the same. With
this in mind, the proofs are based on several auxiliary results on the structure
of the filtered symplectic homology and properties of closed orbits. In particular,
the key to the argument is [5, Thm. C] asserting that the (non-equivariant) fil-
tered symplectic homology is one-dimensional for every action threshold and any
ground field whenever the number of prime closed orbits is finite and the flow is
dynamically convex.
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Linéaire, 4 (1987), 337–356.
[22] A. Weinstein, On the hypotheses of Rabinowitz’ periodic orbit theorems, Differential Equa-

tions, 33 (1979), 353–358.



1690 Oberwolfach Report 31/2025

Equidistribution and asymptotic counting of surfaces in negatively
curved three manifolds

Sébastien Alvarez

(joint work with Ben Lowe, Graham Smith)

Closed geodesics and geometric rigidity. The abundance of closed geodesics
in a closed, negatively curved 3-dimensional Riemannian manifold can be used to
obtain many geometric rigidity results. For instance, knowing their exponential
growth rate is sufficient to characterize the hyperbolic metric among all nega-
tively curved metrics with a fixed volume. This is famously known as the Besson-
Courtois-Gallot rigidity theorem [3].

In this talk, we focused on the dynamical study of higher-dimensional analogues
of the geodesic flow, specifically the distribution and counting of closed surfaces
in closed, negatively curved 3-manifolds.

In the sequel, (M,h0) will denote a closed, connected 3-dimensional hyperbolic
manifold. It is isometric to H3/Π, where Π is a cocompact lattice of PSL2(C) =
Isom+(H2). By Mostow’s rigidity theorem the hyperbolic metric on M is unique
up to isometry. Our main goal is to characterize the hyperbolic metric onM within
the space of Riemannian metrics h in M that have negative sectional curvature
everywhere (secth < 0.)

Let X = M̃ denote the universal cover of M , and let ∂∞X denote its ideal
boundary. This boundary is defined as the set of equivalence classes of geodesic
rays under the relation of “staying at bounded distance”. The group Π ≃ π1(M)
(identified with a cocompact lattice of the group of direct isometries of X) acts on
this ideal boundary.

Existence of closed and quasifuchsian surfaces. Let C > 1. a C-quasicircle
of CP1 is a Jordan curve Λ that is the image of the real projective line Λ = h(CP1)
by a C-quasiconformal homeomorphism h : CP1 → CP1.

A C-quasi-Fuchsian group is a discrete and torsion-free subgroup Γ of PSL2(C)
isomorphic to a cocompact lattice of PSL2(R) whose limit set ∂∞Γ is a C-quasi-
circle. A 1-quasi-Fuchsian group is nothing but a Fuchsian surface subgroup of
PSL2(C).

Fuschsian subgroups of cocompact lattices of PSL2(C) are quite rare. How-
ever, a breakthrough of Kahn-Marković showed that quasi-Fuchsian subgroups
are abundant in such closed hyperbolic 3-manifolds groups.

Theorem A (Kahn-Marković’s existence theorem [9]). Let (M,h0) be a closed
hyperbolic 3-manifold. Then, there exists a hyperbolic surface S and an immersion
ι : S →M such that the induced map ι∗ : π1(S) → Π is injective and the image is
a quasi-Fuchsian group.

They went further by providing a topological counting of conjugacy classes of
such subgroups according to the genus. Given a cocompact lattice Π ≤ PSL2(C),
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we let QF denote the set of conjugacy classes [Γ] of quasi-fuchsian subgroups of
Π. Given [Γ] ∈ QF we let g(Γ) denote the genus of any representative Γ.

Theorem B (Kahn-Marković’s topological counting [8]). If (M,h0) is a closed
hyperbolic 3-manifold then

(1) lim
g→∞

1

2g log(g)
log#{[Γ] ∈ QF; g(Γ) ≤ g} = 1.

We are interesting in a geometric counting of surfaces, analogous to the counting
of geodesics. The first problem is to define natural geometric representatives of
homotopy classes of surfaces.

Asymptotic Plateau problem and geometric representatives. There are
two natural candidates for representing conjugacy classes of surface subgroups.

• Minimal surfaces, which are surfaces whose mean curvature H (the half
trace of the shape operator) equals zero.

• k-surfaces, which are convex surfaces whose extrinsic curvature κext (the
determinant of the shape operator) equals a positive constant k > 0.

Given a quasi-circle Λ ⊂ ∂∞X the asymptotic Plateau problem consists in
finding an embedded disc D ⊂ X that satisfies the required geometric condition
(to be minimal or to be a k-surface) and whose ideal boundary ∂∞D ⊂ ∂∞X
coincides with Λ. There are always solutions (see [2] for minimal surfaces and [10]
for k-surfaces). It is always unique for k-surfaces (see [10]). For minimal surfaces
there is uniqueness provided the quasiconformality constant C of Λ is close enough
to 1: see the recent [7] for results on uniqueness and non-uniqueness in that setting.
When Λ is invariant by a surface subgroup of isometries Γ, the unique solution
of the asymptotic Plateau problem is also invariant and the quotient gives the
minimal surface, or the k-surface, representing the conjugacy class [Γ].

In the present talk we are interested in k-surfaces since they are better behaved
with respect to asymptotic Plateau problems.

Geometric counting and rigidity of the area spectra. If [Γ] ∈ QF, we let
Sk,h([Γ]) denote the unique closed k-surface in the conjugacy class of Γ for the
metric h. We want to count them according to their area, and we expect the
growth rate of this counting function to be superexponential. The next definition,
and result are from [1]. A similar result was proven for minimal surfaces in ground-
breaking work of Calegari-Marques-Neves [4]. The inspiration for the methods of
the proofs can be found in Labourie’s Bourbaki seminar on the latter work: [11].

Definition 1 (Area entropy of k-surfaces). Let h be a Riemannian metric with
secth ≤ −1. Fix 0 < k < 1 and define the area entropy of k-surfaces as

Entk(M,h) = lim inf
A→∞

1

A log(A)
log# {[Γ] ∈ QF;Areah(Sk,h([Γ]) ≤ A} .

Theorem C (Geometric counting of k-surfaces [1]). Let h be a Riemannian metric
with secth ≤ −1 and 0 < k < 1. Then we have the following chain of inequalities

H(M,h)2

2π
≥ Entk(M,h) ≥ Entk(M,h0) =

1− k

2π
,
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where H(M,h) denotes the topological entropy of the geodesic flow.
Moreover the equality Entk(M,h) = Entk(M,h0) holds if and only if h and h0

are isometric.

Let us define the marked area spectrum of quasi-Fuchsian k-surfaces.

(2) MASk,h : QF → R+, [Γ] 7→ Areah(Sk,h([Γ])).

The following rigidity theorem was proven in [1]. It is an analogue of Hamen-
städt’s result of the rigidity of the hyperbolic marked length spectrum [6].

Theorem B. (Rigidity of the hyperbolic marked area spectrum. [1]) Let (M,h0)
be a closed hyperbolic 3-manifold. Let h be a Riemannian metric on M with
secth ≤ −1 and k ∈ (0, 1). Then MASk,h = MASk,h0

if and only if h and h0 are
isometric.

The proof uses an equidistribution result: if a quasi-Fuchsian k-surface in vari-
able curvature has the same area than the corresponding surface in the hyperbolic
metric then the sectional curvature must be constant equal to −1 in all tangent
planes to the surface. We must prove these tangent planes equidistribute so that
if marked area spectra coincide, the sectional curvature equals −1 in all tangent
planes, so h must be isometric to h0 by Mostow’s rigidity.

The solution uses the resolution of a foliated Plateau problem in the spirit of
Gromov [5], by proving that the unit tangent bundle of the ambient manifold
is foliated by Gauss lifts of k-discs whose ideal boundaries are round circles at
infinity. This foliation is proven to be conjugate to a homogeneous model which,
by Ratner’s theory [12], has very few whose ergodic invariant measures. Only
one is fully supported, and the other ones, if they exist, are carried by a discrete
set of discs. It is then enough to use Kahn-Marković’s construction to produce a
sequence of surfaces that becomes asymptotically Fuchsian and that equidistribute
to a fully supported measure in the unit tangent space of the manifold.
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Geometric Hydrodynamics, Mañé Critical Value, and an
Infinite-Dimensional Magnetic Hopf–Rinow Theorem

Levin Maier

Since V. Arnold’s seminal discovery [2]–that the Euler equations of hydrodynam-
ics, which govern the motion of an incompressible and inviscid fluid in a fixed
domain (with or without boundary), can be interpreted as the geodesic equations
on the group of volume-preserving diffeomorphisms of the domain, endowed with a
right-invariant Riemannian metric (specifically, the L2 metric)–many partial differ-
ential equations (PDEs) arising in mathematical physics have been reinterpreted
within a similar geometric framework. These equations are formulated as geo-
desic equations on infinite-dimensional Lie groups equipped with a right-invariant
Riemannian metric; see, for example, [3, 10] and the references therein.

In [10], it is further demonstrated that many PDEs in mathematical physics
can be formulated as infinite-dimensional Newton equations. From a physical
perspective, this provides a natural extension of the geodesic framework: while
the geodesic equation describes the motion of a free particle, Newton’s equation
captures the dynamics of a particle under the influence of a potential force.

From this perspective, a physically natural next step is to study the mo-
tion of a charged particle in a magnetic field. Mathematically, this problem is
framed within Hamiltonian dynamics, specifically through the theory of magnetic
systems–pioneered by V. Arnold in [1]. The corresponding equations of motion,
known as the magnetic geodesic equations, can be interpreted as geodesic equa-
tions modified by the Lorentz force, caused by the presence of an external magnetic
field.

In [11], the author constructed the first example of a partial differential equation
(PDE) that admits a formulation as an infinite-dimensional magnetic geodesic
equation: the so-called magnetic two-component Hunter–Saxton system. In the
present paper [12], we show that this example fits into a broader and more general
framework. By combining the ideas of V. Arnold [1, 2], we introduce the notion
of the magnetic Euler–Arnold equation.

This framework allows us to interpret several PDEs from fluid dynamics as
magnetic Euler–Arnold equations. Examples include the Korteweg–de Vries equa-
tion, the generalized Camassa–Holm equation, the infinite conductivity equation,
and the global quasi-geostrophic equations. That is, these equations describe the
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motion of a charged particle on an infinite-dimensional manifold under the influ-
ence of an external magnetic field. These interpretations are summarized in [12,
Table 1].

All of this builds upon the main theoretical advancement of [12, Thm. 2.10],
which extends Arnold’s formulation of the geodesic equation on a Lie group with a
right-invariant metric to so-called right-invariant magnetic systems on Lie groups;
we refer to [12] for the precise definition.

This geometric formulation of the PDEs was used by the author in [11] to
study the so-called magnetic two-component Hunter–Saxton system (M2HS). The
following results about (M2HS) were obtained:

(1) Infinitely many conserved quantities [11, Cor. 5.4].
(2) Geometric blow-up criteria [11, Thm 6.1].
(3) Existence of global weak solutions of low regularity [11, Thm 6.10].
(4) A Hopf–Rinow theorem for global weak solutions [11, Thm 7.1].

For a geometric visualization of points (2) and (3), we refer the reader to [11,
Fig. 2, Fig. 3]. After recalling some background on magnetic geodesics, we will
explain what is meant in (4) by the Hopf–Rinow theorem in this context.

Before proceeding, we emphasize that energy is a conserved quantity in mag-
netic systems, reflecting their Hamiltonian structure. However, unlike standard
geodesics, magnetic geodesics cannot, in general, be reparametrized to unit speed.
As a result, it is natural to compare magnetic geodesics at different energy lev-
els. The aim of this line of research is to develop a Hopf–Rinow-type theorem for
magnetic geodesics with prescribed energy.

In the classical setting, Hopf and Rinow showed that any two points on a closed,
finite-dimensional Riemannian manifold can be connected by a geodesic, regardless
of its speed or energy. Here, we investigate whether an analogous result holds for
magnetic geodesics: given two points and a fixed positive energy, does there exist
a magnetic geodesic connecting them?

A central role in this question is played by the so-called Mañé critical values [14],
which mark dynamical and geometric thresholds in the magnetic geodesic flow.
In fact, it is known [7] that on closed, finite-dimensional manifolds, a magnetic
version of the Hopf–Rinow theorem holds for energies above the Mañé critical
value. For energies below this threshold, however, the situation is more subtle,
and the validity of such a result remains unclear. For further background, we refer
to [6, 8] and the references therein.

The remainder of this report is dedicated to extending this result to infinite-
dimensional settings for certain classes of magnetic systems. Before discussing how
subtle the Hopf–Rinow theorem becomes in infinite dimensions–even in the case
of Riemannian Hilbert manifolds–we first motivate the problem with a positive
example from recent work [11] by the author:

In [11], the author introduced the Mañé critical value for exact infinite-dimen-
sional magnetic systems and demonstrated its relevance in [11, Thm. 7.1] through
a magnetic version of the Hopf–Rinow theorem. Specifically, it was shown that
any two points can be connected by a magnetic geodesic of prescribed energy if
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and only if the energy exceeds the Mañé critical value. This result provides a
sharp threshold for the existence of magnetic geodesics and motivates the infinite-
dimensional extension studied in the present work.

We conclude this report by outlining a general framework–currently work in
progress [13] by the author in collaboration with F. Ruscelli–into which the pre-
viously discussed example naturally fits. To this end, we recall a recent landmark
result of Bauer, Harms, and Michor [5], together with the necessary background
and notation.

Half Lie groups arise exclusively in infinite dimensions. They are smooth man-
ifolds and topological groups in which right translations are smooth, whereas left
translations are only required to be continuous. The main examples are groups of
diffeomorphisms of Sobolev class Hs or of class Ck.

If a half Lie group is equipped with a right-invariant strong Riemannian metric–
that is, a Riemannian metric inducing an isomorphism between the tangent and
cotangent bundles–then, quite unexpectedly, the full Hopf–Rinow theorem holds
in this setting, as shown in [5, Thm. 7.7]. This is striking, since such a result does
not generally hold even for Hilbert manifolds; see, for example, [4, 9].

In [13], Ruscelli and the author study half Lie groups equipped with right-
invariant strong Riemannian metrics and right-invariant magnetic fields. For this
class of spaces, they introduce Mañé’s critical values on the universal cover, ex-
tending the ideas of [6] from finite to infinite dimensions. Moreover, the magnetic
version of the full Hopf–Rinow theorem holds in this setting for energies above
Mañé’s critical value on the universal cover. In particular, in the case of a trivial
magnetic field, one recovers [5, Thm. 7.7].

The key step in the proof is to show that, above this energy threshold, the
lift of the magnetic geodesic flow to the universal cover is conjugate to a Finsler
geodesic flow. This Finsler geodesic flow exhibits behavior analogous to that of
the geodesic flows studied by Bauer, Harms, and Michor in [5].
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Entropies of H-flows on non-compact manifolds

Anna Florio

(joint work with Barbara Schapira, Anne Vaugon)

In collaboration with Barbara Schapira and Anne Vaugon, we introduce a class of
chaotic flows on non-compact manifolds, which we call H-flows. These are defined
by requiring that certain properties –classically verified by Anosov flows in the
compact case– hold in our context. The primary interest in this new class lies in
the fact that, under an additional dynamical condition known as strongly positive
recurrence, we can prove the existence of an invariant measure of maximal entropy.
More precisely, our main result is the following.

Theorem A (Florio–Schapira–Vaugon). Let φ : R ×M → M be a H-flow on a
complete Riemmannian manifold (M,d). Suppose that φ is strongly positive recur-
rent. Then, there exists a φ-invariant probability measure mmax which maximizes
the measure-theoretic entropy among all φ-invariant probability measures.

In the compact case, a corresponding result was established by R. Bowen in
[1], who proved that any transitive Anosov flow on a compact manifold admits a
unique ergodic invariant probability measure maximizing entropy. For the non-
compact case, similar results were obtained under the same strongly positive re-
currence condition for transitive geodesic flows on non-compact manifolds with
pinched negative curvature–by B. Schapira and S. Tapie in [5] and by S. Gouëzel,
B. Schapira and S. Tapie in [3]. They demonstrated the existence and uniqueness
of the measure of maximal entropy (or of a finite Gibbs measure, in the more
general thermodynamical formalism).

This notion of strong positive recurrence also appears in other contexts, such as
in [2], concerning non-uniformly hyperbolic diffeomorphisms on closed manifolds.

Let (M,d) be a complete Riemmannian manifold, with distance induced by the
metric.

Definition 1. A C1 flow φ : R ×M → M , generated by a vector field X, is a
H-flow if it satisfies the following properties:

(1) For every τ ∈ [−1, 1], the maps φτ : M → M are equi-Lipschitz.
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(2) There exists constants a, b ∈ (0,+∞) such that a ≤ ‖X(x)‖ ≤ b for all
x ∈M .

(3) The flow φ is transitive.
(4) The flow φ satisfies the closing lemma: for every compact set K and every

ǫ > 0, there exists δ > 0 and T > 0 such that for every x ∈ K and every
t ≥ T such that d(x, φt(x)) < δ, there exists z ∈M and τ ∈]t− ǫ, t+ ǫ[ so
that φτ (z) = z and d(φs(x), φs(z)) < ǫ for all s ∈ [0, t].

(5) The flow φ is expansive: for every ν > 0, there exists ǫ > 0 such that if
x, y ∈M and there exists s : R → R with s(0) = 0 and d(φt(x), φs(t)(y)) <
ǫ for all t ∈ R, then y = φu(x) for some u ∈]− ν, ν[.

(6) The flow has the finite exact shadowing property: for every compact set
K and every δ > 0, there exist η > 0 and T > 0 such that if x1, x2 ∈ K,
T1+T2 > T and d(φTi

(xi), xj) < η for i 6= j, then there exists y ∈M such
that
(a) d(φs(y), φs(x1)) < δ for s ∈ [0, T1], and
(b) d(φT1+s(y), φs(x2)) < δ for s ∈ [0, T2].

This class of flows is particularly rich in periodic orbits. Moreover, any pseudo-
orbit can be closely followed by a true orbit via “cut and paste” constructions.
Given the abundance of periodic orbits, it’s natural to study their exponential
growth rate with respect to period, a quantity known as the Gurevich entropy.

Given a compact set K and a constant C > 0, we denote by PK(T,C) the set of
periodic orbits with period in [T, T + C] that intersect K. The Gurevich entropy
of a H-flow φ is then defined as:

hGur(φ) := lim
T→∞

1

T
log#PK(T,C) .

Since we are dealing with non-compact manifolds, we also want to detect periodic
orbits that may “escape” compact regions. For this, we define a refined notion.

For a compact set K, for C > 0 and ǫ > 0, let Pǫ
K(T,C) denote the set of

periodic orbits with period in [T, T + C], intersecting K, but spending at most a
fraction ǫ of their time inside K. The Gurevich entropy at infinity is defined by:

h∞Gur(φ) := inf
K

lim
ǫ→0

lim sup
T→∞

1

T
log#Pǫ

K(T,C) ,

where the infimum is taken over all compact sets K.

Definition 2. A H-flow φ is strongly positive recurrent if h∞Gur(φ) < hGur(φ).

This condition expresses that the complexity contributed by the behavior at
infinity is exponentially smaller than the total complexity.

Having set the stage, we trun to the central objective of our work: to study
the topological entropy htop(φ) of the flow. Thanks to the Variational Principle
(which also holds in the non-compact case, by results of Handel and Kitchens [4]),
we have:

htop(φ) = sup
µ
hKS(µ) ,
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where the supremum is over all φ-invariant probability measures µ, and hKS(µ)
denotes the Kolmogorov-Sinai entropy of µ. We construct an invariant measure
mmax such that:

hKS(mmax) = htop(φ) = hGur(φ) .

A key step in our construction mirrors Bowen’s method in the compact case [1]: we
consider the φ-invariant probability measure obtained by normalizing the sum of
Dirac measures supported on some periodic orbits of (approximately) fixed period,
and then the sequence is built by letting the period goes to infinity. By taking
a (subsequential) limit in the vague topology, we obtain a candidate measure. In
non-compact settings, such sequences may “lose mass at infinity”, but the strong
positive recurrence condition ensures that the limiting measure in non-zero. Its
normalization yields the desired measure of maximal entropy.

Beyond addressing the difficulties introduced by non-compactness, the proof
also requires comparing various notions of entropy. In particular, the chord entropy
–which measures the exponential growth rate of the number of separeted chords
connecting two given open sets– plays a central role.
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Twisting and periodic orbits in asymptotically unitary
Hamiltonian systems

Leonardo Masci

Introduction. In 1978, P. Rabinowitz [8] successfully used variational methods
to show the existence of periodic solutions in a class of Hamiltonian systems on
the standard symplectic vector space

(
R2n, ω0

)
, defined by non-autonomous, time-

periodic Hamiltonians having super-quadratic growth. This achievement surprised
the Hamiltonian dynamicists of the time, as the Hamiltonian action functional was
widely believed to be ill-suited for standard variational techniques.

A couple of years later, H. Amann and E. Zehnder [2, 3] initiated the study of the
boundary case, not covered by Rabinowitz’s techniques, where the Hamiltonians
in question were assumed to grow quadratically. Under non-resonance hypotheses,
one periodic solution was found to always exist for this class of systems. Joining
forces with C. Conley [5], multiplicity results were obtained, and importantly,
Morse-like inequalities between the indices of the orbits were shown to hold. This
discovery led them to solve the Arnol’d conjecture on symplectic tori using similar
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techniques [4]. For an insider’s view of this story, we recommend the beautiful
article by Zehnder [9].

During and following these breakthroughs, much effort was expended to prove
existence and multiplicity statements for periodic orbits in asymptotically lin-
ear Hamiltonian systems under weakened hypotheses. The culmination of this
endeavor is the development, by A. Abbondandolo, of an infinite-dimensional rel-
ative Morse theory, suitable for the Hamiltonian action functional defined by these
Hamiltonians with quadratic growth. We point to [1] and the references therein
for more information on this line of research.

In the results mentioned above, the focus was on finding periodic solutions with
period equal to the fundamental period of the coefficients of the system, which we
can assume to be 1. We can think of these periodic solutions as forced oscillations
in the Hamiltonian system. Much less is known about periodic solutions with
higher period k ∈ Z, which we will call subharmonics, as their period is a multiple
of the fundamental period of the system. It seems natural to try to gather further
knowledge on their existence, multiplicity and growth of period. Aiming toward
this goal, in this talk the author formulated a natural twist condition, inspired by
the classical Poincaré-Birkhoff theorem on area-preserving isotopies of the annu-
lus, which applies to asymptotically linear Hamiltonian systems. Under further
hypotheses, this twist condition was then used to show the existence of infinitely
many non-trivial subharmonics with period growing to infinity.

Asymptotically linear Hamiltonian systems. Let us first define the class of
Hamiltonian systems in study. An asymptotically linear Hamiltonian system on(
R2n, ω0

)
is defined by a smooth, non-autonomous, 1-periodic Hamiltonian H ∈

C∞
(
R/Z× R2n

)
which is asymptotically quadratic, in the following sense: there

exists a smooth, 1-periodic path of symmetric matrices A ∈ C∞ (R/Z, Sym(2n))
such that

|∇H(t, z)−A(t)| = o (|z|) as |z| → ∞.

We set Q(t, z) = 1
2 〈z, A(t)z〉 and h(t, z) = H(t, z) − Q(t, z). We call Q the qua-

dratic Hamiltonian at infinity and h the non-quadratic part. Denote by ϕt
H the

Hamiltonian flow of a Hamiltonian H . An asymptotically linear Hamiltonian dif-
feomorphism (ALHD) is a Hamiltonian diffeomorphism φ ∈ Ham(R2n) such that
φ = ϕ1

H , whereH ∈ C∞
(
R/Z× R2n

)
is an asymptotically quadratic Hamiltonian,

which we call a generating Hamiltonian. Let φ be an ALHD and H = Q+h be an
asymptotically quadratic generating Hamiltonian for φ. The linear map at infinity
for φ is φ∞ = ϕ1

Q. The map φ∞ depends only on φ, and not on the specific choice

of generating Hamiltonian H [7].

Toy model. We first give an example of the kind of twisting phenomenon we
want to capture, in a very simplified situation.

Let φ ∈ Ham(R2) be a Hamiltonian diffeomorphism. Assume that there exists
a compact subset K ⊂ R2 outside of which φ is a rotation of angle θ∞ /∈ 2πZ, and
that φ admits a fixed point z0 ∈ K with rotation number θ0 6= θ∞. Such a φ is a
special kind of ALHD, as it is equal to a linear symplectic map outside a compact
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set. We construct from φ an area- and orientation-preserving homeomorphism of
the annulus f : [0, 1]×S1 → [0, 1]×S1 by fixing a large invariant circle bounding a
disc D which contains K, and blowing up the fixed point z0. The assumption that
θ0 6= θ∞ implies that f has different rotation numbers at the two boundaries of
the annulus. Applying a version of the Poincaré-Birkhoff theoreom, e.g. Franks’
[6, Corollary 2.4], we obtain that f , and consequently φ, has infinitely many non-
trivial periodic points.

Index at infinity and twist condition. To formulate the twist condition, we
will work with the Conley-Zehnder index. This is an integer CZ(Mt) ∈ Z associ-
ated to a path of symplectic matrices [0, 1] ∋ t 7→ Mt ∈ Sp(2n), which measures
the number of twists that a symplectic basis undergoes under the action of the
path. See [1, Chapter 1] for the definition and properties of this index.

As a relevant example, if z0 ∈ R2n is a fixed point of a Hamiltonian diffeomor-
phism φ and H ∈ C∞

(
R/Z× R2n

)
is a generating Hamiltonian, we can consider

the Conley-Zehnder index of the linearized flow at the fixed point:

CZ(z0, H) := CZ
(
DφtH (z0)

)
.

An interesting quantity, constructed in terms of the index, is the mean Conley-
Zehnder index, defined by

CZ (z0, H) := lim
k→∞

1

k
CZ
(
DφktH (z0)

)
.

This quantity represents the rate of growth of the index under iteration, and can
be seen as the generalization of the rotation number to fixed points of Hamiltonian
diffeomorphisms.

With the toy model in mind, the idea is to use the mean Conley-Zehnder index
to define a “rate of twisting at infinity” of an asymptotically linear Hamilton-
ian system. Let φ be an ALHD and H = Q + h an asymptotically quadratic
generating Hamiltonian. The ALHD φ is said to be non-degenerate at infinity if
det (φ∞ − I) 6= 0. The index at infinity of the Hamiltonian H is

ind∞H := CZ
(
ϕt
Q

)
.

The mean index at infinity of H is

ind∞H := lim
k→∞

1

k
CZ
(
ϕkt
Q

)
.

In the toy model, the mean index at infinity is precisely 2θ∞, and the mean
Conley-Zehnder index of the fixed point is 2θ0. Therefore the twist condition
there translates into a discrepancy of mean indices. With this in mind, we give
the following

Definition 1. Let φ be an ALHD. A fixed point z0 ∈ Fixφ is said to be twist if
there exists an asymptotically quadratic generating Hamiltonian H for φ with

CZ (z0, H) 6= ind∞H.

The twist condition does not depend on the generating Hamiltonian chosen,
even though the quantities involved do.
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A Poincaré-Birkhoff theorem. Under further restrictions on the behaviour at
infinity of the system, the twist condition has been used by the author to obtain
the existence of infinitely many non-trivial subharmonics.

Let φ be an ALHD which is non-degenerate at infinity. We assume that φ = ϕ1
H

where H = Q + h is asymptotically quadratic, and the non-quadratic part h
is also bounded. Moreover, we assume that φ∞ is a unitary map, i.e. both
symplectic and orthogonal. Finally, we assume that φ has an isolated twist fixed
point which is homologically visible. This last condition means that its local Floer
homology is non-trivial. For example, if the fixed point is non-degenerate, i.e.
det(Dφ(z0)− I) 6= 0, then it is homologically visible.

Theorem A ([7]). An ALHD φ as above has infinitely many fixed points or in-
finitely many non-trivial periodic points with increasing period.

It would be interesting to understand the rate of growth of these subharmonics
in terms of their period, namely, estimating the quantity

h(φ) := lim inf
k→∞

log#Fixφk

log k
.

Nothing is known about this quantity for asymptotically linear Hamiltonian sys-
tems. Taking inspiration from Franks’ Poincaré-Birkhoff theorem [6, Corollary
2.4], we conjecture that if φ has infinitely many non-trivial periodic points, then
h(φ) ≥ 2, i.e. the growth is at least quadratic.
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Analytic pseudo-rotations

Pierre Berger

We show the existence of transitive analytic symplectomorphisms of the sphere,
the disk and the cylinder with finite numbers of periodic points.

This proves a conjecture of Birkhoff (1927) on the instability of elliptic points,
and solves several other problems Birkhoff (1941), Herman (1998), Fayad-Katok
(2004) and Fayad-Krikorian (2018) on the rigidity of pseudo rotations. Indeed this
implies that an analytic symplectomorphism of the cylinder, the sphere or the disk
with a finite number of periodic points is not necessarily topologically conjugated
to a rotation, and can be even transitive.

To show this, we introduce a way to perform the approximation by conjugacy
method of Anosov-Katok among surface analytic symplectomorphisms. To this
end, we approximate smooth symplectic maps by analytic one, for a deformation
of the complex structure of the surface induced by nearly holomorphic conjugacy.
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Facultad de Ciencias
Igua 4225
Montevideo 11400
URUGUAY

Dr. Immaculada Baldomá Barraca
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