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Introduction by the Organizers

The workshop focused on contemporary developments in real and harmonic anal-
ysis, with emphasis on recent solutions of two longstanding problems. The first of
these was the Kakeya phenomenon in dimension three, while the second concerned
almost everywhere convergence of long time averages associated to multiple com-
muting measure-preserving transformations of arbitrary probability spaces. Other
topics included local smoothing inequalities, maximal functions, inequalities for
solutions of divergence form elliptic partial differential equations, analysis on the
Hamming cube, weighted norm inequalities, lattice point counting and exponential
sums, and relations between curvature, concentration, and inequalities for various
types of Fourier integrals.
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Format. Sixteen participants presented 50 minute lectures on new developments
in real and harmonic analysis and applications. Three themes were investigated
in greater depth; each of these was the subject of a morning session comprised of
paired talks by two researchers. In addition, in celebration of the recent resolution
of the Kakeya problem in dimension 3, the workshop gathered for “Kakeya night,”
a multi-hour discussion session for digesting the proof methods presented earlier
in a pair of lectures by H. Wang and J. Zahl.

Kakeya problem. The Kakeya conjecture in R? asserts, grosso modo, that any
subset of R? containing unit line segments oriented in all directions must have
dimension d. Examples of Lebesgue measure null sets with this property were
constructed over a century ago. In the early 1970s, this was shown by Fefferman
to have negative implications for the Lebesgue norm convergence of Fourier series
in dimensions greater than 1. For dimension two, this circle of questions was
resolved in strong formulations in the mid seventies by Carleson-Sj6lin, Cordoba,
and Fefferman. Corresponding results for higher dimensions have been regarded
as a holy grail of Fourier analysis during the intervening half-century. Partial
results have been obtained, and a wide array of ideas and techniques have been
contributed, by numerous investigators in celebrated works.

In early 2025, H. Wang and J. Zahl posted a solution for the three-dimensional
case, building on their own earlier work on the so-called “sticky” case. This timely
MFO workshop became an ideal opportunity for the research community to assim-
ilate and explore their ideas. With this end in mind, a midweek morning session
was devoted to coordinated formal presentations by Wang and Zahl.

An informal discussion, geared towards all workshop participants and several
hours in duration, was held that same evening in the lecture hall. It was structured
around a blackboard recapitulation of central elements of the proof led by Guth,
with frequent comments, questions, interruptions and pauses for further discussion.
The authors were active participants, as was N. Katz, who had contributed some
key ideas in earlier work.

Among points clarified in this discussion were the role of the class of convex
sets in the proof’s induction on scales scheme, obstacles to a solution in higher
dimensions, and the relationship of the new work to earlier work on the sticky
case; the new work relies on the earlier strong result for the sticky case, rather
than being a more general superseding analysis.

Almost everywhere convergence of averages associated to commuting measure-
preserving transformations. Another morning session was devoted to the solution
by Kosz, Mirek, Peluse, and Wright of a 29-year-old conjecture of Bergelson con-
cerned with almost everywhere convergence of averages in an ergodic-theoretic
context. M. Mirek and J. Wright gave coordinated presentations.

This work brings together a wide variety of ideas and techniques from Fourier
analysis, additive combinatorics, maximal functions, variational norms, exponen-
tial sums, and the Hardy-Littlewood circle method. A type of inverse theorem
established by Peluse and Prendeville in connection with a Szemerédi-type prob-
lem is one key ingredient. Another notable technical element is a Fourier multiplier
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inequality, for Z¢, which better facilitates localization to unions of major arcs than
previously available tools.

Oscillatory integrals and Fourier restriction. Interest in the Kakeya problem stems
in part from its connection with Fourier restriction and Bochner-Riesz multiplier
operators. Both of the latter two problems can be regarded as instances of the far
more general class known as Hérmander-type oscillatory integral operators. While
it can be useful to study this more general construction, it is also true that many
Hormander-type operators behave very differently from Fourier restriction and
Bochner-Riesz multiplier operators. In a dedicated morning session, S. Guo and R.
Zhang reported on a new way to describe a sub-class of Hormander-type operators
that includes both Fourier restriction and Bochner-Riesz multiplier operators, but
may rule out operators with more problematic behavior. The new class is defined
by a property Guo and Zhang call “Bourgain’s condition”, and they described that
methods that have worked in the settings of Fourier restriction and Bochner-Riesz
multiplier operators also succeed for operators satisfying Bourgain’s condition.

The polynomial partitioning method has been one useful tool in this context.
In order to treat Hormander-type operators that satisfy Bourgain’s condition, one
is led to consider curved variants of the Kakeya problem, in which line segments
are replaced by appropriate families of curves. One of the issues discussed in the
Kakeya context at this workshop was the question of which properties of families
of line segments and of convex sets are essential. The negative results of Bourgain
(which inspired the subclass of Héormander-type operators defined by “Bourgain’s
condition”) were based on a focusing phenomenon. What other obstructions arise
for plausible inequalities remains an intriguing question.

Additional topics. Additional themes explored in the workshop included: op-
erators with maximal-type behavior, both in the context of convex set testing
conditions for positive operators (P. Gressman), and maximally-modulated singu-
lar Radon-type operators (D. Beltran); exponential sums as a tool for detecting
equidistribution in arithmetic settings, both in the context of counting rational
points (of bounded denominator) close to submanifolds (R. Srivastava) and us-
ing the new notion of LP-set to characterize equidistribution of polynomial values
associated to the set (T. Wooley); weighted norm inequalities, both in the con-
text of a counterexample to the “As conjecture” for matrix weights (A. Volberg)
and the utility of sparse bounds for divergence form elliptic equations (O. Saari);
local smoothing estimates, both in the context of lossless Strichartz and spec-
tral projection estimates on convex cocompact hyperbolic surfaces (C. Sogge) and
also seeking appropriate measures to study fractal versions of local smoothing
(J. Roos); the analysis of Boolean functions, such as polynomial approximation
problems on the n-dimensional hypercube as n goes to infinity (P. Ivanisvili); and
finally square function estimates and Fourier integral operators defined by highly
oscillatory Fourier multipliers concentrated near the truncated light cone in R3
(D. Miiller).
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Abstracts

Hormander-type oscillatory integral operators and
Bourgain’s condition

RUIXIANG ZHANG

For a € C(R™ x R"1), real ¢ € C°(R™ x R"~1) smooth in a neighborhood of
suppa and A > 1, Hérmander considered the operator

T f(x) = / €29 (B N (2 €) f(€)de
Rn—1

where ¢*(z;€) = Ap(%;€) and a*(2;€) = a(%;€) and ¢ satisfies the following
non-degeneracy condition:
e (H1) The rank of V,V¢¢ is n — 1 throughout suppa.

e (H2) For the Gauss map G(z;&) with G = éggig‘ and

Go(z;€) = NIZ[ e, V(a5 €),

we have
det(Ve)*(Vad(x;€), G2;£0)) |e=e, # 0.

These are known as Hérmander type operators. An important such operator is
the Fourier restriction operator with ¢ = ¢restr(;€) = o' - € + x,|€]?. Another
important Hormander type operator is the reduced Carleson-Sjolin operator that
is important in the Bochner-Riesz conjecture.

Hormander [8] asked whether all 7% satisfy a similar LP boundedness to that
for the phase function ¢pegs-- This would unify the Fourier restriction Conjecture
and the Bochner-Riesz Conjecture and is true in dimension 2 ([8], see also [3]), but
unfortunately is known to be false in all dimensions n > 2, even with an additional
positive definite condition for the phase [1, 2, 9, 7].

Bourgain proved more in [1]. To explain his result, note that diffeomorphisms
in z and in ¢ (separately) preserve the LP-mapping properties of 7*. Through
these diffeomorphisms, it is elementary that one can change ¢ to a mormal form
around any point (taken to 0) in suppa:

;€)= 161+ + T 1En1 + 20 (AE, ) + O € + |22 |€]?).

Bourgain [1] proved in dimension n = 3, T* fails to behave like the one with
® = ¢restr unless around every point (in suppa), when the phase is expressed in
the normal form, one has 82, (V¢)?¢|0,0) equal to a multiple of 9., (Ve)?¢(00)-

In [4], we proved that a naive generalization of the above is true in every dimen-
sion: T fails to behave like the one with @ = Grestr unless around every point (in
suppa), when the phase is expressed in the normal form, one has 8§7L(V5)2¢|(0;0)
equal to a multiple of 0, (Ve)?¢|(0,0). (This is called Bourgain’s condition)

Moreover, in [4] it was proved that the polynomial method (introduced to handle
the T with ¢ = ¢restrr by Guth [5, 6], and extended by e.g. [7]) works equally
well to prove LP mapping properties for a general T* with ¢ satisfying Bourgain’s
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condition. It was conjectured in [4] that Bourgain’s condition is also sufficient for
a general ¢ to behave like the phase ¢¢st in LP mapping properties.
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Hormander-type oscillatory integral operators and applications
SHAOMING GUO

Consider Hérmander-type oscillatory integrals

1 7(9) ) = iN¢(z,t5y) t: d

( ) N f({E, ) R —16 a(x, 7y)f(y) Y.

Here z € R* 1t € R,y € R*! and N is a large real number. Moreover, a is a
smooth function supported in a small neighborhood of the origin. One example
for the phase function ¢(x,t;y) is given by

(2) $(a,ty) =z -y +tlyl*

Hormander [4] considered phase functions that are small perturbations of (2).
More precisely, he considered phase functions of the form

(3) P(a,tyy) =z -y +tly[* + O(t|ly* + [z, 1)y [*).

By applying elementary changes of coordinates, all non-degenerate phase functions

can be written in the form (3). Hormander [4] asked whether T](\,¢) for a general ¢
in (3) satisfies a similar L? bound to that for the phase function (2).

Bourgain [2] gave a surprising negative answer to Hérmander’s question by showing

that the phase function

1
(4) oz, t;8) =z -y +ty1ys + Etzyf
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satisfies a less favorable bound. To see why this is a “bad” phase function, we
consider its associated Kakeya problem. The characteristic curves are given by

() Veo(z,t;§) = w.
We solve (5) directly, and we can write a characteristic curve as
(6) (w1 - tyg - t2y1, wo — tyl, t).

For each (y1,y2), we pick the initial location (wi,w2) = (0, —y2), and we obtain a
curved Kakeya set

(7) U {(—tye — g1, —yo — tyr, £) : [t < 1},
Y1,Y2

It is elementary to see that the above set is contained in the hypersurface
(8) {X,)Y,2): X =YZ}.

Therefore, this gives a two-dimensional Kakeya set instead of a three-dimensional
one.

Bourgain [2] and Chen et al. [3] came up with a sufficient condition that eliminates
the bad examples of the form (4). As an application, Beltran et al. [1] proved that
certain Pierce-Yung operator is bounded.
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Lossless Strichartz and spectral projection estimates on convex
cocompact hyperbolic surfaces

CHRISTOPHER D SOGGE
(joint work with Xiaoqi Huang, Zhongkai Tao and Zhexing Zhang)

In joint work with X. Huang, Z. Tao and Z. Zhang, we prove optimal lossless spec-
tral projection and Strichartz estimates on convex cocompact hyperbolic surfaces
which are analogs of classical Fourier-extension results in R™. We use ideas going
back to Burq, Guillarmou and Hassell [5] who were able to prove Strichartz esti-
mates for a more restrictive class of hyperbolic surfaces satisfying a pressure con-
dition. Our results also strengthen recent spectral projection estimates of Anker,
Germain and Léger [1], which involved A°-losses.
Our of main results is the following
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Theorem 1. Let (M,g) be a convex cocompact hyperbolic surface and Ny € N.
Then for X\ > 1 and every p € (2, 00] we have

1L ara) (V=R Fll oy < Cp 82N P flr2ary, 6 € AN, 1],
if n(p) = max(2(1/2 —1/p) — 1/2,1/4—1/2p). Also,
e fll e raqoaxan < Cp Il 2any,
if1/2—-1/q=1/p.

These results are optimal in terms of the exponents. Also, the bounds for the
uniform spectral projection estimates need not hold for § € (0, 1] and the Strichartz
estimates for the Schrodinger propagator need not hold if [0,1] x M is replaced
by R x M. They are the first sharp estimates which do not involve a pressure
condition.

In order to prove these estimates we make use of known optimal L2 local smooth-
ing estimates for the Schrodinger propagator, which are due to Bourgain and
Dyatlov [4] and others, as well as known estimates in the funnels of the convex
cocompact hyperbolic surfaces from [5]. We can use an argument from Burq,
Guillarmou and Hassell [5] along with our new log-scale estimates for the compact
core.

The latter are a consequence of the following more general log-scale estimates
for general manifolds of all dimensions which are of bounded geometry and have
nonpositive sectional curvatures. It generalizes recent results for compact mani-
folds in joint work with Blair and Huang [2], [3], [6] and [7]. This is one of our
main estimates and is the missing ingredient to allow us to prove Theorem 1 using
the argument in [5].

Theorem 2. Let (M,g) be an n-dimensional, n > 2, Riemannian manifold of
uniformly bounded geometry all of whose sectional curvatures are non-positive.
Then for A >> 1 we have

M poass) (V=29 FllLean < Cp 2 XP| Fll L2y, 6 € [(log )™, 1], p € (2, 00],
if p(p) = max(n(3 — 3) — 3, %52 (3 — %)) Also,

e fll e raqoaxan < Cp Il 2any,
ifn(1/2-1/q) =1/p and (p,q) # (2,00).
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Counting, Curvature and Convex Duality
RAJULA SRIVASTAVA

Let M be a bounded immersed submanifold of R with boundary, of dimension
n and codimension R. How many rational points with denominator of bounded
size (height) are contained in a “small neighborhood” of M? More precisely, for
an integer @ > 1 and ¢ € (0,1/2), we define the counting function

Nm(Q,0) == #{(p,q) € ZM T : 1< ¢ < Q, dist(M,p/q) < 6/q}.

Here dist denotes the distance with respect to the L norm on RM.

The study of rational points near manifolds has seen rapid development in
the recent years. While the problem of obtaining precise asymptotics and upper
bounds for Na(Q, ) is interesting in its own right, it is also closely related to
questions in Diophantine approximation and the dimension growth problem for
submanifolds of RM.

The upper bound Ny (Q,d) < cpQ™ T is trivial. Indeed, if M is a (compact
piece) of a rational hyperplane in R, then the above estimate is the best we can
hope for. However, if M is curved in some sense, a probabilisitic heuristic suggests
that

(1) O < Nu(Q,0) < eamd™ Q™!

for § above a critical threshold in terms of Q. A folklore conjecture, made precise
by J.J. Huang in [5], asserts that the above estimates should be true for any smooth
submanifold M under a “mild” nondegeneracy condition, in the range

(2) §>Q H*e

for some € > 0 and @ — oc.

In [3], Beresnevich established the lower bound in (1) for analytic, manifolds
satisfying this nondegeneracy condition, in the range § > Q_%. In the recent
work [2], Schindler, Technau and the author proved the indicated lower bound
for smooth manifolds satisfying the same nondegeneracy condition in the range
§>Q miT,

However, for upper bounds, very little is known, and only under very strong
geometric conditions on the manifold M. A breakthrough came in [4], where
J.J. Huang proved an asymptotic for N (@, d) when M is a sufficiently smooth
hypersurface with non-vanishing Gaussian curvature, in the optimal range & >
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Q~'*¢. Before this, such an asymptotic was only available in the case of planar
curves with non-vanishing curvature, due to the infuential works of Huxley [8]
and of Vaughan—Velani [7]. Moreover, in [6], Technau and the author showed
that the conjecture is also true for certain hypersurfaces with Gaussian curvature
vanishing at a single point, provided the “degree of flatness” is below a critical value
depending only on the dimension of the hypersurface. Further, when the degree
of flatness is large, [6] establishes a new asymptotic for Na(Q,d) incorporating
the contribution due to the “local flatness”.

However, all of these results on upper bounds and asymptotics remain valid
only within the conjectured range (2). It therefore came as a surprise when in [1],
Schindler and Yamagishi established an asymptotic for N (@, ¢) for manifolds M
satisfying a strong curvature condition, in a range of ¢ which goes beyond (2) when
the codimension is bigger than one. To describe this curvature condition, using
the implicit function theorem, we may assume without loss of generality that M
has the parametrization

M = {(z, fi(x),..., fr(x)) € R"E .z e B, (xo)}-

Here &y € R, f, : R™ — R are C™ functions for 1 < r < R and B, (zo) denotes
the closed ball in R™ centered at oy and of small enough radius €p. Schindler-
Yamagishi considered manifolds of the above form satisfying the following.

Curvature Condition: Given any t = (t1,...,tg) € RF\ {0}, there exists a
constant C¢ > 0 such that

(CC) min __|det Hy-r 4 ¢ (®)] > Ct.

€ Bae( (x0)

For manifolds satisfying the condition (CC), Schindler-Yamagishi established
in [1] that (1) is true in the range

(3) § > Q FFRE T,
Note that Q_"“&*U < Q_%, whenever R > 1.

Our first result estabishes that for smooth manifolds satisfying condition (CC),
the bounds in (1) hold true in an even bigger range of ¢.

Theorem 1 ([9], Corollary 1.5). Suppose M satisfies condition (CC). Then
Nm(Q, ) satisfies (1) whenever

nt2 ——r e
0 > max <Qn+%+€7Q nt2(R-1)- 5 F)

for any sufficiently small e > 0 and QQ — oo.

Our main estimate is an upper bound for the number of rational points with
bounded denominators contained in a non-isotropic neighborhood of a smooth
manifold M satisfying (CC). It specializes to the upper bound in Theorem 1 for
isotropic neighborhoods of M. For Q € Z>1 and § = (61,...,0r) € (0,1/2)F, we
define the counting function

Nm(Q,8) :=#{(a,q) € 2" :1<q¢<Q, |lgfr(a/q)| <6, /qfor 1 <r < R}.
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Theorem 2 ([9], Corollary 1.10). Let §* = Hle dr. Suppose M satisfies condi-
tion (CC). Then

Nm(Q,8) < cpmd™ Q™
whenever
. _ _n+2 *%4’6
min J, > max nr2r T mhR D=y
min 5, > <Q Q ,
for any sufficiently small € > 0 and Q) — oo.

In [4], Huang used a novel combination of projective duality, stationary phase
and induction on scales to develop a bootstrapping argument. The foundation
of this argument was a self-improving estimate relying on the fact that the Le-
gendre dual of a hypersurface with non-vanishing Gaussian curvature is also a
hypersurface with the same property. Furthermore, the Legendre transform is an
involution. Thus after every two steps of this iteration, one returns to the original
counting problem.

In [1], a deep insight of Schindler-Yamagishi was generalizing the notion of
Legendre duality to manifolds of arbitrary dimension n and codimension R, but
satisfying the geometric condition (CC). However, after two steps of induction,
their argument proceeds by using exactly one of the codimensions to project to
a lower dimensional counting problem associated to a hypersurface in R**! and
summing trivially in the remaining in R — 1 codimension variables. This allows for
the use of the sharp estimate for the rational point count close to hypersurfaces
from [4] as a blackbox to deduce estimates for the rational point counting function
associated to this family of projected hypersurfaces.

In our proof, instead of using the estimate for hypersurfaces as a blackbox,
we use the involutive nature of the Legendre transform to return to the original
counting problem associated to M after every two steps. Further, in a major
departure from [4], our inductive argument develops a connection between counting
functions associated with two entirely different geometric objects: the manifold M
of codimension R on one hand, and a dual family of hypersurfaces in R on the
other. In [1], this connection was only utilized in one direction. Finally, to exploit
the information from all codimensions independently, our argument necessarily
requires estimates for a non-isotropic counting function.
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Discrete approximation theory
PAATA IVANISVILI
(joint work with Roman Vershynin, Xinyuan Xie)

EXTENDED ABSTRACT

Problem. Let f:{0,1}" — R be an arbitrary function on the Hamming hyper-
cube and let

Ei(f) == inf_[[f =gl

deg(g)<d

denote the best uniform approximation error of f by real polynomials of total
degree at most d. Write

s(f) == max Z|f F@9)|

ze{0,1}m

for the sensitivity of f, where z(9) is obtained from z by flipping the j-th bit.
Motivated by Huang’s resolution of the sensitivity conjecture (which can be stated
in a Jackson-type form for Boolean functions), we study the best constant

J(n,d) = inf{J>0: E™(f) < Js(f) for allf:{O,l}"—HR}.

Our goal is to obtain sharp upper and lower bounds on J(n,d) in several regimes
and structural classes, as well as to understand the effect of dimensionality con-
straints on approximation by linear subspaces (Kolmogorov widths).

Background. A classical inequality of Pisier (in a form due to Wagner) gives the
baseline

BY(f) = i |~ el < s(f)  forall

so J(n,0) < 1 uniformly in n. For Boolean f one can combine Huang’s theorem
with standard reductions to obtain a Jackson-type bound

mn C n
Bi() < = () (F: {0107 {0,1))
for universal constants C,c¢ > 0. Our results show that the situation for general
real-valued f is subtler: in particular, such bounds cannot hold below a natural
threshold degree, while strong positive results are available for high degrees and
for symmetric functions.
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Main results.

Proposition 1 (Symmetric functions: optimal upper and lower bounds). There
exists a universal constant C' > 0 such that for any symmetric f : {0,1}" — R
and any d € (0,n],
n C
Ey(f) < v s(f)-
Moreover, this rate is optimal: for every n € N and d € (0,n] there exists a
symmetric f with s(f) > 0 such that
1
E? > — .
5 2 s(f)

Theorem 2 (Inapproximability below the half-degree threshold). For every ¢; €
(0,1/2) there exist ca > 0 and, for all sufficiently large n, a function f : {0,1}" —
R with s(f) > 0 such that

ES o (f) = c2s(f).
In particular, J(n,cin) is bounded below by a positive constant independent of n.

As immediate consequences:

Corollary 3 (Approximate degree does not control sensitivity for real-valued
functions). Let h: R — R be any function with h(t) — oo as t — oo. There is no
inequality of the form

s(f) > h(deg(f))
that holds for all f:{0,1}" — [-1,1] and alln > 1.
Corollary 4 (Failure of reverse Bernstein in the tail space). For any c¢; € (0,1/2)

there exists co > 0 such that, for all sufficiently large n, there is a nonzero function
f supported on Fourier levels > cin (i.e., f € LY ) with

chn
1l = ez [IAf]L

where A is the (unnormalized) graph Laplacian on the cube.

Theorem 5 (Kolmogorov widths: negative result for low-dimensional models).
Fiz ¢; € (0,1/2). There exist ca > 0 and ng € N such that for all n > ny and any
linear subspace E C RO with

dmE < ( " >
<cin

there is f: {0,1}™ — R with s(f) > 0 for which
. _ S .
Inf If —gllee = c25(f)
Theorem 6 (Kolmogorov widths: a universal half-dimension model). There exists
a subspace E C RIO1Y" of dimension 2"~ such that, for all f : {0,1}" = R,
s(f)
o

ot f—
nf If —gllee <
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High-degree approximation: a Jackson kernel on the cube. A key step
is a “Jackson kernel” type estimate obtained by averaging f against a univariate
polynomial in the Hamming weight. Write x @ y for the coordinatewise XOR, let
X ~ Bin(n,1/2), and let A : R — R be any polynomial of degree < d; define
H(y)=h(y1 + -+ + yn). Then:

Theorem 7 (Kernel upper bound). For all f:{0,1}" — R and all d € [0,n],

E™(f) <
1 (f) < Loha

where the expectation is over y ~ Unif({0,1}"™) and X ~ Bin(n,1/2).

f@) B, HE o) | < 3 Bpxneo)),

This estimate leads to several quantitative corollaries.

Corollary 8 (Krawtchouk-based bound). Let k,, ¢ denote the smallest positive root
of the Krawtchouk polynomial of degree € (orthogonal with respect to Bin(n,1/2)).
Then for all d € [0,n],

() < 3L ()

Corollary 9 (A simple linear bound). For all d € [0,n],

d
n < >z .
B3 < 3(1-2)s(h)
Corollary 10 (High-degree regime: near-threshold behavior). Let 6 = 1 — %

There exists a universal constant C > 0 such that, for all d € [0,n],
Ej(f) < Cmin{ 5, max{6?, n72/3}}8(f).

The last bound exhibits two natural scales as d approaches n: a quadratic decay
O(0?) until the universal cutoff n=2/3 arising from the location of the smallest
positive Krawtchouk root, and a linear regime O(J) for even higher degrees.

Proof ideas in brief.

o Symmetric case. When f depends only on the Hamming weight, the prob-
lem reduces to univariate polynomial approximation on {0,1,...,n} with
respect to Bin(n,1/2). Classical extremal polynomials yield the O(1/d)
upper bound, and explicit functions show matching ©(1/d) lower bounds.

e Lower bounds / inapproximability. We deploy a sign-pattern/packing argu-
ment on the cube. A quantitative version of a theorem of Lorenz (metric
entropy versus Lipschitz approximation by finite-dimensional spaces) is
combined with a construction of many well-separated functions of small
sensitivity to force large uniform error for any degree < (% —&)n.

e Kolmogorov widths. The negative subspace result follows by transferring
the sign-pattern argument to arbitrary subspaces of dimension at most
( <Zn) The positive result constructs an explicit half-dimensional sub-
space that captures the “low-frequency” content of every f well enough to

guarantee || f — g|lco S s(f)/n.
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o Kernel method. The averaging operator f — E,[f(y)H (y & z)] is a poly-
nomial of degree < d in x whenever h has degree < d. Carefully choosing h
(via positivity and normalization, or via quadrature/Krawtchouk theory)
and bounding the sensitivity of the averaging map yields the kernel upper
bound. Optimizing E[X |h(X)|] produces the bounds above.

Open directions. Our results pinpoint a qualitative threshold at degree %n:
below it, no uniform Jackson-type inequality of the form E%(f) < o(1) - s(f) can
hold for all real-valued f; above it, one has nontrivial decay in J(n, d), with precise
rates near d ~ n. It remains of interest to determine whether J(n,an) — 0 as
n — oo for fixed @ > 1/2, and to clarify the optimal transition profile between the
linear, quadratic, and n~2/3 regimes in the high-degree limit.

Notation. We write (7 ) = >/ (%) and use the standard discrete Lapla-
clan Af(z) = Z?’Zl (f(z) — f(x(j))). All implicit constants are universal unless

explicitly stated.
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A counterexample to matrix weight A, conjecture
ALEXANDER VOLBERG
(joint work with Komla Domelevo, Stefanie Petermichl, Sergei Treil)

We (Komla Domelevo, Stefanie Petermichl, Sergei Treil, Alexander Volberg) show
that the famous matrix Ay conjecture is false: the norm of the Hilbert Transform
in the space L?(W) with matrix weight W is estimated below by C [W]i/:
Recall that a (d-dimensional) matrix weight on R is a locally integrable function
on R with values in the set of positive-semidefinite d x d matrices®. The weighted
space L2(W) is defined as the space of all measurable functions f : R — F¢, (here
F =R, or F = C) for which

|m@wyaﬂwwﬂmﬂmmm<m;

here (-, -)ps means the standard inner product in F?.
A matrix weight W is said to satisfy the matrix Ay condition (write W € Aj)
if
2
1/2 ;i —101/2
(1) (Wla, = sup ()7 2172 < oo,
where I runs over all intervals. The quantity [W],  is called the Ay characteristic

of the weight W. In the scalar case, when W is a scalar weight w, this coincides
with the classical Ay characteristic [w] , .

IThere are of course similar definitions on the unit circle T or RY
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Let H denote the Hilbert transform,

1 t
Hf(s) = —p.v. &dt.
U RS—1
In this paper, we disprove the famous matriz As conjecture, which stated that for
any A weight W, [W]A2 <9

||Hg||L2(W) < CQH9”L2(W) Vg € L2(W)-
More precisely, our main result is:

Theorem 1. There exists a constant ¢ > 0 such that for all sufficiently large Q
there exist a 2 X 2 matriz weight W = Wo (with real entries), [W]A2 < Q and a

unction g € L2 W :R — R? 0 such that
f ) g ) g
||3lg|| L2(W) > CQB/QHQH L2(W)"

In fact, by picking a sufficiently small ¢ we can state it for all @ > 1. By a
simple reduction, we can state it for all dimensions d > 2 of matrices.
Theorem 1 also shows that the upper bound

3/2
1Tl o)~ 2wy < Cr QY

obtained in [14] for general Calderén—Zygmund operators is sharp.

In the scalar case, the Ay conjecture, ie. the estimate [T 2, 720 <
Cp[w] ,, turned out to be true [15], [16], [7], so it is now known as the A> Theorem.
It was a long standing open problem with a fascinating history that we describe
briefly below.

Motivation. An important motivation for sharp estimates of the Hilbert trans-
form in L?(W) with matrix weight W comes from probability theory, more pre-
cisely from the theory of stationary Gaussian processes. For Gaussian processes all
information is encoded in the means and correlations, so the study of multivariate
stationary Gaussian processes (say with discrete time) is reduced to the study of
the subspaces 2"C%, n € Z, in the Hilbert space L?(W), where W is the spectral
measure of the process. For a multivariate process of dimension d the spectral
measure is a d X d matrix-valued measure.

The regularity properties of stationary stochastic processes in terms of their
spectral measures W is a classical area that attracted the attention of many math-
ematicians, and a huge bibliography can be found in [9], [11], [18]. In the case of
scalar processes many different types of regularities were studied and very detailed
results were found in many papers, to name just a few [4], [5], [6].

One of the questions about regularity was the question when the angle between
past and future of the process is positive, which reduces to the question when the
Riesz Projection Py, or, equivalently the Hilbert Transform H is bounded in the
weighted space L?(W). This question goes back to N. Wiener and P. Masani, and
was the main motivation behind the famous Helson—Szeg6 Theorem, which solved
the problem in the one-dimensional case.
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Another motivation comes from the theory of Toeplitz operators (Riemann
Hilbert Problem). A Toeplitz operator T in the vector-valued Hardy space
H?(CY) is defined as

T.f=Pu(Ff), feH*C?,

where Py is the Riesz Projection, i.e. the orthogonal projection from L? onto the
Hardy space H?. The d x d matrix-valued function F' € L (Myx4) is called the
symbol of the Toeplitz operator. It is well known that the operator T’ is invertible
if and only if it can be factorized as

(2) F = GiGo, Giy € H*(Mgxa)

(the functions G1,2 and their inverses are in the matrix-valued Hardy class H 2),
and the formal inverse

3) fre G PL((GTY)S)

of T',. is bounded. It is not hard to see that the operator (3) is bounded if and
only if the weighted estimate

(4) 1P+ fll 2oy S ClNFll oy VF € LX(W)

with weights W = G1G5, V = (G5 )*G5 " holds, and the norm of the operator is
the best constant C' in (4). This looks like a two weight inequality, but in reality
it reduces to the one weight case. Namely, the invertibility of 7', implies that F
is invertible in L°°, and therefore it is not hard to check that the weights V' and
W are equivalent, i.e.

AW <V < AW, for some A € (0, 00);

the inequality is understood as a matrix inequality. Therefore at the cost of the
constant A, (4) is equivalent to the one weight estimate

(5) 1Pl ey < Ol ey VF € LX(W),

i.e. to the boundedness of P, in the weighted space L2(W). On the real line the
Riesz Projection Py and the Hilbert Transform are related as H = —i Py +i(I—P4),
so Py is bounded in L?(W) if and only if H is, and the norms are equivalent in
the sense of two-sided estimates.
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The Kakeya set conjecture in R?
Honc WANG, JOSHUA ZAHL

A Besicovitch set is a compact set K C R™ that contains a unit line segment
pointing in every direction. Besicovitch[1] constructed examples of such sets in R?
(and by extension R"™ for n > 2) that have Lebesgue measure zero. The Kakeya set
conjecture asserts that every Besicovitch set in R™ has Minkowski and Hausdorff
dimension n. For n = 2 the conjecture was proved by Davies [2] in 1971. In this
pair of joint talks, we discuss the proof of the Kakeya set conjecture for n = 3;
this was proved in the sequence of papers [4, 5, 6], and aspects of the proof were
simplified by Guth in [3]; our discussion follows this latter work.
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The multilinear circle method
MARIUSZ MIREK, JAMES WRIGHT

In a series of two talks, we described a new method in number theory which has
implications in ergodic theory, additive combinatorics and harmonic analysis.

Exponential sums are ubiquitous in number theory and the Hardy-Littlewood Cir-
cle Method is a robust method to study these sums. Outside of number theory,
especially in Ergodic Theory and Harmonic Analysis, exponential sums arise as
the Fourier multipliers of translation-invariant operators. When the operators are
linear, pointwise information about the multiplier/exponential sum gives explicit
information about the operator via the Fourier transform and Plancherel’s the-
orem. The classical circle method gives us precise pointwise information about
exponential sums. However, when the operators are multilinear, then the Fourier
multiplier /exponential sum is an implicit object and a variant of the circle method,
the so-called multilinear circle method, is needed.

There are a multitude of new ideas, tools and techniques in the multilinear circle
method. For example, inverse theorems from additive combinatorics (notoriously
difficult to establish) play a central role, the Ionescu-Wainger multiplier theorem
and its enhancements are important as well as LP and Sobolev smoothing estimates
from harmonic analysis, structural statements using the Hahn-Banach theorem,
and the full strength of the classical circle method all come together in a decisive
way. To keep things manageable for this brief note, we will concentrate only on
the minor arc contribution in the multilinear circle method.

THE LINEAR CIRCLE METHOD

An example of the linear circle method comes from ergodic theory. In the mid to
late 1980s, Bourgain [3], [4], [5] established pointwise almost everywhere conver-
gence for the linear ergodic averages

N

Anfa) = 5 3 FE ),

n=1

Here T': X — X is a measure-preserving transformation and P € Z[x] is a general
polynomial with integer coefficients. This generalises Birkhoff’s famous pointwise
ergodic theorem [2] when P(n) = n. Pointwise almost everywhere convergence lies
much deeper than L? convegence. In fact L? convergence of the above polynomial
ergodic averages Ay follows easily from the spectral theorem or the so-called van
der Corput trick.
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The key estimates to establish are LP(X) bounds for the maximal function M f(x)
= supy |An f(2)| and by transference, it suffices to prove ¢?(Z) bounds for

N

M) = supl > 7k = ()]

n=1

The averages Ay f(x) = 1/N Zﬁf:l f(k—P(n)) are translation-invariant with the

2miP(n)60

exponential sum my(0) = 1/N 25:1 e as the underlying Fourier multi-

plier.

The maximal function M is a discrete analogue of a Singular Radon Transform,
a theory Stein developed with his collaborators since the late 1960s. The discrete
maximal function M, its higher dimensional versions and its singular integral
cousins form the central objects of an area of harmonic analysis called Discrete
Analogues in Harmonic Analysis. At the heart of this area is a multiplier theorem
of A. Tonescu and S. Wainger [10] which, among other things, efficiently handles
approximate operators on the major arcs at small scales.

Inspired by the theory of Singular Radon Transforms, Bourgain realised that a
Sobolev smoothing estimate for Ay plays a crucial role in establishing the ¢P
bounds for M. To set this up, consider the major arcs

(1) My a5-c = U [a/q — 6N a/qg+ 6N

a/q€eT

q<6—¢
from the classical circle method. Here d = deg(P). The important Weyl bound
for exponential sums, the key ingredient to handle the minor arc contribution in
the circle method, states that for every C' > 1, there is a small ¢ € (0, 1] such that
for all N > 1 and ¢ € (0, 1], we have

N
|mN(0)| _ ‘%ZGQWiP(n)O‘ S 671[50 + Nfc}
n=1

whenever 0 ¢ My 45-c.

The smoothing estimate takes the following form. If the Fourier transform of
f € £%(Z) vanishes on the major arcs My 4.5-c, then

2) [ANFlIE @ = I fll2em = / imn ()2 F(0)2d0 < ™[5+ N~ || fl|%

and so we get a power gain for the averaging operator Ay when f is Fourier sup-
ported outside the major arcs My 4 5-c. Here we see how the Fourier transform
and Plancherel’s theorem can be used in the linear theory. As (2) is equivalent to
the Weyl bound for exponential sums, we also call the Sobolev smoothing bound
(2), the linear Weyl estimate.

By smoothly projecting f =y sf + (I —ns)f onto the major and minor arcs,
we see that the smoothing estimate (2) (or linear Weyl estimate) immediately
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takes care of the minor arc contribution (I —Ilys)f, at least in 2. For ¢, the
Tonescu-Wainger multiplier theorem is very useful to move from ¢2 to ¢P.

It is interesting to note that Bourgain observed in [6] that Sobolev smoothing
bounds such as (2) can be used to give quantitative bounds for polynomial patterns
in sets of positive density. For the averages Ay the corresponding progressions are
{z,z + P(n)}, which is related to the polynomial Furstenberg-Sarkozy theorem.
See [9] for the best quantitative bounds in the original setting of the squares
(P(n) = n?).

THE MULTILINEAR CIRCLE METHOD

In ergodic theory, there is considerable interest in multilinear ergodic averages ever
since Furstenberg’s ergodic theoretic proof [8] of Szemerédi’s theorem [13]: there
exists arbitrarily long arithmetic progressions in any set of integers of positive
density. Combined with his correspondence principle, Furstenberg reduced matters
to establishing his multiple recurrence theorem on a general probability space
(X,X, u): for every k > 1 and every A € ¥ with u(4) > 0,

N
C 1 —n —2n —kn
l%&f N E wANT"ANT="An---NT""A) > 0.

n=1

Here T : X — X is a measure-preserving transformation. This is closely associated
to the L? convergence of the multilinear ergodic averages

N
AN(f1,-- o fro)(x) = % Z F1(T"2) fo (T ) - - - fk(Tknx)’

a problem we’ve seen is much easier than the pointwise almost everywhere conver-
gence problem.

For the connection with (and applications to) additive combinatorics, it is im-
portant to keep in mind the relationship of L? convergence of ergodic (linear or
multilinear) averages to the existence of integer patterns in sets of positive density.
It is a much more recent development (initiated in [11]) that in a similar manner,
pointwise almost everywhere convergence is related to quantitative bounds for in-
teger patterns in sets of positive density.

In 1996, Bergelson and Liebman [1] extended Furstenberg’s multiple recurrence
theorem to general polynomial progressions and higher dimensions, proving

N

]. — n - n —I(n
liminf 3" p(AnT M MAnT AN a1 ) > 0
n=1
where { Py, ..., Py} C Z[x] and the measure-preserving trasformations {71, ..., T}

commute. Consequently, we can conclude the existence of arbitrarily long multi-
dimensional polynomial progressions in sets of positive density. The corresponding
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multilinear ergodic averages are

N(fro fi)(@ TP 2) o (17 ™) - (T M),

an

and L? convergence of these averages are now understood due to the work of
Walsh [14]. The question of pointwise almost everywhere convergence (and the cor-
responding quantitative bounds for higher dimensional polynomial progressions)
lies much deeper.

In joint work with D. Kosz and S. Peluse, we established the following Sobolev
smoothing bound for multilinear averages when the polynomials P = {Py,..., P}
have distinct degrees. As in the linear case, by transference, the analysis of Ay
above are reduced to studying the discrete analogue

N
1
N(fLe fe)(@) = 5 > file = Pu(n)er) fa(a — Pa(n)es) -+ fu(w — Pr(n)ex)
n=1
on the integer lattice ZF. Here {e;} are the usual directional basis vectors on Z*.
We denote by Mgv,dj,a—c the major arcs My 4, s-c from (1) but only in the jth
coordinate. Here d; = deg(P;).

Theorem 1. Let1l < p1,...,pr < o0 be exponents such that p% 4+ -+ ﬁ =
% < 1. For all C1,Cy > 1 there exists a small ¢ € (0,1), possibly depending
on k,P,p1,-..,0k,p,C1,Cs, such that the following holds: for all N > 1 and
§ € (0,1], let f; € tPi(ZF), 1 <i <k, and suppose for some j, the jth Fourier
transform of f; vanishes on the major arcs MNd 5o Then

(3) AN (frs s filllengary < 18+ N7) T 1fillers vy

1<i<k

We emphasise that the Fourier transform and Plancherel’s theorem are no longer
viable tools (even when each p; = 2 for all ¢) as in the linear case. Even though the
multilinear averages Ay are translation-invariant and has the exponential sum

N
. 1 .
mN( ) _ § 627rz[01P1(n)++0kPk(n)]

n=1
as the underlying Fourier multiplier, we can not access this multiplier explicitly,
using pointwise information of my (5) from the classical circle method, to help us
establish the smoothing estimate (3). As in the linear theory, we call the bound
(3) the multilinear Weyl estimate.

Theorem 1 takes care of the minor arc contribution for Ay and reduces matters to
the situation where all the functions f; are supported on the major arcs M, N.dy5-C

The proof of Theorem 1 is very involved; we needed to establish inverse theorems
for the averages Ay (previously unknown) and together with the Hahn Banach
theorem, we derive structural information for each of the k& adjoints A};’,j of Ap.
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Also new ¢? improving bounds for Ay are used, requiring the recent, complete
resolution of the Vinogradov Mean Value Theorem.

We also establish Theorem 1 in the real setting where Z is replaced by R. This is
important in the multilinear circle method since on the major arcs, we approximate
the discrete averages by their continuous variants. More precisely, suppose P =
{P1,..., Py} C R[x] have distinct degrees. Consider the continuous multilinear
averages

AR _ Lt P P. P d
N(flv"'afk)(x)_ﬁ/o fi(z = Pi(t)er) f2(z — Pa(t)ea) - - fr(x — Py(t)ey) dt

and the real major arc M]}f, ds-C = [-6~C¢N—9 §-¢ N~9], asingle interval centred
at the origin. We prove that (3) holds for A%, with ¢7(Z*) replaced by LP(R¥).

Recently the multilinear averages A% have attracted the attention of harmonic
analysts. In [7], the bilinear avarages

Bn(f,9)(z,y) = N/ f(z Yg(z,y —t%) dt

were examined and (3) for By was established. The Sobolev smoothing bound has
numerous applications as shown in [7] for By. In particular, using the argument
by Bourgain in [6], they give the following quantitative bound: for all N,e > 0
and for all A C [0, N] x [0, N?] with |A| > eN?3, we have

4) @t zy) €[0,NP? x[0,N?]: (z,y), (x +t,y), (x,y + t7) € A}| > pN*

where § = exp(—e!/ 6C). This is a continuous version of the recent quanti-
tative bounds by Peluse-Prendiville-Shao [12] for integer squorners {(j, k), (j +
n. k), (3, k +n?)}.

From our Sobolev smoothing bound (3) for A%, one can extend the quantita-
tive bound (4) to general polynomial corner configurations associated to P =
{P1,..., Py} C R[x] with distinct degrees: for every € € (0,1), there is a 8(¢, P) €
(0,1) and No(e,P) € Z, such that for any N > Ny and A C [0, N©] x --- x
[O,Ndk'] =: Iy with |A| > eNP (where D =dy + - -- +dy,), we have

(5)  |{(t,2) €[0,N] x In s,z + Pi(t)er, ...,z + Pp(t EA}|>ﬁND+1

We can take Ng = [¢“ “] and 8 = =€ *; compare with (4). When each
polynomial P; is a monomial, the bound (5) scales and holds true for all N > 0,
not just N > Ny.
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(5

A Pierce—Yung operator in the plane
DAvID BELTRAN
(joint work with Shaoming Guo, Jonathan Hickman)

Let d > 2 be an integer and K : R“~! — R be a Calderén-Zygmund kernel, that
is, a tempered distribution agreeing with a C! function K(x) for z # 0 and such
that K € L™ and |09 K (2)] < Alz|~~ 1l for 0 < |a| < 1. A slight generalisation
of the Carleson-Hunt theorem was obtained by Sj6lin [6], who proved that the
maximally modulated singular integrals

Tf(x):= sup

/ flx —t)e™ K (t)dt
veRd=1 | Jrd-1

are bounded on LP(RI~!) for all 1 < p < oo. In 1995, Stein [7] raised the question
about whether Sj6lin’s result still holds true if the modulations v - x are replaced
by an arbitrary polynomial modulation of a fixed degree. An affirmative answer
was given by Stein and Wainger [8] for polynomials missing linear terms, and by
Lie [3] in the general case. We note that if one avoids linear terms, the resulting
operator is non-modulation invariant and its behaviour differs from that of the
Carleson operator; in particular, after a linearisation and a TT™* argument, it is
amenable to oscillatory integral techniques such as van der Corput’s lemma.

A few years ago, Pierce and Yung [5] incorporated Radon-transform behaviour
to the Stein—Wainger framework. They considered the operators

Tparf(xvy) ‘= Ssup ‘ / f({E - tvy - |t|2)eipv(t)K(t)dt )
Rd—1

veERN
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where P, (t) = Z;\;? v;p;(t) and p; is a homogeneous polynomial of degree j, with
p2(t) not a multiple of [¢t|>. They proved that, for d > 3, the operator Tpa, is
bounded on LP(R?) for all 1 < p < co. Note that, in the spirit of Stein-Wainger,
the above setup is not modulation invariant, since it avoids linear modulations and
quadratic modulations of the type [t|.

The proof method in [5] does not extend to d = 2. One of the reasons is that
the kernel of the linearised version of T}, T7,, is no longer given by an oscillatory
integral. Our main result is a 2-dimensional version of the result of Pierce and
Yung in the case of cubic modulations.

Theorem 1. For x,y € R, consider the operator

gdt
Cf(z,y) —bup‘pV/faf—ty et —1,

initially defined for Schwartz functions f € S(R?). There exists Cp, > 0 such that

ICf1ILrm2) < Cpllfll Lo (r2)
holds for all 1 < p < 0.

The same result has also been recently obtained by Hsu and Lie [2] with a
different approach.

Our proof method is inspired by that of Mockenhoupt, Seeger and Sogge [4] for
the LP(R?) boundedness of the circular maximal function for p > 2. We obtain,
for p > 2, a local smoothing estimate on LP of

v i(x€+1 —i2" Zn—t3w dt »
HY fo,y) = 5y [ €T [ em2HIFTn=w) g(4) — F(&, )dédn,
(2m)? Jge R 3

where 1 < w < 8. Here the operator HY is a suitably localised piece of the Fourier
multiplier operator featuring in the definition of C, and by local smoothing we mean
that we take an LP integration in the w variable, and expect a better estimate than
for a fixed w. Traditional L? methods allow to deal with the most singular parts
of the Fourier multiplier, given by (¢¢,)'(t) = (¢¢,)" (t) = 0 where

O (1) = (&, 8%, £%), (€, m, —w)).

The vanishing of the first two order derivatives can only happen in a small w-
interval, which gives a gain when integrating with respect to w. Thus, it is the
less singular region of the multiplier, given by (¢¢’, )'(t) = 0, the one that requires
a more delicate analysis and where p > 2 becomes crucial in our arguments. By
stationary phase, this gives raise to a variable-coefficient propagator with phase
function

UEE (iE yaw'é-v ) _x£+y77+¢w Oti(w;fan)
where tL(w;€,n) = UESVA/RRE L satisfy (¢5 ) (tx(w;&m)) = 0. These phase

3w
functions satisfy the Nikodym non-compression hypotheses recently introduced in
[1], although they are not globally valid. One can then decompose the operator
into two pieces. The main piece is that for which this condition holds, and one can

obtain favorable LP estimates thanks to (a quantified version of) the main result
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in [1]. The remaining piece, which can be seen as an error, can be handled on L?
via decoupling inequalities, a typical tool to obtain local smoothing estimates for
propagators.
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6

B

Sparse Calderén-Zygmund estimates for divergence form
elliptic equations

OLLI SAARI
(joint work with Hua-Yang Wang, Yuanhong Wei)

Background. Let n > 2 and consider a bounded, open, and connected set 2 C
R™. For simplicity, we assume that the boundary of Q is C?-smooth. Let a :
Q x R" — R"™ be measurable in the first n variables and C'(Q) in the last n
variables. We assume the standard uniform ellipticity conditions: there exist
A >0 and A < oo such that for all x € Q and £ € R",

€ (Vea)(x,£)€ > NEP?,  a(x,€)] < A.

The most important special case is when the mapping is linear in the £-variable,
that is, when there exists a matrix-valued function A : Q@ — R™ "™ such that
a(z,&) = A(z)€. We study the equation

—diva(z, Vu(z)) = div F(z)

posed in 2 with zero boundary values in the Sobolev sense, and we consider weak
solutions.

The classical Calderén—Zygmund theory (or LP—Schauder theory) builds on the
following results:
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e There exist constants C,e > 0, depending only on n, A, A, and Q, such
that if F € LY(Q) with |¢ — 2| < ¢, then

”VU‘”LQ(Q) <c HF||L<1(Q) :

This is known as Meyers’ estimate [10].
e If F'is of vanishing mean oscillation (VMO), then e can be taken arbitrarily
close to 1 (see [2]).

The literature on this type of estimates is now extensive. In our work, we prove
Calderén—Zygmund estimates within the framework of sparse bounds, rather than
using LP(€2) norms. Sparse bounds emerged from simplifications in the resolution
of the As conjecture [4]. In particular, we highlight [6], [8], and [7] as key references
from the point of view of our approach.

Results. Let 6 € (0,1]. Recall that a family of cubes F is said to be 6-sparse if
for each () € F, there exists a measurable subset Eg C @ such that
|Eq

> g, <1, inf >4
Ser eer Q|

We recall that a bound

‘/Vu(x)  g(x) dz

<o s Yl [ 1r@)

F O-sparse Qer

1/r 1 1/s
dx) <@ /3Q lg(2)| dx)

for all test functions g, with 6,s,r € [1,00) fixed and C = C(n,r,s,0), implies
LP(Q2) — LP(Q2) bounds for all r < p < s’. We refer to such a bound as an (r, s)
sparse bound.

Our main results in [11] are the following:

e (2, g)-sparse bounds for ¢ sufficiently close to 2, analogous to Meyers’ es-
timate under the same assumptions;

e (g, q)-sparse bounds for all ¢ € (1,2) when the coefficient function is linear
in the gradient variable and of vanishing mean oscillation in the spatial
variable;

e A (1,1)-sparse bound when the coefficient function is linear in the gradient
variable and Dini continuous in the spatial variable.

The proofs rely on the method of approximation by solutions to equations with
zero right-hand side, following [1], and the sparse iteration technique from [9].
Moreover, we take advantage of the regularity results for equations with VMO
coeflicients [2, 5] and Dini continuous coefficients [3].
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3

Subconvex LP-sets, Weyl’s inequality, and equidistribution
TREVOR D. WOOLEY

We investigate sets of natural numbers A whose associated exponential sums sat-
isfy a certain subconvexity property. Throughout, when A C N and N > 1, we
write A(N) = AN[1,N] and A(N) = card(A(N)). As usual, we abbreviate e>7*
to e(z). Then, when p is a positive real number, we define the mean value

L= [ Y et

ne€A(N)

p

da.

Definition 1. Suppose that A is a non-empty subset of N.

(a) We say that A is a weakly subconvex LP-set if 0 < p < 2 and, for alle > 0
and all real numbers N sufficiently large in terms of p and €, one has

L,(N; A) < NTA(N)P,

(b) We say that A is a strongly subconver LP-set if 0 < p < 2 and, for all real
numbers N sufficiently large in terms of p, one has

I,(N; A) < N"TA(N)P.

It transpires that strongly subconvex LP-sets A have positive lower density,
and thus the associated mean value I,(N;.A) exhibits better than square-root
cancellation. It might seem that subconvex LP-sets are unusual subsets of the
integers that should be extraordinarily difficult to find. However, we provide
examples illustrating that subconvex LP-sets are abundant. The set of all natural
numbers N is a trivial example of a weakly subconvex L!-set which is also a strongly
subconvex LP-set whenever p > 1. Consider next, when r > 2, the set N, of r-free
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numbers, defined by A;. = {n € N : 7”|n for no prime 7}. It transpires that N, is
a weakly subconvex L'T1/7_set, and when p > 1+ 1 /7 it is a strongly subconvex
LP-set, as follows from the work of Keil [1, Theorem 1.2]. Further, when o > 0
and 8 are real numbers with 1/« of finite Diophantine type, then the Beatty set

B(a,B) ={n € N:n=|am+ ] for some m € N}

is a weakly subconvex L!-set, and when p > 1 it is a strongly subconvex LP-set.
We show how new examples of subconvex LP-sets may be obtained from old ones.

Our main focus lies on Weyl sums. When k£ > 2 and o; € R (0 < @ < k), consider
the polynomial 9 (z; &) = ax® + ... + a1z + ap, and define the exponential sum

V(@ N)= Y e($(n;a)).

1<n<N

By Dirichlet’s approximation theorem, there exist a € Z and g € N with (a,q) =1
and |ag — a/q| < 1/¢2. In these circumstances, it follows from Weyl’s inequality
(see [2, Lemma 2.4]) that for each € > 0 and each large real number N, one has

Up(a; N) < N (g 4 N7 gN 92"

Analogous estimates, in which the variables n defining this exponential sum are
restricted to a subset of the natural numbers, are typically far weaker. Our first
result on Weyl’s inequality shows that estimates are not inferior for weakly sub-
convex LP-sets, at least when k£ > 3 and 1 < p < 4/3.

Theorem 2. Suppose that A is a weakly subconvex LP-set for some real number p
with 1 < p <4/3, and k > 3. Let (g, a1, ..,ax) € R¥L and suppose that a € Z
and q € N satisfy (a,q) = 1 and |, —a/q| < 1/q>. Then, for each e > 0 and each
large real number N, one has

21—Ic

Z e(apn® 4+ ...+ amm+ag) €« N7 4+ N~ 4 gNTF)
neA(N)

This theorem is a corollary of a more general conclusion applicable whenever
k > 2 and A is any subconvex LP-set with 1 < p < 2. Define

% -3 when k = 2,
op(k) = 23”“(%—%), when k > 3 and 4/3 < p < 2,
21—k when & >3 and 1 < p < 4/3,
and
(% — 1) k271k72, when k£ > 3 and % <p<2,
Tp(k) = ﬁ, whenkZBandlgpS%,
0, when k = 2.

Theorem 3. Suppose that A is a weakly subconver LP-set for some real number
pwith1 <p<2, and k> 2. Let (ap,aq,...,ar) € R¥L and suppose that a € 7
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and q € N satisfy (a,q) = 1 and |ox, — a/q| < 1/¢*. Then, for each ¢ > 0 and each
large real number N, one has

37 elannf + .+ arm+ag) < N (g N7 gN TRy (),
neA(N)

where
wp(k) = max{o,(k), ()}

Finally, we mention some consequences for the equidistribution modulo 1 of
polynomial sequences. Consider a real sequence (s,)52; and the associated frac-
tional parts {s,} = s, — | sn]. This sequence is said to be equidistributed modulo
1 when, for each pair of real numbers a and b with 0 < a < b < 1, one has

lim Nﬁlcard{l <n<N:a<{s,}<b}=b—a.

N—oc0
Theorem 4. Suppose that A = {a1,az,...}, with a1 < az < ..., is a strongly
subconver LP-set with 1 < p < 2. Let k > 2, suppose that (o, aq,...,a;) € RFFL
and define the polynomial (z; ) = aga® + ...+ ayx + ag. Then, provided that
one at least of the coefficients as, ...,y is irrational, the sequence (Y(an;a)) -,
s equidistributed modulo 1.

We remark that strongly subconvex LP-sets exist having the property that
equidistribution modulo 1 may fail for the sequence (¥(an;a))22; when ay is
irrational. Thus, the hypothesis on the coefficients in this theorem cannot be
relaxed to assert only that one of aq, ..., ax is irrational.

The proofs of our new results rest on exploiting the basic property of subconvex
LP-sets in combination with orthogonality and appropriate applications of Holder’s
inequality. Suppose then that A is a strongly subconvex LP-set for some real
number p with 1 < p < 2, and write

gl@)= Y e(na).
neA(N)
Consider a unimodular arithmetic function ¢ : N — C, and put
hia) = Z c(n)e(na).
1<n<N

Then it follows by orthogonality that

Z c(n)z/o g(@)h(—a) da.

nc€A(N)

Thus, by applying Holder’s inequality, we find that

> < ([ weran)” ([ mproran) T

neA(N)
The first mean value on the right hand side here may be estimated optimally by

using the definition of a strongly subconvex LP-set. Since p/(p — 1) > 2, the
second mean value is amenable to methods combining orthogonality and Weyl’s
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inequality. When p/(p — 1) > 4, the second mean value may even be interpreted
in terms of a second order Weyl differencing process. In many circumstances, this
approach suffices to obtain non-trivial upper bounds for the average of ¢(n) over
the set A(N).

This research work was conducted while the author was supported in part by
NSF grants DMS-2001549 and DMS-2502625.
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LP-estimates for FIO-cone multipliers
DETLEF MULLER
(joint work with Stefan Buschenhenke, Spyridon Dendrinos, and Isroil Tkromov)

Let I := {&2 + €2 = €2, 1/2 < & < 1} be the truncated light cone in R?, denote
for R> 1 by

1 24 ¢2 1
FRz{ﬁs 515352 —1< 5 1/2§€3§1}
the set of points whose horizontal distance to I' is comparable to 1/R, and let mp
be the corresponding cone multiplier, i.e., a smooth version of the characteristic
function of I'p. Thanks to work by Mockenhaupt [5] and the more recent break-
through on the associated reverse square estimate by Guth, Wang and Zhang
[1], we know that the corresponding convolution operator Ty, , satisfies bounds
1T llp—p < C.R1=73! for every € > 0 in the range 4/3 < p < 4. The work by
Guth, Wang and Zhang also leads to a proof of Sogge’s local smoothing conjecture
(compare [6]) for solutions to the wave equation on RZ.

By an FIO-cone multiplier we mean a Fourier multiplier of the form e**mp, where
¢ is a real phase function homogenous of degree 1, which is smooth away from the
light cone (but may exhibit singularities at the cone), and where A > 1.

In our theory of FIO-cone multipliers, we devise suitable classes of phase func-
tions ¢ by requiring certain estimates on their derivatives which are closely related
to the geometry of the light cone, and prove LP-estimates in the range above for
the corresponding convolution operators. Our estimates are stronger by a factor
R7177%! than the estimates that one would get from a direct application of the
method of Seeger, Sogge and Stein [7] for estimating FIOs. In a similar way as for
the cone multiplier, decoupling estimates would not allow to prove these results
either.

Our proofs build on the work by Guth, Wang and Zhang, by making use of a
deep characterization in [1] of the L*-norm of the afore-mentioned square function
by means of certain L2-based semi-norms.
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An important application of our results is to maximal averages along smooth
hypersurfaces in R? : If S is a smooth hypersurface in R3, consider the associated
averaging operators A;,t > 0, given by

Af(x) = [S f(x — ty) do(y),

where do denotes the surface measure on S. The associated maximal operator is
given by
Msf(z) = sup [Acf(2)], (zeR).
t>

The study of such maximal operators had been initiated by E.M. Stein’s work on
the spherical maximal function [9]. In a series of papers [4], [3], [2], for almost
all real analytic hypersurfaces S (and even larger classes of finite type surfaces)
in R? satisfying a natural transversality assumption, the range of Lebesgue spaces
LP(R?) on which the maximal operator Mg is bounded has been determined
explicitly in terms of Newton diagrams associated to S, in some cases up to the
critical exponent p. = p.(S). The latter is determined by the property that Mg
is LP bounded for p > p., and unbounded for p < p.. In [2], also a “geometric
conjecture” had been stated and proved for the same class of surfaces, which
roughly claims that p. can be determined by testing Mg on characteristic functions
of symmetric convex bodies.

This conjecture, and a related conjecture about a description of p. in terms
of Newton diagrams, has remained open only for a small class of “exceptional”
surfaces exhibiting singularities of type A in the sense of Arno’ld’s classification.
A prototypical surfaces from this class is the graph S;, of

1 z2 + 2, n>>5
+ 1o 2 + 7 >
over a sufficiently small neighborhood of the origin. Our conjectures claim for
this surface that p. = 22—1;. However, classical methods based on interpolation

between L' and L? estimates only allow to cover the smaller range p > 2Z_ﬁ (if n
is even, the surface S, is even convex, so that the results from [8] apply to it, but
these again only yield the latter range).

Our estimates for FIO-cone multipliers allow to prove our conjectures also for
these surfaces Sy, i.e., that p. = QZ—E, by interpolating here between L*/? and L?
estimates. The proof requires essentially the full thrust of our FIO-cone multiplier
estimates.

We expect that a slight extension of our theory of FIO-cone multipliers will
eventually allow for a full proof of this geometric conjecture.
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Convex Set Testing Conditions for Positive Operators
PHILIP T. GRESSMAN

In many distinct contexts within harmonic analysis (see [1, 2, 3]), it has been
fruitful to study multilinear objects whose kernel is the absolute value of a deter-
minant whose columns are vector-valued functions with geometric significance. A
canonical example of such an object is given by

d
umuwm:/mwmmmmmm*ﬂbmemmm
j=1

where the parameters u1, . . ., ug typically range within an open subset U of param-
eters in R? and v : U — R? typically parametrizes some smooth p-dimensional
submanifold of R?. Generally speaking, the goal is to establish boundedness of this
functional on products of Lebesgue spaces LP(U). If u denotes Lebesgue measure
on the image of v, the above functional can also be written as

d
wmwm:/WWNWMPHﬁ@mmmwwwx

Jj=1

and studied on products of Lebesgue spaces LP(u), where each vector x1,...,xq
now belongs to R?. While this change of perspective is purely formal, it was
demonstrated in [4] that this new perspective yields productive insights, and in
particular allows one to understand I(f1,..., fq) geometrically in terms of the
Oberlin condition (see D. Oberlin [6, 7] and Gressman [5]), which is satisfied by
measures g admitting some o > 0 and C < oo such that u(K) < C(vol(K))®
for all compact, convex sets K C R? where vol(K) is the standard Euclidean
d-dimensional volume of K. In the case of the given functional I(f1,..., fq), it
also happens that one need only test the measure u on compact, convex sets K
which are symmetric with respect to 0 € R%.
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The deep connection between multilinear functionals with determinant-like ker-
nels and the Oberlin condition raises the question as to whether other natural
families of multilinear functionals are governed in the same way by natural gener-
alizations of the Oberlin condition. One key to answering this question is to recog-
nize the role of determinants in computing Euclidean volumes of parallelepipeds.
For various reasons, it also happens to be simpler to decompose kernels dyadically
according to size and to look not at Lebesgue spaces LP but the Lorentz spaces
LP1. A central new result of this kind is captured by the following theorem.

Theorem 1. Suppose Xi,..., Xy are finite dimensional real vector spaces, and
let s1,...,s be nonnegative exponents such that sy > 0. Let
Loy Tl
j=1 <j

There exist constants C,c > 0 such that the following is true. Suppose that L :
Xy x -+ X X = R is multilinear, that py, ..., u are nonnegative Borel measures
which are finite on all compact sets, and A,d > 0 are real numbers such that

(15 (K;)) < cA

[y

=
for all compact, symmetric conver sets K1 C X1,..., Ky C X for which

sup |L(z1,...,25)] < C6.
1€EK1,...,x €Ky

Then for all 0 € [0, 60] and all Borel sets Iy C Xq,...,F, C Xy, such that pj(F;) <
oo for each j € {1,...,k},

k k
/XIL(ml,...,mk)lgéHXFj(l“j)d#l(ﬂ?l) ~dpy (k) H )0

Jj=1

By exploiting a lifting technique similar to that which appears in the case of
multilinear determinant functionals, the above theorem can be applied in a broad
array of contexts which includes any multilinear kernel which is the absolute value
of a polynomial. An important limitation of the theorem, however, is that in some
cases, the value of 6y could be improved. As such, the value of 8y specified above
should be understood as limited by the method of proof rather than an intrinsic
endpoint for the associated multilinear functional.

When pushing beyond the range of inequalities implied by Theorem 1, it be-
comes important to develop qualitative and quantitative understandings of func-
tions Fj(x) on R? which have the form

Fy(z) = / N
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for some probability measure v on R?. The first new result in this direction
demonstrates that the superlevel sets

E,:={z¢€ RY . Fs(x) > o}
of Fj exhibit increasing complexity as the parameter « tends to zero.

Theorem 2. For any 0 < a1 < ag < 1, there is a collection of symmetric convex
sets Cq,...,Cn such that

N
Ea, C | Ci C Ea,.
i=1
Suppose that D is any positive integer such that (ag — a1) "1 (1 — a) < D. Then
for any line £ C R,

N
/N U C;
=1

is a union of finitely many closed intervals, at most D of which contain a point in
E,,.

Closely related to this result is the following theorem, which shows that weak-L4
norms of Fs can be estimated simply by testing the function Fj against indicator
functions of convex sets, provided that ¢ is sufficiently large.

Theorem 3. Suppose i is a o-finite Borel measure on R. Suppose there is some
A>0,pc[l,00) such that every closed, symmetric conver set K C R? has

| Fista)duta) < A5
Then every measurable set E C R satisfies
_140
| Fst@ydunte) < Clau(E) =’ [u(E)lv]

where 0 :== 1/(dp~ + 1) and the constant C depends only on d and p.

}1—0

The proofs of these results rely substantially on the following elementary lemma.

Lemma 1 (Convex multilinearization). Given x1,...,z4 € R%, let
d
Co:={xzeR?: z= Zijj for some 61,...,04 € [-1,1]

Jj=1

Suppose 11 is a o-finite nonnegative Borel measure on a real finite-dimensional
vector space X of dimension d which is finite on all compact sets. For each p > 0,
there is a constant Cq , such that

W [ e, [ ( / fdu)pﬁf(xj)du(m)'-'du(xd)
)

for all nonnegative Borel-measurable functions f on X.

1
d+p
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Beyond basic integration facts like Fubini’s Theorem and Hoélder’s inequality,
the proof of this lemma uses only elementary linear algebra and a basic symmetry
observation.
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A fractal local smoothing problem
Joris Roos
(joint work with David Beltran, Alex Rutar, Andreas Seeger)

It is well-known (Miyachi [10], Peral [11]) that the half-wave propagator satisfies
the fixed-time estimate

(1) 1€V =2 fll Lo may < Cellfllze ey

for p € [2,00) and for every fixed ¢ > 0, where s, = (d — 1)(5 — %) The local
smoothing phenomenon (Sogge [14]) states that the required smoothness improves
with an additional time average in L?, i.e.

) ( / €Y= I gy 1) < Ol Lz

holds for some s < s, when p > 2. The classical local smoothing conjecture [14]
postulates that this holds for all s > 0, = max(0, s, — %) when p > 2. Wolff
[15] showed this for large enough p using an early decoupling inequality. The
decoupling approach has been pushed to its limits by Bourgain and Demeter [4]
who proved that the conjecture holds for p > %. Guth, Wang and Zhang [8]
finally proved the conjecture for all p > 2 in the case d = 2. We now propose a
fractal version of the conjecture. By localizing and discretizing, the estimate can
be reformulated as

) 1/p )
(3) (1™ 2P me)) < C2 ey,
t
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for s > max(}—lj,sp) and p > 2, where the sum over ¢ runs over 1 4+ 2 9n for
n=0,...,2" and P; denotes Littlewood-Paley projection to frequencies || ~ 27
for 7 > 1. In the fractal problem we consider an arbitrary set £ C [1,2] and a
maximal 2 7-separated subset E; and let the sum over ¢ run only over E;. Given

E, we define the Legendre—Assouad function 1/% as

1og(sup5§|J|§1 |[J|7*N(ENJ,))
log(3) ’

(4) V() = s

where @ € R and N(F,J) denotes the minimum number of intervals of length §
required to cover E and the supremum runs over intervals J C [1, 2] with |J| > 4.
This function originates in the study of sharp L” improving bounds for spherical
maximal functions with fractal sets of dilations [3], [12], [1]. We conjecture that
(3) holds when the sum runs over t € E; and whenever p > 2 and

5> %V%(psp).

In [2] it was shown that this holds for radial functions and that it fails for s <
%VﬁE (psp). Setting E' = [1, 2] recovers the classical local smoothing conjecture (2).
The Legendre—Assouad function is closely related to the Assouad spectrum of E,
which is the function 6 — dima ¢ F defined as the infimum over all exponents

a > 0 for which there exists a constant C such that
N(ENnJ,6) < C(]J]/6)"

for all intervals J with |J| = §% and § € (0,1) (Fraser-Yu [7]). The upper Assouad
spectrum arises when the requirement |J| = 67 is replaced by |J| > 6 (Fraser—
Hare-Hare—Troscheit—Yu [6]). The Assouad spectrum is a continuous function
on [0,1) and the limit limg_,;_ dima ¢ £ exists and is called the quasi-Assouad
dimension v = dimga F (Li—Xi [9], Fraser [5]). It was shown in [2] that I/EE is
the Legendre transform of the function vg(8) = —(1 — 0)dima ¢ £ on [0,1]. Note
that the Legendre transform of a function only depends on its convex hull, which
implies that the Legendre transform of vg stays unchanged when the Assouad
spectrum is replaced by the upper Assouad spectrum. Since it is known which
functions may occur as the (upper) Assouad spectrum of a set (Rutar [13]), one
may determine which functions occur as Legendre—Assouad functions: a function
7 : [0,00) — [0,00) satisfies V%hom) = 7 for some E C [1,2] if and only if
7 is nondecreasing, convex, and satisfies 7(a) = a for a > 1. In particular, we
witness a striking contrast to the classical local smoothing problem: in the classical
problem, it suffices to establish the estimate at the critical exponent p = dQle
giving the remaining range by interpolation. The characterization of possible
Legendre—Assouad functions shows that in the interesting range p € [2,p,] (with
by = W)

the sharp estimate (3). Also note that (3) always follows from (2) for p > 24

, interpolation between p = 2 and p = p, generally does not recover
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There is also an LP — L9 variant of this problem, where for every 1 < p < ¢ <
0o, ¢ > p’, we conjecture that

1
(3 1P 1% )" < OIS oy
tEEj

holds for all j > 1 when

d—
s> (L 1)y Lf (a1 Ly)

This matches lower bounds proved in [2], where the conjecture is also verified for
the easy case p = 2. A solution would also immediately imply a conjecture about
closures of LP — L4 type sets of spherical maximal functions with fractal dilation
sets.
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