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Introduction by the Organizers

The workshop Large scale stochastic dynamics is the continuation of the highly
successful series of Oberwolfach workshops with the same title, whose organising
team included along the years T. Bodineau, C. Landim, S. Olla, H. Spohn and
the present organisers. This new edition, organised by P. Caputo (Roma Tre),
F. Toninelli (TU Wien) and B. Tóth (University of Bristol and Alfréd Rényi In-
stitute of Mathematics), was well attended with 57 participants (46 in person and
11 online) with broad geographic representation, including postdocs and gradu-
ate students, working in diverse intertwining areas of probability and statistical
mechanics.

The workshop was devoted to the wide mathematical problem of understanding
emergent structures on large space-time scales in the evolution of physical sys-
tems. These are modelled by particle systems, namely high-dimensional Markov
processes and/or by systems of particles with deterministic (Hamiltonian) dynam-
ics where randomness comes only with the initial conditions. With respect to
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the previous editions of this series of workshops, there was a larger focus on the
presently very active topic of stochastic homogeneization. Very interesting links
with singular SPDES/SDEs have been emphasized by several of the talks.

During the meeting, 12 talks of 50 minutes, and 15 talks of 30-35 minutes
were scheduled. Thursday’s talks were especially intended to celebrate Erwin
Bolthausen’s 80th birthday, and his many fundamental contributions to this field.
In addition, an evening ”open problem session” was organised with 9 more short
informal presentations of 10 minutes, many of which by younger participants:
Daniel Keliger, Nikolaos Zygouras, Jonas Köppl, Fabio Toninelli, Frederike Lem-
ming, Balázs Maga, Federico Sau, Márton Balázs and Assaf Shapira. In our choice
of 30 talks, we tried to illuminate major recent advances in the field and to expose
and address at least some aspects of the works for each of the participants. The
chosen schedule format (with a long afternoon break until 4:30 pm, intended to
favour discussions and interactions) was unanimously appreciated by the partici-
pants. The evening session was the occasion to learn both about intriguing open
problems in this area, and about the recent results of early career participants.
Both the talks and the evening session triggered further discussions afterwards.

A summary account of the 50- and 35-minute presentations is given below.

• In two-dimensional random field Ising models with weak disorder, the ad-
dition of independent Gaussian fields leads to a unique local minimizer
of the energy, in contrast to the degenerate minimizers of the pure Ising
model. [Otto]

• The fluctuations of the weakly asymmetric facilitated exclusion process
converge to the stochastic heat equation with Dirichlet boundary condition.
A major difficulty is handling the singularity at time 0 of the heat kernel.
[Blondel]

• The open asymmetric simple exclusion process exhibits high-density, low-
density, and maximal current phases, depending on boundary parameters.
At the triple point where all three phases meet, the mixing time scales as
N3/2. [Schmid]

• New criteria for gelation are proposed for the Marcus-Lushnikov coagula-
tion process. The analysis includes the emergence of a giant particle, and
a large-deviation framework for particle trajectories. [Andreis]

• A variant of the totally asymmetric exclusion process is connected to true
self-avoiding walks and the true self-repelling motion, with new relations
providing insights into super-diffusive behavior. [Massoulié]

• A critical drift-diffusion driven by a divergence-free Gaussian field, is re-
lated to diffusions on SL(n), explaining the intermittency observed in the
original system. [Wagner]

• At the critical point of the Glauber/Kawasaki reaction-diffusion dynamics,
magnetisation fluctuations are non-Gaussian and described by a nonlinear
SDE. The analysis requires separation of slow and fast modes. [Landim]
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• Several examples of self-interacting random walks, including the Lorentz
gas and reinforced walks can be analyzed in high dimensions by new tech-
niques. The results imply diffusive behavior. [Elboim]

• A unified framework of localization schemes reduces mixing time analy-
sis of Markov chains to simpler problems, yielding new proofs and sharp
bounds, including O(n log n) mixing for Glauber dynamics in the hardcore
model. [Chen]

• A superdiffusive central limit theorem for the stochastic Burgers equation
in dimension d = 2 is the first such scaling limit for a critical, singular
SPDE. [Moulard]

• The Simple Exclusion with Traps exhibits a frozen and an ergodic phase.
The transience time to either the frozen or ergodic component exhibits a
sharp cut-off phenomenon. [Erignoux]

• A Glauber dynamic of the two-dimensional dimer model is shown to satisfy
the gradient condition and to be diffusive on large scales. Its diffusion
matrix is explicitly computed. [Giles]

• A new approach to bootstrap percolation is based on proving that the
model is equivalent in a strong sense to its local version. This allows one
to understand the so-called bootstrap percolation paradox. [Hartarsky]

• Large deviation theory for the zero-range process is connected to fluctuat-
ing hydrodynamics and macroscopic fluctuation theory. Mathematically,
it leads to critical parabolic-hyperbolic PDEs. [Fehrman]

• Particles in the symmetric exclusion process on Zd are highly correlated.
Despite this, extremal particles follow asymptotically a Gumbel distribu-
tion, as would be the case for independen random variables. [Sethuraman]

• While classical results on random walks in random environment are given
for almost-every realization of the enviromnent ω, a deterministic con-
dition on ω is provided that guarantees the validity of LLN and CLT.
[Biskup]

• The Glauber dynamic of the Sherrington-Kirkpatrick mean-field spin glass
model satisfies a uniform (modified) log-Sobolev inequality for small but
volume-independent inverse temperature. [Bodineau]

• The stochastic heat flow (SHF) is a non-trivial (and non-Gaussian) scaling
limit of the directed polymer in random environment. The SHF turns out
to be a so-called black noise. [Caravenna]

• Maximal displacement in branching random walks and branching Markov
chains grows linearly with logarithmic corrections. [Gantert]

• The probability of anomalous deviations of the directed landscape can be
estimated via an explicit large-deviation functional. [Virág]

• Einstein relations and scaling limits for reversible diffusions are derived
for systems in various types of random environments. [Mathieu]

• Random walks in Dirichlet environments are connected to edge-reinforced
and vertex-reinforced processes, allowing the analysis of invariant measures
from the particle’s point of view, particularly in dimension two. [Sabot]
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• Random walks conditioned to stay above a concave obstacle exhibit fluc-
tuations of order n1/3 around the obstacle, generalizing known results for
Ferrari-Spohn diffusions in the quadratic case. [Velenik]

• Lace expansion, traditionally used for high-dimensional critical models like
weakly self-avoiding walk, are being extended to the discrete Heisenberg
group. [Kozma]

• Log-Sobolev inequalities in mean-field particle systems are derived by lever-
aging the convexity of the free energy projected onto the mean. [Dagallier]

• The Brownian web distance on coalescing random walks is related to the
Brownian web, and the directed landscape. Weighted versions yield height
distributions interpolating between Gaussian and Tracy-Widom. [Vető]

• Refinement of a well known argument by Fröhlich-Spencer shows logarith-
mic growth of height variance in p-SOS models. [Ott]
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Abstracts

Some recent progress in coagulation processes

Luisa Andreis

(joint work with Tejas Iyer, Wolfgang König, Heide Langhammer,
Elena Magnanini, Robert I.A. Patterson)

Since Smoluchowski introduced his well-known coagulation equation in 1917, there
has been an active line of research focused on understanding the properties of the
solutions to this equation and related models for coagulation. In particular, in
2000, Norris introduced a generalised version of the model, which he named the
cluster coagulation model [3]. This model was intended to extend the framework
established by Smoluchowski, allowing particles to have additional properties be-
yond their mass, such as shape or spatial location.

In this talk we focus on some recent progress in the study of the particle system
that converges to such limiting (spatial) coagulation equation, often called the
Marcus-Lushnikov process. Here particles have a mass and a spatial location (in a
general Polish space S) and after independent exponential random times, pairs of
particles merge into a single one, with their masses being summed. The location
of the resulting new particle in S is chosen according to a certain kernel.

In particular, we present a recent sufficient criterion on the coagulation rate for
the appearance of a giant particle (i.e. a particle whose mass is non-negligible with
respect to the total mass of the system) in the spatial setting [1]. This improves
existing criteria for the occurrence of the so called gelation phase transition in the
spatially homogeneous framework as well, proving in particular the longstanding
conjecture that homogeneous kernels with degree γ > 1 are indeed gelling (as long
as they do not vanish on the diagonal).

Additionally, we present a first approach to study large deviations of the trajec-
tory of such a Markov process in the large volume limit [2]. Borrowing techniques
from statistical mechanics, we express the distribution of particles in terms of a
reference Poisson point process and a pairwise interaction term. Based on this for-
mula, we derive a (conditional) large-deviation principle for the joint distribution
of the particles, with an explicit identification of the rate function. We characterize
its minimizer(s) through a variational problem. Finally, we prove that, in certain
cases (specifically in the absence of gelation), these minimizers indeed solve the
spatial version of the Smoluchowski coagulation equation.

References

[1] L. Andreis, T. Iyer, E. Magnanini, Gelation in cluster coagulation processes,
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De-randomized conductance models

Marek Biskup

A conductance model on Zd is an assignment of a number c(e) ∈ (0,∞) to each
nearest-neighbor edge e of Zd. Given such an assignment, which we will label as ω,
we define a discrete-time Markov chain X = {Xn}n≥0 on Zd by prescribing its
transition probabilities as

Pω(x, y) :=
cω(x, y)

πω(x)
for πω(x) :=

∑

z : (x,z)∈E(Zd)

cω(x, z),

where cω(x, y) stands for the conductance of edge (x, y) in assignment ω. The
symmetry condition cω(x, y) = cω(y, x) implies that πω is a reversible measure.

The Markov chain X generalizes the ordinary simple symmetric random walk
(which corresponds to ω with cω(·) = 1). The prime question of interest is for
what ω the chain X exhibits the “usual” behavior; i.e., obeys the Law of Large
Numbers, the CLT, an Invariance Principle, the Law of the Iterated Logarithm.

The stated question is answered affirmatively for all periodic ω by represent-
ing X as a function of a finite-state Markov chain. Another class of conductance
models for which an affirmative answer exists are ω’s sampled from translation-
invariant ergodic laws. This relies on technical tools from stochastic homoge-
nization: first, the corrector method brought to the subject area by Kipnis and
Varadhan [3] and, second, heat-kernel estimates and/or elliptic regularity theory
brought in by Sidoravicius and Sznitman [4] for uniformly elliptic ω and by An-
dres, Deuschel and Slowik [1] under suitable moment conditions. However, the
effective output is a full-measure set of conductances for which the above holds,
with the null set implicit and impossible to control. In particular, barring the pe-
riodic cases, the method offers no way to decide whether an Invariance Principle
holds for any particular ω of interest.

The work [2] reported here resolves this by identifying a large deterministic set
of conductances for which the desired conclusions can be proved without reliance
on the Spatial Ergodic Theorem and/or L2-limits under environment law that are
the main sources of implicit null sets in the stochastic-homogenization approach.
We will present it under the simplifying assumption of uniform ellipticity; i.e.,

when ω belongs to the set Ω := [a, b]E(Z
d) for some 0 < a ≤ b < ∞. Note that Ω,

endowed with product topology, is a compact metrizable space. We will write
C(Ω) for the space of continuous functions on Ω, use τx : Ω → Ω to denote the
shift by x and set Λr := [−r, r]d ∩ Zd. Two definitions are needed:

Definition 1. We say that ω ∈ Ω is averaging if for all f ∈ C(Ω),

ℓω(f) := lim
r→∞

1

|Λr|
∑

x∈Λr

f ◦ τx(ω) exists.

For ω avearging, f 7→ ℓω(f) is a positivity-preserving continuous linear func-
tional on C(Ω) with ℓω(1) = 1. Since Ω is compact, the Riesz Representation
Theorem yields existence of a unique probability measure Pω on Ω such that
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ℓω(f) =
∫

f(ω′)Pω(dω
′) for all f ∈ C(Ω). As is also checked from the defini-

tion, Pω is translation invariant, i.e., Pω ◦ τ−1
x = Pω for each x ∈ Zd.

Definition 2. An averaging ω ∈ Ω is said to be ergodic if Pω is (jointly) ergodic
with respect to the translations of Zd.

This notion is introduced to exclude the situations when samples from Pω are
not representative of ω as happens for instance when ω takes value 1 in one half-
space and value 2 in the other half-space. Denote

Ω⋆ :=
{

ω ∈ Ω: averaging ∧ ergodic
}

.

The main conclusion of [2] is then summarized in:

Theorem 3. Let ω ∈ Ω⋆. Then

(1) the Weak Law of Large Numbers holds, i.e.,

Xn

n
−→
n→∞

0

in probability, and
(2) an Invariance Principle holds, i.e.,

{ 1√
n
X⌊tn⌋ : t ≥ 0

}

law−→
n→∞

Brownian motion

Here, in both cases, X is started from the origin in Zd.

A short version of the statement is that X behaves as “usual” whenever ω
satisfies the conclusion of the Spatial Ergodic Theorem. Here we note that Ω⋆

is translation invariant and full-measure under any ergodic law on Ω. The above
result thus subsumes the stochastic-homogenization approach and is even stronger
as it is unaffected by zero-density perturbations of ω.

The proofs of Theorem 3 run parallel to the stochastic setting except that all
stochastic averaging must be built out of spatial averaging. A starting point is
the formulation of the “point of view of the particle” which allows representing
averages of functions along the sequence of environments seen by X by way of
a stochastic averaging with respect to Pω. A key input here are the heat-kernel
estimates that apply throughout Ω. The corrector is not introduced as it likely does
not exist in the desired generality; instead, we work with suitable approximations.
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Fluctuations in the weakly asymmetric facilitated exclusion process

Oriane Blondel

(joint work with Guillaume Barraquand, Marielle Simon)

We are interested in the facilitated exclusion process on Z with asymmetry rates
(p, q). This process has transitions • • ◦ → • ◦ • at rate p and ◦ • • → • ◦ • at
rate q. It is known that [4], in finite volume, depending on the initial number of
particles, the system ends up in one of the two following situations after a random
transition time:

(1) a state where all particles are isolated, which is frozen under the dynamics;
(2) a state dubbed “ergodic” where all empty sites are surrounded by particles.

In the latter case the term ergodic comes from the fact that (except for limit cases)
all such states with fixed number of particles are connected by the dynamics. Also
in the ergodic situation, it is possible to view the dynamics as a simple exclusion
process by pairing each empty site with the particle on its right. The pairs ◦• and
non-paired particles then follow an simple exclusion process dynamics.

The hydrodynamic limit of this process is known [5, 7] to be given by

(1) ∂tρ = ∆
(

2ρ−1
ρ 1ρ>1/2

)

in the diffusive time scale if p = q;

(2) ∂tρ + (2p − 1)∂x

(

(1−ρ)(2ρ−1)
ρ 1ρ>1/2

)

= 0 in the hyperbolic time scale if

p 6= q.

We are interested in fluctuations around the rightmost particle in the case of a
step initial configuration · · · • • • ◦ ◦ ◦ · · · . As in [1], we map the corresponding
process to an open ASEP, with injections at rate p and no removal at the origin.
In the weakly asymmetric case p = 1

2e
ε, q = 1

2e
−ε, this can be studied through

the microscopic Cole-Hopf transform (Zt(x))t,x and the techniques of Bertini-
Giacomin [3]. Previous works with a similar strategy include

(1) [3] considers the WASEP on the line and shows convergence of the rescaled
transform Z

ε
t (u) := Zε−4t(ε

−2u) to the multiplicative stochastic heat
equation (SHE)

∂tZ =
1

2
∆Z +Zξ.

(2) [6], with a special choice of reservoir dynamics that puts the system close
to the triple point of the phase diagram for the ASEP current; the limit
equation is the SHE with Neumann boundary condition.

(3) [8], with a similar choice of reservoir dynamics as [6], but – contrary to
previous works – allowing for empty initial condition, shows convergence
of ε−1

Z
ε to the SHE with Neumann boundary condition and δ0 initial

condition.

The main result in [2] is the following. For the weakly asymmetric open ASEP
on Z+ with (12e

ε, 0) reservoir dynamics at the origin, ε−2
Z

ε converges to the
solution of the SHE with Dirichlet boundary condition and initial condition −2δ′0.

A major difficulty is handling the singularity at time 0 of the heat kernel on
R+ with Dirichlet boundary condition..
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Functional inequalities for microscopic dynamics with
random interactions

Thierry Bodineau

(joint work with Roland Bauerschmidt, Benoit Dagallier)

In this talk, we review a method to derive functional inequalities by decompos-
ing a Gibbs measure into simpler measures. This strategy doesn’t rely on detailed
features of the interaction, but only on the spectral structure of the two-body inter-
action matrix. Thus it is well suited to study the Glauber dynamics of models with
random interactions. We illustrate this approach in the case of the Sherrington-
Kirkpatrick (SK) model, but it has been also applied to different dynamics includ-
ing the Kawasaki dynamics on regular random graphs [3] and mean field models
with diluted interactions [5]. We refer to [4] for a survey of the general method
and its links with the renormalisation group.

Let Λ be a finite set and (Mxy)x,y∈Λ be a symmetric matrix. We consider a Gibbs
measure of the form :

(1) ν(dσ) =
1

Z
e−

1
2 (σ,Mσ)

∏

x∈Λ

µ(dσx), (σ,Mσ) =
∑

x,y∈Λ

Mxy σx · σy,

For different choices of the interaction matrix, we can recover :

• The Curie-Weiss model : Mxy = − β
N for all x, y ≤ N

• The SK model : M = βH with β > 0 and H a N × N GOE matrix
consisting of independent Gaussian entries with variance 1/N above the
diagonal.

• The Ising model on a graph : for M the adjacency matrix of the graph
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We consider the Glauber dynamics with generator

LF (σ) =
∑

x∈Λ

1

2
c(σ, σx)

(

F (σx)− F (σ)
)

and jump rates given by the heat bath dynamics

c(x, σ) =
ν(σx)

ν(σx) + ν(σ)
.(2)

The corresponding Dirichlet form reads

Dν(F,G) =
∑

x∈Λ
σ

ν(σ)

2
c(σ, σx)

(

F (σx)− F (σ)
)(

G(σx)−G(σ)
)

.

We say that the measure ν satisfies a modified Log-Sobolev inequality with constant
λ > 0 if for any test function F ≥ 0

(3) EntνF = Eν

(

Φ(F )
)

− Φ(EνF ) ≤
2

λ
Dν(F, logF ) with Φ(x) = x log x.

Theorem 1. Let 〈M〉 be the difference between the largest and the smallest eigen-
value of M and assume that 〈M〉 < 1. ∃γ, such that ν satisfies a modified Log-
Sobolev inequality uniformly with respect to the set Λ:

(4) Entν(F ) ≤
2

γ

(

1 + 〈M〉
1− 〈M〉

)

Dν(F, logF ).

As a consequence of this theorem one can show :

Corollary 2. Let ΓN (M) be the modified Log-Sobolev constant associated with the
quenched SK measure on N sites with coupling matrix M = βH. Then the SK
model with β < 1/4 satisfies a uniform LSI in the following sense: there is cβ <∞
such that

(5) lim
N→∞

PN

(

ΓN (M) > cβ
)

= 1,

where PN stands for the GOE distribution of the coupling matrix.

Theorem 1 was derived in [2] for dynamics with jump rates of the form

c(x, σ) =
1

2

(

1 +
ν(σ)

ν(σx)

)

.

For these rates, a Log-Sobolev inequality was established in [2]. It was noticed in
[7] that the heat bath jump rates (2) were more relevant when considering the SK
model and a spectral gap inequality was obtained in [7] under the same condition
β < 1/4. The approach of [7] follows the stochastic localisation scheme and we
refer to [6] for a survey of this method. Recently, the threshold 1/4 in Corollary 2
has been improved to 0.295 in [1].

As explained in [4, Inequality (6.86)], a minor modification of the proof of
[2] leads to the derivation of the modified Log-Sobolev inequality as stated in
Theorem 1 and Corollary 2 for the Glauber dynamics with the heat bath rates
(2).
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2D directed polymers and stochastic heat flow

Francesco Caravenna

(joint work with Quentin Berger, Anna Donadini, Rongfeng Sun, Nicola Turchi,
Nikos Zygouras)

We consider directed polymers in random environment, a key model in disordered
systems which describes a random walk on Zd interacting via a Gibbs measure
with a space-time random environment composed by i.i.d. random variables. We

focus on the partition function Zβ
N of the model, where N denotes the system size

and β > 0 is the inverse temperature (or coupling constant).

It was shown in the seminal paper [4] by Erwin Bolthausen that Zβ
N is a positive

martingale, hence it converges a.s. to a limit Zβ
∞. A phase transition is observed,

namely there exists βc = β
(d)
c ≥ 0 such that the following holds: for β ≤ βc one has

Zβ
∞ > 0 a.s. (weak disorder) and the behavior of the polymer is diffusive, similar

to the unperturbed random walk; for β > βc one has Z
β
∞ = 0 a.s. (strong disorder)

and the behavior of the polymer is localised and conjecturally super-diffusive, very
different from the unperturbed random walk.

The critical value βc = β
(d)
c is strictly positive in high space dimensions d ≥ 3,

while in low dimensions d = 1, 2 one has βc = 0, that is any β > 0 radically
changes the behavior of the random walk. Since the partition function vanishes

Zβ
N → 0, while Zβ=0

N ≡ 1, it is natural to look for an intermediate disorder regime:

can one rescale β = βN → 0 as N → ∞ in such a way that Zβ
N → Z > 0 where

Z is a non-trivial random limit? For d = 1 a positive answer was given in [1]

with βN = β̂/N1/4, where Z is the solution of the stochastic heat equation. For

d = 2 it was shown in [6] that the correct rescaling is β = β̂/
√
logN and a phase

transition emerges on this scale with critical value β̂c =
√
π: for β̂ < β̂c the limit

Z is a log-normal random variable, while for β̂ ≥ β̂c one has Z = 0.
We focus henceforth on the critical dimension d = 2. Understanding what

happens at the critical value β̂ = β̂c =
√
π requires to consider the space-time
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random field of partition functions Zβ
N (k, z) for random walks starting at time k

from position z ∈ Z2. The diffusively rescaled field uN(t, x) := Zβ
N(N(1−t),

√
Nx)

solves a discretised version of the stochastic heat equation: however, such a SPDE
is ill-defined in space dimension d = 2, so there was no known candidate process to

which uN could converge. It was shown in [8] that, in a whole critical window β̂ =

β̂c(1+θ/ logN) with θ ∈ R, the diffusively rescaled partition functions uN (t, x) dx,
converges to a universal process of random measures on R2, called the critical 2D
Stochastic Heat Flow (SHF).

Several properties of the SHF have been investigated. An axiomatic charac-
terisation based on moments and independence was given in [16], building on a
Chapman-Kolmogorov property from [10]. Convergence to the SHF of the reg-
ularised solution of the stochastic heat equation was also obtained in [16]. The
second moment of the solution had been shown to converge in the seminal pa-
per [3], while third and higher moments were determined in [7, 13]. We refer to
[15, 12] for recent results about moment asymptotics. Singularity and regularity
of the SHF as a random measure was investigated in [9].

Recent progress on the behavior of the SHF in the strong disorder limit θ → ∞
was established in [2]. It was shown that in this limit the SHF locally vanishes as
a random measure on R2, with sharp explicit estimates on the mass of large balls.
This was obtained by bounding truncated and fractional moments, exploiting re-
fined change of measure arguments and coarse-graining techniques. A proof that
the SHF locally vanishes as θ → ∞ (with no quantitative bounds) was indepen-
dently obtained in [11], as a corollary of a conditional GMC structure enjoyed by
the SHF on path space, established in the same paper.

Finally, we mention a noise sensitivity property for directed polymer partition
functions recently proved in [5], which yields the independence between SHF and
white noise. This also follows by the independent approach in [14], where the SHF
was shown to be a so-called black noise.
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Localization schemes for mixing time analysis of Markov chains

Yuansi Chen

(joint work with Ronen Eldan)

We introduce the localization schemes framework [4] for analyzing the mixing time
of Markov chains. At the heart of the framework is the concept of a localization
scheme which, to every probability measure , assigns a martingale of probability
measures which localize in space as time evolves. The use of localization schemes
allows us to reduce the mixing time analysis on the original target distribution
to that on many simpler transformed distributions. We demonstrate this frame-
work via three examples. First, we show how coordinate-by-coordinate localization
scheme gives an alternative interpretation of the spectral independence framework
for mixing time analysis. Second, we apply the framework to derive the mixing
time of a proximal sampling algorithm for sampling log-concave distributions, as
well as the state-of-the-art mixing time analysis of the hit-and-run algorithm for
sampling isotropic convex bodies. Finally, we discuss negative fields localization
to obtain the first O(n log(n)) mixing time bound of the Glauber dynamics for
sampling the hardcore model in the tree-uniqueness regime.

Problem introduction. Suppose that we would like to sample from a measure
ν on a set Ω. For the sake of discussion, suppose that either Ω = {−1, 1}n is
the Boolean hypercube or Ω = Rn. A common type of sampling algorithms is
to introduce a Markov chain whose stationary distribution is ν and which mixes
rapidly. For example, on Ω = {−1, 1}n, a widely used Markov chain for sampling
from ν is the Glauber dynamics. At any state x ∈ supp(ν), the Glauber dynamics
chooses a uniformly random coordinate i ∈ [n] and transitions to the next state
according to the law ν conditioned on the event that all coordinates other than i
are fixed. We say a Markov chain (Xt)t≥0 with stationary measure ν mixes rapidly
if for any error tolerance ǫ > 0, there is a reasonably-small time t(ǫ) such that the
total variation distance between the law of Xt and ν is smaller than ǫ for t ≥ t(ǫ).

In recent years, two seemingly-unrelated new techniques were introduced to
study Markov chain mixing through functional inequalities:
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• The spectral independence notion was first introduced by Anari, Liu and
Oveis Gharan [1] to develop a theoretical framework which reduces mix-
ing time analysis to establishing spectral independence for measures on
{−1, 1}n. The proof of the main results there has close connections with
the field of high-dimensional expanders. The stochastic localization tech-
nique, first introduced by the second author in [2], is the key ingredient
used in the proofs of several functional inequalities, both in the contin-
uous setting where Ω = Rn and ν is a log-concave measure and in the
setting of the Boolean hypercube. In particular, the technique gives the
first sub-polynomial bounds, due to the first author ([3]), for the so-called
Kannan-Lovász-Simonovits conjecture ([5]) and Bourgain’s slicing prob-
lem (see [7]).

In this work, we unify and extend these two techniques towards a new frame-
work which can be used to establish mixing time analysis in various settings. By
walking through several examples of sampling problems via the proposed frame-
work, we also point out the common principles underlying the aforementioned two
techniques.

One main principle underlying both techniques is that concentration bounds on
a measure can be deduced from bounds on the covariance structure of a certain
family of measures which are transformations of the original measure. In the
spectral independence framework, a sufficient condition for a spectral gap is the
boundedness of the pairwise influence matrices [1] of restrictions of the measure.
It is not hard to see that the pairwise influence matrices are related to covariance
matrices. In the stochastic localization framework, a spectral gap is implied by
the boundedness of the covariance matrix along a certain stochastic process which
is associated with the measure.

Starting with a new point of view which shows that the above two reductions
follow from the exact same argument, our work has three main contributions.
First, we generalize the stochastic localization framework to introduce localization
schemes, which also gives rise to a natural associated family of Markov chains.
Second, using the localization schemes, we simplify the mixing time proofs that
were introduced in the work related to the spectral and entropic independence,
bypassing the need on the theory of high-dimensional expanders. Third, we not
only provide self-contained and (arguably) simpler proofs for many previous mixing
time analyses, but also establish new mixing time results.
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A criterion on the free energy for log-Sobolev inequalities in
mean-field models

Benoit Dagallier

(joint work with Roland Bauerschmidt, Thierry Bodineau)

We consider N particles in Rd with mean field interaction as described by the
following probability measure:

mN
T (dx) =

1

ZN
T

e−HN
T (x) dx,

where for x ∈ (Rd)N the energy HN
T (x) is given by:

HN
T (x) =

1

2NT

N
∑

i,j=1

W (xi, xj) +

N
∑

i=1

V (xi).

Above, V : Rd → R is a confinement potential, W : Rd × Rd → R is an interac-
tion term, with strength parametrised by the temperature T > 0. The constant
ZN
T is a normalisation making mN

T a probability measure. The typical example
we have in mind is the so-called Curie-Weiss model where W (x1, x2) = −(x1, x2)
(x1, x2 ∈ Rd), and V (x1) = λ|x1|4/4− |x1|2/2 (x1 ∈ Rd, λ > 0).

The aim of the talk is to bound the speed of convergence of the following
Langevin dynamics, known to converge to mN

T in long time:

dXN
t = −∇HN

T (XN
t ) dt +

√
2 dBN

t ,

with BN
· a standard Brownian motion in (Rd)N . This is done by bounding the

log-Sobolev constant of the dynamics, that is the best constant γ > 0 such that,
for all smooth compactly supported test functions F : (Rd)N → R:

EntmN
T
(F 2) ≤ 2

γ
EmN

T

[

|∇F |2
]

,

where EntmN
T
(F 2) = EmN

T
[F 2 log(F 2)]− EmN

T
[F 2] logEmN

T
[F 2].

In cases such as the Curie-Weiss model there is a phase transition: there is a
temperature Tc > 0 above which γ is supposed to be bounded below uniformly in
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N (and vanishing with N if T < Tc). Tc is defined in terms of the free energy/large
deviation rate function of the model:

Tc = inf
{

T > 0 : FT has a unique minimiser
}

,

with FT the real-valued functional acting on probability measures ρ = ρ(x) dx on
Rd according to:

FT (ρ) =

∫

ρ(x) log ρ(x) dx +

∫

V (x) ρ(dx) − 1

2T

(

∫

x ρ(dx)
)2

,

and FT (ρ) = ∞ if ρ is not absolutely continuous. Previous results such as [2] only
prove uniformity in N of γ for temperatures T ≫ Tc (but have the advantage of
applying in much more general settings than quadratic interactions).

We prove in [1] that the log-Sobolev constant γ of mN
T is indeed bounded below

uniformly in N for any T > 0 such that the free energy has the following convexity
property:

∃λT > 0, ∀m ∈ Rd, ∇2
F̂T (m) ≥ λT id,

where F̂T : Rd → R is the following projection of the free energy on the mean:

F̂T (m) = inf
{

FT (ρ) :

∫

x ρ(dx) = m
}

, m ∈ Rd.

The proof relies on a one-step renormalisation argument, which concretely corre-
sponds to using the following Gaussian identity:

exp
[ 1

2NT

∣

∣

∣

N
∑

i=1

xi

∣

∣

∣

2 ]

∝
∫

Rd

exp
[

− N |ϕ|2
2T

+
1

T

(

ϕ,

N
∑

i=1

xi

)]

dϕ.

This splits the measure mN
T in two probability measures: an infinite-temperature

part (i.e. a product measure) driven by an external field ϕ ∈ Rd, and a low-
dimensional part νr(dϕ) ∝ e−NVT (ϕ) dϕ, where the so-called renormalised poten-
tial VT reads:

VT (ϕ) =
|ϕ|2
2T

− log

∫

Rd

e−V (x1)+(ϕ,x1)/T dx1

=
|ϕ|2
2T

+ inf
ρ

{

∫

ρ(x) log ρ(x) dx +

∫

V (x) ρ(dx) − 1

T

(

ϕ,

∫

x ρ(dx)
)}

.

All information on phase transitions is encoded in VT , in particular on its convexity.

This convexity is equivalent to convexity of F̂T as the two can be shown to more
or less be Legendre transforms of one another.
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Self-interacting walks in high dimensions

Dor Elboim

(joint work with Antoine Gloria, Felipe Hernandez, Gady Kozma, Allan Sly)

A self-interacting random walk is a random process evolving in an environment
which depends on its history. In this talk, we will discuss a few examples of these
walks including the Lorentz gas, the mirror walk, the once-reinforced walk and the
cyclic walk in the interchange process. I will present a method to analyze these
walks in high dimensions and prove that they behave diffusively.

Transience and mixing time for the FEP and the SSEP with traps

Clément Erignoux

(joint work with Brune Massoulié)

The Facilitated Exclusion Process (FEP) has attracted a lot of attention in recent
years as a prototypical kynetically constrained lattice gas with hard constraint,
which is both gradient and non-reversible w.r.t. Bernoulli product measures. It
exhibits two distinct macroscopic phases, one ergodic and the other one frozen,
depending on whether the density is super or subcritical, which are both reached
after a transience time. In the supercritical regime, once the ergodic phase is
reached, the FEP roughly behaves as the classical SSEP, and its mixing time in
particular can be estimated. Starting from a general transient state, however, the
transience time needs to be sharply estimated to retain access to the mixing time,
which is not by any means straightforward because the FEP is not attractive.

For this reason, many results on the FEP so far have relied to various extent
on mapping it to other processes [2, 3], in particular to the SSEP and a facilitated
Zero-Range Process, which are both attractive. In that spirit, we introduced a new
model, called SSEP with traps (SWT), whose transience time can be estimated as
well as its mixing time, as a parent model of the SSEP. The SWT is defined on the
ring of size K, where K represents the number of particles in the original FEP.
Each site k of the SWT is either occupied by a particle (ξk = 1), empty (ξk = 0),
or a trap of depth a > 0 (ξk = −a). Like in the SSEP, particles jump at rate 1
to neighboring sites not already containing a particle. Whenever a particle jumps
towards a trap, it gets stuck there : the particle is destroyed, and the trap depth
decreases by 1.

Total trap depth in the system and number of particles can both only decrease,
and decrease by the same amount. In particular, the SWT remains is a transient
state as long as both particles and traps are present in the system. Afterwards,
either all particles have disappeared (subcritical case) and the system freezes, or
all traps have disappeared (supercritical case) and we are left with a classical -
ergodic- SSEP. Transient , ergodic and frozen SSEP are in direct correspondance
with those of the FEP, so that to estimate the FEP’s transience time it is enough
to estimate the SWT’s.
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The big upside is that the SWT is attractive. In particular any configuration can
be associated with a critical configuration that takes longer to leave the transient
component. To estimate the SWT’s worst transience time, we therefore estimate
its critical transience time starting with configurations with a single trap, which
can be coupled with boundary-driven SSEP. The general case can also be treated
by delicate coupling arguments, and proves that the transience time for the SWT
undergoes cutoff in a region of size o(t⋆K) around t⋆K := K2 logK/π2.

Estimating the transience time allows to estimate the SWT’s mixing time as
well, which is in most cases is not of the same order as the transience time inducing
cutoff. These results can then be transfered to the FEP, both for the transience
time and the mixing time [4], both significantly improving on previous results
[2, 1].
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[4] B. Massoulié, Cutoff for the mixing time of the Facilitated Exclusion Process, preprint
(2024), https://arxiv.org/abs/2412.04032.

Large deviations of the zero range process and conservative SPDE

Benjamin Fehrman

(joint work with Benjamin Gess, Daniel Heydecker)

We will discuss the derivation of a full large deviations principle for the zero range
particle process in finite and infinite volume, and its connections to macroscopic
fluctuation theory and fluctuating hydrodynamics. In particular, we will explain
how such questions lead to the analysis of certain parabolic-hyperbolic PDE in
energy critical spaces, whose well-posedness is based on concepts of renormalized
solutions and the equation’s kinetic form. We will then introduce the complimen-
tary theory of fluctuating hydrodynamics in the context of the zero range process,
which is based on an approximating sequence of conservative stochastic PDEs.
We will study their stochastic dynamics, including through the construction a
random dynamical system and invariant measure, and make rigorous in this con-
text the informal connection between fluctuating hydrodynamics and macroscopic
fluctuation theory.
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Some questions on branching Markov chains

Nina Gantert

(joint work with Viktor Bezborodov, Alice Callegaro, Carlo Scali)

Branching random walks are systems of particles which produce offspring and
also move in space. A simple model is the following: particles produce offspring
according to a fixed offspring law µ, the offspring particles take i.i.d. steps in
space according to a fixed probability measure ν on Rd. Assume that the mean
m of µ measure satisfies 1 < m <∞. This is a classical model, see [5, 4, 7, 10, 8],
with a lot of recent interest, see [13] for a monograph on the topic. Replacing the
branching random walk with a branching Brownian motion, there is considerable

recent progress about the maximal distanceM
(d)
t of the particle cloud to the origin

at time t. In the one-dimensional case, it is known, under additional assumptions,

that M
(1)
t grows linearly and the second term is logarithmic. There are refined

results about the point process of particles seen from the right-most particle. In
the multidimensional case, it was proved for branching Brownian motion in Rd

that the maximal distance M
(d)
t to the origin satisfies the following:

(1) (M
(d)
t −m

(d)
t )t≥0 is tight, where m

(d)
t =

√
2t+

d− 4

2
√
2
ln t .

see [12]. Later, it was proved that M
(d)
t − m

(d)
t converges in law to a random

shift of a Gumbel law, see [9]. Building on [9, 14, 2] investigate the corresponding
extremal point process and prove convergence to a randomly shifted decorated
Poisson point process.
In a joint work with Viktor Bezborodov, see [3], we have generalized (1) to the
case of radially symmetric step distributions ν. Our main results is the following.
Define for u ∈ R

Φ(u) = m · E
[

eu〈X,θ〉
]

where X has law ν and θ ∈ Sd−1, where Sd−1 is the unit sphere in Rd. Let

(2) Ψ(u) = lnΦ(u), Ψ′(u) =
Φ′(u)

Φ(u)
.

Note that since ν is radially symmetric, the functions Φ(u), Φ′(u), Ψ(u), and
Ψ′(u) do not depend on the direction θ ∈ Sd−1. The following equation plays an
important role:

(3) uΨ′(u)−Ψ(u) = 0.

We assume that there exists λ ∈ (0,∞) with Φ(λ) <∞ solving equation (3). Let

(4) rt :=
Ψ(λ)

λ
t+

d− 4

2λ
ln t .
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Then, under additional assumptions for which we refer to [3],

(5) sup
t≥0

P
{
∣

∣M
(d)
t − rt| ≥ y

∣

∣S
}

→ 0 as y → ∞ .

Here, S is the event that the branching process survives. In other words, condi-

tioned on survival, the laws of (M
(d)
t − rt) are tight.

We also discuss branching Markov chains: here the offspring particles take in-
dependent steps according to a Markov chain. This includes the case where the
Markov chain is a random walk in random environment. We mention some work
in progress with Alice Callegaro and Carlo Scali where the Markov chain is a one-
dimensional random walk in random environment. The results are similar to the
results in [6] and [11], where the fixed offspring distribution is replaced with a
random sequence. It turns out that the fluctuations of the environment dominate

and the second term of M
(1)
t is of order

√
t.
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Diffusivity of Glauber dynamics for dimers

Harry Giles

(joint work with Giuseppe Cannizzaro, Fabio Toninelli)

We consider Glauber dynamics on dimer configurations of the hexagonal lattice.
To each configuration, there is a canonical association with a discrete stepwise
height function h : Z2 → Z. Therefore, the Glauber dynamics can also be seen as
a model of discrete surface evolution in 2 + 1 dimensions.

The dynamics that we consider were previously studied in [1, 2] and convergence
was proven under diffusive scaling N−1

h(N2t, Nx) to a hydrodynamic limit, given
by the solution of the following non-linear PDE:

∂th = µ(∇h)
2
∑

i,j=1

aij(∇h)∂2ijh

with explicit coefficients a ∈ R2×2, µ ∈ R that are given in terms of trigonometric
functions of ∇h.

Naturally, one would like to determine the order and nature of fluctuations
around the hydrodynamic limit. Linearising the equation leads one to conjecture
that the fluctuations ought to be described by the additive stochastic heat equa-
tion. In detail, if the dimer configurations are initialised according to the Gibbs
stationary state πρ, under which E[∇h] = ρ, then the lower order fluctuations
h(N2t, Nx)− E[h(N2t, Nx)] should converge to the solution of

∂th = µ(ρ)∇ · a(ρ)∇ψ +
√

2µξ

in which ξ : R+ × R2 → R is a space-time white noise. In particular, the model
lies in the Edwards–Wilkinson (EW) class.

We present a Green-Kubo formula for the diffusivity of the model, defined
according to

Dij(t) =
1

t

∑

x∈Z2

xixjSt(x)

in which St(x) is the two-point kernel St(x) ∼ E[∇ht(x) · a(ρ)∇h0(0)] after suit-
able recentering and renormalisation. The Green-Kubo formula yields an explicit
expression for the diffusivity, D(t) = 2µa, which confirms that the fluctuations are
indeed in the EW class.

One of the many challenges of the model are the long range correlations present
in the Gibbs state πρ, in which two point correlations decay like |x|−2. In par-
ticular, they are not summable, and the definition of D(t) as above is put into
question. We overcome this problem, and others, by utilising the congested na-
ture of dimers under the stationary state. The explicit formulas are a consequence
of the fact that the dynamics satisfy a type of gradient condition.
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Locality in bootstrap percolation

Ivailo Hartarsky

(joint work with Christian Maura, Augusto Teixeira)

Bootstrap percolation is a class of cellular automata which may be viewed as
models of nucleation and metastability. They also present deep connections to
the the low-temperature stochastic Ising model, kinetically constrained models
and others. In Froböse bootstrap percolation, iteratively, any vertex of the square
lattice Z2 that is the only healthy vertex of 4-cycle becomes infected and infections
never heal.

In [1], we prove that if vertices are initially infected independently with proba-
bility p→ 0, then with high probability the infection time of the origin τ is

exp

(

π2

6p
− π

√

2 +
√
2√

p
+
O(log2(1/p))

3
√
p

)

.

We achieve this by proposing a new paradigmatic view on bootstrap percolation
based on locality. Namely, we show that studying the Froböse model is equivalent
in an extremely strong sense to studying its local version. That is, the infection
time τloc of the local Froböse model satisfies

1 ≤ τloc
τ

≤ exp
(

log19(1/p)
)

with high probability as p → 0. In the local model, growth occurs starting from
a single location, rather than everywhere in parallel. This greatly simplifies its
study, since it reduces to an explicit finite range Markov chain on N2 × S for a
suitable finite space S encoding the size and frame state of a growing rectangle.

The locality viewpoint is also useful for understanding the so-called bootstrap
percolation paradox regarding the systematic discrepancies between rigorous re-
sults and numerical predictions on the asymptotics of τ and related quantities. In-
deed, in [2], we propose and implement an exact (deterministic) algorithm which
exponentially outperforms previous Monte Carlo approaches. It computes the
probability that the framed rectangle Markov chain reaches states corresponding
to a critical droplet (suitably large rectangle fully infected only using infections
contained in it). Using the resulting data for extremely large systems (much larger
than any physically meaningful size) allows us to clearly showcase and quantify
the slow convergence proved rigorously, as well as to explain the previous disagree-
ments between theory and numerics. The treatment applies identically to the more
classical two-neighbour model on the plane.

We also present work in progress on the modified two-neighbour model. In this
model, a vertex becomes infected when it belongs to a 4-cycle of Z2 with two non-
adjacent infections. This model presents several additional challenges, particularly
because its locality ratio τloc/τ is of order 1/

√
p, much larger than the Froböse
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case. This much weaker locality is visible even in direct Monte Carlo simulations.
Thanks to the development of robust a priori bounds, we are able to prove the
above quantitative locality and then, thanks to the local model, we obtain

τ = exp

(

π2

6p
−
√

2 +
√
2

2
√
p

− Θ(1)√
p

)

.

This model is the first step towards generalising the locality approach to other
bootstrap percolation models in the critical universality class.
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Lace expansion on the Heisenberg group

Gady Kozma

Lace expansion is a technique for understanding critical models in high enough
dimension. Started with the seminal paper [3] handling weakly self-avoiding walk
and with important contributions from [4] and [5], it had evolved to cover many
more models and give much more precise results.

In the talk we described an approach to lace expansion developped jointly with
Erwin Bolthausen and Remco van der Hofstad (and based, originally, on [1]).
We focused on the analytic core of lace expansion, which is the new part in our
approach. This approach was used in [2] to give a new proof for the classic result of
weakly self-avoiding walk in 5 or more dimensions. Finally, we mentioned ongoing
work to use this approach for the Heisenberg group (or, to be more precise, versions
of the discrete Heisenberg group with at least 5 dimensional volume growth).
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Critical dynamical fluctuations in reaction-diffusion processes

Claudio Landim

(joint work with Benoit Dagallier)

We consider a one-dimensional microscopic reaction-diffusion process obtained as a
superposition of a Glauber and a Kawasaki dynamics. The reaction term is tuned
so that a dynamical phase transition occurs in the model as a suitable parameter
is varied. We study dynamical fluctuations of the density field at the critical point.

We characterise the slowdown of the dynamics at criticality, and prove that
this slowdown is induced by a single observable, the global density (or magneti-
sation). We show that magnetisation fluctuations are non-Gaussian and charac-
terise their limit as the solution of a non-linear SDE. We prove, furthermore, that
other observables remain fast: the density field acting on the fast modes (i.e. on
mean-0 test functions) and with Gaussian scaling converges, in the sense of finite
dimensional distributions, to a Gaussian field with space-time covariance that we
compute explicitly.

The proof relies on a decoupling of slow and fast modes relying in particular
on a relative entropy argument. Major technical difficulties include the fact that
local equilibrium does not hold due to the non-linearity, and proving replacement
estimates on diverging time intervals due to critical slowdown.
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From the lifted TASEP to true self-avoiding walks

Brune Massoulié

(joint work with Clement Erignoux, Werner Krauth, Francois Simenhaus,
Cristina Toninelli)

The lifted TASEP is a variant of the totally asymmetric exclusion process where
at each time-step, instead of trying to move forward a uniformly chosen particle,
we try to move forward a particle marked by a pointer, which then may pass the
pointer to another particle. We establish connections from this system to true
self-avoiding walks (TSAW) and deduce some timescales of the dynamics [7, 4].

This model was introduced by physicists [5] as a toy model for non-reversible
event chain Monte Carlo algorithms, which are expected to reach stationarity
faster than reversible dynamics. The lifted TASEP, as well as many non-reversible
Markov processes used in Monte Carlo [3], are liftings of Markov chains. There are
theoretical guarantees over how much a non-reversible lifting can reduce the mixing
time [1] (time to be close to stationarity) or the relaxation time [3] compared to the
initial Markov chain. It is therefore important to understand if the lifted TASEP
accelerates compared to simple exclusion and how far this is optimal.
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Furthermore, it was observed numerically by [6] that at stationarity, the pointer’s
motion seems to have the same super-diffusive scaling and the same density as the
true self-repelling motion (TSRM), the latter having been computed in [2].

We first give some heuristics on the system’s behaviour, based on the observa-
tion that the pointer’s motion depends on the particle density around it [7].

We then study a slight modification of the model on Z and make two connections
with true self-avoiding walks:

• Started from a “step” initial configuration, meaning all particles in the
left half and all empty sites in the right half, the pointer performs a zero
temperature version of the TSAW with directed edges (introduced in [8]).

• In general, the particle system coincides exactly with the toy model for
the TSRM that was introduced in [9].

The first observation allows to understand well the system started from the
step: the explored zone grows in a diffusive way, and the law of the configuration
in the explored zone is very close to stationarity.

With the second observation, we can use the “maze” representation of [9] to
study the model. This explains the super-diffusive scaling of the pointer’s motion
at stationarity as well as the TSRM density observed in the limit by [6].
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Einstein relations and scaling limits for reversible diffusions in a
random environment

Pierre Mathieu

(joint work with Alessandra Faggionato, Nina Gantert, Quentin Ghibaudo,
Andrei Piatnitski)

The derivation of the (badly) so-called Einstein relation expressing the identity of
the effective diffusivity and the (derivative of the) effective velocity under a small
forcing for processes in a random environment is a nice, largely open, question
that both illustrates the fluctuation-dissipation theorem [6] and extends the linear
response theory of Ruelle [1] to highly non-hyperbolic models. It, so-far, resisted
different attempts based on functional analytic tools e.g. [5] until we solved it
with a proof based on a combination of PDE estimates and probabilistic tools, in
the case of environments with a finite range of dependence [3]. Indeed our proof
uses the decomposition of the trajectory of a reversible diffusion in a random
environment with finite range of dependence into i.i.d. pieces along a sequence of
regeneration times [9], [10]. A by-product of [3] is a complete description of the,
diffusive and ballistic, scaling limits of the position of the diffusion in all the regimes
where time goes to infinity and the forcing vanishes. (The diffusive regimes had
already been derived from homogenization results in [7] for quite general models
with a stationary ergodic environment.) A similar strategy may also be applied
to analyse other Fourier modes when the forcing is periodic in time, thus yielding
so-called Nyquist relations [4], [2]. It can also be extended to other observables
than the position of the diffusion, to get a full fluctuation-dissipation theorem [8].

In the talk, I gave an introduction to this topic and insisted on the need to
formulate alternative proofs to get a better understanding of the exact scope of
the Einstein relation.
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The Critical Stochastic Burgers Equation

Quentin Moulard

(joint work with Giuseppe Cannizzaro, Fabio Toninelli)

The Stochastic Burgers Equation (SBE) was introduced by van Beijeren, Kutner,
and Spohn [1] in the 1980s as a mesoscopic model for driven diffusive systems, such
as ASEP. In the subcritical dimension d = 1, it coincides with the derivative of
the KPZ equation whose large-scale behaviour is polynomially superdiffusive and
governed by the KPZ Fixed Point. By contrast, in the supercritical dimensions
d ≥ 3, it was recently shown to be diffusive and to rescale to an anisotropic
stochastic heat equation. At the critical dimension d = 2, the SBE was conjectured
to be logarithmically superdiffusive with a precise exponent, but this had only been
established up to lower-order corrections. In recent joint work with G. Cannizzaro
and F. Toninelli [2], we derive the precise large-time asymptotics of the diffusivity
in d = 2 and show that, after rescaling with the logarithmic corrections, the
fluctuations satisfy a central limit theorem. This establishes the first superdiffusive
scaling limit result for a critical SPDE, beyond the weak-coupling regime.
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Mixing times for the open ASEP

Dominik Schmid

(joint work with Patrik Ferrari)

The open asymmetric simple exclusion process (open ASEP) is among the best
studied examples of an interacting particle system. It can intuitively be described
as follows. Consider a segment of length N ∈ N and bias parameter q ∈ [0, 1).
Each site of the segment is either occupied by a particle, or left vacant. The
particles perform independent random walks with jumps to the right at rate 1,
and to the left at rate q. However, a jump is performed if and only if the target
is a vacant site. This exclusion rule ensures that each site is occupied by at most
one particle at a time. In addition, for some fixed α, β, γ, δ ≥ 0, we let particles
enter at site 1 at rate α, exit at site N at rate β, exit at site 1 at rate γ, and enter
at site N at rate δ, respectively, subject to the exclusion constraint.
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Depending on the choice of boundary parameters, it is well-known that the
open ASEP can be partitioned into three phases: The high density phase, the
low density phase, and the maximal current phase. In joint work with Ferrari, we
study the speed of convergence of the open ASEP towards the stationary measure
in terms of total-variation mixing times. We focus on the triple point, where all
three phases meet and the stationary distribution is uniform on the state space,
and show that the mixing time is of order N3/2. This extends earlier work [4, 5]
for mixing times of the open TASEP, where q = γ = δ = 0, which crucially relied
on an alternative representation of the open TASEP as a corner growth model.

For the proof of mixing times at the triple point, we follow the overall strategy
from Gantert et al. in [2] for mixing times of the open ASEP in the high and
low density phase. We investigate the basic coupling between two open ASEPs,
started from the extremal configurations, where all sites are either fully occupied
by particles or are left empty, respectively. In particular, the corresponding dis-
agreement process starts from all sites on {1, . . . , N} being initially occupied by
second class particles. We now obtain an upper bound on the mixing by providing
estimates on the time it takes for all second class particles to exit the segment. To
this end, we use arguments from [2] to bound the exit time via effective bounds on
the expected current and the current fluctuations for the open ASEP. In the work
[1], we achieve effective bounds on the expected current by a detailed analysis of
a classical formula by Uchiyama, Sasamoto, Wadati from [6]. For the most deli-
cate part of the argument, i.e., controlling the fluctuations of the current of the
open ASEP, we introduce a novel multi-species coupling argument. This allows
us to compare current fluctuations between the open ASEP and the ASEP on the
integers. For the latter, precise moderate deviations were recently established by
Landon and Sosoe [3].
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Some new results about the roughening transition

Sébastien Ott

(joint work with Hugo Duminil-Copin, Gady Kozma, Florian Schweiger)

We revisit the famous 1981 paper of Fröhlich and Spencer, [4], on the roughening
transition in a multiple-steps project. The roughening transition is a conjectured
change of behaviour of the interfaces in the 3D Ising model: going from O(1)
fluctuations for T < TR to unbounded variance of height difference for T ∈ [TR, Tc],
where Tc denotes the critical temperature of the system. The bound TR > 0 was
proven in the seminal work of Dobrushin, [3]. The bound TR < Tc is only proven
to occur in effective models of interfaces: integer-valued height functions on Z2.
Whilst new approaches to the roughening transition (for height functions) arose
in the past few years, see for example [1, 2], or [5], they impose severe limitations
on the models they apply to.

The project is to revisit and extend the FS argument, initially designed for
nearest-neighbour height function models on Z2 to a larger class of models (long
range, many-body interactions), allowing eventually to go beyond effective models.
Our main motivation is to be able to handle the following modified Ising model:

H(σ) = −
∑

x

(σxσx+e1 + σxσx+e2 + Jσxσx+e3).

As J → ∞, the interface of this model under Dobrushin boundary conditions
converges to the SOS model, whilst for J = 1, it is the standard Ising model.

The first step of our program was recently posted on the arXiv, [6]. There,
we clean up and optimize the presentation of the FS argument in the case of the
nearest-neighbour p-SOS model with p ∈ (0, 2], obtaining that, at sufficiently low
temperature, the variance of the spin in the middle of a box of size n scales at least
like ln(n), whatever the boundary conditions. In a second step, we will remove
the condition of being nearest-neighbour/finite range, and allow for interactions
with polynomially decaying couplings. In a third step, we will extend the method
to handle many-body interactions, allowing in particular to prove the roughening
transition in the modification of the Ising model mentioned above with J large
enough.
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On minimizing curves in a Brownian potential

Felix Otto

(joint work with Matteo Palmieri, Christian Wagner)

Given independent Gaussians {ξ(z)}z on the lattice Zd, the random field Ising
model assigns to a configuration σ : Zd → {0, 1} the energy

E(σ) = P (σ)− ǫF (σ) :=
∑

edges(z,z′)

|σ(z)− σ(z′)| − ǫ
∑

vertices z

ξ(z)σ(z),

where the parameter ǫ amounts to the disorder strength. Although the Ising
model, which is recovered at ǫ = 0, admits the two local minimizers1 σ∗ ≡ 0 and
σ∗ ≡ 1, the following uniqueness result proven by Aizenman and Wehr holds at
any non-trivial disorder.

Theorem 1 (see [1]). If ǫ 6= 0, then almost surely there exists a unique local
minimizer if and only if d ≤ 2.

The critical role of dimension d = 2 can be seen by the following heuristic:
When changing the spins inside a box Λ, the changes in perimeter P and field
energy F are proportional to #∂Λ and (#Λ)

1
2 , which exhibit the same scaling

behavior on large scales precisely in dimension d = 2.

Assuming now d = 2, Ding and Wirth recently gave upper and lower bounds on
the correlation length in the regime 0 < ǫ≪ 1.

Theorem 2 (see [3]). Let σ∗ be the minimizer of E with the constraint σ(z) = 0

for z /∈ [−L,L]2. Then Eσ∗(0) ≥ 1
3 if and only if lnL & ǫ−

4
3 .

Prior to that Leighton and Shor studied a variant of the problem in form of an
isoperimetric problem: maximize

F (Σ)

P (Σ)
:=

#{Z : Z ∈ Σ} −L
2(Σ)

H1(∂Σ)
for a Poisson Point Process Z

among all polygons Σ with side-length ≥ 1 contained in [−L,L]2. This problem
is the dual, in the sense of convex analysis, to the semi-discrete Wasserstein W∞

matching between Z and the Lebesgue measure L
2 on [−L,L]2.

Theorem 3 (see [4]).

E sup
Σ

F (Σ)

P (Σ)
∼ ln

3
4 L.

The two field terms, F (σ) and F (Σ), amount to different approaches to in-
troducing an ultra violet-cut off (at scale 1) to a two-dimensional white noise.
Consequently, they are expected to exhibit the same large-scale behavior.

1meaning that E(σ∗) −E(σ) ≤ 0 whenever σ∗ and σ differ in finitely many points
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Our interest lies in a reduced model: Starting from E, we zoom in on a portion of
the boundary ∂{σ∗ = 1}, which we assume to be the graph of a height function
h∗ that can be modeled as a minimizer of

E(h) = P (h)− ǫF (h) :=
1

L

∫ L

0

dx
1

2
(
dh

dx
)2 − ǫ

1

L

L−1
∑

x=1

W (x, h(x))

among all piecewise linear functions on intervals of size 1 with h(0) = h(L) = 0.
Replacing E(σ) by E(h) we make two approximations: a geometric linearization
of the perimeter P and an approximation of discrete random walks by continuous
Brownian motions {W (x, ·)}x in the field F .

Up to the rescaling h = ǫ
2
3 ĥ, we can assume ǫ = 1 in the linearized model. We

established the following homogenization result.

Theorem 4. There exists a deterministic constant E∗ ∈ (0,∞) such that almost
surely

lim
L→∞

minh(P − F )

lnL
= −E∗ and lim

L→∞

P (h∗)

lnL
=

1

3
E∗.

However, the laws of L−1h∗(L·) are tight in the Hölder space C1−([0, 1]).

Our proof relies on the existence of a net of paths H ⊂ {h : [0, L] → [0, L]} such
that, on the one hand, h∗ in well approximated (in the energy topology) by an
element h̄∗ ∈ H, and on the other hand, the cardinality of H is sufficiently small
to control random errors (which appear in form of a supremum over H) associated
with replacing h∗ by h̄∗. Thereby we rely on the following second result.

Theorem 5. Given the Littlewood-Paley decomposition h∗ =
∑

l h∗l over dyadic
scales 1 ≤ l < L, we have that

for every l P (h∗l) . 1 in terms of exponential moments.

As a corollary of Theorem 4, we obtain a refinement of Talagrand’s chaining
bound for suprema of Gaussians with an alternative proof particular to our setting.

Corollary 6. With the constant from Theorem 4

E∗ = 3
(1

4
lim
L↑∞

supP (h)≤1 F (h)

ln
3
4 L

)
4
3

.
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About the point of view of the particle for random walks in
Dirichlet environment

Christophe Sabot

(joint work with Adrien Perrel)

Random Walks in random Dirichlet Environment (RWDE) is the model of random
walks in random environment with i.i.d. Dirichlet distributed transition probabil-
ities at each site. With this specific choice of environment the annealead law is the
directed Edge Reinforced Random Walk. Besides, under some condition on the
weights the time-reversed walk is again a RWDE. This was used e.g. in dimension
d ≥ 3, to prove the existence of an invariant measure for the process viewed from
the particle, absolutely continuous with respect to the static law. We will present a
new identity for RWDE, inspired by the Vertex Reinforced Jump Process (VRJP),
more precisely by its non-reversible generalization, the ⋆-VRJP. From this identity
we will deduce some sufficient conditions in dimension d = 2 for the existence or
non-existence of an absolutely continuous invariant measure for the process viewed
from the particle.

References

[1] A. Perrel and C. Sabot, Invariant measure for the process viewed from the particle for 2D
random walks in Dirichlet environment, 2025, https://arxiv.org/abs/2501.06767

Extremes in symmetric exclusion on Zd

Sunder Sethuraman

(joint work with Adrian Gonzalez Casanova, Michael Conroy)

We consider the scaling limits of extremes Xt = max{x1 : η(x) = 1} in symmetric
exclusion processes, with nearest-neighbor jump rates, starting from types of ‘step’
profiles. In d = 1, such profiles are versions of η(x) = 1(x ≤ 0), and in d > 1 the
profiles have support on parts of half spaces. Although the rates are symmetric,
since large spaces are occupied, the extremes have an effective drift. Distances
traveled in time t of the extremes are of order

√
t log t, beyond the diffusive hy-

drodynamic scale.
We show under proper scaling that the distributional limits are of Gumbel

type, as it would be when the particles are independent. We consider also in d = 1
how much of a ‘step’, that is the size of L = L(t) when the initial condition is
η(x) = 1(−L < x ≤ 0), is needed for the same limits to arise. It turns out when

L/
√

t/ log t→ ∞ the limits (in this array indexed by t) are the same as if L = ∞.
When otherwise and L ↑ ∞, the extremes are of order

√
t logL and the properly

scaled limits are different Gumbel distributions. If L <∞ is bounded, the behavior
is diffusive. We also give associated Poisson point process limits for these d = 1
scaled extreme statistics, which in particular captures the joint behaviors of the
extremal particles.
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We discuss two ways of proving such limits: one by use of the Strong Rayleigh
property, and another by computing moments of certain counts. This talk is based
on the paper/preprints [2, 3, 1].
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Random walk above a concave obstacle

Yvan Velenik

(joint work with Sébastien Ott)

The random walk. Let (Xk)k≥1 be i.i.d. Z-valued random variables satisfying

E[X1] = 0 and E[eδ|X1|] <∞,

for some δ > 0. Let H(t) = logE[etX1 ] and I(x) = supt∈R
(tx −H(t)). Introduce

a∗ = inf{k ∈ Z : P(X1 = k) > 0} and b∗ = sup{k ∈ Z : P(X1 = k) > 0}. Denote
by Sn = X1 + · · ·+Xn the corresponding random walk and by P its law.

The obstacle. Fix a, b ∈ R such that a∗ < a < b < b∗. Let h ∈ C
3([0, 1]) be such

that h(0) = 0 and

∀x ∈ [0, 1], h′(x) ∈ [a, b] and h′′(x) < 0.

Denote by hn(k) = nh(k/n) for all k ∈ {0, . . . , n}.

Main results. Let Pn = P(· |Sn = ⌈hn(n)⌉). Our first result concerns the prob-
ability of the event A = {∀k ∈ {0, . . . , n}, Sk ≥ hn(k)} under Pn: there exist
c+ ≥ c− > 0 and n0 ≥ 1 such that for any n ≥ n0,

e−c+n1/3 ≤ en
∫ 1
0
I(h′(s)) ds Pn(A) ≤ e−c−n1/3

.

To state the remaining results, let us introduce the measure Ph
n = Pn(· | A). Then,

there exist C > 0 and c+ ≥ c− > 0 such that

C−1e−c−t3/2 ≤ Ph
n(Sk ≥ hn(k) + tn1/3) ≤ Ce−c+t3/2 ,

hn(k) + c−n
1/3 ≤ Eh

n[Sk] ≤ hn(k) + c+n
1/3,

C e−c−(l−k)/n2/3 ≥ covhn[Sk, Sl] ≥ C−1e−c+(l−k)/n2/3

,

provided that n− Cn2/3 ≥ l ≥ k ≥ Cn2/3 and t = o(n1/9).
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Relaxing the assumptions on the obstacle. We also investigate what hap-
pens when the assumptions on the obstacle are relaxed. We only do that in
a restricted framework: Gaussian random walks (Sk)−n≤k≤n with i.i.d. incre-
ments of law N(0, β) for some β > 0, and an obstacle described by the function
hp : [−1, 1] → [0, 1], hp(x) = 1 − |x|p for some p ≥ 1. Note that hp is not twice
continuously differentiable at 0 when p ∈ [1, 2), and that h′′p(0) = 0 when p > 2.

Let Qh
n be the law of the random walk conditioned on {S−n = Sn = 0} ∩ {∀k ∈

{0, . . . , n}, Sk ≥ hn(k)}, and αp = (p−1)/(2p−1). Then, there exist c+ ≥ c− > 0
such that

e−c+t1/(1−αp) ≤ Qh
n(S0 ≥ n+ tnαp) ≤ e−c−t1/(1−αp)

.

In particular, there exist c+ ≥ c− > 0 such that, for all n ≥ 1,

n+ c−n
αp ≤ Eh

n[S0] ≤ n+ c+n
αp .

The Brownian web distance

Bálint Vető

(joint work with Martin Hairer, Bálint Virág)

We define the random walk web distance in [7] as a natural directed distance
on the trajectories of coalescing simple random walks on the even integer lattice
Z2
e = {(i, n) ∈ Z2 : i + n is even} so that from each (i, n) ∈ Z2

e there are two
outgoing directed edges: to (i+1, n−1) and to (i+1, n+1). We assign independent
random variables (ξ(i,n)) with P(ξ(i,n) = 1) = P(ξ(i,n) = −1) = 1/2 to the vertices

in Z2
e . The random walk web Y is a family of coalescing random walks starting at

each point of Z2
e . For all (i, n) ∈ Z2

e , we let Y(i,n) be the random walk starting at
(i, n) with the first step to (i+ 1, n+ ξ(i,n)).

For any (i, n; j,m) ∈ Z4 we define the random walk web distanceDRW(i, n; j,m)
to be the smallest integer k such that (j,m) can be reached from (i, n) by following
a directed path in the graph Z2

e with k jumps between different random walk
trajectories in Y . The value of DRW(i, n; j,m) is infinite if there is no path from
(i, n) to (j,m).

The Brownian web was constructed in [5] and further studied in [4]. In the
Brownian web B almost surely a unique Brownian motion B(t,x) starts from almost

every point (t, x) of the space-time R2. There is however a dense set of special
points of type (1, 2) which have an incoming and two outgoing Brownian paths.
The Brownian web distance DBr(t, x; s, y) denotes the smallest k ≥ 0 for which
there exist points (t, x) = (t0, x0), (t1, x1), . . . , (tk+1, xk+1) = (s, y) ∈ R2 with
t0 ≤ t1 < t2 < · · · < tk+1 and a continuous path π : [t, s] → R with π(ti) = xi for
i = 0, . . . , k + 1 so that for each i = 0, . . . , k there is a path γi in the Brownian
web with π(r) = γi(r) for all r ∈ [ti, ti+1]. We set DBr(t, x; s, y) = +∞ if there
is no such k ≥ 0. The definition slightly differs if the starting point (t, x) is a
special point in the Brownian web and depending on the convention, we define the
Brownian web distance DBr and its lower semicontinuous verion DBr,LSC.
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The Brownian web distance is integer-valued and has scaling exponents 0:1:2 as
compared to 1:2:3 in the KPZ world. That is, for any α > 0, we have the equality
in distribution

(1)
(

DBr(α2t, αx;α2s, αy), (t, x; s, y) ∈ R4
) d
=
(

DBr(t, x; s, y), (t, x; s, y) ∈ R4
)

.

Furthermore, the Brownian web distance is the scale-invariant limit of the random
walk web distance in the following sense. There is a coupling of the underlying
random walk webs and Brownian web such that

(2) DRW(nt, n1/2x;ns, n1/2y) → DBr,LSC(t, x; s, y)

as n→ ∞ almost surely in the epigraph sense.
The shear limit of the Brownian web distance is still given by the Airy process.

As m→ ∞, we have that

tm+ 2zm2/3 −DBr(−tm, 2tm+ 2zm2/3; 0,R−)

m1/3

d
=⇒ L(0, 0; z, t)

where L is the directed landscape defined in [2]. We conjectured the convergence
of the rescaled Brownian web distance to the directed landscape in all the variables
in [7]. The conjecture was resolved in [3] and it was proved that
(3)
m+ 2(z − y)m2/3 −DBr(−m, 2m+ 2zm2/3; 0, (−∞, 2ym2/3])

m1/3

d
=⇒ L(y, 0; z, 1)

as m→ ∞.
Under logarithmic scaling, we prove the following law of large numbers and

central limit theorem in the horizontal direction. There is µ ∈ R and σ ∈ (0,∞)
such that as n→ ∞

(4)
DRW(−2n, 0; 0, 0)

log(2n)
−→ µ

almost surely and

(5)
DRW(−2n, 0; 0, 0)− µ log(2n)

σ
√
logn

d
=⇒ χ

where χ has standard normal distribution.
The Bernoulli-Exponential first passage percolation was introduced in [1]. We

studied this model in [6] as a weighted version of the random walk web distance. It
is defined on Z2

e using the same directed edges. The first passage value T (i, n; j,m)
from (i, n) to (j,m) in Z2

e is given similarly as the minimal weight of directed paths.
The weight of paths is defined using independent standard exponential random
variables (η(k,l)) assigned to every vertex (k, l) ∈ Z2

e . The weight of a path is given
by the sum of the η(k,l) variables at the jumps of the path. The corresponding
height function H(n, r) = max{k ∈ Z : T (0, 0;n, k) ≤ r} is the highest position a
path can reach at time n with weight at most r.
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The rescaled height converges to a new explicit distribution. For any s > 0, as
n→ ∞,

(6)
1√
n
H

(

n,
s√
n

)

d
=⇒ Hs

where the distribution of the random variable Hs is given by

(7) P(Hs < h) = det(I −Ks)L2((h,∞))

with the kernel

(8) Ks(x, y) =
1

(2πi)2

∫

1+iR

du

∫

C0

dv
eu

2/2−yu−s/u

ev2/2−xv−s/v

u

v

1

v − u

where the integration contour C0 is a small circle around 0 with positive orientation
such that it does not intersect 1 + iR.

The distribution of the limiting height interpolates between the Gaussian and
the GUE Tracy–Widom distribution. The formal substitution s = 0 gives back
the Gaussian distribution. As s→ ∞, we have that

(9) 24/93−1/3s1/9
(

Hs − 2−2/33s1/3
)

d
=⇒ TW.
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A critical drift-diffusion equation: connection to a diffusion on SL(n)

Christian Wagner

(joint work with Şefika Kuzgun, Peter S. Morfe, Felix Otto)

We discuss a connect of two seemingly unrelated objects, a drift diffusion equa-
tion in n-dimensional Euclidian space and a natural diffusion on the Lie group
SL(n). This connection reveals an intermittency inherent in the former object
that becomes aparent in the latter.
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More specifically, on the one hand is the so-called diffusion in the curl of the two
dimensional Gaussian free field and its generalization to higher dimensions n ≥ 2.
More precisely, we consider a process X solving the drift-diffusion equation

dXt = b(Xt)dt+
√
2 dWt(1)

in the n-dimensional Euclidean plane, where W denotes a standard Brownian
motion and b is an isotropic, stationarity Gaussian field that is divergence free and
independent of W . We impose that the Fourier transform of the covariance tensor
c(x− y) = Eb(x)⊗ b(y) of b is an (2−n)-homogeneous function on wave vectors k
with |k| ≤ 1 and vanishes provided |k| > 1. The cut-off (without loss of generality
at wave length one) is necessary for the well-posedness of the SDE (1) but breaks
the scale invariance of b. The latter would amount to b(λx) =law λ−1b(x), in which
case X (formally) inherits the scalingWλ2t =law λWt from Brownian motion. The
aforementioned assumptions determine b up to a multiplicative constant, which we
describe in terms of the Péclet number ε via E|b|2 = n

2 ε
2. The process X obtained

from (1) has recently received growing attention by the mathematical community.
Starting from [9] precise

√
log-super diffusive behaviour has been established in [2]

and [3], which has been extended to a super diffusive central limit theorem in [1].

On the other hand is a natural diffusion on the special linear group SL(n), whose
evolution is governed by the Stratonovich SDE

dFτ = Fτ ◦dBτ ,(2)

where B denotes a Brownian motion on the Lie algebra sl(n). To connect to
equation (1) we require the Brownian motion B, and hence also F , to be invariant
in law under the action of the orthogonal group O(n), and additionally choose B
such that the Itô- and Stratonovich-interpretation of the SDE (2) yield the same
process. These two axioms define F up to a multiplicative constant, which we fix
by a normalization of its second motions via E|Fτ |2 = |id|2 exp(τ) provided F is
started at the identity.

We connect these two objects on the level of the expected particle position that is
given by

u(t, x) = EW [Xt], where X solves (1) with initial condition Xt=0 = x.

The exception EW is taken w.r.t. the Brownian motion W so that u still depends
on the drift b, i.e. is a quenched quantity. Our main result states that increments
of u are well-approximated by the diffusion F .

Theorem 1 (see [6] and [7]). There exists a coupling of b and B such that for
(x, T ) we have

E
1

T

∫ T

0

∣

∣

1

|x| (u(t, x)− u(t, 0))− F t
τ(|x|2),τ(T )

x

|x|
∣

∣

2
dt . ε2E|F0,τ |2,

where τ(t) = log(1+ ε2

2 log(1+t)) and Fτ∗,· denotes a solution of (2) with Fτ∗,τ = id
provided τ ≤ τ∗.
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Our main tool to prove Theorem 1 is a scale-by-scale homogenization technique
originally developed in [3] in its SDE based form first presented in [5]. Since F ,
given by (2), generalizes geometric Brownian motion to a matrix-valued process,
it naturally displays non-Gaussian behaviour; more specifically

E|F0,τ |2p ∼p

(

E|F0,τ |2
)1+n+4

n+2 (p−1)+ 4
n+2 (p−1)2

,

see [4]. As a corollary of our main theorem we can transfer this non-Gaussian
behaviour to the increments of u, and obtain a strengthening and an explanation
of the intermittent behaviour first worked out in [8].

Corollary 2 (see [6]). In dimension n = 2, in the regime

ε2
(

1 +
ε2

2
log |x|2

)
1
2 ≪ 1

we have for any (x, T ) and 1 < p <∞

E

( 1

T

∫ T

0

∣

∣

1

|x| (u(t, x)− u(t, 0))
∣

∣

2
)p

&p

(

E
1

T

∫ T

0

∣

∣

1

|x| (u(t, x)− u(t, 0))
∣

∣

2
)1+ 3

2 (p−1)

with explicit asymptotic ≈
( 1+ ε2

2 log T

1+ ε2

2 log |x|2

)
1
2 of the second moment.
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[4] Ş. Kuzgun, P. Morfe, F. Otto, and C. Wagner. Intermittency of geometric Brownian motion
on SL(n). In preparation.

[5] P. Morfe, F. Otto, and C. Wagner. The Gaussian free-field as a stream function: continuum
version of the scale-by-scale homogenization result. arXiv preprint arXiv:2404.00709 (2024).

[6] P. Morfe, F. Otto, and C. Wagner. A critical drift-diffusion equation: connections to the
diffusion on SL(2). arXiv preprint arXiv:2410.15983 (2024).

[7] P. Morfe, F. Otto, and C. Wagner. A Critical Drift-Diffusion Equation: Intermittent Be-
havior via Geometric Brownian Motion on SL(n). In preparation.

[8] F. Otto, and C. Wagner. A critical drift-diffusion equation: intermittent behavior. arXiv
preprint arXiv:2404.13641 (2024).
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ETH Zürich
Rämistrasse 101
8092 Zürich
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