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Abstract. Computations with functions depending on a large numbers of
variables are at the core of many problems in science and engineering. They
arise naturally in physical models described by partial differential equations
(PDEs) depending on many parameters, in purely data-driven tasks such as
optimization and machine learning, and in hybrid contexts combining physical
models with data.

Traditionally, dealing with such high dimensionality was avoided by the
use of simplified models. With the availability of more computational power
and the development of sophisticated approximation schemes and algorithms,
however, such tasks in high dimensions are increasingly treated directly on
the basis of general mathematical principles.

The naive use of classical approximation methods for such problems typ-
ically leads to computational costs that scale exponentially with respect to
the dimension, an effect known as the curse of dimensionality. To make com-

putations tractable, nonlinear strategies that leverage in more subtle ways
inherent properties of the problem are inevitably required. In recent years,
many new and diverse approaches have emerged from different fields. Shap-
ing up the theoretical foundations for the analysis and development of these
approaches requires new interactions between approximation theory, numeri-
cal analysis, probability theory, mathematical and statistical learning theory,
and optimization. This workshop aimed to deepen the mathematical founda-
tions of the underlying numerical concepts that drive this new evolution of
computational methods, and to promote the exchange of ideas arising from
various disciplines about how to treat high-dimensional problems.
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Introduction by the Organizers

Scientific context and challenges: Problems involving high-dimensional spaces
come up in many different applications, and pose a challenge for accurate and
reliable numerical solution concepts. Such problems arise in:

• Physics-Driven approaches: PDE models depending on large numbers of
variables arise naturally in the context of probability theory (such as Kol-
mogorov equations of random processes), in quantum physics (such as the
electronic Schrödinger equation in molecular models), or more generally,
in particle and kinetic equations.

• Data-Driven approaches: Another relevant situation where high-dimensio-
nal computations arise concern problems depending on many parameters.
An important example in this category is machine learning, where one aims
to learn functions of very large numbers of variables (such as classifiers that
take an image as their input) from large sets of data.

• Hybrid approaches: In inverse problem tasks combining classical PDE
models with measurement data, one needs to handle functions on high-
dimensional spaces such as posterior distributions in Bayesian formula-
tions. PDEs involving large numbers of parameters also arise in this con-
text and represent yet another example of high-dimensional objects.

Mathematical methods that can successfully address such problems need to exploit
in a subtle way their structural features to capture higher-dimensional objects by
a tractable amount of information. A common feature of these methods is that
they produce approximations with a high degree of nonlinearity, ranging from
sparse and adaptive basis expansions as well as low-rank tensor representations to
compositional approximations as in neural networks.

Not every one of these approaches is equally suited to every problem. In ad-
dition, often conflicts between theoretical accuracy and practical feasibility occur.
Indeed, a higher degree of expressive power and nonlinearity – in particular in the
case of neural networks which provide a large degree of universality – frequently
leads to substantial difficulties in the numerical computation of corresponding ap-
proximations. In high-dimensional problems, the practical numerical challenges
are frequently so apparent that the mere existence of efficient approximations is
often much less relevant than the existence of practically feasible algorithms for
computing them.

Next we briefly discuss the current state of the art and challenges concern-
ing theory and numerical algorithms for the abovely mentioned three families of
high-dimensional problems (physics-driven, data-driven, and hybrid problems). In
the field of numerical analysis of PDEs, spatially adaptive methods using wavelet
expansions or finite element bases have advanced the frontiers of computability
for certain PDE classes, and feasible algorithms with optimal scaling costs are
known. Although standard adaptive paradigms using local spatial refinements are
not tractable in high dimensions, similar optimality results have been obtained for
certain high-dimensional PDEs using anisotropic sparse expansions or low-rank
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tensor representations. Such results remain, however, an exception so far: for
many other types of nonlinear approximations, such as deep neural network ap-
proximations of PDE solutions, complexity or even convergence guarantees for
numerical schemes remain out of reach. One can draw a similar landscape re-
garding model order reduction of parametrized PDEs: although solid theoretical
foundations exist for the approximation of parametric elliptic problems, a cohe-
sive theory and efficient methods to address other types of PDE classes remains
an open problem for very active research.

The challenges faced by the above-discussed forward PDE computations are
inherited and even amplified in inverse state or parameter estimation problems.
One reason is that observational data is often scarce due to prohibitive cost or
severe obstructions to acquiring it. PDE data is also a scarce commodity due to
the complexity of solving forward problems of complex physical processes. Current
efforts are devoted to understand the role of model reduction, sparse recovery,
efficient sampling, and other high-dimensional methods in this context.

Finally, purely data-driven problems arising in deep learning pose, to some
extent, complementary challenges to data assimilation. Here, one is confronted
with extremely large data-sets, and handling all the information appropriately be-
comes a challenge in itself. In addition, numerous question arise concerning how
to leverage the approximation power of neural networks with practical numerical
algorithms. In particular, the role of deep and highly over-parametrized architec-
tures is an important direction of research to understand generalization properties.
Many new and diverse ideas are being explored to shed light on these questions.
Goals of the workshop: The field of high-dimensional approximation is rapidly
evolving, with a diversity of vibrant developments, and ideas coming from vari-
ous fields that have traditionally been considered as disjoint areas of knowledge.
Building a cohesive, overarching theory requires new interactions between approxi-
mation theory, numerical analysis, probability theory, mathematical and statistical
learning theory, and optimization. The ambition of this workshop was to enhance
interactions between these fields in order to deepen the mathematical foundations
of the underlying numerical concepts that drive the new evolution of computa-
tional methods for high-dimensional problems. We proposed to gather leading
experts with an interdisciplinary track record in combining these mathematical
topics and having made significant recent contribution to one of the above three
main problem classes (physics-driven, data-driven, hybrid problems). Of course,
we also invited promising researchers at early career stages.

The event helped to promote the exchange of ideas arising from various dis-
ciplines about how to treat high-dimensional problems. In particular, given cer-
tain conceptual similarities that occur in a variety of application domains, we
encountered a wealth of synergies and cross-fertilization. These concepts are in
our opinion not only relevant for the development of efficient solution methods
for large-scale and inherently high-dimensional problems but also for the formu-
lation of rigorous mathematical models for quantifying the extraction of essential
information from complex objects in many dimensions.
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Specific examples of topics that were addressed in our workshop were:

• Sparse methods for parametric PDEs and PDEs with stochastic data
• Optimal transport in high dimensions
• Multilevel and high-dimensional meshless methods
• Incorporating anisotropy in analysis, estimation, compression and encod-
ing

• Linear and nonlinear reduced modeling for forward and inverse problems
• Data assimilation and Bayesian inverse problems
• Convergence theory and analysis for model reduction and low-rank meth-
ods

• Theoretical and numerical aspects of sparse approximation and compressed
sensing

• Design and analysis of estimators in high dimensional machine learning
• High-dimensional approximation using low-rank tensor structures
• Understanding the gap between analysis and practical performance of ap-
proximations by deep neural networks

• Performance and stability of optimization techniques in machine learning

For instance, a previous workshop ‘Computation and Learning in High Dimensions’
held in August 2021 (organized by two of us with R. DeVore and W. Dahmen)
brought together some of the leading researchers in deep learning to interact with
the approximation, numerical analysis, and computational harmonic analysis com-
munities, see the Oberwolfach Report 36/2021.

Among the several recognizable outcomes of this and previous of our workshops
were:

(i) a wide range of new results quantifying the performance of approximation
when using deep neural networks,

(ii) fast online computational algorithms based on adaptive partition for math-
ematical learning,

(iii) injection of the notion of sparsity into stochastic models to identify compu-
tational paradigms that are more efficient than Monte Carlo techniques,

(iv) a coherent theory to explain why techniques like sparse representation and
reduced modeling work and how they can be improved.

Acknowledgement: The workshop organizers would like to thank the MFO for the
generous support of young researchers by an OWLG Grant.
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Abstracts

A short, non exhaustive, and biased historical account on a cycle of
MFO Workshops

Albert Cohen

This talk was an attempt to draw a big picture on the main topics that influenced
the cycle of nine workshops started in 2004,
(“Multiscale Methods and Wavelets”,

“Computation and Learning in High Dimensions”).
A predecessor was the 1992 workshop on “Wavelets” that preceeded the growth

in importance of non-linear (best n-term) approximation in the 1990’s, with appli-
cations to data compression, statistical estimation, adaptive numerical simulation.

This led to the concept of sparsity which dominated these workshops in the
years 2005–2015 with the emergence of compressed sensing.

Breaking the curse of dimensionality in learning and computation has motivated
new forms of sparse approximation in the years 2010–2025, as well as the develop-
ments of non-linear reduced models. DNN and related tools can be embbeded in
this general framework and seem to play an increasing role in numerical modelling
since 2020.

Funny things may happen when using NNs to solve PDEs

Mark A. Peletier

(joint work with Daan Bon, Benjamin Caris, and Olga Mula)

Define the shallow neural network Un(θ)(x) =
∑n

i=1 aiϕ(x − bi) for some smooth
ϕ ∈ C∞(R), with θ = (ai, bi)

n
i=1 ∈ R2n. In this talk we studied properties of the

set Mn := {Un(θ) : θ ∈ R2n} ⊂ C∞(R) generated by such NNs. We showed that
Mn is a “singular manifold” in L2(R).

We discussed downsides of existing approaches to using the set Mn as can-
didate solutions for e.g. the Allen-Cahn equation; we showed how these existing
approaches lead to singularities in the evolution (one of the “funny things”).

Using the fact that the Allen-Cahn equation is the L2-gradient flow of some
functional E , we postulate that the correct way of using Mn is to consider the
metric-space gradient flow of E in the metric space (Mn, d), where the metric d is
the ambient L2-metric, d(u, v) = ‖u − v‖L2 . We showed that (under conditions)
a minimizing-movement scheme for this setup converges as ∆t → 0 to a curve of
maximal slope of E on the completion (Mn, d). We also showed with an example
that parametrizations may be discontinuous in time for such curves of maximal
slope, and that in some cases this can not be avoided.
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Optimization-Free Diffusion Model - A Perturbation Theory Approach

Mathias Oster

(joint work with Yuehaw Khoo, Yifan Peng)

Diffusion models have emerged as a powerful framework in generative modeling,
typically relying on optimizing neural networks to estimate the score function via
forward SDE simulations. In this work, we propose an alternative method that is
both optimization-free and forward SDE-free. By expanding the score function in
a sparse set of eigenbasis of the backward Kolmogorov operator associated with
the diffusion process, we reformulate score estimation as the solution to a linear
system, avoiding iterative optimization and time-dependent sample generation.
We analyze the approximation error using perturbation theory and demonstrate
the effectiveness of our method on high-dimensional Boltzmann distributions and
real-world datasets.

References

[1] Y. Khoo and M. Oster and Y. Peng, Optimization-Free Diffusion Model – A Perturbation
Theory Approach, arXiv preprint, url=https://arxiv.org/abs/2505.23652 (2025).

On the expressivity of deep Heaviside networks

Johannes Schmidt-Hieber

(joint work with Insung Kong, Juntong Chen, Sophie Langer)

The first models of an artificial neural network used the Heaviside activation func-
tion

x 7→ 1(x ≥ 0).

The highlight of this early literature is the Perceptron Convergence Theorem prov-
ing that one Heaviside neuron equipped with a simple update rule will perfectly
classify two linearly separable classes after a finite number of update steps.

As the Heaviside activation function is non-differentiable, it had to be replaced
by smoothed versions once the backpropagation algorithm was introduced. Mod-
ern deep network architectures mainly rely on the ReLU and increasingly on the
SiLU activation function.

There is renewed interest in Heaviside networks. The straight-through estimator
[1] provides a scalable method to train Heaviside networks. Moreover, Hopfield
networks are based on the Heaviside networks and have seen renewed interest due
to their connection with memorization in transformers [3]. Finally, the success of
DeepSeek requires to understand the quantization of the activation function in a
neural network.

While there has been an extensive body of literature studying approximation
and generalization for ReLU networks, results for Heaviside networks are missing.

Deep Heaviside networks can be shown to have poor approximation properties.
The approximation rates can be characterized by the width of the first hidden
layer and do not make full use of the depth in the network. As each unit only



Computation and Learning in High Dimensions 2021

outputs one bit, the hidden layers are information bottlenecks constraining the
availability of input information in the deeper layers.

However, one can equip deep Heaviside networks with either skip connections
or linearly activated neurons and thereby overcome the information bottleneck. In
both cases, one can then derive nearly matching upper and lower bounds for the
Vapnik-Chervonenkis (VC) dimension and the worst case approximation error for
Hölder balls.

Based on this, one can derive moreover generalization guarantees for the empir-
ical risk minimizer computed over deep Heaviside networks.

All details can be found in [2].

References

[1] Y. Bengio, N. Léonard, A. Courville Estimating or propagating gradients through stochastic
neurons for conditional computation ArXiv:1308.3432

[2] I. Kong, J. Chen, S. Langer, J. Schmidt-Hieber On the expressivity of deep Heaviside net-
works, ArXiv:2505.00110

[3] H. Ramsauer et al. Hopfield networks is all you need, International Conference on Learning
Representations (2021).

A Space-Time Adaptive Low-Rank Method for High-Dimensional
Parabolic PDEs

Manfred Faldum

(joint work with Markus Bachmayr)

In this work we investigate second-order parabolic differential equations on high-
dimensional product domains Ω = Ω1 × · · · × Ωd on a time interval [0, T ]. As a
model problem we consider the heat equation

∂tu−∆u = g in (0, T )× Ω,

u(0, ·) = h in Ω,

u = 0 on (0, T )× ∂Ω.

on the high-dimensional unit cube Ω = (0, 1)d. The goal of this work is to construct
a method that has guaranteed convergence with rigorous deterministic space-time
error bounds that are computable even when d≫ 1 and has estimates on the com-
putational complexity that shows that we circumvent the curse of dimensionality,
that is, exponential growth of the computational complexity with respect to the
number of spatial dimensions.
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We use the space-time variational formulation from [1] with trial space X =
L2(0, T ;H

1
0 (Ω))∩H1(0, T ; (H1

0 (Ω))
′) and test space Y = L2(0, T ;H

1
0(Ω))×L2(Ω).

The bilinear form and right hand side are given by

(1)

b(u, (v, w)) =

∫ T

0

〈∂tu, v〉H−1,H1 + 〈∇u,∇v〉L2 dt+ 〈u(0), w〉L2 ,

f((v, w)) =

∫ T

0

〈g, v〉L2 dt+ 〈h,w〉L2 .

Our approach for approximating the solution of the corresponding variational
formulation combines a sparse wavelet expansion in time with a low-rank approxi-
mation in the spatial variables. For a temporal basis {θν̂}ν̂∈I and the one dimen-
sional spatial basis {ψν̂}ν̂∈J on (0, 1), we aim for an approximation

u(t, x1, . . . , xd) ≈
∑

µ∈Λt⊂I

θµ(t)
∑

(ν1,...,νd)∈Λµ

uµ,ν1,...,νd d
X
µ,νψν1(x1) · · ·ψνd(xd)

with a finite index set Λt. Additionally, each time index µ can have a distinct
spatial index Λµ with product structure Λµ = Λ1

µ × · · · × Λd
µ ⊂ J × · · · × J . This

product structure allows for the use of hierarchical low-rank tensor representations
for each uµ = (uµ,ν1,...,νd)ν∈Λµ . The index sets Λt and Λµ for µ ∈ I can be chosen
adaptively.

As one dimensional spatial basis functions as well as temporal basis functions,
we choose wavelet Riesz bases. Then, {Ψµ,ν}(µ,ν)∈I×J d with

(2) Ψµ,ν =
θµ ⊗ ψν1 ⊗ · · · ⊗ ψνd√

‖ψν1 ⊗ · · · ⊗ ψνd‖2H1 + ‖θµ‖2H1‖ψν1 ⊗ · · · ⊗ ψνd‖2H−1

is a Riesz basis of the trial space X. A Riesz basis of Y can be constructed
analogously. Based on the Riesz bases property, we have

∥∥∥
∑

(µ,ν)∈K

vµ,νΨµ,ν

∥∥∥
X

≃ ‖v‖ℓ2 ,

which guarantees an error of the same magnitude if we approximate u ∈ ℓ2 in the
basis expansion instead of u in the space-time space X .

The corresponding sequence u is given by the solution of the bi-infinite matrix
vector equation Bu = f , where the matrix B as well as the right hand side f are
given by using the Riesz bases of X and Y in (1).

To solve this bi-infinite matrix vector equation, we use the approximate Richard-
son iteration [2] applied to the normal equation B⊤Bu = B⊤f . In this procedure
two reduction operators are applied to the iterates. The tensor recompression
keeps the arising ranks of the low-rank approximations quasi- optimal for a given
error tolerance. This routine is based on truncation of the hierarchical singular
value decomposition of the low-rank representations. The second routine, basis
coarsening, keeps the lower-dimensional support quasi- optimal for a given error
tolerance. It is based on the spatio-temporal contractions [3], which measure the
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influence of the lower-dimensional basis functions separately for each time basis
index.

For the analysis of the method we propose a new approximation class for the
temporal operator which is necessary due to the interaction between hierarchical
tensor formats of different time indices. One of the main challenges is the fact that
the parabolic operator is an isomorphism with respect to spaces not endowed with
a cross norm. Hence, the scaling factor in (2) is not separable. Therefore, as in [2],
we use a method for preconditioning operators in low-rank format by exponential
sum approximations.

The method is shown to converge and satisfy similar complexity bounds as
the existing adaptive low-rank method for elliptic problems [2, 3], establishing
its suitability for parabolic problems on high-dimensional spatial domains. The
construction also yields computable rigorous a posteriori error bounds for the total
error depending on the activated basis functions and ranks in the approximation.

For more details as well as numerical results for the heat equation in high
dimensions, demonstrating the practical efficiency, we refer to [3].

References

[1] C. Schwab. and R. Stevenson, Space-Time Adaptive Wavelet Methods for Parabolic Evolu-
tion Problems, Mathematics of Computation 78 (2009), 1293–1318.

[2] M. Bachmayr and W. Dahmen, Adaptive low-rank methods: problems on Sobolev spaces,
SIAM Journal on Numerical Analysis 54 (2016), 744–796.

[3] M. Bachmayr and M. Faldum, A space-time adaptive low-rank method for high-dimensional
parabolic partial differential equations, Journal of Complexity 82 (2024).

Scalable Bayesian Optimization via Online Gaussian Processes

Marcel Neugebauer

Abstract. Bayesian optimization is a state-of-the-art method for optimizing black
box functions. It typically assumes that the unknown function is a sample path of
a Gaussian process, which serves as surrogate model. As observations are collected,
the belief is getting updated, enabling both prediction and uncertainty quantifica-
tion. An acquisition function then guides the selection of new evaluation points by
leveraging the posterior belief to balance exploration of uncertain regions and ex-
ploitation of promising areas. However, standard algorithms recompute the entire
Gaussian process with each new observation or hyperparameter update, limiting
scalability for large datasets.

To overcome this drawback, we employ a low-rank approximation of the Gauss-
ian process kernel matrix that enables both the incorporation of new observations
and online hyperparameter learning. This leads to online Gaussian processes and
scalable optimization.
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1. Introduction

Bayesian optimization is a procedure that aims to discover

x∗ ∈ argmax
x∈[0,1]d

f(x),

where f : [0, 1]d → R is a black box function. This means that the underlying
mapping of f is unknown, yet we can observe values

y(x) = f(x) + ε

typically at high cost, where ε ∼ N (0, σ2) with σ2 ≥ 0. Notably, the lack of access
to gradients of f precludes the use of gradient-based methods. Black box functions
are pervasive across various fields such as hyperparameter tuning, robotics, asset
allocation, advertising and drug discovery. Bayesian optimization seeks to optimize
such functions by executing the following iterative process:

1. Start with observations (x1, y1), ..., (xN , yN).
2. Utilize the observations to construct a surrogate model for f .
3. Employ an acquisition function to determine xN+1 and evaluate yN+1.
4. Add (xN+1, yN+1) to the observations and repeat the process.

2. Gaussian Processes as Surrogate Models

The Gaussian process (GP) stands out as a preferred surrogate model for f due to
its widespread adoption. Modelling f as a GP, denoted f ∼ GP(0, k), we assume
that for any finite number of points z1, ..., zn ∈ [0, 1]d, we have



f(z1)

...
f(zn)


 ∼ N


0,



k(z1, z1) · · · k(z1, zn)

...
. . .

...
k(zn, z1) · · · k(zn, zn)





 ,

where k : [0, 1]d × [0, 1]d → R is a symmetric and positive definite kernel. A
commonly used example is the Matérn 5/2 kernel, defined as

ks2,ℓ(x,x
′) := s2

(
1 +

√
5 ‖x− x′‖2

ℓ
+

5‖x− x′‖22
3ℓ2

)
exp

(
−
√
5 ‖x− x′‖2

ℓ

)
,

where s2 > 0 and ℓ > 0 are hyperparameters. These are typically estimated from
data by maximizing the log marginal likelihood. Given f ∼ GP(0, k) and data
DN := {(x1, y1), ..., (xN , yN)}, the posterior process is f | DN ∼ GP(m′, k′) for

(1)
m′(x) := k(x)T

(
K + σ2IN

)−1
y,

k′(x,x′) := k(x,x′)− k(x)T
(
K + σ2IN

)−1
k(x′),

whereK := [k(xi,xj)]1≤i,j≤N , k(x) := [k(x,x1), ..., k(x,xN )]T , y := [y1, ..., yN ]T .

This posterior allows for inference about the black box function f and motivates
using GP(m′, k′) as the surrogate model when data DN is available.

To compute the posterior process, the Cholesky decomposition of K + σ2IN

is typically employed. This algorithm has a computational complexity of O(N3)
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for a single posterior GP, which becomes expensive when N is large. Another
context in which an issue arises is Bayesian optimization, where many GPs must
be computed repeatedly and computing each from scratch is inefficient. If Bayesian
optimization runs for T iterations and performs R hyperparameter updates per
GP, then standard algorithms incur a complexity of

O
(

T∑

N=1

RN3

)
= O

(
R
T 2(T + 1)2

4

)
= O(RT 4).

To overcome this drawback, we use an approximation that supports both the in-
corporation of new observations and online hyperparameter learning. This enables
the computation of GPs in an online fashion.

Let θ denote the set of kernel hyperparameters. For M ≪ N , we consider a
kernel approximation

(2) kθ(x,x
′) ≈

M∑

i,j=1

φi(x)λi,j(θ)φj(x
′),

where Λ := [λi,j(θ)]1≤i,j≤M is a real, symmetric, and positive definite matrix and
Φ := [φi(xj)]1≤i≤M,1≤j≤N is a real matrix of rank M . Note that φi depends only
on the points, while λi,j depends solely on the hyperparameters. This separation
of variables enables online computation of GPs. Here are three examples on how
such a kernel approximation can be realized:

• Hilbert space methods for low-rank GP regression, see, e.g., [6]
• Kernel interpolation for scalable structured GPs, see, e.g., [5]
• Quadrature Fourier features, see, e.g., [3]

In the following, I employ the techniques from [6]. Inserting the kernel approxima-
tion (2) into the GP formulas (1) leads to

(3)
m′

θ(x) ≈ φ(x)T (ΦΦT + σ2Λ)−1Φy,

k′θ(x,x
′) ≈ σ2φ(x)T (ΦΦT + σ2Λ)−1φ(x′),

where φ(x) := [φ1(x), ..., φM (x)]T . If the kernel approximation (2) converges uni-
formly, then both the posterior mean and kernel approximations (3) also converge
uniformly.

These approximations allow computing a GP from scratch in O(NM2) time by

using the Cholesky decomposition LLT = ΦΦT+σ2Λ−1. When a new observation
is incorporated, the Cholesky decomposition can be modified via a rank-1 update
in O(M2) time, for example using Givens rotations. This allows adding a new
observations in O(M2) time.
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Let θ1 ∈ θ be a kernel hyperparameter. Using the kernel approximation (2), we
approximate the log marginal likelihood as

log p(y |X) ≈ − 1

2σ2
(yTy − yTΦT (LLT )−1Φy)

− 1

2

(
log |Λ|+ 2

M∑

i=1

logLii + (N −M) log σ2

)
− N

2
log 2π

where X := {x1, ...,xN}. We approximate the derivative with respect to θ1 via

∂ log p(y |X)

∂θ1
≈ −1

2

(
tr

(
Λ−1 ∂Λ

∂θ1

)
− σ2tr

(
Λ−1(LLT )−1Λ−1 ∂Λ

∂θ1

)

− yTΦT (LLT )−1Λ−1 ∂Λ

∂θ1
Λ−1(LLT )−1Φy

)

and a similar approximation can be derived for the derivative with respect to σ2.
Since Φ does not depend on θ, it does not need to be recomputed and a single
hyperparameter update can be performed in O(M3) time.

Using this approximate GP in Bayesian optimization provides a computational
advantage. For T iterations and R hyperparameter updates per GP, the computa-
tional cost decreases from O(RT 4) to O(RM3T ).

3. Thompson Sampling for Acquisition

Thompson sampling, described in Section 7.9 of reference [2], selects the next point
by drawing a sample path a : [0, 1]d → R of the posterior GP(m′, k′) and choosing

xnext ∈ argmax
x∈[0,1]d

a(x).

To compute a sample path, we use the approximate GP described by (3). Let

ω ∼ N
(
(ΦΦT + σ2Λ−1)−1Φy, σ2(ΦΦT ) + σ2Λ−1)−1

)
,

then g(x) := φ(x)Tω is a sample path of the approximate GP. If φ(x) is continu-
ously differentiable, the Lipschitz constant L of g can be bounded by

L ≤ ‖ω‖2 sup
x∈[0,1]d

‖Dφ(x)‖2.

Thus, g can be optimized using its gradient and Lipschitz bound.
I presented a numerical example using the 2D-Ackley function with the kernel

ks2,ℓ and initial hyperparameters σ2 = 1, ℓ = 1 and s2 = 1. The results support the
theoretical complexity estimates. Higher-dimensional variants based on product
kernels are examined in the present setting in [4].
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Iterative thresholding low-rank time integration

Matthieu Dolbeault

(joint work with Markus Bachmayr, Polina Sachsenmaier)

High-dimensional evolution equations pose multiple challenges in terms of numer-
ical approximation. First, one needs a suitable representation of the solution with
respect to space variables, avoiding the curse of dimensionality; low-rank tensor
methods allow to reduce the complexity of the numerical approximation from ex-
ponential to linear in the dimension. Second, this representation needs to evolve
over time, in order to adapt to the dynamics of the solution; rank-adaptive strate-
gies benefit from their great flexibility, at the expense of a more delicate balance
between accuracy and computational complexity.

We consider a numerical scheme based on low-rank matrix decompositions,
viewed as a preliminary step towards tensor formats. The time approximation
relies on high order collocation and allows us to use large time steps, making
our approach an intermediate between dynamical low-rank approximation [1, 2]
and space-time methods [3, 4]; it is closely related to high order BUG integrators
from [5, 6]. Our analysis focuses on the prototypical Schrödinger equation

i∂tu+∆u = V u, t ∈ [0, T ],

with initial data u0 : T
d → C, under the assumption that u0 and V are sufficiently

smooth and of finite rank. Given a singular value decomposition of the solution

u(t, x) =
∑

i≥1

σi(t)u
(1)
i (t, x1)u

(2)
i (t, x2), x = (x1, x2) ∈ T

d = T
d1 × T

d2 ,

the best rank-r approximation of u in L2 is obtained by keeping only the first r
terms, and attains an L2 error

∥∥∥u(t)−
r∑

i=1

σi(t)u
(1)
i (t, x1)u

(2)
i (t, x2)

∥∥∥
2

L2(Td)
=
∑

i>r

|σi(t)|2.

Ideally, one would like to construct an approximation of u of fixed accuracy η > 0
with optimal ranks

r(t) = min
{
r ≥ 0,

∑

i>r

|σi|2 ≤ η2
}
.
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However, this objective is out of reach for time-stepping methods, since the error
from the previous time steps makes it impossible to distinguish between singular
values that are just above or just below the threshold α(t) = σr(t)(t). Instead, we
consider a relaxed notion of rank: for α = inft∈[0,T ] α(t), define

r̃ = sup
t∈[0,T ]

r(t) +
∑

i>r

σi(t)
2

α2
= sup

t∈[0,T ]

‖u− Sαu‖2L2(Td)

α2
,

where Sα is the soft thresholding operator

Sαu =
∑

i≥1

max(σi − α, 0)u
(1)
i ⊗ u

(2)
i .

Note that if the soft thresholding was replaced by hard thresholding (defined simi-
larly to Sα, but with max(σi−α, 0) replaced by σi1σi>α), we would simply recover
supt∈[0,T ] r(t).

With this, we can state our main theorem. Let J ∈ N be the desired order of
the scheme, and assume that u ∈ C([0, T ], H2J(Td)) and V ∈ H4J(Td). For a
time step h > 0, denote by ũn the scheme at time nh, with n ≤ N := ⌊T/h⌋.
Theorem ([7]). The proposed scheme achieves the global error bound

sup
1≤n≤N

‖ũn − u(nh)‖ . exp(cT )
(
η + hJ+1 + h2J T

)
.

The ranks of the scheme are bounded by

rank(ũn) .
r̃

h3
,

and the intermediate ranks are at most twice as large.

The algorithm is inspired by the iterative soft thresholding strategy from [8],
combined with a Picard iteration and a refined analysis of the rank reduction from
a final recompression at the end of the iteration.

The above result is the first to control the global error by an exponential in time,
while maintaining near-optimal ranks. A naive approach would instead yield an
exponential in the number of time steps, which is significantly worse for small time
steps h. In our case, we take h such that hJ+1 + h2J is of order η, and the only
issue with the limit h→ 0 is the factor 1/h3 in the rank bound. This factor could
be improved to 1/h2 by increasing the number of fixed point iterations, but it is
not clear if it can be improved further. Extensions to other equations, for instance
parabolic problems, are also the subject of ongoing work.
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Direct interpolative construction of quantized tensor trains

Michael Lindsey

(joint work with Maxime Müller)

Quantized tensor trains (QTTs) have recently emerged as a framework for the nu-
merical discretization of continuous functions, with the potential for widespread
applications in numerical analysis, including rank-structured solvers and precon-
ditioners based on“quantum-inspired” algorithms such as DMRG.

We advance the theory and practice of QTT approximation from the point of
view of multiscale polynomial interpolation. This perspective clarifies why QTT
ranks decay with increasing depth, quantitatively controls QTT rank in terms of
smoothness of the target function, accommodates the presence of sharp features
through a generalized construction, and motivates new fast algorithms for the
construction of QTTs with performance guarantees.

Finally, we leverage the perspective of multiscale interpolation to offer the
first direct construction of the fast Fourier transform (FFT) as a QTT operator,
equipped with a priori compression guarantees.

Parametric regularity plays a crucial role for lattice QMC methods –
from DNNs to precision oncology

Frances Y. Kuo

(joint work with Alexander D. Gilbert, Alexander Keller, Dirk Nuyens,
Graham Pash, Ian H. Sloan, Karen E. Willcox)

Quasi-Monte Carlo (QMC) methods have been successful for high dimensional
integration, multivariate function approximation, density estimation, etc., in many
application areas including uncertainty quantification problems driven by PDEs
with random coefficients. Lattice QMC points can be tailor-constructed to the
applications, to achieve a convergence rate close to O(N−1) or better, with the
implied constant independent of the dimension s in appropriately weighted space
settings. The success of QMC relies on the underlying smoothness and dimension
structure of the target function: the “parametric regularity” — the mixed partial
derivatives of the function with respect to the parametric variables. This is the
underlying theme of this talk.
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Part 1 of this talk is based on [1] where we obtain explicit parametric regular-
ity bounds for a standard feed-forward Deep Neural Network (DNN), as well as a
periodic variant with a built-in sine layer. These bounds depend on the network
parameters and the choice of the smooth activation function. By imposing re-
strictions on the network parameters to match the regularity features of the target
function, we prove that DNNs with N tailor-constructed lattice training points can
achieve the generalization error (L2 approximation error) bound tol+O(N−r/2),
where tol ∈ (0, 1) is the tolerance achieved by the training error in practice, and r
characterises the decaying importance of the input variables in the target function.
In our numerical experiments, we restrict the network parameters during train-
ing by adding a tailored regularization term, and we show that for an algebraic
equation mimicking the parametric PDE problems the DNNs trained with tailored
regularization perform significantly better.

Part 2 of this talk is based on [2] where we consider a class of parametric
semi-linear parabolic PDEs used to model tumor growth and treatment, captur-
ing infiltration of the tumor into surrounding healthy tissue, proliferation of the
existing tumor, and patient response to chemo- and radiotherapies. Considerable
inter-patient variability, inherent heterogeneity of the disease, sparse and noisy
data collection, and model inadequacy all contribute to significant uncertainty in
the model parameters. It is crucial that these uncertainties can be efficiently prop-
agated through the model to compute quantities of interest (QoIs), which in turn
may be used to inform clinical decisions. We show that QMC methods can be suc-
cessful in computing expectations of meaningful QoIs. Well-posedness results and
parametric regularity bounds are developed for the model at hand and used to show
a theoretical error bound for the case of uniform random fields. The theoretical lin-
ear error rate O(N−1) is verified numerically, demonstrating the superiority of the
method over standard Monte Carlo. Encouraging computational results are also
provided for lognormal random fields, prompting further theoretical development.
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Optimal Solvers for Infinite-Dimensional Sparse Approximations in
Adaptive Stochastic Galerkin Finite Element Methods

Henrik Eisenmann

(joint work with Markus Bachmayr, Martin Eigel, Igor Voulis)

For a class of ellliptic diffusion problems on a domain D, we aim to approximate
the mapping from diffusion coefficients a = a(y) to the corresponding solutions
u(y) satisfying

−∇x · (a(y)∇xu(y)) = f.

We treat here the case of infinitely many parameters, which is common when
random fields are represented in series expansions. We show convergence with
uniform rate of an adaptive stochastic Galerkin method, and given an expansion
of the random field of the form

(1) a(y) = f
(∑

j∈N

∑

k∈N

yj,kθj,k(x)
)

with functions θj,k having multilevel structure, and an analytic function f , it is
shown to produce quasi-optimal approximations with almost optimal computa-
tional costs.

The solution map is well approximated by a series

ũ(x, y) =
∑

ν∈F

uν(x)Lν(y)

with function valued coefficients uν and product Legendre polynomials Lν . For
this expansion to have a quasi-optimal number of degrees of freedom, it is essential
to allow each function uν to be approximated in a different discrete space Vν ⊂
H1

0 (D).
We utilize finite element frames when estimating the residual to circumvent

problems arising from jump discontinuities of the residual on an overlay of many
different meshes. This allows to show the saturation property, that is, error reduc-
tion by a uniform factor in each step. For optimality, we show a stability property
of finite element subframes connected to conforming triangulations.

With this machinery at hand, the main result is an adaptive stochastic Galerkin
method for the parametric problem, that produces approximate solutions uk to u
achieving the following:

• Uniform error reduction in each step:

‖uk+1 − u‖L2(Y,H1
0(D)) ≤ δ‖uk − u‖L2(Y,H1

0 (D)).

• Quasi-optimal approximations to u: The total number of triangles Nk

required for uk scale optimally, that is if u is in the approximation class
As with

|u|As = sup
N>0

Ns min
|T|≤N

min
v∈V(T)

‖u− v‖L2(Y,H1
0(D))

then

Nk −N0 ≤ C‖uk − u‖−
1
s

L2(Y,H1
0(D))

|u|As .
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• Optimal computational complexity in the affine case up to logarithmic fac-
tor: If a(y) has an affine linear representation, then the costs of computing
uk is bounded by a fixed multiple of
(
1 + |log ‖u− uk‖L2(Y,H1

0(D))|+ log |u|As

)3‖u− uk‖−
1
s

L2(Y,H1
0(D))

|u|
1
s

As .

• Almost optimal computational complexity in the non-affine case: If a can
be expanded in the form of (1) with f having a sufficiently large holomor-
phic extension, then there is r ∈ N such that for any s′ < s the costs of
computing uk is bounded by a fixed multiple of

(
1 + |log ‖u− uk‖L2(Y,H1

0(D))|+ log |u|As

)r‖u− uk‖−
1
s′

L2(Y,H1
0 (D))

|u|
1
s′

As .
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The Polytope division method

Evie Nielen

In this talk, we introduced Configuration Optimization Problems (COPs). These
problems involve minimizing a loss function over a set of discrete points η ⊂ P .
Examples of these problems can be found in areas like Model Order Reduction,
Active Learning, and Optimal Experimental Design. While exact solutions are
often incomputable, heuristic solutions can be found via the weak Greedy Sam-
pling Method (wGSM), particularly in low-dimensional cases. wGSM recursively
updates η by computing an error estimate over a discrete sample set S ⊂ P .
However, as the dimensionality grows, the sample size suffers from the curse of
dimensionality.

To address this, we discuss the Polytope Division Method (PDM), a scalable
greedy-type approach that adaptively partitions the parameter space and targets
regions of high loss. PDM achieves linear scaling with problem dimensionality
and offers a first step towards a solution approach for high-dimensional COPs,
however we also discuss two downsides of PDM: Finding a proof of convergence
and explorability. To resolve these issues, we expand upon this method by intro-
ducing the randomized Polytope Division Method (r-PDM). Next, we make the
connection between greedy-type methods and birthing processes. We describe the
greedy algorithm as a stochastic process and introduce a transition kernel λ, and
error function G. Under appropriate assumptions of this transition kernel and
error function, we formulate a theorem describing the convergence in probability,
including convergent rates. Lastly, we compare r-PDM with a stochastic process
with uniform rates on a small interpolation example. Following the results of
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the theorem, both methods convergence in expectation, but r-PDM has a lower
variance.

Nonlinear model-order reduction via optimal transport for electronic
structure calculations

Geneviève Dusson

(joint work with Maxime Dalery, Virginie Ehrlacher, Alexei Lozinski)

Parametric partial differential equations exhibiting transport-dominated behavior
pose a significant challenge for classical linear model-order reduction (MOR) tech-
niques, which often fail to capture essential solution features such as translation or
deformation. In this talk, I presented a nonlinear MOR strategy based on optimal
transport for the computation of the ground state of the electronic Schrödinger
equation parametrized by nuclei positions. The reduced solutions are constructed
as modified Wasserstein barycenters of selected high-fidelity solutions, which are,
given a collection of probability measures {µi}ni=1, defined as the minimizer of the
weighted sum of squared distances:

argmin
µ

n∑

i=1

λi d
2(µ, µi),

where for i ∈ {1, . . . , n}, λi ≥ 0,
∑n

i=1 λi = 1, and d is a chosen modified Wasser-
stein distance. This notion therefore provides a natural way to interpolate between
solutions that are probability distributions, allowing us to exploit the geometry of
the solution manifold for varying positions of the nuclei more effectively.

In the first part of the talk we presented the contribution [1] where we ana-
lyze a toy eigenvalue problem mimicking the electronic Schrödinger equation in
one dimension, involving a fixed nuclear configuration and a single electron, for
which analytical solutions are available. More precisely we consider parameters
r := (r1, . . . , rM ) ∈ RM and z := (z1, . . . , zM ) ∈ (R∗

+)
M for M ∈ N∗, and we

are interested in the lowest eigenvalue Er,z ∈ R and the corresponding (strictly
positive) eigenstate ur,z ∈ H1(R) satisfying

(1) −1

2
u′′r,z +

(
−

M∑

m=1

zmδrm

)
ur,z = Er,zur,z.

We rescale the eigenvector to associate it to a probability distribution. We propose
a greedy algorithm to select the best snapshots; the selection is based on the
computation of the best barycenter for a mixture Wasserstein distance [3, 4], well
suited to the solutions of the considered equation, which are mixtures of Slater
distributions. The provided numerical results are promising, exhibiting a very fast
decay of the error with respect to the number of selected snapshots, both during
the offline (selection) phase and the online phase.

In the second part of the talk, we turned to a more challenging problem where
we aim at approximating the pair density from the electronic density, as presented
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in [2]. Given a ground-state wavefunction ΨR for a nuclear configuration R, the
electronic density is defined (up to a scalar factor) as

ρR(x) =

∫

Rd(N−1)

|ΨR(x, x2, . . . , xN )|2

and the pair density is defined (also up to a scalar factor) as

τR(x, y) =

∫

Rd(N−2)

|ΨR(x, y, x3, . . . , xN )|2,

thus the electronic density is the marginal of the pair density. For tractability
we still limit ourselves to 1D particles (d = 1), but we consider several electrons.
When developping a similar greedy algorithm using a selection based on Wasser-
stein barycenters either on the density or the pair density, we encounter a marginal
inconsistency: the Wasserstein barycenter between marginals is in general not
equal to the marginal of the corresponding Wasserstein barycenter. Due to this,
we proposed modified Wasserstein barycenters, exactly satisfying given marginal
constraints. These modified barycenters have so far been developed for Gaussian
distributions and Gaussian mixture distributions. They are defined as the solu-
tion to an optimization problem which can be analytically solved for Gaussian
distributions, and requires a post-processing step for Gaussian mixtures. This
enables efficient approximations leveraging the more easily accessible knowledge
to the marginals of probability distributions, compared to the full distributions.
This shows better approximation results with distributions that are rotating or
translating at a varying speed. This is expected to be particularly useful in high-
dimensional settings where the access to full solutions is limited or expensive.
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Inverse optimal transport and related problems

Clarice Poon

(joint work with Francisco Andrade, Gabriel Peyré)

Overview. Estimating parameters from samples of an optimal probability distribu-
tion is essential in applications ranging from socio-economic modeling to biological
system analysis. In these settings, the probability distribution arises as the solu-
tion to an optimization problem that captures either static interactions among
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agents or the dynamic evolution of a system over time. We introduce a general
methodology based on a new class of loss functions, called sharpened Fenchel-
Young losses, which measure the sub-optimality gap of the optimization problem
over the space of probability measures. We provide explicit stability guarantees
for two relevant settings in the context of optimal transport: the first is inverse
optimal transport and the second is inverse gradient flows. This is based on the
two papers [2] and [1].

Inverse optimal transport (iOT). The entropic optimal transport problem is as
follows: Let ǫ > 0 be a fixed entropic regularization parameter. Given two prob-
ability measures α ∈ P(X ) and β ∈ P(Y), a cost function c ∈ C(X × Y), find
π(c) ∈ P(X × Y) that solves

π(c) = argminπ∈U(α,β)

∫
c(x, y)dπ(x, y) + ǫKL(π|α⊗ β).

where U(α, β) denotes the set of probability measures on X×Y that have marginals
α, β. The inverse problem is to recover the cost function c given n samples

(xi, yi)
iid∼ π(c). Note that these samples also give access to the empirical marginals

α̂n = 1
n

∑n
i=1 δxi and β̂n = 1

n

∑n
i=1 δyi . These kinds of problems were introduced

by Galichon in a series of works, see for example [3].

Inverse gradient flow (iJKO). Suppose one observes samples iid samples of proba-
bility distributions ρk for k = 1, 2, . . ., where

ρk+1 = argminρ∈P(X )F(ρ) +
1

2τ
W 2

2 (ρ, ρk)

where W 2
2 is the (entropy regularized) Wasserstein distance with Euclidean met-

ric. The inverse problem is to recover the functional F : P(X ) → R. This is (on
a very formal level) the so-called Jordan Kinderlehre Otto discretization of the
PDE div(µt∇δF (µt)) + ∂tµt = 0 with µkτ ≈ ρk when τ is small. We will call
this the iJKO problem and for simplicity, consider the case where we have obser-
vations of two snapshots ρ0 and ρ1 One particular example of interest is where
F(ρ) =

∫
V (x)dρ(x) and in this context, we are tasked with recovering the poten-

tial function V from iid samples of ρk. Such problems are of particular interest for
understanding cell population dynamics in single-cell genomics.

Fenchel-Young losses for inverse optimization. One can view the two inverse
problems above under the common umbrella of inverse optimization: Recover
the parameter c from noisy/sampled observations of an optimization solution
π(c) = argminc〈c, π〉+Ω(π). In the context of iOT, Ω(ρ) := KL(π|α⊗β)+ ιU(α,β)

while in the case of iJKO problem, Ω(ρ) =W 2
2 (ρ, ρ0). Given observation π̂ and a

discrepancy D : P(Z)× P(Z) → [0,∞] with D(ρ, ρ) = 0, the sharpened Fenchel-
Young loss is

L(c, π̂,Ω, D) := 〈c, π̂〉+Ω(π̂)− inf
π

{〈c, π〉+Ω(π) +D(π, π̂)} .

As a function of c, this loss satisfies the following three properties: For all c,
L(c, π̂) ≥ 0 and L(c, π̂) = 0 if π̂ = π(c); It is differentiable if the inner problem
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over π has a unique solution; it is convex in c since the infimum over affine functions
is concave. In terms of relationship to well-established functions: if D ≡ 0, this
is known as the Fenchel-Young loss and the non-negativity property is simply the
Fenchel-Young inequality; if D is the Bregman distance induced by Ω, then this
is the Fitzpatrick function. In practice, we parameterize c in a linear manner

cθ = θ⊤φ :=
∑S

j=1 θjφj for some basis {φj}j, π̂ corresponds to an empirical

measure (from sampled data), and Ω is only given approximately as Ω̂ since it
often incorporates empirical data. In the following, since we are interested in
minimizing over c, we drop the Ω(π̂) term when writing the loss.

For iOT, the sampled loss given data π̂n is

Jn(θ) = 〈θ⊤φ, π̂n〉 − inf
π∈U(α̂n,β̂n)

{
〈θ⊤φ, π〉+ ǫKL(π|α̂n ⊗ β̂n)

}
.

where α̂n and β̂n are the marginals of π̂n, where we have taken D ≡ 0.
For iJKO, the sampled loss given empirical data ρ̂0, ρ̂1 is

Jn(θ) = 〈θ⊤φ, ρ̂1〉 − inf
α∈P(X )

{
〈θ⊤φ, α〉 +W 2

2,ǫ(α, ρ̂0) + rKL(α|ρ̂1)
}
,

where we have taken D(α, ρ) = rKL(α|ρ̂1) for some r > 0.
Finally, due to the noisy data, we consider the regularized problem

(1) min
θ∈RS

λR(θ) + Jn(θ),

for some (convex lower semi-continuous) regularizer R with parameter λ > 0,
which is often taken as the ℓ1 norm (to enforce sparsity) or nuclear norm (to
enforce low-rankness).

Main results. We state our main results for the iOT setting [2]. Similar results
can be derive for the iJKO problem [1].

Theorem 1 on sample complexity. Fix the entropy regularization parameter ǫ >

0. Let π⋆ be the entropic OT plan associated with cost c⋆ = (θ⋆)⊤φ, and let
α⋆, β⋆ be its marginals. Assume that α⋆, β⋆ are compactly supported, and the
cost parameterization φ is such that its centered version is nondegenerate: define
φ̄(x, y) = φ(x, y) −

∫
φ(x, y)dα⋆(x) − −

∫
φ(x, y)dβ⋆(y) +

∫
φ(x, y)dα⋆(x)dβ⋆(y),

and assume that (
Eα⋆⊗β⋆ [φ̄i(x, y)φ̄j(x, y)]

)
i,j

is invertible. Then, the iOT loss J defined with the full data π⋆ is locally strongly
convex, locally Lipschitz smooth and is twice differentiable. Moreover, for all t > 0,

with probability at least 1 − e−t, the minimizer θ̂λn to the sampled problem (1) is
unique and satisfies

(2) ‖θ̂λn − θ⋆‖2 = O
(√

mαmβ(log(n) + t)

n

)
+O(λ).

Let us make some remarks on the theorem: By convex duality on the inner
problem can be written as a supremum over functions f ∈ C(X ) and f ∈ C(Y),
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leading to the alternative formulation

Jn(θ) = inf
f,g

〈θ⊤φ−(f⊕g), π̂n〉+ǫ
∫

exp

(
f(x) + g(y)− θ⊤φ(x, y)

ǫ

)
dα̂n(x)dβ̂n(y).

Due to the term θ⊤φ − (f ⊕ g), the recovered cost is invariant to addition by
functions of the form u(x)+v(y) – this is why we impose the assumption on linear
independence of the centered parameterization functions φ̄ to ensure uniqueness
of the minimizer. The main efforts in the proof is devoted to establishing local
curvature properties of the loss and using concentration of measure results to
establish the high probability estimates under sampled data.

One often takes R(θ) = ‖θ‖1 to enforce sparsity of the solution. Via a dual

certificate/source condition, we can guarantee that the recovered solution θ̂nλ has
the same support as the underlying ground truth θ⋆: First recall that the iOT loss
J with full data π⋆ is twice differentiable. Let H := ∇2J(θ⋆) and define the cer-
tificate z⋆ := argmin

{
〈z, (H⋆)−1z〉 : z ∈ ∂‖θ⋆‖1

}
. It is said to be nondegenerate

if z⋆ is in the relative interior of ∂‖θ⋆‖1). We have the following result:

Theorem 2 on sparsistency. Consider the setting of Theorem 1. Suppose that the

certificate z∗ is non-degenerate. Let θ̂ minimize (1) with R(θ) = λ‖θ‖1. Let δ > 0.
Then, for all sufficiently small regularization parameters λ and sufficiently many
number of samples n with λ ≥ C

√
log(n/δ)/

√
n, with probability at least 1− δ, the

minimizer θ̂ has the same support as θ⋆.
For simple settings (such as sampling from Gaussians), the non-degeneracy con-

dition can be checked numerically and we carry out such a numerical investigation
in [2]. Similar investigations are carried out for the iJKO setting in [1].
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A super-resolution approach to classification

Hrushikesh Mhaskar

(joint work with Ryan O’Dowd)

The traditional approach in machine learning is to treat the classification problem
as a problem of function approximation. This creates a gap between the theory,
where one requires the target function to be smooth, and the practice, where the
class boundaries may be non-smooth, even touching each other, or the distribution
might be supported on a set of measure 0 in the ambient space. We propose
a novel paradigm, where we consider each class k appearing with a probability
distribution µk, k = 1, . . . ,K. The data consists of samples {xj} drawn from an

https://arxiv.org/abs/2505.07124
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unknown convex combination of these distributions. We then use our localized
kernels developed for solving super-resolution signal separation problems [3, 4,
1] to separate the supports of the measures µk. With these supports identified
accurately, one can then seek the label of one of the points in each of the supports,
and extend it to the entire support. In this “cautious active learning” manner [2]
one can solve the problem with a small if not minimal number of labels queried at
judiciously chosen points xj .
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The Reduced Basis Method for problems of fractional order

Karsten Urban

A parameterized partial differential equation (PPDE) is often formulated as fol-
lows: for any parameter µ ∈ P out of a compact parameter set P ⊂ R

P , one
seeks a solution u(µ) ∈ X (X being a Hilbert space, the trial space) such that
a(u(µ), v;µ) = f(v;µ) for all v ∈ Y (Y being a Hilbert space, the test space),
where a : X × Y × P → R is a bounded bilinear form and f ∈ Y ′ being a given
right-hand side (Y ′ denotes the dual space of Y ). The Reduced Basis Method
(RBM) aims at realizing an extremely efficient numerical approximation method
in cases where the PPDE has to be evaluated for many parameters, in realtime or
on devices with restricted memory or CPU.

The starting point is a detailed (or high-fidelity) discretization in terms of finite-
dimensional subspacesXN ⊂ X , Y N ⊂ Y of (usually large) dimension N ∈ N (Y N

might also depend on µ), such that the detailed approximation uN (µ) is as close
to u(µ) as desired (at the price of increasing numerical cost, of course). Then,
certain samples µ(i) ∈ P , i = 1, ..., n ≪ N are selected in an offline training
phase (usually by a greedy algorithm) and the detailed solution method is used to
compute snapshots ξ(i) := uN (µ(i)), i = 1, ..., n, which in turn are used as a basis
for the reduced trial space Xn := span{ξ(i) : i = 1, ..., n}. The reduced test space
Yn(µ) might be either fixed or formed e.g. by supremizers, [4].

The goal of the RBM is realize a good approximation to the solution manifold
defined as F := {uN(µ) : µ ∈ P}. The RB solution un(µ) ∈ Xn is defined
as the (Petrov-)Galerkin projection onto Xn along Yn(µ). This allows for best
approximation statement, i.e.,

‖uN(µ)− un(µ)‖X ≤ Cµ

βµ
inf

wn∈Xn

‖uN(µ)− wn‖X ,(1)



Computation and Learning in High Dimensions 2039

where Cµ is the continuity and βµ is the inf-sup constant of the bilinear form
a(·, ·;µ). This justifies that the benchmark for the RBM approximation is the
Kolmogorov n-width defined by

dn(F) := inf
Xn⊂X

dim(Xn)=n

sup
µ∈P

inf
wn∈Xn

‖uN(µ)− wn‖X .(2)

It was proven in [3, 5] that

dn(F) ≤ C exp(−c n1/Qa

),(3)

with constants 0 < c,C <∞, if a(·, ·;µ) is bounded, inf-sup stable and affine, i.e.,

a(u, v;µ) =

Qa∑

q=1

ϑaq (µ) aq(u, v) ∀µ ∈ P, u ∈ X, v ∈ Y(4)

and Xn, Yn are inf-sup-stable (uniformly for all parameters µ and dimensions n).
On the other hand, it is also known from [1, 3] that dn(F) ≥ n−1/2 for certain
first order linear transport problems. In that light, we address two questions:

• How does the RBM and dn(F) behave for PPDEs of order s ∈ (1, 2)?
• Is there additional gain for the RBM as those problems are non-local?

In order to answer these questions, we consider the parameterized fractional
order operator

As(µ)u := 0Ds/2
x (d(µ) 0Ds/2

x u) + r(µ)u = f(µ) on Ω := (0, 1),(5)

where 0Dβ
x denotes the left-sided Riemann-Liouville fractional derivative of order

β ∈ (0, 12 ), d(µ) ∈ L∞(Ω) such that d(x;µ) ≥ d0 > 0 for x ∈ Ω a.e., r(µ) ∈ L∞(Ω)
and f(µ) ∈ L2(Ω). Using the right-sided Riemann-Liouville fractional derivative

xDβ
1 , we define the bilinear form

a(u, v;µ) := −(d(µ)0Ds/2
x u, xDs/2

1 v)L2(Ω) + (r(µ)u, v)L2(Ω),

and the variational formulation of (5) amounts determining u ∈ H̃s/2(Ω) such that

a(u(µ), v;µ) = (f(µ), v)L2(Ω) for all v ∈ H̃s/2(Ω),(6)

where H̃β(Ω) denotes the space of functions, whose zero extension to R is inHβ(R).
The bilinear form is bounded, i.e., a(u, v;µ) ≤ Cd,r(µ)‖u‖H̃s/2(Ω) ‖v‖H̃s/2(Ω) for all

u, v ∈ H̃s/2(Ω) with Cd,r(µ) := 2 (‖d(µ)‖L∞(Ω)+‖r(µ)‖L∞(Ω)). Moreover, defining
the average ν(d) and the range ρ(d) of a function d : Ω → R as

ν(d) := 1
2

(
ess sup

x∈Ω
d(x) + ess inf

x∈Ω
d(x)

)
, ρ(d) := 1

2

(
ess sup

x∈Ω
d(x) − ess inf

x∈Ω
d(x)

)
,

setting r := ess infx∈Ω r(x) as well as γs,d(µ) := ν(d(µ)) | cos
(
sπ2
)
| − ρ(d(µ)) we

have to assume that

cs,d,r(µ) := γs,d(µ)
1
4Γ(

s
2 + 1)2 + r ≥ 0.(7)

Under this condition, we show that the bilinear form a(·, ·;µ) is coercive, i.e.,

a(u, u;µ) ≥ αs,d(µ) ‖u‖2H̃s/2(Ω)
for u ∈ H̃s/2(Ω), where αs,d(µ) = γs,d(µ) Γ(s/2 +
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1)4/8 and that there exists a unique solution of the variational problem (6) such
that ‖u(µ)‖H̃s/2(Ω) ≤ 1

αs,d(µ)
‖f(µ)‖L2(Ω).

Discretizing the variational problem by continuous piecewise linear finite ele-
ments with mesh size h, the error of the discrete solution uh(µ) can be bounded
as ‖u(µ) − uh(µ)‖H̃s/2(Ω) ≤ Chβ‖f(µ)‖L2(Ω) for any β ∈ [0, s2 − 1

2 ) and some

positive C > 0. For the resulting stiffness matrix Ah(µ), there exists a constant

0 < c 6= c(h) such that κ(Ah) ≤ c h−s

αs,d(µ)
.

For the application of the RBM, we have to assume that the operator As(µ) in
(5) has affine components, i.e.,

c(µ) =

Qc∑

q=1

ϑcq(µ) cq, c ∈ {d, r, f},

where ϑcq : P → R and dq, rq ∈ L∞(Ω), fq ∈ L2(Ω). Then, the above quoted result

from [3] yields dn(F) ≤ C exp(−c n1/(Qd+Qr)), which, however, does not show the
dependency on the order s. Instead, we show that for d(µ) ≡ 1 (the general case
is technically more involved, but gives similar bounds)

dn(P) ≤ C exp
{
− cΩ

αsn

|P|
}
,

where αs = | cos
(
sπ2
)
|Γ(s/2+ 1)4/8 is the coercivity constant for d ≡ 1 and cΩ is

constant only depending on Ω.
We also show numerical results concerning the convergence of the finite element

discretization, the conditioning of the stiffness matrix, the decay of the RBM error
and the speedup of the RBM. The talk is based upon [2], where details can be
found.
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Singular Perturbations, Min-Max Optimization, and Accuracy Control

Wolfgang Dahmen

(joint work with Zhu Wang)

Trying to recover a (complex) “physical state of interest” from experimental obser-
vations/measurements is a ubiquitous task in science and technology. Since due to
pysical constraints or acquisition cost, such data, as a sole source of information,
are usually far from sufficient for an acccurate recovery so that one has to make
use of further prior information. This could be obtained from governing physical
laws that are typically given in terms of systems of partial differential equations
(PDEs) involving “uncertain” problem data such as coefficient fields, equations of
states, initial conditions or source terms - in brief parameters the PDE depends
on. Related inverse tasks, like state- or parameter-estimation, require an efficient
exploration of the “solution manifold”, comprised of all solutions obtained when
traversing the parameter domain. Viewing the solutions of the parameter depen-
dent PDEs as functions of spatio-temporal and parametric variables, the recovery
tasks is intrinsically high-dimensional. This has stirred interest in leveraging ma-
chine learning concepts to mitigate complexity challenges, due to the Curse of
Dimensionality. The central theme in this talk is a “learning-based” construction
of accurate and yet efficient surrogates for the underlying parameter-to-solution
(PtS) map under the following provisions: (i) a rigorous accuracy quantification
with respect to “model-compliant” norms; (ii) “supervised learning” in terms of
regression should be based on residual-type training losses; (iii) estimation quality
should be as robust as possible for desirable large parameter ranges that may cause
near-degeneracies in the family of PDEs.

(i) is important to avoid aggravating the level of ill-posedness when using the
surrogate in the context of an inverse problem. For instance, imposing “excess
regularity” narrows the range of the solution operator. (ii) is to avoid the need
to compute a large number of high-fidelity solutions as training data for regres-
sion over hypothesis classes of high expressivity (such as deep neural network).
Since the nonlinearity of such hypothesis classes renders entailed optimization
problem non-convex, one encounters an inherent uncertainty in optimization suc-
cess. Therefore, a priori expressivity results for the hypothesis class are of little
(if any) help. This has motivated the notion of variationally correct residual losses
which roughly means that the loss itself provides up to uniform proportionality
constants lower and upper bounds for the deviation of an estimator from the exact
solution with respect to a model-compliant norm [1]. Such norms are actually dic-
tated by appropriate stable variational formulations for the underlying PDE family.
Specifically, we show how variational correctness of the residual loss is based then
on the fact that errors in the trial norm are uniformly proportional to the residual,
measured in the dual test-norm. Since a dual norm of a Hilbert space involves the
supremization over that Hilbert space, it can generally not be evaluated exactly
(unless the Hilbert space is a product of L2-spaces and hence self-dual). We dis-
cuss several strategies for constructing equivalent computable quantities [1, 4]. The
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common starting point of these techniques is to first transform the PDE into an
equivalent system of first order PDEs which increases the flexibility of identifying
appropriate stable variational formulations, including formulations with self-dual
test spaces, see also [8]. In particular, we highlight the fact that nevertheless
the proportionality between errors and residuals - hence variational correctness -
may degrade significantly when the parameter range includes singularly perturbed
models (e.g. high-contrast diffusion models, [4]), which concerns issue (iii). We
therefore discuss, as a potential remedy, the role of so called ultra-weak formula-
tions in combination with optimal test-norms which are well-defined as long as the
operator, induced by a perhaps more conventional formulation, is bijective (regard-
less of a perhaps prohibitively large condition in the standard formulation), see
e.g. [5, 7]. Endowing the test space with the optimal test-norm, can be viewed as
“preconditioning” the operator equation on the infinite-dimensional level, namely
the induced operator becomes an isometry between the trial space and the dual
test space. Thus, the residual in this dual test-norm is equal to the error in the
trial-norm, even in the regime of nearly degenerating coefficients. The price is that
now the learning problem boils down to solving a min-max optimization problem,
reflecting a non-trivial dual norm. This option has indeed been explored previ-
ously (see e.g. [3, 2, 9]) but it is fair to say that the employed ad-hoc approaches
of alternating gradient ascent and descent steps for a given hypothesis class and an
associated “adversarial test-class” has significant robustness issues. As a potential
remedy we propose the following strategy: First we reformulate the the min-max
problem for the quotients, defining the dual norm, as an equivalent affine-quadratic
saddle point problem. This exploits the fact that the supremizer is the Riesz-lift
of a symmetric coercive (in this sense elliptic) variational problem which is char-
acterized as the minimizer of an affine-quadratic energy functional. As a next
step we formulate a fictitious primal-dual proximal scheme in Hilbert space whose
convergence, due to the very benign affine quadratic structure of the Lagrangian,
can be quantified. A slight issue is to properly account for the different norms im-
posed by the underlying PDE model. Understanding the convergence properties
of such an idealized scheme, allows one then to determine tolerances within which
the execution of the involved proximal maps can be inexact while still warranting
convergence to the exact limit. Again drawing on the Hilbert space formulation,
we derive a-posteriori bounds that are used to check whether the approximate
proximal map meets the permissible perturbation tolerance. If this is the case we
obtain a convergent scheme with certified error bounds. In this sense we obtain a
rigorous “conditional convergence result”. Specifically, we obtain a certifiable solu-
tion of the initial “global” min-max problem, provided that we can solve the much
simpler minimization problems, posed by the proximal maps, albeit over nonlinear
hypothesis classes. The fact, that the exact minimizer gets increasingly closer to
the initial guess is a further favorable aspect regarding practical realizations. Nev-
ertheless, meeting the tolerances will in general require gradually enlarging the
hypothesis classes, as a further constituent of this paradigm. For that purpose
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we plan to employ such expansion strategies from [6], developed in the context of
minimizing convex Hilbert space energies over neural network hypothesis classes.
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Nonlinear manifold approximation using compositional
polynomial networks

Anthony Nouy

(joint work with Antoine Bensalah, Joel Soffo)

We consider the problem of approximating a subset M of a normed space X by
a low-dimensional manifold Mn, using samples from M . We propose a nonlinear
approximation method where Mn is defined as the range of a smooth nonlinear
decoder D defined on Rn with values in a possibly high-dimensional linear space
XN , and a linear encoder E which associates to an element fromM its coefficients
E(u) on a basis of a n-dimensional subspace Xn ⊂ XN , where Xn and XN are
optimal or near to optimal linear spaces, depending on the selected error measure.
The linearity of the encoder allows to easily obtain the parameters E(u) associated
with a given element u in M . The proposed decoder is a polynomial map from
Rn to XN which is obtained by a tree-structured composition of polynomial maps,
estimated sequentially from samples in M . Rigorous error and stability analyses
are provided, as well as an adaptive strategy for constructing a decoder that guar-
antees an approximation of the set M with controlled mean-squared or wort-case
errors, and a controlled stability (Lipschitz continuity) of the encoder and decoder
pair.
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Then we consider the problem of approximating online a new element u ∈M by
an element of the manifoldMn, either with an operator learning point of view when
M is the image of some operator defined on a parameter set, or by solving a best
approximation problem with natural gradient schemes, using new and adaptive
information.
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On the computational and statistical complexity of predicting
non-linear dynamical systems

Richard Nickl

We discuss recent progress in our understanding of Bayesian inference methods for
parameters or states of time evolution phenomena modelled by non-linear partial
differential equations (PDEs) such as Navier-Stokes, McKean-Vlasov, and reaction-
diffusion systems. We will show that posteriors can deliver consistent solutions in
the ‘informative’ large data/small noise limit, discuss probabilistic approximations
to the fluctuations of such posterior measures in infinite dimensions, and how
such results can be used to show that the non-convex problem of computation
of the associated ‘filtering’ distributions are polynomial time problems. Relevant
references are [1, 2, 3].
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Kernel methods in high dimensions with lengthscale informed
sparse grids

Aretha Teckentrup

Kernel methods, in the form of radial basis function interpolation and Gaussian
process regression, have proved successful as a tool for various tasks in approx-
imation and inference. This talk focussed on presenting recent advances in the
design and numerical analysis of kernel methods in the context of modern applica-
tions, which typically involve very high dimensions. To combat this challenge, we
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introduce anisotropic kernels and lengthscale informed sparse grids that allow for
accurate reconstruction and efficient compuatation in this setting.

Stable Nonlinear Dynamical Approximation with Dynamical Sampling

Daan Bon

(joint work with Benjamin Caris, Olga Mula)

We present a nonlinear dynamical approximation method for time-dependent Par-
tial Differential Equations (PDEs). The approach makes use of parametrized de-
coder functions, e.g. (shallow) neural networks. The parameters of these functions
are evolved in time by finding a curve of parameters that induces a curve of
decoders, such that the time derivative of the decoders matches up with the con-
sidered PDE evolution. This is ensured by projecting the right hand side of the
PDE evolution onto the span of the partial derivatives of the decoder w.r.t. the
parameters, an approach known as the Dirac-Frenkel principle.

These projections are w.r.t. an ambient Hilbert space, and thus usually require
the need to perform some integration over a spatial domain. This can be costly if
the domain is high dimensional, as many quadrature points are needed, or if the
PDE solution has a local and moving support. We therefore propose an approach
that instead makes use only of a restricted amount of local information of the
functions, through certain linear functionals (such as a small Gaussian average).
These functionals are then evolved in time together with the approximation, so
that we do not require to cover the full spatial domain with quadrature points.
This evolution of the linear functionals is driven by the optimization of a stability
constant, which is directly part of an error bound between the true solution and
our proposed approximation.

We show several applications of the method in both low and high dimensions,
and in particular show that it works well even if the PDE solution has a local and
moving support, for which quadrature methods would have been costly.

Neural and Spectral Operator surrogates on Gaussian spaces

Christoph Schwab

(joint work with C. Marcati, M. Maric and J. Zech)

We prove expression rate bounds of finite-parametric, spectral and neural surro-
gates for holomorphic maps between separable spaces. In the encoder-approxima-
tor-decode framework, with Riesz-basis encoders, and frame decoders, we prove
expression rate bounds for two classes of finite-parametric surrogates: i) spectral
surrogates obtained by N -term trunations of Wiener-Hermite polynomial chaos ex-
pansions and ii) neural surrogates obtained by approximation of parametric maps
with several families of neural networks: ReLU, clipped ReLU and RePU activa-
tions are considered. We work under abstract hypotheses on weighted summability
of encoded inputs on sequence spaces, and with Gaussian measures charging the set
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of admissible operator inputs. Operator approximation rates are in mean-square
and in hilbertian gaussian Sobolev spaces.

Work is based on and generalizing [1], [2], using novel sparsity results of para-
metric, holomorphic maps from [3].
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Deep neural network analysis made easy

Mario Ullrich

(joint work with Cornelia Schneider, Jan Vybiral)

Recently, Daubechies, DeVore, Foucart, Hanin, and Petrova introduced a system
of piece-wise linear functions, which can be easily reproduced by artificial neu-
ral networks with the ReLU activation function and which form a Riesz basis of
L2([0, 1]). This work was generalized by two of the authors to the multivariate
setting. We show that this system serves as a Riesz basis also for Sobolev spaces
W s([0, 1]d) and Barron classes Bs([0, 1]d) with smoothness 0 < s < 1. We apply
this fact to re-prove some recent results on the approximation of functions from
these classes by deep neural networks. Our proof method avoids using local ap-
proximations and allows us to track also the implicit constants as well as to show
that we can avoid the curse of dimension. Moreover, we also study how well one
can approximate Sobolev and Barron functions by ANNs if only function values
are known.
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Wavelet compressed, modified Hilbert transform in the space-time
discretization of the heat equation

Helmut Harbrecht

(joint work with Christoph Schwab and Marco Zank)

1. Introduction

The efficient numerical solution of initial-boundary value problems is central in
computational science and engineering. Accordingly, numerical methods have been
developed to a high degree of sophistication and maturity. Foremost among these
are time-stepping schemes, which are motivated by the causality of the physical
phenomena modelled by the equations. They discretize the evolution equation via
sequential numerical solution of a sequence of spatial problems. In recent years,
however, especially motivated by applications from numerical optimal control, so-
called space-time methods have emerged: these methods aim at the “one-shot”
solution of the initial-boundary value problem as a well-posed operator equation
on a space-time cylinder. We present here such a space-time method for the
efficient solution of linear, parabolic initial boundary value problems.

2. Problem formulation

Without loss of generality, we set I := (0, 1). We intend to find the function u(x, t)
satisfying the following linear, parabolic initial-boundary value problem

(1)

∂tu− div(A∇u) = f in Q = Ω× I,

u = 0 on ΓD × I,

∂u

∂n
= 0 on ΓN × I,

u(·, 0) = 0 in Ω

with given right-hand side f and, for simplicity, homogeneous Dirichlet boundary
conditions on ΓD ⊂ ∂Ω, homogeneous Neumann boundary conditions on ΓN ⊂ ∂Ω
and homogeneous initial conditions. Here, Ω ⊂ Rn, n ∈ {2, 3}, is a bounded do-
main with Lipschitz boundary and A ∈ [L∞(Ω)]n×n is a uniformly elliptic diffusion
matrix.

3. Variational formulation

We introduce the temporal spaces by

H1
0,(I) = {z ∈ H1(I)| z(0) = 0}, H1

,0(I) = {z ∈ H1(I)| z(1) = 0}
and define the respective fractional-order Sobolev spaces by interpolation

Hs
0,(I) = [H1

0,(I), L
2(I)]s, Hs

,0(I) = [H1
,0(I), L

2(I)]s
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for s ∈ (0, 1). We moreover denote the space that consists of all functions from
H1(Ω), fulfilling homogeneous Dirichlet conditions on ΓD, by H

1
ΓD

(Ω). With these
spaces at hand, we introduce the following intersection spaces

H
1,1/2
ΓD;0,(Q) =

(
H1

ΓD
(Ω)⊗ L2(I)

)
∩
(
L2(Ω)⊗H

1/2
0, (I)

)
,

H
1,1/2
ΓD;,0(Q) =

(
H1

ΓD
(Ω)⊗ L2(I)

)
∩
(
L2(Ω)⊗H

1/2
,0 (I)

)
,

equipped with the sum norm, and the duality pairing

〈·, ·〉Q :
[
H

1,1/2
ΓD;,0(Q)

]′ ×H
1,1/2
ΓD;,0(Q) → R

as continuous extension of the L2(Q) inner product. Then, the space-time varia-

tional formulation of (1) reads: Seek u ∈ H
1,1/2
0;0, (Q) such that

(2) ∀w ∈ H
1,1/2
0;,0 (Q) : b(u,w) := 〈∂tu,w〉Q + 〈∇xu,∇xw〉[L2(Q)]n = 〈f, w〉Q.

It is uniquely solvable and induces an isomorphism

∂t −∆ ∈ Liso

(
H

1,1/2
0;0, (Q),

[
H

1,1/2
0;,0 (Q)

]′)
,

compare [5].

4. Modified Hilbert transform

For a given function z ∈ L2(I) with Fourier coefficients

zk =
√
2

∫ 1

0

z(t) sin
((π

2
+ kπ

)
t
)
dt

and series representation

z(t) =
∞∑

k=0

zk
√
2 sin

((π
2
+ kπ

)
t
)
, t ∈ I,

the modified Hilbert transform is defined by the series

(HT z)(t) =
∞∑

k=0

zk
√
2 cos

((π
2
+ kπ

)
t
)
, t ∈ I.

It defines an isometry

HT : Hs
0,(I) → Hs

,0(I)

for all s ∈ [0, 1], see e.g. [5] for the details. This property is the key feature for
the space-time formulation, which we will use in the following. Namely, instead of

(2), we shall from now on consider the variational formulation: Seek u ∈ H
1,1/2
0;0, (Q)

such that

(3) ∀w ∈ H
1,1/2
0;0, (Q) : b(u,HTw) = 〈f,HTw〉Q.

This formulation is unconditionally stable, satisfying the stability estimate

‖u‖
L2(Ω)⊗H

1/2
0, (I)

≤ ‖f‖
[L2(Ω)⊗H

1/2
,0 (I)]′

provided that f ∈ [L2(Ω)⊗H
1/2
,0 (I)]′.
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5. Discretization

A discretization by product spaces of Lagrangian finite elements in space and
splines in time yields a linear system of equations of the form

(4)
(
At

j ⊗Mx
j +Mt

j ⊗Ax
j

)
uj = fj .

Here, the temporal system matrices are given given by

At
j =

[
〈∂tφtj,k′ ,HTφ

t
j,k〉L2(0,1)

]
k,k′

, Mt
j =

[
〈φtj,k′ ,HTφ

t
j,k〉L2(0,1)

]
k,k′

and the spatial system matrices are given by

Mx
j =

[
〈φxj,k′ , φxj,k〉L2(Ω)

]
k,k′

, Ax
j =

[
〈∇xφ

x
j,k′ ,∇xφ

x
j,k〉L2(Ω)n

]
k,k′

,

while fj is the related right-hand side. The above matrices are positive definite and
the matrices At

j , A
x
j , M

x
j are symmetric, whereas Mt

j is nonsymmetric. However,
since the modified Hilbert transform is a nonlocal operator, we shall apply spline
wavelets in order to be able to compress the matrices At

j and Mt
j in accordance

with [2]. Then, also the graph-algorithm based computation of their inverses
becomes possible, see [3]. This enables to apply the BPX-type preconditioner

j∑

ℓ=0

(
Itj ⊗ Ijℓ

)((
At

j + (hxℓ )
−2Mt

j

)−1 ⊗ Ixℓ

)(
Itj ⊗ Iℓj

)

for the efficient iterative solution of (4), compare [1]. Finally, due to the use of a
multilevel basis in time, a sparse-tensor product discretization between space and
time becomes easily realizable. In this case, the temporal coordinate is basically
for free and the complexity corresponds, up to a poly-logarithmic factor, to the
discretization of a purely spatial partial differential equation. We refer to [4] for
all the details.
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Solving the (Multi-)Electronic Schrödinger Equation with
Deep Learning

Philipp Grohs

I presented some recent results from [1, 2].
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Kernel interpolation on generalized sparse grids

Michael Multerer

(joint work with Michael Griebel, Helmut Harbrecht)

Let H =
⊗m

i=1 H(i) be a tensor product Hilbert space of functions f : Ω → R

defined on the product region Ω = Ω1 × · · · × Ωm with the unidirectional regions
Ωi ⊂ Rdi . Each unidirectional space H(i) is assumed to be a reproducing kernel
Hilbert space on Ωi ⊂ Rdi with reproducing kernel κi, i = 1, . . . ,m. Therefore, the
space H is a reproducing kernel Hilbert space itself with product kernel κ(x,y) =∏m

i=1 κi(xi, yi) defined on the product region Ω = Ω1 × · · · × Ωm.

Given the unidirectional sets of data sites X(i) ⊂ Ωi, i = 1, . . . ,m, we define the
product grid X := {[x1, . . . , xm] : xi ∈ X(i)}. Associated to X, we introduce the
subspace of kernel translates HX := span{κ(x, ·) : x ∈ X}. By the reproducing
property, the H-orthogonal projection fX of any function f ∈ H onto HX coin-

cides with the interpolant fX(xi) :=
∑|X|

j=1 αjκ(xj ,xi) = f(xi) for all xi ∈ X.

Introducing the data vector f := [f(xi)]i, the coefficient vector of the interpolant
can be computed by solving the linear system

(1) (K(1) ⊗ · · · ⊗K(m))α = f

with the unidirectional kernel matrices K(i) := [κi(x, y)]x,y∈X(i) . Our goal is to
approximately solve the linear system (1) by using generalized sparse grids and to
have control on the resulting approximation error.

For the sparse grid construction, we start from nested sequences X
(i)
0 ⊂ X

(i)
1 ⊂

· · · ⊂ X(i) ⊂ Ωi with decreasing fill distance h
(i)
j := supx∈Ωi

min
y∈X

(i)
j

‖x− y‖2 ∼
2−j for i = 1, . . . ,m. Associated to the sequence of points, there is a sequence of

subspaces H(i)
0 ⊂ H(i)

1 ⊂ · · · ⊂ H(i), H(i)
j := span

{
κi(x, ·) : x ∈ X

(i)
j

}
of kernel

translates for each unidirectional space. Assuming H(i) ∼= Hsi(Ωi) for si > di/2,
there hold the univariate error estimates
∥∥f − P

(i)
j f

∥∥
Hti (Ωi)

.
(
h
(i)
j

)t′i−ti‖f‖
Ht′

i (Ωi)
, 0 ≤ ti ≤ si ≤ t′i ≤ 2si, f ∈ Ht′i(Ωi),
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see [1, 6, 7]. Herein P
(i)
j f = f

X
(i)
j

denotes the H(i)-orthogonal projection onto

the subspace H(i)
j . Similarly, the detail projection Q

(i)
j := P

(i)
j − P

(i)
j−1, P

(i)
−1 := 0,

satisfies
∥∥Q(i)

j f
∥∥
Hti (Ωi)

.
(
h
(i)
j

)t′i−ti‖f‖
Ht′

i (Ωi)
, 0 ≤ ti ≤ si ≤ t′i ≤ 2si, f ∈ Ht′i(Ωi).

Given the detail projections, we define the sparse grid projection

P̂
w

J : H → Ĥ
w

J , P̂
w

J f =
∑

j⊺w≤J

Qjf :=
∑

j⊺w≤J

(
Q

(1)
j1

⊗ · · · ⊗Q
(m)
jm

)
f.

Theorem 1. Let f ∈ Ht′(Ω) and let X be quasi-uniform, i.e., the fill-distance

scales like the separation radius. Denote by N := dim Ĥ
w

J the number of degrees

of freedom in the sparse tensor product space Ĥ
w

J and set

(2) β :=
min{r1/w1, . . . , rm/wm}
max{d1/w1, . . . , dm/wm} , ri := t′i − ti.

Assume that the minimum in the numerator is attained P ∈ N times and the
maximum in the denominator is attained R ∈ N times. Then, the sparse grid

kernel interpolant in Ĥ
w

J satisfies the error estimate
∥∥(I − P̂

w

J )f
∥∥
Ht(Ω)

. N−β(logN)(P−1)+β(R−1)‖f‖
Ht′ (Ω)

.

For all w > 0, there holds β ≤ β⋆ := min{r1/d1, . . . , rm/dm}, see [2]. The
maximum rate β⋆ is always achievable. More precisely, the maximum rate β = β⋆

is attained for all w > 0 such that rℓ/ri ≤ wℓ/wi ≤ dℓ/di, i = 1, 2, . . . ,m, where,
without loss of generality, rℓ/dℓ = β⋆. Several canonical choices for the weight are
possible:

• Equilibration of accuracy: Set wi ∼ ri such that

2−Jr1/w1 = 2−Jr2/w2 = · · · = 2−Jrm/wm .

• Equilibration of degrees of freedom: Set wi ∼ di such that

2Jd1/w1 = 2Jd2/w2 = · · · = 2Jdm/wm .

• Equilibration of cost-benefit rate: Set wi ∼ (di + 2si) such that

2j1(d1+r1) · 2j2(d2+r2) · · · 2jm(dm+rm) = 2J·const., j⊺w = J.

Due to the Galerkin orthogonality, the detail projections satisfy

(Qju,Qj′v)H = 0 for j 6= j′ and any u, v ∈ H.

As a consequence, the sparse grid combination technique is exact, see, e.g., [5].
Let P j :=

∑
ℓ≤j Qℓ be the tensor product projection and define the combination

technique index set Jw
J :=

{
j ∈ Nm

0 : J − |w| < j⊺w ≤ J
}
. Then, there holds

P̂
w

J f =
∑

j∈Jw
J

cwj P jf, where cwj :=
∑

j′∈{0,1}m

(j+j′)⊺w≤J

(−1)|j
′|.
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As a consequence, we only need to solve the smaller tensor product problems

Kjαj :=
(
K

(1)
j1

⊗ · · · ⊗K
(m)
jm

)
αj = fj , j ∈ Jw

J .

For computational efficiency, the unidirectional kernel matrices are compressed
using samplets, see [3]. Samplets are discrete localized signed measures with vanish-
ing moments. More precisely, let X ′

0 ⊂ X ′
1 ⊂ · · · ⊂ X ′

J := X ′ := span{δx : x ∈ X}
denote a multiresolution analysis. We equip X with the topology of R|X| and,
since X ′

j ⊂ X ′
j+1, we can orthogonally decompose X ′

j+1 = X ′
j⊕S ′

j . For S ′
j , we

introduce the orthonormal bases {σj,k}k. Recursively applying the decomposition
yields a samplet basis for X ′

J . For data compression, we may construct samplets
with vanishing moments (σj,k, p)Ω = 0 for all polynomials p of degree smaller than
or equal to q.

Since X ′
J ⊂ H′, samplets induce a multiresolution basis for HX via the em-

bedding σj,k =
∑

ℓ uj,k,ℓδxℓ
7→ ψj,k =

∑
ℓ uj,k,ℓκ(xℓ, ·). The kernel matrix in sam-

plet coordinates satisfies [〈ψj,k, ψj′,k′〉H]j,j′,k,k′ = TKT ⊺, T := [uj,k,ℓ](j,k),ℓ ∈
R|X|×|X|. The vanishing moment property can be employed for the compression
of kernel matrices, given that the kernel is asymptotically smooth according to

∂|α|+|β|

∂xα∂yβ
κ(x, y) ≤ cκ

(|α|+ |β|)!
ρ|α|+|β|‖x− y‖|α|+|β|

2

, cκ, ρ > 0.

Let the data set X be quasi-uniform and let T be a hierarchical cluster tree for X .
Then, setting all coefficients of the transformed kernel matrix KΣ := TKT ⊺ to
zero which satisfy dist(τ, τ ′) ≥ ηmax{diam(τ), diam(τ ′)}, η > 0, τ, τ ′ ∈ T results

in a consistency error of
∥∥KΣ −KΣ

η

∥∥
F
/‖KΣ‖F . (ηρ/d)−2(q+1). The compressed

matrix KΣ
η only contains O(|X | log |X |) entries and can be computed with cost

O(|X | log |X |), see [3] and the references therein. Afterwards, the linear system
can efficiently be solved using a sparse direct solver, see [4].

Figure 1. Data sites in 1+ 2+3 dimensions and convergence of
the different sparse grid approximations.

To illustrate the approach, we consider an example in 1+2+3 dimensions using
nested subsets of uniformly random points in [0, 1] and S2 and nested subsets from
a volume mesh of the Stanford bunny, see the left hand side of Figure 1. The kernel
on each region is given by the Matérn-

(
25
16 − d

2

)
kernel, d = 1, 2, 3. Therefore, the

energy space is H25/16(Ωi) and the expected rate of convergence, when the error
is measured in L2, is 25/8 for m = 1, 2, 3. As data, we consider f ≡ 1, which is
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not contained in the ansatz space, and evaluate the sparse grid interpolant at 100
random points in each region, see again the left hand side of Figure 1. For the
three discussed sparse grid constructions, the error almost perfectly decays with
the expected rate β = 25/24 ≈ 1.04, see the right hand side of Figure 1.
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Scalable Sequential Exponential Design for Bayesian Inverse Problems

Robert Scheichl

(joint work with Karina Koval, Roland Herzog, Tiangang Cui)

We propose a novel approach for sequential optimal experimental design (SOED)
for Bayesian inverse problems involving expensive models with large-dimensional
unknown parameters. The focus of this work is on designs that maximize the ex-
pected information gain (EIG) from prior to posterior which is a computationally
challenging task in the non-Gaussian setting. This challenge is amplified in SOED,
as the incremented expected information gain (iEIG) must be approximental mul-
tiple times in distinct stages, with both prior and posterior distributions often be-
ing intractable. To address this, we derive a derivative-based upper bound for the
iEIG, which not only guides design placement but also enables the construction of
projections onto likelihood-informed subspaces, facilitating parameter dimension
rediction. By combining this approach with conditional measure transport maps
for the sequence of posterior, we develop a unified framework for SOED, together
with amortized inference, scalable to high- and infinite-dimensional problems. Nu-
merical experiments for two inverse problems governed by partial differential equa-
tions (PDEs) demonstrate the effectiveness of designs that maximize our proposed
upper bound.
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On the Lipschitz constant of random ReLU neural networks

Felix Voigtlaender

(joint work with Sjoerd Dirksen, Patrick Finke, Paul Geuchen, Dominik Stöger)

Deep Learning, the application of machine learning techniques based on deep neu-
ral networks, has over the last decade lead to breakthrough results in diverse
areas, including image classification [8] and natural language processing [10]. Up
to now, however, there is no comprehensive theoretical explanation for this suc-
cess, and there are still many limitations remaining [11]. Particularly, it has been
empirically shown that trained neural networks are often susceptible to so-called
adversarial perturbations [7, 5], where a small, often imperceptible, perturbation
to the input can cause a significant change to the network output (leading e.g. to
a misclassification).

In my talk at the MFO, I presented recent results from the paper [4], which
makes a first step towards understanding this non-robustness of neural networks,
by proving sharp bounds for the Lipschitz constants of neural networks with ran-
domly chosen weights and biases. The paper concentrates on networks with the
so-called ReLU activation function [8], given by ̺(x) = x+ = max{0, x}. A ReLU
neural network with d-dimensional input and L hidden layers, consisting of N
neurons each, is given by

Φ : Rd → R, Φ = V (L+1) ◦ (̺ ◦ V (L)) ◦ · · · ◦ (̺ ◦ V (1)),

where the ReLU is applied componentwise to vectors, and where the affine-linear
maps V (ℓ)z = W (ℓ)x + b(ℓ) are determined by the weight matrices W (ℓ) and the
bias vectors b(ℓ), which we consider to be chosen at random, via a variant of the
He initialization proposed in [8]. Specifically, we assume that all the entries of all
the W (ℓ), b(ℓ) are jointly independent and normally distributed, with

W (1) ∈ R
N×d, W

(1)
i,j ∼ N (0, 2

N ),

W (ℓ) ∈ R
N×N , W

(ℓ)
i,j ∼ N (0, 2

N ), 2 ≤ ℓ ≤ L

W (L+1) ∈ R
1×N , W

(N+1)
i,j ∼ N (0, 1).

This choice ensures — in the zero bias case, i.e., if all bias vectors b(ℓ) are chosen
as zero — that the network is isometric in expectation, meaning

E
[
‖Φ(x)‖2ℓ2

]
= ‖x‖2ℓ2 ∀x ∈ R

d,

and in fact this holds not only for the full network Φ, but for the output of each
layer of the network.

Studying such random neural networks is mainly important since they are used
as the starting point for the training process, and because there are results showing
that the weights don’t move much during training under certain assumptions [1],
so that one might hope that the final trained network behaves similarly to the
randomly initialized network, at least in some respects. Moreover, it has been
empirically shown that randomly initialized networks can perform well in many
tasks, as long as the last layer is trained [9]. Finally, with respect to the relative
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performance of different network architectures (number and size of the layers, etc.),
such “random, untrained networks” tend to behave similarly to the fully trained
networks [9].

The following results, which characterize the ℓp Lipschitz constant

Lipℓp(Φ) := sup
x,y∈Rd,x 6=y

|Φ(x) − Φ(y)|
‖x− y‖ℓp

of a random ReLU network Φ, are informal versions of the fully precise results in
[4]. We here focus on the zero-bias case, in which all bias vectors b(ℓ) vanish.

The first result characterizes the ℓq-norm of the gradient ∇Φ(x0) at a single
point x0 6= 0. It essentially shows that this quantity behaves like the ℓq-norm of
a d-dimensional random vector with independent, standard normal entries. The
proof heavily relies on a “decoupling technique” developed in [2, Lemma 2.1].

Theorem ([4]). Consider the zero-bias case, and let x0 ∈ Rd 6= {0} be fixed.
Suppose that d ≫ 1 and N ≫ L3. Then Φ is almost surely differentiable at x0,
and for a suitable absolute constant c > 0, the following hold:

• For q ≤ 2, we have

P

(
‖∇Φ(x0)‖ℓq ≍ d1/q

)
≥ 1− exp

(
−cmin{d,N/L2}

)
.

• For q ≥ ln(d), we have

P

(
‖∇Φ(x0)‖ℓq ≍

√
ln(d)

)
≥ 1− exp

(
−cmin{ln(d), N/L2}

)
.

If p, q ∈ [1,∞] are conjugate, then ‖∇Φ(x0)‖ℓq is a lower bound for Lipℓp(Φ).
Thus, the above theorem immediately implies the following corollary.

Corollary ([4]). Under the same assumptions as in the above theorem, we have

Lipℓp(Φ) ≥ ‖∇Φ(x0)‖ℓq & d1−
1
p for all p ≥ 2, with high probability.

This lower bound for the Lipschitz constant for the case p ≥ 2 in fact turns out
to be sharp up to log factors.

Theorem ([4]). Consider the zero-bias case, and let N
ln2(1+N)

≫ d ·L3. Then, for

any p ≥ 2 and a suitable absolute constant c > 0,

P

(
Lipℓp(Φ) . d1−

1
p ·
√
ln(N/d)

)
≥ 1− exp

(
−c · d · ln(N/d)

)
.

The theorem is derived by first establishing the case p = 2, and then applying

the estimate ‖ · ‖ℓ2 ≤ d
1
2−

1
p · ‖ · ‖ℓp , to extend the bound to p ≥ 2. In the

complementary regime p ≤ 2, using the trivial estimate ‖·‖ℓ2 ≤ ‖·‖ℓp , one obtains
the upper bound Lipℓp(Φ) .

√
d ·
√
ln(N/d) with high probability. Due to using

the rather naive bound ‖ · ‖ℓ2 ≤ ‖ · ‖ℓp , one might think that the resulting bound
is probably loose. However, as the following result shows, this is in fact not the
case, at least if one considers the depth L to be fixed.
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Theorem ([4]). Assume that d≫ 1 and N
ln2(N+1)

≫ d · (CL)CL, and consider the

zero-bias case. Then, for any p ≥ 1, we have

Lipℓp(Φ) ≥ Lipℓ1(Φ) &
√
d/

√
L with probability at least 1− exp

(
−c · d

L

)
.

A somewhat surprising consequence of these bounds is that in the regime p ≥ 2,
it holds that Lipℓp(Φ) ≍ ‖∇Φ(x0)‖ℓq , up to a log factor in N/d. In contrast, for the
case p < 2 and d/(L ln(d)) ≫ 1, it holds that Lipℓp(Φ) ≫ ‖∇Φ(x0)‖ℓq . Intuitively,
the reason for this is that while each individual gradient has relatively small (ℓq)
norm with high probability, due to the large number of possible gradients, the
maximal norm over all possible gradients is much larger.

Previous work. In addition to the zero-bias case considered above, [4] also
derives similar results for the case that the distribution of the biases is symmetric
and “sufficiently well-behaved”. Similar bounds to the ones discussed above, but
only for the case p = 2 and for the zero-bias setting already appeared in [2].
Moreover, the paper [6] shows that for the case of shallow ReLU networks (that

is, L = 1), the factor
√
ln(N/d) in the upper bound can be omitted for the case

p = 2. This is extended in [4] to obtain matching upper and lower bounds for the
shallow case, for arbitrary biases and arbitrary p ∈ [1,∞].
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Stochastic gradient with least-squares control variates for smooth
stochastic optimization problems

Fabio Nobile

(joint work with Matteo Raviola, Nathan Schaeffer)

The stochastic gradient descent (SGD) method is a widely used approach for
solving stochastic optimization problems, but its convergence is typically slow.
Existing variance reduction techniques, such as SAGA, improve convergence by
leveraging stored gradient information; however, they are restricted to settings
where the objective functional is a finite sum, and their performance degrades
when the number of terms in the sum is large. In this work, we propose a novel
approach which is well suited when the objective is given by an expectation over
random variables with a continuous probability distribution. Our method con-
structs a control variate by fitting a linear model to past gradient evaluations us-
ing weighted discrete least-squares, effectively reducing variance while preserving
computational efficiency. We establish theoretical sublinear convergence guaran-
tees and demonstrate the method’s effectiveness through numerical experiments
on random PDE-constrained optimization problems.
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Computational Math with neural networks is hard

Michael Feischl

(joint work with Fabian Zehetgruber)

In [6], we show that under some widely believed assumptions, there are no higher-
order algorithms for basic tasks in computational mathematics such as: Computing
integrals with neural network integrands, computing solutions of a Poisson equa-
tion with neural network source term, and computing the matrix-vector product
with a neural network encoded matrix. We show that this is already true for very
simple feed-forward networks with at least three hidden layers, bounded weights,
bounded realization, and sparse connectivity, even if the algorithms are allowed
to access the weights of the network. We demonstrate sharpness of our results
by providing fast quadrature algorithms for one-layer networks and giving numer-
ical evidence that quasi-Monte Carlo methods achieve the best possible order of
convergence for quadrature with neural networks.
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Neural networks are excellent surrogates for (high-dimensional) functions and per-
form at least as good as virtually all currently used specialized (high-dimensional)
approximation methods such as polynomials, rational approximation, sparse-grids,
tensor networks, . . . . Prominent examples of these qualities are given in, e.g., [7].
Strong results are also available for more involved applications such as solving par-
tial differential equations [3, 11] and inverse problems [1]. This even includes prob-
lems that are hard for classical approximation methods, such as high-dimensional
problems, fractals or stochastic processes.

Thus, two natural questions arise: First, can we efficiently find those networks
(for a recent approach to tackle this question, see [5]), and second, if we found
them, can we efficiently do computations with them. After all, computing a sur-
rogate is usually done with the intention of using it in another algorithm. In this
work, we consider the latter question and derive the following result: Under the
widely believed Strong Exponential Time Hypothesis (SETH), we show for three
fundamental tasks from computational mathematics, that even with full knowl-
edge of the neural network representation of the surrogate (including the weights),
no higher-order algorithms exist for the tasks. We give a short overview of these
tasks in the following.

Quadrature: We particularly see quadrature in the sense

Φ 7→
∫

Ω

RΦ(x) dx

for a neural network Φ, its realization function RΦ, and a given domain Ω ⊆ Rd as
a fundamental task. This algorithm is used as a basic building block in countless
algorithms, and even in the training of neural networks itself. E.g., for the training
of PINNs [4], one usually has to approximate an integral type norm in order to
evaluate the loss function, for Variational Monte Carlo (see, e.g., [2]) the same is
true for a scalar product.

Thus, the interesting question is whether there exist higher-order quadrature
algorithms that do not impose smoothness on the neural network. We show that
this is not the case, at least under the assumption of the SETH. We demonstrate
experimentally, that quasi-Monte Carlo methods achieve the best possible order
of convergence, even for non-smooth neural network integrands.

Solving PDEs: A similar question arises in the approximation of PDE solutions.
It is well-known that smooth maps can be approximated very well with neural
networks, which is the foundation of many operator learning approaches. We refer
to the overview articles [9] and the references therein and to [8] for expression rate
bounds.

However, we show that smoothness is really fundamental here. Even for the
much simpler linear problem of computing the solution uf of −∆uf = f with
Dirichlet boundary conditions, we show that no higher-order algorithms exist if the
right-hand side is represented by a neural network. This means that no algorithm
can efficiently approximate the map

Φ 7→ uΦ with −∆uΦ = RΦ and uΦ = 0 on ∂Ω.
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Matrix-vector multiplication: Non-linear representations of high-dimensional ob-
jects have gained significant interest particularly in the context of low-rank tensor
representations, see, e.g., [10] are encoded in tensor formats. While these formats
come with very efficient arithmetic, we show that similarly efficient algorithms
cannot exist for objects that are encoded with neural networks. To that end, we
consider large matrices as one of the simplest objects that can be used to store

high-dimensional data. Concretely, we consider matrices MΦ ∈ R2d×2d defined by

(MΦ)ij := RΦ(b(i)1, . . . , b(i)d, b(j)1, . . . , b(j)d),

where b(i) is the binary representation of i. We show that even simple matrix-
vector products with such matrices cannot be computed with higher-order accu-
racy.

References

[1] Jens Berg and Kaj Nyström. Neural networks as smooth priors for inverse problems for pdes.
Journal of Computational Mathematics and Data Science, 1:100008, 2021.

[2] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with arti-
ficial neural networks. Science, 355(6325):602–606, 2017.

[3] Weinan E and Bing Yu. The deep Ritz method: a deep learning-based numerical algorithm
for solving variational problems. Commun. Math. Stat., 6(1):1–12, 2018.

[4] Weinan E and Bing Yu. The Deep Ritz Method: A Deep Learning-Based Numerical Al-
gorithm for Solving Variational Problems. Communications in Mathematics and Statistics,
6(1):1–12, March 2018.

[5] Michael Feischl, Alexander Rieder, and Fabian Zehetgruber. Towards optimal hierarchical
training of neural networks. arXiv preprint arXiv:2407.02242, 2024.

[6] Michael Feischl and Fabian Zehetgruber. Computational mathematics with neural networks
is hard, 2025. arXiv preprint arXiv:2505.17751, 2025.

[7] Philipp Grohs, Fabian Hornung, Arnulf Jentzen, and Philippe von Wurstemberger. A
proof that artificial neural networks overcome the curse of dimensionality in the numeri-
cal approximation of Black-Scholes partial differential equations. Mem. Amer. Math. Soc.,
284(1410):v+93, 2023.

[8] Lukas Herrmann, Christoph Schwab, and Jakob Zech. Neural and spectral operator surro-
gates: unified construction and expression rate bounds. Adv. Comput. Math., 50(4):Paper
No. 72, 43, 2024.

[9] Nikola B. Kovachki, Samuel Lanthaler, and Andrew M. Stuart. Operator learning: Algo-
rithms and analysis, 2024.

[10] I. V. Oseledets. Approximation of 2d × 2d matrices using tensor decomposition. SIAM J.
Matrix Anal. Appl., 31(4):2130–2145, 2009/10.

[11] Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. Weak adversarial networks for
high-dimensional partial differential equations. J. Comput. Phys., 411:109409, 14, 2020.

Reporter: Janina Tikko



2060 Oberwolfach Report 37/2025

Participants

Prof. Dr. Markus Bachmayr

Institut für Geometrie und Praktische
Mathematik
RWTH Aachen
Templergraben 55
52062 Aachen
GERMANY

Prof. Dr. Peter Binev

Department of Mathematics
University of South Carolina
Columbia, SC 29208
UNITED STATES

Daan Bon

Dept. of Mathematics & Computer
Science
Eindhoven University of Technology
5600 MB Eindhoven
NETHERLANDS

Max Brockmann

Mathematisches Institut
Universität zu Köln
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GERMANY

Prof. Dr. Lars Grasedyck

Institut für Geometrie und
Praktische Mathematik
RWTH Aachen
Templergraben 55
52062 Aachen
GERMANY

Prof. Dr. Philipp Grohs

Fakultät für Mathematik
Universität Wien
Oskar Morgenstern Platz 1
1090 Wien
AUSTRIA

Diane Guignard

Department of Mathematics & Statistics
University of Ottawa
Ottawa ON K1N 6N5
CANADA

Prof. Dr. Helmut Harbrecht

Departement Mathematik und
Informatik
Universität Basel
Spiegelgasse 1
4051 Basel
SWITZERLAND

Prof. Dr. Angela Kunoth

Department Mathematik/Informatik
Universität zu Köln
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