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Introduction by the Organizers

The workshop Algebraic K-theory was attended by roughly fifty participants from
various backgrounds with particular attention given to early career researchers.
Most participants attended in person, but a small group attended online. The
workshop covered a wide range of topics in algebraic K-theory and its applications
with two areas of emphasis being Efimov’s extension ofK-theory to large categories
and motivic homotopy theory. Regrettably, Efimov was unable to obtain a visa in
time to attend the workshop.

Results related to categorical methods in K-theory
Aoki, Land, Levy, Ramzi, Scholbach, Sosnilo, Tamme, and Wagner reported on
results concerning the categorical methods in K-theory and their applications.

Aoki spoke on applications of (∞, n)-categories. He gave a characterization of
the Z-linearly symmetric monoidal (∞, 2)-category of kernels of Berkovich motives
in terms of generators and relations, and he expressed hope that an (∞, n)-category
of noncommutative n-motives can be defined for all n ≥ 1, extending the n = 1
case due to Kontsevich. Land reported on work with Bayındır and Tamme to
determine the K-groups of the ring Zp[x]/(px) of functions on the coordinate
axes in the arithmetic plane. Levy spoke on work with Sosnilo, unifying and
vastly generalizing the categorifications by Burklund–Levy of Quillen’s devissage
theorem and by Elmanto–Sosnilo of the Dundas–Goodwillie–McCarthy theorem.
The central new ingredient is the notion of a c-category of width n. Ramzi spoke on
work with Volpe and Wolf producing an in-families version of the categorification
by Bartels–Efimov–Nikolaus of the assembly map in Waldhausen K-theory. As
a corollary, Chapman’s theorem on the vanishing of the Whitehead torsion of a
homeomorphism of a compact topological manifold follows without recourse to
Hilbert cube manifolds. Scholbach spoke on joint work with Richarz on methods
to address the categorical Künneth question: An abstract six-functor formalism
in the sense of Liu–Zheng and Mann is a lax symmetric monoidal functor

DS : Corr(C/S)→ ModD(S)(PrL).

Under what conditions is it symmetric monoidal? Sosnilo spoke on joint work with
Ramzi and Winges categorifying the delooping of localizing invariants. The proof
proceeds by geometrizing Grayson’s binary complexes using the quotient stack of
the coordinate axes in the affine plane by the multiplicative group. As a corollary,
a map of spectrum-valued localizing invariants is an equivalence if and only if
it induces an isomorphism on π0. Tamme spoke on joint work with Kelly and
Saito proving that if valuative dimension is substituted for Krull dimension, then
Weibel’s conjecture on the vanishing and regularity of negative K-groups holds for
all qcqs schemes. The argument follows the proof by Kerz–Strunk–Tamme in the
case of noetherian schemes, but uses derived schemes in an essential way. Finally,
Wagner spoke on Habiro cohomology: Given a number field F and an integer ∆
divisible by 6 and by the discriminant of F , Garoufalidis–Scholze–Wheeler–Zagier
have constructed a regulator mapK3(F )→ Pic(HOF [1/∆]) with HO[1/∆] a formally
étale algebra over the Habiro ring H = limn Z[q]∧(qn−1). As a commutative algebra
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in spectra, the ring OF [1/∆] descends uniquely along the unique map S → Z to
OF [1/∆]+, and Wagner shows that

HOF [1/∆] ≃ limn π0((THH(KU⊗OF [1/∆]+/KU)Cn)hU(1)/Cn).

He hopes to use Efimov rigidity to develop a refined version of the right-hand side
and to relate it to Scholze’s analytic Habiro cohomology.

Results related to algebraic cycles and motivic homotopy theory
Binda, Elmanto, Gazaki, Hoyois, and Wickelgren reported on results concerning
algebraic cycles and motivic homotopy theory.

Binda spoke on joint work with Lundemo, Merici, and Park extending the
Bloch–Esnault–Kerz fiber square to formal schemes X proper and of semi-stable
reduction over Spf(OK) with K a local number field, the infinite root stack being
a key ingredient. Elmanto spoke on joint work with Morrow to use their extension
of the motivic filtration of K-theory to all schemes qcqs over a field k to reprove a
theorem of Levine, Krishna–Srinivas, and Krishna on zero cycles by translating this
statement to a statement in syntomic cohomology. Gazaki spoke on joint work with
Rathore proving that a conjecture of Colliot-Thélène stating that for X a scheme
smooth, projective, and geometrically connected over a local number field, the
quotient F 2(X)/F 2(X)div of the Albanese kernel by its maximal divisible subgroup
is finite holds for surfaces geometrically dominated by a product of curves. A
key ingredient in the proof is the motivic Borel–Moore homology introduced by
Suslin. Hoyois reported on joint work with Annala and Iwasa proving that if S is
a regular Q-scheme, then the tensor-unit Smot

S of their stably symmetric monoidal
∞-category of P1-motivic spectra MS(S) belongs to the full subcategory

SH(S) ⊂MS(S)

spanned by the Morel–Voevodsky A1-motivic spectra. Finally, Wickelgren spoke
on joint work with Brugallé and Rau that determines the value for (certain) del
Pezzo surfaces over a field k of characteristic zero of the GW (k)-valued refinement
of Gromov–Witten invariants introduced by Kass–Levine–Solomon–Wickelgren.

Miscellaneous results
The workshop also featured a number of results outside the two groupings above.
Artusa spoke on duality for condensed cohomology of the Weil group of a p-
adic field. The question was raised during the workshop of whether this is an
instance of suave duality in the Heyer–Mann six-functor formalism on condensed
anima. Burklund introduced notions of 1-affine schemes and affine maps between
them and showed that these encompass both animated commutative algebras in
abelian groups and commutative algebras in animated abelian groups, as well as
Bachmann–Hoyois normed rings. Flach spoke on joint work with Krause and
Morin on a syntomic logarithm, and Krause spoke on joint work with Antieau on
effective spectra. Finally, Mathew spoke on joint work with Bhatt, Vologodsky,
and Zhang on sheared Witt vectors, a stacky decompletion sW (R) → W (R) of
the ring of p-typical Witt vectors considered by Drinfeld and Lau. It holds the
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promise of extending Zink’s theory of displays to give a description of the moduli
stack of p-divisible groups for derived p-complete rings.

Acknowledgement: The MFO and the workshop organizers would like to thank
the Oberwolfach Foundation for supporting the participation of early career re-
searchers.
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K-theory of mixed characteristic coordinate axes . . . . . . . . . . . . . . . . . . . . . 1969

Akhil Mathew (joint with Bhargav Bhatt, Vadim Vologodsky, Mingjia Zhang)
Sheared Witt vectors, after V. Drinfeld, E. Lau, and T. Zink . . . . . . . . . . 1973

Kirsten Wickelgren (joint with Erwan Brugallé, Johannes Rau)
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Abstracts

Homotopy invariance of the motivic sphere

Marc Hoyois

(joint work with Toni Annala, Ryomei Iwasa)

Let S be a derived scheme. A motivic spectrum over S is a cohomology theory with
Tate twists on SmS satisfying Nisnevich descent and elementary blowup excision
[1, 2]. We denote by MS(S) the symmetric monoidal category of motivic spectra
over S and by Smot

S ∈MS(S) its unit. The Morel–Voevodsky stable A1-homotopy
category SH(S) is the subcategory of A1-invariant theories in MS(S).

Main Theorem. Let S be a regular Q-scheme. Then Smot
S is A1-invariant.

This result is an analogue of the fact that algebraic K-theory, which is the unit
in noncommutative motives, is A1-invariant on regular schemes. We hope that it
is also true in positive characteristic, but our proof uses resolution of singularities
in an essential way. Let us mention two important precursors of this theorem:

Theorem 1 (Annala–Iwasa [1]). For any derived scheme S, the cohomology theory
Smot
S [Pic][β−1] is algebraic K-theory, where β ∈ (Smot

S [Pic])(P1) is the Bott element
OP1 − OP1(−1). In particular, it is A1-invariant if S is regular.

In the next statement, Nε ⊂ Smot(SpecZ) is the multiplicative set of ε-integers

nε =
∑n−1

i=0 〈(−1)i〉 for n > 0.

Theorem 2 (H [3]). For any derived scheme S, the cohomology theory Smot
S [N−1

ε ]
is rational motivic cohomology Qmot

S , as defined by Beilinson. In particular, it is
A1-invariant if S is regular.

Because of this result, it suffices to prove the main theorem after Nε-completion.
The proof uses log geometry. A log scheme (in the sense of Deligne and Faltings)
is a pair (X, ∂X), where X is a derived scheme and ∂X : X → (A1/Gm)I is a
finite collection of generalized Cartier divisors on X . A morphism of log schemes
(f, ϕ) : (X, ∂X)→ (Y, ∂Y ) is a commutative square

X Y

(A1/Gm)I (A1/Gm)J ,

f

∂X ∂Y

ϕ

where ϕ is a monoid map. A log scheme (X, ∂X) over S is called smooth if, for
every subset J ⊂ I, the intersection ∂JX =

⋂
i∈J ∂iX is smooth over S. We denote

by Schlog the category of log schemes and by Smlog
S ⊂ Schlog

S the subcategory of
smooth log schemes over S.

Given a log scheme (X, ∂X) ∈ Schlog and a suitable cohomology theory E, we
define the logarithmic E-cohomology of (X, ∂X) by

E(X, ∂X) = total cofiber of the I-cube J 7→ E−NJ (∂JX),
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where the cube uses the covariant functoriality of E with respect to quasi-smooth
closed immersions and NJ is the conormal sheaf of ∂JX → X .

Let us give some context for this definition of logarithmic cohomology. The
purity theorem of Morel and Voevodsky implies:

Theorem 3 (Morel–Voevodsky [5]). If E ∈ SH(S) is an A1-invariant motivic
spectrum and if (X, ∂X) ∈ Smlog

S , then E(X, ∂X) = E(X − ∂X).

For general motivic spectra, we have the following fundamental result of Tang:

Theorem 4 (Tang [6]). If the cohomology theory E satisfies quasi-smooth blowup
excision and P1-homotopy invariance, then it is covariantly functorial with respect
to quasi-smooth closed immersions, so that E(X, ∂X) is defined. This is also true
if E ∈MS(S) and (X, ∂X) ∈ Smlog

S .

This was a key ingredient in the proof of Atiyah duality for motivic spectra [4],
which in turn implies the following result:

Theorem 5 (AHI [4]). If E ∈ MS(S) is a module over the A1-invariant motivic

sphere SA
1

S and if (X, ∂X) ∈ SmProjlogS , then E(X, ∂X) depends only on X − ∂X.

By the main theorem, the assumption on E is now vacuous if S is a regular
scheme of characteristic zero. But even in positive and mixed characteristic, this
assumption is satisfied by many examples, such as prismatic, syntomic, de Rham,
and Hodge cohomology. In these cases, the theorem says that the logarithmic
cohomology of a relative sncd compactification of a smooth scheme is independent
of the choice of compactification.

Coming back to the main theorem, the idea is to compare motivic spectra with
the logarithmic motivic spectra introduced by Binda, Park, and Østvær [7]. For a
derived scheme S, let logSH(S) be the category of cohomology theories with Tate
twists on Smlog

S satisfying dividing Nisnevich descent and A1
log-invariance. Here,

Vlog is the projective bundle compactification of a vector bundle V . The functors

SmS → Smlog
S Smlog

S → SmS

X 7→ (X, ∅) (X, ∂X) 7→ X − ∂X
induce symmetric monoidal left adjoint functors MS(S)→ logSH(S)→ SH(S).

In the logarithmic context, the A1-invariance of the sphere was proved by Park:

Theorem 6 (Park [8]). Let k be a field with resolution of singularities. Then
S
log
k ∈ logSH(k) is A1-invariant.

The key point is the fact that the interior functor Smlog
k [adm−1]→ Smk, where

“adm” is the class of admissible blowups, admits a symmetric monoidal right
adjoint sending U to an sncd compactification (Ū , ∂Ū). This implies that the lax
symmetric monoidal inclusion SH(k) ⊂ logSH(k) is in fact strict.

Conjecture. For any derived scheme S, MS(S) = logSH(S).

Clearly, this conjecture and Park’s theorem imply the main theorem. To prove
this conjecture, it would suffice to know that logarithmic E-cohomology for E ∈
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MS(S) is functorial for arbitrary morphisms in Smlog
S (a priori, it is only functorial

for morphisms (f, ϕ) as above where I = J and ϕ is a product of power maps).
The functor Smlog

S → MS(S) sending (X, ∂X) to the total fiber of the cube J 7→
Th∂JX(NJ ) would then induce an inverse to the functor MS(S)→ logSH(S).

We bypass this conjecture by using the infinite root stack. Given a log scheme
(X, ∂X) ∈ Schlog, the nth root stack of (X, ∂X) is defined by the pullback square

n
√

(X, ∂X) (A1/Gm)I

X (A1/Gm)I ,

zn

∂X

and we set ∞
√

(X, ∂X) = limn
n
√

(X, ∂X) ∈ Pro(StkX). For profinitely complete
theories, Bhatt, Clausen, and Mathew observed that the logarithmic cohomology
of (X, ∂X) often coincides with the cohomology of ∞

√
(X, ∂X). We contend that

this should be true more generally for all Nε-complete motivic spectra.
Let nπ ∈ Smot(SpecZ) be the element induced by the nth power map P1 → P1,

and let Nπ = {nπ | n > 0}.
Theorem 7 (AHI). For any derived scheme S, the infinite root stack induces a
functor logSH(S)→ MS(S)∧Nπ

. Hence, MS(S)∧Nπ
is a retract of logSH(S)∧Nπ

.

Using an alternative presentation of logSH(S) proved in [7], it suffices to show
that ∞

√
An

log becomes contractible in MS(S)∧Nπ
, which uses several results from [2].

It then follows from Park’s theorem that (Smot
k )∧Nπ

is A1-invariant when k has res-
olution of singularities. The next result concludes the proof of the main theorem:

Theorem 8 (AHI). If S is a derived Q-scheme, then MS(S)∧Nε
= MS(S)∧Nπ

.

To prove this, we use an extension to MS(S) of the Lefschetz–Hopf trace formula
from [9], which is a consequence of Atiyah duality [4]; this approach only works in
characteristic zero as we need µn to be étale. However, we expect that nε = nπ in
MS(Z); this would follow from the relation ρ = δ in Ext1(Smot, Smot(1)), where ρ
is induced by −1 ∈ Gm and δ by the diagonal of Gm, which is known in SH(Z).
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Berkovich 2-motives and normed ring stacks

Ko Aoki

This report summarizes my talk, which was based on my thesis in progress. The
central object of study is the Z-linearly symmetric monoidal (∞, 2)-category of
Berkovich 2-motives.

In number theory, we study algebraic varieties over Z. To study its geometry,
we use cohomology, which basically associates vector spaces (with additional struc-
tures) to varieties. In arithmetic geometry, there are several different cohomology
theories, such as étale and de Rham cohomology, together with comparison results
between them.

These constructions suggest the need for a unifying framework. Grothendieck
advocated the notion of a motive [X ], intended as the “cohomological essence” of
a variety X . Instead of being a single vector space, a motive lives in a category
that looks like the category of vector spaces. One way to define such a category
is through “systems of realizations”, consisting of compatible families of vector
spaces across different theories. Another approach is to isolate the axioms satisfied
by any cohomology theory and then construct a universal presentably symmetric
monoidal (∞, 1)-category from varieties. This is the origin of categories such as
SH(Z) or DA(Z). We focus on the latter approach here.

Cohomology theories often arise from categories of sheaves: étale cohomology
from étale sheaves, de Rham cohomology from D-modules, and so on. Thus every
reasonable cohomology theory comes with a category of coefficients, whose objects
are those to which the cohomology functor applies. Each such category has six
operations, as developed by Grothendieck. This motivates the passage from looking
at cohomology theories to looking at coefficient theories. Hence we can imagine the
theory of 2-motives, which provides a universal coefficient theory. It should form a
category that looks like the (∞, 2)-category of linear categories. Formulating this
involves delicate foundational considerations.

Large categories such as the category of groups are not strictly sets, yet they can
be treated through the theory of presentability, which studies categories described
by small data. Presentable categories enjoy useful properties such as the adjoint
functor theorem. Extending this framework to (∞, n)-categories is delicate. Ste-
fanich [8] first defined presentable (∞, n)-categories via universe enlargements. In
my own work [2], I gave a definition within standard set theory, avoiding uni-
verses. I also showed that the adjoint functor theorem holds in the 2-categorical
case, though it fails in the 3-categorical one.

Within this framework I defined the notion of n-rigidity for S-linearly symmetric
monoidal (∞, n)-categories. This generalizes Gaitsgory’s 1-rigidity, isolating a
class of categories that are fully dualizable and self-dual in a strong sense. Also, I
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developed a general theory of descendability. The point is to do this, we cannot
use limits freely as in the 1-categorical case, but still we can write down a workable
definition without them.

Example. There is a natural S-linearly symmetric monoidal (∞, 2)-category
2SH(Z) that is generated by varieties over Z and satisfying Hom([X ], [Y ]) =
SH(X × Y ). The compositions are defined via six operations on SH.

I proved that this admits a universality characterization:

Theorem (A. (see below)). It is freely generated by affine varieties over Z with
the product symmetric monoidal structure satisfying smooth base change, excision,
A1-invariance, and Tate-stability.

Here are some comments on this theorem: A similar set of axioms was used
Drew–Gallauer [4] to characterize SH is a universal six-functor formalism in their
sense. I do not know how to directly connect this with their statement. I also need
to use a different formulation of excision here. Scholze [6] formulated this by also
imposing the functoriality in the shriek direction, but here we can only consider
the star direction and automatically get the shriek (uniquely and canonically)
functoriality.

We then move on to ring stacks. So to construct the category of D-modules,
Simpson invented de Rham stack. Namely, for a variety X over Q, we can asso-
ciate a stack XdR such that QCoh(XdR) coincides with the derived category of
D-modules on X . Drinfeld [5] and Bhatt–Lurie [3], during their work on prismati-
zation, emphasized the aspect of transmutation: To get the assignment X 7→ XdR,
we need to specify what (A1

Q)dR as a ring stack (i.e., a ring object in the category

of stacks).
The main theme of Scholze’s talk [6] connects these two ideas: Since 2SH(Z) is

generated by [A1
Z], this category should be the universal one generated by a ring

stack satisfying a certain condition. Of course, once we get [A1
Z], we get a class

of affine varieties, so we can just say that we could characterize this. I proved a
certain easy-to-verify version:

Theorem (A.). It is freely generated by a ring stack that is suave, excisive (with
respect to 0 and Gm), A1-invariant, and Tate-stable.

Of course, this is practically useful, but in practice, we can also concretely
construct realizations. In [7], Scholze developed the theory of Berkovich motives.
In that case, constructing realizations is difficult, since we need to construct classes
for finitary arc sheaves. For that, I proved the following:

Theorem (A.). The Z-linearly symmetric monoidal (∞, 2)-category of kernels
of Berkovich motives (restricted to affinoids of topologically of finite type) is freely
generated by a ring stack with absolute value that is suave, excisive, D1-invariant,
Tate-stable, and satisfies Kummer and Artin–Schreier descent.

As an application, we can construct the Habiro realization: We construct the
2-motivic realization first to obtain the 1-motivic realization functors. Note that
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this theorem is subtler than the previous ones. For example, we have hypercom-
pleteness issues so that the same proof does not work with the sphere coefficients.
Moreover, we cannot use arc descent, because it fails even in the totally discon-
nected situation by [1]. Still, the proof depends on perfectoid-like technique, i.e.,
passing to something not of finite type.

Finally, I expect a theory of noncommutative n-motives. For n = 1, the category
of noncommutative (or localizing) motives is already known, and has recently been
shown to be rigid by Efimov. My goal is to construct, for general n, an S-linearly
symmetric monoidal (∞, n)-category of noncommutative n-motives that is n-rigid.
Note that for Berkovich 2-motives, higher steps of categorification do not yield new
information (in technical terms, this is a certain “affineness” phenomenon).
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The syntomic logarithm

Matthias Flach

(joint work with Achim Krause, Baptiste Morin)

The syntomic logarithm is a construction in prismatic cohomology which was
discovered by Achim Krause and which we use to give a new proof of the Beilinson
fibre square and a new construction of the inverse of the Bloch-Kato exponential
map.

1. The Bloch-Kato exponential map

Let p be a prime number, K/Qp be a finite extension and V a Qp-representation
of the absolute Galois group GK of K. The Bloch-Kato exponential map

expV : DdR(V )/D0
dR(V )→ H1(K,V )

is the connecting homomorphism in the long exact Galois cohomology sequence
induced by the fundamental exact sequence of p-adic Hodge theory

0→ Qp → (Bcris)
ϕ=1 → BdR/B

+
dR → 0

tensored with V . For example, for n ≥ 2 the map expQp(n) : K ≃ H1(K,Qp(n)) is

an isomorphism. The following is our main result, generalizing [4][Thm. 4.2] from
unramified to arbitrary K/Qp.
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Theorem 1.1. (Conjecture CEP (Qp(n)) of [5][App. C2]) Let K/Qp be a finite
extension of discriminant DK and n ≥ 2. Then

detZp

(
expQp(n) OK

)
· (n− 1)![K:Qp] ·D1−n

K = det−1
Zp
RΓ(K,Zp(n))

inside det−1
Qp
RΓ(K,Qp(n)) = detQpH

1(K,Qp(n)).

2. The Beilinson fibre square

The following proposition is immediate from the results of [3].

Proposition 2.1. (The Beilinson square) For a derived p-adic formal scheme X

one has a commutative diagram

(1) RΓsyn(X,Zp(n)) //

��

RΓsyn(X/p,Zp(n))

��
Fil≥n

N
∆X{n}

Fil≥n γdR
∆

{n}

��

can

''◆
◆

◆
◆

◆
◆

//❴❴❴❴❴❴❴❴❴❴❴ Fil≥n
N

∆X/p{n}

β◦can

��

can

''P
P

P
P

P
P

∆X{n} //❴❴❴❴❴❴❴❴❴❴❴❴❴❴

γdR
∆

{n}

''❖
❖

❖
❖

❖
❖

❖
∆X/p{n}

β

ww♥ ♥
♥
♥
♥
♥
♥

Fil≥n
Hod d̂RX

// d̂RX

where Fil≥• γdR
∆
{n} was defined in [3][Construction 5.5.3] and the isomorphism

β in [3][Thm. 5.4.2]. We call the square of solid arrows the Beilinson square.
Taking horizontal fibres in (1) one obtains a map

logX : RΓsyn(X,Zp(n))rel −→ d̂R
<n

X [−1]

where F (X)rel := fibre (F (X)→ F (X/p)) and X/p := X⊗L Fp.

Theorem 2.1. Assume X is a quasi-compact, quasi-separated derived formal
scheme such that (LX/Zp

)∧p is perfect.

a) (The Beilinson fibre square). The map

logX : RΓsyn(X,Zp(n))rel → d̂R
<n

X [−1]

is a rational isomorphism, i.e. the Beilinson square is rationally Cartesian.
b) (Local volume computation) If X/Zp is proper then the source and target of

logX are perfect complexes of Zp-modules. Moreover, there is an identity

of Zp-lines in det−1
Qp

d̂R
<n

X,Q

detQp(logX,Q)
(
detZpRΓsyn(X,Zp(n))rel

)
= detQp(ιQ)

(
det−1

Zp
d̂R

<n,rel

X

)
·C∞(X, n)−1

where

C∞(X, n) :=
∏

i≤n−1; j

(n− 1− i)!(−1)i+jdimQpH
j(XQp ,LΩi).
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We briefly sketch the deduction of Theorem 1.1. The key observation, already
made in [1][Thm. 7.7], is that the Beilinson fibre square for X = Spf(OCp) recovers
the fundamental exact sequence of p-adic Hodge theory. More precisely, there are
GK -isomorphisms

cet,OCp
: RΓsyn(Spf(OCp),Zp(n)) ≃RΓ(Cp,Zp(n)) = Zp(n)

RΓsyn(Spf(OCp/p),Zp(n))Q ≃(B+
cris)

p−nϕ=1

logOCp ,Q
[1] : RΓsyn(Spf(OCp),Zp(n))relQ [1] ≃

(
d̂R

<n

OCp

)
Q
≃

(
Acris/F

n
)
Q
≃ B+

dR/F
n

and the top row in (1) becomes the (twisted) fundamental exact sequence

0→ Qp(n)→ (B+
cris)

p−nϕ=1 → B+
dR/F

n → 0.

Functoriality of syntomic cohomology for Spf(OCp)→ Spf(OK) gives a commuta-
tive diagram (of isomorphisms if n ≥ 2)

K
expQp(n) // H1(K,Qp(n))

H1
syn(Spf(OK),Zp(n))relQ

∼ //

logOK,Q ∼

OO

H1
syn(Spf(OK),Zp(n))Q

cet,OK,Q

OO

By [2][Thm. 1.8] the map cet,OK is an isomorphism if n ≥ 2. Theorem 1.1 readily
follows from this fact together with Theorem 2.1 b) for X = Spf(OK).

3. The syntomic logarithm

We define additive syntomic cohomology by the fibre sequence

RΓadd(X,Zp(n))→ N
≥n∆X{n} can−−→ ∆X{n}.

Replacing the top row in (1) by additive syntomic cohomology we obtain a map

γX : RΓadd(X,Zp(n))rel → d̂R
<n

X [−1]

analogous to logX.

Theorem 3.1. Assume X is a quasi-compact, quasi-separated derived formal
scheme such that (LX/Zp

)∧p is perfect. There are filtrations G≥⋆RΓsyn(X,Zp(n))rel

and G≥⋆RΓadd(X,Zp(n))rel and a commutative diagram for large enough k

G≥kRΓsyn(X,Zp(n))rel

ιsyn

��

G≥kslogrel
X

∼
// G≥kRΓadd(X,Zp(n))rel

ιadd

��
RΓsyn(X,Zp(n))rel

log
X // d̂R

<n

X [−1] RΓadd(X,Zp(n))rel
γXoo

such that the following hold.

a) The map G≥kslogrelX , which we call the syntomic logarithm is an isomor-
phism.
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b) There are finite filtrations Φ≥⋆Cone(ιsyn) and Φ≥⋆Cone(ιadd) and isomor-
phisms

griΦCone(ιsyn) ≃ griΦCone(ιadd)

on associated graded. The associated graded are pN -torsion for some N .
c) The map γX is a rational isomorphism. If X/Zp is proper then

detQp(γX,Q)
(
detZpRΓadd(X,Zp(n))rel

)
= detQp(ιQ)

(
det−1

Zp
d̂R

<n,rel

X

)
· C∞(X, n)−1.

Part b) implies that ιsyn and ιadd are rational isomorphisms. Together with a)
and c) this gives Thm. 2.1 a). If X/Zp is proper part b) implies

detQp(log′
Qp

)
(
detZpRΓsyn(X,Zp(n))rel

)
= detZpRΓadd(X,Zp(n))rel

where log′Qp
= ιadd,Qp ◦ G≥kslogrelX,Qp

◦ ι−1
syn,Qp

. Together with c) this gives Thm.

2.1 b).
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Zero-cycles on smooth projective surfaces over p-adic fields

Evangelia Gazaki

(joint work with Jitendra Rathore)

For a smooth projective geometrically connected variety X over a field k the Chow
group of zero-cycles CH0(X) has a filtration

CH0(X) ⊃ F 1(X) ⊃ F 2(X) ⊃ 0,

where F 1(X) is the subgroup of zero-cycles of degree 0, and F 2(X) is the kernel
of the Albanese map albX : F 1(X) → AlbX(k). The latter is a generalization
to higher dimensions of the Abel-Jacobi map of smooth projective curves. A
famous conjecture of Colliot-Thélène ([2]) predicts that if X is defined over a
finite extension k of the p-adic field Qp, then the Albanese kernel F 2(X) has a
decomposition

F 2(X) ≃ D ⊕ F,
whereD is a divisible group and F a finite group. In a celebrated paper S. Saito and
K. Sato ([5]) proved that the (generally larger) group F 1(X) has a decomposition
F 1(X) ≃ D⊕F , where F is a finite group and D is a group divisible by any integer
m coprime to the residue characteristic p. The full conjecture (in particular the “p-
part”) is only known in very limited cases. We note that proving the conjecture is
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equivalent to proving that the quotient F 2(X)/F 2(X)div is finite, where F 2(X)div
is the maximal divisible subgroup of F 2(X).

In this talk I reported on recent joint work with J. Rathore, where we proved the
full conjecture for many new classes of surfaces. Our first theorem is the following.

Theorem 1. Suppose that π : X 99K Y is a generically finite rational map between
smooth projective surfaces and the conjecture is true for the base change XL :=
X ⊗k L for every finite extension L/k. Then it is true for Y .

Using work of Raskind and Spiess ([3]), our result proves the conjecture for
surfaces that are geometrically dominated by a product of curves. That is, for
surfaces X that over the algebraic closure k admit a dominant rational map π :
C1×C2 99K X , under the assumption that the Jacobians of C1, C2 have a mixture
of good ordinary and multiplicative reduction. Some important new classes of

surfaces for which we obtain evidence are: isotrivial fibrations X
π−→ C (that is,

fibrations for which all smooth fibers are isomorphic), symmetric squares Sym2(C)
of smooth projective curves, geometrically simple abelian surfaces with a mixture
of good ordinary and multiplicative reduction, Fermat diagonal surfaces {a0xm0 +
a1x

m
1 + a2x

m
2 + a3x

m
3 = 0} ⊂ P3

k. More generally, we give evidence for a surface
X which is a resolution of singularities of a quotient (C1 × C2)/G, where G is a
finite group acting faithfully on C1 × C2.

The key new method we introduce is to work and pose similar questions for open
subvarieties by replacing the Chow group CH0 with a (generally larger) class group
of zero-cycles, namely Suslin’s singular homology Hsus

0 defined by Suslin ([7]). In
the talk I used a more recent definition due to Wiesend ([8]), which turns out to
be isomorphic with Suslin singular homology when the base field k is perfect. Let
X be a smooth projective variety over a p-adic field k and j : U →֒ X a dense
open immersion. We recall that the group Hsus

0 (U) is the quotient of the free
abelian group Z0(U) :=

⊕
x∈U0

Z(x) on all closed points of U modulo the following

subgroup. For every C →֒ U closed integral curve, let C̃ be its normalization and
C be its smooth completion. Let π : C → X be the induced morphism. Then we
divide Z0(U) by the subgroup generated by div(f), where f ∈ k(C)× is such that

f = 1 on C \ C̃.
Similarly to the projective case, the group Hsus

0 (U) admits a degree map deg :
Hsus

0 (U) → Z. We denote by F 1(U) its kernel. Moreover, there is a generalized
Albanese map

albU : F 1(U)→ AlbU (k),

where AlbU is a semi-abelian variety constructed by Serre in one of his exposés
([6]). It is an extension

0→ T → AlbU → AlbX → 0

of AlbX by a torus T . When U(k) 6= ∅, then AlbU is universal for morphisms
U → G to semiabelian varieties G. We denote by F 2(U) the kernel of albU. The
main technical theorem I discussed in this talk, from where Theorem 1 follows, is
the following.
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Theorem 2. Let X be a smooth projective geometrically connected surface over a
p-adic field k. Let j : U →֒ X be a dense open immersion such that the complement
X\U is either of dimension 0, or a simple normal crossing divisor. Then the group
F 2(XL)/F 2(XL)div is finite for every finite extension L/k if and only if the group
F 2(UL)/F 2(UL)div is finite for every finite extension L/k.

During the talk I gave an overview of the proof of the above theorem, focusing
on the harder case when D = X\U is a simple normal crossing divisor. First, using
the interpretation of the groups CH0(X) and Hsus

0 (U) as motivic cohomology we
obtain a commutative diagram with exact rows and columns

CH2(X, 1) 0

SK1(D) T (k)

0 F 2(U) F 1(U) AlbU (k)

0 F 2(X) F 1(X) AlbX(k)

0.

g

ε

f δ

α

albU

β γ

albX

Here CH2(X, 1) is Bloch’s higher Chow group of (2, 1)-cycles. Moreover, the group
SK1(D) is a group we defined, which is a generalization of the K-group SK1(C)
for a smooth projective connected curve C. Using the known structure of the
K-group K2(k), as well as the Class Field Theory of curves over p-adic fields of
Bloch ([1]) and S. Saito ([4]) which describes the structure of SK1(C), we showed
that the quotient SK1(D)/SK1(D)div fits into a short exact sequence

0→ H1 → SK1(D)/SK1(D)div → H2 ⊕ T ′(k)→ 0,

where H1, H2 are finite groups and T ′ is a torus of larger dimension than the
maximal subtorus T of AlbU . The theorem follows after showing that the toric
part T ′(k) does not survive in the group F 2(U). To achieve this, we first showed

that the cokernel of the map SK1(D)
ε−→ T (k) is finite. The last step was to

annihilate the error term dim(T ′) − dim(T ) by using special (2, 1)-cycles arising
from the Néron-Severi group of X .
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(With an Appendix by A. Schmidt).

K-theory and geometric topology

Maxime Ramzi

(joint work with Marco Volpe, Sebastian Wolf)

1. Introduction

Given a pointed, connected finitely dominated CW-complex X , the Wall obstruc-
tion wX ∈ K0(Z[π1(X)]) is a classical invariant defined by Wall, such that X is
actually finite up to homotopy if and only if wX is in the image of

Z ∼= K0(Z)→ K0(Z[π1(X)]).

In fact, letting B := Π∞(X) denote the underlying homotopy type/anima of

X , there is an isomorphism π0K((SpB)ω) ∼= K0(Z[π1(X)]), where SpB denotes
the ∞-category of (∞-)local systems on B. Recall that the condition that X be
finitely dominated corresponds to B being compact as an anima, or homotopy type.
Along this isomorphism, the class wX is the connected component of a canonical
point wB = [SB ] in the K-theory space A(B) := K((SpB)ω), which we abusively
denote similarly. Any given finite cell decomposition of X provides an actual lift
of that point along the assembly map A(pt)⊗B → A(B). The data of such a lift
wloc

X ∈ (A(pt)⊗B)×A(B){wB} therefore comes with any realization of X as a CW-
complex. Whitehead showed that a homotopy equivalence f : X → Y between
finite CW-complexes is compatible with this lift if and only if it is homotopic to
a simple homotopy equivalence, which is a composite of particularly explicit and
simply describable homotopy equivalences.

Thus, one can think of the pair (B,wloc
X ) as remembering the homotopy type B

of a CW-complex X together with some shadow of its cell structure. The following
theorem of Chapman’s is thus a big surprise:

Theorem 1 (Chapman). Any homeomorphism between finite CW-complexes is
compatible with the lifts wloc, and in particular is homotopic to a simple homotopy
equivalence.
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In this talk, I gave a brief account of Bartels’ and Nikolaus’s revisiting of this
and related theorems (such as West’s theorem on compact topological manifolds)
using Efimov’s continuous K-theory. Their approach helps one understand these
results in a clearer way, and allows for extensions of their results to other settings.
In the remainder of the talk, I also reported on joint work with Volpe and Wolf
where we extend their approach to the parametrized setting, and use this to obtain
versions of these results in families. Among other things, we use this to reprove
and generalize the topological Dwyer–Weiss–Williams index theorem.

2. Continuous K-theory and sheaf categories

The scope of algebraic K-theory has evolved over time, from rings to exact cat-
egories to stable (∞-)categories, which were until recently the natural generality
of inputs for algebraic K-theory. Up to idempotent-completion, the category of
such gadgets is equivalent to PrLst,ω, the category of compactly generated pre-
sentable stable categories and compact-preserving, colimit-preserving functors be-
tween them. Therefore, we may as well define K-theory (and related invariants)
on these instead, as long as we are careful about the morphisms1.

One key observation in this direction is that kernels of compact localizations
between compactly-generated categories need not be themselves compactly-gener-
ated, but they are nonetheless dualizable, or equivalently, compactly assembled.
That is, they still have some form of finiteness to them. Since structural proper-
ties of K-theory are closely related to these localization sequences, the following
extension theorem of Efimov is quite natural, though it allows for remarkably more
flexibility:

Theorem 2 (Efimov, [2, Theorem 0.1]). The K-theory functor K : PrLst,ω → Sp

admits a unique extension to a localizing invariant2 on Prdualst , the category of
dualizable presentable stable categories, and strongly continuous functors3 between
them.

Remark 1. Efimov’s theorem is actually much more general, as it applies to any
localizing invariant, and proves not only uniqueness of extensions but also of maps
between these extensions, namely, it establishes an equivalence of categories of
localizing invariants on PrLst,ω and Prdualst .

For our purposes, the following is the key example:

Example 1. Let X be a locally compact Hausdorff space. In this case, the cat-
egory of sheaves of spectra on X, Sh(X, Sp) is dualizable. Furthermore, its K-
theory is equivalent to the spectrum of compactly supported global sections on X,
K(Sh(X)) ≃ Γc(X,K(Sp)). Note that it is rarely compactly generated, cf. [3], [2,
Section 6.4].

1If we do not restrict our attention to functors that preserve compact objects, then functors
such as

⊕
N can be used to implement the Eilenberg swindle.

2This means sending localization sequences to co/fiber sequences.
3This restriction is the appropriate generalization of “compact-preserving functors” to the

dualizable setting.
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This means that geometrically defined objects and functors on the sheaf side
provide canonical maps or points in sheaf cohomology spaces, which often only de-
pend on the underlying homotopy type of X – these points and maps, themselves,
typically depend on the homeomorphism type of X rather than only its homotopy
type.

Using a categorification of the assembly map arising from a geometric co-pairing
δX : Sp→ SpΠ∞X⊗Sh(X, Sp), Bartels and Nikolaus reprove Chapman’s theorem,
as well as West’s theorem, but also provide a general blueprint for these types of
questions.

Theorem 3 (Bartels–Nikolaus). For X a compact Hausdorff space which is fur-
thermore locally contractible, the co-pairing δX induces, after applying K-theory
and suitably dualizing, the assembly map

K(Sp)⊗Π∞(X)→ K(SpΠ∞X)

The left adjoint to pullback p# : Sh(X, Sp)→ Sp is furthermore strongly continu-
ous, and defines a canonical point in the source of this map which lifts the Wall
class wΠ∞(X) ∈ A(Π∞(X)).

3. Parametrized categories and motives

With Volpe and Wolf, we study some basic properties of PrLX , for X a topological
space (though some of them only under additional assumptions on X). This is
a category of parametrized-presentable categories, following Martini–Wolf’s work
[5]. With the foundations set up, we can describe parametrized analogues of
Bartels’ and Nikolaus’ constructions. Most of the geometry is similar, though
some verifications take more work.

One extra difficulty lies in the imprecise theorem stated above, where the “suit-
ably dualizing” procedure is partly subtle in the parametrized context. We salvage
this by studying a parametrized version of Blumberg, Gepner and Tabuada’s lo-
calizing motives Motloc [1] (see also Hoyois–Scherotzke–Sibilla [4, Section 5] for
another version of a relative theory of motives, though they stick to the small
or compactly generated setting since their work predates Efimov’s breakthrough),

which we denote by MotlocX . One precise theorem we prove in this context is the
following comparison:

Theorem 4 (R.–Volpe–Wolf). Let X be a locally compact Hausdorff space.

The canonical symmetric monoidal, Motloc-linear colimit-preserving functor

Sh(X ; Motloc)→ MotlocX

is fully faithful, and has a strong symmetric monoidal right adjoint. Furthermore,
its image contains the localizing motive of Sh(Y, Sp) for any map Y → X of locally
compact Hausdorff spaces.

This theorem is sufficient for our applications, though let us also mention that
conditional on some unpublished (and hard) results of Efimov, we can also prove
that this functor is in fact an equivalence. Using the foundations of parametrized
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presentability mentioned above together with the above theorem, we prove, among
other things, the following generalization of the Dwyer–Weiss–Williams topological
index theorem (for simplicity, we do not state it here in full generality):

Theorem 5 (R.–Volpe–Wolf). Let f : Y → X be a fibration between finite CW-
complexes with fibers Fx. In this case, the parametrized Wall class

wΠ∞(Fx) ∈ A(Π∞(Fx)),

a global section of the local system of A-theory spectra x 7→ A(Π∞(Fx)), lifts along
the parametrized assembly A(pt)⊗Π∞(Fx)→ A(Π∞(Fx)) to a parametrized local
Wall class wloc

Fx
∈ A(pt)⊗ Π∞(Fx), i.e. there is a canonical global section wloc

Fx
of

the local system A(pt)⊗Π∞(Fx) lifting wΠ∞(Fx).
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K-theory of mixed characteristic coordinate axes

Markus Land

(joint work with Georg Tamme, Özgür Bayındır)

The talk was about computing algebraicK-groups of certain rings such as Z[x]/px,
for a prime number p. This ring is isomorphic to Z ×Fp Fp[x], and can hence be
thought of as the ring of functions on the union of the 1-dimensional affine space
over Fp and spec(Z) intersecting in spec(Fp). Thinking of spec(Z) as an arithmetic
line over spec(Fp), we call Z[x]/px the ring of functions on a mixed characteristic
coordinate axes and our result reads as follows:

Theorem 1. For n ≥ 0, there is a canonical isomorphism

Kn(Z[x]/px) ∼= Kn(Z)⊕
{
Wn

2
(Fp) if n is even

0 if n is odd.

I then first recalled a theorem of Hesselholt’s about the equal characteristic (i.e.
geometric) coordinate axes which states that for all n ≥ 0 we similarly have

Kn(Fp[x, y]/xy) ∼= Kn(Fp)⊕
{
Wn

2
(Fp) if n is even

0 if n is odd.

and that our proof will proceed by showing that the two relative terms appearing
in the mixed and the equal characteristic cases are equivalent.
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To do so, I recalled the following theorem, joint with Georg Tamme, obtained
by combining [3, 4]. Fix a base ring k ∈ AlgE2

(sp), e.g. k = S or k = Z. In what
follows, the term ring spectrum may always be interpreted as k-algebra spectrum.

Theorem 2. To any pullback square of ring spectra as on the left side, one can
associated a ring spectrum ⊙ and a refined diagram as on the right side

A B A B

A′ B′ A′ ⊙

B′

and the inner square of the right hand side is sent to a pullback square by any
localizing invariant, in particular by K-theory.

In addition, if one is given a map A0 → A such that the induced map B⊗A0A
′ →

B′ is an equivalence, then so is the canonical map A′ ∐A0 B → ⊙.
Here, A′∐A0B refers to the pushout in AlgE1

(sp) or AlgE1
(Mod(k)) if one works

over the base k. In addition, the ring spectrum ⊙ is compatible with base change
in various forms. Next, I explained the following example.

Example 1. Consider the pullback square for the functions on the geometric
coordinate axes over spec(Z) given as

Z[x, y]/xy Z[x]

Z[y] Z

Then the associated ring ⊙ is given by Z[t] with |t| = 2, that is, the free E1-Z-
algebra on a generator in degree 2.

Indeed, the map Z[x, y]→ Z[x, y]/(xy) is a choice for a map A0 → A as above;
hence ⊙ ≃ Z[x]∐Z[x,y]Z[y] and I explained how to compute this pushout to be Z[t].
Via this description, Z[t] comes equipped with the structure of a Z[x, y]-algebra.
As a consequence, I explained the following result from [4].

Corollary 1. Let R be a commutative ring equipped with elements x, y ∈ R.
Then R is naturally a Z[x, y]-algebra and the ring ⊙ associated to the pullback
square

R/xy R/x

R/y R/(x, y)

is equivalent to R/x ∐R R/y by Theorem 2 above, as well as to Z[t] ⊗Z[x,y] R by
Example 1 and compatibility with base change. If (x, y) is a regular sequence in R,
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the Tor spectral sequence gives an isomorphism π∗(⊙) ∼= R/(x, y)[t], where again
|t| = 2.

If one knew in the above situation that the R-algebra ⊙ admits an R/(x, y)-
algebra structure, then it would follow that ⊙ is equivalent to the free algebra over
R/(x, y) on a single generator in degree 2, that is, to the graded ring R/(x, y)[t],
thought of as an R/(x, y)-algebra spectrum. However, our results do not give that
(or when) such an algebra structure exists. And indeed, in general, it is not true
that ⊙ ≃ R/(x, y)[t]:

Example 2. Consider the ring R = Z[x] with elements x and x − p. Then one
obtains ⊙ ≃ Z//p = Z ∐Z[x] Z, where the left hand map in the pushout is given by
x 7→ 0 and the right hand map by x 7→ p. But this implies that ⊙⊗Z Fp ≃ Fp//p ≃
Fp//0 ≃ Fp[u] where |u| = 1. On the other hand Fp[t] ⊗Z Fp ≃ (Fp ⊗Z Fp)[t] ≃
Fp[Epsilon, t]/Epsilon2 where |t| = 2 and Epsilon = 2. This shows that ⊙ and
Fp[t] are not equivalent as Z-algebras. In fact, it follows from computations of
Davis–Frank–Patchkoria [1] that for p odd, ⊙ and Fp[t] are not even equivalent as
ring spectra, i.e. as S-algebras; see [4, Ex. 4.33].

In the case of the mixed characteristic coordinate axes, which is the example
(Z[x], x, p), our main result follows as soon as we can show that ⊙ ≃ Fp[t] in this
case. I then briefly explained that the classification of Z-algebra spectra A with
π∗(A) ∼= Fp[s] is, for |s| ≥ 1, by Koszul duality equivalent to the classification
of Z-algebra spectra B with π∗(B) ∼= ΛFp [e], with |e| = −|s| − 1 and that this
classification has been studied by Dwyer–Greenlees–Iyengar [2] in the case |e| =
−1. The case |e| < −1 is, to the best of my knowledge, open at this point.

In joint work currently in preparation with Bayındır, we have the following
results in this direction to offer.

Theorem 3. Let A be Z-algebra spectrum with π∗(A) = Fp[t2k] where |t2k| = 2k
and k > 0. Then we have:

(1) If there exists a map Fp → A over S or Z, then there exists an equivalence
Fp[x2k]→ A (over S or Z, respectively).

(2) If k ≥ p− 1, then there exists a map Fp → A over S.

Now in the mixed characteristic coordinate axes we have a diagram of Z-algebras

Z[x]/px Z

Fp[x] ⊙

showing that there exists a map Fp → ⊙ and hence an equivalence Fp[x2] → ⊙.
Then we can import Hesselholt’s computation to our situation as claimed and
obtain Theorem 1. As another application, I discussed the following:
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Corollary 2. For ℓ ≥ p− 1, there is a pullback square

K(Z[x]/x(p − xℓ)) K(Z)

K(Z[x]/(p− xℓ)) K(Fp[t])

Proof sketch. More generally, for any polynomial f in Xℓ and with constant term
p, the pullback square

Z[x]/xf Z

Z[x]/f Fp

can be made Z/ℓZ-graded in a way such that ⊙ is also Z/ℓZ-graded and the weight
ω(t) of t ∈ π∗(⊙) ∼= Fp[t] is 1. Denoting by gr0(⊙) the weight 0-part of the Z/ℓZ-
graded ring ⊙, we have a map gr0(⊙)→ ⊙ and π∗(gr0(⊙)) ∼= Fp[tℓ]. Hence, part
(2) of Theorem 3 gives a map Fp → gr0(⊙) → ⊙, and part (1) then implies that
Fp[t] ≃ ⊙ as claimed. �

Going more towards the classification problem of Dwyer–Greenlees–Iyengar,
Bayındır and I then prove:

Theorem 4. Let k > 0. Then the following hold true.

(1) There exist infinitely many pairwise distinct Z-algebra spectra with π∗ ∼=
Fp[t2k]. All but finitely many of these are equivalent over S to Fp[t2k].

(2) There exist infinitely many pairwise distinct dg enhancements on the trian-
gulated category Ho(Mod(Fp[t±1

2k ])), in fact, infinitely many pairwise dis-

tinct Z-linear structures on the stable ∞-category Mod(Fp[t±1
2k ]).

The remaining time in the talk was spent on indicating the most important
aspects of the proofs of Theorems 3 and 4.
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Sheared Witt vectors, after V. Drinfeld, E. Lau, and T. Zink

Akhil Mathew

(joint work with Bhargav Bhatt, Vadim Vologodsky, Mingjia Zhang)

Let R be any ring. We have the associated ring W (R) of p-typical Witt vectors
of R. This is equipped with a Frobenius F : W (R) → W (R) and Verschiebung
V : W (R) → W (R) such that FV = p. Moreover, F is a ring homomorphism
which refines to a natural δ-structure. There are several characterizations of the
functor W . For instance, Joyal proved that W (R) is the cofree δ-ring on R.

It was observed by V. Drinfeld and E. Lau, based on the construction in certain
cases due to T. Zink [5] (see also [3]), that for derived p-complete rings R such that
(R/p)red is perfect, W (R) has a natural “decompletion” with respect to the Ver-
schiebung. The purpose of this project is to study and give some characterizations
of this decompletion.

As usual, let Ŵ (R) ⊂W (R) consist of those elements x =
∑

i≥0 V
i([xi]) where

xi ∈ R is nilpotent for all i and zero for i≫ 0. It is well known that Ŵ (R) ⊂W (R)
is an ideal, stable under Frobenius, Verschiebung, and the δ-operation.

Definition 1. Let R be a p-nilpotent ring with Rred perfect. Then

sW (R) = W (R)×W (R)/Ŵ (R) lim←−
F

W (R)/Ŵ (R).

If R is a p-complete ring with bounded p-power torsion and with (R/p)red perfect,
we define sW (R) = lim←−n

sW (R/pn).

Moreover, sW (R) can be defined for any derived p-complete ring R such that
(R/p)red is perfect (for example by left Kan extending from those R whose p-power
torsion is bounded).

The construction sW (R) is naturally a δ-ring, equipped with a δ-ring Frobenius
F : sW (R)→ sW (R). When p > 2, sW (R) carries a natural Verschiebung opera-
tor lifting the Verschiebung on W (R).1 The interactions between these operations
can be axiomatized as follows.

Definition 2 (Magidson [4]). A δ-Cartier ring is a δ-ring A (with δ-ring Frobenius
F : A → A) that is additionally equipped with an additive map V : A → A such
that:

(1) FV = p.
(2) For all a, b ∈ A, V (aF (b)) = V (a)b.
(3) (Drinfeld) For all a ∈ A, δ(V (a)) = a− pp−2V (ap).

These conditions have many further consequences: for instance, V : A → A is
automatically injective.

If R is any ring, then W (R) with its usual structure is a δ-Cartier ring. If p > 2
and R is derived p-complete with (R/p)red perfect, then sW (R) is a δ-Cartier

1When p = 2, the operator y 7→ V ([−1]y) on W (R) lifts to sW (R). One can develop an
analog of the theory for p = 2, which we omit here.
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ring. The map sW (R) → W (R) induces an isomorphism modulo V , and thus
after V -completion.

Theorem 1 (Magidson [4]). If A is any δ-Cartier ring and R is any ring, then
maps of δ-Cartier rings A→W (R) are in bijection with maps of rings A/V → R.

As a consequence, the category of V -complete δ-Cartier rings is equivalent to
the category of rings, via the functor R 7→ W (R). If we relax V -completeness (but
retain derived p-completeness), we can characterize sW (R) in a dual manner.

Theorem 2. Suppose p > 2. Let R be a derived p-complete ring such that (R/p)red
is perfect. Then for any δ-Cartier ring B which is derived p-complete, maps of
δ-Cartier rings sW (R)→ B are in bijection with maps of rings R→ B/V .

In particular, the category of derived p-complete rings R with (R/p)red perfect
embeds as a full subcategory of the category of derived δ-Cartier rings via sW .
The essential image is those derived p-complete δ-Cartier rings C such that for any
derived p-complete δ-Cartier ring C′, maps from C → C′ are the same as maps

C → ˆ(C′)V .

Example 1. Let P be a perfect Fp-algebra. Then the map sW (P )→ W (P ) is an
isomorphism.

Example 2. Any element of W (Zp) has a unique expression of the form
∑

i≥0

V i(xi),

for xi ∈ Zp. For p > 2, sW (Zp) ⊂ W (Zp) consists of those expressions such that
xi → 0 in the p-adic topology.

Example 3. Let R = P/I be the quotient of a perfect Fp-algebra P by an ideal
I ⊂ P . Then sW (R) is the quotient of sW (P ) = W (P ) by the p-complete ideal
generated by V n([i]) for all n ≥ 0, i ∈ I.

When R = Fp[x1/p
∞

]/(x), then sW (R) is the derived p-completion of the direct
sum of the multiples of [xi] for all i ∈ Z[1/p]≥0. In particular, it behaves like a

sort of graded decompletion of W (R). For instance, the element
∑

n≥0 p
n[x1/p

n

] ∈
W (P ) maps to a nonzero class in sW (R), but to zero in W (R). Note in particular
that sW (R)→W (R) is surjective in this case.

There is also a characterization of sW , at least locally in the flat topology,
purely in terms of δ-rings. This is based on the following observation: given a
square-zero extension of δ-rings, δ is an additive map on the kernel.

Theorem 3. Let R be a derived p-complete ring such that F : W (R) → W (R)
is surjective (e.g., a semiperfect Fp-algebra). Then the map sW (R) → W (R)
is a square-zero extension of δ-rings such that δ acts as an isomorphism on the
kernel, which is derived p-complete and p-torsionfree. Moreover, it is the universal
square-zero extension of W (R) in δ-rings which has this property.
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Let G♯
a = Spec(Z[x, xi/i!]) be the divided power additive group; this is a group

scheme with a natural map G♯
a → Ga. In [2], the identity (over SpecZ(p))

W/Lp ≃ cone(G♯
a → Ga)

is proved; it plays an essential approach in the theory of prismatization of [2, 1].

Proposition 1. For p > 2, there is a natural equivalence of stacks over SpfZp,

sW/Lp ≃ cone(G♯̂
a → Ga),

where G♯̂
a ⊂ G♯

a is the ind-subscheme cut out by the condition that all sufficiently
high degree elements vanish.

As observed by Drinfeld, this can be used to formulate a “sheared” analog of
prismatization (ongoing joint work of the authors and A. Kanaev), where the role
of the Witt vectors is replaced by sW . In sheared prismatization, the category of
quasi-coherent sheaves yields a deformation of the category of D-modules (rather
than D-modules with locally nilpotent p-curvature as in usual prismatization).

Corollary 1. The functor R 7→ (sW (R)/Lpn) commutes with filtered colimits, for
any n.

This gives another sense in which sW is a decompletion of W , since W/Lp does
not commute with filtered colimits.
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Gromov–Witten invariants in Hermitian K-theory: k-rational del
Pezzo surfaces

Kirsten Wickelgren

(joint work with Erwan Brugallé, Johannes Rau)

Gromov–Witten invariants in Hermitian K-theory allow one to obtain an arith-
metically meaningful count of curves satisfying constraints over a field k without
assuming that k is the field of complex or real numbers. They were developed
in joint work with Kass, Levine, and Solomon [3, Theorem 1 and 2]. Let GW(k)
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denote the Grothendieck–Witt ring of k. For del Pezzo surfaces X under suitable
hypotheses, there is a Gromov–Witten invariant

NA1

X,β(A) ∈ GW(k)

enumerating genus 0 degree β curves on X passing through general point con-
straints SpecA → X where k → A is a finite étale algebra of the appropriate

degree. The rank of NA1

X,β(A) recovers the integer valued Gromov–Witten invari-
ants NX,β. For a map k → R the signature recovers the beautiful Welschinger
invariants WX(β, s) where s is the number of copies of C in A⊗k R

In joint work with Erwan Brugallé and Johannes Rau [1], we give a com-

plete calculation of these invariants NA1

X,β(A) for k-rational del Pezzo surfaces
X of degree greater than 5. Moreover, we give these invariants structure. Let
Etn,k : Fieldsk → Set be the functor from the category of field extensions of k to
the category of sets which takes L to the set of finite étale L-algebras of degree
n. Define W : Fieldsk → Set to be the functor which takes L to the set under-
lying the Witt group W (L) of L. Serre defines a Witt invariant to be a natural
transformation Etn,k →W . We show that for a fixed surface X and degree β, the
association

A 7→ NA1

X,β(A)

is an unramified Witt invariant.
We then construct a multivariable unramified Witt invariant which conjec-

turally contains all of these invariants for k-rational surfaces. Serre classified all
Witt invariants as the free W (k)-module with basis given by the wedge powers of
the trace form, λ0, . . . , λm for m = [n/2]. Serre proves that a Witt invariant which
is 0 on multiquadratic extensions is identically 0. A useful basis of Witt invariants
for our purposes is β0, . . . , βm characterized by

βi(
m∏

j=1

k[x]/(x2 − a1)(×k)) = Pi(〈2, 2a1〉, . . . , 〈2, 2am〉)

where Pi denotes the ith elementary symmetric polynomial. We say that a Witt
invariant is β-integral if it is of the form

∑m
i=0 biβi with bi ∈ Z.

Let n = (n1, . . . , nr) and d = (d1 . . . , dr) be tuples of positive integers. For
s < n =

∑
ni, consider the blowups Xn,s of P2 at n points in general position,

such that s pairs are complex conjugate and the remainder are real. Let L denote
the class of a line in PicP2. Let D ∈ PicXn,s be given by d0L minus d1 times the
first n1 exceptional divisors minus d2 times the next n2 exceptional divisors and
so on

D = d0L− d1(E1 + . . .+ En1)− d2(En1+1 + . . . En1+n2)− . . .
−dr(En1+...+nr−1+1 + . . .+ En1+...+nr).

We show there is a unique β-integral invariant

WWn,d : Etn0 ×Etnr →W
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satisfying

WWD,R(Es0
−1 × Rn0−2s0 , . . . ,Esr

−1 × Rnr−2sr ) = WelXn1+...+nr,s1+...+sr
(d; s0)

in W(R) ∼= Z.
We conjecture the following.

Conjecture 1. Let k be a perfect field of characteristic not 2 or 3.
Fix (n1, . . . , nr) ∈ Nr and (A1, . . . , Ar) ∈ Etn(k) and suppose that X is a

rational del Pezzo surface of degree at least 4 constructed as the blow up of P2
k

along the zero-dimensional subschemes p1, . . . ,pr ⊂ P2
k such that pi = SpecAi.

Then

WWD(A0, A1, . . . , Ar) = QX,D(A0).

We prove this conjecture for del Pezzo surfaces of degree greater than 5 and
obtain the calculation. To do this, we study the behavior of these Gromov–Witten
invariants during an algebraic analogue of surgery on del Pezzo surfaces [2]. We
obtain a surprisingly simple formula when uncomputable terms cancel out with
an identity in (twisted) binomial coefficients in the Grothendieck–Witt group.

Over an algebraically closed field, del Pezzo surfaces are isomorphic to either
P1 × P1 or to a blow-up of P2 at fewer than 9 points in general position. When
the points being blown-up acquire certain special configurations such as 3 points
lying on a line or 5 points lying on a conic, the blow-up contains a curve of
self-intersection −2 and the map to projective space associated to the canonical
divisor crushes the −2-curve to a node. We start with a family over k[[t]] where
the general fiber is a del Pezzo surface and the special fiber has a single rational
node with completed local ring the quotient of k[[x, y, z, t]] by Q(x, y, z) + t. In
a compactification of a moduli space of del Pezzo surfaces, this corresponds to a
point on a wall or boundary component. Pulling back by t 7→ d′t2 and passing to
the general fiber produces many different directions in which to leave the wall into
the moduli space of del Pezzo surfaces. We parametrize these directions by the
discriminant d of Q(x, y, z) + d′t2, and let Σd denote the corresponding general
fiber. While the curve counts on the central fiber are uncomputable, they cancel
using a quadratically enriched combinatorics, giving a “quadratic Abramovich–
Bertram formula:”

Theorem 1. ([2]) Let X→ Spec k[[t]] be a 1-nodal Lefschetz fibration of del Pezzo
surfaces of degree at least 4. Suppose k is a characteristic 0 field, and Σ1 is k((t))-
rational and X0 is k-rational. Then for all D in Pic Σ(d), and all finite étale
extensions k → A of degree −KΣ(d) ·D − 1 we have

NA1

Σ(d),D(A((t))) = NA1

Σ(1),D(A((t))) + (〈2〉 − 〈2d〉)
∑

j≥1

(−1)jNA1

Σ(1),D−jγ(A((t))).

We prove the toric case of Conjecture 1 with the powerful methods of [4]. We
use Theorem 1 to reduce to the toric case in degree > 5.
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Vanishing of negative K-groups of quasi-compact,
quasi-separated schemes

Georg Tamme

(joint work with Shane Kelly, Shuji Saito)

In this talk, I explained a proof of the following theorem.

Theorem 1. Let X be a quasi-compact and quasi-separated scheme of valuative
dimension d. Then

K−n(X) = 0 for all n > d,

K−n(X)
∼=−→ K−n(Ar

X) for all r ≥ 0, n ≥ d.

The notion of valuative dimension vdim was introduced by Jaffard in [5]. One
always has dim(X) ≤ vdim(X), where dim(X) denotes the Krull dimension, and
equality holds if X is Noetherian. However, the valuative dimension is better
behaved for non-Noetherian schemes.

Theorem 1 has a long history. For Noetherian schemes X , the statement of
the Theorem was known as “Weibel’s conjecture” [12]. The cases dim(X) ≤
1 are classical, and Weibel proved the case of surfaces [13]. For varieties over
characteristic 0 fields, the conjecture was proven in [2]. Assuming resolution of
singularities, there were also results for varieties over fields of positive characteristic
[3, 10]. The conjecture was fully resolved in [8]. Finally, the generalisation to non-
Noetherian schemes, i.e. Theorem 1, is proved in [6].

The strategy of proof is that sketched by Kerz in the Noetherian setting in [9].
The proof works by induction on d. Using Zariski hyperdescent [1], one reduces to
the case that X is affine and local. Using nilinvariance of non-positive K-theory
on affine schemes, one may then further assume that X is reduced. Using excision
and Zorn’s lemma, we further reduce to the case that X is integral.

For the inductive step, a key input is the following result.

Proposition 1 (Kerz-Strunk [7]). Let X be an integral affine scheme, i > 0, and
γ ∈ K−i(X). Then there exists a finitely presented, proper closed subscheme Z
of X such that p∗(γ) = 0 in K−i(BlZ(X)) where p : BlZ(X) → X denotes the
blowup.
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To finish the inductive step, it then suffices to show that the map of relative
K-theory spectra K(X,Z) → K(BlZ(X), E), where E denotes the exceptional
divisor, is (−d+ 1)-connective.

To achieve this, we prove that, for X = Spec(R) local, integral, any blowup
as in Proposition 1, admits a finite morphism to a blowup BlY (X) in a closed
subscheme Y cut out by at most d equations. This follows from the theory of
reductions of ideals (see, e.g., [4]) as follows.

Proposition 2. Let I ⊂ R be a finitely generated ideal, and let J ⊆ I be a
reduction, i.e. there exists an n such that JIn = In+1. Then there is a natural
finite morphism BlI(R)→ BlJ (R).

For R local with residue field κ, I ⊂ R a finitely generated ideal, the analytic
spread ℓ(I) is defined as the Krull dimension of the “fibre cone” (

⊕
n≥0 I

n)⊗R κ.

Proposition 3. For R and I as above, we have ℓ(I) ≤ vdim(R).

Proposition 4. For R and I as above, there exists a reduction J of some power
In generated by ℓ(I) elements.

In the Noetherian setting, these results are proven in [4], but the proofs adapt
to the non-Noetherian setting.

Given a closed subscheme V (I) = Z →֒ X = Spec(R) as in Proposition 1, we
thus find a reduction J of In generated by ℓ elements f1, . . . , fℓ with ℓ ≤ d. We now

consider the derived blowup X̃ of X in f1, . . . , fℓ. The map BlZ(X) = BlI(R)→ X
then factors as the composite

BlI(R) = BlIn(R)→ BlJ(R) →֒ X̃ → X,

where the first two maps are finite. If Ẽ → X̃ denotes the (derived) exceptional

divisor, the map K(X,Z)→ K(X̃, Ẽ) is an equivalence by a generalisation [8] of a

result of Thomason. Using that X̃ has a covering by ℓ affine, open subschemes, the
desired connectivity then follows by an induction on ℓ from derived nilinvariance
of non-positive K-theory on connective ring spectra and the following.

Proposition 5. Let p : Y → X be a finite morphism of affine scheme which is an
isomorphism outside a finitely presented closed subscheme Z →֒ X. Then the map
of relative K-theory spectra

p∗ : K(X,Z)→ K(Y, p−1(Z))

is 0-connective.

As K-theory commutes with filtered colimits, in the latter proposition we may
assume moreover that p is finitely presented. Under that assumption, the propo-
sition follows from pro-excision results of [11].
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Duality for condensed cohomology of the Weil group of a p-adic field

Marco Artusa

Duality theorems are central statements in arithmetic geometry. For p-adic fields,
the foundations are due to Tate, who proves duality results for their Galois co-
homology. Let F be a p-adic field, we fix a separable closure F and we set
GF := Gal(F/F ). The local Tate duality can be stated as follows

Theorem 1 (Local Tate Duality, [10, Theorem 2.1]). Let M be a finite Galois
module. Then we have a perfect cup-product pairing

(1) Hq(GF ,M)×H2−q(GF ,Hom(M,F
×

))→ H2(GF , F
×

) = Q/Z

between finite abelian groups.

The goal of this talk is twofold: to replace Galois cohomology with a new
cohomology, and to extend Tate’s result from finite coefficients to more general
and topological ones.

Why should we replace Galois cohomology? First, if we try to generalise Theorem
1 within the framework of Galois cohomology, we don’t go very far. For M = Z

and q = 0, (1) becomes

Z×Q/Z→ Q/Z,
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which is not perfect: to make it perfect, one should replace Z with its profi-
nite completion (this holds in more generality by Tate-Nakayama duality). The
second problem with classical Galois cohomology is that topology is not taken

into account. For example, F
×

and Hq(GF , F
×

) should be endowed with a
topology, while the classical framework only considers them as discrete objects.
These two issues are related. Indeed, (1) is expressed in terms of the functor
Hom(−,Q/Z) : Abop → Ab, which is not an equivalence of categories. When we
take topology into account, the situation improves. If LCA denotes the category
of locally compact abelian groups, we have an a equivalence of categories

(−)∨ := Hom(−,R/Z) : LCAop → LCA,

Our improved duality is expressed in terms of this functor (the Pontryagin duality).

1. A new cohomology

The new cohomology replacing Hq(GF ,−) fits in Geisser-Morin’s conjectural pic-
ture (see [3, Section 6]). To define it, we follow intuitions by Lichtenbaum (see [8])
and we use the recent theory of Condensed Mathematics (developed by Clausen-
Scholze [9] and Barwick-Haine [2]). We mimick the topos-theoretic definition of
Galois cohomology, replacing GF with the Weil group WF and the topos of sets
with the topos of condensed sets Cond(Set): from the categorical point of view,
this topos is similar to Set, but it contains “nice enough” topological spaces as a
full subcategory stable by all limits. We obtain a fixed point functor

(−)WF : WF − Cond(Mod)→ Cond(Ab)

and we define the condensed cohomology of the Weil group of F as

Hq(WF ,−) := Rq(−)WF .

Remark 2. The cohomology groups Hq(WF ,M) are condensed abelian groups,
hence they can be naturally topologised. Having a topology for such objects is just
a property (being in a certain subcategory of Cond(Ab)), not a structure.

Remark 3. WF = limU WF /U is a prodiscrete topological group, where U runs
among open normal subgroups of IF . We are not considering it as an object of
Cond(Grp) but as a pro-object. Thus its classifying topos is not BlimU WF /U but it
is BŴF

:= limU BWF /U . The first (more intuitive) choice would give a cohomology

which is not well-behaved for our purposes (see [1, Proposition 3.4]).

2. Duality

The new coefficients. Let FLCA be the quasi-abelian category of locally com-

pact abelian groups of finite ranks (see [4, Definition 2.6]). We define Dperf
Z,R as

the smallest stable ∞-subcategory of Db(FLCA) containing Z and R. Exam-
ples of objects of this category are: finitely generated abelian groups (with their
discrete topology), finite-dimensional real vector spaces (with their Euclidean
topology), (R/Z)n (with its compact Hausdorff topology). Another example is
θ := [Z →֒ R/Z], where the map sends 1 ∈ Z to an irrational α ∈ R/Z. This map
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has a dense image, hence θ, contrarily to the other examples, does not belong to
the full subcategory LCA ⊂ Cond(Ab).

The dualising object. Let L be the completion of the maximal unramified ex-
tension F ur and let L be a separable closure of L which contains F . We define

R/Z(1) := cofib(L
×

[−1]
val→ R[−1]) =: cofib(Z(1)→ R(1)) ∈ Db(WF−Cond(Mod)).

One can show that we have H2(WF ,R/Z(1)) = R/Z and Hq(WF ,R/Z(1)) = 0 for
all q ≥ 3.

The new duality. For all M ∈ Db(WF − Cond(Mod)) we set

MD := RHom(M,R/Z(1)).

The main theorem is the following (see [1, Theorem 4.27])

Theorem 4. Let M ∈ Dperf
Z,R with a continuous action of G, finite quotient of GF .

Then we have a perfect cup-product pairing

RΓ(WF ,M)⊗L RΓ(WF ,M
D)→ H2(WF ,R/Z(1))[−2] = R/Z[−2]

in Db(FLCA). If moreover we have Hq(M) ∈ FLCA for all q, we obtain an induced
perfect cup-product pairing in FLCA for all q

(2) Hq(WF ,M)⊗H2−q(WF ,M
D)→ H2(WF ,R/Z(1)) = R/Z.

Remark 5. The condition Hq(M) ∈ FLCA excludes examples like θ, for which
Hq(WF ,M) /∈ FLCA in general. For these objects, Hq(WF ,M) has a maxi-
mal non-separated subgroup Hq(WF ,M)ns and maximal locally compact quotient
Hq(WF ,M)lc := Hq(WF ,M)/Hq(WF ,M)ns. The general duality is given by two
different perfect pairings

Hq(WF ,M)lc ⊗H2−q(WF ,M
D)lc → R/Z,

Hq(WF ,M)ns ⊗L H1−q(WF ,M
D)ns → R/Z[1].

This result is an improvement of Theorem 1. If M is finite, (2) canonically
identifies with (1), and this pairing is perfect by the local Tate duality. If M is
finitely generated, this theorem is an improved version of Tate-Nakayama duality,
which does not need profinite completion to hold; if M is a finite-dimensional real
vector space, (2) defines a new “exotic” duality between finite-dimensional real
vector spaces. If M = R/Z and q = 1, (2) becomes (W ab

F )∨ ⊗ F× → R/Z, which
yields the reciprocity isomorphism of local class field theory “à la Weil”

F× ∼→W ab
F .

3. Perspectives: higher local fields and solid Milnor K-theory

We present some future directions, which aim to extend previous results to higher
local fields. Everything in this section is conjectural.

0-local fields are finite fields, 1-local fields are what we call local fields, and
inductively d-local fields are complete discrete valuation fields with a (d− 1)-local
field as a residue field. Kato (see [5],[6],[7]) extends local class field theory to
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higher local fields. If F is a d-local field, the role of F× is taken by KM
d (F ), the

dth Milnor K-theory of F . Kato shows that we have a reciprocity morphism

ψF : KM
d (F )→ Gab

F

such that ψF /n is an isomorphism for all n ∈ N. The reasons why ψF is not
an isomorphism without passing to a finite quotient are essentially two: first, the
Galois group should be replaced by the Weil group; secondly, KM

d (F ) contains
huge divisible subgroups, as it is built using a tensor product which is algebraic
and does not take the “topology” of the field into account. For a d-local field F ,
we aim to define its Weil group WF and its solid Milnor K-theory KM�

d (F ), where
the “topology” of F is taken into account and where the algebraic tensor product
is replaced by the solid tensor product −⊗�− (see [9, Lecture V]). Moreover, we
aim to show that we have an isomorphism of solid abelian groups

(3) KM�

d (F )
∼→W ab

F .

This result should come from a generalisation of Theorem 4 to higher local fields.
This involves endowing higher local fields with condensed structures, defining com-
plexes Z(d),R(d),R/Z(d) ∈ Db(WF − Cond(Mod)) and showing that we have
Hd(WF ,Z(d)) = KM�

d (F ). Finally, KM�
d (F )/n should canonically coincide with

KM
d (F )/n and (3)/n should canonically coincide with ψF /n. Hence, obtaining (3)

would be an improvement of Kato’s higher local class field theory.
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Trace methods beyond connective rings

Ishan Levy

(joint work with Vova Sosnilo)

I explained work joint with Vova Sosnilo on extending trace methods beyond con-
nective rings. The fundamental result of trace methods is the Dundas–Goodwillie–
McCarthy theorem, which says that the fiber of the cyclotomic trace map is a
truncating invariant, i.e is a localizing invariant that is an isomorphism on maps
of connective ring spectra that are π0-surjections with nilpotent kernel. Previ-
ously, work of Elmanto–Sosnilo [1] extended this to a categorical setting, showing
that nilpotent extensions of bounded weighted categories are an isomorphism on
truncating invariants, and previous work of mine [2] showed that this is true for
1-connective maps of −1-connective rings.

In our work, we introduce the notion of a c-category, which is a stable category
with extra structure that in particular allows us to extend trace methods to it.
To give the definition, we first recall some preliminaries about weight structures.
Given a stable category C, and a full subcategory C≤0, there is a unique weight
structure on Ind(C) with the property that an object y ∈ Ind(C) is connective in
the weight structure if and only if the mapping spectra map(x, y) is connective for
each x ∈ C≤0. We call such a weight structure on Ind(C) compactly generated.

A c-category of width n is a stable category C with a compactly generated weight
structure on Ind(C) such that each object of C is bounded in the weight structure,
and such that any object x ∈ Ind(C) that is connective in the weight structure can
be written as filtered colimit of compact objects yα along morphisms that factor
through −n-connective objects in the weight structure.

We show that a c-category admits a finite resolution (in the sense of chain com-
plexes of stable categories) by module categories of connective rings. In particular,
for a c-category C of width n, there is a connective ring spectrum R such that for
a localizing invariant E, there is an isomorphism E(R) ∼= ΣnE(C). We define a
notion of nilpotent extension of c-categories, and show that nilpotent extensions
of c-categories are isomorphisms on all truncating invariants.

Many examples of c-categories naturally arise. For example, quasi-coherent
sheaves on a qcqs scheme, and many quasi-geometric stacks, have natural c-
structures. Moreover, the theory of c-categories is robust enough that check-
ing that a map of such stacks induces a nilpotent extension is one that can be
checked fppf-locally. Another family of examples comes from taking fixed points
of continuous fcd pro-p-group actions on connective rings. For example, the map
(Z/pnZ)hG → FhG

p is a map of rings that induces a nilpotent extension of c-

categories on module categories, where G is a fcd pro-p-group, and (−)hG denotes
the continuous homotopy fixed points by the trivial action. In particular, our re-
sults allow one to computationally access K-theory of rings such as (Z/pnZ)hG in
terms of TC.
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A cohomology theory in mixed chromatic characteristic

Robert Burklund

In this talk I presented an extension of the category of affine schemes containing
both affine derived schemes and affine spectral schemes together with a cohomol-
ogy theory in this context recovering in its various aspects de Rham cohomology,
syntomic and prismatic cohomology, TC and THH .

Habiro cohomology & THH(−/ku)

Ferdinand Wagner

Habiro cohomology is supposed to be a (positive) answer to the following question
of Peter Scholze:

Question. Is there a version of q-de Rham cohomology with coefficients not in
the power series ring Z[[q − 1]], but in the Habiro ring

H
def
= lim

m∈N
Z[q]∧(qm−1) ?

q-de Rham cohomology itself, constructed by Bhatt–Scholze [2], is already a
very interesting cohomology theory: It is defined globally, i.e. for smooth schemes
over Z, and after completion at any prime p it recovers prismatic cohomology
relative to the p-adic q-de Rham prism (Zp[[q − 1]], [p]q). This makes it the only
known non-trivial case in which prismatic cohomology for various primes combines
into a global object. One reason to look for a Habiro-refinement of q-de Rham
cohomology is the following recent result:

Theorem/Construction 1 (Garoufalidis–Scholze–Wheeler–Zagier, [4]). Let F
be a number field and let ∆ be divisible by 6 discF . Then there exists a formally
étale H-algebra HOF [1/∆] and a regulator map

K3(F ) −→ Pic
(
HOF [1/∆]

)

We remark that the line bundles in the image of the regulator map above will
become trivial after completion at (q − 1), so there’s no way to see this regulator
using only q-de Rham cohomology.

It turns out that the best possible version of Habiro cohomology doesn’t exist,
but by now we do have several non-optimal constructions: Scholze constructed
analytic Habiro cohomology [7], which takes values in modules over an analytic
version of the Habiro ring. In my thesis I construct algebraic Habiro cohomology,
whose values are often finitely generated modules over the completion of H[1/N ].
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In this talk we focussed on the algebraic version, which can be summarised in the
following theorem:

Theorem/Construction 2. Define AniRingq-Hdg to be the category of pairs
(R, fil⋆q-Hdg q-dRR), where R is an animated ring and fil⋆q-Hdg q-dRR is filtration
on the derived q-de Rham complex of R, which q-deforms the Hodge filtration on
dRR and satisfies a few natural compatibilities. Given such a pair, define the
q-Hodge complex

q-HdgR
def
= colim

(
fil0q-Hdg q-dRR

(q−1)−−−−→ fil1q-Hdg q-dRR
(q−1)−−−−→ · · ·

)∧

(q−1)

.

(a) The forgetful functor AniRingq-Hdg → AniRing is not essentially surjec-
tive. However, on the category of smooth Z-algebras R in which all primes
p ≤ dim(R/Z) are invertible, the forgetful functor does have a section.

(b) The functor q-Hdg(−) : Smq-Hdg
Z → D(Z[[q − 1]]) factors canonically and

non-trivially through a functor

q-Hdg(−) : Smq-Hdg
Z −→ D(H)

valued in the derived ∞-category of the Habiro ring.
(c) In the situation of Theorem/Construction 1, q-HdgOF [1/∆] ≃ HOF [1/∆].

The general non-existence of a section of AniRingq-Hdg → AniRing is the
price we have to pay for an algebraic (as opposed to analytic) theory. Besides
smooth Z-algebras with the property from Theorem/Construction 2(a), a rich

source of examples of objects in AniRingq-Hdg can be constructed using topologi-
cal Hochschild/negative cyclic homology over ku.

Theorem/Construction 3. Let R be quasisyntomic and 2 ∈ R×. Suppose that
R admits a lift to an E2-ring spectrum SR satisfying R ≃ SR⊗Z. Then the derived
q-de Rham complex of R can be equipped with a filtration fil⋆q-Hdg q-dRR in such a
way that

(R, fil⋆q-Hdg q-dRR) ∈ AniRingq-Hdg ,

and such that the associated graded of the S1-equivariant even filtration on TC−(ku
⊗ SR/ku) is the completion of the filtration fil⋆q-Hdg q-dRR (up to shift):

gr⋆ev,hS1 TC−(ku⊗ SR/ku) ≃ fil⋆q-Hdg q-d̂RR[2⋆] .

In the case where R = Z[x] with spherical lift S[x], this theorem was first
shown in unpublished work of Raksit. The theorem can be regarded as a q-de
Rham/ku-analogue of Antieau’s result [1] that

gr⋆ev,hS1 HC−(R) ≃ fil⋆Hdg d̂RR[2⋆] .

In the situation from Theorem/Construction 3, one can also describe the q-
Hodge complex q-HdgR and its descent to the Habiro ring q-HdgR in terms of
THH(−/ku). In the talk we sketched a construction of a suitable even filtration
on the genuine fixed points THH(KU⊗SR/KU)Cm for every finite cyclic subgroup
Cm ⊆ S1. This leads to the following result:
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Theorem 4. In the situation of Theorem/Construction 3,

q-HdgR ≃ gr0ev,hS1 TC−(KU⊗ SR/KU) ,

q-HdgR ≃ lim
m∈N

gr0ev,S1

(
THH(KU⊗ SR/KU)Cm

)h(S1/Cm)
.

In the situation of Theorem/Construction 1, we obtain the following special
case: If SOF [1/∆] denotes the unique spherical E∞-lift of the étale Z-algebra
OF [1/∆], then

HOF [1/∆]
∼= lim

m∈N
π0

(
THH(KU⊗ SOF [1/∆]/KU)Cm

)h(S1/Cm)
.

We hope to use this in future work to obtain a description of the regulator from
Theorem/Construction 1 in terms of a trace map from K-Theory to THH(−/ku).
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The stacky view on the Grayson construction

Vladimir Sosnilo

(joint work with Mazime Ramzi, Vladimir Sosnilo, Christoph Winges)

Given a stable ∞-category a very elementary and naive definition of its K0 does
not immediately generalize to the higher groups. Typically, one has to define
the connective K-theory spectrum via Waldhausen’s S•-construction (or, equiva-
lently, Quillen’s Q-construction) for the connective part, and the nonconnective
deloopings are built using a construction of Thomason [7]. This procedure appears
very ad hoc, but it gives a reasonable invariant because it satisfies the two main
properties we expect K-theory to have:

(1) it generalizes K0: π0 K(C) ≃ K0(C) for C ∈ Catperf ;
(2) it is a localizing invariant, i.e. it sends a localization sequence D → C →

(C/D)ic ∈ Catperf to a fiber sequence.

This does not fully justify the definition, because it might still be possible that
there is not a unique such functor. A result of Blumberg–Gepner–Tabuada shows
that K-theory is at least universal among them:
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Theorem 1 ([1, Theorem 9.8], [2]). For any (acessible) localizing invariant F :

Catperf → Sp with a natural transformation Core(−) → Ω∞F (−) there exists a
unique extension to a map of localizing invariants K→ F .

This, in particular, means that any accessible functor E satisfying (1) and (2)
admits a map K→ E, which is an isomorphism on π0.

In [4] Grayson proposed an alternative construction of K-theory based on the
following result:

Theorem 2. There exists a functor Γ : Catst → Catst such that K Γ(C) ≃ Σ K(C).

The mere existence of such a functor already implies that at least for positive i
the values of Ki are determined by the values of K0 on all objects of Catperf . Note
that the Calkin construction gives a similar equivalence

K(Calk(C)) ≃ Ω K(C),

also shows that it is true for negative i. Together with Ramzi and Winges, in [6,
Appendix A] we prove the following generalization of Grayson’s result:

Theorem 3 (Ramzi–Sosnilo–Winges, Efimov). There exists a functor Γ : Catst →
Catst induces an equivalence EΓ(C) ≃ ΣE(C) for any (not necessarily filtered
colimit preserving) localizing invariant.

Corollary 1. Any morphism of localizing invariants valued in spectra F → G is
an equivalence as long as it is an equivalence on π0.

This, together with Theorem 1, shows that there is a unique localizing invariant
E satisfying (1) and (2).

The functor Γ in Theorem 2 is very explicit but infinitary, so it is still combina-
torially hard to understand in practice, especially when we cannot control filtered
colimits.

A proof of Theorem 3 was also given in [3] using dualizable categories. There
Efimov showed that sheaves on the real line valued in a given dualizable category
form a dualizable analogue of the functor Γ. The goal of this talk is to give a
different direct proof by providing a geometric interpretation of Γ in the context
of small stable ∞-categories.

We introduce the notion of weighted A1-invariance and consider the spectral
stacks [A1/Gm] and [X/Gm], where X is the union of axes on the affine plane and
all the actions have the same weight. The summation map [X/Gm]→ [A1/Gm] is
then shown to be a weighted A1-equivalence. We then prove that any localizing
invariant (in fact, any functor on stacks satisfying projective bundle formula),
satisfies weighted A1-invariance. Now in the diagram

E(Perf0,[A1/Gm] ⊗ C) E(Perf [A1/Gm] ⊗ C) E(C)

E(Perf0,[X/Gm] ⊗ C) E(Perf [X/Gm] ⊗ C) E(C)× E(C).
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the horizontal maps are fiber sequences, the middle vertical map is an equivalence,
and the right vertical map has E(C) as the cofiber. This means that the cofiber
of the left vertical map is ΩE(C). This allows us to define ΓC as the categorical
cone construction applied a functor Perf0,[A1/Gm] ⊗ C→ Perf0,[X/Gm] ⊗ C.

Corollary 2. K-theory commutes with arbitrary products, i.e. for any family
Ci ∈ Catperf the map

K(
∏

i

Ci)→
∏

i

K(Ci)

is an equivalence.
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Infinite root stacks and the Bloch–Esnault–Kerz fiber square

Federico Binda

(joint work with Tommy Lundemo, Alberto Merici, Doosung Park)

1. p-adic deformation of K-theory classes

1.1. The Bloch–Esnault–Kerz fiber square. Let K be a local field of mixed
characteristic (0, p), let OK be its ring of integers, and k its residue field. The
starting point of our investigation is the following result, originally proved by
Bloch–Esnault–Kerz for K0 classes (and additional restrictions on p) and moti-
vated by Fontaine–Messing’s p-adic variational Hodge conjecture:

Theorem 1 (Bloch–Esnault–Kerz [3], Beilinson [2], Antieau–Mathew–Morrow–
Nikolaus [1]). Let X be a proper smooth formal scheme over Spf(OK) and let X0
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be its special fiber. Then the square

Kcts(X;Qp) K(X0;Qp)

∏
i Fil≥iRΓdR(XK)[2i]

∏
iRΓdR(XK)[2i]

is cartesian, where the map K(X0;Qp) → ∏
iRΓdR(XK)[2i] is induced by the

crystalline Chern character and Berthelot’s crystalline-to-de Rham comparison
isomorphism RΓdR(XK) ≃ RΓcrys(X0)⊗K.

The above theorem gives a cohomological criterion for lifting classes to con-
tinuous K-theory [2, 11], reducing effectively the original conjecture to a (hard)
algebraization problem. When X is not smooth nor proper, a refined obstruction to
lifting classes has been constructed by Beilinson and Antieau–Mathew–Morrow–
Nikolaus: for x ∈ Ki(X0;Qp), there exists a class

o(x) ∈
⊕

r≥0

H2r−i(LΩX/LΩ≥r
X

)Qp

such that x lifts to Kcts
i (X;Qp) if and only if o(x) = 0. Here, LΩX denotes the

p-adic derived de Rham cohomology of X. See [1, Theorem E].
However, the obstruction class o(x) is rather implicit and lacks a crystalline

interpretation, in contrast with the smooth case.

1.2. Hyodo-Kato cohomology and the log BEK square. To tackle this prob-
lem, we recall the following fact: when X is proper and has semistable reduction
over Spf(OK), the de Rham cohomology of the (smooth, rigid analytic) generic
fiber of X can be recovered by means of the Hyodo–Kato cohomology

(2) RΓdR(XK) ≃ RΓHK(X0/k
0)⊗W (k) K

of the logarithmic special fiber, seen as a smooth log scheme over the logarithmic
point k0 = (N → k, 1 7→ 0). The Hyodo–Kato cohomology is a (ϕ,N)-module
over W (k), and can be defined using an appropriate version of the crystalline site
following work of Kato and Fontaine–Illusie (note however that functoriality is
tricky: see [6] for a motivic approach working directly on the rigid analytic generic
fiber).

Theorem 3 (See [8]). For X proper and semistable, a class x ∈ Ki(X0;Qp)

lifts to Kcts
i (X;Qp) if and only if chHK(x) ∈ ⊕

r≥0H
2r−i
HK (X0/k

0)[1/p] belongs

to
⊕

r≥0 Fil≥rH2r−i
dR (XK/K) under the Hyodo–Kato isomorphism (2).

This solves the problem in the semistable case of identifying the obstruction
class introduced by Beilinson.

Following the strategy of [1], in order to prove Theorem 3 it is necessary to iden-
tify the cofiber of the natural map Kcts(X;Qp)→ K(X0;Qp) with an appropriate
variant of TC(−;Qp), taking into account the additional information coming from
the log structure. We do this by means of Rognes’ logarithmic (topological) cyclic
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homology [18], and its cousins logarithmic (topological) Hochschild, periodic and
negative cyclic homology. The key ingredient is the following

Theorem 4 (See [7, 8]). Let (R,Q) be a pre-log Zp-algebra.

(a) There exists a commutative square

TC((R,Q);Zp) TC((R⊗S Fp, Q);Zp)

HC−((R,Q);Zp) HP ((R,Q);Zp)

which becomes cartesian after inverting p.
(b) if (R,Q) is a regular, log regular [16, Theorem III.1.11.1.], and vertical [16,

Definition I.4.3.1.] log ring over O
♯
K = (OK , (π)), then there is a cartesian

square of the form

K(R;Qp) K(R/p;Qp)

HC−((R,Q)/O♯
K ;Zp) HP ((R,Q)/O♯

K ;Zp).

Proof. Part (a) can be deduced by adapting the arguments in [1], or directly using
the descent results discussed below. Part (b) is a consequence of [1, Theorem A],
part (a), the vanishing of HC((R/p,Q);Qp) using the fact that R/p is an Fp-
algebra, and the existence of Gysin/residue sequences for logarithmic TC and its
variants (see [10, Proposition 8.6.7] and [17, Theorem 1.2]). �

Remark 5. Using the motivic filtration on logarithmic TC [9] (analogous to the
one in [4]), part (a) of Theorem 4 induces on the graded quotients the analogue
of [1, Theorem 6.17], involving the log syntomic cohomology sheaves Zp(i)(R,Q)
and p-adic derived log de Rham cohomology.

2. Saturated descent and infinite root stacks

There are several advantages in introducing a logarithmic structure in the previous
discussion. First, log invariants naturally arise when considering Gysin sequences
for non A1-homotopy invariant cohomology theories (such as prismatic or syntomic
cohomology), even for classical (i.e., non logarithmic) schemes. Second, we can
effectively use the “magic” of log geometry (in Kato’s words) and treat semistable
degenerations as if they were smooth morphisms (leading for example to Theorem
3, in complete analogy with Theorem 1). It is however convenient to reduce
statements involving log rings to the non-log counterparts. This can be done by
means of the following two principles:

(1) Saturated Kummer descent, after Kato and Nizio l (a p-adic variant of
Abhyankar’s lemma);

(2) The infinite root stack approach, after Talpo and Vistoli.
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It turns out that 1) and 2) in fact coincide with profinite coefficients, as we now
explain.

2.1. Saturated descent. Let ϕ : P → Q be an injective map of saturated monoids
[16, §I.1.3]. We say that ϕ is Kummer if it is Q-surjective, i.e., for every y ∈ Q
there is n ∈ N such that ny ∈ Im(ϕ). A standard example for a fine and saturated
(fs) monoid M is the map to the colimit perfection Mperf = colim×pM .

For (A,M) a prelog ring with A a complete Zp-algebra, we can form the cosim-
plicial diagram of p-complete rings:

CMperf
(A,M)• = (A⊗̂Zp〈M〉Zp〈Mperf〉⇒ A⊗̂Zp〈M〉Zp〈Mperf ⊕sat

M Mperf〉 . . .)
where the coproduct on the right takes place in the category of saturated monoids
(this is crucial), and the angular brackets denote the p-adic completion of the
monoid algebras. The descent property mentioned above takes the following form:

Theorem 6. Let (A,M) be a “special” quasi-syntomic pre-log Zp-algebra (see [7]
for details, for example, the p-adic completion of a free log algebra). Then

∆̂(A,M) ≃ lim
∆

∆̂(CMperf
(A,M)•,M•) ≃ lim

∆
∆̂CMperf

(A,M)•

In particular, logarithmic, Nygaard completed, prismatic cohomology of a large
class of quasi-syntomic rings can be computed in non-logarithmic terms. This is a
key ingredient in the proof that the same descent property holds for THH(−;Zp),
TC(−;Zp) and variants.

2.2. Infinite root stack. The infinite root stack ∞
√
X of an fs log scheme X =

(X,MX) was introduced by Talpo and Vistoli in [19] as a geometric incarnation
of the Kato-Nakayama space [12]. It is a pro algebraic stack over X , with the

property that the map ∞
√
X → X is an isomorphism at every point x ∈ X where

the log structure is trivial. For a divisorial log structure given by a (derived)
Cartier divisor X → A1/Gm, it can be defined as the limit over n of the pullback
to X of the multiplication by n map A1/Gm → A1/Gm.

It was suggested by Bhatt, Clausen and Mathew [15] that p-adic cohomological
invariants of log schemes should be extracted from the infinite root stack. This
is possible thanks to the following simple observation due to Nizio l and Kato: for
ϕ : P → Q a Kummer map as above, there is a simplicial homotopy equivalence
in the category of saturated monoids:

Q
⊕sat

P (•+1) ≃ Q⊕ (Qgp/P gp)
⊕

•

This leads to the following fact. Let (A,M) be a “special” quasi-syntomic pre-
log Zp-algebra. Then CMperf

(A,M)• is eqiuvalent to the Cech nerve of the at-

las Spf(A⊗̂Zp〈M〉Zp〈Mperf〉) → p∞
√

Spf(A,M). We deduce the following meta-
corollary:

Corollary 7. All the invariants for log rings derived from Rognes’ log topological
Hochschild homology coincide, after p-completion, with the invariants defined using
the infinite-root stack.
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As a sample application, it is possible to show that the Nygaard completion
of the site-theoretic log prismatic cohomology of Koshikawa and Koshikawa-Yao
[13, 14] coincide with the definition introduced in [9]. This is the log analogue of
the comparison theorem in Bhatt-Scholze [5, Theorem 13.1].
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Zero cycles on singular varieties

Elden Elmanto

(joint work with Matthew Morrow)

The goal of this talk is to explain a short cohomological approach of most cases
of the following result. More details will appear in an upcoming paper, joint with
Matthew Morrow.

youtube.com/watch?v=wjQuiZ4qPiU
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Theorem 1 (Levine, Krishna–Srinivas, Krishna). Let k be an algebraically closed
field and A a reduced, finite type k-scheme of dimension d ≥ 2. Then the subgroup
F dK0(A) ⊂ K0(A) is torsionfree.

Here, F dK0(A) is the subgroup of K0(A) generated by classes of smooth points
of codimension d points of Spec(A). Classically, it is considered as replacement
for the Chow group of zero cycles for schemes which are not necessarily smooth
over a field.

Remark 2. For some context, Theorem 1 is an answer to a question posed by
Murthy in [9, Open Question (2.12)], in the context of splitting problems for vec-
tor bundles over affine varieties. In particular, Theorem 1 shows that the top
chern class in F dK0(A) is a complete obstruction to splitting off a trivial rank
one summand in a rank d vector bundle over Spec(A). For torsion prime to the
characteristic, Theorem 1 was proved by Levine in an unpublished manuscript [8].
A major breakthrough was made for normal varieties in [7] and a proof of the full
conjecture can be found in [6]. Our approach here is different and uses vanishing re-
sults for étale/syntomic cohomology of affine varieties which are algebro-geometric
analogs of the Andreotti-Frankel theorem in topology.

Our approach to this result relies on the extension of motivic cohomology to all
equicharacteristic quasicompact, quasiseparated schemes introduced in [3]. Let us
review parts of this theory that we will use in the proof.

Theorem 3. Let k be a field. There is a functorial, multiplicative, N-indexed and
complete filtration on the K-theory of an algebraic variety X over k:

Fil⋆motK(X)→ K(X).

Writing its graded pieces and associated cohomology as:

Z(j)mot(X) := grjmotK(X)[−2j] Hi
mot(X,Z(j)) := Hi(Z(j)mot(X)),

there is a functorial motivic-to-syntomic comparison map1

Z(j)mot(X)/p→ Fp(j)syn(X)

satisfying the following properties

(1) if p is invertible in k, then we have a functorial equivalence under the
motivic-to-syntomic comparison map:

Z(j)mot(X)/p ≃ Lcdhτ
≤jRΓét(−, µ⊗j

p )(X).

(2) If p = 0 in k then we have a cartesian square

Z(j)mot(X)/p Fp(j)syn(X)

RΓcdh(X,Ωj
log)[−j] RΓét(X,Ω

j
log)[−j].

1Let us recall that if p is invertible in k then syntomic cohomology of X is its étale cohomology,
with an appropriate Tate twist. On the other hand, if p = 0 in k then weight-j mod-p syntomic

cohomology is described as the left Kan extension of the functor X 7→ RΓét(X; Ωj

log
)[−j].
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(3) Weibel vanishing: for j ≥ 0 we have

H
>j+dim(X)
mot (X,Z(j)) = 0.

(4) Nisnevich-locally, the presheaf Hj
mot(−,Z(j)) identifies with Gabber-Kerz’s

improved Milnor K-theory of a local ring.
(5) After rationalisation, the filtration functorially splits. In particular, the

resulting spectral sequence rationally degenerates.

Key to a cohomological approach to Theorem 1 is the following result, which
can be regraded as a cohomological version of the vanishing theorems of Suslin
[10] and Geisser [4].

Theorem 4. Let X be an scheme of finite type over k, an algebraically closed
field. Then for j ≥ dim(X) the motivic-to-syntomic comparison map

Z(j)mot(X)/p→ Fp(j)syn(X)

is an equivalence.

Proof. First, let us assume that p is invertible in k. Then, by Theorem 3(1), the
cofiber of the motivic-to-syntomic comparison map in weight j is equivalent to
the presheaf Lcdhτ

>jRΓét(−,Fp). To check that this latter presheaf is zero in
the stated range, it suffices to prove that for proper cdh cover Y → X where
dim(Y) ≤ dim(X), the presheaf τ>jRΓét(−,Fp) is Nisnevich-locally trivial. How-
ever, for any affine scheme Spec(A), étale over Y we have that RΓét(Spec(A),Fp)
is concentrated in degrees ≤ dim(A) ≤ dim(X) by Artin’s vanishing theorem [1,
Corollaire XIV.3.2].

Next, assume that p = 0 in k. This time, by Theorem 3(2), the cofiber of
the motivic-to-syntomic comparison map in weight j is equvialent to the presheaf
RΓcdh(−, ν̃(j)) where ν̃(j) is the j-th Artin–Schreier obstruction [3, Definition
4.29]. In the notation of the previous paragraph, it then suffices to prove that
ν̃(j) is Nisnevich-locally trivial on Y for j ≥ dim(X). Let y ∈ Y , we claim that
ν̃(j)(Oh

Y,y) = 0. We now appeal to the rigidity theorem of Antieau–Mathew–

Morrow–Nikolaus [2, Theorem 5.2] which shows that ν̃(j)(Oh
Y,y) ∼= ν̃(j)(κ(y))

where κ(y) is the residue field of y ∈ Y . Now, κ(y) is transcendence degree
≤ dim(Y) ≤ dim(X) over k; that the the Artin–Schreier obstruction vanishes is a
consequence of the definition of Kato’s p-dimension and the inequality of Kato–
Kuzumaki [5, Corollary 2].

�

Remark 5. Let X be a quasiprojective variety over k and zj(X, •) be Bloch’s
cycle complex so that its higher Chow groups (with coefficients) are defined as the
homology groups

CHj(X, i;Z/m) =: Hi(z
j(X, •)⊗L Z/m).

Then Suslin (in characteristic zero [10], j ≥ dim(X)) and Geisser (in arbitrary
characteristic [4] for j = dim(X)) proved that there is an isomorphism

CHj(X, i;Z/m) ∼= H2(dim(X)−i)+j
syn (X ;Z/m(d− j))♯,
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where X is an equidimensional quasiprojective variety over an algebraically closed
field and ♯ denote Pontrjagin dual (take maps into Q/Z).

It is expected that Bloch’s cycle complex is a model for Borel–Moore motivic
homology so that, in particular, it admits a functorial action of motivic cohomology
which refines the action of K-theory on G-theory. Under this expected relationship,
the above isomorphism is a Borel–Moore counterpart to Theorem 4.

Equipped with Theorem 4, we proceed to reduce Theorem 1 to a problem in
syntomic cohomology. First, we only assume that X is a k-variety (not necessarily
affine). Thanks to Theorem 3(3), the motivic spectral sequence for X gives rise
to an edge homomorphism

edge : H2d
mot(X,Z(d))→ K0(X).

A key property of this edge homomorphism is that it covers F dK0(X) in the
sense that F dK0(X) ⊂ Image(edge). The proof of this involves the construction
of a cycle class map; this is a functorial map Z0(Xsm) → H2d

mot(X,Z(d)) from
the abelian group of zero cycles on the smooth locus of a k-variety X . It has the
property that after post-composing with the edge map, it sends the class of a point
[x] ∈ Z0(Xsm) to the same-named element in K0(X).

Combined with Theorem 3(5) which implies that the edge map is a rational
injection, Theorem 1 will follow once we know that H2d

mot(X,Z(d)) is torsionfree.
This we may check one prime at a time. Let p be a prime then plugging in
Theorem 4, the Bockstein sequence looks like

H2d−1
mot (X,Z(d))→ H2d−1

syn (X ;Fp(d))
δ−→ H2d

mot(X,Z(d))
·p−→ H2d

mot(X,Z(d))→ · · ·
Now we use that X is affine. If p is invertible, then

H2d−1
syn (X ;Fp(d)) = H2d−1

ét (X ;Fp) = 0

as soon as 2d−1 ≥ d+1 by Artin’s vanishing theorem. In other words, ·p is injective
when d ≥ 2. If k is characteristic p, then we have that H2d−1

syn (X ;Fp(d)) = 0
whenever 2d−1 ≥ d+2 by [2, Theorem G]. In other words, ·p is injective whenever
d ≥ 3.

When p = 0 in k and d = 2 the result is equivalent to the surjectivity of the map
H3

syn(X,Zp(2)) → H3
syn(X,Fp(2)) induced by mod-p reduction. We are working

on a direct proof of this surjectivity.
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Towards a categorical Künneth formula for motives

Jakob Scholbach

Throughout, let X,Y be two algebraic varieties over a field k with finite Ga-
lois cohomological dimension. We consider the category DM(X) of étale motivic
sheaves, as introduced and studied by Ayoub and Cisinski–Déglise, and the full
stable presentable subcategories

DM(X)′′ ⊂ DM(X)′ ⊂ DM(X)

that are generated, respectively, by f∗Z(n), for f : T → X smooth and proper, and
by all dualizable objects. As a consequence of de Jong’s resolution of singularities,
these three categories coincide for X = Spec k.

Conjecture 1. If Y is smooth and proper over k, the exterior product induces an
equivalence (of stable ∞-categories)

DM(X)′ ⊗DM(k) DM(Y )′
∼=→ DM(X×kY )′.

We call this a categorical Künneth formula. In addition to its intrinsic beauty,
we study this question because of potential applications in the Langlands program.

It is a consequence of a nontrivial theorem of Jin–Yang that the functor

DM(X)⊗DM(k) DM(Y )→ DM(X×kY )

is fully faithful. The essence of the conjecture above is therefore to see how du-
alizable objects P ∈ DM(X×Y ) (i.e., “motivic local systems” on X×Y ) can be
constructed out of such objects on the individual factors X and Y .

Étale torsion sheaves. For a prime ℓ 6= char(k), rigidity for etale motives asserts
an equivalence DM(−)⊗ModZ

ModZ/ℓ = Det(X), where the right hand side denotes
the derived category of étale sheaves of Z/ℓ-vector spaces on X . A dualizable
object is precisely a sheaf that is étale-locally constant and there given by a perfect
complex of Z/ℓ-modules. For concreteness, we assume in this section that k is
separably closed, so that Det(Spec k) = ModZ/ℓ, the derived category of Z/ℓ-
vector spaces.

Theorem 2. [HRS24] If Y is smooth and a) Y is proper or b) char k = 0, there
is an equivalence

Det(X)′ ⊗ModZ/ℓ
Det(Y )′ = Det(X×kY )′.
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This relates to, and uses as an input, the isomorphism

π1(X×kY )
∼=→ π1(X)×π1(Y ).

Such a formula does not hold over Fp in general, and Drinfeld’s lemma provides a
fix for this. This and further input leads to the following variant. For X/Fp and

its base change X/Fp, we let Det(X
W ) be the category of Weil sheaves, i.e.

Det(X
W ) := Ind

(
{(F ∈ Det,cstr(X), α : (FrobX×id

Fp
)∗F ∼= F )}

)
.

A similar definition is done for more than one factor, as in the right hand side
below. The result below applies also to not necessarily locally constant sheaves.

Theorem 3. [HRS24] For X,Y/Fp (not necessarily smooth nor proper), there is
an equivalence

Det(X
W )⊗ModZ/ℓ

Det(Y
W ) ∼= Det(X

W×
Fp
Y W ).

A construction of a preimage. SupposeX admits a k-rational point x. The fol-
lowing construction is due to Gaitsgory–Rozenblyum–Kazhdan–Varshavsky. Let

e : X×Y → Y
x×id→ X×Y and p := X×Y → X be the projection. Fix a dualizable

object P ∈ DM(X×Y ) and consider the evaluation map

αP : Q := p∗p∗Hom(e∗P, P )⊗p∗p∗End(e∗P ) e
∗P → P.

It is easy to see that for p smooth and proper, Q ∈ DM(X)′ ⊗DM(k) DM(Y )′ ⊂
DM(X×Y )′. Also, (x×idY )∗αP is an isomorphism. I.e., this object Q is a candi-
date for showing that P lies in the full subcategory DM(X)′ ⊗DM(k) DM(Y )′. We
therefore aim to be in a situation where pullback to a closed point x is conservative.

Etale cohomological motives. In the context of etale torsion or Zℓ-adic sheaves,
it is known that x∗ : D(X)′ → D(Spec k) is conservative (for X connected). Taking
our cue from this fact one can enforce an independent-of-ℓ six functor formalism
that satisfies the above categorical Künneth formula.

Definition 4. Let D̂M(X) := limm∈N×, in PrLω
DM(X)⊗ModZ

ModZ/m be the profi-

nite completion of DM. (If we were to only consider m = ℓn, this would be exactly
D(X,Zℓ), by rigidity.) We consider the category of so-called cohomological mo-
tives

DM♭(X) := DM(X)
/

ker
(

DM(X)→ D̂M(X)
)
.

Conjecturally, at least over fields of finite transcendence degree, the adic real-

ization functor DM(X) → D̂M(X) is conservative, so that we expect DM(X) ∼=
DM♭(X). Independently of this deep conjecture, we use the above construction to
leverage the conservativity of x∗ from etale sheaves to cohomological motives.

Theorem 5. [RS25] For Y smooth and a) Y proper or, b) char k = 0, ind-

dualizable objects in DM♭ satisfy a categorical Künneth formula:

DM♭(X)′ ⊗DM♭(k) DM♭(Y )′ ∼= DM♭(X×kY )′.

A similar result also holds for cohomological Weil motives, along the lines of
the second theorem above.
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Motives of smooth-proper families. Current work in progress centers on the
following question.

Question 6. Is there an equivalence (for Y smooth and proper)

DM(X)′′ ⊗DM(k) DM(Y )′′
∼=→ DM(X×kY )′′ ?

This would mean that the motive of any smooth proper family T → X×Y is
decomposable in terms of motives of smooth proper schemes over X and over Y .

This question can be approached using Robalo’s category of non-commutative
motives. In a nutshell, for a variety S/k, there is a commutative diagram involving
at the top right Kontsevich’s category of smooth proper non-commutative schemes:

SmPrS

��

T/S 7→QC(T ) // SmPrncS := (ModQC(S)PrLω)dbl,op

��
SmS

��

Smnc
S := (ModQC(S)PrLω)ω,op

��
SH(S) // ModKHSH(S) // SHnc(X) := P(Smnc

S , Sp)[(Nis,A1)−1].

Homotopy K-theory has (non-commutative) Nisnevich descent and A1-invariance,
so KH is an object in SHnc(X). The bottom right functor is fully faithful on
ind-dualizable objects (Robalo).

In the sequel, let P = QC(T ) be the non-commmutative motive of some smooth
and proper T → X × Y . The map αP : Q → P can be defined in the presheaf
category P(SmPrncX×Y ) (in a way compatible with the one in SH(X × Y )).

Proposition 7. (Categorical Nakayama lemma) For a local ring R with residue
field k, the pullback x∗ : SmPrncSpecR → SmPrncSpeck is conservative.

Consequently, for Y proper smooth, the following pullback is also conservative:

(x×idY )∗ : SmPrncSpecR×kY
→ SmPrncY .

These results relate to the categorical Künneth formula for DM(−)′′ as follows:
in view of the torsion results, it is enough to consider rational coefficients through-
out. Descent allows to replace k by any algebraic extension, guaranteeing the
existence of x ∈ X(k). Then DMQ = SHQ → ModKHQ

SH is conservative by Bott
periodicity, and to show that αP is an isomorphism in DM(X×Y )Q it is enough
to do this in SHnc(X×Y ). The results above show that the restriction of αP to
SpecOX,x × Y is an isomorphism whenever the following is satisfied:

(1) Q ∈ SmPrncX×Y (⊂ P(SmPrncX×Y )).

A Morita-type argument shows that the object Q′ := Hom(e∗P, P )⊗End(e∗P ) e
∗P

does lie in SmPrncX×Y provided that T → X×Y admits a section. Work in progress
aims to identify criteria when Q has the dualizability property (1). Provided this
dualizability holds, one may conclude that αP is an isomorphism in DM(X×Y ) by
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using a continuity argument and the fact that restriction to an open dense U ⊂ X
gives a conservative functor DM(X×Y )dblQ → DM(U×Y )Q.
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Effective Spectra

Achim Krause

(joint work with Ben Antieau)

1. Effective...?

The word “effective” in the title of the talk refers to a notion we refer to as
“computationally effective”. This is not completely formal, so let us elaborate it
in an example:

There are two ways to think about finite-dimensional vector spaces:

• A finite-dimensional Q-vector space is a set V with various maps V ×V →
V , Q × V → V ,. . . and some properties. A morphism between finite-
dimensional Q-vector spaces is a map of sets with some properties.
• A finite-dimensional Q-vector space is specified by a natural number. A

morphism between finite-dimensional Q-vector spaces is specified by a ma-
trix.

Of course, these perspectives are equivalent (for example, they describe equiv-
alent categories), and so we can pass back and forth between them. The first one
has many theoretical advantages, but the second one is how we actually make the
objects of linear algebra amenable to computation. For example, in the second one
we are able to represent any finite diagram in the category of finite-dimensional
Q-vector spaces in terms of a finite amount of data (some numbers and some
matrices), and there exist algorithms for various questions we might want to ask
about those diagrams (e.g. finding kernels and cokernels). We think of the second
perspective as providing a “computationally effective model of finite-dimensional
Q-vector spaces”.

Algebra and number theory are full of such effective models. We can describe
number fields by minimal polynomials, varieties by Gröbner bases, and so on. This
enables a rich body of computer-algebra based tabulation and classification work,
such as the [1], a searchable database of number fields, elliptic curves and other
objects.

This talk considers ongoing efforts to construct a similarly effective model for
(finite) spectra. There are already perspectives that come close to this:

https://arxiv.org/abs/2503.14416
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• Every finite spectrum is, up to a shift, a suspension spectrum of a finite
CW complex. Their homotopy types can be modeled in terms of a fi-
nite amount of data, e.g. as finite simplicial complexes, and there are in
fact not only theoretical results about algorithmic computability of vari-
ous questions in unstable homotopy theory [2], there also exists a working
implementation in [3]. However, the complexity of representing and work-
ing with finite simplicial complexes actually grows under suspension, even
though the Freudenthal suspension theorem suggests that it should become
easier (and stabilize). So representing spectra unstably seems indirect and
impractical.
• There is a long history of practical and very successful applications of

computer-algebraic methods to computations in stable homotopy theory,
such as the recent sophisticated Adams spectral sequence computations of
[4] leading to a resolution of the fate of the Kervaire invariant element in
π126(S). While this project makes extensive use of automatically generat-
ing, analyzing and comparing Adams spectral sequences of many different
finite spectra, the computer-algebraic part deals directly with the Adams
spectral sequences, and there is no true representation of arbitrary finite
spectra.

We do not expect an effective model for finite spectra to eclipse the capabilities
of the subtle mixture of manual and automated methods which has been refined
over the last decades to go very deep in the homotopy groups of S and selected
other finite spectra, but instead open the possibility of a more ”wide” systematic
analysis of stable homotopy theory (which deals with many more finite spectra up
to a more modest range of degrees, and a more exhaustive tabulation of things
like Toda brackets of maps between them, etc.).

2. Comonadicity

Compact objects in D(Z) admit an effective description: They can all be repre-
sented by finite-length chain complexes of finitely-generated abelian groups, which
can be written down by a sequence of matrices. There is an adjunction

Sp D(Z)

which is monadic: Objects of D(Z) can be viewed as spectra with an additional
structure, namely the structure of a module over Z.

If we pass to connective objects in the Postnikov t-structure, the adjunction

Sp≥0 D(Z)≥0

is still monadic, but it is now also comonadic! This statement is essentially equiv-
alent to strong convergence of the Z-based Adams spectral sequence for S, and
follows from a connectivity argument. It can also be interpreted as some sort of
descent for S→ Z.

Viewing D(Z)≥0 as Z-module spectra, the comonad is given by the functor
Z⊗S−, which forgets the Z-module structure and induces a new one. Comonadicity
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tells us
Sp≥0 ≃ CoAlgZ⊗S−(D(Z)≥0),

i.e. that we can view connective spectra as chain complexes with additional struc-
ture. It also is not hard to deduce from this a corresponding version for compact
objects,

Spω ≃ CoAlgZ⊗S−(Perf(Z)),

which promises an effective model of spectra, provided we can give an algebraic
model for the comonad Z⊗S − and coalgebras over it.

3. The Q-construction

The functor Z ⊗S − : D(Z)→ D(Z) is quite strange: It is exact, in fact preserves
all colimits. In particular it is additive. But it cannot come from an additive
functor Ch(Z) → Ch(Z) of additive 1-categories, since then it would have to be
Z-linear!

Since D(Z)≥0 is the sifted-colimit completion of Latt, the category of finitely
generated free abelian groups, the functor Z⊗S − : D(Z)≥0 → D(Z)≥0 is charac-
terized by its restriction to Latt, an additive functor Latt → D(Z)≥0. This also
cannot come from an additive functor Latt→ Ch(Z)≥0 for analogous reasons.

Theorem 1 (Eilenberg-MacLane [5]). For A ∈ Latt,

Z⊗S A ≃ Q(A) =
(
Z[A]/ ∼← Z[A2]/ ∼← Z[A4]/ ∼← . . .

)

(Of course, they prove a statement on the level of homology.)
Here the quotients in the chain complex on the right are obtained by quotienting

out elements with a certain support condition, and the differentials are a kind of
“cross effect map” taking the difference between addition on the inside and on
the outside of Z[−]. The combinatorics works out in such a way that the functor
becomes additive up to chain homotopy, even though its constituent terms are far
from being additive. The right hand side complex is written Q(A) and referred
to as ”MacLane’s Q-construction” (where it isn’t clear to us why Eilenberg is
typically not directly credited as well.)

The role of Q(A) as prototypical example of a functor which is additive but not
Z-linear was further clarified by Johnson-McCarthy:

Theorem 2 (Johnson-McCarthy [6]). In fact, Z ⊗S − admits a description as
Goodwillie derivative ∂1LZ[−], where LZ[−] : D(Z)≥0 → D(Z)≥0 is the nonabelian
derived functor (”animation”) of Z[−] : Ab→ Ab. More generally, for any functor
F : Ab → Ab, there is a description of ∂1LF (−) (evaluated on A ∈ Latt) as a
complex of the form

(
F (A)/ ∼← F (A2)/ ∼← F (A4)/ ∼← . . .

)

It is worth noting that this is a genuinely different description of the first
Goodwillie derivative than the one which is usually given (namely, as ∂1F (X) =
colim ΩnF (ΣnX)).

As a side result, we develop a perspective on the first Goodwillie derivative
which extends Johnson-McCarthy’s result:
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Theorem 3 (A.-K.). Let C,D be stable ∞ categories and assume D has countable
colimits. Write F = Fun(A,B)∗ for the category of functors taking 0 7→ 0, and
consider the functor q : F → F given informally as

qF (A) = colim(F (A)⊕ F (A)→ F (A⊕A) ⇒ F (A)),

where the first of the two maps on the right is F applied to the codiagonal A⊕A→
A, and the other is the sum F (p1) + F (p2) with pi the two projections, and the
colimit is a “restricted coequalizer”, indexed over the nerve of the 1-category with
objects 0, 1, 2, a unique morphism 0 → 1, two morphisms 1 → 2 and a unique
morphism 0→ 2.

Then q with the natural transformation idF → q coming from including the last
F (A) is a pointed endofunctor on F, and:

(1) A functor F ∈ F admits a q-algebra structure (in the sense of a map
qF → F with a homotopy beween the composite F → qF → F and the
identity) if and only if it is additive.

(2) If F ∈ F preserves sifted colimits, the Goodwillie derivative ∂1F is the
initial q-algebra under F .

Furthermore, an explicit description of the initial algebra over a pointed endofunc-
tor applied to q recovers the Johnson-McCarthy description of ∂1F .

At the very least, this Goodwillie derivative interpretation of Z ⊗S − provides
a very compelling perspective on spectra: There is an underived version of the
adjunction between Sp≥0 and D(Z)≥0,

Set Ab

which is also not only monadic but also comonadic (although this is not a very
useful perspective on sets). The comonad is Z[−] : Ab → Ab, and passing to
nonabelian derived functors, we obtain a comonad LZ[−] on D(Z)≥0. Since the
comonad Q is obtained from this by passing to the first Goodwillie derivative,
i.e. enforcing exactness, we can think of the passage to ∂1LZ[−]-coalgebras as
essentially “descending away the Z-linearity in a universal way while preserving
exactness”, which gives a purely derived-algebraic incarnation of the theme that
Sp is a sort of universal world in which exactness makes sense.

4. ∞-functors

The description of Sp≥0 as Q-coalgebras in D(Z)≥0, and Spω as Q-coalgebras in
Perf(Z), in principle lets us describe a finite spectrum as a finite chain complex C
with a map C → Q(C), a homotopy between two maps C → Q2(C), etc. (together
with counitality data). This is a chain-complex style description of spectra, but
not immediately useful (at least not to provide an “effective model” for spectra),
since this is an infinite amount of data, and the complexes Q(C) etc. are huge. In
order for this to be made useful, we require a smaller description of Q.

To specify a sifted-colimit preserving functor D(Z)≥0 → D(Z)≥0, i.e. a functor
Latt→ D(Z)≥0, one has different options. The easiest (and classical) option is to
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simply write down an explicit functor Latt→ Ch(Z)≥0, i.e. essentially producing
a 1-categorical lift of the desired functor as in the following diagram.

Ch(Z)≥0

Latt D(Z)≥0

For example, this is how Eilenberg-MacLane’s description of the functor Q
is provided. Model category theory abstractly tells us that any functor can be
described by such a 1-categorical lift, but that the resulting complexes might be
big even if the homology of F (A) for each A ∈ Latt is small. This is the case for
the Q-construction, where each Q(A) has homology groups given by the homology
of the Eilenberg-MacLane spectrum corresponding to A, which in particular is
finitely generated in each degree, but the complexes Q(A) are countably infinitely
generated in each degree.

There is a separate way of describing a functor Latt → D(Z)≥0, directly as
functor of ∞-categories. If we view Latt as the nerve of the category with ob-
jects Zn and integer matrices as morphisms, and D(Z)≥0 as dg nerve of levelwise
projective chain complexes, such a functor is an assignment F which takes every
object A = Zn ∈ Latt to a chain complex F (A), every morphism f : A → B to
a chain map F (f) : F (A) → F (B), every pair of composable morphisms f and g
to a chain homotopy between F (g) ◦F (f) and F (g ◦ f), and more generally every
n-tuple of composable morphisms fi : Ai → Ai+1 to a map

F (f0, . . . , fn−1) : F (A0)→ F (An)[1− n],

whose boundary in Hom(F (A0), F (An)) needs to satisfy an identity similar to the
dg description of A∞ structures. One can think of this type of data as a kind of
cocycle description of functors into the derived category. To stress this perspective,
we refer to such a gadget as an ∞-functor.

Every strict functor Latt→ Ch(Z)≥0 does of course give rise to an ∞-functor,
namely one where the higher coherences F (f0, . . . , fn) for n > 1 vanish. However,
by allowing for nontrivial higher coherences, one gains additional flexibility in the
form of the following “transport lemma”:

Lemma 1. Given an ∞-functor F : Latt → D(Z)≥0, and for each A ∈ Latt
a chain homotopy equivalence ηA : F (A) ≃ F ′(A), there exists an ∞-functor
extending the assignment A 7→ F ′(A) on objects, and F and F ′ are equivalent in
the ∞-category Fun(Latt,D(Z)≥0).

This is not hard to prove, and in fact one can describe explicit formulas in
terms of the homotopy equivalences ηA. But it tells us that any strict functor
Latt→ Ch(Z)≥0 which is pointwise of finite type, meaning that for each A, F (A)
has finitely generated homology groups, actually admits an equivalent ∞-functor
F ′(A) which on objects really produces levelwise finitely generated chain com-
plexes. Thus one can trade strictness (the vanishing of higher coherences) for
finiteness conditions.
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The finite-type conditions are satisfied by Q, since Q(Zn) ≃ Q(Z)n and Q(Z) ≃
Z⊗S Z is of finite type. In fact, if we pick a minimal resolution

Qfin(Z) := Z← 0← Z
2←− Z← . . .

of the homology of the Eilenberg-MacLane spectrum Z, then there exist chain
homotopy equivalences Q(Zn) ≃ Qfin(Z)n, and one can use the above transport
lemma to obtain an ∞-functor Qfin representing Z ⊗S −, but taking finite-type
values pointwise. Explicitly, the data required to describe this ∞-functor consists
of maps

Qfin(f0, . . . , fn) : Qfin(Z)r0 → Qfin(Z)rn [1− n]

for each sequence of composable integer matrices fi : Zri → Zri+1 . Since the two
chain complexes are levelwise finite-rank, if we restrict attention to a range of de-
grees, these Qfin(f0, . . . , fn) consist of finite-size matrices. Making this assignment
explicit makes it possible to mechanically work with the functor Q ≃ Qfin.

(We currently have SAGE code that makes it possible to computeQfin(f0, ..., fn)
through a range of degrees, and are noticing some very interesting polynomiality
behaviour that suggests that this could be made more explicit, but this is very
much work in progress.)

5. Q-Coalgebras

Analogously to how the ∞-functor perspective leads to a finite-type description
of pointwise finite-type functors Latt → D(Z)≥0, we are hoping to be able to
similarly make explicit the data of a coherent comonad on D(Z)≥0. Provided such
a description, the comonad structure on Q transports over to a comonad structure
on the equivalent functor Qfin.

A nonunital Qfin-coalgebra structure on a complex C consists of maps C →
Qfin(C), a chain homotopy C → (Qfin)2(C)[−1], and more generally maps C →
(Qfin)n(C)[1−n] with prescribed boundary. For a unital coalgebra structure, these
maps additionally have to interact with the counit Qfin → id, and if we denote

the fiber of this natural transformation by Qfin, the structure maps in the unital

case land in torsors over maps C → Qfin
n
(C)[1 − n]. Note that Qfin increases

connectivity by 2, which means that as soon as n exceeds the amplitude of C the
higher coherences for a unital coalgebra structure become unique. This is related
to the fact that the Z-based Adams spectral sequence has a vanishing line of slope
a priori at most 1. Since additionally all the structure maps are maps from C into
some finite-type complex, if C is perfect we learn that Qfin-coalgebra structures
on C can be described by a finite amount of data. (Which we hope to be able to
make completely explicit.)

Obtaining a fully explicit finitary picture of Q as a comonad and Q-coalgebras
as outlined above is certainly ambitious, and this is very much work in progress.
However, we want to note one potential application which is in reach even before
carrying this out fully. We point to work of Baues and Baues-Jibladze [7], [8], where
an algebraic model for the “secondary Steenrod algebra”, capturing essentially the
homotopy 2-category of the full subcategory of spectra on shifts of Fp, is studied
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and applied to give an algebraic description of the E3 page of the Adams spectral
sequence. This work is closely related to the study of the comonad structure on
Q, and Q-coalgebra structures, up to a bicategorical level of coherences (more
precisely, a Fp-based version of Q). We expect that carrying out the program
outlined above even to a finite level of coherences can be used analogously to
determine later pages of the Adams spectral sequence.
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