
Mathematisches Forschungsinstitut Oberwolfach

Report No. 41/2025

DOI: 10.4171/OWR/2025/41

New Mathematical Directions in Coding Theory

Organized by
Noga Ron-Zewi, Haifa

Mary Wootters, Stanford

7 September – 12 September 2025

Abstract. Coding theory is concerned with the design and analysis of error-
correcting codes, a method for protecting data from noise or corruption.
In addition to their wide practical applicability, error-correcting codes are
also supported by a rich theory, with connections to diverse disciplines in
mathematics, science, and engineering. This workshop focused on exciting
mathematical methods in the design of error-correcting codes, including high-
dimensional expanders, convex optimization, and structured random ensem-
bles. These methods have led to recent breakthroughs in coding theory. The
goal of this workshop was to bring together researchers from multiple com-
munities to exchange ideas around these and other mathematical techniques,
hopefully leading to further advances.
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Introduction by the Organizers

The workshop New Mathematical Directions in Coding Theory, organized by Mary
Wootters (Stanford) and Noga Ron-Zewi (Haifa) gathered more than 50 partici-
pants from a broad range of institutions worldwide. The event brought together re-
searchers from diverse backgrounds in mathematics, computer science, and electri-
cal engineering, all united by their interest in the modern theory of error-correcting
codes. The workshop provided an engaging setting that fostered lively discussions,
exchange of ideas, and exploration of emerging mathematical approaches in coding
theory.

Coding theory is concerned with the design and analysis of error-correcting
codes, which enable the reliable transmission and storage of information in the
presence of noise. Beyond their practical importance, such codes exhibit deep
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mathematical structures and connections to algebra, geometry, probability the-
ory, and graph theory. The workshop focused on emerging mathematical direc-
tions that have recently advanced the field, including approaches based on high-
dimensional expanders, combinatorics, graph theory, and structured random en-
sembles. By emphasizing these modern mathematical tools, the workshop aimed to
bridge perspectives across different subfields and to stimulate new collaborations.

The scientific program featured a mix of survey and research talks, highlight-
ing recent advances and open problems. The sessions covered topics such as list
decoding and list recovery of algebraic and random codes, connections between
coding theory and complexity, graph-based and geometric constructions, as well
as emerging applications in quantum computing and DNA storage. Open prob-
lem sessions and informal discussions complemented the formal program, creating
opportunities for participants to engage in deeper exchanges and to initiate new
research directions. The week also included a traditional Oberwolfach hike and
social gatherings, which contributed to a collegial and stimulating atmosphere.

The remainder of this report presents summaries of the talks delivered during
the workshop. They highlight not only recent advances across a wide range of
topics in coding theory but also open questions and emerging lines of research
that point toward exciting future developments.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Recent Advances in the Combinatorial List Decodability of Algebraic
Codes (Survey Talk)

Zeyu Guo

List decoding, first introduced by Elias and Wozencraft in the late 1950s, is a
central notion in coding theory. In the combinatorial setting, one asks how many
codewords can lie in a Hamming ball of a given radius: a code is said to be
(ρ, L) list decodable if every ball of radius ρn contains at most L codewords. This
captures the tradeoff between rate, error tolerance, and list size, without regard to
algorithmic efficiency. A useful strengthening is the average-radius notion, which
instead requires that the average distance from the center to any L+1 codewords
exceeds ρn.

For a Reed–Solomon (RS) code of rateR and relative distance 1−R, the classical

Johnson bound guarantees list decodability up to radius 1 −
√
R. On the other

hand, the list-decoding capacity theorem shows that a random code of rate R can
tolerate up to 1−R− ε fraction errors with list size O(1/ε). Whether random RS
codes can approach this limit remained an important open problem until recently.

1. Generalized Singleton Bound

The recent line of progress begins with Shangguan and Tamo [1]. They proved a
generalized Singleton bound, later refined by Roth [2]. This bound states that if a
code of rate R is (average-radius) (ρ, L) list decodable, then

ρ ≤ L
L+1(1 −R).

This generalizes the classical Singleton bound (L = 1) and provides a sharp limi-
tation on list decoding. Moreover, setting L = Θ(1/ε) recovers the list-decoding
capacity 1 − R − ε. Shangguan and Tamo [1] conjectured that random RS codes
attain this bound.

2. Resolution by Brakensiek–Gopi–Makam

Subsequent results [3, 4, 5] improved the known bounds on the combinatorial list
decodability of random RS codes, culminating in the work of Brakensiek, Gopi,
and Makam [5], which confirmed Shangguan and Tamo’s conjecture. They proved
that with high probability random RS codes meet the generalized Singleton bound
for every fixed L over large fields. In doing so, they introduced the framework
of higher-order MDS codes and showed the equivalence of several formulations
(MDS(L), GZP(L), LD-MDS(L)). A central ingredient was the GM–MDS theo-
rem, proved independently by Lovett [6] and Yildiz and Hassibi [7]. Thus, generic
RS codes are optimally list decodable in the average-radius sense, matching the
best possible guarantees.
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3. Field Size Improvements

A key limitation of the results in [1, 3, 5] was the requirement of exponentially
large alphabets. Guo–Zhang [8] reduced the necessary field size to polynomial in n,
at the cost of slightly relaxing the decoding radius to L

L+1(1−R−ε). They showed

that random RS codes over fields of size ΘL,ε(n
2) are still nearly optimally list

decodable with high probability. Later, Alrabiah, Guruswami, and Li [9] improved
the analysis of [8] and proved that random RS codes over fields of linear size
ΘL,ε(n) already achieve the same list decodability. The same paper also proved
that random linear codes over fields of size ΘL,ε(1) achieve the same guarantee.

4. Extensions to Other Codes

The ideas developed for random Reed–Solomon codes extend to other algebraic
families. For algebraic geometry (AG) codes, Brakensiek, Dhar, Gopi, and Zhang
[10] showed that random AG codes over small fields can also achieve the generalized
Singleton bound, exploiting curves with many rational points. In the rank metric,
Gabidulin codes play the analogous role of RS codes. Recent work by Guo, Xing,
Yuan, and Zhang [11, 12] established that random Gabidulin codes are list decod-
able up to the generalized Singleton radius, with polynomial or linear extension
degree depending on whether one allows a small slack.

Explicit constructions are also advancing. Folded RS codes and multiplicity
codes, which are known to achieve list-decoding capacity [13, 14], have seen steady
improvements in their combinatorial list size bounds [15, 16, 17]. In particular,
Srivastava [16] and Chen and Zhang [17] independently showed that folded RS
and multiplicity codes achieve the list-decoding radius L

L+1 (1 − R − ε) with list

size (L − 1)2 + 1 and L, respectively. The latter result essentially matches the
generalized Singleton bound.

5. Summary and Open Problems

The combinatorial list decodability of Reed–Solomon codes and other algebraic
codes is now much better understood. The remaining challenges include:

• Extending the results on list decodability of algebraic codes to the more
general setting of list recoverability, with better trade-offs between param-
eters.

• Constructing better explicit higher-order MDS codes. Current construc-
tions [1, 2, 18] require doubly exponential field sizes in n or Lk, where n
is the block length, L is the list size, and k is the dimension of the code.

In addition, it would be interesting to streamline the current proofs of GM–
MDS-type theorems [6, 7, 19, 11], and to find further applications of such theorems.
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Fast List-Decoding and List-Recovery of Univariate Multiplicity
and FRS Codes

Prahladh Harsha

(joint work with Rohan Goyal, Mrinal Kumar, and Ashutosh Shankar)

We show that the known list-decoding and list-recovery algorithms for univariate
multiplicity and folded Reed–Solomon (FRS) codes can be made to run in Õ(n)
time.

Univariate multiplicity codes and FRS codes are natural variants of Reed–
Solomon codes that were discovered and studied for their applications to list
decoding. It is known that for every ǫ > 0, and rate r ∈ (0, 1), there exist
explicit families of these codes that have rate r and can be list decoded from a
(1 − r − ǫ) fraction of errors with constant list size in polynomial time [1, 2]. In
this talk based on [3], we present randomized algorithms that perform the above

list-decoding tasks in Õ(n), where n is the block-length of the code. We also prove
similar nearly-linear time for the list-recovery algorithms.

Our algorithms have two main components. The first component builds upon
the lattice-based approach in [4], where a Õ(n) time list-decoding algorithm for
Reed–Solomon codes approaching the Johnson radius was designed. As part of
the second component, we design Õ(n) time algorithms for two natural alge-

braic problems: given a (m + 2)-variate polynomial Q(x, y0, . . . , ym) = Q̃(x) +∑m
i=0 Qi(x) · yi the first algorithm solves order-m linear differential equations of

the form Q
(
x, f(x), df

dx , . . . ,
dmf
dxm

)
≡ 0 while the second solves functional equations

of the form Q (x, f(x), f(γx), . . . , f(γmx)) ≡ 0, where m is an arbitrary constant
and γ is a field element of sufficiently high order.
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Decoding Graph-Based Codes (Survey Talk)

Shashank Srivastava

(joint work with Madhur Tulsiani)

Introduction and Background

We consider codes C ⊆ Σn that encode k symbols into n symbols so that their
blocklength is n, and the rate is R = k/n. The minimum Hamming distance
δ(C), normalized by the blocklength n, between distinct codewords is a measure
of the code’s error tolerance. The Singleton bound says that for a rate R code,
its distance δ can be at most 1−R. The well known Reed-Solomon codes achieve
this bound, and classical unique decoding algorithms such as Berlekamp-Welch
can correct up to (1 −R)/2 errors in near-linear time.

List decoding generalizes unique decoding: the decoder outputs all codewords
within a certain distance of the received word, which is crucial when the error
fraction is large (approaching 1−R). For many algebraic codes (e.g., folded Reed-
Solomon codes, univariate multiplicity codes), efficient list decoding algorithms
exist up to the optimal radius 1−R− ε [1, 2]. A recent line of work [3] has shown
that the list size can be O(1/ε), and this is optimal up to constant factors.

Graph-Based Codes and Expansion

Most progress in list decoding has focused on algebraic codes. In contrast, graph-
based codes, in particular those constructed using spectral expander graphs, offer
several advantages, such as efficient, parallelizable decoders, beating the Zyablov
bound, c3-LTCs, etc. The following are three well-studied instances:

• Tanner codes: Codewords sit on edges, subject to local codes on vertex
neighborhoods. First explicit construction of LDPC codes [4, 5].

• Alon-Edmonds-Luby (AEL) codes: Use spectral expanders to am-
plify distance while causing near-optimal drop in rate. Approach Single-
ton bound with alphabet size independent of blocklength, and linear time
encoding and unique decoding [6, 7].

• Ta-Shma’s codes: Explicit binary codes approaching Gilbert-Varshamov
bound [8].

The main message of this talk is that expansion properties not only help with
code’s structural guarantees, but also enable new algorithmic techniques for de-
coding. These algorithms have common themes, and make more direct use of
expansion than erstwhile unique decoders for these algorithms.

List Decoding Algorithms for Graph-Based Codes

Typical unique decoders work by reducing the global decoding problem to many,
many small decoding problems that are each much smaller. Typically, this smaller
problem is simply to decode locally in the neighborhood of a vertex, and with
sparse graphs, this is a constant sized problem. Thus, efficiency is not a concern
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for these local instances of the decoding problem. In the unique decoding regime,
most of these local decoding problems succeed in finding a component of the true
global solution, and the remaining error can be made arbitrarily small based on
the quality of expansion.

The key difficulty with list decoding is that while this reduction to many dif-
ferent small decoding problems still works, the potential presence of two different
solutions means that the components of both of these global solutions will be rep-
resented in the outputs of these smaller problems. In other words, one is left with
a small list of solutions for each local problem, such that any true global solution
is represented in most of these lists, but we do not know which item of the list
corresponds to a particular codeword.

Our Solution: Regularity Lemmas

Nevertheless, we show how to stitch these lists into a consistent global solution.
These combinatorial tools can be seen as forms of low-rank projection of a graph,
that allow for efficient estimation of cut sizes of arbitrary graphs.

A couple of issues arise. Regularity lemmas are typically used for dense graphs,
but we can use the fact that our sparse graphs are dense subgraphs of expanders
to extract a dense model [9]. Secondly, regularity lemmas are combinatorial tools,
but we would like to design algorithms using them. We show that a semidefinite
programming based approximation algorithm of Alon and Naor [10] for the cut-
norm problem can be used to efficiently build regularity lemma decompositions,
even for dense subgraphs of sparse expanders.

The algorithmic step above can be implemented in near-linear time, and the
regularity decompositon can be used to efficiently combine local lists into global
candidates. This also gives a combinatorial proof for the list size being small
beyond the Johnson bound. For AEL codes, where list size is known to be near-
optimal due to [11], we show the following,

Main Result: A near-linear time algorithm to list decode AEL codes up to the
optimal radius 1−R− ε, with list size and runtime depending only polynomially
on 1/ε (not on blocklength).

The SoS Approach. Sum-of-Squares (SoS) hierarchy is another algorithmic
technique that is applicable for decoding several of the expander-based codes.
These algorithms are typically used for constraint satisfaction problems, but can
be adapted to work for codes. However, SoS algorithms are typically much slower
than regularity lemma-based algorithms, which also often provide additional com-
binatorial insights.

Implications for other codes.

• Tanner Codes: Can be list decoded up to their designed distance, match-
ing tensor codes which are their dense graph analogs. Regularity lemmas
are the only known way to control list size for such radii.

• AEL Codes: Achieve list decoding and list recovery up to capacity in
near-linear time using regularity lemmas.
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• Ta-Shma’s Codes: Can be list decoded up to a radius approaching 1/2
in near-linear time for binary codes in near-linear time, and even better
up to Johnson bound, but with slower Sum-of-Squares algorithms.

Future Directions

Graph-based codes are the only known way to get linear-time unique decoders.
Therefore, these AEL based codes become natural candidates to achieve linear
time list decoding up to capacity, a long-standing open problem.

From a technique point of view, the stitching problem for local lists is relevant
in other areas such as heavy hitters, compressed sensing, and group testing. The
regularity lemma approach may offer new tools in these domains.
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Expander Graphs and Optimally List-Decodable Codes

Madhur Tulsiani

(joint work with Fernando G. Jeronimo, Tushant Mittal, Shashank Srivastava)

We discuss a new family of explicit codes that are list decodable to capacity and
achieve an optimal list size of O(1/ǫ). In contrast to existing explicit constructions
of codes achieving list decoding capacity, our arguments do not rely on algebraic
structure but utilize simple combinatorial properties of expander graphs.
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Our construction is based on a celebrated distance amplification procedure due
to Alon, Edmonds, and Luby [1], which transforms any high-rate code into one
with near-optimal rate-distance tradeoff. We generalize it to show that the same
procedure can be used to transform any high-rate code into one that achieves list
decoding capacity. Our proof can be interpreted as a “local-to-global” phenomenon
for (a slight strengthening of) the generalized Singleton bound.

As a corollary of our result, we also obtain the first explicit construction of
LDPC codes achieving list decoding capacity, and in fact arbitrarily close to the
generalized Singleton bound.

Open Problems.

• Can expander graphs be used to obtain similar local-to-global results for
other code properties?

• Is there an analogue of this list decodability result for quantum LDPC
codes?
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Polynomials over Grids: Local Testing and Decoding (Survey Talk)

Madhu Sudan

(joint work with Prashanth Amireddy, Mitali Bafna, Amik Raj Behara,
Manaswi Paraashar, and Srikanth Srinivasan)

It has long been known that evaluations of low-degree multivariate polynomials
over product sets leads to a class of functions with combinatorially nice error-
correcting properties. However the algorithmic ability to correct these polynomials
were only traditionally known when the evaluation domain was a vector space.
About ten years back Kim and Kopparty [1] highlighted this question and gave the
first global decoding algorithms correcting polynomials over product sets upto half
the minimum distance of the underlying code. This result inspired our sequence
of works [2, 3, 4, 5, 6, 7] that explored local testing and correcting of polynomials
over product sets (of the form S1 × · · ·Sn) with grids (Si = S∀i) and hypercube
(Si = {0, 1}) being special cases.

In this talk we surveyed the results from our joint works that reveal the fol-
lowing: (1) Unlike the vector space setting local decoding can not be done with
Od,s(1) queries where d is the degree of the polynomial and s = maxi{Si}. This
result even holds for d = 1 and the domain being the hypercube. (2) In contrast,
local testing can be performed with Od,s(1) queries over grids, but not over general
product sets [2, 3]. (3) The class of degree d polynomials in n variables can be lo-
cally corrected with (log n)Od(1) queries over the hypercube and even list-decoded
upto its minimum distance [4, 5]. (4) The local correcting results can be extended
to the setting of general grids, but now only correcting some Ωd,s(1) fraction of
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errors [7]. A concept that is highlighted by these works is the role of junta-degree
of functions.
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Incidence Theorems for Multivariate Polynomials via Cayley
Color Graphs

Chong Shangguan

(joint work with Yulin Yang and Tao Zhang)

We prove several bounds on the number of incidences between two sets of multivari-
ate polynomials of bounded degree over finite fields. From these results, we deduce
bounds on incidences between points and multivariate polynomials, extending and
strengthening a recent bound of Tamo for points and univariate polynomials. Our
bounds are asymptotically tight for a wide range of parameters.

To prove these results, we establish a novel connection between the incidence
problem and a naturally defined Cayley color graph, in which the weight of colored
edges faithfully reflects the number of incidences. This motivates us to prove an
expander mixing lemma for general abelian Cayley color graphs, which generalizes
the classic mixing lemma of Alon and Chung, and controls the total weight of
colored edges crossing two vertex subsets via eigenvalues.

The talk is based on a joint work [1] with Yulin Yang (Shandong University)
and Tao Zhang (Xidian University).
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High Rate Multivariate Polynomial Evaluation Codes

Swastik Kopparty

(joint work with Mrinal Kumar, John Kim)

The classical Reed-Muller codes over a finite field Fq are based on evaluations of
m-variate polynomials of degree at most d over a product set Um, for some d < |U |.
Because of their good distance properties, as well as the ubiquity and expressive
power of polynomials, these codes have played an influential role in coding theory
and complexity theory. This is especially so in the setting of U being Fq where
they possess deep locality properties. However, these Reed-Muller codes have a
significant limitation in terms of the rate achievable — the rate cannot be more
than 1

m! = exp(−m logm).
In this work, we give the first constructions of multivariate polynomial eval-

uation codes which overcome the rate limitation – concretely, we give explicit
evaluation domains S ⊆ F

m
q on which evaluating m-variate polynomials of degree

at most d gives a good code. For m = O(1), these new codes have relative distance
Ω(1) and rate 1 − ǫ for any ǫ > 0. In fact, we give two quite different construc-
tions, and for both we develop efficient decoding algorithms for these codes that
can decode from half the minimum distance.

The first of these codes is based on evaluating multivariate polynomials on
simplex-like sets. The distance of this code is proved via a generalized Schwartz-
Zippel lemma on the probability of non-zeroness when evaluating polynomials on
sparser subsets of Um – the final bound only depends on the “shape” of the set,
and recovers the Schwartz-Zippel bound for the case of the full Um, while still
being Ω(1) for much sparser simplex-like subsets of Um.

The second of these codes is more algebraic and, surprisingly (to us), has
some strong locality properties. It is based on evaluating multivariate polyno-
mials at the intersection points of hyperplanes in general position. It turns out
that these evaluation points have many large subsets of collinear points. These
subsets form the basis of a simple local characterization, and using some deeper
algebraic tools generalizing ideas from Polischuk-Spielman [3], Raz-Safra [1] and
Ben-Sasson-Sudan [2], we show that this gives a local test for these codes. Interest-
ingly, the set of evaluation points for these locally testable multivariate polynomial
evaluation codes can be as small as O(dm), and need not occupy a constant or
even noticeable fraction of the full space F

m
q .
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A 2Ω(k1/4) Lower-Bound for Linear 3-LCC

Tal Yankovitz

A q-locally correctable code (LCC) C : 0, 1k → 0, 1n is a code in which it is possible
to correct every bit of a (not too) corrupted codeword by making at most q queries
to the word. The cases in which q is constant are of special interest, and so are the
cases that C is linear. In a breakthrough result Kothari and Manohar [1] showed

that for linear 3-LCC n = 2Ω(k1/8). In this work [2] we prove that n = 2Ω(k1/4). As

Reed-Muller codes yield 3-LCC with n = 2O(k1/2), this brings us closer to closing
the gap. Moreover, in the special case of design-LCC (into which Reed-Muller fall)

the bound we get is n = 2Ω(k1/3).
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Recent Advances and Applications of Algebraic Geometry Codes
(Survey Talk)

Gretchen L. Matthews

In this talk, we begin with a review of algebraic geometry codes. Algebraic geom-
etry codes may be defined using curves over finite fields. Given a projective curve
X over a finite field Fq, let G and D = P1 + · · ·+ Pn be divisors on X such that
each Pi is an Fq-rational point on X and no Pi appears in the support of G. The
associated algebraic geometry code is

C(D,G) = {(f(P1), f(P2), . . . , f(Pn)) : f ∈ L(G)} ⊆ F
n
q

where
L(G) := {f ∈ F(X) : (f) ≥ −G} ∪ {0}.

Next, we consider several families of algebraic geometry codes. The most com-
mon example of an algebraic geometry code arises from taking X to be the projec-
tive line and G = αP∞ to be a positive multiple of the point at infinity, in which
case the code is a Reed-Solomon code. Other standard examples include codes
from larger genus curves such as norm-trace curves given by Xq,r : Tr(y) = N(x)
over Fqr ; a quotient of norm-trace curve Xq,r,u : Tr(y) = xu over Fqr where

u | qr−1
q−1 ; and curves from Kummer extensions X : L(y) = xu over Fqr where

L(y) :=
∑d

i=0 aiy
qi with a0, ad 6= 0 has d distinct roots in Fqr , r ≥ 2, and u | qr−1

q−1 .

In each of these cases, explicit bases for the Riemann-Roch spaces of divisor which
are linear combination of certain points on a line and possibly the point at infin-
ity [14, 16]. Hence, multipoint codes, meaning those in which the support of the
divisor G consists of more than one point, may be defined explicitly.



2204 Oberwolfach Report 41/2025

We focus on two objects related to linear codes and applications. Recall that
the hull of a code C over Fq is

hull(C) := C ∩ C⊥.

A code is said to be linearly complementary dual (LCD) if and only if its hull is
trivial. LCD codes, introduced by Massey [1], have been shown to simultaneously
protect data from side channel and fault injection attacks [2]. Hulls appear natu-
rally in a number of applications such as the classification of other mathematical
objects [3] and cryptography [4]. The same is true for

Aut(C) := {σ ∈ Sn : σ(c) ∈ C∀c ∈ C} ,
the permutation automorphism group of a linear code C of length n. Two linear
codes C and C′ are said to be monomially equivalent if and only if there exists a
monomial matrix M such that cM ∈ C′ for all codewords c ∈ C.

It has been known since 2006 that non-special divisors of small degree exist [5]
yet explicit constructions appeared elusive. The desire to define small degree
non-special divisors is related to LCD codes. We give some constructions of non-
special divisors of small degree which are necessarily multipoint divisors [6]. In
other work, motivated by entanglement-assisted quantum codes [7, 8], we provide
a procedure that takes as input a linear code C and an integer l ≤ dimhull(C) and
then produces a monomially equivalent linear code C′ such that dim hull(C′) = l.
As a consequence, we recover some results of [9].

We survey some results on automorphisms of curves and how they relate to
code automorphisms. If X is a curve of genus g ≥ 2 with divisors D and G having
disjoint support, degD ≥ (1 + g) degG, and degG ≥ 2g+ 1, then the set of auto-
morphisms of X that fix the divisors D and G gives rise to some automorphisms
of the associated algebraic geometry code, meaning

AutD,G(X ) = Aut (C(D,G)) .

We share some recent results demonstrating how code automorphisms provide
permutation decoding of burst errors for Hermitian one-point codes.

We end by noting that the algebraic geometry code construction is quite flexible
and can be modified to yield locally recoverable codes that are designed to recover
erasures using small sets of surviving coordinates; see [10] for instance. Codes
constructed using fiber products of curves give rise to multiple recovery sets for
each coordinate [11, 12].

Many additional applications of algebraic geometry codes may be found in the
literature.
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prunov, Relative Hulls and Quantum Codes, IEEE Transactions on Information Theory
70(5) (2024), 3190-3201.

[14] H. Maharaj, G. L. Matthews, and G. Pirsic. Riemann-Roch spaces of the Hermitian function
field with applications to algebraic geometry codes and low-discrepancy sequences, J. Pure
Appl. Algebra 195(3) (2005), 261–280.

[15] S. Mesnager, C. Tang, and Y. Qi, Complementary dual algebraic geometry codes, IEEE
Trans. Inform. Theory, 64(4) (2018), 2390–2397.

[16] J. Peachey, Bases and applications of Riemann-Roch spaces of function fields with many
rational places, Doctoral dissertation, Clemson University (2011).

[17] N. Sendrier, Finding the permutation between equivalent linear codes: the support splitting
algorithm, IEEE Trans. Inform. Theory 46(4) (2000), 1193–1203.

Trace Codes Arising from Algebraic Curves

Gil Cohen

(joint work with Dean Doron, Noam Goldgraber, and Tomer Manket)

In this talk we present our work which put forth a candidate for a family of explicit
constructions over constant-size fields that meet—or perhaps even surpass—the
Gilbert–Varshamov (GV) bound, with the primary goal of achieving this for binary
codes. Our main technical contribution is to take the first steps toward their
analysis and to understand their limitations. The results we prove are general,
extend beyond our original motivation, and may find further applications.

Our idea is simple: we aim to leverage the underlying algebraic structure of
Algebraic-Geometric codes—which enables them to beat the Gilbert-Varshamov
bound—in the alphabet-reduction step as well. The hope is that, by exploit-
ing this structure, the reduction will not substantially compromise the excel-
lent distance–rate tradeoff of the original AG code. In its most basic form, the
alphabet-reduction method we propose applies the field trace to each coordinate
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of every codeword. While this is the variant we focus on in this work, we view it
as a special case within a broader family of constructions whose common feature
is the aforementioned strategy of leveraging structure for alphabet reduction.

Specifically, we prove a Hasse–Weil–type estimate that bounds the number of
rational points on a curve. Unlike the classical situation, our result applies in
greater generality: we work with extensions of general curves rather than only the
projective line. The standard bound in this setting, Grothendieck’s trace formula,
is insufficient for bounding the minimum distance of trace AG codes. Our bound
strengthens this bound and provides satisfactory lower bounds on the distance.

Using Gröbner Basis to Search for Dual-Containing Codes over Rings

Hedongliang Liu

(joint work with Cornelia Ott and Felix Ulmer)

Gröbner basis is a powerful tool to solve systems of polynomial equations. It can be
seen as a generalization of Gaussian elimination for linear systems. The output of
Gröbner basis gives a simpler description of the solution space of the system, from
which we can easily extract all solutions. Dual-containing codes are important
in the construction of quantum error-correcting codes using the Cadelbank-Shor-
Stean (CSS) [1, 2] construction. This work focuses on finding dual-containing skew
polycyclic codes using Gröbner basis methods.

In this work [3], we looked for dual-containing polycyclic codes over rings via
skew polynomials [4]. Our method involves setting up a system of polynomial equa-
tions on the coeffiients of a generator polynomial and a parity check polynomial
based on the definition of (θ, δ) polycyclic codes and dual-containing condition,
then solving this system using Gröbner basis in Magma.

As a result, we have computed all dual-containing (θ, δ)-codes of length up to
13 over the base ring F2[v] and up to 10 over F2[u]. Some of the codes found have
unique weight enumerators that cannot be found using ordinary polynomials.

For future research, it would be insightful to compare the (θ, δ)-codes with other
existing codes over rings or bounds on the cardinality or the distance of codes
over rings, such as Singleton-like bounds, sphere-packing bounds and Gilbert-
Varshamov (GV) bounds.

References

[1] A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Physical
Review A 54 (1996), 1098–1105.

[2] A. M. Steane, Simple quantum error-correcting codes, Physical Review A 54 (1996), 4741–
4751.

[3] H. Liu, C. Ott, and F. Ulmer. A Gröbner approach to dual-containing cyclic left module
(θ, δ)-codes over finite commutative Frobenius rings, Advances in Mathematics of Commu-
nications 19(6) (2025), 1723–1741.

[4] Ø. Ore, Theory of non-commutative polynomials, Annals of Mathematics 34(3) (1933) 480–
508.



New Mathematical Directions in Coding Theory 2207

Optimal Additive and Linear b-Symbol Codes for Large Distances

Sascha Kurz

For a finite alphabet A a code C of length n and minimum distance d is a
subset of An such that any two elements differ in at least d positions. E.g.
C = {cabbdb, bcabbd, abcdbb, cdadcc, acdcdc, dacccd, dcbdaa, bdcada, cbdaad} is a
code with length 6 and minimum distance d = 5 over the alphabet A = {a, b, c, d}.
Given parameters n, d, and #A, the aim is to maximize the code size #C. In our
example size 9 is indeed maximal [1]. Alternatively, one can minimize n given d,
#A, and #C. For alphabet A = Fq we say that C is linear if it is linearly closed.
The parameters of a linear code are related by the so-called Griesmer bound [2, 3]

(1) n ≥
k−1∑

i=0

⌈
d

qi

⌉
=: gq(k, d),

where k = logq #C. Interestingly enough, this bound can always be attained with
equality if the minimum distance d is sufficiently large [3]. If C is only additively
closed we call it additive. Each additive code is linear over some subfield so that
we set A = Fqh and assume that C is linear over Fq, so that #C = qk.

Let G ∈ F
k×n
q be a generator matrix of a linear code C, i.e. a matrix whose rows

form a basis of C. The columns of G span 1-dimensional subspaces which form a
multiset of n points in the projective geometry PG(k− 1, q) such that each hyper-
planes contains at most n− d points [4]. Similarly, an additive code over A = Fqh

is given as the Fq-row span of a full-rank matrix G ∈ F
k×n
qh

. Choosing an Fq-basis

B of Fqh we can rewrite G as G̃ ∈ F
kh×n
q . Writing F4 ≃ F2[ω]/

(
ω2 + ω + 1

)
, we

can start with the generator matrix of a linear code, interprete it as the generator
matrix of an additive code and use the basis B to obtain the example

(
0 1 1 1 1
1 0 1 ω ω2

)
→




0 1 1 1 1
0 ω ω ω ω
1 0 1 ω ω2

ω 0 ω ω2 1


 →




00 10 10 10 10
00 01 01 01 01
10 00 10 01 11
01 00 01 11 10


.

The blocks of h subsequent columns span subspaces of dimension at most h, which
are elements in PG(k−1, q) of geometric dimension at most h−1. Indeed, additive
codes over A = Fqh with length n, minimum distance d, and size qk are in one-to-
one correspondence to multisets of n subspaces of geometric dimension at most h−1
in PG(k−1, q) such that each hyperplane contains at most n−d of those subspaces
[5]. Replacing those subspaces by their contained points we obtain a multiset of
points that corresponds to a linear code over Fq with length n · (qh − 1)/(q − 1)
and minimum distance qh−1 ·d (assuming some non-degeneracy) [6]. Applying the
Griesmer bound (1) to the obtained linear code yields, see [5, Theorem 12],

(2) n ≥
⌈
gq
(
r, d · qh−1

)
· (q − 1)

qh − 1

⌉
=




(q − 1) ·
r−1∑
i=0

⌈
d · qh−1−i

⌉

qh − 1



.
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One main conclusion of our work is that this bound can always be attained with
equality if the minimum distance d is sufficiently large. Reverting the above chain
of changes between coding theory and geometry boils down to the problem of
partitioning a multiset of points into subspaces of geometric dimension h − 1,
which is rather hard in general, so that we consider a special subclass.

Each minimum distance d ∈ N can be uniquely written as d = σqk−1−
∑k−1

i=1 εi ·
qi−1, where σ ∈ N and εi ∈ {0, 1, . . . , q − 1} for all 1 ≤ i ≤ k − 1. With this, the
Griesmer bound from (1) is attained with equality, i.e. n = gq(k, d), iff

(3) n = σ · q
k − 1

q − 1
−

k−1∑

i=1

εi ·
qi − 1

q − 1
.

In order to describe a special variant of the Solomon–Stiffler construction, see [3],
we assume a chain S1 ≤ S2 ≤ · · · ≤ Sk of subspaces Si with algebraic dimension
i in PG(k − 1, q). For each subspace T we denote its characteristic function by
χT , i.e. χT (P ) = 1 if point P is contained in T and χT (P ) = 0 otherwise. With

this, M = σχSk
−∑k−1

i=1 εiχSi is a multiset of points whose corresponding linear

code attains the Griesmer bound (1) if σ ≥ ∑k−1
i=1 εi and 0 ≤ εi ≤ q − 1, i.e.

if d is sufficiently large. More generally, we say that a multiset of points M in

PG(k−1, q) has type σ[k]−∑k−1
i=1 εi[i], where σ ∈ N and εi ∈ Z for all 1 ≤ i ≤ k−1,

if M = σχSk
−

∑k−1
i=1 εiχSi . Note that σ needs to be sufficiently large. We say

that a multiset of points is h-partitionable if it can be written as the sum of
characteristic functions of subspaces of algebraic dimension h.

Theorem. ([6]) Let q be a prime power, k > h ≥ 1, g := gcd(k, h), and

ε1, . . . , εk−1 ∈ Z such that qh−i divides εi for all 1 ≤ i < h and
∑k−1

i=1 εi · qi−1
q−1 ≡ 0

(mod qg−1
q−1 ). Then, there exists a σ ∈ N such that there exists an h-partionable

multiset of points in PG(k − 1, q) with type
(
σ + t · qh−1

qg−1

)
[k] −

k−1∑
i=1

εi[i] for all

t ∈ N.

We remark that the stated conditions are also necessary for the assumed chain
S1 ≤ · · · ≤ Sk and that the corresponding proof is constructive. As an example
we mention the existence of a 2-partionable multiset of points in PG(7, 2) with
type t[8]− [7]− [5]− [3] for each t ≥ 3. Those 85t− 55 lines in PG(7, 2) have the
property that each hyperplane contains at most 21t−13 lines, i.e. the corresponding
additive code Ct over F4 has length nt = 85t− 55, minimum distance dt = 64t−
42, and cardinality #Ct = 28. We remark that F4-linear codes with the same
minimum distance and cardinality require lengths at least 85t − 53, i.e. additive
codes outperform linear codes for the stated parameters of d, #A, and #C.

Corollary. For given q, k, h, and sufficiently large d the Griesmer bound for
additive codes (2) can always be attained. Moreover, additive codes outperform
linear codes if h does not divide k or if the the difference of (2) and (1) is positive.
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Open problem. Find constructions for additive codes outperforming linear codes
for relatively small minimum distances, see e.g. [6, 7, 9, 10], or decrease the nec-
essary σ in the Solomon–Stiffler type construction. Find improved upper bounds.

In storage applications the reading device is sometimes insufficient to isolate
adjacent symbols, which makes it necessary to adjust the standard coding-theoretic
error model. Cassuto and Blaum studied a model where pairs of adjacent symbols
are read in every step and introduced the so-called symbol-pair metric for codes
[8]. This notion was generalized to the b-symbol metric where b-tuples of adjacent
symbols are read at every step [11]. For linear codes each b subsequent columns of
a generator matrix span a subspace with dimension at most b, so that the Griesmer
bound for additive codes (2) applies [12]. Again, the Griesmer bound can always
be attained if the minimum distance is sufficiently large [13].

Open problem Find Griesmer type bound bounds and attaining Solomon–Stiffler
type constructions for other metric spaces.
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Local Properties and Code Reductions (Survey Talk)

Jonathan Mosheiff

Several well-studied notions in coding theory—most notably list-decodability and
list-recoverability—are said to be local. A property of codes is called local if its
(non)satisfaction can be determined by examining only a bounded number of code-
words. Equivalently, if a code violates the property, the violation can already be
witnessed by a small subset of its codewords.

For example, being (ρ, L)-list-decodable is an (L + 1)-local property: a code
C ⊆ F

n
q fails to be (ρ, L)-list-decodable precisely when there exist L+1 codewords

contained in a single radius-ρ ball. Thus, to convince Bob that a code C is not
(ρ, L)-list-decodable, Alice need only present such a collection of L+1 codewords
as a witness.

The framework of local properties was introduced in [1] and developed further
in subsequent works [2, 3, 4, 5, 6]. Collectively, these papers show that local
properties exhibit sharp threshold phenomena in natural random code ensembles,
and that the thresholds coincide across several such ensembles. The main findings
can be summarized as follows:

(1) Threshold behavior in elementary ensembles. Elementary ensem-
bles such as random linear codes (RLCs) and plain random codes (PRCs)
exhibit a sharp threshold for every local property P of q-ary codes. Specif-
ically, there exists a threshold rate R∗

P such that a random q-ary RLC of
rate R∗

P −ε satisfies P with high probability, while one of rate R∗
P +ε fails

it with high probability.
(2) Characterization of the threshold rate. For a local property P , the

threshold rate R∗
P admits an elementary probabilistic characterization in

terms of expectations over random small subsets of codewords.
(3) Equivalence between ensembles. Using this characterization, one can

show that different code ensembles exhibit the same threshold behavior.
In particular, [6] proves that random Reed–Solomon codes have the same
thresholds for all local properties as random linear codes. Consequently,
random Reed–Solomon codes share the same list-decodability and list-
recoverability thresholds as RLCs of comparable rate.

As discussed above, the framework of local properties implies that any results con-
cerning the list-decodability or list-recoverability of random linear codes (RLCs)
can be transferred to other code ensembles, such as random Reed–Solomon codes.
This phenomenon—known as a reduction between code ensembles—further rein-
forces the importance of understanding the list-decodability and list-recoverability
behavior of RLCs, which is already a central topic in the theory of random codes.

In this talk, we survey the current state of knowledge on the list-decodability
and list-recoverability of random linear codes. We then review the aforementioned
sequence of works on local properties, highlighting their key techniques, threshold
results, and implications for structured ensembles.
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We conclude with several open problems:

(1) Beyond coordinate-wise constraints. Existing results about local
properties require a violating tuple of codewords to violate a specified set
of coordinate-wise constraints. Consequently, the current framework does
not capture constraints involving interactions across coordinates. Extend-
ing it in this direction would make it possible to address properties such
as list-decodability and list-recoverability in insertion–deletion channels.

(2) Beyond the first level of the logical hierarchy. Local properties, as
discussed here, can be viewed as corresponding to coNP or to Π1 logical
sentences. Extending the framework to higher levels of the arithmetic hier-
archy, such as Π2 and Σ2, may make it possible to reason about properties
like covering, and to reduce the covering behavior of one code ensemble to
that of another.

(3) List-decodability and list-recoverability above capacity. Consider
list-decodability and list-recoverability above capacity. For instance, in a
q-ary code of rate R = 1− hq(ρ)+ ǫ, a ball of radius ρ around a uniformly
random center contains qǫn codewords in expectation. Is it true that, for
a random linear code, with high probability every such ball contains at
most qǫn · (1 + o(1)) codewords? This question lies beyond the reach of
the current local-property framework, since the size of a violating list is
exponential in n. It would be interesting to extend the present framework
to handle this setting.
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List-Decoding and List-Recovery of Random Codes Ensembles

Ray Li

(joint work with Omar Alrabiah, Venkatesan Guruswami,
and Nikhil Shagrithaya)

List-decodable and list-recoverable codes are important in theory and practice.
In practice, their relaxed decoding guarantee allows them to tolerate more error,
giving them applications such as group testing and compressed sensing. In theory,
their fundamental mathematical definitions give them “extraneous” applications
that have no obvious need for error correction, such as in pseudorandomness,
computational complexity, and cryptography.

A fundamental question is: what kinds of codes are optimally list-decodable
and list-recoverable? Uniformly random codes, where each codeword is sampled
independently at random, achieve the best-known parameters in both list-decoding
and list-recovery. I will discuss recent progress [1, 2] on whether much more struc-
tured random ensembles of codes — such as random linear codes and randomly
punctured Reed-Solomon codes — enjoy list-decoding and list-recovery guarantees
comparable to those of uniformly random codes.
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List-Recovery of Random Linear Codes over Small Fields

Dean Doron

(joint work with Jonathan Mosheiff, Nicolas Resch and João Ribeiro)

We study list-recoverability of random linear codes over small fields, both from
errors and from erasures. We consider codes of rate ε-close to capacity, and aim
to bound the dependence of the output list size L on ε, the input list size ℓ, and
the alphabet size q. Prior to our work, the best upper bound was L = qO(ℓ/ε) by
Zyablov and Pinsker [1].

Previous work has identified cases in which linear codes provably perform worse
than non-linear codes with respect to list-recovery. While there exist non-linear
codes that achieve L = O(ℓ/ε), we know that L ≥ ℓΩ(1/ε) is necessary for list
recovery from erasures over fields of small characteristic, and for list recovery from
errors over large alphabets.

We show that in other relevant regimes there is no significant price to pay for
linearity, in the sense that we get the correct dependence on the gap-to-capacity
ε and go beyond the Zyablov–Pinsker bound for the first time. Specifically, when
q is constant and ε approaches zero,
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• For list-recovery from erasures over prime fields, we show that L ≤ C1/ε.
By prior work, such a result cannot be obtained for low-characteristic
fields.

• For list-recovery from errors over arbitrary fields, we prove that L ≤ C2/ε.

Above, C1 and C2 depend on the decoding radius, input list size, and field size.
We provide concrete bounds on the constants above, and the upper bounds on
L improve upon the Zyablov–Pinsker bound whenever q ≤ 2(1/ε)

c

for some small
universal constant c > 0.
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List-Decodable/-Recoverable Codes in the Zero-Rate Regime

Nicolas Resch

(joint work with Chen Yuan and Yihan Zhang)

A classical result of Plotkin [1] establishes that over binary alphabets, positive
rate codes cannot have minimum distance greater than 1/2, and thus can uniquely
correct at most a 1/4 fraction of errors. It is additionally known that if one insists
on constructing a code correcting a 1/4 + ε fraction of errors (for small ε > 0),
then this code can have size at most O(1/ε), and that this is tight.

If one moves to list-decoding binary codes with list-size L – that is, the decoder
may output up to L guesses for the transmitted message, as long as one of the
guesses is correct – Blinovsky [2] computed a similar threshold: the answer is the
(somewhat inscrutable) value of

pL =
1

2
−

(
2k
k

)

22k+1
(1)

where L is 2k− 1 or 2k. Blinovsky’s argument additionally shows that if one asks
for a (pL + ε, L)-list-decodable code C ⊆ {0, 1}n, then it will have size Oε,L(1):
independent of n, but with a (massive) dependence on ε. Later, Alon, Bukh
and Polyanskiy [3] showed that for odd L, such codes have size OL(1/ε) (as with
Plotkin’s bound), but already with L = 2 such codes of size Ω(1/ε3/2) exist.

In this talk, we will generalize all of these results to the list-decoding/-recovery
setting for general (but constant) alphabet sizes. For list-decoding over alphabets
of size q, we prove that the threshold is

pq,L := E
X1,...,XL+1∼Unif([q])

[pl(X1, . . . , XL+1)] ,

where the notation X1, . . . , XL+1 ∼ Unif([q]) means that we take L + 1 indepen-
dent and uniform samples from the alphabet [q], and the function pl(x1, . . . , xL+1)
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returns the number of i ∈ [L+ 1] such that xi equals a most popular value. That
is,

pl : [q]L+1 → R ,

(x1, . . . , xL+1) 7→ max{|S| : S ⊆ [L+ 1] and ∀i, j ∈ S, xi = xj} .

A routine computation shows this definition indeed recovers (1) when q = 2.
A crucial tool in the proof is the concept of Schur convexity, which in certain
cases allows one to show that the optimizing value for a function on a space of
distributions is the uniform distribution.

Next, we generalize the argument of Alon, Bukh and Polyanskiy [3] to this
setting of non-binary alphabets, showing that codes C ⊆ [q]n that are (pq,L+ε, L)-
list-decodable necessarily have size Oq,L(1/ε). Notably, for non-binary alphabets
we find that the parity of the list-size L no longer plays a role.

Lastly, following a classical argument independently discovered by Elias and
Bassalygo [4], we show how such bounds on codes in the “zero-rate regime” allow
one to provide bounds on codes in the (standard) positive rate regime.
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Survey on Reed–Solomon Codes Against Insertions and Deletions
(Survey Talk)

Roni Con

The performance of Reed–Solomon (RS) codes against synchronization errors, pri-
marily insertions and deletions (insdel), has been studied extensively in recent
years. In this talk, I will survey several results demonstrating that RS codes can
indeed correct insdel errors.

First, I will present a sufficient condition on the evaluation points of an RS
code that guarantees maximal error-correction capability (attaining the so called
“half-Singleton” bound). Second, I will show that, over sufficiently large finite
fields, there exist evaluation points for which the corresponding RS code meets
this bound. Third, I will describe the current state-of-the-art explicit construction,
which unfortunately requires extremely large field sizes.
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I will also show a novel connection between RS codes that can correct against
an adversary who first applies a permutation to the codeword and then deletes
symbols, and a new cryptographic notion called anonymous secret sharing. In
particular, I will show how such codes naturally give rise to a variant of Shamir’s
secret-sharing scheme in which the secret can be reconstructed anonymously (i.e.,
without revealing the identities of the participants). Moreover, for any unautho-
rized set of participants (set of participants that cannot learn anything about the
secret), their identities remain hidden even if an adversary observes their shares.

Finally, I will discuss several open questions: (i) Can we reduce the field size
required by the explicit constructions, or alternatively prove lower bounds on the
field size needed for RS codes to attain maximal correction capability? (ii) Is there
an efficient decoding algorithm for correcting deletions in RS codes? (iii) Are there
additional cryptographic or coding-theoretic applications of such codes?

This survey is based on the works [1, 2, 3, 4, 5].
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Decoding Insertions/Deletions via List Recovery

Anisha Banerjee

(joint work with Roni Con, Antonia Wachter-Zeh, and Eitan Yaakobi)

We examine the challenge of efficiently decoding of codes from insertions and dele-
tions. Most existing constructions with efficient decoders utilize synchronization
strings, which transform the problem of decoding insertions and deletions into that
of decoding substitutions and erasures. Our approach simplifies the problem of
decoding of insertions and deletions to a list recovery problem. More specifically,
any (ρ, 2ρn+ 1, L)-list-recoverable code is a (ρ, L)-list decodable insdel code. For
instance, we apply this method to Reed-Solomon (RS) codes, for which efficient
list-recovery algorithms up to the Johnson bound exist. In the adversarial insdel
model, this decoding approach enables efficient (list) decoding from t insdel errors,
provided that t ·k = O(n). This leads to the first efficient insdel decoder applicable
to [n, k] RS codes when k > 2. We also investigate random insdel models like the
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Davey-MacKay channel and find that for certain values of ρ, a (ρ, n1/2+0.001, L)-
list-recoverable code of length n can be efficiently list decode the channel output
such that with high probability, the transmitted codeword is in the output list.
In the realm of RS codes, this results in an improved rate-error tradeoff for these
channels compared to the adversarial error setting. Finally, we adapt the Koetter-
Vardy algorithm, a well-known soft-decision list decoding method for RS codes,
to address the insertions and deletions caused by the Davey-MacKay channel.
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Hardness Amplification via Coding Theory: New Results and New
Open Problems

Ronen Shaltiel

(joint work with Marshall Ball and Jad Silbak)

Hardness amplification is the complexity theoretic task of transforming a given
function f that is hard on the worst-case for small circuits, into a function g that
is hard on average (on a uniformly chosen input) agsiant (slightly smaller) circuits.
By the seminal work of Sudan, Trevisan and Vadhan [1], hardness amplification can
be achieved using coding theoretic methods, and specifically, using error-correcting
codes that are locally list-decodable.

Recently, motivated by both complexity theoretic and coding theoretic applica-
tions, a new twist on the hardness amplification problem was suggested by Shaltiel
and Silbak [2]. In this twist, one requires that g is not only hard on average on a
uniformly chosen input X , but also on every samplable distribution X with suffi-
cient min-entropy, where the min-entropy threshold k is a parameter. As one wants
a stronger conclusion, a stronger assumption is needed on the hard function f , and
it is now required that f is hard on the worst-case even against nondeterministic
circuits.
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It turns out that this problem is also closely related to several coding theoretic
problems (with the common theme being that now the code needs to be set up
against a huge number of erasures, as well as few errors). In a sequence of works,
Shaltiel and Silbak [2], Ball, Shaltiel and Silbak [3] and Shaltiel [4] make progress
on this new hardness amplification problem. This progress gives improved codes for
computationally bounded channels, as well as improved extractors for samplable
distributions.

Some of this progress is achieved by noting that for these applications one does
not need to solve the general case of the coding theoretic problem, but rather a
(somewhat unnatural) relaxation of the coding theoretic problem which suffices
for the application.
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Seeded Linear Bit-Fixing Extractors and Applications in
Erasure Coding

Mahdi Cheraghchi

(joint work with Yeyuan Chen and Nikhil Shagrithaya)

A function Ext: [N ]× [D] → [M ], where [N ] := {1, . . . , N}, is a (k, ε)-extractor if
for every distribution X on [N ] with min-entropy

H∞(X) := min
x∈[N ]

{− log2 Pr[X = x]} ≥ k,

the distribution (Z,Ext(X,Z)) is ε-close in statistical distance to uniform on [D]×
[M ] when Z is chosen uniformly from [D]. The probabilistic method shows the

existence of extractors with seed space D = O( log(N/K)
ε2 ) and output space M =

Ω(ε2K). Achieving explicit constructions with parameters of this quality has been
a central open problem for decades.

In this work, we investigate the case of linear seeded extractors, i.e. functions
Ext: Fn

2 × [D] → F
m
2 such that for each fixed seed z ∈ [D], the map x 7→ Ext(x, z)

is linear. Of special interest are (oblivious) bit-fixing sources, distributions on
{0, 1}n in which a subset of coordinates are fixed adversarially while the remain-
ing coordinates are uniformly random. It is known that random functions act as
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seedless extractors for such sources, and nearly optimal explicit seedless construc-
tions are available in the nonlinear setting. However, linear seedless extractors for
bit-fixing sources cannot achieve strong guarantees, rendering the seeded linear
case a natural and important object of study.

There is a direct correspondence between linear extractors and error-correcting
codes. A linear map Ext: Fn

2 → F
m
2 is represented by an m× n generator matrix

G, which in turn defines a binary linear code C ⊆ F
n
2 . The ability of Ext to extract

randomness from a bit-fixing source is equivalent to the ability of the code C to
correct erasures on the set of frozen coordinates. Thus a seeded linear bit-fixing
extractor corresponds to an ensemble of linear erasure codes, one for each seed. In
particular, if the extractor extracts nearly all entropy, then almost all codes in the
ensemble are capacity-achieving for the binary erasure channel, as observed in [1].

The parameters obtainable via the probabilistic method are as follows. For
every X ∈ F

n
2 with H∞(X) ≥ δn, there exists a seeded linear bit-fixing extractor

outputting (δ − η)n bits with error ε and seed parameter D = O(1/(εη)). This
is independent of n, unlike what any general-purpose extractor can achieve. Our
main result provides an explicit and strongly explicit seeded linear bit-fixing ex-
tractor whose parameters match those guaranteed by the probabilistic method, up
to a polynomial factor.

Theorem (Informal). For every δ, η, ε > 0 and n ∈ N, there exists a strongly
explicit family of linear maps

Ext : Fn
2 × [D] → F

(δ−η)n
2 , D =

(
1
εη

)O(1)

,

that extracts from all bit-fixing sources on F
n
2 of min-entropy at least δn with error

at most ε.

Beyond the binary erasure channel (as in [1]), this framework extends to more
structured erasure models. For example, erasures can be arranged in a matrix
structure, where codewords are binary matrices and an adversary is able to erase
any δ fraction of the rows and δ′ fraction of the columns. Equivalently, codewords
can be thought of as adjacency matrices of bipartite graphs where the adversary is
allowed to pick a subset of the vertices on each part (up to the designated erasure
budget) and erase all edges adjacent to the picked vertices. In this setting, we
obtain near-MDS codes achieving rate R = (1− δ)(1− δ′)−o(1), which is optimal.

We also consider the non-bipartite counterpart where codewords correspond to
non-biparite graphs and edges incident to up to δ fraction of the vertices (adver-
sarially chosen) can be erased. Equivalently, this is when codewords are binary
square matrices that are symmetric and with zeri diagonals. In this model, we
improve the best known explicit constructions by achieving rate (1−

√
δ)4 − o(1),

improving on earlier results [2, 3].
Furthermore, using our explicit erasure code families, we derive strongly explicit

codes over constant sized alphabets whose rate and distance trade-offs are arbitrar-
ily close to the Singleton bound. Thereby, this recovers the celebrated framework
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of Alon, Edmonds, and Luby [4] but with additional strong explicitness guaran-
tees. That is, each entry of an adjacency matrix for code can be computed in
polynomial time in the number bits describing the row and column indices.

The full manuscript for this result is available at [5].
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Explicit Lossless Vertex Expanders

Rachel Zhang

(joint work with Jun-Ting Hsieh, Ting-Chun Lin, Alexander Lubotzky,
Sidhanth Mohanty, Ryan O’Donnell, and Assaf Reiner)

We give the first explicit construction of lossless vertex expanders. These are d-
regular graphs where every small set S of vertices has (1−ε)d|S| distinct neighbors.
Previously, the strongest known explicit vertex expanders were those given by
Ramanujan graphs, whose spectral properties imply that every small set S of
vertices has 0.5d|S| distinct neighbors [1]. Unfortunately, we also know that 0.5d|S|
is the best one can do with spectral tools [2]. In our work [3, 4], we identify a
new connection between strong vertex expansion and high dimensional expanders.
Using a construction based on Ramanujan cubical complexes [5], we construct the
first explicit lossless vertex expanders.
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Asymptotically Good Quantum LDPC Codes (Survey Talk)

Gilles Zémor

In this talk we give a short, partial account of the ideas leading up to the con-
struction of asymptotically good quantum LDPC codes, and of the present state
of knowledge.

A quantum CSS code of length n is defined by two classical binary codes of
length n, CX and CZ , with the property that their dual codes C⊥

X and C⊥
Z are

orthogonal to each other. The quantum code dimension is given by k = n −
dimC⊥

X − dimC⊥
Z . The quantum code minimum distance d is defined as the

minimum of two quantities (distances), dX and dZ , that are defined respectively
as the smallest weight of a vector of CX (CZ) not in C⊥

Z (not in C⊥
X). We are

interested in quantum LDPC codes, meaning that we wish the two classical codes
CX and CZ to be LDPC, i.e., defined by two parity-check matrices of bounded
row and column weights.

The theory of quantum LDPC codes starts with the Kitaev toric code [1].
The Kitaev code, in its original instantiation, has parameters of the form [[n =
2m2, k = 2, d = m]], though they can also take the form [[m2, 2,m]]. The toric code
has many desirable features, but one wishes to improve both its dimension and its
minimum distance, ideally obtaining a behaviour that is linear in the codelength n.

Improving the minimum distance and obtaining a growth that surpasses
√
n

is arguably the most challenging of the two tasks. In 2002, Freedman et al. [2]
obtained a construction of codes of dimension 2 with a distance that scales as√
n log1/4 n. This stayed the state of the art for almost twenty years, until this

record was extended to
√
n logn in [3], with follow-up work appearing in [4], bor-

rowing some ideas from the theory of high-dimensional expansion.
In the meantime, the introduction of Hypergraph Product codes [5] allowed one

to transform an asymptotically good classical LDPC code into a quantum code
with a linear dimension and a minimum distance that scales as

√
n, i.e. no worse

than the toric code.
On the minimum distance front, we witnessed a significant breakthrough with

the advent of Fiber Bundle codes [6]: these codes have non-linear dimension but
were shown to achieve a minimum distance of n3/5. The central idea consists of
introducing a twist in the hypergraph product construction, which breaks the

√
n

barrier inherent in the untwisted scheme. Soon afterwards, a minimum distance of
n/ logn was achieved [7]: this work essentially used the same construction as that
of the fiber bundle code paper, but with a more efficient framework for analysing
the minimum distance, and also using as base classical code a Tanner code, rather
than an all-purpose LDPC code as in [6].
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Very soon afterwards, Panteleev and Kalachev finally solved the longstanding
problem of constructing asymptotically good quantum LDPC codes with their
follow-up work [8]. This entailed refining the twisted product ideas of [6, 7] and
solving many related issues. The introduction of Quantum Tanner codes [9, 10]
can both be seen as a simplification of [8], and a break from the product strat-
egy, relying instead on square complexes, that were previously used to construct
classical locally testable codes [11]. The construction [12] reverted to a product
strategy and can be thought of as a dual variant of [8]. Finally, the very recent
construction [13] relies on the construction of lossless expanders that come with
a group action, and is the first construction of asymptotically good LDPC codes
that does not use the constant size inner codes of the Tanner coding paradigm.
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Decoded Quantum Interferometry

Alexander Schmidhuber

(joint work with Stephen P. Jordan, Noah Shutty, Mary Wootters, Adam
Zalcman, Robbie King, Sergei V. Isakov, Tanuj Khattar, and Ryan Babbush)

This talk is based on the recent work [1]. I firstly described Decoded Quantum
Interferometry (DQI), a quantum algorithm for reducing classical optimization
problems to classical decoding problems by exploiting structure in the Fourier
spectrum of the objective function. DQI reduces sparse max-XORSAT to decod-
ing LDPC codes, which can be achieved using powerful classical algorithms such
as Belief Propagation (BP). As an initial benchmark, we compared DQI using be-
lief propagation decoding against classical optimization via simulated annealing.
In this setting we presented evidence that, for a certain family of max-XORSAT
instances, DQI with BP decoding achieves a better approximation ratio on aver-
age than simulated annealing, although not better than specialized classical algo-
rithms tailored to those instances. We also analyzed a combinatorial optimization
problem corresponding to finding polynomials that intersect the maximum num-
ber of points. There, DQI efficiently achieves a better approximation ratio than
any polynomial-time classical algorithm known to us, thus realizing an apparent
exponential quantum speedup. Finally, we showed that the problem defined by
Yamakawa and Zhandry in order to prove an exponential separation between quan-
tum and classical query complexity is a special case of the optimization problem
efficiently solved by DQI.

I further presented the ongoing work on generalizing DQI from classical cost
functions to general non-diagonal and non-commuting Hamiltonians. In this con-
text, I introduced Hamiltonian Decoded Quantum Interferometry (HDQI), a quan-
tum algorithm that utilizes coherent Bell measurements and the symplectic repre-
sentation of the Pauli group to reduce Gibbs sampling and Hamiltonian optimiza-
tion to classical decoding. The decoding problem inherits structural properties
of H ; in particular, local Hamiltonians map to LDPC codes. Preparing the pilot
state is always efficient for commuting Hamiltonians, but highly non-trivial for
non-commuting Hamiltonians. Nevertheless, we proved that this state admits an
efficient matrix product state representation for a class of nearly commuting Pauli
Hamiltonians whose anti-commutation graph decomposes into connected compo-
nents of logarithmic size. At the end, we discussed avenues and potential future
directions for applying HDQI to Hamiltonians appearing in quantum optimization,
quantum chemistry, and beyond.
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(Almost) Good Quantum Codes via Tensor Products

Louis Golowich

(joint work with Venkatesan Guruswami)

Quantum low-density parity-check (qLDPC) codes provide one of the most promis-
ing means for achieving efficient quantum fault-tolerance. Such codes are defined
to support error detection and correction via sparse queries (i.e. stabilizer measure-
ments) to code states. Each such query involves, and can therefore only propagate
errors across, a small number of code components. However, this qLDPC condi-
tion has proven difficult to achieve, and asymptotically optimal qLDPC codes were
only recently constructed following a line of breakthrough works [1, 2, 3, 4, 5, 6].
The latter three of these works use nearly identical techniques, and still provide the
only known asymptotically good qLDPC codes, meaning that the code dimension
and distance scale linearly in the block length, and the stabilizers have constant
weight. It remains an open question to find new constructions of qLDPC codes
with good parameters. Such alternative constructions may yield better practical
parameters or have properties useful for fault-tolerant computation, and would
also be of independent mathematical interest.

In this work, we develop a new construction of qLDPC codes with close-to-linear
dimension and distance based on homological products (i.e. tensor products of chain
complexes), a well-known construction from homological algebra that generalizes
classical tensor codes. To do so, we provide a new method of taking homological
products that preserve almost-linear distance by using subsystem codes, which only
encode messages into a subspace of the entire logical code space. Our analysis of
this method builds on techniques of [12]. As a result, we obtain a new construction
of qLDPC codes of close-to-linear dimension and distance with constant stabilizer
weight using an iterative construction, which is based on iterative homological
products of a constant-sized code. We provide an informal statement below:

Theorem 1. For every ǫ > 0, there exists a constant-sized code C and an infinite
sequence of qLDPC subsystem codes (Qi)i∈N with parameters

[[Ni, N
1−ǫ
i , N1−ǫ

i ]]2

and with constant stabilizer weight O(1) (independent of ǫ), such that each Qi is
obtained by applying the stabilizer-weight-reduction transformation of [10] to the
homological product of Qi−1 with C.

The weight-reduction step in Theorem 1 is needed to keep the stabilizer weight
constant in each iteration, as in general the stabilizer weight of a homological
product code grows as the sum of the stabilizer weights of the input codes.

Most prior homological product code constructions had distance at most Õ(
√
N).

We exceed this bound and obtain almost-linear distance in Theorem 1 by using
subsystem codes. Specifically, we observe that the “Õ(

√
N) barrier” only applies

to certain logical operators (i.e. codewords) within the code space. Therefore, we
show that appropriate homological product codes will still have good distance for
a large subspace of the logical operators. Thus appropriate subsystem codes of



2224 Oberwolfach Report 41/2025

these products will still have good distance. Our distance bound proofs are in-
spired by the techniques of [12], which showed a related result, but that did not
use subsystem codes.

To prove Theorem 1, we set C to be a constant-sized quantum locally testable
code (qLTC; see the full version) such as one given by [9, 11]; such a qLTC (which
we emphasize is just constant-sized) is needed for our subsystem distance bound
described above. We apply our distance bound to show that the distance of each
Qi remains close-to-linear (i.e. ≥ N1−ǫ

i ) in the block length Ni.
This iterative construction is reminiscent of a line of work in classical pseudo-

randomness, coding theory, and complexity theory, which iteratively builds larger
objects with properties of interest from smaller or weaker ones. For instace, [7]
constructed classical locally testable codes by iterative tensoring of a small classi-
cal code; at a high level, Theorem 1 uses a related approach to construct qLDPC
codes. Other notable iterative constructions in the literature include explicit spec-
tral expanders from the zig-zag product [14], Dinur’s proof of the PCP theorem [8],
and undirected connectivity in logarithmic space [13]. Theorem 1 can therefore be
viewed as an analogue of these results for qLDPC codes. However, our construction
does need to start with a strong constant-sized object, namely, a constant-sized
qLTC with sufficiently good parameters. It is an interesting open question whether
there exists an iterative construction with a weaker starting object.

Our work also raises multiple additional open questions. For instance, the it-
erative product-based structure of our codes appears to be more flexible than
prior balanced product constructions. Indeed, we could use different constant-
sized codes C in different iterations of the product, and still obtain almost-good
parameters for the resulting codes. It would be interesting to see if this addi-
tional flexibility could be leveraged, for instance in applications to fault-tolerant
computation.

Furthermore, our iterative product paradigm provides one alternative to bal-
anced products. It remains an open problem to find additional, fundamentally
different constructions of qLDPC codes with good or almost good parameters.
One interesting construction towards this goal is given by [10], which obtains

qLDPC codes of distance Ω̃(N2/3) (which is beyond the Õ(
√
N) barrier) by ap-

plying weight-reduction to an appropriate random quantum code. Perhaps similar
techniques could obtain even closer to linear distance, without using any sort of
product.
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Survey on Coding for Interactive Communiction (Surver Talk)

Klim Efremenko

Error Correcting Codes (ECCs) address a fundamental question: how can we en-
sure reliable data transmission over unreliable channels? Since Shannon’s pioneer-
ing 1948 work, seven decades of research have created a rich theoretical framework
with practical impacts across diverse fields.

Today, communication systems are no longer just about transmitting informa-
tion. Instead, they often involve interactive processes requiring multiple exchanges
between participants, as seen in cloud computing, cryptographic protocols, and
distributed systems.

In this talk, we surveyed recent results on crafting interactive error-correcting
codes and uncovering their fundamental limits.

In particular, we talked about the following topics:

(1) adaptive vs non-adaptive channels.
(2) The role of feedback in the coding for interactive communication.
(3) Coding for interactive communication for non interactive tasks
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On Deterministic LDCs and Their Application in
Distributed Computing

Ran Gelles

(joint work with Keren Censor-Hillel, Orr Fischer, and Pedro Soto)

We examine distributed computations in the “Congested Clique” model [3], in
which an α < 1 fraction of nodes may crash during the computation. To avoid
information loss, data is preserved in the network using locally decodable codes
(LDCs). While prior work [2] relied on standard error-correcting codes (ECC),
our LDC construction allows access to only the necessary information, thereby
reducing overall complexity.

In the model we consider, crashes are equivalent to erasures in the LDC code-
word. This allows us to derandomize the scheme and obtain a deterministic LDC
decoder that decodes by querying a sufficient number of non-erased indices while
maintaining low congestion during multiple simultaneous decodings. To that end,
we present a slight variant of LDCs for erasures: the decoder either outputs the
correct symbol or reports failure; it never outputs an incorrect symbol. Further ex-
ploration of erasure LDCs and their connections to standard LDCs is a promising
direction.
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Representational Methods in Coding Theory (Survey Talk)

Wolfgang Willems

If C ⊆ F
n is a linear code of dimension k over the finite field F, then with a very

high probability the automorphism group of C is trivial. However, almost all codes
we know and are dealing with have a nontrivial automorphism group G = Aut(C).
Thus C is not only a vector space, but a G-module. Often it is a submodule of
the group algebra FG which we call a G-code or a group code. Thus in order to
analyze C we may use the full machinery of representation theory of finite groups.

For group codes C ⊆ FG, a crucial connection between representation theory
and coding theory is given by the FG-isomorphism FG/C⊥ ∼= C∗ where C∗ denotes
the dual module of C. As a consequence, a self-dual composition factor in FGmust
have an even multiplicity in FG. Using this fact and Maschke’s theorem we get
the following.
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Theorem. If C ⊆ FG is a self-dual G-invariant code, then the characteristic of F
is 2 and 2 divides the order of G.

Using the obvious fact that, for a cyclic 2-group C2n and a field F of charac-
teristic 2, the group algebra FC2n has only one self-dual code, we get an easy
representational proof of the following result due to Sloane and Thompson.

Theorem. If the Sylow 2-subgroup of G is cyclic, then a self-dual group code in
F2G is never doubly even.

Finally, we extend a result of Yang and Massey on LCD (linear complementary
dual) codes from cyclic codes to general group codes by applying the fact that an
LCD group code is always a projective module for the underlying group algebra,
hence generated by an idempotent.

Theorem. A group code C ≤ FG is an LCD code if and only if C = eFG,
e = e2 = ê where ê is the adjoint of the idempotent e.

These and some other results enlighten the powerful methods of using repre-
sentation theory in coding theory.

For more information on group codes and references to the above results we refer
to the article “Codes in group algebras”, Chapter 16 in Concise Encyclopedia in
Coding Theory, Chapmann and Hall/CRC 2021, 363–384.

Soft-Decision Decoding of Recursive Plotkin Constructions using
Hidden Code Words

Martin Bossert

The Plotkin construction [1] from 1960 combines two codes to obtain a code of
doubled length. It can be applied recursively. In [2] the hidden code words are
introduced which are used in the first step of decoding of these recursive construc-
tions. These hidden code words can be uncovered by adding particular parts of the
overall code word. The main idea is to use more than one decoding variant where
each variant starts with the decoding of a different hidden code word. Given the
decoding of the first hidden code word is correct the number of errors is reduced for
the remaining decoding steps. As final decoding decision the best of the decisions
of the used variants is choosen. Using more variants the performance gets closer to
the maximum-likelihood (ML) decoding performance. The class of Reed–Muller
(RM) codes is a particular example for the use of this decoding with hidden code
words.

The Plotkin construction uses two codes C0(n, k0, d0) and C1(n, k1, d1). These
codes are combined to a code C of double length by choosing two code words
u0 ∈ C0 and u1 ∈ C1 and appending the code word u0 + u1 to the code word
u0 which results in the code word c = (u0|u0 + u1) of the new code C(2n, k0 +
k1,min{2d0, d1}). The double Plotkin construction uses four component codes
C0,C1,C2, and C3 and the two Plotkin constructions (u0|u0+u1) and (u2|u2+u3).
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Table 1. Soft and Hard Join-Two of the Four Blocks

y0 ⋊⋉ y1 = x1 + z′ u1 + e0 + e1

y0 ⋊⋉ y2 = x2 + z′ u2 + e0 + e2

y0 ⋊⋉ y3 = x1x2x3 + z′ u1 + u2 + u3 + e0 + e3

y1 ⋊⋉ y2 = x1x2 + z′ u1 + u2 + e1 + e2

y1 ⋊⋉ y3 = x2x3 + z′ u2 + u3 + e1 + e3

y2 ⋊⋉ y3 = x1x3 + z′ u1 + u3 + e2 + e3

If we apply the Plotkin construction for these two codes we get a code of length
4n

(u0|u0 + u1|u0 + u2|u0 + u1 + u2 + u3) = (a0|a1|a2|a3).
If the component codes have the property C0, C2 ⊆ C1, and C3 ⊂ C2 then the

uncovered code word a0 + a1 + a2 + a3 is from code C3. The two uncovered code
words a0+a2 and a1+a3 are from the code C2 and the four uncovered code words
a0 + a1, a0 + a3, a1 + a2, a2 + a3 are from the code C1. In case of C1 = C2, all
six code words are from this code. If additionally C1 ⊂ C0, all blocks ai are from
code C0.

For soft-decision decoding we use binary phase shift keying (BPSK) and the
usual mapping of the binary code symbols ui = 0 ↔ xi = 1 and ui = 1 ↔ xi = −1,
and for vectors u ↔ x. In the additive white Gaussian noise (AWGN) channel
we receive yi = xi + zi where zi denotes the Gaussian noise. The addition of two
binary code words is a component-wise multiplication of the BPSK-modulated
code words u0 + u1 ↔ x0x1, where

x0x1 = (x0,0x1,0, x0,1x1,1, . . . , x0,n−1x1,n−1)

with xi,j = ±1.
Transmitting the modulated code word over a Gaussian channel we receive

(y0 = x0+z0|y1 = x0x1+z1|y2 = x0x2+z2|y3 = x0x1x2x3+z3). For uncovering
the hidden code words we define the join operation ⋊⋉ by

yi ⋊⋉ yj = sign(yiyj)min{|yi|, |yj |}
which is sometimes called minsum approximation. The join operation for vectors is
done component wise and it is commutative and associative. In Table 1 examples
of the uncovering of several hidden code words are shown, on the left side the
Gaussian case and right the hard-decision case with errors.

Table 2 shows the operations used in the variants for decoding the complete
douple Plotkin construction. The error cancelation is due to the fact that the
coherent addition of two received values increase the signal ernergy by a factor of
four while the variance of the addition of two Gaussian variables is only increasing
by a factor of two.

As an example we describe one decoding variant, namely V(y0 ⋊⋉ y1) where
the decoding is started according the first of the six possible uncoverings from
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Table 2. Join and Add Operations of the Four Blocks

join-four y0 ⋊⋉ y1 ⋊⋉ y2 ⋊⋉ y3 → x3 + z′

add-two y0 + y2x2 → 2x0 + z′

add-four y0 + y1x1 + y2x2 + y3x1x2x3 → 4x0 + z′

join-add (y0 ⋊⋉ y1) + (y2 ⋊⋉ y3x3) → 2x1 + z′

add-join (y0 + y2x2) ⋊⋉ (y1 + y3x2x3) → x1 + z′

Table 1. The join-two operation y0 ⋊⋉ y1 is a noisy version of x1. With a decoder
for the code C1 we get the estimate x̂1. Knowing the estimate of x̂1 the join-two
operation y2 ⋊⋉ y3x̂1 is a noisy version of x3 and with a decoder for the code
C3 we get the estimate x̂3. Now we have the estimates x̂1 and x̂3 and use the
add-join operation (y0 + y1x̂1) ⋊⋉ (y2 + y3x̂1x̂3) which is a noisy version of x2.
With a decoder for the code C2 we get the estimate x̂2. The add-four operation
y0 + y1x̂1 + y2x̂2 + y3x̂1x̂2x̂3 is a noisy version of x0 and with a decoder for the
code C0 we get the estimate x̂0 which completes the decoding. The other variants
start with other hidden code words according Table 1.

The RM code C(128, 64, 16) can be constructed as follows. Take the codes
C(8, 8, 1), the parity-check code C(8, 7, 2), the extended Hamming code C(8, 4, 4),
and the repetition code C(8, 1, 8). With these codes we can construct with the
double Plotkin construction three codes. Using C′′

0 (8, 8, 1), C′′
1 (8, 7, 2) = C′′

2 , and
C′′
3 (8, 4, 4) we get the code C′

0(32, 26, 4). Similarly, with C′′
0 (8, 7, 2), C′′

1 (8, 4, 4) = C′′
2 ,

and C′′
3 (8, 1, 8) we get C′

1(32, 16, 8). Choosing C′′
0 (8, 4, 4),C′′

1 (8, 1, 8) = C′′
2 , and for

C′′
3 the all-zero code word we get C′

3(32, 6, 16). The double Plotkin construc-
tion of these three codes gives C(128, 64, 16) where C′

0(32, 26, 4),C′
1(32, 16, 8) =

C′
2,C′

3(32, 6, 16). The decoding of this code of length 128 and dimension 64 is done
by decoding only the four codes of length 8 multiple times. Note that the complex-
ity for decoding a code of length 8 is very small. However, using enough decoding
variants which start with different hidden code words the decoding performance
is the same as for ML decoding.

An interesting observation with this decoding of double Plotkin constructions is
for first-order RM codes. It can be explaind by the example of the C(8, 4, 4) code.
The construction uses the codes C0(2, 2, 1), C1(2, 1, 2) = C2, and C3 is the all-zero
code word. The received vector is (y0 = x0+z0|y1 = x0x1+z1|y2 = x0x2+z2|y3 =
x0x1x2 + z3) = (y0, y1, y2, y3, y4, y5, y6, y7). Since the two repetition codes have
only two possibilities we have only four add-four (from Table 2) possibilities for
decoding the code C0(2, 2, 1). The two symbols of this code are denoted by (w0, w1).
Then the four possibilities for (w0, w1) are (y0 + y2 + y4 + y6, y1 + y3 + y5 + y7),
(y0 − y2 + y4 − y6, y1 − y3 + y5 − y7), (y0 + y2 − y4 − y6, y1 + y3 − y5 − y7), or
(y0 − y2 − y4 + y6, y1 − y3 − y5 + y7), depending on x1 and x2 which can be (1, 1)
or (−1,−1). Note that several additions appear twice in these equations and thus,
have to be calculated only once. For example y0 + y2 or y1 + y3. Choosing the
maximum of |w0| + |w1| gives the ML decision. Surprisingly this method needs
less additions than using the Fast-Hadamard transform for ML decoding.
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Codes for Computationally Bounded Channels (Survey Talk)

Jad Silbak

(joint work with Ronen Shaltiel and Daniel Wichs)

This talk is based on a series of works with Ronen Shaltiel and Daniel Wichs.
We consider error-correcting codes for channels that are computationally bounded
and may corrupt up to a p-fraction of the codeword’s bits. These channels are
considerably more powerful than Shannon’s binary symmetric channel (which flips
each bit independently with probability p), yet weaker than Hamming’s worst-case
channels (which can flip any p-fraction of bits without computational limits).

Lipton [1] and Guruswami and Smith [2], argued that the error induced in real-
world applications is typically not fully adversarial, and could often be simulated
by weak classes of channels. Thus, for most practical applications, it is often
sufficient to construct codes for computationally bounded adversaries. Moreover,
this restriction on the adversary makes it possible to construct codes with a rate
that is strictly better than what is possible when the adversary is information
theoretic.

In recent years, there has been a growing body of work that aims to construct
codes against channels that are computationally bounded (e.g., bounded memory
channels, channels that run in a fixed polynomial time, and channels that can run
in any polynomial time). In this talk, we will survey these results, focusing on
channel capacities and the techniques used to obtain explicit, uniquely decodable
codes that surpass the information-theoretic rate limitations.

We highlight two main research directions:

(1) Channels weaker than the encoder/decoder: Following Guruswami and
Smith, one line of work considers adversaries that are weaker than the
encoding and decoding algorithms. Here, we focus on space-bounded
channels and those restricted to fixed polynomial time. We will discuss
techniques developed by Shaltiel and Silbak [7, 8, 9] that achieve unique
decoding with a better rate than what is possible information theoretically.
A central notion here is the evasiveness of codes which is concerned with
whether a decoding algorithm for say, binary symmetric channels, rejects
a word that is obtained when a computationally bounded channel induces
few errors to a uniformly chosen (or pseudorandom) string.

(2) Channels with full polynomial-time power: A second line of work, initiated
by Micali, Peikert, Sudan, and Wilson [3], studies channels that can run
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any polynomial-time algorithm—including the encoder and decoder them-
selves. In this stronger setting, codes are achievable only under crypto-
graphic assumptions, which are shown to be necessary. We present recent
results in this direction. In particular, Silbak and Wichs [4] give a simple
construction over a large constant alphabet that yields uniquely decodable
codes with rates matching those of list-decodable codes. This construc-
tion relies on one-way functions, which they also show to be necessary.
Finally, we will explain how to obtain explicit binary codes in this set-
ting under standard cryptographic assumptions [5, 6], using multi-input
correlation-intractable hash functions, a powerful cryptographic primitive.
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Codes’ Redundancy from The Lovász Local Lemma

Yonatan Yehezkeally

The probabilistic method has no shortage of applications in combinatorics (for an
excellent overview and many examples, see [1]). Even rudimentary 1st-moment
calculation methods often yield profound results, but at times these may not be
sufficient. Unsurprisingly, the method finds applications in coding theoretic prob-
lems as well; specifically, we observed in this talk several examples where it can
be useful for attaining the redundancy of a particular family of codes.
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Our focus was codes in some arbitrary finite space Ω, that may naturally be
described in the fashion C = Ω \⋃α∈I Aα, for a given index-set I and a collection
{Aα : α ∈ I}. An application of the probabilistic method for redundancy calcula-
tion follows then from equipping Ω with the uniform probability measure, resulting
in red(C) , log(|Ω|)−log(|C|) = − log Pr(C). (We tacitly ignore the logarithm base
in what follows.)

In these settings, the simplest scenario would be for mutually independent col-
lection {Aα : α ∈ I}, where one readily has red(C) = −∑

α∈I log Pr(Ω\Aα). How-
ever, in many interesting scenarios there cannot easily be found a collection of
events satisfying this requirement for C. On the other hand, one can always ap-
ply the union bound to derive red(C) = log

(
1−∑

α∈I Pr(Aα)
)
, but this solution

flat-out fails in the (fairly common) case that
∑

α∈I Pr(Aα) > 1.
We note that there nevertheless exist a qualitative difference between these two

approaches. In the case that for all α ∈ I there exists Γα ⊆ I satisfying that Aα

is mutually independent from {Aβ : β 6∈ Γα}, and if |Γα| << |I| for all (or ‘most’)
α ∈ I (a precise notion could be |Γα| = o(|I|) in some asymptotic regime), one
could perhaps be justified in expecting red(C) to be better approximated by the
former expression, rather than the latter.

Indeed, the Lovász local lemma [2] gives precise meaning to the last statement.
In its general (so-called asymmetric) formulation it states (relying on notations
above)

Theorem 1 ([3]). If there exists constants {fα : α ∈ I} ⊆ (0, 1) satisfying for all
α ∈ I that Pr(Aα) ≤ fα

∏
β∈Γα

(1 − fβ), then Pr(C) ≥ ∏
α∈I(1 − fα).

Frequently, at least some sets in the collection {Aα : α ∈ I} resemble one an-
other, or are of ‘the same type’. It is therefore quite useful to use the following
well-known symmetric version of the local lemma, derived simply by assigning
fα ≡ 1

d+1 :

Corollary 2. If there exist constants p, d > 0 such that Pr(Aα) ≤ p and |Γα| ≤ d

for all α ∈ I, and if ep(d+ 1) ≤ 1, then Pr(C) ≥
(
1 + 1

d

)−|I|
.

Since in some applications one may find it more useful to derive an expres-
sion in terms of p rather than d, the following can similarly be derived using the
althernative assignment fα ≡ ep

1+ep .

Corollary 3. If there exist constants p, d > 0 such that Pr(Aα) ≤ p and |Γα| ≤ d

for all α ∈ I, and if ep(d+ 1) ≤ 1, then Pr(C) ≥ (1 + ep)
−|I|

.

In the talk, we saw that Theorem 3 can directly be applied to gain the redun-
dancy of Repeat-free Sequences [4], a constrained system generalising de Bruijn
sequences shown to be efficient and redundancy-optimal for data reconstruction
from shot-gun sequencing, a technology used to read transcribe DNA molecules
(with applications for DNA-based data storage schemata). It is also applied to
derive the redundancy of approximate-hairpin-avoiding strings (a constraint use-
ful for preventing the formation of secondary structures in DNA oligos) in [5]. In
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yet another example, it can be used to tightly bound the redundancy of Run-
length-limited constrained sequences [6], in regimes applicable to novel storage
media where the constraint length scales with block-length (see, e.g., [7, 8, 9]).
Critically, it can be seen that the results produced by applying the local lemma
in all these examples are asymptotically equivalent to those that could have been
derived, had the collection {Aα : α ∈ I} been mutually independent, answering
the question posed above.

Next, we noted that the usefulness of the symmetric formulation of the local
lemma is somewhat limited, as in some foreseeable situations one cannot tightly
approximate Pr(Aα) and |Γα| by the same constants, for all α ∈ I. Nevertheless,
a slightly more fine-grained approach can be taken, by partitioning these sets into
a finite (small) number of types. Denoting I = I1 ∪ I2 ∪ · · · ∪ Iℓ and for all α ∈ I,
Γα = Γα,1 ∪ Γα,2 ∪ · · · ∪ Γα,ℓ where Γα,s ⊆ Is for all s = 1, . . . , ℓ, and assume that
constants ps and ds,u exist such that for all α ∈ Is and u = 1, . . . , ℓ it holds that
Pr(Aα) ≤ ps and |Γα,u| ≤ ds,u. Then, one can derive the following two analogues:

Corollary 4 (Semi-symmetric case). If max
{
ps +

∑ℓ
u=1 ds,upu : 1 ≤ s ≤ ℓ

}
≤

1/e, then Pr(C) ≥ ∏ℓ
s=1

(
1 + eps

)−|Is|
.

Proof. By applying the assignment fα ,
eps

eps+1 where α ∈ Is. �

Corollary 5 (Case 2). If max
{
ps(1 +

∑ℓ
u=1 ds,u) : 1 ≤ s ≤ ℓ

}
≤ 1/e, then Pr(C)

≥
∏ℓ

s=1

(
1 + 1∑

ℓ
u=1

ds,u

)−|Is|
.

Proof. By applying the assignment fα , 1
1+

∑ℓ
u=1

ds,u
where α ∈ Is. �

Through another example, we saw how Theorem 4 was used in [5] to derive
the redundancy of Resilient-repeat-free sequences, utilised for the same purpose as
repeat-free sequences under relaxed assumptions, namely allowing the presence of
errors prior to sequencing.

In summary, the talk demonstrated how the celebrated result of the Lovás local
lemma can still be used to derive meaningful results in contemporary literature.
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An Information Theory of Query Optimization

Hsin-Po Wang

(joint work with Yu-Ting Lin)

In a large database, joining multiple relations is basic yet costly to execute. A
query optimizer wants to know if one execution plan, say (R ∧ S) ∧ T , is better
than the other, say R ∧ (S ∧ T ). Therefore, estimating the cardinalities of inter-
mediate relations helps planning [7, 6, 5]. This work seeks upper bounds on the
join cardinality that are tight and cheap. This is called pessimistic cardinality
estimation in literature.

Let us consider an example: Let A be the set of sellers, B be the set of mer-
chandises, and C is the set of buyers. Between any pair of attributes there can be
relations. For instance, say R(A,B) records if a seller sells a merchandise; it is a
table whose rows are pairs (a, b) ∈ A×B where a sells b. Between B and C there
can a relation S(B,C) that records if a buyer wants a merchandise. And between
C and A can be a relation T (C,A) that records if a buyer lives near a seller. Now,
say we are interested in the join query R(A,B) ∧ S(B,C) ∧ T (C,A). This is a
table whose rows are triples (a, b, c) where a sells b that c wants and they live near
each other. The challenge here is to estimate the number of rows

#∆ := |R(A,B) ∧ S(B,C) ∧ T (C,A)| =
∣∣∣∣
{
(a, b, c) :

R(a,b) and
S(b,c) and
T (c,a)

}∣∣∣∣

before actually forming the table.

1. The Old Dexterous Framework

The starting point is that the number of triangles is at most the number of free
triples (which is not tight)

(1) #∆ ≤ |A| · |B| · |C|.
Second, one notices that a triangle is determined by two edges. Hence,

(2) #∆ ≤ |R(A,B)||S(B,C)| , |S(B,C)||T (C,A)| , |T (C,A)||R(A,B)| .
Atserias, Grohe, and Marx [1] generalized (2). The new estimated bound, called
AGM bounds, reads

(3) #∆ ≤ |R(A,B)|u · |S(B,C)|v · |T (C,A)|w

where the weights (say u and v) associated to an attribute (say B) sum to 1 or
more.
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The next breakthrough is chain bounds [2] and PANDA bounds [3]. They har-
vest the fact that the two edges must share the same vertex, and hence choosing
the second edge is constrained by the degree of the shared vertex:

#∆ ≤ |R(A,B)| ·max
a∈A

degT (a) , |R(A,B)| ·max
b∈B

degS(b) , |S(B,C)| ·max
b∈B

degR(b) ,

|S(B,C)| ·max
c∈C

degT (c) , |T (C,A)| ·max
c∈C

degS(c) , |T (C,A)| ·max
a∈A

degR(a) .(4)

Here, degR(a) is the number of b ∈ B that satisfy R(a, b), and other degrees are
defined similarly.

Finally, Abo Khamis, Nakos, Olteanu, and Suciu [4] made huge progress by
generalizing (1)–(4) to an infinite family of bounds. Two new instances include

#3
∆ ≤

∑

a∈A

degR(a)
2 ·

∑

b∈B

degS(b)
2 ·

∑

c∈C

degT (c)
2,(5)

#6
∆ ≤

∑

a∈A

degR(a)
3 ·

∑

c∈C

degS(c)
3 · |T (C,A)|5(6)

Note that the right-hand sides of (1)–(6) all have one thing in common: |A| =∑
a∈A 1 is the 0-norm, |R(A,B)| = ∑

a∈A degR(a) is the 1-norm,
∑

a∈A degR(a)
2

and
∑

a∈A degR(a)
3 are the 2-norm squared and the 3-norm cubed, and finally

maxa∈A degR(a) is the ∞-norm of the degree sequence {degR(a)}a∈A. Abo Khamis
et al. [4] unified all these bounds using a single building block.

The meta reason degree sequences are useful here is their relation to join car-
dinalities via entropy inequalities. For instance, for any random pair (X,Y ) ∈
R(A,B),

(7) H(X) ≤ ln |A|, H(X,Y ) ≤ ln |R(A,B)|, H(Y |X) ≤ lnmax
a∈A

degR(a).

Abo Khamis et al. [4] unified them as

(8) H(X) + pH(Y |X) ≤ ln
∑

a∈A

degR(a)
p

for any p ≥ 0, making (7) special cases at p = 0, 1, and ∞, respectively.

2. Our New Ambidextrous Bound

The main contribution of our work is to introduce bivariate moments

p

∥∥R(A,B)
∥∥
q
:=

∑

(a,b)∈R

degR(a)
p−1 degR(b)

q−1

of a bi-degree sequence {(degR(a), degR(b))}(a,b)∈R(A,B). This generalizes (7)–(8)
to

(9) pH(Y |X) + I(X ;Y ) + qH(X |Y ) ≤ ln
p

∥∥R(A,B)
∥∥
q

for all p, q ≥ 1, making (8) a special case at q = 1. This provides new building
blocks to bound #∆, for instance

(10) #3
∆ ≤

4/3

∥∥R(A,B)
∥∥
5/3

·
4/3

∥∥S(B,C)
∥∥
5/3

·
4/3

∥∥T (C,A)
∥∥
5/3

.
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Figure 1. Bounding #∆ can be viewed as a fractional covering
problem on the entropy Venn diagram. The building blocks are

, , , and , which correspond to (7), and (8), respectively.
Our contribution can be viewed as inventing a new building block

, which corresponds to (9).

We call (8) dexterous bounds for them counting claws “∈”. We call the new
bounds (9) ambidextrous for them counting claw pairs “∋−∈”. Ambidextrous upper
bounds are provably tighter (or at least not looser) due to Hölder’s inequality

(11)
p

∥∥R
∥∥w
1
·
1

∥∥R
∥∥1−w

q
≥

wp+(1−w)

∥∥R
∥∥
w+(1−w)q

.

As a bonus contribution, we show that finding the best bound, dexterous or
ambidextrous, is a convex optimization problem. This means that we can take
advantages of existing black-box algorithms.
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Decreasing Norm-Trace Codes

Hiram Lopez

(joint work with Cı́cero Carvalho and Gretchen L. Matthews)

We studied the decreasing norm-trace codes, which depend on the evaluation of
certain polynomials on the affine points of the norm-trace curve. We see how
the Gröbner basis of the vanishing ideal of the affine points and their indicator
functions help us to find the dual of the code. We show that the trace function
helps recover an erased entry of a codeword using partial information from the
rest of the entries. This recovery property has applications for distributed storage
systems. This talk is based on the works [1, 2, 3, 4, 5].
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