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Introduction by the Organizers

The meeting was very well attended with 48 participants from around the globe,
including from Germany, Switzerland, Austria, Belgium, Croatia, Sweden, Israel,
the UK, the US, Canada, Brazil, Australia and New Zealand. In addition, many
excellent mathematicians who would have loved to participate could not be invited
due to space constraints. The program consisted of 8 main lectures, 18 shorter
talks, and a problem session, as well as plenty of time for discussion.

A number of major recent breakthroughs were presented during the workshop,
including the proof of a famous conjecture of Erdős about induced Ramsey num-
bers, which was announced by Marcelo Campos in his talk. More precisely, Cam-
pos (joint work with Lucas Aragão, Gabriel Dahia, Rafael Filipe and João Pedro
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Marciano) showed that there exists n = rO(rk) such that, with high probability,
every r-colouring of the edges of the random graph G(n, 1/2) contains a monochro-
matic induced copy of every graph with k vertices. A key tool in the proof was
a new kind of container lemma, which was discovered recently by Campos and
Wojciech Samotij. Julian Sahasrabudhe presented another recent breakthrough in
Ramsey theory (joint work with Marcelo Campos, Matthew Jenssen and Marcus
Michelen): a randomized construction that improved the best-known lower bound
on the off-diagonal Ramsey numbers R(3, k).

Another highlight of the workshop was the talk of Richard Montgomery, who
announced the resolution (joint work with Natalie Behague and Daniel Il’kovič)
of the famous Kim–Vu sandwich conjecture, which states that if d ≫ logn, then
the random d-regular graph G(d) can be ‘sandwiched’ between two Erdős–Rényi
random graphs G(n, p) and G(n, q) with p, q =

(

1 + o(1)
)

d/n, in the following
sense: there exists a coupling (G1, H,G2) such that

G1 ∼ G(n, p), H ∼ G(d), G2 ∼ G(n, q) and P
(

G1 ⊂ H ⊂ G2

)

= 1− o(1).

Two other beautiful talks about random graphs were given by Julia Böttcher (joint
work with Peter Allen, Yoshiharu Kohayakawa and Mihir Neve), on applications
of the sparse blow-up lemma to extremal problems about bounded-degree span-
ning subgraphs of random graphs, and by Nina Kamčev (joint work with Nicolas
Broutin, Gábor Lugosi, Bruce Reed, and Liana Yepremyan) on ways of detect-
ing planted trees in sparse random graphs, focusing in particular on the case
of a uniformly-chosen random tree with k = k(n) vertices. Another important
breakthrough was presented by Marcus Kühn, who described his recent resolution
(joint work with Felix Joos) of a notorious conjecture about the final number of
edges in the hypergraph removal process. In this fundamental random process,
uniformly-random copies of a k-uniform hypergraph are removed one by one from

the complete hypergraph K
(k)
n until no copies are left.

Several talks focused on design theory, including those of Peter Keevash, who
presented a new proof of the existence of designs, and Noga Alon, who presented
solutions to two problems of Erdős about partial designs. Furthermore, the talk of
Michelle Delcourt discussed her recently introduced method of refined absorption
(joint with Luke Postle), as well as several of its applications (joint work with
Cicley Henderson, Thomas Lesgourges, Tom Kelly and Luke Postle), such as a
construction of designs with high girth (joint with Luke Postle).

There were also several talks on additive combinatorics, including Huy Tuan
Pham’s stunning description of his recent work with Noga Alon on the indepen-
dence number of sparse random Cayley graphs, and the number of sets with small
sumset. The key step in their proof is an ‘efficient covering’ lemma for sets with
small sumset, which also resolves a conjecture of Shachar Lovett. Marcus Michelen
gave a beautiful talk on his work with Oren Yakir, in which they study a complex
analogue of the classical Littlewood-Offord problem, and deduce results about the
separation of the roots of random polynomials, and Mehtaab Sawhney described
his extremely technically impressive proof (joint with Michael Jaber, Yang Liu,
Shachar Lovett and Anthony Ostuni) of a quasipolynomial bound for the corners
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theorem, which is a two-dimensional generalization of Roth’s theorem on 3-term
arithmetic progressions.

Finally, there were a number of talks on applications of probabilistic and com-
binatorial techniques to resolve problems from other areas of mathematics. In
particular, Marius Tiba presented his work with Alessio Figalli and Peter van
Hintum on the stability of the Brunn–Minkowski and Prékopa–Leindler inequal-
ities, and Liana Yepremyan (joint with Matija Bucić, Bryce Frederickson, Alp
Müyesser and Alexey Pokrovskiy) and Matija Bucić (joint work with Benjamin
Bedert, Noah Kravitz, Richard Montgomery and Alp Müyesser) both presented
progress towards Graham’s rearrangement conjecture in general groups (originally,
Graham posed this conjecture for Zp, but it naturally generalizes to all groups).

As always, and on behalf of all participants, the organizers would like to thank
the staff and the director of the Mathematisches Forschungsinstitut Oberwolfach
for providing such a stimulating and inspiring atmosphere.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Tibor Szabó (joint with Stefan Glock, Olaf Parczyk, Silas Rathke)
The maximum diameter of simplicial complexes . . . . . . . . . . . . . . . . . . . . . 2310

Marius Tiba (joint with Alessio Figalli, Peter van Hintum)
Stability of Functional and Geometric Inequalities . . . . . . . . . . . . . . . . . . . 2312

Liana Yepremyan (joint with Matija Bucic, Bryce Frederickson, Alp
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Abstracts

On designs and partial designs

Noga Alon

1. Results

We consider two related open problems of Erdős on block designs. Recall that a
family of subsets A1, A2 . . . , Am of a finite set X is a (pairwise balanced incom-
plete) block design if every pair of distinct elements of X is contained in exactly
one of the subsets Ai. It is a partial design if every pair of distinct elements of X
is contained in at most one of the subsets Ai (equivalently, if |Ai ∩Aj | ≤ 1 for all
1 ≤ i < j ≤ m.)

The first problem deals with partial designs and appears in [6], see also [4],
problem number 664.

Problem 1. Is it true that for every fixed positive constant c < 1 there is a finite
constant C = C(c) so that the following holds. For every m and n and for every
family of subsets {A1, A2, . . . , Am} of [n] = {1, 2, . . . , n} that satisfies |Ai| > c

√
n

for all 1 ≤ i ≤ m, and |Ai ∩ Aj | ≤ 1 for all 1 ≤ i < j ≤ m, there is a subset
B ⊂ [n] so that 0 < |B ∩ Ai| ≤ C for all 1 ≤ i ≤ m?

The second problem appears in [5], page 35, see also [4], problem number 732.

Problem 2. Call a sequence n ≥ x1 ≥ x2 ≥ . . . ≥ xm ≥ 2 block-compatible for n
if there is a pairwise balanced block design A1, A2, . . . , Am of m subsets of [n] such
that |Ai| = xi for 1 ≤ i ≤ m. Is there an absolute constant c > 0 so that for all

large n there are at least ecn
1/2 logn sequences that are block-compatible for n ?

We show that the answer to the first problem is “no” and the answer to the
second is “yes”. The proofs are short, based on appropriate modifications of the
family of lines of a projective plane which form a block design with m = n =
q2 + q+1 subsets of cardinality q+1 = (1+o(1))

√
n of a set of size n = q2 + q+1.

It is well known that such a plane exists for any prime power q.
The following result settles Problem 1

Theorem 3. Let q be a (large) prime power and put m = n = q2 + q + 1. Then
there is a partial design consisting of m subsets A1, A2, . . . , Am of an n element
set P , so that |Ai| > 0.4

√
n for all 1 ≤ i ≤ m, |Ai∩Aj | ≤ 1 for all 1 ≤ i < j ≤ m,

and for any subset B of P that has a nonempty intersection with all sets Aj , there
is some 1 ≤ i ≤ m so that |B ∩ Ai| ≥ 0.1 logn.

The next result settles problem 2.

Theorem 4. Let q be a large prime power and put n = q2 + q + 1. Let S = (x1 ≥
x2 ≥ x3 ≥ . . . ≥ xm) be any sequence of integers satisfying

q + 1 ≥ x1 ≥ x2 ≥ x3 . . . ≥ xn ≥ 3,
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m = n +

n
∑

i=1

[

(

q + 1

2

)

−
(

xi

2

)

],

and xi = 2 for all n < i ≤ m. Then S is block-compatible for n. Therefore, the
number of sequences that are block-compatible for n is at least

(

n + q − 2

q − 2

)

= 2(0.5+o(1))n1/2 log n.

2. Remarks

• It is easy to see that the estimate in Theorem 3 is tight up to constant factors,
for every partial design in which all blocks are of sizes Θ(

√
n).

• Problem 1 for block designs (and not for partial designs) was also asked by
Erdős in [5]. This remains open although we suspect that the answer here is
negative as well. We suggest the following conjecture which, if true, would
establish this negative answer.

Conjecture 5. Let q be a (large) prime power, put n = q2 + q + 1, let P be
the set of n points of a projective plane of order q and let L1, L2, . . . , Ln be the
sets of points of its lines. Let R be a random subset of P obtained by picking
each point of P randomly and independently to lie in R with probability 1/2.
Then with high probability the smallest cardinality of a subset B of R that
intersects all the subsets L1 ∩R,L2 ∩R, . . . , Ln ∩R satisfies |B|/q > f(q) for
some function f(q) tending to infinity as q tends to infinity. In fact, this may
even be true with f(q) = Ω(log q).

This conjecture remains open, although related results have been proved in
[2], [3] using the container method. The parameters in these papers are very
different and it seems that a proof here, if true, would require additional ideas.
• Call a sequence n ≥ x1 ≥ x2 ≥ . . . ≥ xm ≥ 2 line-compatible for n if

there is a set P of n points in the Euclidean plane R2 so that for the family
L1, L2, . . . , Lm of all lines in R2 determined by the points of P , |Li ∩ P | = xi

for 1 ≤ i ≤ m. Note that every line-compatible sequence for n is also block-
compatible for n, but the converse is not true. Erdős conjectured in [5] (see
also [4], problem 733) that the number of sequences which are line compatible

for n is only 2O(n1/2). This upper bound was proved by Szemerédi and Trotter
in [7]. Note that in view of Theorem 4 this is much smaller than the number
of block-compatible sequences for n.

Indeed, there are far more block designs on n points than designs that can
be described by the lines determined by a set of points in the plane. This is
demonstrated by the following result.

Proposition 6.
(1) The number of hypergraphs on n labelled vertices whose edges form a block

design is 2Θ(n2 logn).
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(2) The number of hypergraphs whose vertices are n labelled points in R2 and
whose edges are the sets of points contained in the lines determined by
the points is only 2Θ(n log n).

The detailed proofs of all the results above can be found in [1].
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Hypercube statistics

Maria Axenovich

(joint work with Noga Alon, John Goldwasser)

Let Qn be the hypercube of dimension n whose vertices are identified with n-
component binary vectors. For a subset A of vertices of Qn and d ≤ n, let
λ(n, d, s, A) denote the fraction of subcubes Qd of Qn that contain exactly s ver-
tices of A. Let λ(n, d, s) denote the maximum possible value of λ(n, d, s, A) as A
ranges over all subsets of vertices of Qn, and let λ(d, s) denote the limit of this
quantity as n tends to infinity. It is easy to see that the limit exists, and is the
infimum over n of λ(n, d, s) as for any fixed d, s the function λ(n, d, s) is monotone
non-increasing in n.

The problem of determining or estimating the quantities λ(n, d, s) and λ(d, s) is
motivated by the questions and results of Goldwasser and Hansen on counting
structural configurations in hypercubes [6], as well as by the results on edge-
statistics in graphs by Alon, Hefetz, Krivelevich, and Tyomkyn [1], Kwan, Su-
dakov, and Tran [7], Martinsson, Mousset, Noever, and Trujic [8], and Fox and
Sauermann [7].

Clearly λ(d, s) = λ(d, 2d− s) and λ(d, 0) = 1. In addition, if s = 2d−1, then we see
that λ(d, s) = 1 by taking all vertices of the hypercube with even number of ones.

To state our upper bounds on λ(d, s), consider the generalized Johnson’s graph
J(4s, 2s, s) whose vertex set is the set of 2s-element subsets of a 4s-element set,
in which two vertices are adjacent if and only if the corresponding sets intersect
in exactly s elements. Let ω(s) = ω(J(4s, 2s, s)) denote the clique number of
J(4s, 2s, s). It is known that ω(s) ≤ 4s − 1, see for example Godsil and Royle
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[14]. Let t(n, k) be the number of edges in the Turán graph T (n, k), that is, the
complete k-partite n-vertex graph with parts that are as equal as possible. Denote
the density t(n, k)/

(

n
2

)

by π(n, k).

Theorem 1. Let s and d be integers. Then λ(d, s) = 1 if and only if s ∈
{0, 2d, 2d−1}. If 1 < s < 2d−1, then

λ(d, s) ≤ λ(d + 2, d, s) = π(d + 2, ω(s)) ≤
(

1− 1

4s− 1

)(

1 +
1

d + 1

)

.

In particular, λ(d+2, d, s) = 1 iff d+2 ≤ ω(s). When s= 1, we have λ(d, 1) ≤ λ(d+
2, d, 1) = π(d + 2, 3) for d < 6, and λ(d + 2, d, 1) = 3/4 otherwise.

Note that the general upper bound implies in particular that if s is not large,
say, 0 < s < d/8, then λ(d, s) ≤ 1− Ω(1/s).

To state our lower bounds on λ(d, s) we need to define cd and c(d, k). Let cd
denote the probability that a random d by d binary matrix whose rows are random
independent non-zero vectors of Fd

2 is nonsingular (in F2). It is easy and well known
that

cd =

d−1
∏

i=1

(

1− 2i − 1

2d − 1

)

,

which is roughly 0.289 for large d.

For 1 ≤ k ≤ d, let c(d, k) denote the probability that a random (d−k) by d binary

matrix whose columns are uniform random vectors in Fd−k
2 is of rank d− k (over

F2). By choosing the rows (not the columns) of the matrix one by one ensuring
that each row does not lie in the span of the previous ones it is easy to see that

c(d, k) =

d−k−1
∏

i=0

(

1− 2i

2d

)

.

Note that this quantity is larger than 1− 1
2k

.
The first simple lower bound in the theorem below appears in the paper Gold-

wasser and Hansen [6], we state it here for completeness. Note that this lower
bound approaches e−1 ≈ 0.37 as d tends to infinity.

Theorem 2. For any integer d ≥ 2, λ(d, 1) ≥
(

1− 2−d
)2d−1

. For all admissible

d and s, λ(d, s) ≥ cd. Moreover, for every s of the form s = 2k · j, where j is an
odd integer, which satisfies 0 < s ≤ 2d−1, λ(d, s) ≥ c(d, k). In particular, for any
s which is a power of 2, λ(d, s) ≥ 1− 1

s .

We summarise the best bounds we know on λ(d, 1) when d = 2, 3, or 4, as well
as the known exact values of λ(d, s). Observe that λ(d, 1) ≥ 2/(d + 1) by the
following construction. The Hamming weight of a binary vector is its number of
1’s. For a fixed d, let A be the set of all vertices in Qn with Hamming weight
divisible by d + 1. A copy of a Qd-cube contains precisely one vertex in A if
and only if the smallest Hamming weight of any of its vertices is congruent to
0 or 1 (mod d + 1). Together with upper bounds established by Baber [2] using
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the Flag Algebra method, we have the following estimates for d = 2, 3, and 4:
2/3 ≤ λ(2, 1) ≤ 0.68572, 0.5 ≤ λ(3, 1) ≤ 0.61005, and 0.4 ≤ λ(4, 1) ≤ 0.60254.
Motivated by our paper, Bodnár and Pikhurko [3] determined λ(d, s) for three
pairs (d, s) where λ(d, s) 6= 1. Using the Flag Algebra method they proved that
λ(3, 2) = 8/9, λ(4, 2) = 264/343 and λ(4, 4) = 26/27. Rahil Baber (personal
communication) was able to re-prove these results using the Flag Algebra method
with his code. At the moment these are the only pairs (d, s) for which λ(d, s) is
not 1 and is known precisely. In all three cases the lower bounds follow from the
proof of Theorem 2.
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Robustness and resilience for spanning graph of bounded degree

Julia Böttcher

(joint work with Peter Allen, Julia Böttcher, Yoshiharu Kohayakawa,
Mihir Neve)

Much progress has been made concerning Dirac-type conditions for the contain-
ment of spanning substructures in dense graphs. One conjecture that, how-
ever, still remains open is the well-known conjecture of Bollobás, Eldridge, and
Catlin [1, 2], which states that any n-vertex graph with minimum degree of (1 −

1
∆+1)n contains any n-vertex graph with maximum degree ∆ as a subgraph. The
best general condition for all ∆ is still given by the following classic theorem of
Sauer and Spencer [3].

Theorem 1 (Sauer–Spencer Theorem). Let ∆ > 0 be given. Suppose that G is
an n-vertex graph with minimum degree δ(G) ≥ (1 − 1

2∆ )n and H is an n-vertex
graph with maximum degree ∆(H) ≤ ∆. Then H is a spanning subgraph of G.

For bipartite graphs, improving on [5], in recent work the following was ob-
tained, which shows that in general one can do better when additionally the chro-
matic number is restricted.
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Theorem 2 (Allen, Böttcher, Skokan, Sudakov). There is a constant c > 0 such
that for each sufficiently large n and each ∆ ≥ 1, every n-vertex graph G with
minimum degree

δ(G) ≥
(

1− c
log ∆

∆

)

n ,

contains each n-vertex bipartite graph H with maximum degree at most ∆.

This is tight up to the value of c.

Moving to sparser hostgraphs, we recently obtained the following robustness and
resilience results. Given a graph G we write G(p) for the subgraph of G in which
every edge of G is included independently with probability p. The binomial random
graph G(n, p) then equals Kn(p). The maximum 1-density m1(H) of the graph H
is defined as follows. Let d1(H) = e(H)/(v(H) − 1) denote the 1-density of H ,
and let m1(H) = maxH′⊆H d1(H ′), where the maximum runs over all subgraphs
of H with at least two vertices.

Theorem 3 (Robust Sauer–Spencer Theorem). For all γ > 0 and ∆ ∈ N, there
is a constant C > 0 such that if H is an n-vertex graph with maximum degree
∆(H) ≤ ∆ and G is an n-vertex graph with minimum degree δ(G) ≥

(

2∆−1
2∆ +γ

)

n,

then for p ≥ Cn−1/m1(H) logn asymptotically almost surely the graph H is a
subgraph of G(p).

For the proof of this theorem, we combine a spread version of the dense case
of the sparse blow-up lemma from [4] with an extension of the Sauer-Spencer
Theorem.

Theorem 4 (Resilient Sauer–Spencer Theorem). For all ∆ ≥ 2, γ ∈ (0, 1/2∆),
there exists a constant C > 0 such that for p ≥ (logn/n)1/∆, the following holds
asymptotically almost surely for Γ ∼ G(n, p). Let G be a spanning subgraph of Γ
with minimum degree δ(G) ≥

(

1 − 1
2∆ + γ

)

pn, and let H be an n-vertex graph

with maximum degree ∆(H) ≤ ∆ and with at least Cp−2 vertices which are not
contained in any triangles of H. Then, G contains a copy of H.

The proof of this theorem uses the sparse blow-up lemma. The restriction
concerning vertices which are not in triangles is necessary here. The bound on p
is unlikely to be optimal.
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Lower bounds for Ramsey numbers of bounded degree hypergraphs

Domagoj Bradač

(joint work with Zach Hunter and Benny Sudakov)

1. Introduction

Given a positive integer q and a k-uniform hypergraph (or k-graph for short) H ,
the q-color Ramsey number of H , denoted by r(H ; q) is the minimum integer N
such that in any q-coloring of the complete k-uniform hypergraph on N vertices,
there is a monochromatic copy of H .

One of the key directions in (hyper)graph Ramsey theory is studying the Ram-
sey numbers of sparse (hyper)graphs. A seminal result of Chvátal, Rödl, Szemerédi
and Trotter [2] states that graphs with bounded degree have linear Ramsey num-
bers. A hypergraph analogue of this result was proved by Cooley, Fountoulakis,
Kühn and Osthus [5, 6] and for 3-uniform hypergraphs independently by Nagle,
Olsen, Rödl and Schacht [9].

Our topic is understanding the above results quantitatively. Namely, given
integers k, q,∆ with ∆ sufficiently large, we define C(k)(∆; q) as the infimum value
of C such that for all sufficiently large n, any n-vertex k-graph H with maximum
degree ∆ satisfies r(H ; q) ≤ Cn.

For graphs, there has been a long line of study estimating C(2)(∆; q). For two
colors the current best bounds are 2Ω(∆) ≤ C(2)(∆; 2) ≤ 2O(∆ log∆), where the
lower bound is due to Graham, Rödl and Rucinski [8] and the upper bound due
to Conlon, Fox and Sudakov [4]. For more than two colors, the best upper bound

is C(2)(∆; q) ≤ 2Oq(∆
2) by Fox and Sudakov [7].

Turning our attention to hypergraphs, the best upper bounds are C(k)(∆, q) ≤
twk(c∆), for k ≥ 4, and C(3)(∆, q) ≤ tw3(c′∆ log ∆), for k = 3 due to Conlon, Fox
and Sudakov [3]. Some evidence that these bounds are close to the truth is given
by constructions of Conlon, Fox and Sudakov for k = 3 and of Bradač, Fox and
Sudakov for k ≥ 4, of k-graphs with n vertices, maximum degree Ok(n) and 4-color
hypergraph Ramsey number twk(Ω(n)). Thus it is a natural question posed in [3]
and reiterated in [1] whether there exist k-graphs H with maximum degree ∆ and
arbitrarily many vertices for which the Ramsey number is at least twk(ck∆) · n,
that is, to determine whether C(k))(∆; 4) ≥ twk(ck∆), for some ck > 0 depending
only on k. Our main theorem is a positive answer to the above question.

Theorem 1. For any k ≥ 2, there is a constant ck > 0 such that for any inte-
gers ∆ ≥ 1/ck and n ≥ ∆, there exists a k-uniform n-vertex hypergraph H with
maximum degree at most ∆ whose 4-color Ramsey number is at least twk(ck∆) ·n.

2. Proof ideas

Our proof borrows some ideas from the work of Graham, Rödl and Ruciński [8]
who proved the lower bound for graphs. Additionally, as a building block, we use
the aforementioned construction by Bradač, Fox and Sudakov [1] of k-graphs with
m edges whose 4-color Ramsey number is twk(Θ(

√
m)).
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The k-graph H in Theorem 1 is the edge union of two hypergraphs. The first
one, which we shall call HR, where R stands for “random”, is obtained from the
binomial random hypergraph with average degree O(∆) by removing high degree
vertices. The second one, which we denote by HE , where E stands for “expander”,
is obtained by taking O(n/∆) random copies of a k-graph H0 on O(∆) vertices with
maximum degree O(∆). The construction of our gadget H0 is a small modification
of the construction from [1] and is obtained by considering a d-regular 2-graph F
with expansion properties (here d depends only on k), and putting a k-edge for
any k − 1 vertices spanning a tree in F and any distinct k-th vertex.

Informally speaking, H0 has two crucial properties. First, any pair of vertices is
contained in a k-edge. Second, given any set W ⊂ V (H0) of size ε|V (H0)| (where
ε > 0 is not too small with respect to d), the auxiliary (k− 1)-graph H ′

0 = H ′
0(W )

where e is an edge if e∪ {w} ∈ E(H0) for some w ∈W “behaves like” the (k− 1)-
uniform gadget hypergraph we define from F . More specifically, since F is an
expander, there will be U ⊂ V (F ) of size (1 − ε)|V (F )| so that each u ∈ U has a
neighbor in W , whence H ′

0 contains a (k− 1)-uniform edge for every k− 2 vertices
in U spanning a tree in F , along with any distinct (k−1)-th vertex. Consequently,
any two vertices in U belong to a common edge of H ′

0, and we can further iterate
this (defining an analogous auxiliary (k−2)-graph H ′′

0 , it should again behave like
our gadget in uniformity k− 2). The fact that the hypergraph ‘behaves similarly’
at lower uniformities is what allows us to use stepping-up techniques.

The coloring that avoids a monochromatic copy of H is obtained by blowing up
a modification of the usual stepping-up coloring. More concretely, a variant of the
stepping-up coloring yields a 4-coloring on twk(ck∆) vertices, which, for example,

has no monochromatic copy of K
(k)
∆ . Then, we take an Ωk(n/∆)-blow-up of this

coloring to get a coloring on twk(ck∆) · n vertices. There is some freedom when
performing this blow-up and we can tailor it to our setting to ensure the resulting
coloring avoids monochromatic copies of H .
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[9] B. Nagle, S. Olsen, V. Rödl, and M. Schacht. On the Ramsey number of sparse 3-graphs.
Graphs Combin., 24(3):205–228, 2008.

On Graham’s rearrangement conjecture over Fn

2

Matija Bucić

(joint work with Benjamin Bedert, Noah Kravitz, Richard Montgomery,
Alp Müyesser)

A sequence g1, g2, . . . , gn of elements of a (multiplicative) group G is a valid or-
dering if the partial products

g1, g1g2, g1g2g3, . . . , g1 · · · gn
are all distinct. Which subsets of groups admit valid orderings? Variants of this
natural problem have been studied in many different cases over the years.

The first question in this direction appeared in 1961, when Gordon [9], moti-
vated by constructions of complete Latin squares, asked for which finite groups the
entire group has a valid ordering. Gordon gave a complete characterization in the
abelian case: A finite (additive), nontrivial abelian group G admits a valid order-
ing if and only if

∑

g∈G g 6= 0, this being the obvious necessary condition for the

existence of such an ordering. In 1974, Ringel [16] posed the closely related prob-
lem of characterising the groups G whose elements can be ordered as g1, . . . , gn
in such a way that g1 = g1g2 · · · gn = id but otherwise all partial products are
distinct. The motivation for this question came from Ringel’s solution [17] of the
Heawood map colouring conjecture.

The nonabelian case of Gordon’s problem is more subtle, since there are some
small nonabelian groups (such as S3) that, for no apparent reason, fail to have
valid orderings. In 1981, Keedwell [12] posed the bold conjecture that every suf-
ficiently large nonabelian group has a valid ordering. Müyesser and Pokrovskiy
[13] recently proved Keedwell’s conjecture as a consequence of their more general
probabilistic analogue of the Hall–Paige Conjecture [7,11] concerning the existence
of transversals in multiplication tables. This work also shows that large groups
have an ordering, in the sense that Ringel asked for, if and only if the product of
all group elements (in any order) is an element of the commutator subgroup1.

Here, we will be concerned not only with the case when an entire group G admits
a valid ordering but with the more general question of when an arbitrary subset
S of a given group G admits a valid ordering. Notice that when S contains the
identity element, every possible valid ordering of S must start with the identity,
since otherwise two consecutive partial products would be equal. Thus, if G is
abelian and

∑

g∈S g = 0, then there cannot be a valid ordering of S. In order to
avoid this obstruction, we restrict our attention to subsets S not containing the
identity, and the following is our central question.

1This condition is equivalent to existence of an ordering g1, . . . , gn such that g1g2 · · · gn = id.
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Question 1. For which groups G does every subset S ⊆ G \ {id} admit a valid
ordering?

It seems feasible that the answer to this question is affirmative for every finite
group G. At first glance, finding valid orderings for smaller subsets S might seem
like an easier task, since there is more space to place the partial products without
creating collisions. However, the potential obstructions for small S are at least
as rich as for Gordon’s setting S = G \ {id}, since a small set S may itself be
a subgroup of G, or could be a complicated conglomeration of approximate sub-
groups and random-like sets. In the graph-theoretic formulation of these problems,
which we will describe below, Gordon’s setting corresponds to the complete graph
case (in particular, a directed variant of a well-known conjecture of Andersen [2]),
whereas Theorem 1 corresponds to a sparse analogue. Such sparse analogues in
extremal graph theory tend to be harder and less well understood than their dense
counterparts.

The simplest instance of Question 1 is when G = Fp, for a prime p. This
problem was first posed by Graham [10] in 1971 and later reiterated in an open
problems book of Erdős and Graham [8].

Conjecture 2 (Graham). Let p be prime. Then every subset of Fp \ {0} admits
a valid ordering.

Most previous work towards Conjecture 2 has concerned the edge cases where
either S or Fp \ S is very large. The best result for small sets S is due to Bedert

and Kravitz [3], who showed that every set S ⊆ Fp \ {0} of size at most elog
1/4 p

has a valid ordering. For very large sets S, the aforementioned result of Müyesser
and Pokrovskiy [13] establishes Conjecture 2 for all sets S ⊆ Fp \ {0} of size at
least (1− o(1))p (and indeed proves an analogous result for all finite groups). The
intermediate regime remains open.

Various groups of authors have considered instances of Question 1 other than
G = Fp. In particular, Alspach [5] conjectured an affirmative answer to Question 1
for all finite abelian groups G, and Alspach and Liversidge [1] confirmed this for
subsets of size up to 11. For extensions of this problem to a nonabelian setting,
see [6, 14] and the dynamic survey of Ollis [15].

In a different direction, Bucić, Frederickson, Müyesser, Pokrovskiy, and Yepre-
myan [4] have recently provided an affirmative answer to an “approximate” relax-
ation of Question 1. They showed that every finite subset S of any group G has
an ordering in which all but o(|S|) partial products are distinct.

Main results. Despite the partial progress discussed above, there is no infinite
class of groups G for which we have a complete understanding of Question 1. Our
main result remedies this situation for the family of groups Fn

2 .

Theorem 3. There is an absolute constant C such that for all n ∈ N, every set
S ⊆ Fn

2 \ {0} of size at least C has a valid ordering.

Our proof of Theorem 3 treats the “sparse S” and “dense S” regimes sepa-
rately. Our argument for the sparse case makes use of the specific structure of Fn

2 ,
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but our argument for the dense case applies to general (even nonabelian) groups.
In particular, we are able to provide an affirmative answer to Question 1 if one
restricts attention to subsets S of size at least |G|1−c; this significantly improves
on the result of Müyesser and Pokrovskiy [13], which treats only subsets S of size
(1− o(1))|G|.

Theorem 4. There is an absolute constant c > 0 such that for any finite (possibly
nonabelian) group G, every subset S ⊆ G \ {id} of size at least |G|1−c admits a
valid ordering.
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[9] B. Gordon, Sequences in groups with distinct partial products, Pacific J. Math. 11 (1961),
1309–1313.

[10] R. L. Graham, On sums of integers taken from a fixed sequence, Proceedings of the Wash-
ington State University Conference on Number Theory (Washington State Univ., Pullman,
Wash., 1971), Washington State University, Department of Mathematics, Pi Mu Epsilon,
Pullman, WA, 1971, pp. 22–40.

[11] M. Hall and L. J. Paige, Complete mappings of finite groups, Pacific J. Math. 5 (1955),
541–549.

[12] A. Keedwell, P. Cameron, J. Hirschfeld, and D. Hughes, Sequenceable groups: a survey, LMS
Lecture Notes 49 (1981), 205–215.
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Induced Ramsey Numbers

Marcelo Campos

(joint work with Lucas Aragão, Gabriel Dahia, Rafael Filipe, João Marciano)

We write G
ind−−→ H to denote the following property: for any red/blue colouring

of the edges of G, there exists an induced monochromatic copy of H (that is, a
copy of H which is induced in G, and all of its edges have the same colour). We
then define

Rind(H) = min
{

v(G) : G
ind−−→ H

}

.

In particular, observe that we have Rind(Kk) = R(k), the usual Ramsey number,
since every copy of Kk in a graph G is also an induced subgraph of G. For general
graphs H , on the other hand, Erdős remarked that even “the existence of [the
induced Ramsey number] is not at all obvious.”

Deuber [3], Erdős, Hajnal and Posa [6] and Rödl [10] independently established
in the 1970s that Rind(H) is finite for every graph H . While none of these works
provide an explicit dependency on k, the number of vertices of H , [5] later remarked
that the best bound that one can deduce from the proofs in [3,6,10] is of the form

Rind(H) ≤ 22
k1 + o(1)

.

Nevertheless, Erdős [4,5] conjectured, first implicitly in 1975 and then explicitly in
1984, that the function Rind(H) should grow at most exponentially as a function
of v(H) = k for every H . Note that, if true, this would be best possible, since we
have Rind(Kk) = R(k) ≥ 2k/2.

Using the techniques of [10], one can prove Erdős’ conjecture for bipartite H .
The problem is much harder for non-bipartite H , however, and the next significant
advance was not obtained until almost 25 years later, by [9]. By taking G (the host
graph) to be a random graph built using projective planes, they showed, among
other results, that

(1) Rind(H) ≤ kO(k log k)

for every graph H with k vertices. [7] later provided an explicit, pseudorandom
graph attaining the bound in (1).

A few years later, [1] removed a factor of log k from the exponent in (1) and
showed, using an explicit graph, that

(2) Rind(H) ≤ kO(k).

In order to prove (2), the authors of [1] developed a general method for proving
Ramsey-type theorems using pseudorandom properties of the host graph G.

The result presented in the talk confirms Erdős’ conjecture for all graphs H .

Theorem 1. There exists a constant C > 0 such that

Rind(H) ≤ 2Ck

for every graph H with k vertices.
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We also consider the induced Ramsey number for r-colourings. Define Rind(H; r)
to be the r-colour induced Ramsey number of a graph H ; that is, the minimum
number of vertices of a graph G such that every r-colouring c : E(G)→ [r] of the
edges of G contains an induced monochromatic copy of H . The techniques used in
[1] and [9] do not work in this more general setting, and provide no bounds when
r ≥ 3, but [8] introduced a different approach in 2009, which can be used to show
that

(3) Rind(H ; r) ≤ rO(rk2).

The large gap between (3) and the known bounds for the r = 2 case motivated
Problem 3.5 in [2] that asks if one could show that, for fixed r ∈ N,

Rind(H ; r) ≤ 2k
1+o(1)

.

The methods used to establish Theorem 1 can also solve this problem in a very
strong form.

Theorem 2. There exists a constant C > 0 such that

(4) Rind(H ; r) ≤ rCrk

for every r ≥ 2 and every graph H with k vertices.

These methods moreover imply the stronger statement that for almost all graphs
G with N = rCrk vertices every r-colouring of the edges of G contains an induced
monochromatic copy of every graph H on k vertices.
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[6] P. Erdős, A. Hajnal, and L. Pósa. Strong embeddings of graphs into colored graphs. Infinite
and Finite sets, 10:585–595, 1975.

[7] J. Fox and B. Sudakov. Induced Ramsey-type theorems. Adv. Math., 219:1771–1800, 2008.
[8] J. Fox and B. Sudakov. Density theorems for bipartite graphs and related Ramsey-type

results. Combinatorica, 29:153–196, 2009.
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Applications of Refined Absorption

Michelle Delcourt

(joint work with Cicley Henderson, Thomas Lesgourges, Tom Kelly, Luke Postle)

The study of combinatorial designs has a rich history spanning nearly two cen-
turies. In a recent breakthrough, the notorious Existence Conjecture for Combina-
torial Designs dating back to the 1800s was proved in full by Keevash [12] via the
method of randomized algebraic constructions. Subsequently, Glock, Kühn, Lo,
and Osthus [10] provided an alternate purely combinatorial proof of the Existence
Conjecture via the method of iterative absorption. Very recently Delcourt and
Postle [6] introduce a novel method of refined absorption for designs and use it to
provide a new proof of the Existence Conjecture. Our method can also be used in
a ‘black box’ fashion and applied to many other problems in probabilistic design
theory. In this talk, we explore some of out recent results including the Existence
of High Girth Designs (Delcourt and Postle [7]), the large minimum degree setting
(Delcourt, Henderson, Lesgourges, and Postle [2]), and finding sufficiently spread
distributions on designs (Delcourt, Kelly, and Postle [3]).

1. Introduction. One of the most classical theorems in all of design theory is a
result of Kirkman [13] which classifies for which n there exists a set of triples of
an n-set V such that every pair in V is in exactly one triple; such a set is called a
Steiner Triple System. From the graph theoretic perspective, this is equivalent to a
decomposition of the edges of the complete graph Kn into edge-disjoint triangles.
Kirkman proved that the necessary divisibility conditions for this, namely that
3 |

(

n
2

)

and 2 | (n− 1) which equates to n ≡ 1, 3 mod 6, are also sufficient.
Arguably the most studied object in design theory is a natural generalization

of this object as follows. A Steiner system with parameters (n, q, r) is a set S
of q-subsets of an n-set V such that every r-subset of V belongs to exactly one
element of S. More generally, a design with parameters (n, q, r, λ) is a set S of
q-subsets of an n-set V such that every r-subset of V belongs to exactly λ elements
of S. The notorious Existence Conjecture originating from the mid-1800’s asserts
that designs exist for large enough n provided the obvious necessary divisibility
conditions are satisfied as follows: Let q > r ≥ 2 and λ ≥ 1 be integers. If n is
sufficiently large and

(

q−i
r−i

)

| λ
(

n−i
r−i

)

for all 0 ≤ i ≤ r− 1, then there exists a design

with parameters (n, q, r, λ).

2. Nash–Williams’ Conjecture. Focusing for a moment on triangle decom-
positions, for host graphs other than Kn, K3-divisibility may not be sufficient to
guarantee the existence of a K3-decomposition; consider for instance the cycle C6

which is certainly K3-divisible but does not contain K3 as a subgraph, let alone an
edge decomposition into copies of K3. A natural question is if we impose a local
density condition on G such as bounding the minimum degree from below can we
guarantee the existence of a K3-decomposition?
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The most famous conjecture in this setting is one by Nash–Williams from 1970:

Conjecture 1 (Nash–Williams [15]). Let G be a K3-divisible graph with n vertices
and minimum degree δ(G) ≥ 3

4n. If n is sufficiently large, then G admits a K3-
decomposition.

In an addendum to Nash–Williams’ original article [15], it is noted that if true,
then this conjecture would be best possible as Graham was able to produce a
construction showing that the fraction 3/4 is tight.

From the perspective of optimization, one could instead study the so-called frac-
tional relaxation of the problem. Here δ∗K3

denotes the fractional K3-decomposition
threshold, that is, the infimum of all real numbers c such that every graph G with
minimum degree at least c ·v(G) has a fractional K3-decomposition (an assignment
of non-negative weights to the triangles of G such that for each edge, the sum of
the weights of triangles containing that edge is exactly 1). In a breakthrough result
Barber, Kühn, Lo, and Osthus [1] show that the existence of a K3-decomposition is
fundamentally related to the existence of a fractional K3-decomposition as follows.

Theorem 2 (Barber, Kühn, Lo, and Osthus [1]). Let ε > 0. Any sufficiently
large, K3-divisible graph G on n vertices with minimum degree δ(G) ≥
(

max
{

δ∗K3
, 3
4

}

+ ε
)

· n admits a K3-decomposition.

Conjecture 3 (Fractional Nash–Williams). If G is a graph on n vertices with
minimum degree δ(G) ≥ 3

4n, then G admits a fractional K3-decomposition.

Subsequently over the years, there has been much interest in the fractional
relaxation; the best-known upper bound is due to Delcourt and Postle [4] from

2021 who proved that δ∗K3
≤ 7+

√
21

14 ≈ 0.82733.

3. Generalizing Erdős’ High Girth Existence Conjecture. We say a (j, i)-
configuration in a set P of sets on a ground set V is a set of i elements of P
spanning at most j elements of V . Thus a (j, i)-configuration in a K3-packing
is a set of i triangles spanning at most j vertices. Observe that one triangle is a
(4, 1)-configuration and any two triangles sharing a vertex is a (5, 2)-configuration.
Indeed, every (n, 3, 2)-Steiner system contains an (i + 3, i)-configuration for every
1 ≤ i ≤ n−3; this observation prompted Erdős to study (i+2, i)-configurations in
the 1970s. The girth of a triangle packing is the smallest integer i ≥ 2 such that
the packing contains an (i + 2, i)-configuration. In 1973 Erdős [8] conjectured:

Conjecture 4. For every integer g ≥ 3, every sufficiently large K3-divisible com-
plete graph admits a K3-decomposition with girth at least g.

This was recently proved by Kwan, Sah, Sawhney, and Simkin [14]. For Steiner
systems more generally, in 2022 the approximate version of this High Girth Exis-
tence Conjecture was settled by Delcourt and Postle [5] and, independently, Glock,
Joos, Kim, Kühn, and Lichev [9]; that is, they proved the existence of approximate
(n, q, r)-Steiner systems of high girth with almost full size. In fact, both papers de-
veloped a general methodology that finds almost perfect matchings in hypergraphs
that avoid a set of forbidden submatchings provided certain degree and codegree
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conditions are met. In particular, the general results then imply the approximate
version of the High Girth Existence Conjecture as a corollary. Recently, in 2024
Delcourt and Postle [7] proved the High Girth Existence Conjecture in full using
their newly developed refined absorption methodology.

4. Erdős meet Nash–Williams. The common generalization of the two pre-
ceding conjectures was dubbed the “Erdős meets Nash-Williams’ Conjecture” by
Glock, Kühn, and Osthus [11] in 2021. The main result in Delcourt, Henderson,
Lesgourges, and Postle [2] is the following:

Theorem 5. For every integer g ≥ 3 and real ε > 0, any sufficiently large K3-

divisible graph G on n vertices with minimum degree δ(G) ≥
(

max
{

δ∗K3
, 3
4

}

+ε
)

·n
admits a K3-decomposition with girth at least g.

Combined with the previous work of Delcourt and Postle [4] we obtain:

Corollary 6 (Corollary to 5). For every integer g ≥ 3 and real ε > 0, every
sufficiently large K3-divisible graph G on n vertices with minimum degree δ(G) ≥
(

7+
√
21

14 + ε
)

· n admits a K3-decomposition with girth at least g.
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Nearly tight bounds for MaxCut in hypergraphs

Oliver Janzer

(joint work with Julien Portier)

Given a graph G, a cut refers to a partition of the vertex set into two subsets,
with the size of the cut defined as the number of edges that have one vertex in
each of these subsets. The MaxCut of a graph G is the maximum size of a cut
over all possible bipartitions of the vertex set of G, and is denoted by mc(G). The
MaxCut problem has been central in both combinatorics and theoretical computer
science, and appears in Karp’s famous list of 21 NP-complete problems. As a
simple probabilistic argument shows that mc(G) ≥ m/2 for any graph G with m
edges, the focus has been on showing bounds on the surplus sp(G) of a graph,
defined as sp(G) = mc(G) −m/2. A celebrated result by Edwards [3] shows that
sp(G) ≥ (

√
8m + 1−1)/8, which is tight for a complete graph with an odd number

of vertices. Very recently, an inverse theorem for MaxCut has been established by
Balla, Hambardzumyan and Tomon [1], stating that if a graph G with m edges has
sp(G) = O(

√
m), then G contains a clique of order Ω(

√
m). Addressing a question

of Erdős and Lovász (see [4]), much work has been devoted to establishing stronger
lower bounds for sp(G) under the assumption that G is H-free, for some fixed graph
H .

A central problem in the area concerns the extension of Edwards’ result to hy-
pergraphs. An r-cut of a k-uniform hypergraph G is a partition of the vertex set
of G into r parts, and the size of the cut is defined as the number of hyperedges
having at least one vertex in each part of the cut. We are then interested in the
maximum size of an r-cut over all possible partitions of the vertex set of G, which
is denoted by mcr(G). As shown by Erdős and Kleitman [5], by assigning each
vertex to one of the r parts independently and uniformly at random, it follows

that mcr(G) ≥ S(k,r)r!
rk

m for every graph G with m edges, where S(k, r) is the
Stirling number of second kind, denoting the number of unlabelled partitions of
{1, . . . , k} into r nonempty sets. The r-surplus (or r-excess) of G is then defined

as spr(G) = mcr(G)− S(k,r)r!
rk

m. Similarly, we say that the surplus of an r-cut in

a k-graph with m edges is the size of the cut minus S(k,r)r!
rk

m. Conlon, Fox, Kwan
and Sudakov [2] showed that for hypergraphs, Edwards’ bound can be significantly
improved.

Theorem 1 (Conlon–Fox–Kwan–Sudakov [2]). For every 2 ≤ r ≤ k with (r, k) 6=
(2, 2) and (r, k) 6= (2, 3), every k-uniform hypergraph with m edges has an r-cut of
surplus Ω(m5/9).

They noted that for (r, k) = (2, 3), Steiner triple systems show that there are
3-uniform hypergraphs on m edges with 2-surplus Θ(

√
m). They furthermore

observed that with high probability the binomial random k-graph Gk(n, n3−k)
has r-surplus O(m2/3), where m is the number of its edges. This disproved a
conjecture of Scott [7], which had predicted that the complete k-graph has the
smallest 2-surplus.
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Conlon et al. [2] conjectured that this random hypergraph is asymptotically
optimal whenever (r, k) 6= (2, 2), (2, 3).

Conjecture 2 (Conlon–Fox–Kwan–Sudakov [2]). For any 2 ≤ r ≤ k with either
k ≥ 4 or r ≥ 3, every k-uniform hypergraph with m edges has an r-cut of surplus
Ω(m2/3).

In the particular case where r ∈ {k − 1, k}, Räty and Tomon [6] recently im-
proved Conlon, Fox, Kwan and Sudakov’s bound to Ω(m3/5−o(1)) by using spectral
techniques.

Theorem 3 (Räty–Tomon [6]). If r ∈ {k− 1, k} and r ≥ 3, then every k-uniform
hypergraph with m edges has an r-cut of surplus Ω(m3/5−o(1)).

Räty and Tomon pointed out that their methods do not extend to the range
2 ≤ r ≤ k−2. Obtaining strong results in the case r = 2 is of particular interest for
several reasons. Firstly, it is this case that has been the most extensively studied
in Theoretical Computer Science. This problem is known as Max Ek-Set Splitting,
or, in the case the hypegraph is not uniform, as Max Set Splitting. Secondly,
this case has close connections to other well-studied problems such as negative (or
positive) discrepancy, bisection width and hypergraph colourings.

Using a novel approach, we prove the following approximate version of the
Conlon–Fox–Kwan–Sudakov conjecture for all values of r.

Theorem 4. For any ε > 0, there exists some k0 = k0(ε) such that for any k > k0
and 2 ≤ r ≤ k, every k-uniform hypergraph with m edges has an r-cut of surplus
Ω(m2/3−ε).

In the case of linear hypergraphs, still for r ∈ {k − 1, k}, Räty and Tomon [6]
proved a stronger bound Ω(m3/4−o(1)). They noted that this is asymptotically
optimal, by constructing k-graphs with r-surplus O(m3/4) in which each pair of
vertices is in at most O(logm) edges (i.e., the hypergraphs are nearly linear).
They conjectured that the o(1) term can be removed and that the result can be
extended to all 2 ≤ r ≤ k.

We completely resolve this conjecture.

Theorem 5. For any 2 ≤ r ≤ k with either k ≥ 4 or r ≥ 3, every k-uniform
linear hypergraph with m edges has an r-cut of surplus Ω(m3/4).

We also show that this is tight up to a constant factor by constructing linear
(not just nearly linear) k-graphs with r-surplus O(m3/4).

Proposition 6. Fix some integers 2 ≤ r ≤ k. There is a constant α = α(k) such
that, for every m ∈ N, there exists an m-edge k-uniform linear hypergraph with
r-surplus at most αm3/4.



Combinatorics, Probability and Computing 2267

References

[1] I. Balla, L. Hambardzumyan, and I. Tomon, Factorization norms and an inverse theorem
for MaxCut, arXiv preprint arXiv:2506.23989, 2025.

[2] D. Conlon, J. Fox, M. Kwan, and B. Sudakov, Hypergraph cuts above the average, Israel
Journal of Mathematics, 233 (2019), 67–111.

[3] C. S. Edwards, An improved lower bound for the number of edges in a largest bipartite
subgraph, In Proc. 2nd Czechoslovak Symposium on Graph Theory, Prague, pages 167–181,
1975.
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Detecting planted trees in sparse random graphs

Nina Kamčev

(joint work with Nicolas Broutin, Gábor Lugosi, Bruce Reed,
and Liana Yepremyan)

Detecting structured anomalies in large random systems is a fundamental statis-
tical problem with applications in epidemiology, cybersecurity, and information
networks. In this setting, one observes a large graph and wishes to decide whether
the observed structure is consistent with a baseline random model (the null model)
or whether it contains a small, atypical pattern. Examples include identifying an
early-stage epidemic spread, locating a cyberattack, or detecting the emergence
of a signalling motif in a biological network. These questions can be formalised
as hypothesis testing problems on random graphs: under the null hypothesis the
graph is drawn from a random model (in our case the Erdős–Rényi graph G(n, p)),
while under the alternative a copy of a smaller template graph is embedded at a
random location, and the remaining edges are generated according to G(n, p).

This framework dates back to the planted clique problem introduced by Jer-
rum [8] and Kučera [9], and subsequently developed in works such as [1,3,4,6]. Al-
gorithmic clique detection is a major open problem in theoretical computer science
and combinatorics [1]. Related detection and recovery questions have been studied
for other types of subgraphs and random models, for example in [2,5,7,10–12]. In
this note we focus on the case when the planted subgraph is a tree. Our aim is
to understand when it is statistically possible to detect the presence of a planted
tree inside a sparse random graph.

Formally, let T be a tree on k vertices and consider the random graph G(n, p)
on vertex set [n], where each edge is included independently with probability p.
Under the null hypothesis, the observation is G ∼ G(n, p). Under the alternative,
a uniformly random embedding of T is first selected and its edges are added to
the graph, while all other potential edges appear independently with probability
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p. The resulting graph is denoted Gp(T ) = G(n, p) ∪ T . A test observes G and
must decide whether the instance was drawn from the null or the alternative. We
say that detection is possible if there exists a test that succeeds with probability
1 − o(1) as n → ∞. Throughout we focus on the sparse regime p = c/n, with
c > 0 fixed, and in particular on the supercritical regime c > 1, where G(n, c/n)
contains a giant component of linear size, as well as large ‘typical’ trees.

The detectability of a planted tree depends crucially on its structure. When T is
a star on k vertices, detection is immediate for all c > 0 once k ≫ logn/ log logn,
using the maximum degree in a typical random graph. At the opposite extreme,
when T is a path on k vertices, detection fails for any fixed c > 1 as long as
k = o(

√
n), as shown by Massoulié, Stephan, and Towsley [10]. Between these

two cases lie the “typical” trees – uniformly random labelled trees on k vertices
– whose detection behaviour does not seem to be governed by any single local
feature of T . How small can such a planted tree T can be while still leaving a
detectable property in G(n, p) ∪ T ?

Our results reveal a dichotomy depending on the mean degree c.

Theorem 1 (Possibility of detecting most known trees). Let p = c/n. There is a
constant C such that the following holds. Let T be a uniform random labelled tree
on k vertices. For most trees T , the following holds.

(a) If c < 1.2 and k > C logn, then there is a test which distinguishes Gp(T )
from G(n, p) with high probability.

(b) For c > 500 and k = o(
√
n), every test fails with probability 1

2 −o(1) (even
when the structure of T is revealed in advance).

Both bounds on k are optimal up to constant factors.
We also establish analogous results for the case in which the planted tree itself

(denoted T) is chosen uniformly at random and its shape is not revealed to the
detector. In this more challenging setting, detection is still possible for pn < 1.1
when k ≥ C log2 n. The same impossibility regime (b) applies for c > 500.

The surprising aspect of the positive results is that detection remains possible
even in the supercritical regime, where G(n, p) contains random trees of size at least
Ω(n1/3). The reason lies in subtle changes in local expansion properties caused by
the planting. A typical random tree contains many “hairy” paths – paths whose
vertices have an unusually large boundary in G(n, p)∪T (or G(n, p)∪T)– and the
presence of such paths can be used as a test distinguishing it from G(n, p) with
probability 1− o(1).

It could also come as a surprise that the size of the smallest detectable tree
transitions from the order of magnitude log2 n to

√
n as the mean degree pn

increases, and understanding this transition remains an intriguing open problem.
We also show a similar transition for the detection of a fixed d-ary tree.

While our emphasis here is on detection, a refinement of these ideas also yields
consequences for partial reconstruction.
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Open problems. We point out only a few of the many open problems remaining
in the area. Rather informally, given a class of k-vertex trees Tk, define the detec-
tion threshold as ‘the smallest’ k = k(n, p) such that Gp(T ) can be distinguished
from G(n, p) for T ∈ Tk, with probability 1− o(1).

• For pn = 1 + ǫ(n) and ǫ = o(1) appropriately parametrised, what is the
detection threshold of a path?
• What is the maximum value of pn for which the detection threshold of

typical random trees is polylog(n)? What about d-ary trees?
• For pn < 1.1, is it possible to detect an unknown random tree of size
O(log n)?
• Can our method (the hairy-path test) be performed in polynomial time?

More broadly, it would be interesting to investigate alternative models in which
edges are removed from G(n, p) according to a specific distribution (see, e.g., [5]).
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A short proof of the existence of designs

Peter Keevash

The existence of designs was one of the oldest problems in combinatorics, studied
by many 19th century mathematicians, including (perhaps in chronological or-
der) Plücker, Kirkman, Sylvester, Woolhouse, Cayley and Steiner. Steiner’s name
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became attached to the fundamental object of interest, namely a Steiner system
with parameters (n, q, r), which is a set S of q-subsets of an n-set X such that
every r-subset of X is contained in exactly one element of S. There are some
natural necessary divisibility conditions (discussed below) on n in terms of q and
r for the existence of such a system S. The existence conjecture states that these
conditions suffice for n > n0(q, r) large enough in terms of q and r. There are
now three quite different proofs of this conjecture, chronologically [1–3]; we refer
the reader to these papers for more history of the problem and references to the
large associated literature (the solution of the conjecture has inspired several other
dramatic breakthroughs in design theory). We give yet another proof, which has
the advantages of being much shorter and giving a reasonable bound for n0.

To state the result, we adopt the formulation of hypergraph decompositions. We
denote the complete r-graph on a set S by

(

S
r

)

: this is a hypergraph with vertex

set S and edge set consisting of all r-subsets of S. We also write Kr
n =

(

[n]
r

)

, where
[n] := {1, . . . , n}. We identify hypergraphs with their edge sets, so |H | counts
edges (we let vH count vertices). A Steiner system with parameters (n, q, r) is
equivalent to a Kr

q -decomposition of Kr
n, that is, a partition D of (the edge set of)

Kr
n into copies of Kr

q . We can also think of D as a perfect matching (partition of
the vertex set into edges) in the design hypergraph Kr

q (Kr
n), where for an r-graph

G we write Kr
q (G) for the

(

q
r

)

-graph H with V (H) = G (vertices of H are edges
of G) and edges consisting of all (edge sets of) copies of Kr

q in G. The necessary
divisibility conditions mentioned above appear in the integral relaxation, where
for Φ ∈ ZKr

q (G) we define ∂Φ ∈ ZG by (∂Φ)e =
∑{ΦQ : e ∈ Q}: if ∂Φ = G′ ⊆ G

we call Φ an integral Kr
q -decomposition of G′, noting that if Φ is {0, 1}-valued

then we can identify Φ with a (true) Kr
q -decomposition of G′. For G ⊆ Kr

n we say

that G is Kr
q -divisible if ∂Φ = G for some Φ ∈ ZKr

q (K
r
n); thus Kr

q -divisibility is a
necessary condition for having a Kr

q -decomposition.

Theorem 1. For all q > r ≥ 1 there is n0 so that if n ≥ n0 and Kr
n is Kr

q -divisible
then Kr

n has a Kr
q -decomposition.

We fix q > r ≥ 1, ρ = (6
(

q
r

)

)−2, α = (2q)−rρ and n > n0 = (4q)90q/α.

1. Proof overview

Our strategy for proving Theorem 1 proceeds via the following five steps. In
broad outline, as in all previous proofs, it is an absorption strategy, following
the framework of [1], with simplifications to remove extra properties that are not
needed for our current purpose.

1. Randomly reserve a sparse subgraph R ⊆ Kr
n, to be used in Step 4.

2. Find an ‘absorber’ A ⊆ Kr
n \R, to be used in Step 5.

3. Find a ‘regularity boosted’ set of q-cliques H ⊆ Kr
q (G), where G := Kr

n \
(A ∪R).

4. Find edge-disjoint cliques D ⊆ H with leave L := G \
⋃

D ⊆ R.
5. Find clique decompositions DL of A ∪ L, so D ∪DL of G.
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Here Step 1 is a simple Chernoff bound, Step 3 is a case of [2, Lemma 6.3], Step 4
is achieved by well-known random greedy arguments (the Rödl nibble) and Step
5 follows easily from the previous steps. The key to the proof is the second step,
formulated in the following lemma, in which we see the meaning of ‘absorber’ (also
called ‘omni-absorber’ in [1]): it is a subgraph A disjoint from R such that A ∪ L
has a Kr

q -decomposition for any Kr
q -divisible L ⊆ R. The main novelty of our new

approach is in finding a relatively simple proof of this lemma.

Lemma 2. (Absorber) There is some n−α/4-bounded Kr
q -divisible A ⊆ Kr

n\R that
is an absorber for R, that is, A ∪ L has a Kr

q -decomposition for any Kr
q -divisible

L ⊆ R.

Our basic gadget for various clique exchange operations in our construction
consists of an r-graph Ω with two Kr

q decompositions Υ+ and Υ−. We have a

designated clique Q̂+ ∈ Υ+ such that the cliques Q̂e ∈ Υ− such that the cliques
Q̂e ∈ Υ− that share an edge with Q̂+ are ‘maximally disjoint’.

Our first application of this gadget (in the Splitting step 3 below) is to modify

some integral decomposition Φ ∈ ZKr
q (K

r
n) without changing the value of ∂Φ so

as to eliminate a copy of some clique Q. To do so, we fix any copy φ(Ω) of Ω

with φ(Q̂+) = Q and define Φ′ ∈ ZKr
q (K

r
n) by Φ′ = Φ + φ(Υ−)− φ(Υ+), meaning

that each Φ′
Q′ is ΦQ′ + 1 for Q′ ∈ φ(Υ−), or is ΦQ′ − 1 for Q′ ∈ φ(Υ+), or is

ΦQ′ otherwise. Then ∂Φ′ = ∂Φ, as φ(Υ+) and φ(Υ−) cover the same set of edges,

so their contributions cancel. Furthermore, as Q̂+ ∈ Υ+ we have Φ′
Q = ΦQ − 1;

if ΦQ > 0 we interpret this as removing a copy of Q from Φ and replacing it
by an equivalent set of signed cliques. Similarly, if ΦQ < 0 then we consider
Φ′ = Φ − φ(Υ−) + φ(Υ+), which we interpret as removing a negative copy of Q
from Φ and replacing it by an equivalent set of signed cliques.

For our second application of the gadget (in the Elimination steps 4 and 5

below) we rename some Q̂e0 as Q̂−, thus focussing on two cliques Q̂± ∈ Υ± with

Q̂+∩Q̂− = {e0}, which we use to modify some integral decomposition Φ ∈ ZKr
q (K

r
n)

without changing the value of ∂Φ so as to eliminate a ‘cancelling pair’ Q+ −Q−,
consisting of two cliques of opposite sign in Φ that intersect exactly in some edge
e. To do so, we fix any copy φ(Ω) of Ω with φ(Q̂±) = Q± and replace Φ by
Φ′ = Φ + φ(Υ−) − φ(Υ+). Then ∂Φ′ = ∂Φ is unchanged, Φ′

Q+ = ΦQ+ − 1 and

Φ′
Q− = ΦQ− + 1. If ΦQ+ > 0 and ΦQ− < 0 then the interpretation is that we have

removed a positive copy of Q+ and a negative copy of Q− and replaced them by
an equivalent set of signed cli

Assuming the existence of an integral absorber (in step 1 below), the construc-
tion of the absorber proceeds as follows.

1. (Integral absorber) Find Q1 ⊆ Kr
q (Kr

n) such that ∂Q1 is n−α/2-bounded, every

edge of Kr
n is in at most two cliques of Q1, and for any Kr

q -divisible J ∈ ZKr
n

supported in R there is Φ ∈ ZQ1 with ∂Φ = J .
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2. (Local decoders) Apply a random greedy algorithm to choose (q + r)-sets Ze

containing e for each e ∈ ⋃Q1, so that each r-graph
(

Ze

r

)

\ {e} is disjoint from all

others and from
⋃Q1. Let Q2 =

⋃

e∈
⋃

Q1
Kr

q (
(

Ze

r

)

).

3. (Splitting) Let Q1, . . . , Qt be a sequence in Kr
q (Kr

n) consisting of 2q+1r! copies of
each q-clique in Q1∪Q2, where 2qr! are labelled + and 2qr! are labelled −. Apply
a random greedy algorithm to choose copies Ωi = φi(Ω) of Ω with φi(Q̂

+) = Qi,
where each Ωi \ Qi is edge-disjoint from all others and from A0 :=

⋃

(Q1 ∪ Q2),
and V (Ωi) \ V (Qi) is disjoint from V (Ωj) \ V (Qj) whenever Qi and Qj share an
edge.

4. (Elimination) For each i ∈ [t] and Q′ ∈ Υ− ∪ Υ+ \ {Q̂+} we call φi(Q
′) a

splitting clique, with the same sign as Qi if Q′ ∈ Υ− or the opposite sign if
Q′ ∈ Υ+; if Q′ shares an edge with Q̂+ we call φi(Q

′) near, otherwise it is far. Let
(Q−

1 , Q
+
1 ), . . . , (Q−

t′ , Q
+
t′ ) be a sequence consisting of all pairs of oppositely signed

near cliques with a common edge. Apply a random greedy algorithm to choose
copies Ω′

i = φ′
i(Ω) with φ′

i(Q̂
±) = Q±

i where each Ω′
i \ (Q−

i ∪Q+
i ) is edge-disjoint

from all others and from all previously chosen cliques.

5. (Further Elimination) For each i ∈ [t′] and Q′ ∈ Υ± \ {Q̂−, Q̂+} we call φ′
i(Q

′)
an elimination clique with the opposite sign to Q′. We call a negative elimination
clique bad (for e) if it shares some edge e with some negative near clique. Let
(Q′−

1 , Q′+
1 ), . . . , (Q′−

t′′ , Q
′+
t′′ ) be a sequence consisting of all pairs where each Q′−

i is

a negative elimination clique that is bad for some ei and Q′+
i is the positive splitting

clique containing ei (which is unique and far). Apply a random greedy algorithm

to choose copies Ω′′
i = φ′′

i (Ω) with φ′′
i (Q̂±) = Q′±

i where each Ω′′
i \ (Q′−

i ∪Q′+
i ) is

edge-disjoint from all others and from all previously chosen cliques.

6. (Conclusion) For each Q′−
i as in Step 5 and each Q′ ∈ Υ± \ {Q̂−, Q̂+} we

call φ′′
i (Q′) a further elimination clique of the opposite sign to Q′. We define

Q = Q+∪Q−, whereQ+ contains all positive splitting cliques, positive elimination
cliques and positive further elimination cliques, and Q− contains all negative far
splitting cliques, negative good elimination cliques and negative further elimination
cliques. We define A :=

⋃

Q−.

This completes the construction of the absorber, modulo various ingredients that
have appeared in [1–3].
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The Hypergraph Removal Process

Marcus Kühn

(joint work with Felix Joos)

Let F be a k-uniform hypergraph where k ≥ 2. Starting with a complete k-
uniform hypergraph on n vertices, the F-removal process iteratively removes all
edges of a copy of F chosen uniformly at random among all remaining copies of F
until no copies are left. We use Rn(F) to denote the (random) final number of
edges present after termination. Besides generating hypergraphs without copies
of F , the F -removal process also yields maximal packings of edge-disjoint copies
of F and is perhaps the most natural way to approach the problem of generating
hypergraph packings.

It turns out that merely getting close to the order of magnitude of Rn(K3) is
challenging. As a first step, Spencer [6] as well as Rödl and Thoma [5] proved
that typically, that is with high probability (with probability tending to 1 as n→
∞), Rn(K3) = o(n2) holds. Grable [4] improved this to Rn(K3) ≤ n11/6+o(1)

and described how to obtain Rn(K3) ≤ n7/4+o(1). Following these attempts to
determine Rn(K3), Spencer conjectured that typically Rn(K3) = n3/2±o(1) holds
and offered $200 for a resolution [4, 7]. Eventually in 2015, Bohman, Frieze and
Lubetzky [2] famously confirmed this conjecture. However, since then there have
been neither results improving on their estimates nor any results that establish
the correct order of magitude of Rn(F) for any nontrivial case beyond F = K3.
In fact, obtaining asymptotic estimates for Rn(K4) was considered a central open
problem in the area.

Relying on the same heuristic as for the triangle, Bennett and Bohman [1] state
the following more general “folklore” conjecture predicting Rn(F) whenever F is

the k-uniform complete hypergraph K
(k)
ℓ on ℓ vertices.

Conjecture 1 ([1, Conjecture 1.2]). Let 2 ≤ k < ℓ. Then, with high probability,

n
k− ℓ−k

(ℓ
k)−1

−o(1)

≤ Rn(K
(k)
ℓ ) ≤ n

k− ℓ−k

(ℓ
k)−1

+o(1)

.

Our main result confirms this conjecture. In fact, we prove a significantly
stronger result. Using v(F) to denote the number of vertices and e(F) to denote
the number of edges of F , the k-density of F is ρF := (e(F) − 1)/(v(F) − k)
if v(F) ≥ k + 1. As in [3], we say that F is strictly k-balanced if F has at least
three edges and satisfies ρG < ρF for all proper subgraphs G of F that have at

least two edges. Note that K
(k)
ℓ is strictly k-balanced for all 2 ≤ k < ℓ. The

following is a corollary of our main result.

Theorem 2. Let k ≥ 2 and consider a strictly k-balanced k-uniform hypergraph F
with k-density ρ. Then, for all ε > 0, there exists n0 ≥ 0 such that for all n ≥ n0,
with probability at least 1− exp(−(logn)5/4), we have

nk−1/ρ−ε ≤ Rn(F) ≤ nk−1/ρ+ε.
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As part of our proof, we rely on a difference equation argument based on su-
permartingale concentration. Such arguments often require very carefully chosen
collections of random variables and the approach of Bohman, Frieze and Lubet-
zky is no exception. While they find an ingenious way to explicitly describe the
collection in the triangle case, the complexity of the underlying structures very
quickly makes such explicit descriptions practically infeasible, which limits such
an approach to this special case.

Our new approach crucially relies on circumventing the explicit choice of such
a collection. We take what usually constitutes the heart of such an argument,
namely explicitly finding a suitable collection of random variables, and replace it
with an implicit definition which in many aspects works by design but consists of
otherwise unknown structures. We are then left with proving abstract properties
of these implicitly given structures that we then subsequently rely on in the proof.
To give an example, for the analysis of the triangle case in [2], substructures
called fans that essentially correspond to graphs that for some ℓ ≥ 1 consist
of vertices u, v1, . . . , vℓ and the edges {u, vi} and {vj , vj+1} where 1 ≤ i ≤ ℓ
and 1 ≤ j ≤ ℓ − 1 play a key role. In contrast, in our more general analysis,
we instead work with maximizers of density-based optimization problems that we
consider without concrete knowledge of their structure.

Observe that complete (hyper)graphs exhibit a very high degree of symmetry
while most strictly k-balanced hypergraphs have locally and globally essentially
no symmetries. This complicates the analysis further and requires us to dedicate
substantial parts of the proof to dealing with the extension from cliques to general
strictly k-balanced hypergraphs.
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gorithms, In M. Karoński and H. Prömel, Eds., Lectures on Approximation and Randomized
Algorithms (1999), 73–155.



Combinatorics, Probability and Computing 2275

Parities in random Latin squares

Matthew Kwan

(joint work with Kalina Petrova, Mehtaab Sawhney)

An n× n Latin square is an n× n array filled with n different “symbols” (usually
taken to be the integers 1, . . . , n), with the property that each symbol appears
exactly once in each row and each column. For example, the multiplication table
of a group is always a Latin square; in general, Latin squares can be interpreted
as multiplication tables of a class of algebraic structures called quasigroups. See
for example [14] for an introduction to this vast subject.

Each row or column of an n×n Latin square L can be interpreted as a permuta-
tion of order n, which can be either even or odd. Let Nrow(L) be the number of odd
row permutations, and let Ncol(L) be the number of odd column permutations.
If L is the multiplication table of a group, then either Nrow(L) = Ncol(L) = 0
or Nrow(L) = Ncol(L) = n/2. However, for general Latin squares, the row and
column parities can have much richer behaviour, and much is still unknown. For
example, one of the most important conjectures in this direction is the Alon–Tarsi
conjecture, which (in probabilistic language) says that if n is even, and L is a
uniformly random n× n Latin square, then

Pr
[

Nrow(L) is even
]

= Pr
[

Nrow(L) + Ncol(L) is even
]

6= 1

2
.

(The first equality is not part of the original conjecture; it was observed by Huang
and Rota [11], in a paper where they also observed that the Alon–Tarsi con-
jecture has a number of surprising consequences in seemingly unrelated areas of
mathematics; see [10] for a modern survey). On the other hand, Alpöge [2] and
independently Cavenagh and Wanless [8] proved that

(1) Pr
[

Nrow(L) is even
]

=
1

2
+ o(1).

as n → ∞. In other words, if the Alon–Tarsi conjecture is true, then it is true
“just barely”.

Going far beyond (1), it has been suggested by Peter Cameron (in a variety
of different sources; see for example [4–7]) that the row parities of a Latin square
might be statistically completely unconstrained, in the sense that one can model
the n row parities of a random Latin square by simply making n independent coin
flips.

Conjecture 1. Let L be a uniformly random n × n Latin square. Then the
distribution of Nrow(L) is approximately the binomial distribution Bin(n, 1/2), as
n→∞.

(Note that exchanging rows does not affect the distribution of L, so the sequence

of row parities ~ξrow(L) ∈ (Z/2Z)n has a permutation-invariant distribution. This

means that if we condition on Nrow(L), then ~ξrow(L) ∈ (Z/2Z)n is a uniformly
random sequence in (Z/2Z)n, constrained to have exactly Nrow(L) “1”s. That is to
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say, in order to understand the distribution of ~ξrow(L), it is enough to understand
the distribution of Nrow(L).)

To elaborate on the attribution/history of Conjecture 1: the starting point
seems to have been the problem session at the British Combinatorial Conference
in 1993, where Cameron asked a related question that was extended by Jeannette
Janssen. However, at that time they did not seem to be very confident that the
statement of Conjecture 1 was actually true (in the BCC problem list [5] they
phrase the question as “is it true that...”). Cameron later posed the problem more
assertively in a 2002 survey on permutations and permutation groups [4], and it
seems he first referred to it as a “conjecture” in a 2003 lecture on random Latin
squares [6]. However, as far as we can tell, he never stated the problem in a fully
precise form (always using language like “approximately”).

There are many different ways to compare distributions, to make rigorous sense
of the word “approximately”. We are able to confirm Conjecture 1 in many dif-
ferent senses. For example, one strong way to compare distributions is in terms of
total variation distance: for two probability distributions µ, ν on the same space,
write dTV(µ, ν) = supA |µ(A) − ν(A)| (so for any event A, the probabilities of A
with respect to µ and ν differ by at most dTV(µ, ν)). The following theorem is a
consequence of our main (technical) result.

Theorem 2. Let L be a uniformly random n× n Latin square. Then

lim
n→∞

dTV

(

Nrow(L), Bin(n, 1/2)
)

= 0.

Equivalently, writing ~ξrow(L) ∈ (Z/2Z)n for the sequence of parities of rows of L,
and writing Unif((Z/2Z)n) for the uniform distribution on (Z/2Z)n, we have

lim
n→∞

dTV

(

~ξrow(L), Unif((Z/2Z)n)
)

= 0.

To briefly discuss why this conjecture took so long to be resolved (and, in our
opinion, why it is so interesting): generally speaking, it is quite easy to make
plausible predictions about uniformly random Latin squares, by making various
kinds of approximate independence assumptions (for example, Cameron’s conjec-
ture can be justified from the point of view that there is “no obvious reason” for
the parities of different rows to be correlated). However, it is surprisingly difficult
to rigorously prove anything nontrivial about uniformly random Latin squares, or
even to study them empirically.

The main issues are that Latin squares do not enjoy any neat recursive struc-
ture, and they are very “rigid” objects, in the sense that there are only very limited
ways to make a “local perturbation” to change a Latin square into another one. To
highlight the difficulties here, we remark that (despite some very ambitious con-
jectures; see [1, Section 4.1]) we still have a rather poor understanding of the total
number of n× n Latin squares (the best known upper and lower bounds differ by
exponential factors; see [21, Section 17]), and there is no rigorously justified way
to efficiently sample a uniformly random Latin square (there are certain ergodic
Markov chains on the space of n×n Latin squares [12,20], but these are not known
to be rapidly mixing). By now, there are quite a few known results about random
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Latin squares; the proofs of many of these results have required fundamental new
additions to a very limited toolbox of techniques, and Theorem 2 is no exception.
Two of the most important new ingredients are a new re-randomisation technique
via “stable intercalate switchings” (building on ideas from [17–19]), and a new ap-
proximation theorem comparing random Latin squares with a certain independent
model (building on ideas from [9, 15]).
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Sums of algebraic dilates

Jeck Lim

(joint work with David Conlon)

1. Introduction

For any subset A of C and λ1, . . . , λk ∈ C, the sum of dilates A+λ1 ·A+ · · ·+λk ·A
is given by

A + λ1 ·A + · · ·+ λk · A := {a0 + λ1a1 + · · ·+ λkak : a0, a1, . . . , ak ∈ A}.

Our concern here will be with estimating the minimum size of |A+λ1 ·A+· · ·+λk ·A|
in terms of |A|. For λ1, . . . , λk ∈ Q, this problem was essentially solved by Bukh [3],
from whose results it follows that if λi = pi/q for q as small as possible for such a
common denominator, then

|A + λ1 · A + · · ·+ λk ·A| ≥ (|p1|+ · · ·+ |pk|+ |q|)|A| − o(|A|)

for all finite subsets A of C, which is best possible up to the lower-order term.
This result was later sharpened by Balog and Shakan [1] when k = 1 and then
Shakan [13] in the general case, improving the o(|A|) term to a constant depending
only on λ1, . . . , λk.

When at least one of the λi is transcendental, it was shown by Konyagin and
 Laba [7] that

|A + λ1 · A + · · ·+ λk ·A| = ω(|A|).
The problem of giving more precise lower bounds for |A + λ · A| when λ is tran-
scendental was studied in some depth by Sanders [10, 11] and Schoen [12], with
progress tied to advances in quantitative estimates for Freiman’s theorem on sets
of small doubling. Using quite different techniques, Conlon and Lim [5] recently
resolved this problem, showing that there is a constant c such that

|A + λ ·A| ≥ ec
√

log |A||A|,

which, by a construction of Konyagin and  Laba, is best possible up to the value
of c.

Our focus here will be on the complementary case, where each of λ1, . . . , λk is
algebraic. Early results in this direction were proved by Breuillard and Green [2]
and Chen and Fang [4], with the latter showing that, for any fixed λ ≥ 1, |A +
λ · A| ≥ (1 + λ)|A| − o(|A|) for all finite subsets A of R. The problem of giving
more precise lower bounds for |A+ λ ·A| when λ is algebraic was raised explicitly
by Shakan [13] and by Krachun and Petrov [8], with the latter authors conducting
the first systematic study and making the first concrete conjectures.

To state their conjecture, suppose that f(x) ∈ Z[x] is the minimal polynomial

of λ, assumed to have coprime coefficients, and f(x) =
∏d

i=1(aix + bi) is a full
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complex factorisation of f . If we set H(λ) :=
∏d

i=1(|ai| + |bi|), the conjecture of
Krachun and Petrov [8] states that for any algebraic number λ,

|A + λ · A| ≥ H(λ)|A| − o(|A|)
for all finite subsets A of C.

Krachun and Petrov [8] gave some evidence for their conjecture by proving it in

the special case where λ =
√

2. Subsequently, as a consequence of their work [6]
on a conjecture of Bukh regarding sums of linear transformations, Conlon and Lim
verified the conjecture for all λ of the form (p/q)1/d with p, q, d ∈ N. More recently,
Krachun and Petrov [9] have revisited the problem, proving their conjecture in full
whenever λ is an algebraic integer.

We prove their conjecture in full for all algebraic numbers. Our method also
extends to longer sums of algebraic dilates, so we will state our results in that level
of generality. Given algebraic numbers λ1, . . . , λk, recall that if the field extension
K := Q(λ1, . . . , λk) of Q is of degree d = deg(K/Q), then there are exactly d
different complex embeddings σ1, . . . , σd : K → C. We also need to define the
denominator ideal (see, for example, [14]), which is the ideal in the ring of integers
OK given by

D := {x ∈ OK | xλl ∈ OK for l = 1, . . . , k}.
The key quantity H(λ1, . . . , λk) that plays the role of H(λ) for sums of many
algebraic dilates is then

H(λ1, . . . , λk) := NK/Q(D)

d
∏

i=1

(1 + |σi(λ1)|+ |σi(λ2)|+ · · ·+ |σi(λk)|),

where NK/Q(D) is the ideal norm of D.
With this definition in place, our main result, which is best possible up to the

behaviour of the lower-order term, is as follows.

Theorem 1. For any algebraic numbers λ1, . . . , λk,

|A + λ1 ·A + · · ·+ λk ·A| ≥ H(λ1, . . . , λk)|A| − o(|A|)
for all finite subsets A of C.

2. Freiman-type structure theorem

One of the main ingredients in the proof of Theorem 1 is a Freiman-type structure
theorem on sets with small sums of dilates, that is, sets A with

|A + λ1 ·A + · · ·+ λk ·A| ≤ C|A|.
Any such A also has small doubling, so, by the usual version of Freiman’s theorem,
it must be contained in a small generalised arithmetic progression (GAP). However,
a GAP does not necessarily have a small sum of dilates. Our variant of Freiman’s
theorem, stated below, says instead that A is contained in what we call an OK-
GAP, which shares with A the property that it has a small sum of dilates.
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Theorem 2. For every C > 0 and p ∈ N, there are constants n and F such that
for any A ⊂ K satisfying

|A + λ1 · A + · · ·+ λk ·A| ≤ C|A|,

there exists a p-proper OK-GAP P ⊂ K containing A of dimension at most n and
size at most F |A|.

3. Lattice densities

Another crucial ingredient is a high-dimensional generalisation of the notion of
local densities, which we call “lattice densities”, that allows one to represent a
discrete set A ⊂ Zd with a continuous set A. More precisely, for a (periodic) set
A ⊆ Zd and a flag of lattices F = {L0 ⊆ L1 ⊆ · · · ⊆ Lk}, the lattice density
LD(A;F) is a compact downset in [0, 1]k+1 which encodes information about the
density of A relative to the lattices Ll. Our continuous representation A is then
a compact subset of Rd+k+1 with a base in Rd resembling A and fibres in Rk+1

equal to the local lattice density at each point of A. This allows us to convert the
discrete sums of dilates problem into an analogous continuous one, which is much
easier to solve.
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Improved bounds for the minimum degree of minimal multicolor
Ramsey graphs

Sam Mattheus

(joint work with Yamaan Attwa, Tibor Szabó, Jacques Verstraete)

We say that a graph G is r-Ramsey for a graph H , denoted by G→ (H)r if every
r-coloring of the edges of G contains a monochromatic copy of H . A graph G is
called r-Ramsey-minimal for H if it is r-Ramsey for H , but no proper subgraph
of it is. The set of all r-Ramsey-minimal graphs for H is denoted by Mr(H).
The classical Ramsey number Rr(H), one of the most well-studied parameters
in Combinatorics, is then the smallest number of vertices of a graph in Mr(H).
Following the pioneering work of Folkman [5] on the smallest clique number of
Ramsey graphs for the clique, Burr, Erdős and Lovász [3] in 1976 initiated the
systematic study of the extremal behaviour of several other graph parameters. In
their seminal paper they investigated the chromatic number, the maximum and
the minimum degree, and the connectivity.

In this paper we will be particularly interested in the minimum degree of min-
imal Ramsey graphs. For a graph H and number r of colors we define

sr(H) := min{δ(G) | G ∈ Mr(H)},
to be the smallest possible minimum degree that could occur among minimal r-
Ramsey graphs for H . For cliques in the classical two-color case, Burr et al. [3]
established the following precise result:

(1) s2(Kk) = (k − 1)2.

Upon first glance, this result looks extremely surprising. First, it determines the
exact value of the smallest possible minimum degree in a minimal 2-Ramsey graph
for Kk. This is in stark contrast with our knowledge about the smallest number of
vertices in such graphs, which is hopelessly out of reach. Furthermore, the value of
the smallest minimum degree turns out to be just a quadratic function of k. This
is incredibly small considering that we know that even the smallest of Ramsey
graphs will have exponentially many vertices. How could it then be possible to
create a (necessarily enormous) 2-Ramsey graph for Kk, that has a vertex with
just (k − 1)2 neighbors, such that the presence of this vertex, and in fact any of
its incident edges are crucial in guaranteeing the 2-Ramsey-ness of said enormous
graph?

Fox, Grinshpun, Liebenau, Person and Szabó [6] investigated the behaviour
sr(Kk) for more than two colors. They found that for any fixed clique order k ≥ 3
there exist positive constants ck, Ck, such that

(2) ckr
2 log r

log log r
≤ sr(Kk) ≤ Ckr

2(ln r)8k
2

.

For the triangle K3, a slightly stronger lower bound was given in [6], which was
proved to be tight up to a constant factor by Guo and Warnke [7].

(3) sr(K3) = Θ(r2 log r).
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These results establish that for any fixed clique order k the value of the smallest
minimum degree sr(Kk) is quadratic in the number r of colors, up to some log-
arithmic factor. The power of the logarithm in the gap between the upper and
lower bounds however depends significantly on k.

On the other end of the spectrum, when the number r of colors is constant, Hàn,
Rödl, and Szabó [8] determined the order of magnitude of the smallest minimum
degree sr(k), up to a logarithmic factor. More generally, they have shown that
there exists a constant C such that for every k2 > r

(4) sr(Kk) ≤ Cr3k2 log3 r log2 k.

Considering that we know from [6] and [3] that sr(Kk) ≥ s2(Kk) = (k − 1)2, the
bound (4) establishes that sr(Kk) is quadratic up to a log2-factor for any fixed
number r of colors.

When both k and r are increasing, say r = r(k) is a decent increasing function
of k, the best known upper bounds vary depending on how fast r grows. In the
range r(k) < k2, the upper bound of (4) is the best we know.

In the complementary range of r(k) ≥ k2 another construction of Fox et al. [6]
gives1

(5) sr(Kk) = O(r3k3 log3 k).

Bamberg, Bishnoi, and Lesgourgues [1] developed a generalization of this construc-
tion and used that to obtain

(6) sr(Kk) = O(r5/2k5).

This represents the best known upper bound when r(k) ≥ Ω
(

k4

log6 k

)

and k tends

to infinity.

1. Our results

Summarizing the above: (1) When either the order k of the clique or the number
r of colors is constant, the smallest minimum degree sr(Kk) is quadratic, up to
poly-logarithmic factors, in terms of r and k, respectively; (2) when k and r both
tend to infinity, the best known upper bounds are polynomial, with the degree
of r (and sometimes also of k) being more than two. Bamberg et al. [1] in fact
conjectured that an upper bound r2k2, up to logarithmic factors, should hold in
all ranges of the parameters.

In this paper we give new constructions which establish this for a large range of
the parameters and improve the best known upper bounds for every large enough
k and r ≥ c k

log2 k
.

Our first main theorem improves the bounds (6), (5) and (4) whenever k tends
to infinity and r is large enough.

1In [6] only the weaker upper bound sr(Kk) ≤ q3 = O(r3k6) is stated. However, Bishnoi
and Lesgourgues [2] recently observed that the choice q ∼ rk2 used in [6] for the parameter q is
suboptimal and the calculation there also works with q ∼ rk log k, resulting in (5).
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Theorem 1. For all sufficiently large k, r satisfying k ≤ r log2 r, we have

sr(Kk) ≤ 2400k2r2+
30
k log20 r log20 k.

Note that this upper bound is of the form (rk)2+o(1) and the error term becomes
logarithmic when r(k) = eO(k log k).

For constant k, our second main result reduces the power of the log factor in
the upper bound of (2) from 8k2 to 2.

Theorem 2. For all k ≥ 3 there exists a constant Ck such that for all r ≥ 2

sr(Kk) ≤ Ck(r log r)2.

Combined with the lower bound of (2), Theorem 2 determines the value of
sr(Kk) up to a factor O(log r log log r), for every fixed k ≥ 4.

2. On the proof

Instead of dealing with minimal Ramsey graphs, the proofs of all the known bounds
on sr(Kk) work with an alternative function, distilled by Fox et al. [6] from the
original argument of Burr et al. [3] for s2(Kk) = (k − 1)2.

Definition 3 (Color Pattern). A sequence of pairwise edge-disjoint graphs G1, . . . ,
Gr on the same vertex set V is called an r-color pattern on V (where the edges of
Gi are said to have color i). The color pattern is Kk+1-free if Gi is Kk+1-free for
every i = 1, . . . r.

Given a color pattern G1, . . . , Gr on the vertex set V and an r-coloring c : V →
[r] of the vertices, a strongly monochromatic copy of a graph H according to c is
a copy of H whose edges and vertices all have the same color.

Definition 4. Let r, k ≥ 2 be positive integers, we define Pr(k) to be the smallest
positive integer n such that there exists a Kk+1-free color pattern G1, . . . , Gr on the
vertex set [n] such that every r-coloring of [n] induces a strongly monochromatic
Kk.

The connection between sr and Pr is summarized in the following lemma.

Lemma 5. [6, Theorem 1.5] For all integers r, k ≥ 2 we have sr(Kk+1) = Pr(k).

To prove an upper bound on Pr(k), one needs to construct a Kk+1-free r-color
pattern G1, . . . , Gr with the specific property about strongly monochromatic Kk.
As it happens, at the moment we have no other idea of guaranteeing the existence
of a strongly monochromatic Kk in an arbitrary r-coloring of the vertices, but
requiring that each of the graphs Gi has a Kk in each subset of size at least n/r
and then use this for the largest color class in [n]. To this end, we define for
a graph G and a positive integer k the parameter αk(G) to be the order of the
largest Kk-free induced subgraph of G.

Observation 6. [6, Lemma 4.1] If there exists a Kk+1-free color pattern G1, . . . ,
Gr on [n] such that αk(Gi) <

n
r for every i = 1, . . . , r, then sr(Kk+1) = Pk(r) ≤ n.
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We will also follow this road and construct Kk+1-free r-color patterns on [n]
with αk-values less than n/r. Before constructing r edge-disjoint Kk+1-free graphs
with αk < n/r however, one better deals with the ”simpler” problem of construct-
ing just one. This is exactly the task of the well-studied Erdős-Rogers function
fk,k+1(n) which asks for the smallest value of αk(G) of Kk+1-free graphs G on
n vertices. Given a good Erdős-Rogers graph, one then ”only” has to pack as
many of them as possible on n vertices. Indeed, Fox et al. [6, Conjecture 5.2]
even predicted that for every fixed k ≥ 3 we will have Pr(k) = Θ(r · (fk,k+1(r))2).
Considering the recent improvements of Mubayi and Verstraete [9] on the Erdős-
Rogers function, Theorem 2 comes within a log-factor of resolving this conjecture.
Good constructions for the Erdős-Rogers function will be extremely useful for us
as well, but creating color patterns using them requires additional ideas.

The general approach to construct the desired color patterns is to start with
an ”appropriate” u-uniform linear hypergraph on [n] with essentially as many

hyperedges as possible, that is, in the order n2

u2 . Then one assigns one of r colors
to each hyperedge “appropriately”, to indicate which color pairs of vertices inside
the hyperedge will receive should they be chosen to be an edge at all. Here the
linearity of the hypergraph plays a crucial role: every pair of vertices belongs
to (at most) one hyperedge. Finally, one constructs the graphs Gi by dropping
an ”appropriately” random k-partite graph within each hyperedge of assigned
color i, where the choices for different hyperedges are usually independent. This
random choice must balance that no Kk+1 is created from the edges coming from
within different hyperedges, yet there are enough edges so that any n/r-subset of
the vertices contains a Kk. The crux of the matter is how to define the various
occurrences of ”appropriate” above so that they complement each other well.

In the construction of Fox et al. [6] for (2) (crucially making use of the Erdős-
Rogers construction of Dudek, Retter, and Rödl [4]) and that of Hàn et al. [8] for
(4) the linear hypergraph is essentially given by the lines of an (affine or projective)
plane of order q and the ”appropriate” color assignment chosen randomly. In the
constructions of Fox et al. [6] for (5) and of Bamberg et al. [1] for (6) the linear
hypergraph is given by some (pseudo)lines in a higher dimensional space and the
color-assignment is defined algebraically. The point of these assignments is to
ensure that the hypergraph of each color class is triangle-free, hence the Kk+1-
freeness of each Gi will be automatic once the graphs inside the hyperedges are
Kk+1-free.

In our construction we also start with the projective plane, working in the dual
setup, so the lines will correspond to vertices and the vertices correspond to the
hyperedges. We choose the order to be q2, so we are able to make use of Hermitian
unitals and its beneficial algebraic and combinatorial properties. One of the main
ideas of our construction is to combine the probabilistic color assignment to the
hyperedges with an appropriate algebraic one. Unlike in [6] and [1], our algebraic
color assignment will not guarantee immediate Kk+1-freeness, but will however
ensure that the analysis of Kk+1-freeness will only have to consider very limited
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types of forbidden events. The random part of the color assignment then helps to
limit the number of bad events within those types.
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[3] Stefan A Burr, Paul Erdős, and Laszlo Lov´ász. On graphs of Ramsey type. 1(1):167–190.
[4] Andrzej Dudek, Troy Retter, and Vojtěch Rödl. On generalized Ramsey numbers of Erdős
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On the separation of roots of random polynomials

Marcus Michelen

(joint work with Oren Yakir)

Consider a random polynomial of the form

fn(z) =

n
∑

j=0

ξjz
j

where ξj are independent and identically distributed variables uniformly chosen
from {−1, 1}. What can be said about the distribution of roots of fn? Classical
results assert that with high probability the vast majority of roots are near the
unit circle and they are approximately equidistributed. This means that for each
ε > 0, the proportion of roots in the annulus {z ∈ C : 1−ε ≤ |z| ≤ 1+ε} tends to 1
as n→∞ with high probability. Similarly, the proportion of roots with argument
in [a, b] tends to (b− a)/(2π) as n→∞ with high probability.

A more qualitative feature of roots of random functions is that they tend to
experience repulsion. This means that for a small ball B near the unit circle, one
expects that the probability there are two roots in B is much less than the square
of the probability that there is at least one root in B.

One natural way to quantify repulsion is to examine the smallest distance be-
tween roots. In particular, define

mn = min
α6=β
|α− β|
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where the minimum is over all pairs of distinct roots of fn. We prove a limit
theorem for mn, meaning that for each t > 0 we have

lim
n→∞

P(mn ≥ tn−5/4) = exp(−c∗t4)

where c∗ > 0 is a universal constant.
Our theorem in fact holds in a more general setting: we need only have that the

coefficients are independent and identically distributed with subgaussian tails and
that P(ξ1 = 0) = 0. As a corollary, this shows that with high probability a random
polynomial with independent and subgaussian coefficients has no repeated roots
with high probability (except perhaps at the origin).

One may think of the scale n−5/4 as witnessing the repulsion of the roots. A
toy model for what the separation would look like without repulsion is to consider
placing n independent points in the annulus {z : 1 − 1/n ≤ |z| ≤ 1 + 1/n} and
setting σn to be the minimal separation. There, one can calculate that σn =
Θ(n−3/2) with high probability. In particular, the typical gap is larger for random
polynomials than for independent points.

The proof technique amounts to understanding and quantifying the local re-
pulsion between roots. In particular, for a point z near the unit circle, we prove
that having a pair of close roots near z can be approximated by a certain event
depending only on the triple (f(z), f ′(z), f ′′(z)). We then may approximate the
probability that this event holds by proving a Gaussian comparison theorem for
vectors ((f(zj), f

′(zj), f ′′(zj))Mj=1 for a finite set of points {zj}Mj=1.
At the technical core of this problem is that the strength of the Gaussian com-

parison theorem inherently must depend on the arithmetic properties of the points
involved. This is a complex analogue of the classical Littlewood-Offord problem—
which in fact originates in the study of random polynomials—and so we eliminate
candidate double roots near arithmetically structured points by proving a weaker
Gaussian comparison theorem but showing that there are not too many of them.

Finally, Gaussian comparison arguments may only hold close to the unit cir-
cle. Macroscopically far from the unit circle, no such comparison will hold. For
example, if the coefficients of fn lie in {−1, 1} then there are deterministically no
roots in the disk {z : |z| < 1/2}; if the coefficients are standard gaussian random
variables, then for each ε, the probability there is a root in {z : |z| > ε} is uni-
formly bounded below. To eliminate potential close roots far from the unit circle,
we compare the random polynomial fn to the infinite power series

f∞(z) =

∞
∑

j=0

ξjz
j

which is almost-surely analytic in the open unit disk. By a perturbative argument,
we show that f∞ almost-surely has no repeated roots in the open unit disk. By
a compactness and monotonicity argument, this implies that fn does not have a
pair of roots that are close to each other in a disk of radius, say, 1− ε.
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On the Kim–Vu sandwich conjecture

Richard Montgomery

(joint work with Natalie Behague, Daniel Il’kovič)

Random graphs have been a central object of study in Combinatorics since the
foundational work of Erdős and Rényi [9] in 1959. The binomial random graph, or
Erdős-Rényi random graph, G(n, p) has vertex set [n] = {1, . . . , n} and each po-
tential edge included independently at random with probability p. Along with the
closely-related uniformly random graph with n vertices and ⌈p

(

n
2

)

⌉ edges, G(n, p)
is the most studied random graph model. The next most studied model is proba-
bly that of the random regular graph Gd(n), which is chosen uniformly at random
from all d-regular graphs with vertex set [n]. Throughout this paper, and as is
common, we will implicitly assume that dn is even, so that the set of such graphs
is non-empty.

The study of random regular graphs began in earnest in the late 1970’s, with
early work including that by Bender and Canfield [1, 2], by Bollobás [3], and by
Wormald [24, 25]. Compared to G(n, p), where the independence of the edges
allows the use of a wide variety of techniques, studying Gd(n) is often much more
difficult. For example, from developments [5, 16] of the breakthrough work of
Pósa [20] in 1976, it has been long understood when we may expect G(n, p) to be
Hamiltonian. It was widely anticipated that, for each 3 ≤ d ≤ n−1, Gd(n) should
be Hamiltonian with high probability (i.e., with probability 1− o(1)), but proving
this took the combined work of many authors [4,6,7,17,21,22] over the course of 20
years (see the surveys [10,26] for more details), using a variety of tools in different
regimes for d, from the configuration model [4], through switching methods [18],
to estimates on the number of regular graphs [19, 23].

This increased difficulty and technicality gives great appeal to finding links
from Gd(n) to G(n, p), so that we may hopefully deduce properties of Gd(n) from
those known for G(n, p). In 2004, Kim and Vu [14] formalised this desire in their
famous ‘sandwich conjecture’. They conjectured that, if d = ω(logn), then there
are p∗, p∗ = (1 + o(1))d/n and a coupling (G∗, G,G∗) such that G∗ ∼ G(n, p∗),
G ∼ Gd(n), G∗ ∼ G(n, p∗), and P(G∗ ⊂ G ⊂ G∗) = 1 − o(1). If true, the
requirement d = ω(logn) cannot be removed; as is well-known, for each C > 0
there is some ε > 0 such that if d = C logn then, with probability 1 − o(n−1),
G(n, (1 + ε)d/n) has minimum degree less than d, and hence contains no d-regular
subgraph.

Kim and Vu [14] proved the lower part of their conjecture when logn ≪ d ≪
n1/3/ log2 n, and a weakened upper part for the same range of d. More specifically,
with high probability their coupling (G∗, G,G∗) satisfied G∗ ⊂ G and ∆(G\G∗) ≤
(1 + o(1)) logn. In 2017, Dudek, Frieze, Ruciński and Šileikis [8] extended this by
showing that the lower part holds when d = o(n), and that it can be generalised
to hypergraphs. Subsequently, a major breakthrough was made by Gao, Isaev and
McKay [12,13], who gave the first coupling (G∗, G,G∗) without a weakened upper
part, that is, in which P(G∗ ⊂ G ⊂ G∗) = 1 − o(1). This allowed them to show
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that the sandwich conjecture is true if min{d, n − d} ≫ n/
√

logn. Klimošová,
Reiher, Ruciński and Šileikis [15] then extended this to show that it holds for
min{d, n − d} ≫ (n logn)3/4 (while generalising it to biregular graphs). Very
significant progress was then made again by Gao, Isaev and McKay [11], who

showed that the conjecture is true provided that d≫ log4 n.
This talk discussed work of the speaker with Natalie Behague and Daniel Il’kovič

proving the sandwich conjecture in full, in the following very slightly stronger form.

Theorem 1. For each ε > 0 there is some C > 0 such that the following holds
for each d ≥ C logn. There is a coupling (G∗, G,G∗) of random graphs such that
G∗ ∼ G(n, (1 − ε)d/n), G ∼ Gd(n), G∗ ∼ G(n, (1 + ε)d/n), and P(G∗ ⊂ G ⊂
G∗) = 1− o(1).

In their breakthrough initial work, Gao, Isaev and McKay [12,13] introduced a
beautiful natural coupling process, and analysed it in the regime min{d, n− d} ≫
n/
√

logn. In order to prove Theorem 1, we analyse this process throughout the
whole regime d = ω(logn). As highlighted by Gao, Isaev and McKay [13, Question
2.4], key to this analysis is showing that in certain random graphs F a uniformly
chosen d-regular subgraph is likely to include any given edge in F with roughly
equal probability, and our success in doing so is of some independent interest.
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Dispersion on the complete graph

Konstantinos Panagiotou

(joint work with Umberto de Ambroggio, Tamas Makai, Annika Steibel)

The dispersion process introduced by Cooper, McDowell, Radzik, Rivera and Shi-
raga [3] consists of particles moving on the vertices of a given graph G. A particle is
said to be happy if there are no other particles occupying the same vertex and un-
happy otherwise. Initially, M ≥ 2 (unhappy) particles are placed on some vertex
of G. Subsequently, at discrete time steps, all unhappy particles move simultane-
ously and independently to a neighbouring vertex selected uniformly at random,
while the happy particles remain in place. The process terminates at the first
time step at which all particles are happy; we call this (random) time step the
dispersion time.

It is a simple observation that increasing the number of particles makes it
more and more difficult for the particles to disperse quickly. This effect is quite
well-understood and causes a sharp transition when the underlying graph is the
complete graph on n vertices with loops, in which case we write Tn,M for the
dispersion time started with M particles at an arbitrary vertex. The typical order
of Tn,M changes rather abruptly around M = n/2. Indeed, if M = M(n) =
(1 + ε)n/2 ∈ N for some sequence ε = ε(n) ∈ [−1, 1], then in [3] it was established
that Tn,M is typically
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• at most logarithmic in n when lim supn→∞ ε < 0 and

• at least exponential in n when lim infn→∞ ε > 0.

Our first main contribution is a thorough analysis of this phase transition, in
particular, we study how the dispersion time transits from a mere O(lnn) to an
enormous eΘ(n). To this end, we write (again) M = (1+ε)n/2, but this time |ε| =
o(1). We establish that the process exhibits three qualitatively different behaviours
based on the asymptotics of ε, where, informally speaking, Tn,M smoothly changes

from |ε|−1 ln(ε2n) to n1/2 and then to ε−1eΘ(ε2n); in particular, Tn,M = Θ(n1/2)
whenever M = n/2 + O(

√
n) within a scaling window of size O(

√
n). Our first

main results, contained in the paper [1], are the following theorems. The first one
addresses the upper tail of Tn,M .

Theorem 1. There is a C > 0 such that the following is true for sufficiently large
n and all A ≥ 1. Let M = (1 + ε)n/2 ∈ N, where ε = o(1) and |ε| < 1/9. If
ε < −en−1/2, then

P
(

Tn,M > AC|ε|−1 ln(ε2n)
)

≤ e−A.

Moreover, if |ε| ≤ en−1/2, then

P
(

Tn,M > ACn1/2
)

≤ e−A.

Finally, if ε > en−1/2, then

P
(

Tn,M > Aε−1eCε2n
)

≤ e−A.

Our second main result provides corresponding bounds for the lower tail.

Theorem 2. There is a c > 0 such that the following is true for sufficiently large
n and all A ≥ 1. Let M = (1 + ε)n/2 ∈ N, where |ε| = o(1) and |ε| < 1/9. If
ε < −en−1/2, then

P
(

Tn,M ≤ c|ε|−1 ln(ε2n)/A
)

≤ e−A.

Moreover, if |ε| ≤ en−1/2, then

P
(

Tn,M ≤ cn1/2/A
)

≤ e−A.

Finally, if ε > en−1/2, set k0 := ecε
2n. Then

P
(

Tn,M < ε−1k0/A
)

≤
{

exp
(

−Aε2n
k0

)

, if A > k0

A−1 , if A ≤ k0
.

Let us briefly discuss some consequences of our results. First of all, the two
theorems combined imply that in probability

Tn,M = Θ(|ε|−1 ln(ε2n)) if ε < −en−1/2,

and

Tn,M = Θ(n1/2) if |ε| = O(n−1/2).

For larger ε we obtain the slightly weaker uniform estimate that in probability

ln(Tn,M ) = Θ(ε2n + ln(ε−1)) if ε = ω(n−1/2).
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These results imply that there is critical window around n/2 of order n1/2, where
the dispersion time is of order n1/2 as well. Moreover, the dispersion time increases
smoothly from logarithmic to n1/2 and then to exponential when we gradually
increase ε. Apart from these estimates we can also use our main theorems to obtain
information about, for example, the expectation of Tn,M . In particular, Theorem 1
guarantees that Tn,M has an exponential(-ly thin) upper tail and so Tn,M is, after
appropriate normalization, integrable; we readily obtain that the aforementioned
bounds hold for E[Tn,M ] as well.

Our second main result, see the paper [2], is concerned with a fine analysis
of the dispersion process within the critical window, that is, when M = n/2 +
O(n1/2). We establish that that the dispersion time, scaled by n−1/2, converges
in distribution to some continuous and almost surely positive random variable.

Theorem 3. Let α ∈ R and M = M(n) = n/2 + αn1/2 + o(n1/2) ∈ N. Then
there is a continuous and almost surely positive random variable T (α) such that,
as n→∞,

n−1/2Tn,M
d−→ T (α) .

Within the proof of Theorem 3 we derive several useful properties of the distribu-
tion of T (α). In order to give some description at this point we need to step back
a bit and introduce some notation. Let us write Ut for the (random) number of
unhappy particles at the end of step t, so that U0 = M , and let us fix some δ > 0.
It is not difficult to establish that Ut drops rather quickly to Θ(n1/2) particles.
In particular, with probability at least 1 − δ, after t∗ ∼ 4

7δn
1/2 steps we have

that Ut∗ ∼ n1/2/δ. After t∗ steps the process (Ut)t≥t∗ of unhappy particles starts
fluctuating significantly. In order to get a grip on it, we scale time and space by
a factor of n1/2 and establish that (n−1/2Ut∗+⌊sn1/2⌋)s≥0 converges weakly to a
diffusion process.

Lemma 4. Let α ∈ R and M = n/2 + αn1/2 + o(n1/2) ∈ N. Let δ > 0 and

Tn,M,δ := inf{t > 0 : Ut ≤ n1/2/δ}
be the first step at which there are at most n1/2/δ unhappy particles. Then, as
n→∞, weakly

(

n−1/2 UTn,M,δ+⌊sn1/2⌋

)

s≥0
→ X,

where X is a logistic branching process starting from X0 = δ−1. In particular, if we
denote by B a standard Brownian motion, then X uniquely satisfies the stochastic
differential equation

(1) dXs =

(

2αXs −
7

4
X2

s

)

ds +
√

XsdBs, s > 0, and X0 = δ−1.

A main tool that we use in the proof of Theorem 3 is the concept of diffusion
approximation, which allows us to approximate a sequence (Y(n))n∈N of Markov
chains with values in Rd, where d ∈ N, by a continuous-time stochastic process;
the classic book [4, Ch. 8] contains an extensive treatment.
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Low-complexity approximations of sets with small doubling
and applications

Huy Tuan Pham

(joint work with Noga Alon)

Given an abelian group G and a finite subset A of G, define the sumset of A

A + A = {a + b : a, b ∈ A},
and the associated doubling constant K = |A+A|

|A| . Sumsets and sets with small

doubling K are of fundamental interest in additive combinatorics. Over the years,
multiple aspects of the structure of sumsets and sets with small doubling have
been studied, notably the influential Freiman-Ruzsa theorem [8,9,18], generalized
by Ruzsa [17] and Green and Ruzsa [14].doubling K must be dense subsets of
certain structured objects known as coset progressions.

While structural results typically provide information about the set A given
its doubling K, they provide relatively weak information about the sumset A +
A. Motivated by fundamental applications to the investigation of sparse random
Cayley graphs [1, 2, 11, 13], we will discuss new perspectives on the structure of
sumsets A + A of sets with small doubling, revolving around the following basic
question: Does every sumset A+A of a set A with small doubling K fully contain
a dense structured subset F?

Sparse random Cayley graphs. Given an abelian group G and a symmetric
subset of it S, the Cayley graph Γ(G;S) of G with generating set S has vertex
set G, and two group elements x and y are connected if and only if y − x ∈ S. A
random Cayley graph G(p) is obtained by selecting each equivalence class {x,−x}
to be in the generating set S independently at random with probability p.

We also consider the Cayley sum graph Γ+(G;S) which, given a generating set
S (not necessarily symmetric), has vertex set G and two group elements x and y
are connected if and only if x + y ∈ S. A random Cayley sum graph G+(p) is
obtained by selecting each element x to be in S independently at random with
probability p.

The independence number α(G(p)) of random Cayley graphs has been exten-
sively studied. In the dense case p = 1/2 (and more generally p = Θ(1)), Alon and
Orlitsky [4] showed that α(G(1/2)) = O((log |G|)2) with high probability. Green



Combinatorics, Probability and Computing 2293

[11] showed that whp α(G(1/2)) = Θ(log |G|) for cyclic groups G = Zn and that
α(G(1/2)) = Θ(log |G| log log |G|) for finite field vector spaces G = Fd

2 (a similar
result holds for any finite field vector space G = Fd

p with p fixed). Green and Morris
[13] later sharpened Green’s result to show that whp α(G(1/2)) = (2+o(1)) log2 |G|
for G = Zn. The problem is significantly harder in the sparse case p = o|G|(1).
The best general result in this direction is the following theorem of Alon [1, 2].

Theorem 1. Let G be a group of size n. The independence number of the random
Cayley graph G(p) is at most O(min(p−2(log n)2,

√

n(logn)/p)) whp.

Alon conjectured that, in terms of the independence number, random Cayley
graphs behave similarly to random regular graphs of the same degree.

Conjecture 2 ([2]). Let G be a group of size n. The independence number of the

random Cayley graph G(p) is at most Õ(p−1) whp.

Unlike random regular graphs, random Cayley graphs, and especially sparse
random Cayley graphs, are significantly harder to analyze due to the limited ran-
domness in their definition which causes significant dependencies.

In a recent work [6], motivated by Ramsey-theoretic applications, Conlon, Fox,
Pham and Yepremyan gave an improvement of Theorem 1 for general groups G.

Theorem 3. Let G be a group of size n. The independence number of the random

Cayley graph G(p) is at most O
(

p−2 lognmax
(

log p−1, p−1 log
(

logn
log p−1

)))

whp.

This result is generally tight for the dense case p = Θ(1). On the other hand,
for sparse p, such as p = n−c for some c > 0, the result only gives lower order
improvements. No improvement over the exponent p−2 in Theorem 1 has been ob-
tained so far. As one application of our key result, we obtain the first improvement
in the exponent of p.

Theorem 4. Let G be an abelian group of size n and let p ≤ 1/2. Then the
independence number of the random Cayley graph G(p) and the random Cayley

sum graph G+(p) is at most Õ(p−3/2) whp.

By combining our key result, the efficient covering lemma, together with input
from the combinatorial approach of [6], we also obtain the sharp asymptotic for

the independence number of G+(p) for p = Ω̃((log n)−2), improving earlier results
of Green and Morris [13], and Campos, Dahia and Marciano [5] and Nenadov [16].

Largest non-sumsets in Zn. One of the applications of the independence num-
ber of polynomially sparse random Cayley sum graphs is toward the following
question in additive combinatorics first considered by Green [10]. Let f(n) be the
largest integer such that every subset of Zn with size larger than n− f(n) can be
represented as a sumset A + A. Green asked to determine or estimate f(n) and
showed that f(n) ≥ Ω(logn).

Alon proved that f(n) ≥ Ω̃(n1/2) and, via the upper bound α(G+(p)) =

O(p−2(log n)2), that f(n) ≤ Õ(n2/3). Using Theorem 4, we obtain an improve-
ment in the exponent of the upper bound to f(n).
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Theorem 5. In the notation above, f(n) ≤ Õ(n3/5). Specifically, let G be an

abelian group of size n. Then there exists a subset of G of size at least n− Õ(n3/5)
which cannot be represented as a sumset A + A for A ⊂ G.

The key result - Efficient covering lemma. Our key input to Theorem 4 is
a structural result showing that every sumset A+A of a set A with small doubling
must fully contain a dense structured subset F .

Theorem 6. There exist C, c > 0 such that the following holds. Let G be an
abelian group of order n and let s ≤ n. There exist collections Fℓ of subsets of G
such that

|Fℓ| ≤ exp

(

C

(

min

(

22ℓ(log n)2,
√

2ℓs(log n)3/2
)))

,

and
min
F∈Fℓ

|F | ≥ c2ℓs/ℓ2,

so that the following property holds.
Let A ⊆ G be such that |A + A| ≤ K|A| and |A| = s. Then there exists

ℓ ≤ log2 K and F ∈ Fℓ such that

A + A ⊇ F.

Informally speaking, the theorem yields that for every s ≤ n and every K,
there exists a dyadic scale h = 2ℓ ≤ K and a collection of sets F with complexity
log |F| ≤ Õ(min(h2,

√
hs)), such that for every subset A of size s and doubling at

most K, A + A fully contains a set from F of size at least Ω̃(h|A|).
Lovett [15] asked if it is possible to find a small collection F of dense sets such

that, for every dense subset A ⊆ G, the sumset A + A contains a member of F .
For every dense A, the doubling of A is clearly bounded. As a special case of
Theorem 6 (when K = O(1)), we thus resolve Lovett’s question.

Theorem 7. Let G be an abelian group of order n. For any δ > 0, there are
ǫ > 0 and C > 0 such that the following holds. There exists a collection Fδ ⊆ 2G

consisting of sets of size at least ǫn with |Fδ| ≤ exp(C(log n)2) so that for every
|A| ≥ δn, A + A fully contains a set F ∈ Fδ.

Theorem 6 connects directly with sparse random Cayley graphs via providing
an efficient union bound obstruction or small cover to the existence of large inde-
pendent sets in random Cayley graphs. In probabilistic combinatorics language, a
cover for a collection H of sets is a collection G such that every set in H contains
a set in G as a subset. They play a critical role in the study of thresholds, particu-
larly in the Kahn-Kalai conjecture. In our case the collection H is the collection of
sumsets A + A over sets A of suitable size. In this language, the collection

⋃

ℓFℓ

describes a cover for the collection H. We expect that the independence number
of random Cayley graphs can be accurately determined via an optimally efficient
cover for the collection H of sumsets.

The proof of Theorem 7 uses random sampling arguments in physical and
Fourier spaces to produce low-complexity approximations.
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Efficient approximation lemma - Optimal complexity and enumeration
of sets with small doubling. Instead of efficient coverings, if we instead weaken
the condition of the family F , so that for every set in A can be well-approximated
by at least one set in F , then we show in future work that such F can be con-
structed with optimal complexity. This is a key tool in our work addressing a
conjecture of Alon, Balogh, Morris and Samotij [3] about enumeration of sets with
small doubling K in a nearly optimal range of parameters.
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Group-harmonious labelling of trees

Alexey Pokrovskiy

(joint work with Alp Müyesser)

For an abelian group G, a graph T and a labelling φ : V (T ) → G, define a
corresponding edge labelling φe : E(T )→ G by φe(xy) = φ(x) + φ(y). Say that φ
is harmonious if both φ and φe are injective. We will study the following question
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• Let G be an order n abelian group G and T a tree on n vertices. When
does T have a harmonious labelling by G?

Here we are ultimately asking for a full characterization of pairs G, T when a
harmonious labelling exists. There are a variety of motivations for this question,
such as a conjecture of Chang, Hsu, Rogers [3] which says that every order n tree T
has a Zn labelling in which the missing edge label is 0. Another related conjecture
is by Graham and Sloane [2] which says that every order n tree T can be labelled
by Zn−1 so that there is precisely one repetition of vertex-labels, and no repeated
edge-labels. We were able to obtain a full answer to the above question in the
special case when T has bounded degree.

Theorem 1 ([1]). For any ∆, there exists a n0 sufficiently large so that the
following holds for any n ≥ n0. Let T be an n-vertex tree with ∆(T ) ≤ ∆ and G
an abelian group of order n. There is a rainbow copy of T in KG if, and only if,
we have none of the following:

(1) G = Zk
2 , k ≥ 2 and T is a path or has precisely two vertices of even degree.

(2) G has characteristic m, T has adjacent vertices u and v such that deg(u) ≡
deg(v) ≡ 0 (mod m) and furthermore for all v ∈ V (T )\{u, v}, deg(v) ≡ 1
(mod m).

(3) G = Zk
2 , k ≥ 2, T contains precisely 4 vertices of even degree and has a

perfect matching when restricted to these 4 vertices.

Here “characteristic of G” means the least common multiple of the orders of
the cyclic factors in the abelian group G. The key tool for proving this is an inter-
mediate result about finding a harmonious labelling of a tree that uses prescribed
vertex and edge labels. To state it we need the following definition.

Definition 2. Let T be a tree. We say that an induced subforest Tcore is a core
of T if for every d ≤ ∆(T ), we have at least one of

(1) Tcore contains all vertices v with dT (v) = d.
(2) Tcore and T \ V (Tcore) both contain at least 6 vertices v with dT (v) = d.

The main intermediate result that we use in the proof of Theorem 1 is the
following.

Theorem 3. Let ∆−1 ≫ µ ≫ n−1. Let G be an abelian group and T a bounded
degree tree with ∆(T ) = ∆. Let Vtarget, Ctarget ⊆ G with |T | = |Vtarget| =
|Ctarget|+ 1 ≥ (1 − n−µ)n. In the case G = Zk

2 , assume 0 6∈ Ctarget. Let Tcore be
a core of T of size ≤ n1−µ. The following are equivalent.

• T has a harmonious labelling using vertex-labels Vtarget and edge-labels
Ctarget.
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• There is a harmonious labelling φ of Tcore with vertex-labels contained in
Vtarget, edge-labels contained in Ctarget and also

∑

Ctarget =
∑

v∈V (Tcore)

dT (v)φ(v)

∑

Vtarget =
∑

v∈V (Tcore)

φ(v).

There are a variety of consequences of the above theorems — for example they
imply the conjectures of Chang-Hsu-Rogers and Graham-Sloane in the special
cases of large bounded degree trees.
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A new lower bound for R(3, k)

Julian Sahasrabudhe

(joint work with Marcelo Campos, Matthew Jenssen, Marcus Michelen)

The Ramsey number R(ℓ, k), is defined to be the minimum n such that every
red/blue colouring of the edges of the complete graph Kn contains either a blue Kℓ

or a red Kk. In this talk we focus on the fascinating off-diagonal Ramsey numbers
R(3, k). The study of R(3, k) has a rich history, inspiring the development of a
number of important combinatorial tools. Today the Ramsey numbers R(3, k)
represents one of the successes of the field, and have been determined up to a
factor of 4 + o(1), the best known bounds being

(1)

(

1

4
+ o(1)

)

k2

log k
6 R(3, k) 6

(

1 + o(1)
) k2

log k
.

Here the upper bound is due to Shearer [12], from 1983, who built on the sem-
inal papers of Ajtai, Komlós and Szemerédi [1], which introduced the extremely
influential “semi-random method”. The lower bound is due, independently, to the
celebrated works of Bohman and Keevash [3] and Fiz Pontiveros, Griffiths and
Morris [8]. In both of these papers the authors establish this lower bound by
studying the triangle-free process, a random process introduced by Bollobás and
Erdős (see [8]) for generating a random triangle-free graph.

In their paper [8], Fiz Pontiveros, Griffiths and Morris conjectured that their
lower bound (1) is sharp. In this talk I will discuss a new lower bound on R(3, k),
disproving their conjecture, and narrowing the gap between the upper and lower
bound to a factor of 3 + o(1).
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Theorem 1.

R(3, k) >

(

1

3
+ o(1)

)

k2

log k
.

Perhaps the most interesting consequence of Theorem 1 is that it strongly sug-
gests that the natural triangle-free process is not optimal for Ramsey and rather
suggests that the optimal graphs mix randomness with some underlying structure.

Philosophy behind the construction. The main intuition behind Theorem 1
is the feeling that there should exist triangle-free graphs that are denser than the
triangle-free process but still sufficiently pseudo-random so that the independence
number is the same as the binomial random graph at the same density. If one
thinks of the triangle-free process as the “most random” graph at its density, the
idea behind our construction is to “trade-off” some of this “randomness” to obtain
a slightly denser graph.

In fact we believe that a even better trade-off is possible and that one should be
able to obtain a constant of 1/2 + o(1) in the lower-bound, but we were unable to
provide such a construction. Perhaps somewhat boldly, we conjecture this would
be optimal.

Conjecture 2.

R(3, k) =

(

1

2
+ o(1)

)

k2

log k
.

In fact, we have a conjectural construction, based on the Cayley sum graph
generated by the sum-free process on Fd

2, that would imply the lower bound in
this conjecture along an infinite sequence.

The construction. Our construction is actually quite easy to describe: we first
sample a random graph on n/(logn)2 vertices at density p0 = α0(logn/n)1/2, clean
out triangles, blow it up and then run a variant of the triangle-free process with the
resulting graph. Interestingly, this supplies the desired graph: the blow up allows
for more edges and the triangle-free process “counters” the large independent sets
introduced by the blow up.

A modified triangle-free process. The reason we work with a variant of the
triangle-free process is that the triangle-free process exhibits a complicated dynam-
ics that requires an extremely subtle analysis. For example, in both [3] and [8],
the authors need to show the highly non-trivial interaction and “self correction”
properties of certain martingales associated with the process. By contrast, in our
process, we are able to avoid these subtleties entirely, by manually “steering” the
process to ensure it follows a simpler trajectory. This results in a greatly simplified
analysis and more straightforward proof. In particular, if we apply our version of
the triangle-free process without our initial “seed” step where we take a blow up
of a random graph, our analysis gives a much simpler proof of the lower bound (1)
on R(3, k) proved in [3, 8].
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A history of the problem Following the seminal paper of Ramsey [11] in 1930,
the off-diagonal Ramsey numbers R(ℓ, k) were introduced by Erdős and Szek-
eres [7], who showed R(3, k) 6 k2. In 1980 this was improved by Ajtai, Komlós
and Szemerédi [1], to

R(3, k) 6
ck2

log k
,

for some c > 0, in two highly influential papers that introduced the “semi-random
method”. Soon after, this was improved by Shearer [12] to

R(3, k) 6
(

1 + o(1)
) k2

log k
,

which still stands as the best known upper bound for R(3, k).
The first progress on the lower bound is due to Erdős in the 1950s who showed

R(3, k) = Ω(k1+c), for some c > 0, by giving an explicit construction [5]. In 1959,
Erdős proved that R(3, k) = Ω(k3/2) by using a probabilistic argument before
proving, in 1961, that

R(3, k) >
ck2

(log k)2
,

for some c > 0, by ingeniously modifying a sample of the binomial random
graph [6]. In 1995, the breakthrough work of Kim [9] established

(2) R(3, k) >
ck2

log k
,

for some c > 0, thereby determining R(3, k) up to constant factors.
In 2008, a different and influential proof of this result was given by Bohman [2],

who showed that the graph produced by the “triangle-free process” could also be
used to prove Kim’s lower bound on R(3, k). The triangle-free process is a random
graph process first defined by Bollobás and Erdős in 1990 (see [8]). To define the
triangle-free process on [n] = {1, . . . , n}, one starts with the empty graph G0 on
vertex set [n] and then inductively defines Gi+1 to be Gi + ei+1 where ei+1 is
chosen uniformly among all edges e for which Gi + e is triangle free, until there is
no such edge, in which case the process stops.

In the difficult and influential papers [3,8], Bohman and Keevash and, indepen-
dently, Fiz Pontiveros, Griffiths and Morris, studied the trajectory of this process
all the way to its (asymptotic) end, determining the the order and independence
number of the terminating graph, thereby implying the bound

R(3, k) >

(

1

4
+ o(1)

)

k2

log k
.

In the work we present in this talk, we discuss a new lower bound to for the
Ramsey numbers R(3, k). We do this by running a triangle-free-like process from
a carefully chosen “seed graph”. Interestingly, our modified triangle-free process
is significantly easier to analyze than the original process and we can follow it to
the end of its trajectory with out much difficulty.
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The Turán Density of Tight Cycles

Maya Sankar

One of the most fundamental problems in extremal combinatorics lies in under-
standing those graphs avoiding a fixed forbidden graph F . The first results in this
area were for graphs forbidding a clique Ks: Turán [12] in 1941 showed that the
densest Ks-free graph on n vertices is a balanced blowup of Ks−1, i.e., a complete
(s − 1)-partite graph. In general, given a graph F , its Turán number ex(n, F ) is
defined to be the maximum number of edges in any F -free graph on n vertices. In
many cases, it is impractical to determine the Turán number exactly — instead,
we usually study the Turán density π(F ) = limn→∞ ex(n, F )/

(

n
2

)

, which limit is
known to exist.

A celebrated theorem of Erdős, Stone, and Simonovits [4,5] shows that π(F ) =
1− 1

χ(F )−1 for any graph F . Note that this is the density of a balanced blowup of

the clique Kχ(F )−1. Indeed, we have a stronger structural result: any construction
attaining ex(n, F ) differs from a complete (χ(F ) − 1)-partite graph in at most
o(n2) edges as n→∞.

We may define Turán numbers of r-uniform hypergraphs, henceforth called r-
graphs, analogously. If F is an r-graph, then ex(n, F ) is defined to be the maximum
number of edges in an F -free r-graph on n vertices, and its Turán density is
π(F ) = limn→∞ ex(n, F )/

(

n
r

)

. The F -free r-graphs attaining ex(n, F ) edges are
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called the extremal constructions. In contrast to the graph case, determining the
Turán density of hypergraphs remains a major research area. There is no unique
parameter, like the chromatic number, that determines the Turán density. In
some cases, the extremal F -free construction is the densest r-graph with chromatic
or rainbow chromatic number smaller than F [7, 10, 11]. However, the extremal
constructions for other F are mystifying, including fractal-like iterated blowups
[2, 8], algebraic constructions [9], and exponentially numerous families [1].

Even determining the Turán densities of seemingly simple hypergraphs remains
widely open. In 1961, Turán [13] conjectured that the Turán density of the tetra-

hedron K
(3)
4 is 5/9. The lower bound is attained by a large family of constructions

[6], but proving a matching upper bound remains open. Also open is the Turán

density of the tetrahedron minus an edge K
(3)−
4 , conjectured to be 2/7.

This work introduces a new algebraic parameter that should control the Turán
density of various “cycle-like” hypergraphs, together with a general framework to
show that these correctly determine the Turán density of sufficiently long “cycle”s.
In an application of this framework, we establish the Turán density of 4-uniform
tight cycles, defined as follows. The tight r-uniform cycle of length ℓ, denoted

C
(r)
ℓ , is an r-graph with ℓ > r vertices v1, . . . , vℓ such that vi · · · vi+r−1 is an edge

for each 1 ≤ i ≤ ℓ, with subscripts taken modulo ℓ. When ℓ is a multiple of r, the

tight cycle C
(r)
ℓ is an r-partite r-graph, and an old result of Erdős [3] implies that

π(C
(r)
ℓ ) = 0.

In 2024, Kamčev, Letzter, and Pokrovskiy [8] determined that π(C
(3)
L ) = 2

√
3−3

for sufficiently large L not divisible by 3. Their result is best phrased in the

language of homomorphic avoidance. A homomorphic copy of a tight cycle C
(r)
L

in an r-graph G, also referred to as a tight closed walk, is a sequence of L vertices
v1, . . . , vL such that vi+1 · · · vi+r is an edge for each 0 ≤ i < L with subscripts
taken modulo L. If the vertices v1, . . . , vL are distinct, then the tight path forms

a true copy of C
(r)
L in G.

Using the technique of supersaturation, it is well-known that the Turán density

of C
(r)
L is exactly the maximum possible density, asymptotically, of r-graphs avoid-

ing tight closed walks of length L. Kamčev, Letzter, and Pokrovskiy exactly char-
acterized the extremal hypergraphs avoiding the latter family up to O(1) edges,
showing that they exhibit a fractal-like structure. A key step in their argument
characterizes 3-graphs avoiding tight closed walks of length 1 or 2 modulo 3, yield-
ing a 3-uniform analogue of the statement that a graph avoids odd cycles if and
only if it is bipartite.

Theorem 1 (Kamčev–Letzter–Pokrovskiy [8]). Let G be a 3-graph. The following
are equivalent.

(1) G contains no tight closed walks of length 1 modulo 3.
(2) G contains no tight closed walks of length 2 modulo 3.

(3) It is possible to “orientedly color” each 2-edge of K
(2)
V (G) as or

so that each 3-edge of G is colored as in some orientation.
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Our results further develop the machinery of Kamčev, Letzter, and Pokrovskiy,
yielding a general framework to establish the Turán density of long cycle-like hy-
pergraphs. Key to this framework is a common generalization of Theorem 1 and
the equivalence between odd-cycle-free and bipartite graphs. We characterize r-
graphs avoiding tight closed walks of length k modulo r as exactly those admitting
certain types of “oriented colorings” of (r − 1)-tuples of vertices. As the general
statement is fairly involved, we state here the new coloring results for different
residues k modulo 4. The notation

(

V
3

)

is used to denote the edge set of the

complete 3-graph K
(3)
V on vertex set V .

Theorem 2. Let G be a 4-graph. The following are equivalent.

(1) G contains no tight closed walks of length 2 modulo 4.

(2) There is an oriented coloring of
(

V (G)
3

)

by the two pictograms and

so that, for each edge x1x2x3x4 ∈ E(G), the coloring restricted to

those four vertices is isomorphic to .

In particular, three of the four triples xixjxk will be colored with , with
the red portion always located at the same vertex, and the fourth triple will

be colored with .

Theorem 3. Let G be a 4-graph. The following are equivalent.

(1) G contains no tight closed walks of length 1 modulo 4.
(2) G contains no tight closed walks of length 3 modulo 4.

(3) There is an oriented coloring of
(

V (G)
3

)

by the set
{

, , , ,
}

so that, for each edge wxyz ∈ E(G), the coloring of
(

wxyz
3

)

is isomorphic to
one of the three configurations in Figure 1.

Figure 1. The three colorings of a 4-edge permissible in Theorem 3.

To derive our characterization, we introduce the tight connectivity parameter,
which is a collection of subgroups of Sr measuring the ways in which an edge of
an r-graph could connect to permutations of itself via tight walks. It seems likely

that this algebraic parameter controls the extremal C
(r)
L -homomorprhically-free r-

graphs for sufficiently large L, and indeed the same approach seems to generalize
to a far larger family of “twisted” tight cycles.

Using Theorems 2 and 3, we completely determine the Turán density of all
sufficiently long 4-uniform tight cycles of any other residue modulo 4.
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Figure 2. At left, a complete oddly bipartite 4-graph Godd. At

right, a coloring of
(

V (Godd)
3

)

that proves that G is C
(4)
L -free for

4 ∤ L via Theorems 2 and 3.

Theorem 4. There exists an integer L0 such that the following holds. For any

L > L0 not divisible by 4, we have π(C
(4)
L ) = 1

2 .

The lower bound is given by the complete oddly bipartite 4-graph, which is con-
structed as follows. Let V be a set of vertices partitioned as A∪B. The complete
oddly bipartite 4-graph Godd(A,B) has vertex set V whose edge set comprises
those 4-tuples intersecting A in an odd number of vertices. This hypergraph is

C
(4)
L -free for all 4 ∤ L (see Figure 2) and has edge density approaching 1

2 as |V | → ∞
if the two parts have roughly equal sizes. (Actually, e(Godd(A,B)) is maximized if

|A| and |B| differ from |V |/2 by Θ(
√

|V |) vertices, but it is unknown which explicit
choices of |A| and |B| maximize the part sizes [9].) In fact, our full result shows
that the extremal 4-graph(s) avoiding tight walks of length L is complete oddly

bipartite. As a consequence of our techniques, the extremal C
(4)
L -free 4-graph dif-

fers from a complete oddly bipartite 4-graph in at most o(n4) edges, although it
seems likely that this difference is much smaller.
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Quasipolynomial bounds for the corners theorem

Mehtaab Sawhney

(joint work with Michael Jaber, Yang P. Liu, Shachar Lovett, Anthony Ostuni)

The key theorem reported on is quasipolynomial bounds for the corners theorem,
proved in joint work with Jaber, Liu, Lovett, and Ostuni [1].

Theorem 1. Let [N ] = {1, . . . , N} and A ⊆ [N ]× [N ]. Suppose that A does not
contain (x, y), (x + d, y), (x, y + d) with d 6= 0. Then

|A| ≪ N2 exp
(

− (logN)1/600
)

.

Via a projection argument, the above theorem recovers that a subset B ⊆ [N ]
free of 3-term arithmetic progressions has

|B| ≪ N exp
(

− (logN)1/600
)

.

This (qualitatively) recovers quasipolynomial bounds for Roth’s theorem which
were recently proved in breakthrough work of Kelley and Meka [2].

The corners theorem was originally proved by Ajtai and Szemerédi [3]; how-
ever, due to the use of Szemerédi’s theorem on progressions of growing length,
the savings over the trivial bound was exceedingly weak. The corners theorem
can additionally be derived from the triangle removal lemma (by an argument of
Solymosi [4]); this similarly gives weak bounds. The first reasonable bounds for
the corners theorem were given by Shkredov [5], who eventually proved that

|A| ≪ N2(log logN)−Ω(1).

Therefore our results improve on the results of Shkredov by two exponential fac-
tors.

For the remainder of our discussion, we adopt the perspective of the finite-field
model Fn

2 × Fn
2 . Note that, unlike the case of Roth’s theorem where results of

Ellenberg and Gijswijt [6] (building on work of Croot, Lev, and Pach [7]) give
strong bounds in the finite-field setting, for the corners problem there are no
known power-saving bounds in the finite-field model. Let A ⊆ Fn

2 × Fn
2 with

|A| = α · 4n and no corners and let f(x, y) = 1A(x, y)−α. Then, in particular, we
have

Ex,y,z 1A(x, y) 1A(x + z, y) 1A(x, y + z) ≤ α3

2
.

Note that

Ex,y,z 1A(x, y) · α · 1A(x, y + z) = αEx

(

Ey1A(x, y)
)(

Ez1A(x, z)
)

≥ α3,

and therefore
∣

∣

∣
Ex,y,z 1A(x, y) f(x + z, y) 1A(x, y + z)

∣

∣

∣
≥ α3

2
.
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Making the change of variables z ← x+ y + z (using that F2 has characteristic 2),
we obtain

∣

∣

∣
Ex,y,z 1A(x, y) f(y + z, y) 1A(x, x + z)

∣

∣

∣
≥ α3

2
.

By iterated applications of Cauchy–Schwarz and the triangle inequality,

α3

2
≤

∣

∣

∣
Ex,y,z 1A(x, y) f(y + z, y) 1A(x, x+ z)

∣

∣

∣
≤ Ex,y

∣

∣

∣
Ez f(y + z, y) 1A(x, x+ z)

∣

∣

∣

≤

(

Ex,y

∣

∣

∣
Ez f(y + z, y) 1A(x, x+ z)

∣

∣

∣

2
)

1/2

=
(

Ex,yEz,z′ f(y + z, y) f(y + z
′

, y) 1A(x, x+ z) 1A(x, x+ z
′)
)1/2

≤

(

Ez,z′

∣

∣

∣
Ey f(y + z, y) f(y + z

′

, y)
∣

∣

∣

)

1/2

≤

(

Ez,z′

∣

∣

∣
Ey f(y + z, y) f(y + z

′

, y)
∣

∣

∣

2
)

1/4

=
(

Ey,y′,z,z′ f(y + z, y) f(y + z
′

, y) f(y′ + z, y
′) f(y′ + z

′

, y
′)
)1/4

,

and hence

Ey,y′,z,z′ f(y + z, y) f(y + z′, y) f(y′ + z, y′) f(y′ + z′, y′) ≥ α12

16
.

Note that this corresponds the counts of four-cycles in the weighted bipartite graph
given by f . Via the theory of quasi-random graphs, this implies that there exist
X,Y : Fn

2 → {0, 1} with E[X(x)Y (y)] ≥ αO(1) such that

E[1A(x, y)X(x)Y (y)] ≥ (α + αO(1)) · E[X(x)Y (y)].

Therefore, relative to X×Y , A has increased density from α to α+αO(1). However,
at this stage in the argument, X and Y may be completely arbitrary subsets of Fn

2 ,
and therefore repeating the density increment may not be plausible. A key innova-
tion of Shkredov was realizing that one may replace X and Y with “quasirandom”
subsets of a subgroup by splitting X and Y into Fourier-pseudorandom pieces.
These two tools were sufficient to prove |A| ≪ 4n · (log n)−Ω(1). (Shkredov in fact
only operates in the integer setting; Green [8,9] beautifully exposits the argument
in the finite-field case.) However, both the density increment α → α + αO(1) and
the pseudorandomization step, which requires passing to subspaces of codimen-
sion α−O(1), cost a logarithm in the final bound. The key difficulty in our work is
finding suitable replacements for both of these steps.

To proceed, we must handle sets A that are contained inside container sets of
the form X(x)Y (y)D(x + y). Let E[X ] = δX , and define δY and δD analogously.
Replacing the triangle-inequality and Cauchy–Schwarz manipulations above with
Hölder’s inequality and spectral positivity (as developed by Kelley–Meka and by
Kelley, Lovett and Meka [10]), we obtain

Exi,yj∈Fn
2

[

∏

i∈[2]
j∈[k]

1A(xi, yj)

]

≥ (1 + Ω(1))k α2k δ2X δkY δ2kD .
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Equivalently,

Exi∈X, yj∈Y

[

∏

i∈[2]
j∈[k]

1A(xi, yj)

]

≥ (1 + Ω(1))k α2k δ2kD .

A key feature of our result is that, given this condition, we may prove a version of
“sifting” relative to pseudorandom majorants. This is closely related to counting
lemmas in the combinatorics literature relative to pseudorandom majorants.

The key technical statement is the following; we defer the technical pseudoran-
domness condition of being (τ, ε)-spread to the main paper.

Theorem 2. Let α, ε, γ, τ ∈ (0, 1) be parameters and k a positive integer, satisfy-
ing

γ ≤ (ατ)O
(

ε−2k log(1/α)2+ε−1k log(1/τ)
)

.

Then the following holds.
Let T ⊆ Ω1 × Ω2 be (τ, γ)-combinatorially spread, and let f : Ω1 × Ω2 → [0, 1]

be supported on T . Suppose that

E x1,x2∈Ω1

y1,...,yk∈Ω2

[

k
∏

i=1

f(x1, yi)f(x2, yi)

]

≥ α2kτ2k.

Then there exist functions g1 : Ω1 → [0, 1] and g2 : Ω2 → [0, 1] such that

Ex∈Ω1, y∈Ω2 [f(x, y)g1(x)g2(y)] ≥ (1 − ε)ατ Ex∈Ω1 [g1(x)]Ey∈Ω2 [g2(y)]

and

Ex∈Ω1 [g1(x)] ≥ (εα/2)O(ε−1k2 log(1/α)) and Ey∈Ω2 [g2(y)] ≥ (εα/2)O(ε−1 log(1/α)).

The key feature is that E[gi] is independent of the size of τ , provided the
majorant T is sufficiently quasirandom and that we maintain a multiplicative
density increment. This theorem is ultimately proved via a combination of Hölder’s
inequality and densification, as developed in work of Conlon, Fox, and Zhao [11].
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Disjoint pairs in set systems and combinatorics of low rank matrices

Benny Sudakov

(joint work with Zach Hunter, Aleksa Milojević, István Tomon)

1. Introduction

A central theme of Extremal Set Theory is the study of set systems satisfying
certain properties about set intersections. A classical result in the area is the
Erdős-Ko-Rado theorem [6], which determines precisely the maximum size of a set
system in which no two sets are disjoint. This naturally motivates further questions
about the maximum/minimum number of disjoint pairs of sets in set systems of
given size. In particular, Daykin and Erdős [8,14] proposed the following problem
in 1981, see also Alon and Frankl [3].

Problem 1 (Daykin, Erdős). Determine/estimate the maximum number of pairs
of disjoint sets in a set system of size m on a universe of size n.

This problem remained mostly open, however, there has been considerable
progress. Observe that if F ⊂ 2[n] is the family containing all subsets of {1, ..., n/2}
and all subsets of {n/2 + 1, ..., n}, then |F| = 2n/2+1 and F contains 1

4 |F|2 (un-
ordered) pairs of disjoint sets. Daykin and Erdős conjectured that this is optimal
in the weak sense that if a family F ⊆ 2[n] contains ε|F|2 pairs of sets A,B ∈ F
which are disjoint for some fixed ε > 0, then one must have |F| ≤ 2(1+o(1))n/2.

This conjecture was resolved by Alon and Frankl in 1985 [3] by an elegant
probabilistic argument. They show that if F is of size m = 2(1/2+δ)n, then F
contains at most m2−δ2/2 disjoint pairs. However, as they note in their paper, this
bound does not appear to be the best possible. In our first theorem, we improve
upon the bound of Alon and Frankl, and obtain an asymptotically correct bound
for the problem of Daykin and Erdős in the most interesting range m≫ 2n/2.

Theorem 2. There exists c > 0 such that for every positive integer n and δ ∈
(0, 1/2), the following holds. Let F ⊆ 2[n] be a set family of size m ≥ 2(1/2+δ)n.

Then there are at most m2− cδ
log 1/δ disjoint pairs in F .

https://people.maths.ox.ac.uk/greenbj/papers/corners.pdf
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In fact, Alon and Frankl [3] actually made the following more precise conjecture.
Before we state it, note that it is often more natural to consider this problem in
the bipartite setting. That is, instead of a single family F , we look at disjoint pairs
(A,B) ∈ A× B, where A and B might be different set systems. If A,B ⊂ 2[n] are
of size nω(1)2n/2, then Alon and Frankl conjecture that there cannot be Ω(|A||B|)
disjoint pairs (A,B) ∈ A× B.

In 2015, Alon, Das, Glebov and Sudakov [2] proved this conjecture and showed
that for any two families A,B ⊆ 2[n] with |A||B| = Θd(n2d2n), one has at most
2−d/150|A||B| disjoint pairs. However, the problem of determining the maximal
density of disjoint pairs between two families A,B of size m = Ωd(nd2n/2) was
not settled. We resolve this problem completely in the following theorem, which
is optimal up to the o(1) term.

Theorem 3. Let d > 0 be fixed and let cd > 0 any constant depending on d. If
A,B ⊆ 2[n] are set families of size |A||B| ≥ cd2nn2d, then the number of disjoint
pairs in A× B is at most (1 + o(1))2−2d|A||B|, where o(1)→ 0 as n→∞.

1.1. Complete bipartite graphs in disjointness graphs. We now turn our
attention to a closely related extremal problem about dense disjointness graphs
of set families, namely characterizing the size of the largest biclique they contain.
Given two set families A and B with N disjoint pairs (A,B) ∈ A×B, let d(A,B) =

N
|A||B| denote the density of disjoint pairs. We are interested in the following

problem, proposed by Singer and Sudan [12].

Problem 4. If A,B ⊆ 2[n] satisfy d(A,B) ≥ δ, then how large families A′ ⊆
A,B′ ⊆ B can we find such that each pair of sets (A,B) ∈ A′ × B′ is disjoint?

There are two main motivations for studying this problem. Zarankiewicz’s
problem is one of the long-standing open problems in Extremal Graph Theory
asking to find the maximum number of edges in a bipartite graph G with parts
of size m and n, which does not contain a complete bipartite graph with parts of
size s and t. In the past two decades, the study of Zarankiewicz type problems
in which the host graph G is assumed to satisfy certain structural, algebraic, or
geometric conditions, gained a lot of attention. Considering graphs which arise as
the disjointness graph of set systems fits well into this area.

On the other hand, Problem 4 is connected to the problem of finding monochro-
matic rectangles in low-rank matrices. The main question in this area is the well-
known log-rank conjecture of Lovász and Saks [10], which is one of the fundamen-
tal open problems in communication complexity. Its combinatorial formulation
asks to show that each binary matrix M of size n × n and rank r contains an

all-zero or all-one submatrix of size at least 2−(log r)O(1)

n. Such submatrices are
called monochromatic or constant, and they do not have to consist of consecutive
rows/columns. While the log-rank conjecture is still outside the reach of known
techniques, Lovett [11] showed that one can always find a monochromatic subma-

trix of size 2−O(
√
r log r)n. Recently, this was slightly improved by Sudakov and

Tomon [13], who removed the logarithmic factor from the exponent.



Combinatorics, Probability and Computing 2309

In the same paper [11], Lovett proposed to study the size of all-zero rectangles
in low-rank sparse real matrices, stating the following conjecture.

Conjecture 5 ([11]). Let M be an n× n real matrix with rank(M) = r such that
at most εn2 entries of M are not zero, where ε ∈ (0, 1/2). Then M contains an
all-zero square submatrix of size at least n · exp(−O(

√
εr)).

A construction achieving the bound n · exp(−O(
√
εr)) can be constructed with

the help of set systems. Given a pair of set systems A,B ⊂ 2[r], the intersection
matrix of (A,B) is the matrix M , whose rows and columns are indexed by the
elements ofA and B, respectively, and M(A,B) = |A∩B|. Note that rank(M) ≤ r.

Construction. Let F =
(

[r]
k

)

be the family of all k-element subsets of [r], where

k =
√
εr, and let M2 be the n× n intersection matrix of (F ,F), where n =

(

r
k

)

.

Then all but Θ(εn2) entries of M2 are 0, and M2 contains no all-zero submatrix

of size n · 2−
√
εr . This motivates the problem of studying disjointness graphs of

set systems. Specifically, Singer and Sudan [12] proposed the following conjecture.
For any two set families A,B ⊆ 2[n] with d(A,B) ≥ 1− ε, one can find subfamilies

R ⊆ A,S ⊆ B such that d(R,S) = 1 and |R||S| ≥ |A||B| · 2−Oε(
√
n). In the

next theorem, we show not only that this is true when ε < 1/2, but also find the
optimal behavior in the case of sparse disjointness graphs. We say the two families
R and S are cross-disjoint, if d(R,S) = 1, or in other words, R and S are disjoint
for every R ∈ R and S ∈ S.

Theorem 6. Let A,B ⊂ 2[n] such that d(A,B) ≥ δ for some δ ∈ (0, 1− 1
n ). Then

there exist cross-disjoint subfamilies R ⊆ A,S ⊆ B which satisfy

|R||S| ≥ 2−O(
√

n log 1/δ)|A||B|.
1.2. Cover-free families and connections to coding theory. The key insight
in our proof of Theorem 6 is a covering result, which states that for a family
A ⊆ 2[n] and uniformly random sets A0, . . . , Ar ∈ A, the probability that A0 ⊆
A1 ∪ · · · ∪ Ar is at least 2−O(n/r). This is closely related to a concept in coding
theory called r-cover-free families.

A set family F ⊆ 2[n] is called r-cover-free if no set of F is covered by the union
of r others. This notion was originally introduced in 1964 by Kautz and Singleton
[9] in the context of coding theory, where they called such families disjunctive codes.
The r-cover-free families were later introduced to the combinatorics community
by Erdős, Frankl and Füredi [5] in 1985. Determining the maximum size of an
r-cover-free family has been a long-standing open problem, of interest both in
combinatorics and in coding theory. The best known upper bounds are due to

D’yachkov and Rykov [4] who show |F| ≤ rO(n/r2) (see also Füredi [7] for an
elegant argument). However, the best known constructions of r-cover-free families

only satisfy |F| ≥ 2Ω(n/r2) ([9], [5]).
Recently, Alon, Gilboa and Gueron [1] asked what probability distribution µ

on 2[n] minimizes the probability P[A0 ⊆ A1 ∪ · · · ∪Ar] if A0, . . . , Ar are sampled
independently with respect to µ. A natural candidate for a distribution minimizing
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this probability is the uniform distribution on a maximal r-cover-free family F .
Surprisingly, they show that this is not the case.

One of the key observations in Alon, Gilboa and Gueron [1] is that for any
distribution µ, P[A0 ⊆ A1 ∪ · · · ∪ Ar] ≥ 1

rO(n/r) . This follows from combining the
best known upper bound on r-cover-free families with a supersaturation result.
We strengthen this lower bound, obtaining a tight result up to the constant in the
exponent.

Lemma 7. Let n ≥ r ≥ 1 be positive integers and let µ be a probability distribution
on 2[n]. If A0, . . . , Ar are randomly and independently drawn elements of 2[n] with
respect to µ, then

P[A0 ⊆ A1 ∪ · · · ∪ Ar] ≥ 2−n/r−2.
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The maximum diameter of simplicial complexes

Tibor Szabó

(joint work with Stefan Glock, Olaf Parczyk, Silas Rathke)

The Polynomial Hirsch Conjecture states that the diameter of the edge-vertex
graph of polytopes is bounded by a polynomial of the number of their facets. This
natural geometric problem is strongly connected to the central algorithmic question
on the worst case running time of the simplex algorithm and its study motivated
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a number of abstractions and generalizations. Santos in particular asked for the
maximum diameter of d-dimensional abstract simplicial complexes on n vertices.

A (simplicial) complex on n vertices is a family C of subsets of [n] which is closed
under taking subsets. The maximal elements of C are called facets. If every facet is
of size d+1, C is called a simplicial d-complex. The dual graph G(C) of a simplicial
d-complex C has the set of facets as vertex set and two facets are connected by an
edge if their intersection has size d. The diameter of C is the diameter of its dual
graph G(C) (the maximum, taken over all pairs u, v ∈ V (G(C)) of vertices, of the
length of a shortest u, v-path). If G(C) is connected, C is called strongly connected.

Santos [6] defined Hs(n, d) to be the maximum diameter of a strongly connected
d-complex on [n] and proved for fixed d ≥ 2

(1) Ω
(

n
2d+2

3

)

≤ Hs(n, d) ≤ 1

d

(

n

d

)

.

The upper bound here is in fact quickly justified. On a shortest path between
any two vertices in the dual graph, the first vertex (corresponding to a (d+1)-set)
contains d+ 1 sets of size d, while each subsequent vertex contains d further d-sets
that are not contained in any previous vertex, as this would create a shortcut.
Hence, if ℓ is the number of vertices of the path, then there must exist at least
d · ℓ+ 1 sets of size d. Thus ℓ ≤ 1

d

((

n
d

)

− 1
)

and for the largest diameter we obtain
the slightly improved upper bound

(2) Hs(n, d) ≤
⌊

1

d

(

n

d

)

− d + 1

d

⌋

.

For the lower bound, Criado and Santos [3] gave an explicit algebraic con-
struction of simplicial d-complexes using finite fields, whose diameter matched the
order of magnitude of the upper bound for every fixed d and an infinite sequence
of n. Matching the order of magnitude for all n was done by Criado and New-
man [2] using a probabilistic construction with the Lovász Local Lemma for any
fixed d ≥ 3. Their result also significantly reduced the gap between upper and
lower bounds from a factor exponential in d to O(d2). Most recently Bohman and
Newman [1] managed to pin down the precise asymptotics for every fixed d ≥ 2
using the differential equations method to track the evolution of a random greedy
algorithm:

(3)

(

1

d
− (logn)−ε

)(

n

d

)

≤ Hs(n, d) ,

where ε < 1/d2 and n is sufficiently large.
At the end of their paper, Bohman and Newman remarked that any improve-

ment of their lower bound would be interesting. In [5] we gave explicit construc-
tions to determine Hs(n, 2) for every n showing that the upper bound (2) can be
achieved for d = 2 and all n except n = 6.
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Theorem 1. [5, Parczyk, Rathke, Szabó, 2024+]

(4) Hs(n, 2) =

{

⌊

1
2

(

n
2

)

− 3
2

⌋

n 6= 6

5 =
⌊

1
2

(

6
2

)

− 3
2

⌋

− 1 n = 6.

In [5] it is also conjectured that the simple upper bound (2) can also be achieved
for all other d as long as n is large enough. In our most recent manuscript we prove
this conjecture.

Theorem 2. [4, Glock, Parczyk, Rathke, Szabó, 2025+] For every positive integer
d ≥ 2, there exists a positive integer n0 such that for all n > n0,

Hs(n, d) =

⌊

1

d

(

n

d

)

− d + 1

d

⌋

.
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Stability of Functional and Geometric Inequalities

Marius Tiba

(joint work with Alessio Figalli, Peter van Hintum)

Geometric and functional inequalities play a crucial role in several problems arising
in the calculus of variations, partial differential equations, geometry and combina-
torics.

The classical Euclidean isoperimetric inequality states that, for any bounded
open smooth set E ⊂ Rd, the perimeter P (E) controls the volume |E|:

P (E) ≥ d|B1|1/d|E|(d−1)/d,

where B1 is the unit ball in Rd. Moreover, equality holds if and only if E is a ball.
A central problem in the study of geometric and functional inequalities is the

stability problem. In the case of the isoperimetric inequality, this is based on the
principle that if we are close to equality, then the set E is close to being a ball.

This problem has been thoroughly studied and results seek to quantify the two
notions of closeness (we refer to the survey [[11], Section 3] for the history of
the problem). In 2008, Fusco, Maggi and Pratelli [10] proved the following sharp
stability result conjectured by Hall.
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Theorem 1. There exists C(d) > 0 such that the following holds. If

P (E) = (1 + δ)d|B1|1/d|E|(d−1)/d,

then there exists a ball B with |B| = |E| for which

|E∆B| ≤ C(d)δ1/2|E|.
The Brunn-Minkowski inequality is a fundamental tool in convex geometry and

analysis that relates the size of the sumset to the sizes of the individual sets.
It states that for compact sets with positive volume A,B ⊂ Rd, |A + B|1/d ≥
|A|1/d + |B|1/d. Here, A+ B = {x+ y : x ∈ A, y ∈ B}. Moreover, equality holds if
and only if A and B are convex and homothetic.

An equivalent and natural reformulation of the Brunn-Minkowski inequality is
that if t ∈ (0, 1/2] and A,B ⊂ Rd are compact sets with equal positive volume,
then

|tA + (1 − t)B| ≥ |A|.
Equality holds, if and only if A and B are convex and equal up to translation.

It is worth remarking that the Brunn-Minkowski inequality implies the isoperi-
metric inequality.

The stability for the Brunn-Minkowski inequality is based on the principle that
if we are close to equality then the sets A and B are close to being convex and
equal up to translation.

The problem of quantifying the two notions of closeness has been intensely
investigated. To mention a few important works, a sharp stability result was
obtained by Figalli, Maggi and Pratelli [8] when the sets are convex, by Figalli,
Maggi and Mooney [7] when one of the sets is a ball, by Barchiesi and Julin [2]
when one of the sets is convex and by van Hintum, Spink and Tiba when the sets
are two dimensional. For general sets in any dimension, Figalli and Jerison [4]
obtained a quantitative sub-optimal stability result.

In this talk we conclude a long line of research on this problem by proving a
sharp stability result for the Brunn-Minkowski inequality for general sets in any
dimension.

Theorem 2. [5] There exists δd,t > 0 s. t. the following holds. If |A| = |B| and
|tA + (1− t)B| = (1 + δ)|A|,

for some δ < δd,t, then there exists v ∈ Rd such that

|A∆(B + v)| = Od(1)t−1/2δ1/2|A|
and

|co(A) \A| ≤ Od,t(1)δ|A| and |co(B) \B| ≤ Od,t(1)δ|B|.
The Prékopa-Leindler inequality is a functional generalization of the Brunn-

Minkowski inequality with applications to high dimensional probability theory. It
states that if t ∈ (0, 1) and f, g : Rd → R+ are continuous functions with bounded
support such that

∫

f dx =

∫

g dx > 0
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and h : Rd → R+ is defined by

h(z) = sup
z=tx+(1−t)y

f t(x)g1−t(y),

then
∫

h dx ≥
∫

f dx.

Equality holds if and only if f and g are log-concave i.e. log(f) and log(g) are
concave and equal up to translation.

The Borell-Brascamp-Lieb inequality extends Prékopa-Leindler inequality to
other means. It states that if d ∈ N, t ∈ (0, 1), p ∈ (−1/d,∞) and f, g : Rd → R+

are continuous functions with bounded support such that
∫

f dx =

∫

g dx > 0

and h : Rd → R+ is defined by

h(z) = sup
z=tx+(1−t)y

(

tfp(x) + (1− t)gp(y)

)1/p

in case p 6= 0 and by
h(z) = sup

z=tx+(1−t)y

f t(x)g1−t(y)

in case p = 0, then
∫

h dx ≥
∫

f dx.

Equality holds if and only if f and g are equal up to translation and p-concave
i.e. sign(p)fp and sign(p)gp are concave in case p 6= 0 and log(f) and log(g) are
concave in case p = 0.

The stability of the Prékopa-Leindler and Borell-Brascamp-Lieb inequalities is
based on the principle that if we are close to equality, then the functions f and g
are close to being p-concave and equal up to translation.

Böröczky, Figalli and Ramos [3] and Figalli and Ramos [9] obtained quantitative
sub-optimal stability results for the Prékopa-Leindler inequality and also conjec-
tured a sharp stability result. Balogh and Kristaly [1] established the equality
case in Borell-Brascamp-Lieb inequality and Rossi and Salani proved a quantita-
tive sub-optimal stability result when p > 0.

In this talk we prove sharp stability results for Prékopa–Leindler and Borell–
Brascamp–Lieb inequalities, resolving the conjecture of Böröczky, Figalli and
Ramos.

Theorem 3. [6] There exists δd,t,p > 0 such that the following holds. If
∫

h dx = (1 + δ)

∫

f dx

for some δ < δd,t,p then there exist u, v ∈ Rd and p-concave c : Rd → R+ s.t.
∫

|f(x) − c(x + u)|+ |g(x)− c(x + v)| dx = Od,t,p(δ1/2)

∫

f(x)dx.
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Approximate versions of Graham’s conjecture

Liana Yepremyan

(joint work with Matija Bucic, Bryce Frederickson, Alp Müyesser,
Alexey Pokrovskiy)

This talk was on a question in combinatorial number theory, first raised by Graham
in 1971, and reiterated by Erdős and Graham in 1980. The conjecture says that
for any p prime and any S ⊆ Zp \ {0} with |S| = d there exists a rearrangement

of S as a1, a2, . . . , ad such that all partial sums
∑t

j=1 ai, 1 ≤ t ≤ d are distinct.

Such a set S we call rearrangeable. Prior to our work [4], most of the progress
towards Graham’s conjecture has been in the cases when the generator set S =
{a1, a2, . . . , ad} is very small - |S| ≤ 12 using Combinatorial Nullstellensatz or
very large - |S| ≥ p− 3 using direct, constructive arguments. Recently, Kravitz [6]
and independently Sawin [8] showed that Graham’s conjecture holds when |S| ≤
log p/ log log p. In a subsequent paper, Bedert and Kravitz [3] showed that the

conjecture holds for |S| ≤ e(log p)1/4 which has been an important milestone as this
bound overcomes a natural barrier for the rectification techniques used in [6, 8].

In our work, we gave the first approximate solution to this problem for all
groups Γ; for any finite group Γ and any subset S ⊆ Γ there exists an ordering of
elements of S in which at least (1 − o(1))|S| many partial products are distinct.
This guarantees that all subsets are approximately rearrangeable in a very general
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setup, and the proof uses the translation invariance in Cayley graphs. However, we
also prove a stronger approximate result for certain cases of groups and generator
sets. We can find a subset S′ ⊆ S of size (1−o(1))|S| such that S′ is rearrangeable
in the following cases:

(a) For any Γ and S containing only involutions, that is, elements of order
two. This in particular applies to an interesting case of the hypercube -
Γ = Fn

2 .
(b) |S| = Ω(|Γ|).
(c) d ≥ p2/3+o(1) and Γ = Zp for some prime p.

Graham’s rearrangement conjecture has a natural translation to a graph theo-
retic question, and that is the setup we use to prove our results. Given a subset
S of a group Γ, we define the colored directed Cayley graph on Γ with generator
set S to be the edge-colored directed graph Cay(Γ, S) on the vertex set Γ with an
edge from a to ag of color g for every a ∈ Γ and g ∈ S. It is not hard to see that
the set S is rearrangeable if and only if the Cayley graph Cay(Γ, S) has a rainbow
directed path of length |S| − 1, that is, all edges of the path have distinct colours.
Here the length of a path refers to the number of edges it contains. For example, if
S = {ai1 , . . . , aid} is a rearrangement of S ⊆ Zp\{0} with distinct partial sums, we
see that (ai1 , ai1 +ai2 , . . . , ai1 + · · ·+aid) is a rainbow directed path in Cay(Zp, S)
with d− 1 edges. Conversely, any rainbow directed path in Cay(Zp, S) with d− 1
edges is of the form (x+ ai1 , x+ ai1 + ai2 , . . . , x+ ai1 + · · ·+ aid) for some x ∈ Zp

and rearrangement S = {ai1 , . . . , aid} with distinct partial sums.
One may wonder if the underlying structure of the groups in Cayley graphs has

any importance in Graham’s rearrangement conjecture and its variants. Recall an
edge colouring of an undirected graph is proper if no two edges sharing a vertex
have the same colour. In the directed setting, no pair of edges with a common
start-vertex and no pair of edges with a common end point may be monochromatic.
Indeed, one can ask if any d-regular digraph properly edge-colored with d colors
contains a directed rainbow path with d − 1 edges. For undirected graphs, this
question has already been studied extensively. Indeed, Andersen’s conjecture [1]
from 1989 states that there exists a rainbow path of length n− 2 in any properly
colored Kn. Note that n− 2 is tight here. In this direction, Hahn [5] conjectured
in 1980 that in any proper edge colouring of Kn there exists a rainbow path of
length n − 1. This was refuted by Maamoun and Meyniel [7], by considering
Cay(Fk

2 ,F
k
2 \ {0}) which has no rainbow Hamilton path. Andersen’s conjecture

has been proven to be true asymptotically by Alon, Pokrovskiy, and Sudakov [2]
in 2017 who showed the existence of rainbow paths of length n− o(n).

Schrijver [9] asked for a far reaching generalization of Andersen’s conjecture by
posing the question of the existence of a rainbow path of length d− 1 in any prop-
erly d-edge-colored d-regular graph G, and he verified this conjecture whenever
d ≤ 10. The best general bound on Schrijver’s problem prior to our work was a
rainbow path of length at most 2d/3. In our work, we settled Schrijver’s question
asymptotically, generalizing the approximate solution of Andersen’s conjecture in
this setting; any properly edge-colored d-regular graph contains a rainbow path
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of length (1 − o(1))d. While a result of this form is perhaps not very surprising
for d = Ω(|G|), the significance of this result lies in covering the entire range of
d, in particular, when d is a sufficiently large constant. For directed graphs, we
could only get a rainbow directed path of length d−o(d) in the dense regime when
d = Ω(|G|). In both cases, we can relax the condition on the number of colors
being arbitrary many and the graph or digraph can be almost-regular.
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