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Introduction by the Organizers

The workshop Partial Differential Equations, organized by Ailana Fraser (UBC),
Xavier Ros-Oton (Barcelona) and Felix Schulze (Warwick) was held July 20–July
25, 2025. The meeting was attended by 48 participants with broad geographic
representation. The program consisted of 22 talks and left sufficient time for
discussions.

As in the tradition of the workshop, a main theme of the workshop was around
PDE related to geometric and variational problems. New progress related to regu-
larity theory for solutions of geometric PDE was announced in several talks. This
included a talk in which generic regularity of area-minimizing hypersurfaces in
ambient dimension 11 was presented. Another talk discussed work investigating
the size of the singular set of stationary integral varifolds, showing that provided
an ǫ-regularity property holds, that the branch set has codimension 2, and con-
sequently that the whole singular set has codimension 1. A generic regularity
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result for stationary integral varifolds with only strongly isolated singularities in-
side Riemannian manifolds, in absence of any restriction on the dimension and
codimension was discussed. Conditions that guarantee regularity of viscosity so-
lutions to the special Lagrangian equation were presented, along with examples of
singular solutions showing that these conditions are sharp. In the context of free
boundary problems, it was presented that the Hausdorff dimension of the branch-
ing set at the boundary for minimizers of the one-phase Bernoulli free boundary
problem is at most n − 2. A classification of global solutions to the one-phase
free boundary problem which are asymptotic to the De Silva-Jerison cone was
presented.

Geometric properties of min-max geodesics were discussed, including upper
bounds on their Morse index and number of self-intersections. The existence of
local minimizers of a multiple bubble problem with one finite-volume and two
infinite-volume chambers whose interface has a blowdown that is a singular mini-
mizing cone was presented, demonstrating non-uniqueness of such local minimizers
for a large number of dimensions.

Several presentations focused on recent developments in geometric flows. This
included a talk where extensions of the Harnack inequality for curve shortening
flow without convexity assumptions were presented. For the analogue in higher di-
mension, the mean curvature flow, one talk discussed the instability of the peanut
solution. For more general ancient solutions with an asymptotically cylindrical
profile, it was explained how to employ information about the dominant eigen-
mode to trace the finer asymptotic shape of the solution. A further contribution
explained how to capitalise on a non-degeneracy condition for generic singularities
to obtain a precise picture of the evolution locally prior and past the singularity.
Another presentation discussed an extension to the classical avoidance principle
and its implications. As an application of mean curvature flow to questions in
geometry connectivity properties of the space of mean convex spheres and tori in
three-manifolds was presented. Other geometric flows were the focus of further
talks. One talk discussed uniqueness of smooth non-compact solutions to Ricci
flow under natural scaling invariant curvature bounds. For general parabolic sys-
tems a talk about existence and uniqueness result for non-smooth initial data was
given.

Other PDE aspects were covered as well, with several talks presenting recent
progress on PDE topics related to physics or probability. This included a talk on
a liquid drop model, which uses geometric and variational techniques. Another
talk discusses work investigating travelling waves for a 2D equation arising in fluid
dynamics, and its connection to free boundary problems. A further contribution
gave a geometric view about regularity structures, arising in the study of stochastic
PDEs. For kinetic equations a talk about the decay for large velocities for the
Boltzmann equation was given. Finally, one talk discussed a new characterization
of GBD, an energy space arising in linearized elasticity with cracks.
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Abstracts

The liquid drop model

Rupert L. Frank

(joint work with Mathieu Lewin, Robert Seiringer)

The following energy functional appears in physics to model both highly com-
pressed nuclear matter found in the crust of neutron stars (Ravenhall–Pethick–
Wilson, Hashimoto–Seki–Yamada) and microphase separation in diblock copoly-
mers (Ohta–Kawasaki). Our main motivation comes from the first application.

Let ρ ∈ (0, 1). For L > 0 let ΛL := (−L/2, L/2)3 ⊂ R3 and for Ω ⊂ ΛL
measurable, let

Eρ,L[Ω] := PerΩ +
1

2

¨

R3×R3

(1Ω(x)− ρ1ΛL
(x)) (1Ω(y)− ρ1ΛL

(y))

|x− y| dx dy .

and consider the minimization problem

E(ρ, L) := inf{Eρ,L[Ω] : Ω ⊂ ΛL , |Ω| = ρL3} .
We know that the thermodynamic limit exists:

∃ e(ρ) := lim
L→∞

E(ρ, L)

L3
.

This is subtle due to the long-range nature of the Coulomb potential. It can be
derived from results by Alberti–Choksi–Otto (2009) (who prove much more). It
can also be proved using techniques of Lebowitz, Lieb and Narnhofer.

Our main result [1] describes the behavior of e(ρ) as ρ → 0 and provides a
justification of what is known as the gnocchi phase among the nuclear pasta phases.

Theorem. There are positive constants µ∗ and e∗ such that, as ρ→ 0,

e(ρ) = µ∗ρ− e∗ρ
4/3 + o(ρ4/3) .

Intuitively,

• Proving O(ρ) corresponds to proving that there are droplets of size ∼ 1.
• Proving µ∗ρ+ o(ρ) corresponds to finding the shape of the droplet.
• Proving µ∗ρ + O(ρ4/3) corresponds to proving distance ∼ ρ−1/3 between
droplets.

• Proving the theorem corresponds to undestanding the arrangement of the
droplets.

We briefly summarize earlier work. The asymptotics e(ρ) = µ∗ρ + o(ρ) is due
to Emmert–F.–König (2020). Similar leading order results are due to Knüpfer–
Muratov–Novaga (2016) in the ultra-dilute limit ρ ∼ L−2. We stress that we first
let L→ ∞, then ρ→ 0. Results reminiscent of the sub-leading order asymptotics
are due to Choksi–Peletier (2010) in the ultra-ultra-dilute limit ρ ∼ L−3.
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The constant µ∗ is defined as follows. The liquid drop model without background
is

E [Ω] := PerΩ +
1

2

¨

Ω×Ω

dx dy

|x− y| , E(A) := inf {E [Ω] : |Ω| = A} .

As shown by F.–Lieb (2015) and Knüpfer–Muratov–Novaga (2016),

µ∗ := inf
A>0

E(A)

A

is attained. The minimizer for µ∗ is widely believed, but not known to be a ball.

The constant e∗ is defined as follows. The Jellium model (Wigner, 1934) is

EJ
L[X ] :=

∑

n<m

1

|Xn −Xm| −
N
∑

n=1

ˆ

ΛL

dx

|Xn − x| +
1

2

¨

ΛL×ΛL

dx dy

|x− y| , X ∈ (ΛL)
N ,

EJ
L := inf

{

EJ[X ] : X ∈ (ΛL)
N , N = L3

}

We know that the thermodynamic limit exists (Lieb–Narnhofer, 1975):

∃ eJ := lim
L→∞

EJ
L

L3
.

Minimizers are widely believed, but not known to be arranged on a BCC lattice.
We define, with A∗∗ := max{A : E(A)/A = µ∗} (which is known to be finite),

e∗ = −A2/3
∗∗ eJ .

References
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Generic regularity of minimizing hypersurfaces up to dimension 11

Christos Mantoulidis

(joint work with Otis Chodosh, Felix Schulze, Zhihan Wang)

Consider a smooth, closed, oriented (n − 2)-dimensional submanifold Γ ⊂ Rn.
Among all smooth, compact hypersurfacesM ⊂ Rn with ∂M = Γ, we want to find
one of least area (“minimizing”). Using geometric measure theory, one can prove
the existence of a minimizer among a weaker class of objects, integral currents.
A minimizer is now well-known to be a smooth hypersurface if n ≤ 7, or more
generally smooth outside an (n−8)-dimensional singular set [1, 2, 3, 4, 5, 6]. InR8,
the first dimension in which singularities appear [7], Hardt–Simon [8] showed that
for a generic choice of Plateau boundary Γ, minimizing M are smooth. Smale [9]
proved an analogous result for minimizers in 8-dimensional manifold codimension-1
integral homology classes, with generic Riemannian metrics.

These generic regularity results were recently extended with Chodosh and
Schulze to cover R9 and R10 [10]. We also proved the analogous results in the
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context of 9- and 10-manifolds for minimization in codimension-1 integral homol-
ogy classes [11]. In higher dimensions, we proved that a minimizing M will have
a ≤ n− 10− ǫn dimensional singular set after perhaps a C∞-perturbation of the
Plateau boundary. See also [12].

We now extended this to R11, 11-manifolds, and a corresponding ≤ n− 11− ǫ′n
dimensional singular set after perhaps a C∞-perturbation of the Plateau boundary
or Riemannian metric [13]. Let us discuss what goes into the proof of this theorem
for the Plateau problem in Rn, focusing on the case n ≤ 11. Let us denote

M(Γ) = {minimizing integral currents in Rn with boundary [[Γ]]}.
We agree to the following simplifying assumptions for the presentation:

• Γ is connected.
• M(Γ) is a singleton.

Set Γ0 := Γ and perturb Γ smoothly to (Γs)s∈(−δ,δ) by s times the unit normal to
the unique minimizing M ∈ M(Γ) (by [6], singM ∩ Γ = ∅) for some small δ > 0.
For each s ∈ (−δ, δ), let M(Γs) be the set of all minimizers with boundary data
Γs; each such is still of the form [[Ms]], with Ms enjoying similar a priori regularity
as M . A cut-and-paste argument implies that

(‡) [[Ms]] ∈ M(Γs), [[Ms′ ]] ∈ M(Γs′), s 6= s′ =⇒ M̄s ∩ M̄s′ = ∅.
Define

L = ∪s∈(−δ,δ) ∪[[Ms]]∈M(Γs) M̄s,

S = ∪s∈(−δ,δ) ∪[[Ms]]∈M(Γs) singMs.

In view of (‡), the following “timestamp” function t : L → (−δ, δ) is well-defined:
t(x) = s for all x ∈ M̄s, [[Ms]] ∈ M(Γs), s ∈ (−δ, δ).

We show, in a Sard-type manner, that t(S) has measure zero in R. In particular,
its complement is dense. For any such parameter s in the complement, minimizing
M ∈ M(Γs) are all smooth.

In scales where L is suitably modeled by a minimizing hypercone C, the follow-
ing hold in a suitable (local, coarse) sense:

(i) S is ≤ (dim spineC)-dimensional.
(ii) t is h-Hölder for all h < 1 + α(C), where α(C) > 1.

Varying C over all nonflat minimizing hypercones in Rn, and using

αn = inf
C

α(C) > 1 and max
C

dim spineC = n− 8,

then a stratification and iteration shows, for n ≤ 10, a Hausdorff dimension bound:

dim t(S) ≤ sup
C

dim spineC
1+α(C) ≤ n−8

1+αn
≤ 2

1+αn
< 1.

Thus, t(S) ⊂ R has measure zero, and we are done.
When n = 11, this strategy becomes borderline. Indeed:

C ∈ Rot(C◦ ×R3), C◦ ⊂ R8 any minimizing quadratic hypercone

=⇒ dim spineC
1+α(C) = 3

3 = 1.
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At points of S suitably modeled by such a minimizing hypercone, our upper bound
is “borderline” and thus insufficient. In fact, this is the only case that is borderline
when n = 11. This suggests that we have the following cases to consider:

(a) Minimizing hypercones C with dim spineC ≤ 2. These satisfy:

dim spineC
1+α(C) ≤ 2

1+αn
< 1.

(b) Minimizing hypercones C with dim spineC = 3, i.e., C ∈ Rot(C◦ ×R3),
where C◦ ⊂ R8 is not a minimizing quadratic hypercone. One can show:

α(C) = α(C◦) ≥ α8 +∆non-qd
8 where α8 = 2 and ∆non-qd

8 > 0.

Then:
dim spineC
1+α(C) ≤ 3

1+α8+∆non-qd
8

= 3

3+∆non-qd
8

< 1.

(c) All remaining hypercones, i.e., C ∈ Rot(C◦×R3), where C◦ ⊂ R8 is some
minimizing quadratic hypercone. Here, we engaged in fine analysis to get
an upper bound on the dimension of t(S) in terms of a sharper right hand
side. More generally, we treated this larger class of hypercones:

C ∈ Rot(C◦ ×Rk), C◦ ⊂ Rn−k regular, strongly integrable,(⋆k,n)

strictly stable, strictly minimizing.

Simon [14] pioneered the study of such hypercones. One can show that ho-
mogeneous Jacobi fields on C satisfying (⋆k,n) have a gap in their allowed
degrees of homogeneity: either the degree equals 1, or it is ≥ 1 + ∆C,
with ∆C > 0. We proved that the local picture near points of L suitably
modeled by C satisfying (⋆k,n) with Jacobi field degree d is as follows.
(i’) If d = 1, we improved the (local, coarse) dimension bound in (i):

S is ≤ (dim spineC− 1)-dimensional,

by more refined understanding of degree-1 Jacobi fields on such C.
(ii’) If d ≥ 1 + ∆C, we improved the (local, coarse) Hölder bound in (ii):

t is h-Hölder for all h < 1 + α(C) + ∆C,

by exploiting the faster-than-scaling closeness of the minimizer to C.
Varying C over all hypercones satisfying (⋆k,n), one sees that:

α(C) = αn−k, ∆
qd
n = inf

C,(⋆k,n)
∆C > 0.

Now n = 11, and we are in case (c). Then, α11−3 = α8 = 2 implies:

min{dim spineC−1
1+α(C) , dim spineC

1+α(C)+∆C
} = min{ 2

1+2 ,
3

3+∆qd
11

} < 1.

At this point, a stratification and iteration more refined than in [10, 11], which
distinguishes cases (a), (b), (c.i’), and (c.ii’), can be used to prove, once again

dim t(S) < 1 in R11.



Partial Differential Equations 1763

References

[1] W. H. Fleming. On the oriented Plateau problem. Rend. Circ. Mat. Palermo (2) 11 (1962),
69–90.

[2] E. De Giorgi. Una estensione del teorema di Bernstein. Ann. Scuola Norm. Sup. Pisa Cl.
Sci. (c) 19 (1965), 79–85.

[3] F. J. Almgren, Jr. Some interior regularity theorems for minimal surfaces and an extension
of Bernstein’s theorem. Ann. of Math. (2) 84 (1966), 277–292.

[4] J. Simons. Minimal varieties in riemannian manifolds. Ann. of Math. (2) 88 (1968), 62–105.
[5] H. Federer. The singular sets of area minimizing rectifiable currents with codimension one

and of area minimizing flat chains modulo two with arbitrary codimension. Bull. Amer.
Math. Soc. 76 (1970), 767–771.

[6] R. Hardt and L. Simon. Boundary regularity and embedded solutions for the oriented Plateau
problem. Ann. of Math. (2) 110 (1979), 439–486.

[7] E. Bombieri, E. De Giorgi, and E. Giusti. Minimal cones and the Bernstein problem. Invent.
Math. 7 (1969), 243–268.

[8] R. Hardt and L. Simon. Area minimizing hypersurfaces with isolated singularities. J. Reine
Angew. Math. 362 (1985), 102–129.

[9] N. Smale. Generic regularity of homologically area minimizing hypersurfaces in eight di-
mensional manifolds. Commun. Anal. Geom. 1 (1993), 217–228.

[10] O. Chodosh, C. Mantoulidis, and F. Schulze. Generic regularity for minimizing hypersur-
faces in dimensions 9 and 10. arXiv:2302.02253 (2023).

[11] O. Chodosh, C. Mantoulidis, and F. Schulze. Improved generic regularity for minimizing
integral n-currents. arXiv:2306.13191 (2023).

[12] X. Li. Minkowski content estimates for generic area minimizing hypersurfaces.
arXiv:2312.02950 (2023).

[13] O. Chodosh, C. Mantoulidis, F. Schulze, and Z. Wang. Generic regularity for minimizing
hypersurfaces in dimension 11. arXiv:2506.12852 (2025).

[14] L. Simon. Uniqueness of some cylindrical tangent cones. Commun. Anal. Geom. 2 (1994),
1–33.

Generation of decay for solutions to the Boltzmann equation

Amélie Loher

The focus of this talk were recent developments on the Boltzmann equation, a PDE
that describes dynamics of uncharged particles. We first explained how equations
in kinetic theory happen on a mesoscopic scale, between the microscopic dynamics
encoding the trajectories of all single particles, and the macroscopic scale of fluid
equations. We mentioned the recent break through result by Deng-Hani-Ma [2]
that rigouroulsy justifies the Boltzmann equation on arbitrary time scales (as long
as the solution exists) as a Boltzmann-Grad limit from particle systems under the
molecular chaos assumption.

We secondly discussed the different potentials that the particles can be sub-
jected to: from hard, to moderately soft, up to very soft potentials. The well-
posedness theory for the spatially homogenous equation started with the case
of hard spheres through Carleman in 1933 [10], then continued with moderately
soft potentials as can be found for instance in He [4], up to the recent result by
Imbert-Silvestre-Villani in 2024 [8]. They showed that the Fisher information is
monotone, from which they inferred the global existence of a unique solution to
the Boltzmann equation.
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We then turned to the spatially inhomogeneous case: the well-posedness is open.
There are some perturbative results, some local well-posedness result, and some
very weak notion of solution results (renormalised solution with defect measure)
that are not known to be unique and too weak to be able to make sense of the
equation even in a distributional sense. It is, however, known that there is under-
lying coercivity in the equation, which can for instance be exploited under further
assumptions: Silvestre in 2016 [1] introduced a conditional regime for moderately
soft and hard potentials, where a given solution is supposed to satisfy for each time
and each point in space that the macroscopic mass is bounded above and below,
and the kinetic energy and the entropy are bounded above. If this is satisfied, then
the solution is in L∞ in time, space, and velocity, where the bound depends only
on the boundedness of the aforementioned quantities. This led to a series of papers
by Imbert-Silvestre around 2020 [9, 7, 8, 6] with the final result which stated that
any given classical solution to the spatially inhomogeneous Boltzmann equation in
(0, T )× Rd × Rd (with moderately soft and hard potentials) is smooth, provided
that it satisfies the assumptions of the conditional regime. They assumed that the
solution is periodic in space, and in case of moderately soft potentials that the
initial condition is pointwisely decaying in velocity at some polynomial rate. The
result was based on

a) local Hölder continuity,
b) local Schauder estimates,
c) change of variables to turn the local estimates into global ones,
d) bootstrap.

In order to make the bootstrap work, they also required

e) pointwse polynomial decay estimates in velocity.

This last point is the reason they had to impose a pointwise decay on the initial
datum for soft potentials. It was then shown by Imbert-Mouhot-Silvestre in 2018
[8] that strong solutions to the Boltzmann equation which are periodic in space
and subject to the conditional regime

(1) generate some polynomial pointwise decay in case of hard potentials,
(2) propagate decay in case of moderately soft and hard potentials.

For (1) the generation of decay was shown up to a rate that was bounded by
d + 1. Together with C. Imbert in 2025 [5], we studied a suitable notion of weak
solutions to the Boltzmann equation in order to be able to deal with bounded
spatial domains. We were able to treat the following boundary conditions: bounce
back, inflow, specular reflection, diffuse reflection, and a linear combination of the
last two which is known as Maxwell condition.

We can also treat the whole Euclidean space for the spatial directions. We
worked in the conditional regime of Silvestre, and showed that the solutions gen-
erate any polynomial pointwise decay in velocity, not only for hard potentials, but
also in case of soft potentials. In particular, this allows to get rid of the decay
assumption on the initial datum in the result of Imbert-Silvestre [6]. The proof
relies on a purely non-local effect: the fact that from a non-local equation one gets
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two, instead of one, regularity estimate out of an energy estimate. It also relies on
the non-linearity of the equation: we first show the generation of some amount of
decay, which we then use to get better estimates due to the non-linearity to show
the generation of some more decay. This argument is then bootstrapped to get
arbitrary polynomial decay.
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A geometric view upon regularity structures, charts and transition
maps for the solution manifold

Felix Otto

(joint work with Lucas Broux, Markus Tempelmayr)

We consider nonlinear elliptic equations of the form

(1) Lλ[u] := −∆u+ λum = f

in the whole d-dimensional space. Here, m ≥ 1 is a positive integer and λ ∈ R

is a ‘coupling constant’ modulating the strength of the nonlinearity. Taking a
geometric view upon this equation, we consider the structure of the corresponding
solution manifold {(u, f, λ) |Lλ[u] = f}. First looking at its symmetries, we note
that it is invariant under

• translating x, i. e. under z 7→ (u(z + ·), f(z + ·), λ) for z ∈ Rd,
• rescaling x, i. e. under r 7→ (u(r·), r2f(r·), r2λ) for r > 0,
• rescaling u, i. e. under µ 7→ (µu, µf, µ1−mλ) for µ > 0.

We suppose that we are given a space F ∋ f of forcings which itself is invariant
under translating x and under the rescaling r2−αf(r·) for r > 0 and some fixed
α ∈ R. From the above symmetries we then infer that the solution manifold
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is invariant under r 7→ (r−αu(r·), r2−αf(r·), r2−(1−m)αλ) for r > 0. This crucial
scaling symmetry can be reformulated in terms of ambient Hölder spaces as (u, f) ∈
Ċα × Ċα−2.

A ‘thin’ space F of right-hand sides f . Concerning our assumptions on the
forcing, we consider the singular (α < 0) but sub-critical ((m−1)α+2 > 0) regime,
where the former condition means that the solution u is genuinely distributional
(and hence the nonlinearity is classically ill-defined), while the latter condition
indicates that the effective strength of the nonlinearity however vanishes at small
scales i. e. under blow up. Furthermore, we are interested in the case when ‘the
tangent space is less rough than the ambient space’, i. e. is contained in a Sobolev
space of higher regularity:

δf ∈ TfF ⊆ Ḣs while f ∈ F ⊆ Ċα−2 for some s > α− 2;

hence the tangent space has more derivatives (however measured in L2 instead of
the C0 scale). This property is characteristic of stationary Gaussian ensembles

with support contained in Ċα−2, where the Gaussian measure is preserved under
the shift f 7→ f + δf iff δf ∈ Ḣs with s = α− 2 + d/2. Note the identical scaling

of Ḣs and Ċα−2, and that white noise corresponds to s = 0.

Linearizing the equation. This suggests, as is standard in regularity theory, to
differentiate the equation (1), here w.r.t f :

(TuLλ)δu = (−∆+ λmum−1)δu = δf.

At this linearized level, we note that under the self-consistent assumptions um−1 ∈
Ċ(m−1)α and δu ∈ Ḣ2+s, the product um−1δu is controllable iff (m−1)α+2+s > 0.
We may now describe at a high level the main result of [2].

Theorem ([2, Theorem 1] paraphrased). Suppose (m− 1)α+ 2 +min{s, 0} > 0.
Then one can construct a (renormalized) solution manifold.

Charts U and transition maps P for the solution manifold. To make
the statement more precise, we continue to describe the geometry of the solution
manifold. In the linear case where λ = 0 we observe that {u |L0[u] = f} is affine
over {p |L0[p] = 0} ⊆ P := {analytic functions}, and hence {u |L0[u] ∈ f + P} is
affine over the entire P . In the general case where λ ∈ R, we aim at constructing
an (inverse) chart u = Uλ[f, p] with domain F × P ∋ (f, p) such that

(2) Lλ[Uλ[f, p]] = f + Lλ[p],

and which is affine for λ = 0: U0[f, p] = U0[f, 0] + p. As it turns out, such a chart
is unique (in a term-by-term sense, see below), upon imposing compatibility with
our scaling invariances of the form

(3) Uµ1−mλ[µf, µp] = µUλ[f, p] and Ur2λ[r
2f(r·), p(r·)] = Uλ[p, f ](r·).

However it is incompatible with translation invariance (unless λ = 0), i. e.

Uλ[f(z + ·), p(z + ·)] 6= Uλ[f, p](z + ·).
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In fact, the second item in (3) implicitly relies on a non-canonical choice of ‘origin’
in d-dimensional space. Hence for every point x in space we obtain a chart Uxλ. We
therefore aim as well at constructing transition maps Pxyλ[f, ·] on P characterized
by

(4) Uxλ[f, p] = Uyλ[f, Pxyλ[f, p]],

which incidentally allows to recover compatibility with translation invariance in
the form of

Pxyλ[f(z + ·), p(z + ·)] = Pz+x z+y λ[f, p].

A robust characterization of the charts U . The key observation is a char-
acterization of the charts U which is robust and hence eliminates the non-robust
operator L. Indeed, taking derivatives of (2) w.r.t. f ∈ F and p ∈ P , respectively,
yields

(TUλ
Lλ)(TfUλ)δf = δf,

(TUλ
Lλ)(TpUλ)δp = (TpLλ)δp.

If TfF were contained in P , we could hope to equate the right-hand sides and
hence construct a linear map Aλ[p] from TfF to P such that

TfUλ = (TpUλ)Aλ and id = (TpLλ)Aλ.

However, this construction cannot be applied here since we only have TfF ⊆ Ḣs 6⊆
P . The transition maps are essential to tackle this issue: taking also a derivative
w.r.t. p ∈ P of (4) yields

TpUxλ = (TPxyλ
Uyλ)TpPxyλ.

This motivates to make the ansatz that for some linear map Axyλ[f, p] from TfF
to P ,

(TfUxλ)δf = (TPxyλ
Uyλ)Axyλδf +O(| · −y|2+s) and

imAxyλ ⊆ {q ∈ P | degree of q < 2 + s}.

A ‘term-by-term’ ansatz. The construction of U , P , and A is performed ‘term-
by-term’ and algebrized as follows. Introducing on P the coordinates zn[p] :=
1
n!
dnp
dxn (0) for n ∈ Nd0 allows to expand functions on R× P ∋ (λ, p) in terms of the

monomials

z
β [λ, p] := λβ(m)

∏

n∈Nd
0

z
β(n)
n [p]

for multi-indices β on {m} ∪ Nd0. One can then interpret Pxy, Axy, and Ux as
formal power series in λ and zn:

z
γ [λ, Pxyλ[p]] =

∑

β

(Pxy)
γ
β z

β [λ, p] where (Pxy)
γ
β is a function on F ,

zn[Axyλ[p]] =
∑

β

(Axy)
(n)
β z

β [λ, p] where (Ax)
(n)
β is a section of T∗F ,
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Uxλ[p] =
∑

β

Uxβ z
β [λ, p] where Uβ is a section of the fiber bundle over F

with base space Schwartz distributions.

The main advantage of this term-by-term formulation is that we gain a triangular
structure which only involves inverting the linear operator L0.

Theorem ([2, Theorem 1] less paraphrased). One can inductively construct Uxβ,

(Pxy)
γ
β , and (Axy)

(n)
β .

Similar ideas can be applied to other equations, including parabolic and quasi-
linear variants of (1), see [3, 4]. Although these formal power series are not ex-
pected to converge, such a term-by-term ansatz is used in [1] to develop a well-
posedness theory for (1) based on a continuity method.
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Regularity vs. singularity for the special Lagrangian equation

Connor Mooney

(joint work with Ovidiu Savin and Ravi Shankar)

The special Lagrangian equation is

(1) F (D2u) :=

n
∑

i=1

tan−1(λi) = Θ.

Here u is a function on a domain in Rn, λi are the eigenvalues of D2u, and Θ ∈
(−nπ/2, nπ/2) is a constant.

The geometric significance of (1) is that the graph

Σ := {(x, ∇u(x))} ⊂ R
n × R

n ∼= C
n

is calibrated (and therefore area-minimizing), at least when u is smooth [3]. More
precisely, Σ is calibrated by the n-form

Re(e−iΘdz1 ∧ ... ∧ dzn).
Submanifolds that are calibrated by such a form are called special Lagrangians.
Therefore, one strategy to produce special Lagrangians is to find smooth solutions
to (1). However, the regularity theory for (1) is difficult, since the equation is both
degenerate elliptic and, in general, neither convex nor concave.
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It is well-known that there is a unique viscosity solution u ∈ C
(

B1

)

to the
Dirichlet problem for (1) on B1 with boundary data g ∈ C(∂B1). Wang and Yuan
proved in [8] that u is smooth (and therefore has minimal gradient graph) if

(2) |Θ| ≥ (n− 2)π/2.

If in addition g ∈ C∞, then u is smooth up to the boundary [1]. These results are
related to the fact that {F = Θ} is convex if and only if (2) holds [10].

In contrast, for any n ≥ 3, |Θ| < (n − 2)π/2, and α > 0, there exist viscosity
solutions to (1) that are C1 but not C1, α ([7], [9]). However, these examples have
smooth and minimal gradient graph. This left open the questions whether u is
necessarily C1, and has minimal gradient graph. The first result we presented,
which is joint work with O. Savin [4], answers both questions in the negative:

Theorem 1. There exist Lipschitz but non-C1 viscosity solutions to (1) in dimen-
sion n ≥ 3 that have non-minimal and non-smooth gradient graph.

Another condition known to guarantee the regularity of a viscosity solution to
(1) is that u is convex [2]. The second result we presented, which is joint with R.
Shankar [5], is an extension of this result to semi-convex solutions, with optimal
assumptions and conclusions:

Theorem 2. Assume that Θ ∈ (−(n−2)π/2, π/2), and let θ := (π/2−Θ)/(n−1) ∈
(0, π/2). If u is a viscosity solution to (1) such that u + tan(θ)|x|2/2 is convex,
then u is smooth, and moreover

(3) |D2u(0)| ≤ eC(n,Θ)(1+‖∇u‖L∞(B1)).

The assumptions are optimal in the following sense: if Θ ∈ [π/2, (n−2)π/2), then
for ǫ > 0 arbitrarily small, there exist singular solutions u such that u+ ǫ|x|2/2 is
convex. Likewise, if Θ ∈ (−(n−2)π/2, π/2), then for ǫ > 0 arbitrarily small, there
exist singular solutions u such that u + (tan(θ) + ǫ)|x|2/2 is convex. Moreover,
in both cases, the examples can be taken to be Lipschitz but not C1 and have
non-minimal gradient graph. The conclusion is optimal in the sense that the
exponential dependence on ‖∇u‖L∞(B1) cannot be improved.

The example from Theorem 1 is obtained by solving the degenerate Bellman
equation

(4) max{detD2w, F (D2w)− c} = 0

with compact free boundary, and then taking the Legendre transform u of w. We
interpret the gradient graph of u as a rotation of the gradient graph of w. The
graph of ∇w is C1, 1 but not C2, and is non-minimal on a compact set (where
detD2w = 0). The solution u is in fact singular on part of a smooth hypersurface,
and is also semi-convex.

The proof of Theorem 2 is based on the observation that, under our assumptions,
certain U(n) rotations of the gradient graph of u (interpreted in a multi-valued
sense) have a C1, 1 potential that is also a viscosity solution of (1). Such rotations
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can be done for the gradient graphs of arbitrary semi-convex solutions, but the ex-
ample from Theorem 1 illustrates that one can lose the viscosity solution property
when doing so.

To conclude we note that all examples mentioned above have unbounded Hes-
sian. It is natural to ask whether C1, 1 viscosity solutions to (1) (which have
calibrated and therefore area-minimizing gradient graph, [3]) are smooth. The
monotonicity formula for minimal surfaces reduces this question to the following

Problem 1. Do there exist non-flat graphical special Lagrangian cones?

A general result about fully nonlinear elliptic PDEs gives a negative answer in
dimensions n ≤ 4 [6]. Problem 1 remains open in dimensions n ≥ 5.

References

[1] Caffarelli, L.; Nirenberg L.; Spruck, J. The Dirichlet problem for nonlinear second-order

elliptic equations. III. Functions of the eigenvalues of the Hessian. Acta Math. 155 (1985),
261–301.

[2] Chen, J. Y.; Shankar, R.; Yuan, Y. Regularity for convex viscosity solutions of special
Lagrangian equation. Comm. Pure Appl. Math. 76 (2023), 4075–4086.

[3] Harvey, R.; Lawson, H. B. Calibrated geometries. Acta Math. 148 (1982), 47–157.
[4] Mooney, C.; Savin, O. Non C1 solutions to the special Lagrangian equation. Duke Math. J.

173 (2024), 2929–2945.
[5] Mooney, C.; Shankar, R. Semiconvex viscosity solutions to the special Lagrangian equation.

Preprint 2025.
[6] Nadirashvili, N.; Vladut, S. Homogeneous solutions of fully nonlinear elliptic equations in

four dimensions. Comm. Pure Appl. Math. 66 (2013), 1653–1662.
[7] Nadirashvili, N.; Vladut, S. Singular solution to special Lagrangian equations. Ann. Inst.
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A simpler characterization of GBD

Antonin Chambolle

(joint work with Vito Crismale)

The space “GBD” was introduced by G. Dal Maso in [6] in order to define a proper
energy space for tackling variational problems in the theory of crack growth in
linearized elasticity [7]. A typical such problem is the minimization of the Griffith
energy:

min
u,K

E(u,K) :=

ˆ

Ω

|e(u)|2 dx+Hd−1(K) (Gr)

where here, Ω ⊂ Rd (d ≥ 2, in applications d ∈ {2, 3}) is the reference configuration
of an elastic material, u : Ω → R

d the displacement of the object, smooth in
Ω\K, K a possible (d−1)-dimensional crack set, of (d−1)-dimensional Hausdorff
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measure Hd−1(K), and e(u) = (Du+DuT )/2 the symmetric part of the gradient
of u (away from the set K, where u is allowed to jump). The displacement u may
be subject to constraints (in general, a Dirichlet condition on some part of ∂Ω\K,
corresponding to a load of the material) or further penalization.

One difficulty in tackling such problems is that the energy does not control the
amplitude of the jump of u accross the setK, and thus is not coercive in BD(Ω) :=
{u ∈ L1(Ω;Rd) : Du + DuT is a bounded Radon measure}, which is the natural
variant of BV in this context [8, 1]. In that space, one can define properly e(u)
as the absolutely continuous part of the measure Eu := (Du+DuT )/2, the jump
set Ju (as the set of points where blowups limits of u take two different values),
and a Cantor part Cu. (e(u)dx is the d-dimensional part of the measure Eu, the
(d− 1)-dimensional part is carried on Ju, and Cu is “in between”, supported by a
Lebesgue-negligible set and vanishing on (σ-finite) (d−1)-dimensional sets.) Then,
a weak energy is naturally defined by replacing K with Ju in (Gr), and is shown
to be lower semi-continuous in SBD(Ω) := {u ∈ BD(Ω) : Cu = 0}, [1, 2]. Yet, as
said, one lacks compactness to show existence of minimizers of the weak energy.

To resolve these issues, in [6], the space GBD was defined as the space of vector
measurable functions u : Ω → Rd such that for any direction ξ ∈ Sd−1 and any
base point z ∈ ξ⊥, their one-dimensional slicings uzξ : s 7→ ξ · u(z + sξ), defined in

Ωzξ := {s ∈ R : z + sξ ∈ Ω}, are in BV (Ωzξ) and such that there exists a bounded

positive measure λ ∈ M(Ω) which satisfies:

(1)

ˆ

ξ⊥

(

|Duzξ |(Azξ \ Juz
ξ
) +

∑

s∈Juz
ξ
∩Az

ξ

|uzξ(s+ 0)− uzξ(s− 0)| ∧ 1

)

dHd−1(z) ≤ λ(A)

for any open set A ⊂ Ω, where uzξ(s ± 0) are the left and right limits of uzξ at

the jump (discontinuity) point s ∈ Juz
ξ
. In the definition, the “min” (|[uzξ(s)]| ∧ 1)

accounts for the fact that jumps of large amplitude are not penalized by the energy,
and therefore these amplitudes should not be controlled in the definition of the
space.

The talk reviewed rapidly the base techniques introduced to show that with this
relatively weak definition, one can obtain stronger properties, compactness for the
weak energy, existence of minimizers, and eventually that these weak minimizers
are strong, see the short review [4] and the references therein.

It then focussed on a small technical problem addressed in [5]. For BD func-
tions, it is easy to check that controlling the BV norms of the uzξ for d(d + 1)/2

directions is enough to ensure that u is BD: more precisely, given (ei)
d
i=1 a basis,

one has
ˆ

ξ⊥
|Duzξ |(Ωzξ)dHd−1(z) =

ˆ

Ω

|ξ · (Eu · ξ)|

and if this is finite for ξ ∈W := {ei : i = 1, . . . , d} ∪ {ei + ej : 1 ≤ i < j ≤ d} then
one controls all coefficients of the (symmetric) matrix-valued measure Eu. Yet the
definition of GBD in [6] requires that (1) holds for all (or, in fact, a dense subset
of) ξ ∈ S

d−1. The main theorem in [5] is as follows:
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Theorem ([5, Corollary 1]). Let u : Ω → Rd measurable such that for all ξ ∈ W ,

ˆ

ξ⊥






|Duzξ |(Ωzξ \ Juz

ξ
) +

∑

s∈Juz
ξ

|uzξ(s+ 0)− uzξ(s− 0)| ∧ 1






dHd−1(z) < +∞.

Then u ∈ GBD(Ω).

In the talk, a sketch of proof was given: it relies on a very elementary argument
(already used in a more basic form in [3]) which consists in finding for ε > 0 small
appropriate discretizations (u(εyε+i))i∈εZd of u, for suitable choices of yε ∈ [0, 1)d,
which, after reinterpolation, (i) converge to u as ε → 0 and (ii) satisfy a global
“bound” in GBD, which ensures by lower semi-continuity that also the limit u is
in GBD.
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The Harnack inequality without convexity for curve shortening flow

Peter Topping

(joint work with Arjun Sobnack)

In previous work [3] the authors have proposed, and partially realised, a principle
of delayed parabolic regularity for curve shortening flow. This asserts that given
a regular curve shortening flow such as a static (proper) straight line in the plane,
and a disjoint proper curve shortening flow γ that is known only to enclose an area
A in between it and the straight line, the quantified regularity of γ is completely
uncontrolled until time A

π , at which precise time parabolic regularity is switched

on and the flow and all its derivatives are controlled in terms only of A and t > A
π .

One of the key methods in that work was the introduction of new Harnack
inequalities that were inspired by ideas in Ricci flow and Kähler Ricci flow [4,
2]. In this talk, these ideas were developed further, making close contact with
earlier work of Neves [1] in Lagrangian mean curvature flow. In particular, a
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Harnack inequality was given for curve shortening flow that does not require the
convexity assumption of Hamilton’s famous Harnack estimate, but which can be
used to similar effect (giving the same pointwise curvature bound) when convexity
is additionally assumed.

One of the applications of the general Harnack inequality is to quantifiably
control a curve shortening flow in terms of very weak information about the initial
curve (analogous to the enclosed area A discussed above). In particular, after a
specific threshold time it can be argued that the flow must become graphical in
several precise senses, making contact with our earlier delayed parabolic regularity
theory.

Acknowledgements: Thanks to Felix Schulze for important insights into connec-
tions with the existing literature. The author was partly supported by EPSRC
grant EP/T019824/1.
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Classification of global solutions to the one phase free boundary
problem asymptotic to singular minimizing cones

Zihui Zhao

(joint work with Max Engelstein, Daniel Restrepo)

Let Ω0 be a fixed domain in Rd, and ϕ be a non-negative function on ∂Ω0. We
consider the following one phase free boundary problem

min

{
ˆ

Ω0

|∇u|2 + χ{u>0} dx | u = ϕ on ∂Ω0

}

,

first studied by Alt and Caffarelli in [1]. A function u is a critical point to this
functional, if it satisfies the following Euler-Lagrange equation

(EL)

{

−∆u = 0, in Ω := {u > 0},
|∇u| = 1, on ∂Ω ∩ Ω0.

Clearly, the regularity of the solution u is closely linked to the regularity of its free
boundary Γ := ∂{u > 0}. More precisely, by a blow-up analysis, the regularity
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https://doi.org/10.1007/s40818-017-0024-x
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of Γ is determined by 1-homogeneous solutions to (EL) in the entire space Rd,
namely

(1)







−∆b = 0, in Ω := {b > 0},
|∇b| = 1, on ∂Ω,
b(rω) = rb(ω), where r > 0, ω ∈ Sd−1.

Examples of 1-homogeneous solutions. A trivial solution to (1) is bf (x) =
max{x1, 0}, whose free boundary is a flat hyperplane. So far, the only other ho-
mogeneous solution to (1) proven to be energy-minimizing is an axially symmetric
solution bas in Rd for dimensions d ≥ 7, see [2].

The topic of this talk concerns solutions to one phase free boundary problem
that are close to this singular minimizing solution bas. This will have implications
about ways to perturb away such singularities, and our work also lays down the
foundation for studying the behavior near other singular minimizing solutions, if
they exist. In particular, we are able to fully classify global solutions that are
asymptotic to bas at infinity.

Theorem 1. Let bas be the axially symmetric minimizing solution in R
d, d ≥ 7.

Suppose that u is a global solution to (EL) which is asymptotic to bas at infinity,
namely

there exists a sequence Rk → +∞ s.t.
u(Rkx)

Rk
→ bas(x) locally uniformly.

Then modulo translations in Rd, u either agrees with bas, or it is a homothetic
rescaling of the functions u± constructed in [3, 4].

The functions u± enjoy several nice properties. But for the sake of the presen-
tation, we only highlight that they are smooth global solutions to (EL), they are

ordered as u− ≤ b ≤ u+, and the graphs of their rescalings u±λ (x) :=
u±(λx)

λ form

a foliation of the space Rd × [0,+∞).
Our key observation is a linear analysis based at the singular solution bas. For

any 1-homogeneous solution b, the linearized operator based at b is

(L)

{

−∆v = 0, in Ω = {b > 0},
∂νv +Hv = 0, on ∂Ω.

where ν denotes the unit normal vector on the free boundary Γ pointing towards
Ω, and H > 0 denotes the mean curvature of Γ oriented towards the complement
of Ω. By the homogeneity of b, the domain Ω = {b > 0} is a cone. Hence solutions
to (L) have the separation of variables and are of the form |x|γv( x|x|), where v|Sd−1

is an eigenfunction on the sphere
{

−∆Sd−1v = λv, in Σ := Ω ∩ S
d−1,

∂νv +Hv = 0, on ∂Σ,

and the radial exponent γ is related to the eigenvalue by

γ2 + (d− 2)γ − λ = 0.
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By PDE arguments, we conclude that the kernel elements of the linearized operator
which result in solutions asymptotic to b are the ones with radial exponent γ < 1;
moreover, we can fully classify that those kernel elements correspond to the folia-
tion and translations. This confirms an analogy between the singular minimizing
solution bas and quadratic cones in the setting of area-minimizing hypersurfaces,
which eventually allows us to prove Theorem 1 analogously as Simon and Solomon
for complete minimal hypersurfaces asymptotic to quadratic cones in [5].
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Index and intersections of min-max geodesics

Douglas Stryker

(joint work with Jared Marx-Kuo and Lorenzo Sarnataro)

The length spectrum of a Riemannian surface is a sequence of geometric invariants
called p-widths. The p-widths are special critical values for the length functional
on the space of closed curves, analogous to the Dirichlet energy min-max charac-
terization of the eigenvalues of the Laplacian.

By the recent breakthrough work of Chodosh and Mantoulidis [2], it is known
that each p-width equals the length of a union (not necessarily disjoint) of closed
immersed geodesics (with multiplicity). This result is a nontrivial analogue of
the min-max regularity theory due to Almgren and Pitts [5], which guarantees in
higher dimensions that each p-width equals the area of a disjoint union of closed
embedded minimal hypersurfaces (with multiplicity).

In this talk, I will discuss joint work with Jared Marx-Kuo and Lorenzo Sar-
nataro [4] that investigates the geometric properties of these associated geodesics.

It is expected that the collection of geodesics {γi}Np

i=1 achieving the p-width can
be chosen to satisfy the index bound

Np
∑

i=1

ind(γi) +
∑

v∈Vert({γi})

(

ord(v)

2

)

≤ p,

where ind(γi) is the Morse index of the closed geodesic γi for the length functional,
Vert({γi}) is the set of vertices of the graph given by the union of the curves γi,
and ord(v) is the number of transverse curves in the graph intersecting at the
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point v. By proving a generic structure theorem for the vertices of a union of
closed geodesics, we can show the weaker result

Np
∑

i=1

ind(γi) ≤ p and
∑

v∈Vert({γi})

(

ord(v)

2

)

≤ p.

This result is the first progress towards the conjectured index bound beyond p = 1
(see [1, 3]).
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Non-uniqueness of mean curvature flow

Tang-Kai Lee

(joint work with Alec Payne)

Mean curvature flow (MCF) provides a way to deform submanifolds in a canoni-
cal way, and as a result, it has many applications in geometry and topology. The
most important property of codimension one MCF is that it satisfies the avoidance
principle, which says that two smooth mean curvature flows of hypersurfaces re-
main disjoint if they are disjoint initially. The avoidance principle is ubiquitously
used throughout the MCF literature, especially for controlling the location of an
MCF by comparison with a well-chosen disjoint flow. However, very little is known
about how to compare two MCFs if they are not disjoint.

In the joint work [11] with Payne, we describe the general behavior of the Haus-
dorff dimension and measure of the intersection of MCFs, both before and after
the first singular time. In the smooth case, we first prove that the dimension of
the intersection of two properly embedded smooth MCFs is non-increasing in time
if one of the flows is compact. This is based on a recent work by Huang–Jiang [5].
Next, we extend this monotonicity result to level set flow, a weak formulation for
mean curvature flow [2, 3], when certain localizability condition holds. As a con-
sequence, we characterize the non-fattening and the non-discrepancy of level set
flow by an “intersection principle.” We note that both fattening and discrepancy
reflect non-uniqueness of the MCF evolution passing singular times. Examples
of fattening flows starting from smooth, closed, embedded initial data have been
constructed [8, 9, 10].
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Theorem 1. Let Mt be a compact level set flow starting from a smooth, closed,
embedded hypersurface in Rn+1. SupposeMt has finitely many singularities. Then,
the following are equivalent:

(1) Mt is non-fattening.
(2) Mt is non-discrepant. That is, the inner and outer flows coincide with

Mt.
(3) Mt satisfies the “intersection principle” with respect to smooth MCF. Specif-

ically, if Nt is a smooth closed MCF such that Nt 6⊆Mt for each t ∈ [0,∞),
then t 7→ dim (Mt ∩Nt) is non-increasing. Moreover, if dim(Ms ∩Ns) <
n− 1 for some s, then Mt ∩Nt = ∅ for all t > s.

If a level set flow Mt, starting from a smooth initial condition, satisfies prop-
erty (3) from Theorem 1, then Mt is non-fattening without any other additional
assumptions. In other words, a sufficient condition for a level set flow to be non-
fattening is that it satisfies the intersection principle with respect to smooth flows.
It is a well-known problem to characterize when a level set flow is non-fattening
(see Ilmanen’s Conjecture G in [7, Appendix]). Theorem 1 answers this conjecture
when the flow has finitely many singularities. Just as Ilmanen used the avoidance
principle to characterize level set flow [6, 7], Theorem 1 suggests that the inter-
section principle could be used to characterize the fattening of level set flows in
general. It is an open question to what extent non-fattening of level set flows is
equivalent to the intersection principle.

There are two main issues with proving Theorem 1. The first is that when two
level set flows intersect each other on a set of codimension greater than two, it
is not necessarily true that one of them lies on one side of the other, in contrast
with the case when both flows are smooth. A typical example is a round shrinking
sphere intersecting a shrinking dumbbell at its neck singularity.

One-sidedness of flows with small intersection dimension is crucial for proving
monotonicity of the dimension over time. To deal with the lack of one-sidedness,
we prove a localization result for level set flows with finitely many singularities.
This means that we find a natural way to decompose the flow into subsets, such
that the union of the level set flows of the subsets is the whole flow. This is a very
special property, since level set flow is fundamentally non-local. For example, ifM
is a smooth, connected, and closed hypersurface and M1 and M2 are two smooth
hypersurfaces with nonempty boundary such that M = M1 ∪M2, then the level
set flow Mt will be a smooth MCF yet (M1)t and (M2)t instantaneously vanish
under LSF [3, Theorem 8.1]. Only in special cases does the union of level set flows
of subsets give the level set flow of the whole set.

The second issue with proving Theorem 1 is the conjecture that non-fattening
level set flows must coincide with both their inner and outer flows (see [4, Con-
jecture 2.4]). This is an important conjecture which, if true, would confirm that
nonfattening level set flows are unique in a strong sense. As part of Theorem 1, we
prove this conjecture in the case of finitely many singularities. Hershkovits–White
showed that this conjecture is true for flows with mean convex neighborhoods of
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singularities [4], and Bamler–Kleiner proved it in general for MCFs in R3 [1, The-
orem 1.8]. Agreement between the inner and outer flows is used in our proof of
Theorem 1 in order to understand the singularities of the level set flow via an
associated Brakke flow.

There are more general conditions than what is stated in Theorem 1 which
guarantee that a level set flow satisfies the intersection principle. We define a
general class of “localizable” level set flows, which loosely means that the flow
has no singularities which are locally disconnected at a singular time yet which
subsequently flow to become locally connected. For example, a one-sheeted flow
desingularizing a two-sheeted cone would not be localizable. Our main result,
given in [11, Theorem 4.22], is roughly stated as follows:

A non-fattening, localizable level set flow with no higher multiplic-
ity planar tangent flows satisfies the intersection principle.

Non-localizable flows, such as one-sheeted flows desingularizing a two-sheeted
cone, are a primary source of examples for fattening level set flows. Thus, localiz-
ability is closed related to fattening, and hence the intersection principle. Although
localizability does not necessarily imply non-fattening, under reasonable assump-
tions, a level set flow is localizable if and only if both the inner and outer flows
satisfy the intersection principle with respect to smooth closed MCFs. It is an
interesting open problem what restrictions on singularities ensure that a level set
flow is localizable. It is plausible that flows with only cylindrical or spherical sin-
gularities would have this property, and hence we expect that generic MCF would
satisfy the intersection principle, i.e. item (3) from Theorem 1.
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The size of the singular set of stationary integral varifolds
obeying ǫ-regularity

Paul Minter

(joint work with Brian Krummel, Neshan Wickramasekera)

One of the basic problems in geometric measure theory is controlling the size
of the singular set of weak, measure-theoretic, solutions to geometric variational
problems. A standard example is a critical point of the area functional, known as
a stationary integral varifold. For these, we do not yet even know if the singular
set can have positive measure. For absolute minimisers of area, the infamous work
of Almgren shows that the singular set has codimension at least 2 [2].

The main difficulty in both situations is the analysis of so-called branch points,
which are (non-immersed) singular points where one tangent cone is a plane with
(integer) multiplicity Q ∈ {2, 3, . . .}. The Hausdorff dimension of other singular
points can be handled by soft stratification arguments by looking at tangent cones.
Whilst it is still unknown whether the structure about a typical branch point is
topologically simple, the prototypical case to consider is when the local structure
of the stationary integral varifold is given by the graph of a multi-valued function.
Examples to bear in mind include complex algebraic varieties, such as

{(z, w) ∈ C
2 : z2 = w3} and {(z, w, u) ∈ C

3 : z2 = w3u}.

In both these examples, the origin is a branch point with {z = 0} being the
unique tangent cone there (occurring with multiplicity 2). The surfaces are then
determined by the graphs of the 2-valued functions w 7→ ±w3/2 and (w, u) 7→
±w3/2u1/2, respectively. An important distinction between these two examples is
that in the latter case the regularity of the graphing function is only C0,1/2, whilst
in the former it is C1,1/2.

In [1], we investigate the size of the singular set of stationary integral n-varifolds

in Bn+k2 (0) ⊂ Rn+k which satisfy an ǫ-regularity property close to planes with
multiplicity Q (more precisely, ≤ Q). Loosely speaking, the ǫ-regularity property
is the assumption that, if the varifold V is close in a cylinder to a plane with
multiplicity Q in the varifold topology, then:

• There is a Lipschitz multi-valued function u whose graph coincides with
V in the half-cylinder;

• The function u furthermore satisfies estimates of a C1,α-type nature (in
fact, it is generalised -C1,α);

• If one rescales u by the L2 height excess of V to the plane then the resulting
multi-valued function is close strongly in W 1,2

loc to another multi-valued
function (known as a coarse blow-up).

In particular, for such V the local structure about branch points is determined
by graphs of Lipschitz multi-valued functions. Note that for the complex variety
examples above, this regularity is true in the first example but not the second, so
certainly this assumption does not hold unconditionally.
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Nonetheless, by now there are several classes of stationary integral varifold
which are known to satisfy such an ǫ-regularity property, including:

(1) Stationary integral n-varifolds in Bn+1
2 (0) ⊂ Rn+1 which have stable reg-

ular part and no classical singularities of density < Q (this includes as a
special case area minimising hypersurfaces mod p) [3];

(2) Lipschitz 2-valued functions whose graphs are stationary [4].

In fact, by the results in [4] the local structure about a density 2 branch point X
in an arbitrary stationary integral varifold V is given by the graph of a Lipschitz
2-valued function provided X is not a limit point of triple junction singularities
or multiplicity one regular points where the tangent plane is ‘vertical’ relative to
the (unique) tangent plane to V at X . Note this is exactly what happens in the
second complex variety example above.

The main result of [1] can then be summarised as follows:

Theorem. The density ≤ Q branch set of a stationary integral varifold as above
has Hausdorff dimension ≤ n− 2.

Consequently the full singular set in the region {ΘV < Q + 1} must have
Hausdorff dimension ≤ n− 1. In the special case of area minimising hypersurfaces
mod p this recovers the result in [5], and for Lipschitz 2-valued functions whose
graphs are stationary this improves on the result in [6].

A key tool in our analysis is the planar frequency function introduced by
Krummel–Wickramasekera [7]. We are able to show that it is approximately mono-
tone at every branch point x in question, and its limiting frequency value N (x)
at radius 0 is valued in [1 + α,∞) for some α > 0. Consequently, we can use soft
stratification arguments based on looking at suitable tangent maps (i.e. linearising
with respect to the tangent plane only) to show that the set

{x : N (x) 6= 2}

has Hausdorff dimension at most n− 2. For the remaining part of the branch set,
namely {x : N (x) = 2}, we are able to build a single center manifold M which
touches V at all such points. Thus, to control this remaining part of the branch
set it suffices to control the touching set of V and M, reducing the problem to
a question in unique continuation. By then proving approximate monotonicity
of a suitable frequency function of V relative to this (single) center manifold, we
are then able to stratify the set {x : N (x) = 2} in an analogous fashion, except
now by looking at tangent maps of V relative to the center manifold. As in [6],

to circumvent issues regarding strong convergence in W 1,2
loc when taking tangent

maps relative to the center manifold, we may view the tangent maps as a type of
multi-valued Young measure.
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Instability of peanut solution in the mean curvature flow

Natasa Sesum

(joint work with Sigurd Angenent, Panagiota Daskalopoulos)

We consider families of compact hypersurfaces M̂θ(t) ⊂ Rn+1 that evolve by Mean
Curvature Flow, and which depend continuously on the parameter θ ∈ Θ; the
parameter belongs to some topological space Θ, which in our examples will always
be an open subset of Rm for some m ≥ 1. These solutions become singular at a
finite time T (θ) which may vary with the parameter θ ∈ Θ. Such solutions have a

parametrization (p, t, θ) ∈ Mn × [0,∞)×Θ 7→ F̂ (p, t, θ) ∈ Rn+1 whose domain is
an open subset of Mn × [0,∞)×Θ given by

O =
{

(p, t, θ) ∈ Mn × [0,∞)×Θ | 0 ≤ t < T (θ)
}

.

For each θ ∈ Θ the immersion p 7→ F̂ (p, t, θ) satisfies the Mean Curvature Flow
equation

(MCF)
(

∂tF̂
)⊥

= ∆F̂ (F̂ ),

in which (∂tF̂ )
⊥ is the component perpendicular to TF̂ (p,t,θ)M̂θ(t) of ∂tF̂ (p, t, θ) ∈

TF̂ (p,t,θ)R
n+1, and ∆F̂ is the Laplacian of the pullback of the Euclidean metric

under the immersion p 7→ F̂ (p, t, θ).
There have been many works towards understanding the formation of singular-

ities in the mean curvature flow, that is classifying all possible singularity models.
It is a very hard, if not even impossible question to answer in its full generality. To
understand the singularities, which inevitably happen for closed mean curvature
flows, one parabolically dilates around the singularity in space and time. Huisken’s
monotonicity formula guarantees that a subsequential limit of such dilations will
weakly limit to a tangent flow which will be a weak solution to (MCF), evolv-
ing only by homothety. These solutions are called self-shrinking solutions. We
call singularities modeled on generalized cylinders Σk := RSn−k ×RRk are called
in short neckpinch singularities. Even among neckpinch singularities, there are
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different types of neckpinch singularities, i.e. the nondegenerate and degenerate
neckpinches. We expect the former one to be generic, that is, if a mean curvature
flow starting with some initial hypersurface M0 develops a degenerate neckpinch
singularity, we expect to find a sequence of perturbations converging toM0, whose
mean curvature flows all develop nondegenerate neckpinch singularities. A neck-
pinch singularity is called nondegenerate if every pointed singularity model, that
is, a smooth limit of any sequence of blow ups around (xi, ti) → (0, 0), is a round
cylinder Σ1, and is called degenerate if there is at least one blowup sequence
around some (xi, ti) → (0, 0) with a pointed limit that is not Σ1.

In this talk we focus on so-called peanut solutions whose existence was first sug-
gested by Richard Hamilton, and then established in [1, 2]. In [2] the asymptotics
of these solutions have been also established. These are examples of closed mean
curvature flow solutions that contract to a point at the singular time, without ever
becoming convex prior to that. At the same time these are examples of degenerate
neckpinches.

If Θ is a two dimensional set of parameters, we will consider a two parameter
family of solutions {M̂θ(t) | θ ∈ Θ} so that eachMθ(t) is a smooth MCF solution

for t ∈ [0, T (θ)), and so that for θ = 0 := (0, 0) we have that M̂0(t) is one of the
peanut solutions.

We show that degenerate neckpinch type behavior exhibited by any of peanut
solutions in consideration is highly unstable, in the sense that there exist θ′ arbi-
trarily close to 0 for which M̂θ′(t) forms a qualitatively different kind of singularity

than M̂θ(t). More precisely, our goal in the talk is to prove the following result.

Theorem. Let M̂0(t) be the peanut solution as discussed above, and let T̄ be its
first singular time. There exists a t0 close to T̄ , so that in every sufficiently small
neighborhood of M̂0(t0), there exist perturbations M̂θs(t0) and M̂θc(t0) with the

following property. The MCF starting at M̂θs(t0) as its initial data develops a

spherical singularity, while at the same time the MCF starting at M̂θc(t0) as its
initial data develops a nondegenerate neckpinch singularity. Here θs and θc can
be chosen arbitrarily small.

In [3] the authors showed that the ancient ovals occur as a limit flow of a closed
MCF {Mt} if and only if there is a sequence of spherical singularities converging
to a cylindrical singularity. As a corollary of Theorem we show an analogous
result for a blow up limit of our families of MCF solutions that can be seen as
perturbations of peanut solution. More precisely, we have the following result.

Theorem. Appropriately rescaled subsequence of any sequence of solutions which
belong to one of our families of solutions, whose initial data converge to the peanut
solution, and all of which develop spherical singularities, converges to the Ancient
oval solution.

We choose a parameterK0 > 0 and let {M̄t : 0 < t < T } denote a corresponding
peanut solution. The profile function Ū(x, t) of this solution becomes singular at
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time T . The parabolic Type I rescaling ū(y, τ) is a solution of

(1) uτ =
uyy

1 + u2y
− y

2
uy −

n− 1

u
+
u

2
.

Its deviation from the cylinder is given by

(2) ū(y, τ) =
√

2(n− 1)−K0Hm4(y)e
−τ + o(e−τ ) (|y| ≤ 2ρeγτ , τ ≥ τ0).

The cylinder soliton corresponds to the constant solution u =
√

2(n− 1). The
peanut solutions from [2] are perturbations of the cylinder given by u(y, τ) =
√

2(n− 1)− v(y, τ), where v(y, τ) satisfies

(3) vτ = Lv −
v2yvyy

1 + u2y
− 1

2

v2
√

2(n− 1)− v
= Lv +O(v2, v2y , v

2
yy),

where L is the drift Laplacian

(4) Lv := vyy −
y

2
vy + v.

This operator is self adjoint in the Hilbert space

H =
{

f ∈ L2(R; e−y
2/4 dy) | ∀y : f(−y) = f(y)

}

.

We only have to consider even functions because of reflection symmetry of peanut
solutions. Its spectrum is given by the sequence of simple eigenvalues

λk = 1− k

2
, k = 0, 2, 4, 6, . . .

and the corresponding eigenfunctions are Hermite polynomials Hmk.
To introduce a family of perturbations of ū(y, τ0) in the direction of the lower

eigenfunctions Hm0, Hm2 we let η : R → R be a smooth even cutoff function
satisfying

η(y) =

{

0 for |y| ≥ 2

1 for |y| ≤ 1,

For any given ǫ > 0, ℓ0 > 0, and Ω = (Ω0,Ω2) ∈ S1 we then define our perturba-
tions as

(5) uǫ,Ω(y, τ0) = ū(y, τ0) + ǫ η
( y

ℓ0

){

Ω0Hm0(y) + Ω2Hm2(y)
}

.

Let uǫ,Ω(y, τ) be the rescaled mean curvature flow solution starting at uǫ,Ω(y, τ0).
Using barriers, L2 theory type of arguments for the system of ODEs of projec-
tions of difference of our solution from the round cylinder, and shooting type of
arguments which are based on degree theory, we show that if we run the mean
curvature flow sufficiently long, the Hm2(y) mode will start dominating. We show
that depending on a sign of the coefficient in front of the Hm2(y) mode at much
later time we have either the spherical or the nondegenerate neckpinch singularity
as claimed.
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Tracing the contour of a cylindrical mean curvature flow
with eigenfunctions

Kyeongsu Choi

The mean curvature flow (MCF) develops generically only spherical or cylindrical
singularities in R3, and it is conjectured to be true in higher dimensions as well.
Indeed, as stable singularities, the cylindrical singularities naturally appears in
many examples, including the marriage ring, peanut solutions, dumbbell solutions,
and degenerate necks. Of course, after Type I blow-up, one can find the same
cylinder Σ = R1 × S1(

√
2 ) at those singularities. However, their detailed shapes

are all different. Indeed, they are locally the graph of a function u over the cylinder
Σ, and u is close to an eigenfunction of the Ornstein-Uhlenbeck operator

L =
∂2

∂y2
+

1

2

∂2

∂θ2
− y

2

∂

∂y
+ 1.

This is because the MCF can be written as uτ = Lu + E(u) with an quadratic
error |E(u)| ≤ C‖u‖2C2. Hence, as u approaches to zero, it behaves as like a
solution to the linear equation uτ = Lu. Thus, it is asymptotic to a(τ)φ(y, θ) for
some eigenfunction φ. On the other hand, it gives a local shape of the flow over
the cylinder around the center of rescaling. Therefore, we can not find the global
shape. However, we can choose another center of rescaling over the cylinder, we
can discover local shapes around random center points. To be specific, any two
center of rescaling will converges to each other as time to goes back after rescaling.
Hence, we can observe that their local shape in the past time was similar. Then,
considering their radius of the asymptotic cylinder in the future as their scales, we
can guess their local shape. Then, we can get the global shape of the flow.

Non-uniqueness of locally minimizing clusters via singular cones

Anna Skorobogatova

(joint work with Lia Bronsard, Robin Neumayer, Michael Novack)

The classical multiple bubble problem in Rn concerns the existence and structure
of configurations of N chambers, i.e. sets of locally finite perimeter, of prescribed
finite volumes, together with an exterior chamber of infinite volume, that minimize
interfacial area. This problem has received much attention in recent decades, with
an abundance of work concerning the existence [4], structure and regularity [21, 7],
and characterization [8, 9, 10, 18, 17, 22, 16, 13, 12] of minimizers and critical
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points. This includes recent breakthrough work in which Milman & Neeman [11]
gave a complete classification of minimizers in the case N ≤ min{4, n}, resolving
a long-standing conjecture of Sullivan [20].

Such questions have recently been extended to configurations with multiple
infinite chambers, following the introduction of the (N,M)-cluster problem, by
Alama, Bronsard & Vriend in [3], involving partitions of Rn into M chambers of
finite volume and N chambers of infinite volume. Our focus is on the simplest case
of (1, 2)-clusters X = (X (1),X (2),X (3)), where X (1) denotes the finite-volume
chamber. Such a cluster X is said to be locally minimizing if, for every ρ > 0,

P(X ;Bρ(0)) ≤ P(X ′;Bρ(0))

whenever X (i)∆X ′(i) ⋐ Bρ(0) and |X (i)| = |X ′(i)| for i = 1, 2, 3, where

P(X ;Bρ(x)) :=
1

2

3
∑

i=1

P (X (i);Bρ(x)) ,

and P (X (i);Bρ(x)) denotes the relative perimeter of X (i) in Bρ(x). Clusters with
more than one infinite chamber arise in the models of tri-block copolymers [1, 2]
in the small-volume “droplet” regime for multiple phases. Recent progress has
been made toward existence, classification, and stability for (1, 2)-clusters (and
(M,N)-clusters more generally) in [3, 14, 6, 5, 13].

In [6], Bronsard & Novack demonstrate that when n ≤ 7 (see also [3] for the
case n = 2), the standard lens cluster Xlens is the unique locally minimizing (1, 2)-
cluster in Rn with |X (1)| = 1 modulo rigid motions. When n ≥ 8, they obtain
such uniqueness only among clusters with planar growth at infinity. The standard
lens cluster, which is locally minimizing in every dimension, is characterized by
the properties that |Xlens(1)| = 1, ∂Xlens(2) ∩ ∂Xlens(3) ⊂ {xn = 0} and ∂Xlens(1)
is the union of pair of equal-radii spherical caps meeting on {xn = 0} with equal
angles of 2π

3 between the three interfaces.
The aforementioned classification in n ≤ 7 relies on the fact that planes are the

only area-minimizing hypercones in these dimensions [19]. In view of the existence
of non-planar area-minimizing hypercones when n ≥ 8, it is natural to ask about
the existence of locally minimizing (1, 2)-clusters besides the standard lens when
n ≥ 8. We provide an affirmative answer this open question in a large number of
dimensions starting from 8.

Theorem 1 (Bronsard-Neumayer-Novack-S.). Let n ∈ {8, . . . , 2700}. There exists
a locally minimizing (1, 2)-cluster X that is not a standard lens.

Remark 1. Novaga, Paolini & Tortorelli [15] have independently proven non-
uniqueness of the standard lens cluster as a locally minimizing (1, 2)-cluster in the
case n = 8.

The basic scheme to construct the local minimizing (1, 2)-clusters of Theorem 1
goes as follows. Fix n ≥ 8 and let K be a perimeter minimizing cone in Rn whose
boundary is not a plane, e.g., the region K = {x21 + · · · + x24 < x25 + · · · + x28}
bounded by the Simons cone in R8.
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For R > 0 large, we set up an energy minimization problem in the class of
(1, 2)-clusters X with X (1) ⊂ B3R of volume 1 for which, outside of B3R, the
chambers X (2) and X (3) coincide with K and Kc respectively. Morally one wants
to minimize the cluster perimeter P(X ;B4R), though by instead minimizing the
energy P(X ;B4R) + GR(X (1)) for a carefully constructed penalization potential
GR, we circumvent technical challenges that would arise from the possibility of
X (1) saturating the constraint X (1) ⊂ B3R.

For a sequence Rk → ∞, take a sequence of minimizers Xk to this minimization
problem with R = Rk. We wish to obtain a local minimizer of P as a limit of
the Xk, and to this end we use a “partial concentration compactness approach”,
namely:

Step 1: Characterize precisely how a sequence can lose compactness and the cost
in energy to exhibit this behavior.

Step 2: Establish compactness for a (minimizing) sequence by showing its energy
lies below this loss-of-compactness threshold.

In the present setting, Step 1 as stated seems out of reach, as there are in
principle many possible asymptotic behaviors and energy costs of {Xk} if the
sequence loses compactness due to volume loss at infinity of Xk(1). The key
issue is an asymptotically infinite contribution to the energy coming from the
minimal surface ∂Xk(2) ∩ ∂Xk(3), whose behavior at large scales that are still
infinitesimal relative to Rk is highly difficult to characterize in general. This
is the main difficulty in the problem, and the obstruction to characterizing the
minimizers obtained in Theorem 1.

One possible way for a piece of Xk(1) to escape to infinity is along approximately
planar portions of the minimal surface ∂Xk(2) ∩ ∂Xk(3). Using the rigidity result
in [6], we deduce that in this case, Xk locally looks like a rescaling of the standard
lens cluster. In particular, its renormalized local energy contribution in a large
ball is approximately equal to sum of the area of an equatorial disk in this ball
and the renormalized lens energy

Λplane(n) := P (Xlens(1))− ωn−1ρ
n−1
n ,

where ρn denotes the radius of the disc Xlens(1) ∩ {xn = 0}.
As described above, this is not the only way that Xk(1) can lose mass at infinity.

Indeed, a piece of Xk(1) may drift off to infinity along a non-planar portion of the
minimal surface ∂Xk(2) ∩ ∂Xk(3), but the key observation is that this will still
produce a local minimizer as in Theorem 1 with a singular blowdown cone. Thus
we only need to rule out the possibility that all of the mass of Xk(1) is lost via
asymptotic lens behavior, which is the one asymptotic behavior whose limiting
energy we can characterize. Given an area-minimizing hypercone C, consider the
class

F(C) := {clusters X with |X (1)| = 1, ∂X (2) ∩ ∂X (3) ⊂ C} ,
and the associated energy

(1) Λ(C) := inf{P (X (1))−Hn−1(C ∩ X (1)(1)) : X ∈ F(C)} .
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In this notation, Λplane(n) = Λ(Rn−1 × {0}) and we use the notation Λplane(n)
because it is more concise. We then reduce the validity of Theorem 1 to the validity
of the strict inequality

Λ(C) < Λplane(n)(2)

for some area-minimizing cone C, which precisely rules out the possibility of all
mass escaping in the form of a lens and thus proving that a piece of the limit of
the Xk yields a locally minimizing (1, 2)-cluster for which all possible blowdowns
have interfaces that are area-minimizing cones. Such a cluster is therefore not the
standard lens cluster, since it does not have planar growth.

We then proceed to verify that the strict inequality (2) holds for certain choices
of quadratic (Lawson) cones

Ck,l :=

{

(x, y) ∈ R
k+1 × R

l+1 : |x|2 =
k

l
|y|2
}

.

for k, l ∈ N, which are area-minimizing cones with an isolated singularity in Rk+l+2

when k + l > 6, while the cones C3,3 (Simons’ cone) and C2,4 are the only two
area-minimizing quadratic cones in R8. For n ∈ {8, . . . , 2700}, we verify that
Λ(Cn/2−1,n/2−1) < Λplane(n) if n is even, and Λ(C(n−1)/2−1,(n−1)/2) < Λplane(n)
if n is odd, via an explicit construction of competitor (1, 2)-clusters modeled on
these cones, therefore allowing us to conclude.

These computations may be reduced to one-dimensional integrals which are not
easy to estimate by hand to a desirable level of precision in all dimensions. We
therefore use the FLINT C library to provide us with a suitably precise calculation
of these values in general, making this aspect of our proof computer-assisted.

In even dimensions n ∈ 2N we are able to obtain a reasonably clean closed for-
mula for these integrals, thus allowing one in principle to compute both P (X (1))−
Hn−1(C ∩X (1)) for our choice of competitor and Λplane(n) by hand and avoid the
need for computer assistance, and indeed we perform the by-hand computations
for the case n = 8.
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[10] M. L. Hutchings, F. Morgan, M. Ritoré and A. Ros, Proof of the double bubble conjecture,

Ann. of Math. (2) 155 (2002), no. 2, 459–489; MR1906593
[11] E. Milman and J. Neeman, The structure of isoperimetric bubbles on Rn and Sn, Acta

Math. 234 (2025), no. 1, 71–188; MR4877375
[12] E. Milman and J. Neeman, Plateau Bubbles and the Quintuple Bubble Theorem on Sn,

arXiv preprint (2023), available at https://arxiv.org/abs/2307.08164
[13] E. Milman and B. Xu, Standard bubbles (and other Möbius-flat partitions) on model spaces
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Some uniqueness related to Ricci flow smoothing

Man-Chun Lee

Let C(X) be a metric cone with link X which is possibly non-smooth. These
arise naturally as tangent cones of Gromov-Hausdorff limits of sequences of non-
collapsing smooth manifolds with uniform Ricci curvature lower bounds due to
the celebrated work of Cheeger-Colding [5]. Particularly, any blow-down limit a
complete non-compact manifold (M, g) with Ric(g) ≥ 0 and Euclidean volume
growth, in the pointed Gromov-Hausdorff sense is a metric cone. We are prelimi-
narily interested in studying metric cones by Ricci flow. This is a one parameter
family of metrics g(t) satisfying ∂tg(t) = −2Ric(g(t)) for t > 0 and the initial
condition is understood in the sense of Gromov-Hausdorff topology:
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Definition 1. Given a smooth manifold M , x0 ∈ M and a Ricci flow g(t) on
M × (0, T ], we say that g(t) is coming out of a metric cone C(X) if

(M,dg(t), x0) → (C(X), dc, otips)

in the pointed Gromov-Hausdorff sense as t → 0, where dc denotes the conical
distance metric.

We are interested in the existence, uniqueness and stability of Ricci flow in the
sense of Definition 1, which was found to be powerful in studying the rigidity of
geometric structure. For instances when n = 3, a simple consequence of Simon-
Topping [19] (building on the work of Hochard [10]) shows that for any three-
manifolds with Ric ≥ 0 and Euclidean volume growth, any metric cone C(X) is
bi-Hölder to a smooth manifold. This is based on constructing quantitative Ricci
flow along blow-down procedure. Along the way, the estimates of the Ricci flow
enables us to show that M3 is diffeomorphic to R3, giving an alternative proof of
a result by Zhu [20]. Indeed, this circle of idea can be generalized to manifolds

with non-negative 1-isotropic curvature, i.e. RmC(ω, ω̄) ≥ 0 for all simple and
isotropic ω ∈ Λ2(Cn). This can be viewed as a generalization of Ric ≥ 0 in higher
dimension in the sense that it coincides for n = 3. In this case, the quantitative
existence of Ricci flow was established by Lai [12], see also [9] for the application.
We also refer interested readers to [2, 18] for an overview on related topics and its
important role in differentiable sphere Theorem.

Given the existence result established in many situations, it is asked by Schulze
that how rigid the Ricci flow is, if it is coming out of a cone:

Conjecture 1 (Schulze). The Ricci flow coming out of a cone C(X) is unique
within the class of solutions g(t) with 0 ≤ Rm(g(t)) ≤ αt−1 for some α > 0.

This is partially motivated by a result of Deruelle-Schulze-Simon [6] who shows
that if the initial distance metric space is Reifenberg and locally bi-Lipschitz to
Euclidean space, then two solutions to the Ricci flow whose Ricci curvature is
uniformly bounded from below and whose curvature is bounded by αt−1 converge
to one another at an exponential rate once they have been appropriately gauged.
This plays an important role in the resolution of pinching conjecture by Hamilton-
Lott, see also [17, 15]. Indeed since a metric cone is self-similar under dilation, it
follows heuristically by uniqueness that a Ricci flow coming out of a metric cone
should itself be self-similar, in which the geometry is more rigid.

Motivated by this, in a joint work with Chan and Peachey [4], we show that
those Ricci flows must be self-similar.

Theorem 2 (Theorem 1.3 in [4]). If g(t) is a Ricci flow smoothing coming out of
cone with non-negative 1-isotropic curvature, then it must be a expanding gradient
Ricci soliton. That is 2t ·Ric(g(t)) + g(t) = ∇2u(t) for some smooth function u in
space-time.

This is built upon the work [7] of Deruelle-Schulze-Simon who shows in case the
initial distance metric is Reifenberg, then the solution behaves asymptotically like
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a gradient expander. Using this, they are able to extend partially the Hamilton-
Lott’s pinching conjecture to higher dimension in the sense of 1-isotropic curvature.
Together with the works by Lott [17] the author and Topping [15, 16], the following
is well-understood as the applications of existence, uniqueness and stability of Ricci
flow smoothing:

Theorem 3. Suppose (Mn, g0) is a complete non-compact such that

Rm(g0)− ε · scal · g0 ∈ CWPIC1

for some 0 < ε << 1, then (M, g0) is flat if one of the following hold:

(i) n = 3;
(ii) Rm(g0) ∈ CWPIC2;
(iii) (M, g0) has Euclidean volume growth.

Most of the result doesn’t rely on the strong curvature condition: Rm ≥ 0.
This raise the question of whether the conjecture of Schulze is optimally stated or
not. Unfortunately without any curvature lower bound, a general uniqueness was
shown to be impossible by the work of Angenent-Knopf [1] who constructed explicit
examples of metric cones in dimensions five and higher which can be smoothed out
by an arbitrary finite number of geometrically distinct expanding gradient Ricci
solitons. It was also shown by the author and Topping [14] that even if we restrict
n = 2, fixed topology and with scaling invariant control, uniqueness is impossible
if the initial data of the Ricci flow is attained weakly.

In contrast with the development of mean curvature flow, the subtlety lies on
the gauge fixing which is relatively complicated in Ricci flow. Indeed given two
Ricci flow solutions g(t) and g̃(t), it is more natural to gauge between them by
solving the harmonic map heat flow

(1) ∂tF = ∆g(t),g̃(t)F

using the connection induced by g(t) and g̃(t). In case g̃(t) is static, the flow
tends to be the harmonic map between g(t) and the reference geometry g̃. It was
first studied by Eells-Sampson [8]. In Ricci flow content, it transforms one Ricci
flow g(t) into a strictly parabolic flow, called Ricci-DeTurck flow, as long as F
remains diffeomorphism. The Ricci-DeTurck flow can be regarded as a gauged
fixed version of Ricci flow, and the stability in bounded geometry case has been
studied by Koch-Lamm [11], Burkhardt-Guim [3] and many others.

By utilizing the ideas, in [13] we construct local solution to (1) starting from
identity when initial data is attained smoothly but without quantitative geometric
control. Using this, we discuss how gauge can be fixed under scaling invariant
estimate and thus prove uniqueness in that case:

Theorem 4 (Theorem 1.1 in [13]). Ricci flow is unique within the class of solutions
with |Rm(g(t))| ≤ αt−1 and limt→0 g(t) = g0 in C∞

loc.
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Evanescence of minimal submanifolds with isolated singularities

Alessandro Carlotto

(joint work with Yangyang Li, Zhihan Wang)

In this lecture I have given a (fairly non–technical) account of the main results in
[1], ensuring that minimal submanifolds with only strongly isolated singularities
are non–generic, except for certain borderline cases which on the one hand can be
geometrically characterized and, on the other hand, cannot possibly occur in the
codimension one case. Our study stemmed from a question posed by André Neves
about the landscape of minimal hyperspheres in nearly-round metrics, in relation
to Hsiang’s resolution, in the negative, to Chern’s spherical Bernstein conjecture.



1792 Oberwolfach Report 33/2025

1. Context and setup

Let (MN , g) be a compact (smooth) Riemannian manifold, which we shall typically
assume to have empty boundary, and let V denote a (boundaryless) n-dimensional
stationary integral varifold thereof, with 2 ≤ n < N . We shall say that a singular
point of V , p ∈ spt(V ) \ reg(V ), is strongly isolated if some tangent cone to V at
p is regular (namely: has smooth link) and has multiplicity one.

If that is the case, we know, by pioneering work of Leon Simon [7], that (i) any
such p is topologically isolated, (ii) the aforementioned tangent cone is actually
unique, and (iii) in a neighborhood of the point in question the support of V can
be written as the image through the exponential map of a normal graph (a section
of the normal bundle), with a defining section subject to suitable decay estimates
on approach to the singularity. In what follows, we will employ the acronym MSI
to denote any such stationary varifold having only strongly isolated singularities.
For the sake of notational convenience, we can just identify any such varifold with
its regular part, that is an open smooth minimal submanifold.

While the monotonicity formula allows one to rule out the presence of MSI in
Euclidean spaces, it is possible to obtain plenty of examples in round spheres by
means of the following construction: for any closed, smooth minimal hypersurface
Σ0 in SN−1 one can consider the spherical suspension of Σ0 in SN , which shall
indeed exhibit two strongly isolated singularities at the north and south poles
unless Σ0 is totally geodesic. A particular case that warrants special attention is
the one corresponding to the spherical suspension of the standard Clifford torus
S1(1/

√
2)×S1(1/

√
2) in S3 ⊂ R4: the correspondingMSI in S4, henceforth referred

to as Clifford football, turns out to be the (multiplicity one) varifold limit of the
sequence of closed minimal hyperpsheres constructed by Hsiang in round S4 to
disprove Chern’s spherical Bernstein conjecture [5].

It is natural to wonder about the possibility of constructing MSI in ambient
manifolds more general than space forms. As a concrete instance, one wonders
whether this is feasible by means of perturbative methods, in analogy with what
is routinely done for closed smooth minimal submanifolds (cf. [8]) and – perhaps
more closely – for singular special Lagrangian conifolds, see e. g. [3].

2. The evanescence result and related comments

The main result in [1] gives a strong negative answer to the previous question:

Main Theorem. Given a closed manifold M of dimension N ≥ 3, there exists a
generic subset G0 of the space of smooth metrics onM with the following property:
for every g ∈ G0, any g-stationary integral n-varifold in (M, g), 2 ≤ n < N , will:

(i) either be entirely smooth, or
(ii) have at least one singular point that is not strongly isolated, or
(iii) have only strongly isolated singular points all having links with Morse

index equal to N .
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As a very important special case, we note that in the codimension one scenario
(namely for N = n + 1) the third alternative cannot possibly occur, and so we
derive the following remarkable conclusion:

“ for any n ≥ 2 non-smooth MSI are only observable at non-generic metrics.”

In particular, this suffices to rule out the potential persistence of the Clifford
football mentioned at the end of the previous section.

Remark. The third alternative (i. e. links with Morse index is equal to N) may
occur:

• in the case when the link is disconnected:

if and only if 2n = N and the link is the disjoint union of exactly two
equatorial Sn−1 ⊂ S2n;

• in the case when the link is connected:

certainly for the Veronese embedding of RP2 ⊂ S4, and conjecturally for
the Veronese-type embeddings of CP2 ⊂ S7 and HP2 ⊂ S13, although a

full classification is still open.

We expect all such singularities (listed above) to be persistent: for instance
considering their respective spherical suspensions one should see them for a full
neighborhood of the round metric.

The previous claim can be easily justified in the first case, namely when the
singularity is a “cross”. Indeed, for d ≤ N/2−1 let Σ0 be the image of an equatorial
(totally geodesic) immersion

ϕ = ϕ1 ⊔ ϕ2 : S
d
1 ⊔ S

d
2 −→ S

N−1

and let Σ ⊂ SN be the spherical suspension of Σ0. If d+1 = N/2 then by a classical
estimate in [6] Σ is a MSI with two singularities each having Morse index equal
to N (equivalently: effective index 0). By the implicit function theorem (applied
to each minimal sphere of Σ separately) – in fact possibly by a Lyapunov-Schmidt
reduction in presence of Jacobi fields (e. g. at the round metric) – one proves
persistence of the picture in an open set of metrics, thus sharpness of our generic
regularity result. The analysis of the borderline case when the link is connected
is a lot more delicate, and will be the object of forthcoming work by the same
authors.

3. A geometric application: spherical Bernstein conjecture and

nearly–round metrics

Starting from the preceding statement, with some extra work one can actually
show the following result:

Corollary. For every ε > 0, there exists a neighborhood N (ε) of the round metric
on S4 such that for every g ∈ N (ε), every mod 2 cyclic g-stationary integral 3-
varifold V with total mass≤ 4π2−ε has only strongly isolated singularities. Hence,
generically, any such varifold is entirely smooth.
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In turn, this easily implies (arguing by contradiction, and ultimately relying
again also on the bumpy metric theorem in [8]) the following generic finiteness
assertion:

Corollary. Given any ε > 0 there exists a neighborhood N (ε) of the round
metric on S4 such that for a generic choice of g ∈ N (ε) the Riemannian manifold
(S4, g) shall contain only finitely many closed, embedded minimal hypersurfaces

of area less that 4π2 − ε.

Hence, since the Clifford football has three-dimensional Hausdorff measure
equal to π3, we reach the geometric conclusion that Hsiang’s sequence of closed
minimal hyperspheres cannot be possibly persist for all nearly-round metrics as
an infinite family.

Our analysis should be compared to the striking advances that have recently been
obtained in the study of generic properties both for minimal surfaces (partly in-
cluding also the non-trivial case of geodesic nets) and for the mean curvature flow.
Although we add a structural assumption on the nature of singularities we deal
with, there are two peculiar aspects in our results:

• we do not restrict to area-minimizing (or min-max) submanifolds, thus the
limit cones at the singularities do not need to be stable;

• we do not place any restrictions to the dimension and codimension of the
submanifolds in question.

While works like [2], which follows the previous breakthroughs by Chodosh,
Mantoulidis and Schulze about (unconditional) generic regularity up to ambient
dimension 10, ultimately connect to the pioneering work by Hardt and Simon [4],
and thus build upon the design of minimal (in fact: minimizing) foliations, our
main result is rather achieved as a consequence of the fine analysis of the Fredholm
index of the Jacobi operator of an MSI. More specifically, we prove on the one
hand an exact formula relating that number to the Morse indices of the conical
links at the singular points, while on the other hand we show that the same number
is non-negative for all such varifolds if the ambient metric is generic.
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On the boundary branching set of the one-phase problem

Luca Spolaor

(joint work with L. Ferreri and B. Velichkov)

LetA be a bounded open set in Rd, d ≥ 2, and u0 : ∂A → R be a given nonnegative
function. The one-phase Bernoulli problem consists in minimizing the functional

(1) J1(u,A) : =

ˆ

A

|∇u|2 dx+ |Ωu ∩A|

among all nonnegative functions u : A → R that agree with u0 at ∂A, where for
any function u ∈ H1(A) we denote by Ωu its positivity set

Ωu := {u > 0} ∩ A.
It is well-known, due to the works of Alt, Caffarelli, De Silva, Jerison, Kenig,
Savin and Weiss among others, that the optimal regularity for minimizers u of
J is Lipschitz and that the free boundary ∂Ωu ∩ A inside A is analytic up to a
closed singular set of Hausdorff dimension at most d− 5. The behavior of the free
boundary ∂Ωu ∩A and the solution u up to the boundary of ∂A was first studied
in [1] around points z0 ∈ ∂A at which the boundary datum u0 vanishes identically:

u0 ≡ 0 in Br(z0) ∩ A ,

for some r > 0. Without loss of generality, we can take Br(z0) = B1. It is
immediate to check that if u0 ≡ 0 in ∂A ∩ B1, then the minimizer u (trivially
extended in B1 \ A) is a solution to the variational problem

(2) min
{

J1(v,B1) : v ≥ 0, v = u on ∂B1, {v > 0} ⊂ A
}

.

In [1] it was shown that if u is a solution to the above variational problem and ∂A
is C1, 12 smooth in a neighborhood of z0, then the free boundary ∂Ωu ∩ A is C1, 12

regular in a neighborhood of any point on ∂Ωu∩∂A; this regularity is also optimal
in the sense that even for analytic ∂A, there are solutions u whose boundary ∂Ωu
is no more than C1, 12 . Moreover, any minimizer u is a (classical) solution to the
problem

(3)



















∆u = 0 in Ωu ∩ A
u = 0 on ∂Ωu

|∇u| = 1 on ∂Ωu ∩ A
|∇u| ≥ 1 on ∂Ωu ∩ ∂A ,

in a neighborhood of the contact set B1 ∩ ∂Ωu ∩ ∂A.
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The points where the two boundaries ∂Ωu meet ∂A are the so called points of
branching:

(4) B1(u) :=
{

x ∈ B1 ∩ ∂Ωu ∩ ∂A : |Br(x) ∩ (A \Ωu)| 6= 0 for every r > 0
}

.

The C1, 12 regularity of ∂A, ∂Ωu and u provides that at the points of branching
the two boundaries ∂Ωu and ∂A are tangent and the minimizer u satisfies

u = 0 and |∇u| = 1 at B1(u),

so at first order these points are indistinguishable from the interior points ∂Ωu∩A.

Thus, the (C1, 12 -)regularity of ∂Ωu and ∂A by itself does not provide any a priori
information on the contact set ∂Ωu ∩ ∂A and the way ∂Ωu is approaching ∂A.

This branching behavior is a common issue in the free boundary regularity theory
and in geometric analysis; it appears naturally at points at which the first order
blow-up analysis of the solutions does not provide any geometric information about
the set of points itself.

Determining the fine structure of these branching points is not an easy task even
in dimension d = 2 and only few results are available in this direction. Concerning
the Bernoulli problem, De Philippis together with the second and third named
authors recently proved that, in dimension d = 2, the set of branching points is
locally finite through a quasi-conformal map argument (later generalized by the
authors of this paper to analytic boundaries).

The analysis of the branching sets in higher dimension is strongly related to a
unique continuation type problem, and therefore to Almgren’s frequency function.
In the framework of area-minimizing currents, the upper bound on the dimension
of the branching set in the interior is known thanks to the monumental work of
Almgren and the subsequent works of De Lellis and Spadaro, while the branching
behavior at the boundary, for analytic boundaries, is currently an open problem.
For the linear thin-obstacle problem, where the Almgren’s frequency function is
well-known to hold , a (d−2)-rectifiability result was recently obtained by Focardi
and Spadaro. For the obstacle problem in dimension d > 2 it is known, thanks
to the works of Caffarelli and Monneau, that the set of singular points (which
exhibits the same type of branching behavior) is contained in a C1 manifold of
dimension (d − 1). While for generic free boundaries finer results were obtained
by Figalli, Ros-Oton and Serra, the optimal dimension of the branching set is still
open.

Our result gives a more precise description of the set of branching points (4) in
any dimension d ≥ 2 for the one-phase Bernoulli problem at the boundary: in
any dimension, when ∂A is a (d − 1)-dimensional analytic manifold, the set of
branching points B1(u) has Hausdorff dimension at most (d− 2). We notice that
the analyticity of ∂A is fundamental for this result. Indeed, one can easily produce
examples of wildly behaving contact sets by taking a half-plane solution u = (xd)

+

and then constructing a set A with C∞ boundary ∂A touching ∂Ωu = {xd = 0}
on an arbitrary closed set.
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In what follows, we assume that the origin is a branching point, 0 ∈ B1(u). We
will denote by x′ the points in Rd−1, so that B′

1 := B1 ∩ (Rd−1 × {0}), and we
assume that the boundary of A is the graph of an analytic function φ : B′

1 → R ,
precisely:

A : = {(x′, xd) ∈ B1 : xd > φ(x′)} .
Thanks to the C1, 12 regularity of ∂Ωu we may assume that there is a C1, 12 function

f : B′
1 → R , f ≥ φ on B′

1,

such that, up to a rotation and translation of the coordinate system, we have

(5)

{

u(x) > 0 for x ∈ (x′, xd) ∈ B1 such that xd > f(x′);

u(x) = 0 for x ∈ (x′, xd) ∈ B1 such that xd ≤ f(x′).

In terms of the functions f and φ the contact set of the two boundaries ∂Ωu and
∂A reads as

(6) C1(u) := B1 ∩ ∂Ωu ∩ ∂A = {(x′, xd) ∈ B1 : xd = φ(x′) = f(x′)} .
We also introduce the set of points

(7) S1(u) :=
{

x ∈ C1(u) : |∇u|(x) = 1
}

,

which is a closed subset of {xd = φ(x′)} and contains all points of branching, that
is:

B1(u) ⊂ S1(u).

The following is the main result of the paper.

Theorem 1 (Dimension of the boundary branching set). Let B1 ⊂ Rd and let
u ∈ H1(B1) be a solution of (2). Suppose, moreover, that the function φ describing
∂A is analytic. Then, either

∂Ωu ∩B1 ≡ graph(φ) ∩B1

or

dimH(S1(u)) ≤ d− 2.

Moreover, in the second case, if d = 2 then S1(u) is locally finite.

Remark 1. We notice that the estimate of Theorem 1 is optimal in all dimensions.
Indeed, in dimension two, examples of solutions with isolated branching points were
constructed by De Philippis and the second and third named authors. These 2D
solutions can be then used to build sharp examples in any dimension d, by extending
them to functions invariant with respect to the remaining d − 2 variables. The
extensions obtained this way are still solutions to (3) and minimizers to (2).

As a consequence of our analysis, we also obtain three results of independent
interest:

(1) a boundary unique continuation result for quasilinear elliptic operators;
(2) an estimate on the dimension of the free boundary in quasilinear thin-

obstacle problems;
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(3) an estimate on the dimension of the set of branching points in the two-
phase problem, under the assumption that there exists an analytic mani-
fold lying between the two free boundaries.
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Passing through nondegenerate singularities of mean curvature flow

Zhihan Wang

(joint work with Ao Sun, Jinxin Xue)

A 1-parameter family of smooth hypersurfaces t 7→ M(t) ⊂ Rn+1 is called a mean
curvature flow (MCF) if it solves

(∂tX)⊥ = ~HM(t) ,

where ⊥ is the projection onto normal bundle of M(t), and ~HM(t) denotes the
mean curvature of M(t). It is well-known that any closed smooth hypersurface
M0 ⊂ Rn+1 starts a MCF for short time, and it always develop singularities in
finite time. Ilmanen [10] constructed a distributional measure theoretic subsolution
t 7→ M(t), known as a Brakke flow, to the MCF equation, which agrees with the
smooth solution before first singular time. A central question is then to understand
the geometric and topological behavior of M near each singularity.

A common way to study singularities is via a blow-up process: given a sin-
gularity p◦ = (X◦, t◦) ∈ R

n+1 × R of M in spacetime, Huisken [8] introduced a
new family of hypersurfaces called the rescaled mean curvature flow (RMCF) of
M based at p◦:

Mp◦(τ) = eτ/2(M(t◦ − e−τ )−X◦) ,

and shown that it’s a negative gradient flow of the Gaussian area functional

F [Σ] :=

ˆ

Σ

(4π)−n/2e−|X|2/4 dX ,

and hence has long time subsequential (weak) limits S solving the self-shrinker

equation ~HS+X
⊥/2 = 0 (where X⊥ denotes the projection of position vector onto

the normal direction of S). Any such limit S models the infinitesimal behavior of
the flow M near p◦ and hence is called a tangent flow of M at p◦.

The most commonly appearing family of self-shrinkers are the round cylinders :
Cn,k := Sn−k(

√

2(n− k))×Rk, defined for 1 ≤ k ≤ n− 1. Besides the hyperplane

and round sphere Sn(
√
2n), they are known to be the only mean convex self-

shrinkers [9], “linearly stable” self-shrinkers [3] and genus 0 self-shrinkers when
n = 2 [2]. Suppose MCF M has a rotation of Cn,k to be a tangent flow at p◦
with multiplicity 1 (call such p◦ a k-cylindrical singularity), then by [18, 4], after a
rotation, its RMCF Mp◦(τ) based at p◦ converges locally smoothly to Cn,k. Sun-
Xue [12] obtained a refined convergence: when τ ≫ 1, in the ball of radius ∼ √

τ ,
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Mp◦(τ) is a C2 graph of some function u(·, τ) over Cn,k, and ∃ I ⊂ {1, 2, . . . , k}
(possibly empty) such that after a rotation in Rk direction,

u(θ, y; τ) =

√

2(n− k)

4τ

∑

i∈I

(y2i − 2) + o(τ−1) .

We call p◦ a nondegenerate singularity if I = {1, . . . , k} in the asymptotic above.
Call it (fully) degenerate if I = ∅. Nondegenerate singularities were proved to be
locally generic and stable under initial data perturbation by Sun-Xue [12].

Our main theorem in [13] describes the geometry and topology of MCF M near
a nondegenerate cylindrical singularity, which implies the following.

Theorem 1. Let 1 ≤ k ≤ n− 1, t 7→ M(t) be a time-translation of MCF in Rn+1

constructed by Ilmanen above; suppose (0, 0) is nondegenerate singularity of M
with tangent flow Cn,k. Let Qr := Bn−k+1

r ×Bkr . Then ∃ r◦, t◦ ∈ (0, 1) such that

(i) (0, 0) is the only singularity of M in Qr◦ × [−t◦, t◦];
(ii) ∀ t ∈ (0, t◦], within Qr◦ , topologically M(t) is obtained by an (n−k)-surgery

on M(−t) ∩Qr◦.

Note that those properties in the theorem may fail without assuming “nonde-
generacy”. In fact, the famous “marriage ring” example is a MCF in R3 with
a curve of cylindrical singularities (violating (i)), and there are degenerate neck
pinch examples [1] of MCF with an isolated cylindrical singularity but no topology
change after singular time (violating (ii)).

In general, we let Sk(M) be the set of k-cylindrical singularities of M. White
[17] estimated the parabolic Hausdorff dimension dimP Sk(M) ≤ k; Colding-
Minicozzi [5] shown that Sk(M) is locally contained in a k-dimensional C1 sub-
manifold in Rn+1×R. Our main theorem in [14] gives a improved partial regularity:

Theorem 2. Let M be a MCF constructed by Ilmanen above; Sk+(M) ⊂ Sk(M)
be the set of (fully) degenerate k-cylindrical singularities of M. Then,

(i) dimP(Sk(M) \ Sk+(M)) ≤ k − 1;

(ii) Sk+(M) is relatively closed in Sk(M) and is locally contained in a C2,α

k-dimensional submanifold in Rn+1 × R, ∀α ∈ (0,min{1, 2
n−k}).

In particular, the theorem implies that a C1 but not C2,α curve can’t be realized
as the singular set of a MCF starting from a mean convex surface in R3.

One key ingredient in the proof of both theorems is the following novel L2 non-
concentration lemma, which allows us to reduce the study of RMCF near Cn,k
to the study of functions solving certain parabolic equations on Cn,k × R without
worrying about infinity:

Lemma 1 ([13, Corollary 3.3]). Let τ 7→ M(τ) be a RMCF with finite entropy.
Then there exist dimensional constants Kn, Cn > 1 such that ∀ τ > 0,

ˆ

M(τ)

distn,k(X)2(1 + τ |X |2) dµ ≤ Cne
Knτ

ˆ

M(0)

distn,k(X)2 dµ
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where distn,k(X) := min{dist(X, Cn,k), 1} is the truncated distance function, and

dµ := (4π)−n/2e−|X|2/4 dX is the Gaussian area form.

Non-concentration results of similar flavor have been proved in the minimal
surface setting by Simon [11] and Szekelyhidi [15] and used to extract refined
information near cylindrical singularity models by [11, 15, 16, 7, 6].
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A min-max variational approach to the existence of gravity
water waves

Georg S. Weiss

(joint work with Dennis Kriventsov)

We establish the existence of gravity water waves by applying a mountain pass
theorem to a singular perturbation of the Alt-Caffarelli functional associated with
the two-dimensional water wave equations. Our approach is formulated entirely
in physical coordinates and does not require the air phase to be connected. Nor
does it rely on symmetry in the x or monotonicity in the x- or y-direction.

In this result, we focus on the existence of traveling waves which satisfy

(1)











∆ψ = 0 in D,

ψ = 0 on ∂aD,

|∇ψ(x, y)|2 = A−By on ∂aD;

here ψ is the stream function of the velocity vector field.
One approach to finding non-trivial solutions of the fluid equilibrium problems

with lateral inflow and outflow in a bounded domain is to minimize the Alt-
Caffarelli energy with a gravity term

(2) E[ψ] =

ˆ

T×[0,∞)

(

|∇ψ|2 + χ{ψ>0}(A−By)+
)

.

The Euler-Lagrange equation for this functional is precisely (1). However, naive
minimization of this energy with boundary condition ψ(x, 0) = c > 0 will only
lead to the trivial flat wave. This was observed and studied in [5], where the
authors then also study minimizers with nonconstant boundary conditions and
other configurations. In [14], a different approach is taken to get non-flat solutions:
roughly speaking, ψ is constrained to be 0 along a line segment {1/2} × [l,∞) in
a way which precludes the flat wave from being a solution. The authors then
study the behavior of the minimizers, including near the point (1/2, l). It is not,
however, clear that for some parameter l the resulting constrained minimizer is
truly a solution of (1) at the point (1/2, l).

On the other hand, existence results for large-amplitude smooth waves have
been obtained by completely different methods by Krasovskii [17], and by Keady
and Norbury [16]. The existence of large-amplitude smooth solitary waves and
of extreme solitary waves has been shown by Amick and Toland [4]. All of these
existence results use an equivalent formulation of the problem as a non-linear
singular integral equation due to Nekrasov (derived via conformal mapping). John
Toland posed the following question to the second author:

Question 1. Can one obtain any (even small amplitude) existence results for (1)
by variational methods in the original variables?

Our main results are:
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Theorem 2. Assume that B < 2(A3 )
3/2 and also

2
A

B
2π

(

1− 1

3

(

1 + 2 cos

(

1

3
arccos

(

1− 27B2

2A3

))))

×

coth

(

2π
1

3

A

B

(

1 + 2 cos

(

1

3
arccos

(

1− 27B2

2A3

))))

< 1.

Then there exists a domain variation critical point of E (defined on T× [0,∞) and
1-periodic in x) that is not independent of x.

The conditions on A,B describe precisely the set of parameters when there
are two distinct flat waves, with one locally minimal while the other sufficiently
unstable.

Let us emphasize that for our existence approach neither symmetry nor mono-
tonicity in the x- or y-direction are necessary. This may be of interest, as numerical
results indicate the existence of non-symmetric waves ([10], [21], [24]) as well as
water waves non-monotone in the y-direction ([11], [23]). We can, however, also
produce waves with symmetries, which have enhanced regularity properties.

Theorem 3. Assume that B < 2(A3 )
3/2 and also

2
A

B
2π

(

1− 1

3

(

1 + 2 cos

(

1

3
arccos

(

1− 27B2

2A3

))))

×

coth

(

2π
1

3

A

B

(

1 + 2 cos

(

1

3
arccos

(

1− 27B2

2A3

))))

< 1.

Then there exists a domain variation critical point u of E (defined on T × [0,∞)
and 1-periodic in x) that is not independent of x, u(x, y) = u(−x, y), and u is
symmetrically decreasing, that is ux(x, y) ≤ 0 for x ∈ (0, 1/2). The free boundary
∂{u > 0} is the graph of a function of y, that is, ∂{u > 0} = {(f(y), y) : y ∈
S}, where S is a closed subset of [0, A/B]. The water surface S := {(f(y), y) :
y ∈ I}, where I is the first/leftmost connected component of S is regular in the
sense that S \ ((0, A/B) ∪ {|x| = 1/2}) is locally the graph of an analytic function.
Moreover, either S \ (0, A/B) is locally the graph of an analytic function, or there
is a downward-pointing cusp of S at |x| = 1/2 at which non-S free boundary points
must exist that converge to the cusp point.

The basic idea of the proof is, in some sense, straightforward, but presents
challenges in the execution. We begin by studying the energy structure of the Alt-
Caffarelli functional (2) (as was, in fact, already done in [5]): for the values of A,B
under consideration, there are only three one-dimensional critical points, with two
of them local minimizers and one being unstable. The key further observation we
make is that, again for the parameters as above, the unstable solution has Morse
index at least 2. Formally, then, one should be able to apply a mountain pass
theorem to curves connecting the two local minimizers to obtain a critical point
of Morse index at most 1, which is then not any of these three flat solutions.

The main issue with making this rigorous is that there is no mountain pass the-
orem available in the literature for functionals like (2), which are not differentiable.
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If one attempts to use classic versions like [3], it will be impossible to verify the
Palais-Smale condition. An analogy can be made with the minimal surface func-
tional, where an extensive min-max theory has been developed (and is an area of
active study), but is extremely non-trivial and requires somewhat different ideas
from the traditional semilinear context. Bernoulli-type free boundary problems
like (1) often exhibit similar difficulties to minimal surfaces.

In this paper, we present an elementary approach to min-max arguments for
Bernoulli problems. First, we regularize (2) to Eε by smoothing out χ{ψ>0} to
a mollified Bε(ψ). This is a classic strategy in free boundaries, and it is easy to
see that e.g. Eε γ-converges to E. In particular, the energy landscape of Eε is
similar to that of E. Unlike E, Eε is smooth, satisfies the assumptions of standard
mountain pass theorems like [3], and we successfully find the critical points we
wanted. Then we “simply” take a limit of these critical points, to get a critical
point of E itself. This strategy is reminiscent of the Allen-Cahn approach to
min-max for minimal surfaces, albeit with a different semilinear approximation.

The main problem with this strategy would be that it is not at all clear that
a limit of critical points to Eε is actually a critical point to E. This was an
open question in the literature for a long time, but in a recent work [18], we have
been able to prove exactly such a compactness result. Moreover, in the Bernoulli
context it is not difficult to pass second (inner) variation to the limit as well, and
so the limiting critical point has Morse index at most one (this is different from
the situation with minimal surfaces). We would like to emphasize that up to this
point, the method is extremely general and requires minimal a priori knowledge
of qualitative structure or regularity.

To prove Theorem 3, we first produce symmetric and monotone min-max solu-
tions by performing a Steiner symmetrization to the min-max setup. Then we use
free boundary arguments to obtain the regularity stated. As our goal here is to
present this overall strategy and its application to the water waves problem (1),
we do not attempt to obtain the strongest possible regularity results here. We
intend to explore that point in future work.
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Parabolic equations with rough initial data

Tobias Lamm

(joint work with Herbert Koch)

In this talk I presented several results on the existence of weak solutions of par-
abolic equations with rough initial data. This is an ongoing joint project with
Herbert Koch.
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I mostly spoke about the following situation: Assume that the coefficients aij :
[0, 1]× Rn × R → R are elliptic in the sense that

inf
0≤t≤1,x∈Rn,u

n
∑

i,j=1

aij(t, x, u)ξiξj ≥ γ|ξ|2,

for some γ > 0. Moreover, let

csup a := ‖aij‖L∞([0,1]×Rn×R) <∞
and assume that

sup
t≤1,x

|aij(t, x, u)− aij(t, x, v)| ≤ cL|u− v|

for some 0 ≤ cL <∞. Then the following is the main Theorem.

Theorem 1. There exists ε > 0, depending only on csup a, γ, n and cL, such that
the following is true: If the coefficients aij : [0, 1]× R

n × R → R satisfy the above
assumptions and the condition

sup
0≤s,t≤1, |x−y|≤1, u∈R

|aij(t, x, u)− aij(s, y, u)| ≤ ε

and if f : [0, 1]× Rn × R× Rn → R satisfies the bound

sup
0≤t≤1,x

|f(t, x, u, p)− f(t, x, v, q)| ≤ cf (|u− v|(ε+ |p|2 + |q|2) + (|p|+ |q|)|p− q|)

for some cf <∞. Then for every u0 : Rn → R satisfying

sup
|x−y|≤1

|u0(x)− u0(y)|+ sup
t≤1,x,u

|f(t, x, u, 0)| =: d < ε,

there exists a unique weak solution u : (0, 1)× R
n → R of

ut −
n
∑

i,j=1

∂i(a
ij(t, x, u)∂ju) = f(t, x, u,Du)

which satisfies

sup
|x−y|≤1,s,t≤1

|u(t, x)− u(s, y)|+ sup
x,r≤1

(

r−n
ˆ r2

0

ˆ

Br(x)

|Du|2dydt
)

1
2

+ sup
x,r≤1

(

r2
ˆ r2

r2

2

ˆ

Br(x)

|Du|n+4dydt

)
1

n+4

≤C
(

sup
|x−y|≤1

|u0(x)− u0(y)|+ sup
t≤1,x,u

|f(t, x, u, 0)|
)

.

for some constant C <∞.

This result can be generalized in several directions:

(1) We can consider general manifolds with a metric structure with uniform
bounds.
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(2) We can consider fairly general parabolic systems involving higher order
derivatives.

(3) We can relax the conditions on the initial data, allowing small perturba-
tions in L∞, C0,1 resp. C1,1.

(4) For a large class of systems we are able consider small BMOloc perturba-
tions of continuous functions in the setting of the above Theorem.

On the moduli spaces of mean convex spheres and tori in
three-manifolds

Reto Buzano

(joint work with Sylvain Maillot)

Given a closed manifold Mn, a classical problem in Riemannian geometry is to
investigate the homotopy type of the moduli space of positive scalar curvature
metrics on M . This problem has its origins in an over 100 years old result of
Weyl [8] who showed that for n = 2 the moduli space is path-connected (if non-
empty). Rosenberg-Stolz [7] proved that it is in fact contractible. When n = 3,
it is only much more recently that Marques [6] proved path-connectedness and
Bamler-Kleiner [1] proved contractibility. These results are in sharp contrast to the
situation in higher dimensions where the moduli spaces can have very complicated
topology. An illustrative example is given by spheres S4k+3, k ≥ 1, for which the
moduli spaces are known to have infinitely many path components [5].

Here, we are concerned with the following extrinsic version of this problem:
given a Riemannian three-manifold (M3, g) and a closed surface Σ2, investigate
the homotopy type of the moduli space of mean convex two-sided embeddings

MH>0(Σ,M) := {Σ →֒M smooth two-sided embedding with H > 0}/Diff(Σ).

This problem was first studied in joint work with Haslhofer and Hershkovits in
the case where (M3, g) = (R3, gEucl.) is Euclidean space. In [2, 3], we show that
for Σ = S2 the moduli space is path-connected while for Σ = T 2 = S1 × S1 the
connected components of the moduli space are in bijective correspondence with
the knot classes of closed embedded curves.a

It is natural to ask how these results extend to more general ambient three-
manifolds (M3, g). In this context we say that a smoothly embedded, two-sided
surface Σ ⊂ M has positive mean curvature (or is mean convex ) if the mean
curvature vector always points to the same side of Σ. Clearly this definition only
makes sense if Σ is two-sided. For Σ = S2, we obtain the following.

Theorem 1 (Theorem 1.1 of [4]). Let (M, g) be a complete, orientable Rie-
mannian three-manifold with nonnegative Ricci curvature. Then the moduli space
MH>0(S

2,M) of mean convex embedded two-spheres in (M, g) is path-connected.

aIn fact, [2, 3] deal with moduli spaces of two-convex embeddings of hypersurfaces Σn−1 into
(Rn, gEucl.), but we only focus on dimension n = 3 here.
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Theorem 1 is sharp in the sense that it does not hold if the condition H > 0 is
weakened to H ≥ 0, or if Ricg ≥ 0 is weakened to Ricg ≥ −C for some C > 0 (or
replaced by 1 ≥ Ricg ≥ −ε for some ε > 0), or if the completeness condition on
M is dropped.

For Σ = T 2, we restrict the problem to Heegaard surfaces in order to guarantee
that Σ bounds a solid (unknotted) torus. It is well known that the moduli space of
all Heegaard tori is path-connected, but surprisingly, in contrast to the Euclidean
case, the moduli space of mean convex Heegaard tori can have more than one path
component. Before stating the results, we give some definitions and fix notation.

If M is a closed, orientable three-manifold, and Σ a closed, orientable surface
smoothly embedded in M , we say that Σ is a Heegaard surface if the closure of
each component ofM \Σ is a handlebody. Three-manifolds admitting a Heegaard
surface of genus one are called lens spaces. They can be constructed as follows.
Let p, q be coprime integers with p ≥ 0. The lens space L(p, q) is obtained by
gluing together two solid tori V1 and V2 along their boundaries in such a way that
the meridian of the first torus goes to a curve wrapping around the longitude p
times and around the meridian q times on the second torus. Special cases of lens
spaces include S3 = L(1, 0), RP3 = L(2, 1), and S1 × S2 = L(0, 1). All lens spaces
carry a Riemannian metric with nonnegative Ricci curvature (in fact, if p 6= 0,
then L(p, q) is a quotient of S3 and thus has a positive constant curvature metric.)

We now denote by

MH>0(p, q) = MH>0(T
2, L(p, q))

the moduli space of Heegaard tori in L(p, q) that have positive mean curvature
with respect to a chosen background metric g on L(p, q).

Theorem 2 (Theorems 1.4 and 1.5 of [4]). Let p, q be coprime integers with
p ≥ 0. Fix a background metric g on the lens space L(p, q) with nonnegative Ricci
curvature. If q ∼= ±1 mod p, then MH>0(p, q) is path-connected, otherwise it has
exactly two path-components. Moreover, if H > 0 is weakened to H ≥ 0, then the
corresponding moduli space is always path-connected.

An interesting aspect of Theorem 2 is that it is not true that the homotopy
type of the moduli spaces MH>0(p, q) depends only on the homotopy type of
the ambient space L(p, q). An illustrative example is given by L(7, 1) and L(7, 2)
which have the same homotopy type (and therefore also isomorphic fundamental
groups and the same homology). Nevertheless, by Theorem 2, MH>0(7, 1) is
path-connected while MH>0(7, 2) is not.

Towards the proofs: We first show that every mean convex 2-sphere as in The-
orem 1 bounds a mean convex, compact domain. Already this step fails if any
of the assumptions of the theorem are weakened or dropped as described after
the theorem. For both Theorem 1 and Theorem 2, we then evolve the surfaces
(respectively the mean convex domains bounded by them) by mean curvature flow
with surgery. If the ambient manifold has nonnegative Ricci curvature, then mean
curvature flow with surgery will always become extinct in finite time. We then
extend the gluing result from [2] from Euclidean space to the ambient manifold
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setting, allowing us to connect mean convex domains along thin “strings” in a
way that preserves mean convexity. This is used to show that any element of
MH>0(S

2,M) can be deformed to a marble tree which then itself can be deformed
to a small geodesic sphere. Similarly, any element of MH>0(p, q) can be deformed
to a marble circuit which then itself can be deformed further to the boundary of
the ε-neighbourhood of a simple closed curve Tε = ∂Nε(γ). Finally, the proof of
Theorem 2 is completed by additional topological arguments, showing first that
Nε(γ) must be mean-convex ambient isotopic to the tubular neighbourhood of at
least one of the two cores of the solid tori used to construct the lens space. The
conclusion then follows by showing that for q ∼= ±1 mod p these tubular neigh-
bourhoods are themselves mean-convex ambient isotopic, while otherwise they are
not.

References

[1] R. Bamler and B. Kleiner, Ricci flow and contractibility of spaces of metrics, Preprint,
ArXiv:1909.08710 (2019).

[2] R. Buzano, R. Haslhofer, and O. Hershkovits, The moduli space of two-convex embedded
spheres, J. Differential Geom. 118:2 (2021), 189–221.

[3] R. Buzano, R. Haslhofer, and O. Hershkovits, The moduli space of two-convex embedded
tori, Int. Math. Res. Not. IMRN 2019:2 (2019), 392–406.

[4] R. Buzano and S. Maillot, Mean curvature flow and Heegaard surfaces in lens spaces.
Preprint, ArXiv:2312.07232 (2023).

[5] M. Kreck and S. Stolz, Nonconnected moduli spaces of positive sectional curvature metrics
J. Am. Math. Soc. 6:4 (1993), 825–850.

[6] F. C. Marques, Deforming three-manifolds with positive scalar curvature, Ann. Math. (2)
176:2 (2012), 815–863.

[7] J. Rosenberg and S. Stolz, Metrics of positive scalar curvature and connections with surgery,
Ann. Math. Stud. 149 (2001), 353–386.
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A Nash-Kuiper theorem for isometric immersions beyond
Borisov’s exponent

Jonas Hirsch

(joint work with Wentao Cao, Dominik Inauen)

Abstract. Given any short immersion from an n-dimensional bounded and sim-
ply connected domain into Rn+1 and any Hölder exponent α < (1 + n2 − n)−1,
we construct a C1,α isometric immersion arbitrarily close in the C0 topology.
This extends the classical Nash–Kuiper theorem and shows the flexibility of C1,α

isometric immersions beyond Borisov’s exponent. In particular, for n = 2, the
regularity threshold aligns with the Onsager exponent 1/3 for the incompressible
Euler equations. Our proof relies on three novelties that allow for the cancellation
of leading-order error terms in the convex integration scheme: a new corrugation
ansatz, an integration by parts procedure, and an adapted algebraic decomposition
of these errors.
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1. Introduction

The isometric immersion problem is a fundamental problem in differential geom-
etry. It seeks an immersion u : (M, g) → R

m from an n-dimensional Riemannian
manifold (M, g) into m-dimensional Euclidean space that preserves the length of
any C1 curve. This condition is equivalent to the equality of the induced metric
u♯e and the intrinsic metric g. In local coordinates, this translates to the system
of n∗ = n(n+ 1)/2 nonlinear partial differential equations:

(1) gij = ∂iu · ∂ju, 1 ≤ i, j ≤ n,

in m unknowns.
The classical Nash–Kuiper theorem [47, 43] establishes that for m ≥ n+1, any

short immersion (or embedding) u : M → Rm can be uniformly approximated by
C1 isometric immersions (resp. embeddings). Here, an immersion u is called short
if ∂iu ·∂ju ≤ gij as quadratic forms. In particular, if the manifold is compact, any
immersion can be made short by a homothety. The Nash–Kuiper theorem therefore
demonstrates that when there are no topological obstructions to immersing the
manifold into Rm (a condition satisfied for m ≥ 2n−1), there exists an abundance
of C1 solutions to (1). This abundance, often termed the flexibility of isometric
immersions, is especially striking given the overdetermined nature of (1) for m ≥
n+ 1 and large n.

In contrast, classical rigidity results show that smooth isometric embeddings
into Euclidean spaces of such low codimension are unique under appropriate geo-
metric conditions. A prominent example is the rigidity theorem for the Weyl
problem due to Cohn-Vossen [12] and Herglotz [31], which states that a C2 iso-
metric embedding u : (S2, g) → R3, where g has positive Gaussian curvature, is
unique up to rigid motions.

This strong contrast between flexibility in C1 and rigidity in C2 raises the
natural question: is there a critical Hölder regularity threshold α0 that separates
flexibility from rigidity? That is, does there exist a threshold α0 such that

• if α > α0, isometric immersions u ∈ C1,α exhibit (some form of) rigidity;
• if α < α0, the Nash–Kuiper theorem extends to C1,α?

The precise value of α0 remains unresolved. Similarities between the iteration
processes used to construct both isometric immersions or embeddings of regularity
C1,α and Hölder continuous weak solutions to the incompressible Euler equations
(see e.g. [34]) suggest the Onsager exponent α0 = 1/3 as a potential threshold.
Indeed, the Onsager conjecture, which describes a similar phenomenon, states that
for Cα weak solutions to the incompressible Euler equations

(1) if α > 1/3, it preserves the energy;
(2) if α < 1/3, the energy identity might be violated.

The rigidity result (1) was established in [19], while the flexibility result (2) was
ultimately resolved in [33] following a sequence of works [22, 23, 4, 6] that built
on the groundbreaking approach of [24], where the authors introduced a Nash-
type iteration scheme to construct continuous weak solutions violating the energy
identity.
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On the other hand, [21, 13] demonstrate that for isometric embeddings, C1,1/2

is a critical space in a suitable sense, suggesting α0 = 1/2 (see also [28, Question
36], [34, Section 10]).

The presented result focuses on the flexibility side of this dichotomy for general
dimension n and codimension one.

1.1. Flexibility of C1,α isometries: known results. The study of C1,α isomet-
ric immersions dates back to the pioneering work of Yu. F. Borisov in the 1950s.
Building on results of Pogorelov, Borisov proved in [8] that the Cohn–Vossen–
Herglotz rigidity theorem extends to immersions of class C1,α when α > 2/3 (see
[18] for an alternative proof). On flexibility, Borisov announced in [10] that the
Nash–Kuiper theorem extends to C1,α for

(2) α <
1

1 + n2 + n
,

the Borisov exponent, when M is an n-dimensional ball, with a potential improve-
ment to α < 1/5 for n = 2. He provided a proof for n = 2 and α < 1/7 with an
analytic metric in [11]. More recently, [18] confirmed Borisov’s claims, and in [20]
it was shown that for n = 2 one can indeed achieve the exponent α < 1/5. These
results were extended to general compact manifolds in [17].

Remark 1 (High codimension). If the codimension is large, more regular isomet-
ric immersions can be constructed. The breakthrough result in this direction is
also due to Nash [38], who proved that any (M, g) with g ∈ Ck, k ≥ 3, admits
a Ck-regular isometric immersion into Rm for sufficiently large m. Gromov [37]
and Günther [35] improved the codimension bounds, the latter simplifying Nash’s
intricate iteration (now known as the hard implicit function theorem). For less
regular metrics g ∈ Cl,β with 0 < l + β < 2, Källén [42] demonstrated that if
m is large enough (one can show that m ≥ 2n∗ + n suffices), there exists a C1,α

immersion for any α < (l + β)/2. See also [21, 13, 14] for further results in high
codimension.

1.2. Statement of the result. Our result improves the achievable Hölder expo-
nent in the codimension one setting. Our main result is:

Theorem 1. Let Ω ⊂ Rn be any smooth bounded and simply connected do-
main and g ∈ C2(Ω, Sym+

n ) a Riemannian metric. For any short immersion
u ∈ C1(Ω,Rn+1), any ǫ > 0, and any

(3) α <
1

1 + n2 − n
,

there exists an immersion u ∈ C1,α(Ω,Rn+1) such that

DutDu = g and ‖u− u‖0 < ǫ.

Remark 2. For n = 2, Theorem 1 yields flexibility of C1,1/3− isometric immer-
sions from surfaces to R3, aligning with the Hölder exponent of Onsager’s con-
jecture. Given the parallels between convex integration solutions for Onsager’s
conjecture and isometric immersions (see e.g. [1, 34]) and the heuristic discussion
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about the Hölder exponent α < (1 + 2N)−1(N ≥ 1) in Section 1.3.2, 1/3 may be
optimal for codimension-one flexibility.

Remark 3. Following classical arguments (see e.g. [20, Section 8]), one can show
that if the short map u in Theorem 1 is an embedding, then u can be chosen to be
an embedding as well.

Remark 4. With additional effort, the key iteration can be adapted to the frame-
work of [17], leading to a global version of Theorem 1. We prioritize the local
version here for clarity. Moreover, our approach is easily adaptable to prove anal-
ogous results for very weak solutions to the Monge–Ampère equation and system
(see [46, 15, 40, 44, 36, 2, 3]).

1.3. Main ideas. In this subsection, we briefly recall the classical construction
procedure–Nash’s iteration for isometric immersions–and provide a heuristic expla-
nation of how Borisov’s exponent (2) is obtained in [18]. We then outline the main
strategy for proving Theorem 1 and highlight how our approach differs from pre-
vious methods. To focus on the core ideas, we adopt the local setting of Theorem
1: the manifold M is described by a single coordinate chart Ω, the Riemannian
metric g is a matrix-valued function, and the induced metric u♯e is given by the
matrix field DutDu.

1.3.1. Nash’s iteration. Following Nash [47], the isometric immersion is obtained
as the limit of an iteratively constructed sequence {uq} of strictly short immer-
sions, whose induced metric converges to the intrinsic metric g while {uq} remains
Cauchy in some C1,α space.

The construction of uq+1 from uq, referred to as a stage (same terminology as in
[47] and subsequent works), consists of a finite number of steps designed to correct
the metric deficit g −DutqDuq. This deficit is first decomposed into a finite sum
of primitive metrics, i.e., rank-one tensors with positive coefficients:

(4) g −DutqDuq =
N
∑

i=1

a2i νi ⊗ νi,

where the directions νi ∈ Sn−1 are constant and the coefficients ai are smooth
functions. After this decomposition, the short immersion uq is perturbed by N
steps as follows:

Setting uq,0 = uq, one defines iteratively

uq,i = uq,i−1 +Wq+1,i, for i = 1, . . . , N , uq+1 = uq,N .

Each function Wq+1,i is a highly oscillatory perturbation, and is chosen so that
the corresponding update increases the induced metric approximately by a2i νi⊗νi,
yielding

Dutq,iDuq,i = Dutq,i−1Duq,i−1 + a2i νi ⊗ νi + Ei,

where the error term Ei can be made arbitrarily small by selecting a sufficiently
high oscillation frequency λi of Wq+1,i. Heuristically, the ansatz for Wq+1,i has
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the form

(5) Wq+1,i =
ai
λi

(γ1(λix · νi)ti + γ2(λix · νi)ζi)

where the frequency λi ≫ 1, ti is a suitable tangent vector (or normal to uq,i−1 in
the case m ≥ n+ 2 as in [47]), ζi is a unit normal vector to uq,i−1 and γ1, γ2 are
suitable periodic functions.a

By choosing the oscillation frequency large enough, one can ensure a geometric
decay of the metric deficit:

‖g −Dutq+1Duq+1‖0 ≤ 1

K
‖g −DutqDuq‖0.

Meanwhile, the step-wise corrections yield a bound on the C1-norm growth:

(6) ‖uq+1 − uq‖1 ≤ C
N
∑

i=1

‖ai‖0 ≤ C‖g −DutqDuq‖
1/2
0

where the last estimate follows from (4). Given the geometric decay in ‖g −
DutqDuq‖0, this ensures that the sequence uq remains Cauchy in C1, converging
to a limiting function that is an isometric immersion.

1.3.2. Borisov’s exponent and the result of [18]. To achieve convergence in C1,α,
a refined choice of frequencies is required to control the blow-up of the sequence
{‖uq‖2}. The error term Ei in the i-th step can be shown to satisfy

‖Ei‖0 ≤ C‖g −DutqDuq‖0
λi−1

λi
.

Setting λi = Kλi−1, we achieve the geometric decay

‖g −Dutq+1Duq+1‖0 ≤ CK−1‖g −DutqDuq‖0,
but at the cost of a C2-norm growth of order KN , where N is the number of
primitive metrics required in the decomposition (4). This leads to

‖uq+1 − uq‖2 ≤ C(KN )q‖u1 − u0‖2.
Using (6) and interpolation estimates, the sequence converges in C1,α for any

α <
1

1 + 2N
.

If the metric deficit g − DutqDuq is close to a constant positive definite matrix
(which can be achieved by a rescaling), it can be decomposed in exactly N =
n(n + 1)/2 primitive metrics. This provides a heuristic explanation of Borisov’s
exponent (2) and captures the core idea of the proof in [18]. A technical challenge
in turning this idea into a rigorous proof lies in the loss of derivatives appearing in

aIn fact, the corrugations used in [43] and [18] have the more complicated expression

Wq+1,i =
1

λi
(Γ1(ai, λix · νi)ti + Γ2(ai, λix · νi)ζi)

for some suitable functions Γ1,Γ2 periodic in the second component, see also [39].
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the above estimates. In [18] and subsequent works, this loss is managed through
an additional mollification step at the beginning of each stage.

1.3.3. Prior improvements. Borisov’s exponent (2) has been improved previously
via the following three approaches. We will discuss and show below the obstacles
applying them to attain Theorem 1.

(1) Reducing the number N in the decomposition (4). In [20], the authors stud-
ied the case n = 2, where isothermal coordinates can be used to diagonalize the
metric deficit g −DutqDuq. This reduces N from 3 to 2, leading to the improved
Hölder exponent α < 1/5. However, for n ≥ 3, no analogous coordinate transfor-
mation is known.

(2) Increasing codimension. When the codimension m−n is large, multiple per-
turbations can be applied simultaneously at the same frequency, thereby reducing
the growth of the C2 norm of {uq}. A procedure analogous to that used in [44] in
the context of the Monge-Ampère system would yield the improved exponent

α <
1

1 + 2 n∗

m−n

.

But our setting is codimension one.
(3) Absorbing the error terms Ei directly into the decomposition (4). For large

codimensionm−n ≥ 2n∗, from the second approach, it seems that at most α < 1/2
can be obtained. However, Källén [42] introduced a new method that incorporates
error terms into the decomposition:

g −DutqDuq =

N
∑

i=1

a2i νi ⊗ νi +

N
∑

i=1

Ei.

Since the error terms Ei depend on ai and its derivatives, this absorption is non-
trivial. However, by applying a suitable Picard iteration to this equation, the
decomposition can be achieved up to an arbitrarily small error

‖E‖0 ≤ C‖g −DutqDuq‖0
(

λ0
λ1

)J

.

Consequently, by choosing a very slow increase in frequency, λ1 = K1/Jλ0, the
exponent improves to

α <
1

1 + 2
J

.

By taking J arbitrarily large, one can achieve any α < 1.
When codimension m − n ≥ 1, absorbing error terms into the decomposition

does not work, since the perturbations take the form of corrugations rather than
Nash’s spirals as in [42], and the structure of the error terms prevents the Picard it-
eration procedure from working. Nevertheless, in the context of the 2-dimensional
Monge-Ampère equation (corresponding to n = 2,m = 3), [40] observed that the
Picard scheme still works if applied only to E1 with its 22 component removed.
This modification allows for the trade of a fast derivative for a slow one, making
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the scheme work. The missing 22 component is then cancelled exactly by the sec-
ond perturbation. To apply the analogous strategy to codimension one isometric
immersions is significantly more challenging due to the nonlinear nature of the
required equation. Furthermore, although the approach seems to generalize to
higher dimensions, the resulting improvement on the Hölder exponent is minor.

1.3.4. Our approach–iterative integration by parts. In this paper, we improve the
Hölder exponent in the codimension one setting without reducing the number of
primitive metrics in the decomposition of the metric deficit and (almost) without
absorbing error terms into the decomposition. Instead, we modify the ansatz (5)
for the corrugation in the first n perturbations, achieving an error with the very
small bound:

‖Ei‖0 ≤ C‖g −DutqDuq‖0
(

λi−1

λi

)J

up to a component that belongs to an (n∗ − n)-dimensional subspace of the space
of symmetric matrices. This remaining part is then cancelled exactly in the last
n∗ − n perturbations. By choosing J arbitrarily large, the contribution of the
first n perturbations to the growth of the C2 norm becomes negligible, effectively
reducing the number of contributing perturbations to n∗ − n. This explains the
Hölder threshold claimed in Theorem 1.

The key observation behind modifying the ansatz (5) is that, at each step i, all
but one of the leading-order error terms in Ei take the form

γ(λix · νi)M,

where M is a symmetric matrix oscillating at the lower frequency λi−1, and γ
is a periodic function with zero mean. Another observation is that for a fixed
ν ∈ Sn−1, any symmetric matrix can be decomposed as

M = sym(α(M)⊗ ν) + F,

where the “remainder” F belongs to an (n∗−n)-dimensional subspace of the space
of symmetric matrices. Using this decomposition, we can rewrite

γ(λix · νi)M = 2sym

(

D

(

γ(1)(λix · νi)
λi

α(M)

))

− 2
γ(1)

λi
sym(Dα(M)) + γF.

Here, γ(1) is an antiderivative of γ with zero mean. We refer to this process as
integration by parts. IfM and γ are sufficiently smooth, we can iterate this process
J times, and construct fields wJ , EJ , F J such that

γM = 2sym(DwJ ) +

(

λi−1

λi

)J

EJ + F J ,

where the remainder F J remains in a lower-dimensional subspace. Consequently,
introducing vector field wJ in the step ansatz so that 2 sym(DwJ ) appears in

the induced metric allows us to cancel γM up to a very small error
(

λi−1

λi

)J

EJ

and the large but lower-dimensional remainder F J . Furthermore, by selecting a
suitable basis {νi ⊗ νi} for the decomposition (4) we ensure that, when applied
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to the first n perturbations (i.e., for ν = νi, i = 1, . . . , n), the integration by
parts procedure produces errors F J that all remain within the same subspace
V = span{νj ⊗ νj : j = n + 1, . . . , n∗}. These errors in V can then be canceled
exactly by appropriately adjusting the effective amplitude aj of the perturbation
Wq,j for j ≥ n+ 1.

A complication arises due to a specific leading-order error term in Ei of the
form

γ2M,

which prevents a direct application of integration by parts technique since γ2 does
not have zero mean. However, we can decompose

γ2M = (γ2 −
 

γ2)M +

 

γ2M.

The prefactor of the first term has zero mean, allowing the first term to be handled
using the integration by parts process described above. On the other hand, the
remaining term

ffl

γ2M oscillates slowly, so that can be treated by absorbing it
into the decomposition via a simple Picard iteration, similar to Källén’s approach.

The details can be found in [41].
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Amélie Loher

Dept. of Pure Mathematics & Math.
Statistics
University of Cambridge
Wilberforce Road
Cambridge CB3 0WA
UNITED KINGDOM

Prof. Dr. Francesco Maggi

The University of Texas at Austin
4413 Cross Valley Run
78731 Austin
UNITED STATES



1820 Oberwolfach Report 33/2025

Prof. Dr. Christos Mantoulidis

MS 136
Department of Mathematics
Rice University
6100 Main St
Houston TX 77005
UNITED STATES

Prof. Dr. Maria Medina de la

Torre

Department of Mathematics, Faculty of
Sciences
Universidad Autónoma de Madrid
28049 Madrid
SPAIN

Dr. Paul Minter

Department of Pure Mathematics and
Mathematical Statistics
University of Cambridge
Wilberforce Road
Cambridge CB3 0WA
UNITED KINGDOM

Prof. Dr. Connor Mooney

Department of Mathematics
University of California, Irvine
Rowland Hall 410 C
Irvine, CA 92697-3875
UNITED STATES

Prof. Dr. Monica Musso

Department of Mathematical Sciences
University of Bath
Claverton Down
Bath BA2 7AY
UNITED KINGDOM

Prof. Dr. Felix Otto

Max-Planck-Institut für Mathematik
in den Naturwissenschaften
Inselstraße 22 - 26
04103 Leipzig
GERMANY

Prof. Dr. Tristan Rivière

Departement Mathematik
ETH-Zentrum
Rämistrasse 101
8092 Zürich
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