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ABSTRACT. In recent decades, renormalisation, which has long been a work-
man’s tool for theoretical physicists, has also become an essential mathemat-
ical tool that appears in many guises. Within mathematics, renormalisation
bridges across topics such as combinatorics and stochastic analysis. Yet, in
part due to a lack of a common language, the advances on the mathematical
side do not seem to fully reach out to the theoretical physicist. Conversely,
the mathematician rarely benefits from the physicist’s expertise in renormali-
sation. The goal of this workshop is to bridge this gap and provide a platform
for communication and exchange of ideas, a first step in the direction of in-
creased interaction and cross fertilisation between the two communities.
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Introduction by the Organizers

There is a plethora of field theories — including marginal ones, which seem to be
the Nemesis of many a mathematical approach to renormalisation — for which the
physicist and the mathematician have similar questions: make sense of the path
integral measure, compute correlation functions, identify fixed points, establish
conformal invariance, and so on. What can the physicist and the mathematician
learn from each other in such cases?

As reflected by the abstracts, the workshop brought together a group of ex-
perts, both mathematicians and physicists. The workshop made space for ample
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discussions between the participants so as to foster interactions between the com-
munities, Ultimately one would wish for a full control of QFT, encompassing both
existence proofs and constructions as well as effective numerical techniques allow-
ing one to compute physically relevant quantities. This workshop addressed the
former, leaving the latter question for future work.
Scientific interactions during the workshop were geared around several questions
including:

e Rigorous mathematical results of relevance for physically interesting theo-

ries.
e Upgrading a perturbative result to a non-perturbative approach.
e Mathematical structures underlying field theory and renormalisation, in-
cluding geometric and algebraic structures.
The first day was organised around 5 introductory talks to various topics of interest
for the workshop. The rest of the week was organised around more specialised 50
minutes talks and shorter 15 minutes talks by junior researchers. The speakers
who had been asked to be as pedagogical as possible, gave remarkable talks which
were understandable to non experts.
This joint effort to share various approaches and tools, whether mathematical

or physical, enabled very fruitful discussions, some of which took place within the
workshop schedule, others more informally.

Acknowledgement: The organisers are very thankful to the MFO for hosting this
interdisciplinary workshop.
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Abstracts

Rough analysis and renormalisation
ItyA CHEVYREV

Rough analysis is a collection of methods that allows one to solve singular sto-
chastic differential equations in an essentially pathwise manner. It was initiated
by Lyons’ theory of rough paths [1] which gives a solution theory for rough differ-
ential equations of the form
du = f(u)dB,

for a function w: [0,7] — R™, an input B: [0,7] — R", and driving function
f: R™ — L(R™ R™). In its applications to stochastic differential equations, where
B is, e.g. a (fractional) Brownian motion, the key idea of the theory is to factor
the solution map B — u into two steps. The first step is probabilistic, in which
one enhances the path B to a richer object B = (B,B), where concretely B =
| B®dB is the iterated integral of B; this step is typically discontinuous but has
the advantage that it is explicit and simple. In the second step , which is analytic
and entirely deterministic, one applies a continuous ‘Rough Path’ solution map
B — u. The result is depicted in a commuting diagram in the figure below, in
which the enhancement B — B and continuous RP solution map commute with
the Classical Solution Map whenever B is smooth.

B = (B,B)

Probabilistic

B Class. Sol.

S u

In a major breakthrough, the philosophy of rough paths was extended to singular
stochastic partial differential equation (SPDEs) by Hairer’s theory of regularity
structures [2]. The prototypical example of equation handled by this theory is

(8t - A)U, = f(u7 Vu, g)

where u € D'([0,T] x R?) and ¢ € D'(R x R9) are, in general, distributions. The
steps in the theory are similar to rough paths, but one has the major complication
that, when constructing the aforementioned enhancements, which are generalisa-
tions of iterated integrals, one requires a renormalisation procedure. To wit, for
f = —u®+ ¢ and ¢ a white noise (the dynamical ®* model), one of the objects
that needs to be constructed is [(9; — A)71¢]? (the cube of the stochastic heat
equation). If U, = (9; — A)~1&. is a smooth approximation, then the cube W3 for
dimensions d > 2 is known to diverge. But for d < 4, one can obtain a meaningful
limit as € | 0 by considering the Wick cube

U3 =03 - 30,0, ,
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where C. = E¥2(0) is the so-called Wick constant that diverges as € | 0. The
shift U3 — W3 is an example of renormalisation, and it is a crucial step in the
regularity structures solution theory. One can view this step as the action of a
renormalisation group R on the space of enhanced inputs Z (called ‘models’ in
regularity structures). The algebraic and analytic tools necessary to enahce and
renormalise a wide class of random distributions £ is are given in [3, 4]. We depict
this step by ‘Renormalisation’ in the figure below.

Renormalisation

Probabilistic

Class. Sol.

Eq x ¢

Eq. Renormalisation

The effect of shifting polynomial functions of £ has a corresponding effect on the
equation, e.g. returning to the ®* model, it is solutions to the renormalised PDE

(0 — A)u. = —ug +3C.u. + &

that converge as ¢ | 0. The first proof that one can always renormalise an equation
with suitable counterterms to obtain a limit as € | 0 was shown [5]. This step
is labelled ‘Eq. Renormalisation’ in above diagram. The commuting diagram
depicts that, enhancing ¢ +— Z, applying a renormalisation group element M €
R, M: Z — Z, followed by the continuous Regularity Structure Solution Map,
is the same as applying an adjoint action of the renormalisation group element
M*: Eq — Ea to the equation (the effect of which is to add counterterms), and
then applying the Classical Solution Map & — u for the renormalised equation.

This initial programme was completed in [2, 3, 4, 5] and is able to treat a wide
class of subcritical SPDEs (corresponding to super-renormalisable regime in QFT).
Different approaches to regularity structures, and singular SPDEs in general, have
since appeared, e.g. paracontrolled calculus [6], multi-index regularity structures
[7], and Wilsonian renormalisation group [8, 9].
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Wilsonian renormalization group
MANFRED SALMHOFER

Introduction. Wilsonian renormalization group (RG), as invented by Kadanoff
[1], Wilson! [2, 3], and Wegner [4], has become ubiquitous in physics (for reviews,
see [5, 6, 7, 8, 9]). Since the early 1980s it has also been developed and used as a
mathematical tool in mathematically rigorous, non-perturbative constructions of
models of quantum field theory, such as [10, 11, 12, 13, 14, 15, 16]. Since the 1990s,
it has also been applied to quantum many-body theory and quantum statistical
mechanics, yielding many rigorous results, see, e.g. [17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. Here I give a brief overview of some
basic concepts, their implementation via flow equations for effective actions, and
the solution of these flow equations by formal and by convergent expansions, a few
applications and open questions.

Given a quantum field theory in its representation as an integral over space-
time-dependent fields (sketched below), the idea of the Kadanoff-Wilson-Wegner
approach is to implement a combination of local averaging and scale transforma-
tions in real space on the algebra of fields, and thereby define a flow of effective
interactions. Since local averaging smoothes out details, it is not injective, and
therefore the Wilsonian renormalization “group” is really a semigroup. (In a set-
ting of formal perturbation theory, and restricted to the so-called relevant param-
eters (the unstable manifold), it can be inverted, so that it is a group.) Using a
regularized, hence mathematically well-defined version of the functional integral
of quantum field theory, this semigroup can be set up as a heat flow on a space of
action functionals. Its solution is the Wilsonian effective action. Polchinski [36]
used this setup to give a simplified proof of perturbative renormalizability. His
method was further simplified, in some respects clarified, and extended to gen-
eral renormalization conditions, in [37]. Based on this, the method was developed

IKenneth Wilson received the 1981 Nobel prize for his contributions to this theory and its
applications
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further, and it has by now yielded the strongest results in perturbative renormal-
ization, see [38, 26, 39, 40, 41] for a selection of results. A detailed exposition of
the method is given in [42], a short version is in [43].

Already a few years after Polchinski, Brydges and Kennedy found an explicit
solution to Polchinski’s equation and used it to prove convergence of Mayer ex-
pansions [44]. Their tree formula can also be used to reorganize quantum field
theoretical perturbation theory as a tree expansion. A reorganization via (possi-
bly augmented) tree expansions can be done also without flow equations, and it has
been used to prove convergence of perturbation expansions in fermionic quantum
field theories [45, 46, 48]. Because the Brydges-Kennedy formula is based on the
same PDE as the perturbative proofs, it connects seemingly different approaches
in a transparent way. Below, I describe it in a bit more detail and highlight some
basic structural results.

The context. A natural setting for Wilsonian RG is that of functional integrals.
Wilson’s effective action is defined by the equation e~V (@V) = ;o x eV, that is

(1) ~W(OV)(@) _ /duc(gp) o~ V(e+)

where pco is a normalized, centered Gaussian measure with covariance C' and
V' is bounded below. A prototypical model is scalar field theory ¢§, where C =
(—=A+m?)~1 (with the d-dimensional Laplacian A) and V(¢) = [ ¢(z)* d%z. More
generally, using the Feynman-Kac formula or coherent-state functional integrals,
any quantum field theory can be cast into this form where the integration variables
are real, complex, or Grassmann-valued, fields. The effective action contains all
information about the theory.

As it stands, (1) is ill-defined because the covariance C(z,y) is singular at
coinciding points and V is local in ¢. There are many ways how to give a well-
defined version of such integrals, e.g. by replacing continuous space by a discrete
lattice, or by smoothing out the singularity, considering e.g. Cyx, = C e®/ A,
In the latter case, renormalization can then be described as finding a suitable
modification Vj, of V such that the limit Ag — oo of W(Ch,, Va,) exists and has
properties that imply, e.g., the Osterwalder-Schrader axioms [49, 50]. In theories
that have more structure than the scalar field theory, such as gauge theories,
there are additional requirements, namely gauge covariance, which pose further
constraints and significantly complicate the analysis.

Polchinski’s equation. In the following, we assume that some regularization has
been chosen, so that the integral is well-defined. For s > 0 define Ay = Ag e~ %,
and C(s) = Ca, A, = C(eA/N5 — ¢A/AY). Then W (s, ¢) = W (Ca, Ay, Va,) solves
the initial-value problem

. 1 1 )
(2) W= SAW — (VW CVW) ., W(0) =Va, -

In quantum field theory, this equation is known as Polchinski’s equation. In this
equation, the dot denotes the s-derivative, and gradient and Laplacian are now
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operators in field space., i.e. V.= $> and A = (V,CV) = ny C(x,y)#(m) %(y).
For a mathematically careful setup and details, see, e.g. [42]. The idea is now
to study the quantum field theory by showing existence and uniqueness of the
solution to (2) and studying its properties in the limit Ay — oco.

Perturbative renormalization. Polchinski did this in his paper [36] in the
framework of a formal perturbative expansion in the renormalized coupling con-
stant. In the sense of formal power series, his method provides a rigorous, yet
simple, inductive scheme for proving finiteness of W in the limit Ay — oco. Specif-
ically, when replacing V' by AV with a formal parameter A, the effective action
becomes a formal power series in A,

2r+4+2

(3) W (Cangs AVap)(0) = D A Z WA (g

r>1

where W, , is homogeneous of degree m in the fields ¢, and (2) then implies

m+1 r—1
A Ao A, Ao A, Ao : A, Ao
(4) Wm,r _AW m—+2,r Hzl pzl (VVV/L p CA;AO VI, m+2—p,r— p)

This equation has a recursive structure: in the second term, p and r — p are
both strictly smaller than r, and in the first, W,,, 12, appears in the equation for
er. Thus, the W, , can be obtained recursively from this equation, proceeding
upwards in r and at fixed r downwards in m (starting at m = 2r+2). Similarly, one
can derive differential inequalities for the coefficient functions of W/,\L”‘T\O (¢), and
prove A-dependent bounds for suitable norms of these functions in an inductive
scheme tailored to the above recursive structure. An ansatz with canonical scaling
then works, provided that the two- and four-point terms are renormalized by an
appropriate final condition on W. In four dimensions, this gives bounds of the
form A*~™P,, .(log A), where P, , is a polynomial. Details for ¢ theories are
given, e.g., in [37, 42]; as mentioned the method applies in great generality.

Tree formula. The Brydges-Kennedy formula regroups the expansion in V' into
an expansion over trees. Here we present it only for the simplest case when the
s-dependence is C(s) = sC, s € [0,1]. The O(V?) term in an expansion of W in
Wo =V is W (s, ¢) = (uc * V) (¢) for p= 1, and for p > 2

(5) W(P)(s’¢) _ (*112!1)_1 Z j‘ dTo [l:e%Ac[MT(s,a) H 1A(f) H V( ):H

TETp [0,s)P—1 teT

where 7, is the set of trees on p vertices,
p
Ac[M] = Z Mq7q,A(C‘,1"1) A(C(m) _ (v(q)yc V(q’))
(6) a,q'=1
(Mr)q.q(s,0) = / dpl(oy <pVle Py CT)
0
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[F(eW,...,6®N] = F(o,...,6), and d"o = [] do;. The matrix (Mz)(s,0) is
teT
nonnegative (i.e. all its eigenvalues are nonnegative).

Formula (5) can be proven simply by inserting it into the differential equation
(2). In general, it holds as a formal expansion in V', as before. It can be used to
generate the Feynman graph expansion in two steps: The p vertices of the graph
correspond to the factor [], V(¢@). The operator [],.r %A(Ct) connects these

vertices by a tree. When fullly expanded, the remaining operator ezfcMr(s,0)]

produces additional loop lines and hence a summation over the corresponding
Feynman graphs. The matrix Mr(s,o) implies a weighting of loop lines of the
Feynman graphs by combinations of the parameters (o )er, so that the integration
over the oy’s prevents an overcounting of graphs (this is nontrivial because the
spanning tree of a connected graph G is not unique if G is not itself a tree, hence
an unlabelled Feynman graph will appear multiple times in the above expansion).

In the case of fermionic field theories, where the fields are Grassmann vari-
ables and the integrals are Berezin integrals, this formula is key to convergent
bounds. In this case, one can express the effect of e3AcIMr(s,9)] in terms of deter-
minants (or Pfaffians) associated to the tree, hence avoiding a factorial growth that
prevents convergence. Using Cayley’s theorems for tree counting, a convergence
proof can be given, provided that the covariance has both a finite determinant
constant dc and a finite decay constant ac. They are defined as ac = |C|1,00 =
sup, [ |C(z,y| dy, and (in the translation-invariant case) 62 < [Cll. where the
hat denotes the Fourier transform. This is explained in more detail, and precise
convergence theorems are stated, in [45, 46, 47, 48].

The idea how to get from these bounds to a multiscale construction of the model
is now as follows. The continuous flow s — C(s) is integrated over intervals to
give a discrete iteration: in C' = fooo C(s)ds with Ay = Ag e~*, decompose

(7) [0,00) = [0,51) U [s1,82) U...,U[85,8541) U...

with some increasing sequence 0 = 51 < 53 < 53 <...<§;.... Then
> Ss+1 |

(8) c=> 0, CJ:/ C(s) ds
7=0 Si

The discrete RG flow is then obtained as an iterated convolution (take s; = o7,
o > 0 fixed)

Vv . -V

(9) Hc *xe€ = Jh_{go Ke; * (HCJ_l ok (,UCH * (MCO *xe )) - )

This is a recursion Wy = V and

(10) e Wi — pe; * e Wi-1

With the above technique, every W; can then be constructed by convergent ex-
pansions from W;_;. An iteration, with appropriate modifications (extraction of
‘relevant’ terms, i.e. ones that grow in the iteration), then yields convergence of

the effective action. An example where this is used are Luttinger fermions in four
dimensions with a local four-fermion interaction [51]. Major open problems are
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about Fermi-liquid behaviour in the three-dimensional many-fermion model, and
constructions of models at real time.

In the bosonic case, i.e. when the fields are real or complex variables, a direct
application of the tree formula does not yield convergence because the determi-
nants (or Pfaffians) of the fermionic case are replaced by permanents (or Hafnians),
which exhibit a factorial growth. A powerful, but technically more involved, pro-
cedure is to split field space into a small-field and a large-field region. This is the
method employed in many of the classics of constructive quantum field theory,
such as [11, 12, 13, 17] and [52]. In some cases, such as quantum many-boson sys-
tems at negative chemical potential, one can change variables so that this factorial
growth does not occur and a convergent expansion results [53, 54].
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Introduction to perturbative algebraic quantum field theory (pAQFT)
KasiA REJZNER

In this introductory talk, I presented the basic principles underlying the pAQFT
framework, which can be used to construct models that satisfy Isotony, Causality
and the Time-slice axiom of the Haag-Kastler framework [5], but the local algebras
are topological *-algebras rather than C* or von Neumann algebras. For details,
see for example [3, 2, 7].

Classical Field Theory in the pAQFT Framework. In the pAQFT approach,
the starting point is the classical theory, formulated geometrically on an appro-
priate infinite-dimensional space of field configurations &£, typically chosen as a
space of smooth sections &€ = I'(E — M) for some vector bundle over M. Observ-
ables are represented as functionals on £. To ensure sufficient regularity, we work
with smooth functionals F' : £€ — C whose derivatives are compactly supported.
Important classes of functionlals are: local functionals Fioe (can be expressed as
integrals of smooth functions on the jet bundle), multilocal functionals F (sums
of products of local ones), reqular polynomial functionals Freg (derivatives above
a fixed order N vanish and all the derivatives are smooth sections) and equicausal
functionals Fe. (defined via wavefront set conditions on their derivatives, with an
additional equicontinuity requirement [6]).

The dynamics of the classical theory are described through a I-form dL on the
configuration space (Euler-Lagrange derivative of a local Lagrangian L). The
equation dL = 0 determines the classical solutions. The space of solutions can
also be described homologically using the Koszul compler, which captures the
algebraic structure of functionals modulo the equations of motion.

Quantisation via Deformation Quantisation. Quantisation in pAQFT pro-
ceeds in two steps: one first quantises the free theory (given by dLg which is linear
in the fields, so can be written in terms of a differential operator P as dLo(p) = Pyp)
and then incorporates the interaction perturbatively. We assume P to be Green
hyperbolic [1], so there exist unique retarded and advanced Green functions AR/A,
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The quantisation of the free theory is performed using the method of formal de-
formation quantisation. The idea is to deform the commutative pointwise product
of functionals into a non-commutative star product, defined as

FxG=mo erL(W’WgW)(F ® QG),

where W is a Hadamard function of the free theory, and m denotes the pointwise
multiplication map. We have that W = %A + H, with the antisymmetric part
A := AT — A4 and with symmetric, non-unique part H, chosen such that W is of
positive type and it satisfies a wavefront set condition motivated by the wafefront
set of the Wightman 2-point function on Minkowski spacetime in the vacuum state.
This star product encodes the canonical commutation relations in the algebraic
structure of functionals and defines the quantum algebra of observables.

Time-Ordered Products and the Path Integral Heuristics. Once the free
theory is quantised, interactions are introduced using perturbation theory. A
central structure in this process is the time-ordered product, denoted -+ and con-
structed using the Feynman propagator AY := L(AR + A%) + H by
F-rG:=mo eh<AF’%>(F ®QG).

The core challenge is that such products become ill-defined for F,G € Fi,c, due
to singularities of the Feynman propagator Af. Epstein-Glaser renormalisation
[4] provides a way to define these products consistently by extending distributions
that are initially defined only away from the diagonal (i.e., for non-coincident
spacetime points). As written, -7 is well-defined for F, G € Fez and can also be
expressed as F -7 G = T(T1F-T~1Q), with the time-ordering operator

2
h<AF:S_>
T:=e 870

which can be interpreted as the algebraic counterpart of the path integral, i.e.

(TP)©) 2 [ Fe) et dp— [Fi)eitodp.

Interacting observables. Interactions are introduced perturbatively via the
Bogoliubov formula, using the retarded Mgller operator Ry associated with the
interaction functional V. The interacting fields are expressed as

Ry (F) = (TetV) "'« (TetV'F),
which provides a mathematically precise version of the Gell-Mann—Low formula
from physics. Heuristically, we have
formal | F(p) exFo+V) dyp
B [ et otV do
For a relatively compact region O, its interacting (with interaction V') local algebra
Ay (O) is generated with respect to the free star product x by all Ry (F') such that

the support of F' is contained in . The resulting net satisfies Isotony, Causality
and the Time-slice axiom, as required.

Ry (F)(0)
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From Faa di Bruno to Connes—Kreimer — BPHZ renormalisation
scheme

JoscHA DiIEHL, KURUSCH EBRAHIMI-FARD

In this talk, we discuss Delamotte’s formulation of renormalisation in perturbative
quantum field theory (QFT) as a reparametrisation procedure [9] in terms of the
Faa di Bruno Hopf algebra [13], and trace its relation to the BPHZ renormalisation
scheme expressed through the Connes—Kreimer Hopf algebra of rooted trees [4].
The bridge between the two perspectives is provided by a specific Hopf algebra
isomorphism, established in Foissy’s work [14], which realizes the Faa di Bruno
Hopf algebra as a Hopf subalgebra in the Hopf algebra of rooted trees, showing
that the two viewpoints are two facets of the same algebraic process.

Renormalisation [3] is a systematic procedure developed to remove (ultraviolet)
divergences that appear in perturbative calculations in QFT. These infinities arise
because the original perturbative expansions are expressed in terms of the wrong
(unrenormalised or ”bare”) parameters. The central result of renormalisation the-
ory asserts that, order by order in perturbation theory, the divergences of a QFT
can be eliminated by consistently absorbing them into redefinitions of its param-
eters in terms of physical couplings, all while preserving locality, unitarity, and
Lorentz invariance.

At its core, renormalisation can be viewed as a reparametrisation procedure
that expresses perturbative expansions in terms of measurable physical quanti-
ties instead of unphysical “bare” parameters. This serves as the starting point
for Delamotte [9], who emphasises this simple characterisation of renormalisa-
tion by distinguishing the aspects specific to models in QFT from those intrin-
sic to the renormalisation process itself. Indeed, he emphasizes that formulating
renormalisation as a reparametrisation procedure is independent of the Feynman
graph expansions tied to a specific QFT model, thereby sidestepping the associated
graph-theoretic combinatorics. The underlying structure of the inductive renor-
malisation procedure is instead that of the Faa di Bruno formula which governs
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the combinatorics of nested derivatives and function compositions via partitions
of non-negative integers.

It might therefore be instructive to compare Delamotte’s reparametrization per-
spective with the Bogoliubov—Parasiuk—Hepp—Zimmermann (BPHZ) renormalisa-
tion procedure which provides a formulation of renormalisation in perturbative
QFT based on replacing ill-defined integrals by finite, well-defined expressions [2].
Its combinatorial backbone is the structure of Feynman graphs. The central idea is
to systematically subtract ultraviolet divergences from Feynman amplitudes using
a recursive procedure based on the forest formula. Given a Feynman graph, one
identifies all divergent subgraphs, including overlapping ones, and assigns countert-
erms that remove their divergences. Zimmermann’s forest formula then organises
these subtractions in a combinatorial manner, ensuring locality and consistency.

Connes and Kreimer reformulated the BPHZ renormalisation procedure in terms
of a combinatorial Hopf algebra defined over (polynomials of 1PT) Feynman graphs
[7]. Tts coproduct encodes the purely combinatorial operation of extracting (1PI)
divergent subgraphs and contracting them inside larger graphs. The recursive sub-
traction of divergences is an avatar of the antipode of this Hopf algebra ”twisted”
by a subtraction map. The latter is required to be a Rota—Baxter operator [11].

Thus, what once looked like an intricate analysis-driven combinatorial proce-
dure emerges as an instance of the general theory of combinatorial Hopf algebras.
One of the key insights of Connes and Kreimer arising from this approach is that
BPHZ renormalisation can be naturally formulated as a factorisation problem in
the group of characters over their combinatorial Hopf algebra of Feynman graphs,
that is, in the group of unital linear multiplicative functions: the Feynman rules
define a particular character on the Hopf algebra, and an algebraic Birkhoff de-
composition of this character yields two Hopf algebra characters, one encoding
counterterms and the other giving renormalised amplitudes [7]. A closer look
reveals that this decomposition is a manifestation of a universal combinatorial
structure governed by the facorisation properties of Rota—Baxter algebras [10].

Before considering Feynman graphs, Connes and Kreimer showed that the com-
binatorics of perturbative renormalisation can be understood in terms of non-
planar rooted trees [4]. The latter provide a universal combinatorial model for
nested and overlapping subdivergencies: each node in a tree represents an inser-
tion of a divergent subgraph, and the branching encodes how divergences in a
Feynman graph are nested inside one another. The coproduct on trees precisely
mirrors the coproduct on Feynman graphs, and one may say that renormalisa-
tion appears as an instance of a general phenomenon: the Hopf algebra of rooted
trees captures the essential combinatorics, while Feynman graphs are one concrete
representation.

Connes and Kreimer [6] highlighted the connection between their work and that
of Butcher in numerical analysis. Brouder further developed profound links with
the combinatorics underlying numerical analysis [1].

The Hopf algebras of rooted trees and of Feynman graphs are deeply connected
to the Faa di Bruno Hopf algebra [5, 8]. The latter encodes the algebra of formal
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diffeomorphisms under composition, and its coproduct mirrors the Faa di Bruno
formula [12, 13]. Connes and Kreimer observed a common combinatorial princi-
ple: the Faa di Bruno coproduct acts by partitioning positive integers, whereas
the coproduct in renormalisation acts by partitioning combinatorial objects such
as trees or graphs. In this sense, the Faa di Bruno Hopf algebra provides the
archetypal template for renormalisation Hopf algebras.

Building on the insight of Connes and Kreimer, several authors clarified in
detail the precise relationship between the Faa di Bruno Hopf algebra and the
Hopf algebra of rooted trees. We mention in particular Manchon and Frabetti
[15]. In [14], Foissy further developed and deepened this connection by giving a
systematic account of how Faa di Bruno Hopf subalgebras arise inside the Hopf
algebra of non-planar rooted trees.
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The extension to higher codimension of local field theories
FRANCESCO BONECHI

The Batalin-Vilkovisky (BV) method was introduced to deal with theories with
general gauge invariance, evolving the BRST method used for theories as Yang-
Mills or Chern-Simons. It is properly formulated in the language of graded sym-
plectic geometry [4]. Given the gauge invariant classical action, the construction
of the solution of the Classical Master Equation (CME) is understood as an ho-
mological resolution of the space of solutions of the equations of motions modulo
gauge transformations; it involves tools of homological algebra [5]. The hamil-
tonian counterpart, called Batalin-Fradkin-Vilkovisky (BFV), is an homological
resolution of the coisotropic reduction defined by the constraints. The AKSZ
construction (see [1],[6]) defines the solution of the CME in terms of very simple
geometrical data so avoiding the rather cumbersome construction provided by ho-
mological perturbation theory. It is a wide class of interesting topological field
theories, including Poisson Sigma Model (PSM) in 2d, Chern Simons in 3d and
BF theories in all dimensions.

This setting provides a concrete framework for extending a local field theory to
nonzero codimensions. In the Cattaneo-Mnev-Reshetikhin (CMR) approach (see
[3]), the theory extends to codimension k if one can associate to each codimension
k stratum of the spacetime a compatible BF*V theory. For example for k = 0
(the bulk) one has a Batalin Vilkovisky (BV) theory and for k=1 (the boundary) a
Batalin-Fradkin-Vilkovisky (BFV) theory describing the hamiltonian theory. The
AKSZ solutions can be canonically extended to the points. In this talk I will discuss
PSM. In general there are obstructions to this extension whose nature should be
investigated. An important example to be understood is General Relativity (GR)
and its supersymmetric versions. So far it has been proved that GR extends to
codimension one [2].
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Stochastic Partial Differential Equations and Renormalization a la
Epstein-Glaser

CLAUDIO DAPPIAGGI
(joint work with A. Bonicelli, B. Costeri, N. Drago, P. Rinaldi & L. Zambotti)

We present a novel framework for the study of a large class of nonlinear stochastic
partial differential equations (SPDEs), which is inspired by the algebraic approach
to quantum field theory [4]. The main merit is that, by realising random fields
within a suitable algebra of functional-valued distributions, we are able to use
specific techniques proper of microlocal analysis. These allow us to deal with
renormalization using an Epstein—Glaser perspective, hence without resorting to
any specific regularisation scheme. In addition, we are able to devise an algorithmic
and diagrammatic procedure to derive, at a perturbative level, the expectation
value and the correlation functions of nonlinear SPDEs, establishing case by case
whether the underlying equation lies in the subcritical regime. While, in this
talk, to discuss a concrete example, we focus on the stochastic @2 model, this
procedure has been applied to several other models such as the stochastic nonlinear
Schrodinger equation [2] and the stochastic Thirring model [1].

It is worth stressing that our construction, being inspired by algebraic quantum
field theory, is inherently perturbative. Although this might appear as a poten-
tial limitation, we have shown in [3] that convergence can indeed be achieved in
specific instances, most notably for the hyperbolic stochastic sine-Gordon model.
This result provides further evidence that the perturbative algebraic framework
can, in suitable settings, capture genuine nonperturbative features. Nevertheless,
further work is required to connect this approach with other modern frameworks
for SPDESs, such as regularity structures, paracontrolled calculus, and flow equa-
tions, in order to fully elucidate its scope and potential.
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A strong—weak duality for the 1d long-range Ising model
DARIO BENEDETTI
(joint work with Edoardo Lauria, Dalimil Mazac, Philine van Vliet)

The 1d Ising model with long-range interactions is described by the classical Hamil-
tonian

J (00 —05)?
HLRI:§§W’ J>0,
i#j

where o; = +1 is the Ising variables at lattice sites 7. It is known since a long
time that this model admits a phase transition for 0 < s < 1, described by mean-
field theory (MFT) for s < 1/2, and by a nontrivial family of 1d conformal field
theories (CFTs) for 1/2 < s < 1. Above s = 1, there is no phase transition at
finite temperature, as in the short-range 1d Ising model. Therefore, the point
s = 1 corresponds to a crossover between long-range and short-range behavior.
The critical regime can be studied perturbatively near the MFT end at s = 1/2,
as a generalized free scalar field perturbed by a quartic interaction, but such
description becomes strongly coupled near the short-range crossover at s = 1.

We propose a dual weakly-coupled description near s = 1. The partition func-
tion Z of our model is constructed from a generalized free field ¢ of negative
mass-dimension (s — 1)/2 and compact target space of radius 1/b, perturbed by
an impurity-type interaction,

7 = <trPexp{ / [g (6% +65_ e ) 4 h %&Jﬁ] dx}>GFF¢7

where {61, 63} is the slp-triplet and trPexp stands for the trace of the path-ordered
exponential. The interaction term proportional to the coupling g is interpreted
as generating kink and antikink configurations in the original Ising spins, while h
shifts the compactification radius and is needed for renormalization.

We have performed a number of consistency checks of our proposal, in particular
calculating the perturbative CFT data around s = 1 analytically using both our
proposed field theory and the analytic conformal bootstrap. Our results show
complete agreement between the two methods.

It would also be interesting to study the CFT data in the full range 1/2 < s < 1,
interpolating between the near-MFT regime and our dual one. It would also be
interesting to study similar duality problems for other 1d long-range models, such
as multicritical models, Potts, percolation, or models with long-range disorder.
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Discreteness and Randomness: Quantum Field Theory on Causal Sets
SUMATI SURYA
(joint work with Emma Albertini and Kasia Rejzner)

The fundamental field in General Relativity is a Lorentzian geometry g with sig-
nature (—,+,+...+) defined over a manifold M. It is a unique feature of this
signature alone that the sets of future and past directed lightcones in the tangent
space are topologically disjoint. If one considers a causal spacetime (M, g) then this
lightcone structure implies that there is a globally determined partially ordered set
(M, <) underlying (M, g), where < satisfies (i) acyclicity: * < y = y £ x and (ii)
transitivity: © < y,y < z = x < z. It is of interest to assess how much of (M, g)
is captured by (M, <). Assuming very weak global causality conditions, a set of
theorems due to Hawking, King, McCarthy [1] and Malament [2], supplemented by
results due to Kronheimer and Penrose [3] shows that a causal bijection between
two spacetimes exists iff they are conformally isometric. Thus, (M, <) encodes the
entire conformal geometry of the spacetime. The only missing ingredient is the
conformal factor, or equivalently, the local volume element.

This motivates the causal set approach to quantising gravity where, instead of
promoting the spacetime geometry g directly to a quantum field, one begins by
discretising (M, <) [4, 5, 6, 7]. This introduces the third condition: (iii) local
finiteness: V(e,e’) = {e’|le 2 e” < €'}, [(e,€')| < 00, and the resulting locally finite
partially ordered set is called a causal set. While there is a loss of continuum infor-
mation, in an approximate sense the counting measure given by |(e, e’)| provides
the missing local volume )element. Causal set theory thus views the continuum
spacetime (M, g) as an approximation of an underlying random causal set C. The
elements of C can be generated from a Poisson point process (PPP) into (M, g),
where the probability P, (V) of finding n elements in a spacetime region of volume
Vis

n

) Puv) = P exp(pV),

where p~! is the discreteness scale. The order relations in C are then induced by

the causal ordering of events in (M, g). It can be shown that C does not violate
Lorentz invariance in Minkowski spacetime, but is non-local in the sense that it is
not a finite or fixed valency graph.

While the main goal of causal set theory is quantum gravity, it can also be
used as a covariant regularisation of non-gravitational quantum field theory (QFT
). Conversely, causal set modifications to QFT can give us signatures of new UV
physics. In order to construct QFT on causal sets directly, one needs a fundamen-
tally spacetime and causal formulation, which is provided by the AQFT framework
[8, 9, 10, 11, 12, 13]. Consider the massive Klein Gordon scalar field satisfying
ﬁqﬁ(x) = 0 on (M,g) where P=0+m?+ &R is a hyperbolic operator and
G®A(z,2") the associated retarded and advanced Green’s functions respectively.
The Peierls bracket quantisation condition is

(2) [@(2), ®(2")] = iA(x,2"),
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where the Pauli Jordan function iA(z, z') = i(G®(z,2") — GA(x,2')). For a func-
tion f € CF (compactly supported functions with k > 2), the integral operator
iAo f(z) = i [dVA(z,z")f(z'), is self adjoint. Since Ker(P) = Im(A), the
cigenmodes of iA (the Sorkin-Johnston or SJ modes) can be used to define the SJ
vacuum state or Wightmann operator W = Pos(iA) [11, 12, 13, 14].

This formalism can be be directly implemented on the random causal set C,
starting from the discrete versions K4(e,e’) of the scalar Green’s functions
GPA(z,2"). The K®4(e,e’) have been constructed in random causal sets ap-
proximated by various d = 2,4 spacetime regions [10, 15]. The causal set SJ
vacuum Wsy(e,e’) can thus be constructed and matches the continuum version
for large spacetime separations [11, 12, 16]. However there can be significant fea-
tures in Ws (e, e’) at small separations, even those that are significantly larger
than the discreteness scale. Such UV modifications can change the behaviour of
renormalised quantities. For example, in A\¢* theory in Minkowski spacetime, the
renormalised mass is

1
(3) m2 =m? + §i)\AF(O),
where Ap(x — ') is the Feynman propagator. In dimension d = 2,
1 A% +m?
4 Ar(0)= —In| —4——
(@) b0) = (25,

where A, is the UV cut-off. In the causal set, Ar(0)(= Ws;(0)) is built out of the
SJ modes. The effect of discreteness is that the SJ eigenspectrum has a charac-
teristic “knee”: at IR scales, i.e., before the knee the spectrum mimics that of the
continuum, but in the UV, beyond the knee, it is distinctively non-continuumlike.
Using a simple substitution of the causal set Wg;(0) into the renormalised mass
formula Eqn. (3) we find a significant modification from the continuum behavior
Eqn. (4). Continuumlike results are recovered when a truncation is performed at
the knee. Our preliminary results therefore suggest that causal set discreteness
modifies the broad features of renormalisation and renormalisation flows in the
deep UV.

Our results are suggestive and need further study. The pAQFT approach [17,
18] offers insights into renormalisation from a Lorentzian and causal perspective
and has recently been adapted to causal sets [19, 20]. Obtaining the renormalised
parameters and flows on causal sets using these techniques is the subject of ongoing
research.
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A multiplicative surface signature through its Magnus expansion
JoscHA DIEHL
(joint work with Ilya Chevyrev, Kurusch Ebrahimi-Fard, and Nikolas Tapia)

The path signature - introduced by K.-T. Chen - associates to a curve X : [0,1] —
R™ a sequence of iterated integrals forming a group-like element in the tensor
algebra T'((R™)). This algebraic structure, together with Chen’s identity (also
known as the cocycle property)

S(X)S,t S(X)t,u = S(X)s,ua

is key to both its mathematical universality and its efficient (linear-time) compu-
tation. Its logarithm, the Magnus expansion, lives in the free Lie algebra, provides
a redundancy-free description of paths (up to tree-like equivalence and reparame-
terization) and is characterized by a nonlinear differential equation.
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We present a generalization of the path signature to surfaces X : [0,1]> — R"
which shares many of the key properties of the path signature, in particular a
2-dimensional analog of Chen’s identity, [2]. Algebraically, it builds on the free
crossed module of Lie algebras introduced by A. Kapranov [4] as a 2-dimensional
analog of the free Lie algebra. Analytically, we apply a novel 2-dimensional sewing
lemma, which is of independent interest and allows to deal with non-smooth sur-
faces. Moreover, we “stay in the Lie algebra” by constructing a Magnus expansion
for surfaces. (We note that an alternative approach working in the enveloping
algebra is developed in [3].)
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BV pushforward and equivariant Yang Mills theory
FRANCESCO BONECHI

The BV pushforward of solutions of the Quantum Master Equation is a very
simple construction in the Batalin Vilkovisky (BV) formalism: given a symplectic
splitting of the BV space of fields, the fibrewise integration along one factor defines
a new solution of the CME on the other factor. At tree level, it corresponds to
the homotopy transfer of the ¢,,-algebras encoded in the solution of the CME. In
this form, it first appeared in [5] as a way to construct simplicial BF theory, see
also [3] for Chern-Simons.

This construction can be extended to solutions of the equivariant extension
of the CME. In [2] the BV formalism has been extended to work equivariantly
with respect to a Lie algebra action on the spacetime; in particular an equivariant
extension of CME has been introduced. In general there is no canonical equivariant
extension of a given solution of CME, but, as usual, AKSZ theories behave very
nicely and display such extension: in this case the full Cartan calculus can be
defined on the space of fields so that the equivariant extension is defined in the
Cartan model for equivariant cohomology.

In this talk we discuss the case of topological Yang Mills (TYMy) in four dimen-
sions. There exists a splitting of the space of BV fields such that the restriction to
one symplectic submanifold coincides with the BV formulation of physical Yang-
Mills (YMy) introduced in [4]. The BV pushforward then will give a solution of
the CME that deforms YM theory. In this talk we discuss the equivariant exten-
sion. Since TYMy is AKSZ, its equivariant extension is straightforward. Physical
YMy, is not anymore AKSZ, in particular the space of fields does not have the full
Cartan calculus, the contraction operator missing. The extension can be obtained
by means of the BV pushforward from TYM,. We computed so far the abelian
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case: the result is an equivariant extension of the CME that involves higher order
contraction operators. The non abelian case is under study.

Finally, there are several other examples of BV pushforward of a topological
theory that deforms a physical (non topological) one. For instance the Topological
Yang Mills theory in 2d TYMsy gives physical YMy decorated with zero modes;
the Poisson Sigma Model with symplectic target gives the complex scalar. These
examples are easier to compute giving us the possibility to clarify the nature of
this relation. This is joint work with A.Cattaneo and M. Zabzine.
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Observables and gauge covariant renormalisation of stochastic
3D Yang—Mills

ILyA CHEVYREV
(joint work with Hao Shen)

One of the goals of Euclidean quantum Yang—Mills theory is to give meaning and
study the Yang-Mills probability measure. For a compact Lie group G C U(N)
with Lie algebra g, this measure is heuristically given by

p(dA) o e 5 dA

where A is a g-valued 1-form on R? written in coordinates as A = (Ay,..., Ag): R?
— g% and S is the Yang-Mills action

2 2

S(A) = / |F)|? = Z/TrFij
1<J
where F' = F(A) is the curvature 2-form
Ej = (9714] — ajAz + [A“ A]] .

An approach to quantum Yang—Mills theory was initiated in [2, 1] that relies on
the Yang—Mills Langevin dynamic, proposed by Parisi-Wu, in the DeTurck gauge,
(SYM) OA=—daF(A) —dad*A+€.

For dimensions d = 2, 3, this is a singular subcritical stochastic PDE, and the main
results of [2, 1] is that, if we mollify the noise & ~ &% and work on the torus T¢,
then there exist linear operators C* € L(g, g) such that the renormalised equation

(RSYM) O A" = — dge Fae — dyge d* A5 + CEA° 4 €°
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admits a unique limiting solution A: [0,7] x T¢ — g¢ (which may blow up in
finite time). This solution is independent of the mollifier and possesses a gauge
covariance property: if we let A%, A® denote the solutions started from two gauge
equivalent configurations a ~ b, then A% and A% remain gauge equivalent in dis-
tribution for all ¢ > 0. Here, gauge equivalence a ~ b means that there exists a
‘gauge transformation’ g: T¢ — G such that

g-a:=gag t—dgg t=0b.
In dimension d = 2, by studying the equation (SYM) on the lattice, it was moreover
shown in [3] that the limiting dynamic A has a unique invariant measure on the
space of gauge orbits, and this measure coincides with the 2D Yang—Mills measure
for the trivial principle bundle [4].

It turns out that, for d = 2, the renormalisation constant C' = C¢ can be taken
independent of € and only depending on the shape of the mollifier. (For d = 3,
the constant C¢ in general diverges as ¢ | 0.) A crucial step in the proof in [3]
is to show that C is the wunique constant that leads a gauge covariant limiting
dynamic — roughly speaking, this allows one to promote a compactness result to
a convergence result.

In a recent work [5], we showed that the same uniqueness result for C¢ in d = 3.
More precisely, consider another renormalisation constant C¢ € L(g, g) such that

and let A% denote the limiting dynamic to (RSYM) with C° replaced by C¢ and
with initial condition a. Consider the smooth (non-contractible) loop ¢: S* — T3,
¢y = (t,0,0), where we identify S and T2 with [0,1) and [0,1)? respectively as
sets. Then there exists g € C*°(T?,G) such that for all t+ < 1, there exists an
initial condition a € C>(T3, g3) and s = * for some 8 > 0 for which

(1) [EW{ F[A¢]} — EW, {F,[A7 T} 2 19

The exponent 10/9 is an arbitrary number larger than 1. One should compare this
to the case C' = C for which one has an upper bound for the left-hand side of (1)
of order tM for any M > 0.

Above, Wy is the well-known Wilson loop observable of ¢ that maps sufficiently
regular (say smooth) 1-forms a to Wy(a) = Try; € C, where y: [0,1] — G solves
the linear ODE '

dy: = ye(a(ly), £e) dt , Yo=1€G.

The map F,(A) is a form of gauge covariant regularisation of A. It is given by
the time-s solution of the Yang-Mills heat flow 0sB = —d3Fp — dp d*B with
initial condition B(0) = A. An important feature of Fy is that, for smooth a,b,
Fs(a) ~ Fs(b) if and only if a ~ b. The advantage of F; is that Fs(a) makes sense
for a class of distributions a which are too rough for Wy(a) to be well-defined —
this is the case for the Gaussian free field in dimension d € [3,4) [6]. One can then
use Fq(a) ~ Fs(b) as a definition of gauge equivalence for such rough a, b.

The composed observables A — Wy{Fs(A)} were proposed in [7, 1] as a way
to define a state space for 3D Yang—Mills measure. The main result of [5] gives
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an application of these observables to the 3D Yang-Mills Langevin dynamic. The
key steps in the proof are short time expansions of the SPDE (RSYM), of the
Yang—Mills heat flow F,, and of Wilson loops. The choice of the initial condition
a is based on the Chow—Rashevskii theorem from sub-Riemannian geometry.
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Covariant transport and Poincaré symmetry with groupoids and
direct connections

ALESSANDRA FRABETTI

(joint work with S. Azzali, Y. Boutaib, S. Paycha and S. Amiel, M. D’Agostino,
A. Miti)

Proper sources as in the example above

Transport maps, in Regularity Structures, relate generalized Taylor expansion of
distributions centered at different points. Poincaré symmetry, in Special Rela-
tivity, ensures the invariance of the laws of relativistic physics for inertial frames,
including those related by translations. Because of “translations”, these two topics
typically require to work on a flat base manifold: the Euclidian space on one side
and the Minkowski space-time on the other. A covariant presentation of trans-
port maps on general Riemannian manifolds was given in [A. Dahlqvist, J. Diehl,
B. Driver, Probability Theory and Related Fields, 1-2 (2018)] with the help of a
transport precision. Similarly, a covariant presentation of Poincaré symmetry on
pseudo-Riemannian manifolds was given in [B.T. Costa, M. Forger, L.H. Pegas,
J. Geom. Phys. 131 (2018)] in terms of a jet interpretation of the orthogonal
frame groupoid of the manifold. In this talk we explain how groupoids relate these
results, and how transport maps lead to a generalization of gauge fields as direct
connections on jet groupoids.
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More precisely, after a brief introduction to the two motivating topics, we
present the leading idea of the talk, namely the extension of some key ingredi-
ents of a field theory with coupled gauge theory:

o Given (matter) fields ¢ : M — E as sections of a vector bundle, the
structure Lie group G ruling the transition functions of F and the gauge
transformations is extended to a Lie groupoid G acting on E (that is,
a subgroupoid of the frame groupoid of E), together with its group of
bisections acting on the fields.

e The Lie algebra g of GG, which encodes the infinitesimal gauge transforma-
tions, is then replaced by the Lie algebroid of the Lie groupoid G.

e The gauge fields A typically coupeld to v, which are 1-form connections
with values in g, were already generalized to Lie algebroid connections by
several authors. We further promote them to direct connections on the
groupoid G. Lie groupoids endowed with a direct connection are gauge
groupoids G(P) canonically associated to a principal bundle P. Compared
to the usual connection 1-forms on P, there are many more direct con-
nections on G(P), carrying interesting higher terms which get lost in their
infinitesimal versions.

e Finally, the need of jet bundles to describe the Lagrangian of ¥ and clas-
sical observables leads to consider jet groupoids and to study the jet pro-
longation of direct connections.

All the new ingredients are sketched in the talk, together with some relevant
examples. We report on specific results we obtained on the jet prolongation of
direct connections. We conclude with an explicit geometric polynomial model of
Regularity Structures on a manifold M, very similar to that defined by Dahlqvist,
Diehl and Driver but with transport maps given by direct connections on jet
groupoids.

The talk is based on works in progress with S. Azzali, Y. Boutaib, S. Paycha and
S. Amiel, M. D’Agostino, A. Miti, and on the global understanding of covariant
field theory developed with O. Kravchenko and L. Ryvkin in [arxiv:2407.15287].

An Introduction to Higher Differential Geometry
KONRAD WALDORF

We have reviewed the passage from Lie groups to Lie 2-groups, which forms the
foundation of higher differential geometry. Lie groups appear as symmetry groups—
of space and time, of internal state spaces, or combinations thereof—while Lie 2-
groups describe second-order symmetries, or symmetries of symmetries. Typical
examples arise in the study of B-fields in string theory [13], T-duality [9, 2], and
categorified representation theory [1, 5].

Extending Lie groups to Lie 2-groups entails corresponding generalizations of
differential-geometric structures such as principal bundles, connections, and rep-
resentations. These generalizations require an abstract, conceptual understanding
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from first principles. For instance, principal G-bundles with connections can be re-
constructed from their local model-connection 1-forms and gauge transformations—
via sheafification; this local model itself follows from the requirement that parallel
transport be well-defined [10]. Analogously, local models for principal 2-bundles
arise from a notion of surface parallel transport [11, 12], and a concise, conceptually
grounded definition of higher principal bundles follows by sheafification [7, §].

As an example of a categorified representation, we discussed the stringor repre-
sentation of the string 2-group on a 2-vector space given by the hyperfinite type I11;
von Neumann algebra [4]. Tt plays the role of the spinor representation of the spin
group, but for strings rather than point particles. Recently, the stringor bundle—a
structure long anticipated by Stolz and Teichner—has been constructed rigorously
in this framework [3]. This was achieved through analytical work relating Connes
fusion of Fock spaces to the fusion of loops in a manifold [6].
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7
B

Renormalization and Complete QFTs
URS SCHREIBER
(joint work with Hisham Sati)

In the practice of physics model building, the process of renormalization, resum-
mation, and anomaly cancellation is to incrementally repair initially ill-defined
Lagrangian quantum field theories by a successive choice of partial fixes. Impres-
sive as this is, one would rather have concisely defined complete theories to begin
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with, and understand these choices as emergent from fundamental principles:

Lagrangian anomaly renormalization . resummation
density cancellation
Quantum
observables
Complete | implicati
theory k implication

As an instructive example, we recall renormalization choices for Wilson loop
observables in abelian Chern-Simons theory. Then we show that these emerge in a
novel non-Lagrangian topological completion of 5D Maxwell-Chern-Simons QFT,
by means of proper flux quantization in 2-Cohomotopy [1, 2, 3]:

Equations proper flux Completed derive = Topological
of motion quantization field theory " | quantum observables
minimal . g Pontrjagin theorem
5d MCS ! 2-cohomotopical .
choice 5D MCS
dimensional Segal-Okuyama
reduction theorem
traditional renormalization choice 14
3D CS framed

> Wilson loops

Here it is the classical Pontrjagin theorem (refined by Segal '73 and, underap-
preciatedly, by Okuyama ’05) — identifying n-Cohomotopy cocycles of a manifold
with normally framed codim=n submanifolds — which makes emerge [4] the writhe
of framed Wilson loops that is traditionally their ad hoc renormalization choice:

Quantum observables ~ ~ Framed Zwrth(-)
{ on 2—cph0m0t0pical } Tg) Map* (Ra{m}, 52) T> {oripntcd} 84—3> C.
solitonic flux [ » 4y ] [ , 8§ ] links [ , § ]

This result is a modest cousin, with applications to topological quantum materials,
of a completion of 11D supergravity by proper flux-quantization in 4-Cohomotopy
(“Hypothesis H”). Details are at: ncatlab.org/schreiber/show/MF02539b.
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Composite observables and nonperturbative operator product
expansion via stochastic analysis

PETER PAULOVICS
(joint work with M. Gubinelli)

Recent activity in the rigorous study of Euclidean QFTs via stochastic analysis
techniques has been successful in the construction and description of many aspects
of basic fields [1]. However, nontrivial composite observables in this framework are
still poorly understood, e.g. it has been shown [2] that even the Wick square of the
free field cannot exist as an &’-valued random variable in d = 4. We propose an
approach (see also [3]), that circumvents these issues and also allows for a detailed
study of nonperturbative properties of observables of an EQFT.

Let ¢ = (¢1)ier, be a scale-by-scale coupling between the free field and the tar-
get EQFT @o; the measures Law(p;) satisfy the Wilsonian exact RG equation.
We think of ¢ as an H-valued Markov diffusion in its canonical filtration F with
parabolic generator £V, where # is a function space of smooth field configura-
tions. Observables, identified with their effective description, are defined to be
F-martingales. For a systematic construction and good control of an observable
£, one looks for so-called germs ¢ : Ry x H — R, i.e. approximate solutions of
the PDE £Y¢q = 0 for which ¢ — E[|¢:(¢:)]] € L'(Ry). Then by Ito formula g
uniquely determines a remainder process r? such that Q; = q;(¢¢) + rf. Germs
and bounds on them are obtained via a Polchinski-like solution theory of £Y ¢ = 0.

For the massive sine-Gordon model on the plane for 32 < 67, the coupling ¢ has
been constructed in [4]. Using this, the above procedure yields the construction
of various observables. Moreover, by finding an exact relation between the germs
and controlling the remainders, we can prove the scale-by-scale OPE

QW (2 +y)Q®(z Zc )™ (z) + R

where Q(®), Q®) Q) are certain local observables (e.g. their germs are polynomi-
als of point evaluations of the field ), C*) are deterministic and scale-independent
distributions, and R is martingale vanishing as y — 0 in a “spectator” topology.
Open questions include extending perturbative OPE results of Hollands et al, and
the study of Ward identities and Coleman correspondence in our setting.
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Introduction to g-Mezdons
MARTIN PEEV

g-Gaussian processes, first introduced by Bozejko and Speicher, form an interesting
family of noncommutative algebras interpolating between Fermions and Bosons,
including Free Probability. In this talk, we will give a brief overview of their
definition and their ultracontractivity property. Using this, we will show how to
equip the ¢-Gaussian processes with the novel ¢-Mezdonic topology and how to
derive operator insertion estimates for multilinear functionals of ¢-Gaussian noises.
These are crucial in solving Mezdonic singular SPDEs.

Geometric and analytic properties of the renormalisation group in
perturbative Algebraic Quantum Field Theory

FABRIZIO ZANELLO

The most rigorous approach to perturbative quantum field theory is represented
by perturbative Algebraic Quantum Field Theory (pAQFT). Beside being fully
equivalent to more traditional approaches when considering Minkowski spacetime,
PAQFT is naturally well-suited for a formulation also on globally hyperbolic space-
times and Riemannian manifolds. The renormalisation picture is directly inspired
by the Epstein-Glaser renormalisation scheme [7], later generalised to globally
hyperbolic spacetimes [1, 8, 9] and Riemannian manifolds [10, 5].

Epstein and Glaser’s original breakthrough consisted in the identification of two
crucial aspects. The first one is a factorisation property which allows to reduce the
construction of the scattering matrix to an inductive procedure over the order n
of the time-ordered product T,,. Exploiting the fact that the time-ordered product
can be directly defined for generic observables when their supports are (causally)
disjoint and assuming that the time-ordered products Ty, Vk < n, have already
been constructed, it is possible to show that the time-ordered product of order
n is then uniquely determined as a distribution defined on M*™ \ A,,, where
M denotes spacetime and A, = {(xz,...,x) |z € M} is the thin diagonal. The
second crucial aspect is the reformulation of the renormalisation problem as the
problem of finding extensions of distributions, which can then be solved employing
microlocal analysis techniques. In fact, to conclude the inductive step at order n,
it is sufficient to find an adequate extension to the whole space M *" of the time-
ordered product 7;,. The fundamental criterion to select adequate extensions is
given by the notion of scaling degree [2, 6]. In particular, adequate extensions are
required to preserve the scaling degree of the time-ordered product.

The extension process is in general ambiguous and the freedom in the choice
of an extension is reflected exactly in the freedom in the choice of local counter
terms. All the possible renormalisation choices are related to each other by the
Stiickelberg-Petermann renormalisation group, denoted by Gsp.

Some relevant aspects of the theory still remain to be clarified. This is the case
of the characterisation of the geometric and analytic properties of the Stiickelberg-
Petermann renormalisation group. It is well-known that Ggp is a subgroup of the
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group of analytic maps on the space of local observables. As a consequence, the
topology of the space of local observables [3] naturally induces a topology on the
space of analytic maps on it. The main difficulty is in understanding the role of
the various renormalisation conditions and of the additional constraints imposed
by the presence of symmetries in the determination of the topological (or, possibly,
smooth) structure of Ggp.

I plan to resolve this conundrum by combining the most refined results on the
geometric and topological properties of the algebras of observables of pAQFT [3]
with the most recent and detailed accounts of the Epstein-Glaser renormalisation
framework, both in the Euclidean [10, 5] and the Lorentzian [4] settings.
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Higher gauge theory
BRANISLAV JURCO

(joint work with Leron Borsten, Hyungrok Kim, Mehran Jalali Farahani,
Jif{ Ndrozny, Christian Saemann, Martin Wolf)

This talk was about an ongoing collaboration [1] which aims, from the first prin-
ciples, to exhaustively describe higher principal bundles over higher spaces whose
gauge symmetries are encoded in higher Lie groupoids, including their differential
geometry. The most general accessible geometric model for both higher spaces
and higher groupoids seems to be that of Kan simplicial manifolds. This frame-
work is very general, and it contains, for example, the smooth 2-groups employed
in the string 2-group. Moreover, it leads for a straightforward approach to the
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computation of all the kinematical ingredients to corresponding higher gauge the-
ories given by higher Deligne cocycles and coboundaries. In particular, it allows
to describe higher gauge potentials, their higher curvatures, finite gauge transfor-
mations, and the globalisation of this data by gluing. This work is a continuation
and a significant extension of [2].

The approach is based on the non-abelian version of Dold-Kan correspondence
between simplicial groups and strict higher groups (hypercrossed complexes) [3].
This leads to a correspondence between simplicial principal bundles (twisted Carte-
sian products) and principal bundles with higher structure groups, the former one
being very-well understood, see e.g., [4].

Starting from the simplicial description, one can naturally develop the theory of
corresponding Atiyah groupoids and their bisection groups (inner automorphisms)
of twisted Cartesian products. In the smooth case, this approach leads to a de-
scription of the corresponding simplicial Atiyah algebroids in therms of simplicial
Lie-Rinehart pairs. Finally, using the Quillen’s correspondence [5] between sim-
plicial Lie algebras and differential graded Lie algebras it gives a natural way to
define higher connections as splitting of the corresponding Atiyah sequences.
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Towards a Noncommutative Marcinkiewicz Theorem
MATTEO RAVOT LICHERI
(joint work with I. Chevyrev, P. K. Friz, F. Medwed, S. Paycha)

The moments of a random variable X on a finite-dimensional vector space V
(if they exist) are encoded by Elexpg (X)] in the tensor series algebra T'((V)) =

liin TMY = 1i<£n @ VeE. T((V)) is naturally a complete Hopf algebra, hence

possesses a well—(fef?ned logarithm function, which makes sense of the notion of
cumulants as logg E[expg (X)]. As the grouplike elements of the symmetric tensor
series algebra S((V')) are all of the form expg(v) for some v € V', Marcinkiewicz’s
theorem characterizes all possible cumulants of measures on the grouplike ele-
ments G(S((V))) as being (possibly degenerate) positive-semidefinite polynomials
of degree 2.
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Our goal is to characterise elements of the form log, E[X], where X is a random
variable on G(T'((V))) (the grouplike elements of T'((V))). If log E[X] € T(V),
the cumulants of grouplike-valued random variables are identified with differential
operators on the grouplike elements. It is well-known that, in the case when they
correspond to positive-semidefinite semielliptic operators of degree < 2, they are
identified with signature cumulants of Brownian paths with drift. Connections
to semigroup-theory and PDE are explored to present current work in progress
to prove that those positive-semidefinite semielliptic operators of degree < 2
are the only differential operators on G(T'((V))) which can arise as cumulants
of G(T'((V)))-valued random variables.
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A geometric perspective on the signature group
FELIX MEDWED
(joint work with P. K. Friz, S. Paycha, M. Ravot Licheri, A. Schmeding)

The signature S of a weakly geometric p-rough path [4] over R™, and throughout
assumed to be continuous, is a group-like element in the extended tensor algebra
and determines the path up to tree-like equivalence ~,, reparametrisation and
fixing a starting point. First shown for p =1 (bounded variation) in [3] and later
generalised to the p > 1 case in [5], the image under the signature of equivalence
classes [X], (tree reduced paths), under start point fixing at the identity, form
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a proper subgroup GP of the group-like elements, the p-signature group. Chen’s
relation can then be understood as the group homomorphism property of S. Using
Lyons’ lift £ [2, 6] of weakly geometric rough paths, the signature can be written
as S = ev1 |imag, © L, where £([X];) corresponds to a unique injective path, where
the set of all such injective paths with starting point at the identity shall be Z.
For convenience, we suppose that ev; is restricted to the image of L, ref. [5].

In the p = 1 case, it is known [4], that the truncations up to level k of the image
of the signature give the full free nilpotent Lie group Gx(R™) of step k and rank
n, which carries the natural notion of a Carnot group [10] under the Carnot-
Carathéodory (CC) metric. While the lift of a bounded variation path to any
Gi(R™) is independent of the choice of (homogeneous) metric [4], this property
breaks on G' and it was shown in [7], that under the CC-metric the signature
can be written as a projective limit in the category of pointed metric groups with
point-preserving submetries MetGrpg pmet ., Where the limiting topology on G' is
that of an R-tree, which fails to make G* give rise to a topological group. In [8] the
question is raised if one can save this construction and find a desireable smooth
structure making G' into a Lie group. Another question is the generalisation of
the result shown in [7] to the p-variation case for p > 1 building a bridge to the
results in [5]. As a first step towards the answers, we show that the connection
between [3] and [7] is captured by the following diagram

(WGQy/ ~r,6,,0) —= (Z,d,, 0)

S,~

~ evy,~

(G2, dy oo, 1) —25 (G, D, 1)

in the p = 1 case and choosing the CC-metric, which is part of the categories
groupoid. This gives a straight-up generalisation of the results of [7] for p > 1
measuring p-variation via the metric

h) = k/p)! i-(g”th)|)P/*
prlg, h) = max ((k/p)!l|proj; (g~ h)l)
leading not only to corresponding metrics on the space of tree reduced paths, but
— to the best of the authors knowledge — to an open classification problem of the
metrics as well as the question if all levelwise metric constructions will ultimately
end up in an R-tree topology, fully characterised in [1].

REFERENCES

[1] J. C. Mayer & L. G. Oversteegen, A Topological Characterization of R-Trees, Transactions
of the American Mathematical Society 320 (1990), no. 1, pp. 395-415

[2] T. J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoam. 14 (1998),
no. 2, pp. 215-310

[3] B. Hambly & T. Lyons, Uniqueness for the signature of a path of bounded variation and
the reduced path group, Annals of Mathematics 171 (2010), pp. 109-167



Mini-Workshop: Renormalisation and Randomness 2387

[4] Friz PK, Victoir NB. Free nilpotent groups. In: Multidimensional Stochastic Processes as
Rough Paths: Theory and Applications. Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press (2010), pp. 125-164 & 182-211.

[5] H. Boedihardjo, X. Geng, T. Lyons & D. Yang, The signature of a rough path: Uniqueness,
Advances in Mathematics 293, (2016), pp. 720-737
[6] Thomas CASS. Bruce K. DRIVER. Nengli LIM. Christian LITTERER. ”On the integration

of weakly geometric rough paths.” J. Math. Soc. Japan 68 (4) 1505 - 1524, October, 2016.
https://doi.org/10.2969/jmsj/ 06841505
[7] E. Le Donne & R. Ziist, Space of signatures as inverse limits of Carnot groups, ESAIM:
COCV 27 (2021) 37, 10.1051/cocv /2021040
Schmeding A., The Geometry of Rough Paths. In: An Introduction to Infinite- Dimensional
Differential Geometry, Cambridge Studies in Advanced Mathematics, Cambridge University
Press (2022), pp. 157-185.
[9] T. Cass & W. F. Turner, Topologies on unparameterised rough path space, (2024) https://
arxiv.org/abs/2407.17828
[10] Le Donne, E. (2025). CARNOT GROUPS. IN: METRIC LIE GROUPS. GRADUATE
TEXTS IN MATHEMATICS, vol 306. Springer, Cham. https://doi.org/10.1007/978-3-031-
98832-5_11

8

Relativistic Luttinger Fermions as models for rigorous QFT in
four dimensions

HANNES KEPPLER
(joint work with Razvan Gurau, Louis Jussios, Manfred Salmhofer)

One way to construct well-defined interacting Euclidean quantum field theories
(QFT) goes through the Wilson—Polchinski renormalization group. Within this
framework, a crucial step is the removal of the ultraviolet (UV) cutoff. This re-
quires a theory to be well-defined up to arbitrary high energy scales/small length
scales. This can be achieved if the theory becomes effectively non-interacting at
high energy scales. This is called asymptotic freedom in the UV. A prime example
for this behavior is Yang—Mills theory or quantum chromodynamics, which never-
theless has not yet been rigorously constructed in four dimensions. In contrast, in
simple ¢ scalar field theory the coupling grows towards higher energies and the UV
cutoff can not be removed without rendering the theory trivial (non-interacting).

It is therefore of great interest to find other examples of four-dimensional asymp-
totically free QFTs. In this talk, I presented such an example: theories of rel-
ativistic Luttinger Fermions; and advertised them as a playground for other ap-
proaches to rigorous QFT. These Fermions were first introduced by J. M. Luttinger
[7] as non-relativistic effective degrees of freedom in solid-state physics. Very re-
cently, the authors of [4] introduced Luttinger Fermions into high-energy physics
by constructing a four dimensional relativistic action and demonstrating asymp-
totic freedom by calculating the 8 functions up to second order. In a mean field
approximation, [5] showed that these systems can have a symmetry-broken phase
at low energies and non-perturbatively generate a mass—this makes these theo-
ries remarkably similar to the two-dimensional Gross—Neveu model that has been
rigorously studied in, e.g., [3, 2, 6]. Our work aims to rigorously establish renor-
malizability and asymptotic freedom in these models using an integrated version
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of Polchinski’s flow equation, as presented in the talk by M. Salmhofer. Being a
Fermionic field theory, perturbation theory converges if UV and infrared cutoffs
are in place [8].

Fields and action. Let v (z), ¥(z) be anticommuting Grassmann fields and
x € R% Each ¢(z) is a vector (spinor) with 32 components in d = 4 space-
time dimensions. Let p, v € {0,1,2,3}, the kinetic part of the action of relativistic
Luttinger Fermions reads

S@) = — / B(0) G000 () dz

where an implicit sum over pu,v is always understood, and, Vpu,v, the G, are
hermitian 32 x 32 matrices, called Luttinger matrices. Crucially, the kinetic term
is of second order in derivatives of the fields. Therefore, the canonical scaling
dimension of 1 is one and agrees with that of a four dimensional scalar field. This
means that a quartic interaction term, such as

/ A () (@) de |

is marginal and the theory would be just-renormalizable (critical in the stochastic
quantization language).

Luttinger matrices. The G, matrices are hermitian, traceless, with
3
G,u,u = Guu ; Z G}L}L =0 ;
pn=0

and they fulfill the Abrikosov algebra [1]:

{GW, Gpa} = _%dwém + d%.ll(éupéw + 5/t05up) :

Due to this anti-commutation relation, the second order differential operator
(GW(‘?M&,)2 = A? squares to the square of the Laplace operator. The G, can
be built from linear combinations of nine gamma matrices 71, ...,g, taken from
a ten-dimensional Clifford algebra {v, | a,b = 1,...,10, {Va,7} = dap}. The
remaining matrices Y10, Y11 := @1 - - - Y10, and y := iy197y11 anticommute or com-
mute with all G, and can be used to construct various symmetry transformations
and different quadratic (mass) terms in the action, such as

/im2 (d_ryi/))(x) dz .
Using this mass term, the propagator of the model reads in Fourier space

é( ) _ G/Ll/pupl/ - V}/mQ
p)= L+ ma

)

or for m = 0 in position space
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Renormalization and asymptotic freedom. We introduce a sequence of scales
Ay <Ay <---<Ap <Ay, and for j € {1,2,...,J} the regularized propagator

_p%4m? _p4m?
A A2 2

Cilp)=C) [e Y —e M=

The effective interactions Wj(lﬁ,w) are computed by iterated Gaussian convolu-
tion:

e‘W7+1(¢7¢):/duc,.(<T>,<I>) Wit (G+B0+®)

where dpuc; denotes the normalized Gaussian measure with covariance Cj. The
renormalization procedure amounts to adjusting Wy (v, 1), such that the UV limit
Ag, J — o0 exists.

To study the flow of the four-point vertex, we set

Wi6,0) = [ [os (519" @) + s (5G) (@) d'a + By (6,95, 90)

with two scale dependent coupling constants g ; and ) ;, and a rest term R;,
that vanishes at the initial conditions j = 0. Controlling the rest term, one can
then show that the resulting discrete dynamical system has non-trivial solutions
with |Xo,0l, |[At,0] = 0, as Ag, J — co. This means that the system is indeed asymp-
totically free in the UV and the theory is a natural candidate for an interacting
four-dimensional QFT.
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Renormalisation group flow approach to singular stochastic PDEs
LEONARD FERDINAND
(joint work with Ajay Chandra)

The flow approach to singular parabolic stochastic PDEs is a strategy to develop a
solution theory for a certain class of equations that are classically ill-posed due to
the roughness of their driving term. It was first introduced by Kupiainen [7], in the
same years in which regularity structures [6] and paracontrolled calculus [5] were
developed. Common to these three approaches is the idea that the rough driver
alone is not sufficient to describe the solution and that, in order to construct the
solution, it is necessary to enrich the driver by a finite collection of its polynomials.
In the flow approach, these polynomials are built up using some ideas coming from
the renormalisation group.

Singular parabolic equations regularised at a scale € can be recast in mild for-
mulation under the form

(1) ue = GF:[uc],

where G is the solution operator to the linear term, a parabolic operator, and F'
denotes the non-linearity, including the regularised rough driver, alongside all the
terms coming from boundary conditions.

The aim of the flow approach is to show that while the RHS of (1) diverges
as € | 0, the RHS F. , of the equation solved by the regularised version of the
approximate solution . , := p,u. (here p, is a smooth approximation of a Dirac
distribution at scale p > ¢) should converge as € | 0 for any u > 0.

In [3, 4], Duch constructed F; , inductively, using a hierarchy of differential
equations in which the flow parameter p is seen as a continuous parameter. In
these works, he deals with equations with polynomial nonlinearities. With Ajay
Chandra [1, 2], we generalised this approach to equations with non-polynomial
non-linearities, such as the generalised KPZ equation.
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Renormalising Feynman diagrams with multi-indices
Y VAIN BRUNED
(joint work with Yingtong Hou)

We start by considering the scalar-valued ordinary differential equation

y'(t)=f(y), y(0)=yo€R.
One way to describe numerical schemes for this equation is to use B-series coming
from [10]

Ila(r
Blash ) =a@n + 3 A ylelo)
T€T

where T are rooted trees, () is the empty tree, S(-) is the symmetry factor, |7| is
the number of nodes in 7, h is the step-size of the numerical method, a(-) are its
coefficients and Fy[-] are the so-called elementary differentials. One observes that
certain trees have the same elementary differentials. As an example, one has

Frin 1= BY 1= 21010, aq B ==Y = ez

Each node corresponds to a f and the number of derivatives is the number of
entering edges on that node in the rooted tree. One needs only to have the arity
of each node for computing the elementary differentials. One can define another
combinatorial set called multi-indices which are monomials of the form [, o\ z,f (%)
such that zj is a node of arity k. One has a surjection 7 from the trees to a certain
class of multi-indices. Multi-indices first appeared for quasi-linear equations in
singular SPDEs [17] with the idea of giving a more appropriate combinatorial
description of the local expansion of the solution, replacing decorated trees [12, 6, 2]
arising from Regularity Structures. Multi-indices are also very natural in numerical
analysis [16, 3]. Recently, it has been shown in [8] that one cannot expect via a
naive approach to get an intermediate combinatorial set between rooted trees and
multi-indices. We want to see the equivalent of multi-indices in the context of
renormalisation for Quantum Field Theory. Let A be the d-dimensional torus, we
consider
1

Mo = Z(0)
where : ¢(z)* : is the Wick product, Z(«) is the partition function and the expec-

tation E is taken with respect to the measure pg. One seeks values of v such that
the following diagram commutes

e~ Ja %|\V¢(m)||2+%:¢(m)2:dmd¢, Z(a) _ Z(O)E |:e— Ly e ord(@)*:dz

_ . k. T (B Yo (B ~
E e a Brevowo@ids] 57 s PRI I(=P) — Tosenm oo (M)

E |:67 I ZkEN(ak+7k)i¢(x)kfdx:|
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Here, this diagram is written with multi-indices M that we will introduce later.
When one moves from the expectation to a series on multi-indices M, one performs
a cumulant expansion. The map M, implements the BPHZ renormalisation [9,
14, 19] on the multi-indices. We suppose given some abstract variables (zx)ken,
one sets

o) = [ 2w

veV(T)

where k(v) is the number of edges attached to the vertex v and V(I') is the vertex
set of the Feynman diagram I'. One has

@(@) = 2923,

We define a multi-indice 2” € M with z? € Im(®) and its symmetry factor as

Z= T, su@?) =[] Be)e) ™.

keN keN

These multi-indices appear in the literature under the name of pre-Feynman di-
agrams [1] and it is a generalisation of the Hopf algebraic approach coming from
[7]. We denote by F the set of Feynman diagrams.

Proposition 1 ([5]). For a Feynman diagram T' € F, one has
Su(®(I) = N(I)S(T),

where N(T') is the number of distinct pairings of half-edges in ®(T) that can form
Feynman diagrams isomorphic to T' and S.(T") is the symmetry factor of T'.

Then, one defines the injective map P : M — (F)

I:®(0)=28

In the next theorem, one connects the reduced extraction-contraction coproduct A,
on Feynman diagrams introduced in [11] with the reduced extraction-contraction
coproduct A, on multi-indices.

Theorem 1 ([5]). For any multi-indice 2° € M
(P@P)oA(z%) = A, o P(2P).

The valuation of a Feynman diagram is given as

HF(@) = K(zy — 22)K (zo — 23)° K (23 — x1)dx drods
A3
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where K (x — y) = E(®(z)®(y)). For multi-indices, one does not have an explicit
formula but has to proceed recursively

(][] ™) =k ] </A:<I>(a:)k:dx)ﬂ(k)]

keN keN

DI | (P )Hm "),

n>237 ) B;=B kEN

With the previous definitions, one can define the BPHZ renormalisation map on
both combinatorial sets:

M, = (Il (A () @id) A7, M, := (IL, (Au(") ®@id) A},

where the A7, A7, are the extraction-contraction coproducts and A, A, are twisted
antipodes. This Hopf algebraic approach with a twisted antipode is inspired from
[11, 13]. The two renormalisations are connected in the next theorem

Theorem 2 ([5]). The two renormalisations agree
H]\IOMM :HFOMFOP'

The cumulant expansion of Z(«)/Z(0) admits the following Feynman diagram
representation

logE |:e_fA 2ken ak@(T)de:| _ Z TF(F)N(P) HF(P)
reF 5¢(T)

where one has explicit expressions for the coefficients Y(I') and S, (I"). Then, one
can rewrite this series using multi-indices and gets

Theorem 3 ([5]). The diagram described above commutes and one has explicit
formulae for the .

We finish with some perspectives:

e One can define a general extraction-contraction coproduct on multi-indices
suitable for encoding higher order renormalisations. It has been performed
for SPDEs in [4].

e One may want to understand symmetries with this formalism like Ward
identities in [18].

e One can hope to get new ideas for the convergence of the renormalisation
like what happened in [15] for singular SPDEs.
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Random Renormalisation of Singular SPDEs with
Correlated Coefficients

HARPRIT SINGH
(joint work with L. Broux, N. Clozeau, R. Steele)

The area of stochastic partial differential equations has seen rapid progress over
the past decade, spurred by the introduction of the theory of regularity struc-
tures [Hail4] and of para-controlled calculus [GIP15]. Despite the close connec-
tions of singular SPDEs to physical phenomena, the theory of singular SPDEs has
to date been developed primarily in homogeneous settings, involving constant-
coefficient operators.

First I shall motivate the study of SPDEs in heterogeneous environments using
the examples of ®* as a model of ferromagnetism and the parabolic Anderson
model as it relates to branching processes. Then I shall discuss the renormalisation
of the g-PAM equation on T? x R, formally given by

2
(1) Ou—V-aVu= Y fi;(u)oudu+ou)

4,j=1

where ¢ is a spatial white noise as well as the ®4 equation on T? x R for d = 2,3
formally given by

(2) ou —V -aVu = —ud + €,

where £ is a space-time white noise. The remainder of the talk will be divided into
the following parts.

(1) I shall recall the renormalisation of these equations in the by now classical
setting of [Hail4] where the matrix a is constant and positive definite.

(2) I shall explain the necessary changes needed to go to sufficiently regular,
positive definite coefficient fields a = A(z,t) in (1)&(2) following [Sin25].
Here I shall explain a particularly natural choice of renormalisation func-
tions, which is local and, for sufficiently covariant regularisations of the
noise, very explicit. I shall also mention the more recently established gen-
eral convergence results of [BSS25] which are applicable to a very general
class of subcritical variable coefficient singular SPDEs.

(3) Finally, I shall discuss results of [CS25] which apply to the case when
the coefficient field is itself random and correlated to the driving noise,
ie. a(z,t) = A(g(z,t)) for g = o x & + p for o, € C?(T? x R) and
A : R — R4 hounded, positive definite and smooth.

In the third setting the renormalisation counterterms have themselves to be chosen
random — hence the title of the talk.
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‘What Fractional Brownian Motion Can Teach Us About
Renormalization

PETER K. FRrIZ

Fractional Brownian motion (fBm) with Hurst parameter H € (0,1) is a centered
Gaussian process with stationary increments and covariance

E[B:Bi] = ([t + [s]* — |t — s[*").

It is almost surely a—Holder continuous for all @ < H and can be realized as K *¢&,
Volterra integral against Gaussian white noise £. One can give (It6 integral) mean-
ing to f(B)¢, while Wong-Zakai type approximations f(B¢)&° in general requires
Wick-type renormalization, effectively treated in (and a model case example for)
Hairer’s regularity structures, discussed in detailed in [8]. Ramifications of this
example are connected to a major development in quantitative finance, dubbed
rough volatility, e.g. [3, 2, 1] and references therein.

In a classical multivariate setting,with IID fBm components, for H > i, results
of Coutin—Qian [6] and subsequent refinements show that smooth mollifications
B¢ admit a canonical rough path lift which converges, yielding a fractional Brow-
nian rough path. This allows one to define stochastic integration and differential
equations driven by fBm pathwise, via the rough paths framework.

For H > %, level-2 rough paths suffice and one obtains well-posed rough dif-

ferential equations
d

dry = Z Vi(xy) o dBf;,
i=1
together with a rich stochastic analysis, including Hormander—type density results,
support theorems, and large deviation and Laplace principles, much of which can
be found in [7].

The rough path situation changes drastically as H | i. While level-1 objects
remain well defined, higher iterated integrals develop diverging variances. After
earlier works, including Nualart-Tindel [10], and in particular a series of papers
by Unterberger (see [11] and references therein), Hairer [9] shows that after in-
troducing suitable e-dependent rescalings of the driving signal, solutions of ODEs
driven by mollified fBm converge in law to a genuinely new limiting object. In the



Mini-Workshop: Renormalisation and Randomness 2397

critical and subcritical regimes H < i, the limit is no longer driven by fBm itself
but by a diffusion generated by Lie brackets of the vector fields.

The proof strategy relies on the weak convergence of high—order (up to level-
4) rough path lifts and delicate moment estimates for iterated integrals of fBm.
An intriguing open perspective is to reinterpret these results in terms of expected
signatures, which by [5] characterize laws of rough paths.

(1]
2]
[3]
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