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Introduction by the Organizers

The workshop “Differentialgeometrie im Groflen” brought together a broad group
of mathematicians working in various areas of differential geometry. The focus
was on geometric questions that link local and global behavior, with topics ranging
from geometric flows and scalar curvature to variational problems, singular spaces,
and large-scale geometry.

A significant number of talks were devoted to geometric flows, particularly mean
curvature flow and related evolution equations. Several presentations addressed
ancient solutions and classification of singularities, including work on flows in di-
mension four and connections. The resolution of the Multiplicity One Conjecture
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and its consequences for understanding the structure of singularities in mean cur-
vature flow also featured in one of the talks.

Scalar curvature appeared in many forms throughout the week. Talks addressed
the existence and structure of 3- and 4-manifolds with positive scalar curvature,
rigidity phenomena, and smoothing of singular metrics. Inverse mean curvature
flow was used in one talk as a tool to study scalar curvature and geometric in-
equalities on 3-manifolds.

Minimal surfaces and variational methods formed another core area of the work-
shop. Topics included the construction of minimal surfaces of prescribed genus in
3-manifolds with positive Ricci curvature, regularity of capillary hypersurfaces,
and generic regularity results for minimizing hypersurfaces in dimension 11. An-
other talk discussed the fine structure of two-dimensional area-minimizing currents
near branch points. Related work explored energy-minimizing harmonic spheres
in singular metric spaces.

One talk focused on the large-scale geometry of complete manifolds with non-
negative Ricci curvature and Euclidean volume growth, combining tools from anal-
ysis and metric geometry. Other contributions dealt with width-type invariants
and p-sweepouts in the sense of Gromov, Einstein manifolds, isoperimetric gaps
in nonpositive curvature, and aspects of special holonomy, including constructions
of G2 and Calabi—Yau monopoles and the use of geometric flows in Ga-geometry.

The program included 21 talks in total. Most were standard research talks of
around 50 minutes, and three shorter talks of about 30 minutes were given by junior
participants. The schedule left room for informal discussions and collaboration
throughout the week. As usual, the Wednesday afternoon hike was planned, but
due to an ongoing heat wave, only a small and hardy group of participants took
part.

In summary, the workshop covered a broad and lively range of topics. While
the techniques and settings varied widely, many talks reflected a shared interest in
how analytic and geometric tools can be used to study spaces with rich structure,
especially in connection with singularities, curvature, and topology. We hope the
discussions and connections from this week will continue to develop into future
work.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Smoothing L Riemannian metrics with nonnegative scalar curvature
outside of a singular set

PauLA BURKHARDT-GUIM

We show that any L>° Riemannian metric g on R™ that is smooth with nonnegative
scalar curvature away from a singular set of finite (n — a)-dimensional Minkowski
content, for some o > 2, admits an approximation by smooth Riemannian metrics
with nonnegative scalar curvature, provided that g is sufficiently close in L> to the
Fuclidean metric. The approximation is given by time slices of the Ricci-DeTurck
flow, which converge locally in C'*° to g away from the singular set. We also identify
conditions under which a smooth Ricci-DeTurck flow starting from a L metric
that is uniformly bilipschitz to Euclidean space and smooth with nonnegative
scalar curvature away from a finite set of points must have nonnegative scalar
curvature for positive times. The work described here is carried out in [2].

For a Riemannian metric g, let R(g) denote the scalar curvature of g. Let ¢
denote the Euclidean metric on R™. We show the following:

Theorem 1. For all o > 2 and n > 3 there exists £(a,n) such that the following
18 true:

Suppose that g is a measurable metric on R"™ such that ||g— || ®n) < &, where
|| - [|[Loo(rn) is measured with respect to 6. Suppose that g is smooth on R™ \' S,
where S C R™ is a set of finite (n — «)-dimensional Minkowski content, and that
R(g) > 0 on R"\'S. Then there exists a smooth Ricci-DeTurck flow (g¢)te(0,00)
with respect to the background metric § such that

R(g¢) >0 for allt >0

and
Chre(R™\S)
gt 0 » g
In particular, g admits an approzimation in C7.(R™\ S) by smooth metrics with

nonnegative scalar curvature.

Note that in Theorem 1, g need not be continuous, and that, aside from the
Minkowski content requirement, we do not impose geometric conditions on S.

Question 1. For n > 3, does there exist a L> metric on R™ that is uniformly
bilipschitz to the Euclidean metric smooth outside of a singular set of finite (n—2)-
dimensional Minkowski content, for which the conclusion of Theorem 1 fails? Does
there exist such a metric for which the (n — 2)-dimensional Minkowski content of
the singular set is 0%

Question 2. Suppose that in the setting of Theorem 1, S has Hausdorff dimension
equal to n — a for some « > 2, rather than finite (n — «)-dimensional Minkowski
content. Does the conclusion of Theorem 1 still hold?
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Given that the scalar curvature under Ricci flow is a supersolution to the heat
equation, Theorem 1 may seem surprising by analogy: consider a negative Gauss-
ian evolving by the heat equation on R™ x (0,00), which tends to 0 everywhere
except at the origin as ¢ N\, 0. This example demonstrates that the conclusion of
Theorem 1 is false when R(g;) is replaced with a solution to the heat equation
with respect to . The key differences between this example and the statement
of Theorem 1 are that the evolution of the volume form under Ricci flow is also
influenced by the scalar curvature and also that there is a positive source term in
the evolution equation for the scalar curvature under Ricci flow.

We expect results analogous to Theorem 1 to hold on manifolds for € perturba-
tions of complete smooth metrics with bounded curvature, in view of [6] and [3].
The condition that the metric g be (1 4 €)-bilipschitz to a fixed complete smooth
background metric of bounded curvature is used in two ways:

(1) To guarantee the existence of a Ricci-DeTurck flow starting from g, as in
the work of [5] or [6], and

(2) To ensure an a priori bound of the form R(g;) > —ce/t for some ¢ > 0, for
all t > 0, which in turn is used to derive an upper bound for a backwards
heat kernel, as in [1, Theorem 2.3].

Interestingly, the second use seems to be somewhat inessential in the case that
the singular set consists of finitely many points:

Theorem 2. Suppose that S C R™ has finite 0-dimensional Minkowski content.
Suppose that g is a measurable Riemannian metric on R™ that is smooth on R™\ S
and satisfies R(g) > 0 on this region. Suppose that there exists a smooth Ricci-
DeTurck flow (g¢)teo,1), defined for some T > 0, on R™ with respect to the back-
ground metric 0, satisfying:x
Cloc(R™\S)
(1) gt t\—0> 9,
(2) there exists some ¢ > 0 such that for k = 1,2, |V*(g¢)|s < ¢/t*/2, where
V is taken with respect to d,
(3) there exists some b > 0 such that g is (1 + b)-bilipschitz to 0 for all
t€(0,7), and
(4) there exists some 0 < co < n/2 such that for allt € (0,T), R(g:) > —co/t.
Then R(g:) > 0 for allt € (0,T).

We note that any Ricci-DeTurck flow (g¢):e(o,7) satisfies a universal lower scalar
curvature bound of the form given by item (4) with ¢g = n/2. Theorem 2 does
not address the edge case ¢co = n/2.

In a previous draft of this paper that was posted on the arXiv, we posed the
following question concerning the sharpness of the (1 + ¢)-bilipschitz condition:

Question 3. Is the (1+¢)-bilipschitz condition necessary? That is, are is Theorem
1 also true for metrics that are merely uniformly bilipschitz to some fized complete
smooth background metric of bounded curvature?

Question 3 has since been answered by Cecchini — Frenck — Zeidler [4, Theorem
BJ. They show that the (1+¢)-bilipschitz condition is indeed necessary: for certain
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n > 8 there exists a metric g on R” that is uniformly bilipschitz to the Euclidean
metric and smooth with positive scalar curvature on R™ \ {0}, but for which there
exists no smooth family of Riemannian metrics (g¢):c (0,7 satisfying both

R(g:) > 0 forallt € (0,7T)

and
CPLc(R"\{0})
i N0 g
In particular, Theorem 2 places restrictions on possible Ricci-DeTurck flows, with
the background metric §, starting from these metrics. We note that the optimal
constant € needed in Theorem 1 is not known.
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Thom’s gradient conjecture for geometric evolution equations
BeEomiun CHor
(joint work with Pei-Ken Hung)

This work is motivated by a conjecture of R. Thom [7], proved affirmatively by
Kurdyka—Mostowski—Parusinski [4]:

Theorem 1 (Thom’s gradient conjecture). Let x(t) be a convergent gradient flow
of an analytic potential f : R™ — R, d.e. & = —V f(x) with im0 2(t) = Too-
Then the secant direction
o(t) = z(t) — Too
|2(t) — 7o
converges to a limit 0o, € S" 1 as t — oo.

Prior to this, Lojasiewicz [5] had addressed convergence of gradient flows for
analytic potentials. Thom’s conjecture concerns the finer asymptotics of the di-
rection of convergence.

Many geometric evolution equations, for example the mean curvature flow,
Yamabe flow, and Yang-Mills flow, can be viewed (at least formally) as gradi-
ent flows on infinite-dimensional spaces of surfaces, metrics, or connections. Si-
mon’s pioneering work [6] adopted the Lojasiewicz inequality into this setting and



1598 Oberwolfach Report 30/2025

triggered a long line of research on the convergence of solution. Recent progress
in geometric flows, including the classification of ancient solutions, the theory of
generic perturbations, and flows through singularities, hinges crucially on under-
standing finer asymptotics of solutions, going beyond mere convergence results.

Our goal is to characterize the possible rates and directions of convergence for
a class of geometric evolution equations by exploiting their analytic gradient flow
structure. Working on a closed manifold ¥ as in Simon’s framework, let a solution
u(t, ) satisfies either

(1) i+ V(1) = N(u),
2) i+ 0+ VF(u) = N(u).

Here F is an analytic functional on sections of a vector bundle over 3 such that
VF(u) is the Euler-Lagrange operator whose minus is an elliptic operator, and
N (u) collects lower order nonlinear terms (could be thought as zero for a sake of
simplicity). For the precise assumptions, we refer the reader to our preprint [3].
For convergent solution, after recentering, we may assume that u(t) — 0 and 0 is
a stationary solution to the equation. We state the main theorem by dividing it
into two cases.

Theorem 2 (fast convergence, C.-Hung [3]). If a solution to (1) satisfies |u(t)|| =
O(e™%) for some & > 0, then either u = 0 or there exist X > 0, C # 0, and a
smooth eigensection ¢ with V2F(0)¢ = \p such that

u(t) = Ce Mp+ o(e”‘t).

Thus exponential decay occurs only along a stable eigendirection of V2F(0),
with rate determined by its eigenvalue. Note there holds a corresponding theorem
for solutions to (2).

Next, when exponential decay fails, dynamics in the kernel of V2F(0) and
analyticity of F become decisive.

Theorem 3 (slow convergence, C.-Hung [3]). There exists a finite set Z(F) C
Q>3 x (0,00) such that if |u(t)||e®t — oo for every § > 0, then for some ({,a) € Z
and ¢ € ker V2F(0) the solution u(t) satisfies

u(t) = [ab(C — 2] TF g+ o(t"72).

A guiding example for above slow convergence is the 1-D flow & = —(ax?)’,
whose solutions obey z(t) ~ sign(a)[al(f — 2)t]~"/¢=2). Via subtle reduction
method and a refinement of [4], we show any solution eventually falls into finitely
many such model cases.

Combining two theorems, we settle Thom’s gradient conjecture

Corollary 1. For Simon’s class of equations [6], Thom’s gradient conjecture holds:
u(t)/||u(t)|| — @ smoothly for some .
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Remarks. (i) Our convergence rate classification is new even for finite dimensional
gradient flows. (ii) Previous constructions of slowly converging solutions in [1][2]
show the existence of solutions which decay at rate t~7 for some integer p > 3.
In terms of our result, this p indeed corresponds to the smallest possible /.

Our results naturally suggest extensions to more general settings, such as non-
compact manifolds or singular spaces. Intriguing future directions include classify-
ing ancient solutions when the kernel of second variation operator is non-integrable,
and exploring V. Arnold’s conjecture concerning convergence of the tangent direc-
tion /4|, which is stronger than Thom’s conjecture and, in the case of mean
curvature flow, implies convergence results for the mean curvature vector profile.
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Improved regularity of capillary minimizing hypersurfaces
Nick EDELEN
(joint work with Otis Chodosh, Chao Li)

If you observe liquid in a container you'll notice the surface will meet the container
at a particular angle. This is called a capillary angle condition, and is determined
by the cohesive/adhesive forces in/between the liquid and container. The total
energy of the liquid is captured by the Gauss free energy: if Q! is a smooth
(n + 1)-manifold representing the container, and E C ) a subset representing the
liquid, then the Gauss free energy of E is

G(FE) = H"(OE NintQ) + / odH" + / gdH" .
OENON E

Here the first term is the surface tension (with H* being the k-dimensional Haus-
dorff measure), the second term is the wetting energy (with energy density o :
09 — (—1,1)), and the third term is the gravitational energy.

The liquid configuration F will be a minimizer or critical point for G subject
to a volume constraint. Geometrically, being critical for G is equivalent to OF
having mean curvature g+ (const) inside 2, and meeting 9 with angle arccos(o),
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both understood in a distributional sense. One can think of the interface where E
meets JS) as a kind of non-linear free-boundary problem.

Strictly inside the container, minimizers E of G behave like perimeter-mini-
mizers, so by well-known theory 0F N int{) is smooth away from a singular set of
dimension < n — 7, where we recall n is the surface dimension of OF. Regularity
at the boundary is less well understood. Works of [1], [3] have shown the singular
set of the boundary interface 9E N O is at most (n — 3)-dimensional. In our paper
[2] we improve on this estimate, and for certain ranges of angles (near 0°, 90°,
180°) we get even better bounds.

Theorem 1. There is an €(n) so that the following holds. Let E C Q"' minimize
G, subject to a possible volume constraint. Then M := OF N intQ) is a smooth
hypsurface away from a singular set sing M satisfying dim(sing M NintQ)) <n—7
and:

e dim(sing M NON) <n —4;

e dim(sing M NON) < n — 7 where |o| < ¢€;

e dim(sing M NON) <n—5 where o — 1| <€ or o+ 1| <e.

Like in the interior setting, there are good compactness, monotonicity, and e-
regularity theorems, which allow you to take tangent cones at the capillary bound-
ary, and to apply the principle of dimension reduction. Therefore proving Theorem
1 boils down to classifying low-dimensional capillary minimizing cones (under pos-
sible angle restrictions) in a half-space as planar. The improved estimate n — 4
comes from adapting an argument of Almgren to show that stable 3-dimensional
capillary cones are planar. The improved estimate n — 7 comes from pertubing
the argument of Simons classifying stable 6-dimensional stable cones as planar.

Arguably the most interesting case of Theorem 1 is when the angle is close to
0° or 180°. We show that capillary minimizing surfaces in a half-space with very
small angle can be rigorously approximated by minimizers u : R® — R of the

Alt-Caffarelli functional
J(u) :/ |Dul? + 1.
{u>0}

(Such u are often referred to as solutions of the one-phase Bernoulli problem.) The
idea of J being the linearization of capillary has been well-known to experts, but we
make this approximation precise, and moreover we prove a regularity theorem that
says whenever the corresponding v is smooth, then the original capillary surface
is smooth also. So regularity of the small-angle capillary problem is dictated by
the regularity of the one-phase Bernoulli problem. The sharp regularity bound for
one-phase Bernoulli is a hard open question, but is know to be € {n—5,n—6,n—7}.

Almost certainly our bounds are not sharp, which leads to the obvious question:
what is the optimal dimension bound for the singular set of capillary minimizers?
Could this optimal dimension change with the angle? The hopeful guess is that the
best dimension bound is n—7 for all angles, but unfortunately we would expect this
problem to be at least as hard as the corresponding one-phase Bernoulli problem.
We also remark also that while [3], [2] give various upper bounds on the singular
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dimension, currently there are no known lower bound for general angles, as we do
not yet have any rigorous examples of singular minimizing capillary cones with
contact angle # 90°.
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Contractibility of spaces of positive scalar curvature metrics
with symmetry

BERNHARD HANKE
(joint work with Christian Bér)

Studying spaces of Riemannian metrics of positive scalar curvature on compact
smooth manifolds has been a major research topic during the past decades. More
specifically, one asks: When are these spaces nonempty? If so, what are their
topological types? Both questions are interesting and nontrivial. We will focus on
the second one here.

Suppose that M is an orientable compact connected smooth manifold without
boundary. If dim M = 2, then, by the uniformization theorem, the space of positive
scalar curvature metrics on M is either empty or contractible. The same is true if
dim M = 3, as shown by Bamler and Kleiner [1], using the Ricci flow in families.
If dim M = 4, Ruberman [14] showed that this space can be disconnected, using
a l-parameter version of Seiberg-Witten theory.

Suppose that M is a compact smooth manifold of dimension at least 5, possibly
with boundary. The space of Riemannian metrics with positive scalar curvature on
M - with suitable boundary conditions if applicable - can have a very rich topology.
This has been demonstrated by the work of Hitchin [11]; Gromov and Lawson [9];
Hanke, Schick, and Steimle [10]; Botvinnik, Ebert, and Randal-Williams [5]; Ebert
and Randal-Williams [7]; and Bar and Hanke [3], using methods from differential
and geometric topology. In fact, on a fixed manifold, this space may have nonzero
homotopy groups in infinitely many degrees. Furthermore, these homotopy groups
may not be finitely generated.

The picture changes significantly under symmetry assumptions. If I is a com-
pact, possibly nonconnected, Lie group that acts smoothly and effectively on a
compact connected smooth manifold M, then we denote by %L (M) the space of
T-invariant Riemannian metrics of positive scalar curvature on M. This space is
equipped with the C°°-topology.

The following Theorems, 1 and 2, appear in our recent preprint [4].
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Theorem 1. Let I' be a compact Lie group and M be a compact connected smooth
C-manifold of dimension at least 2 with nonempty (not necessarily connected)
boundary. Then %L (M) is contractible.

For T" = {1}, this follows from Gromov’s h-principle [8]. An equivariant version
of Gromov’s h-principle by Bierstone [6] applies, if for every closed subgroup H <
I', each connected component of the union of all T-orbits with isotropy group
conjugate to H has a nonempty intersection with the boundary of M.

Our proof of Theorem 1, which is independent of h-principle techniques, is
based on equivariant Morse theory and conformal deformations around unstable
manifolds. In particular, it makes the construction of the relevant contracting
homotopies quite explicit.

Now assume that M is a compact connected smooth I'-manifold without bound-
ary. Lawson and Yau [12] showed that if T is a compact connected non-abelian
Lie group, then %L (M) # (). Wiemeler [15] showed that if ' is a compact Lie
group containing a normal S'-subgroup with fixed-point components of codimen-
sion 2 in M (and possibly fixed-point components of higher codimension), then
HLo(M) # 0. This is not true without the codimension-2 assumption. These
results differ from existence results for positive scalar curvature metrics based on
bordism-theoretic methods in that they are independent of spin and fundamental
group assumptions.

Theorem 2. Let I' be a compact Lie group and let M be a compact connected
smooth T'-manifold without boundary. Suppose that T' contains a normal S*-
subgroup with fized-point components of codimension 2 in M. Then %L,(M) is
contractible.

This provides the first complete description of homotopy types of spaces of
positive scalar curvature metrics on closed manifolds in dimensions larger than 3.
Note that Theorem 2 strengthens Wiemeler’s existence result.

We give a rough outline of our argument for proving Theorem 2. According to
a classical result by Palais [13], it is sufficient to show that %L (M) is weakly con-
tractible, i.e., it is path-connected and has trivial homotopy groups in all degrees.
Now, let m > 0, let D™ be the closed unit m-ball and let

g: OD™ — ZL (M)
be a continuous map. We have to show that g extends to a continuous map
G: D™ — %go(M)-

(For m = 0, this means that %% ,(M) is nonempty.)

Let S' be a normal subgroup in I' such that M S' contains components of
codimension 2 in M. Let S be the union of these components. This is a I'-
invariant, possibly disconnected submanifold of M.

Pulling back the metrics g(£) along appropriate I'-equivariant diffeomorphisms
of M, one can assume that for sufficiently small p > 0, the closed tubular neighbor-
hood S C B,(S) C M of radius p with respect to g(§) is independent of { € 9D™.
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Let M be the complement of the interior of B,(S) in M. Both B,(S) and M are
compact I'-manifolds with nonempty boundaries and M is connected.

Let g: 0D™ — %EO(M) be induced by g. By Theorem 1, we can extend g
to a continuous map G: D™ — %EO(M ). The challenge is extending the map
9B,(s): OD™ — %go(Bp(S)) induced by g to a continuous map Gp,5): D™ —
L (B,(S)) in such a way that the union of G/(€) and G, (s)(§) defines a smooth
metric on M for all £ € D™.

To achieve this, using an equivariant version of the local flexibility lemma [2],
we can assume that the metrics gp,(s)(§) on B,(S) are Riemannian submersion
metrics projecting onto S. From this, we can construct a continuous extension
Gp,(s): D™ — %#5,(B,(S5)) consisting of Riemannian submersion metrics. We
may need to pass to a smaller p in these steps.

To smoothly glue the metrics G(¢) and Gp,(s)(§) along OM = 9B,(S), we

shrink the S'-orbits near M C M with respect to G(€) and the fibers of the
Riemannian submersion metrics G, (5)(§). This ensures that the sum of the

mean curvatures of M C M and of 0B,(S) C B,(S) with respect to these
metrics, for each £ € D™ is non-negative, while preserving the positivity of the
scalar curvature. By a further deformation, one can ensure that, for each £ € D™,
the metrics G/(€) and G, (s)(§) induce the same metric on OM = 0B,(S). In
this situation, the smoothing of mean-convex singularities [3] can be applied to
produce the required smooth I'-invariant metrics on M. All of these constructions
must be performed with continuous dependence on £ € D™ and without altering
the given metrics g(&) for £ € 9D™.

We conclude with an application of Theorem 2. Let 7™ = (S!)" be the n-torus.
Recall that a torus manifold is a closed connected smooth 2n-dimensional effective
T™-manifold with nonempty fixed-point set. Smooth compact toric varieties are
examples of torus manifolds.

Corollary 1. Let M be a torus manifold of dimension 2n and let H < T™ be a
closed subgroup of dimension at least 1. Then ZH (M) is contractible.
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Classification of ancient noncollapsed flows in R*
ROBERT HASLHOFER
(joint work with Kyeongsu Choi)

In this note, we discuss our recent classification of all noncollapsed singularities
for the mean curvature flow in R*. In stark contrast to R3, a classification in
R* until recently seemed out of reach. Fundamentally, this is because of the
existence of examples with reduced symmetry. More precisely, Hoffman-Ilmanen-
Martin-White constructed a 1-parameter family of 3d-translators that interpolate
between the round 3d-bowl and Rx2d-bowl, and are only Za x Og-symmetric [13].
Similarly, in joint work with Du we constructed a 1-parameter family of 3d-ovals
that interpolate between the Og x Og-symmetric 3d-oval and Rx2d-oval, and are
only Z3 x Oz-symmetric [10]. Recently, in joint work with K. Choi, building also
on our earlier collaborations with B. Choi, Daskalopoulos, Du, Hershkovits, and
Sesum, we obtained a complete classification of all noncollapsed singularities:

Theorem 1 (classification [6, 7, 9, 8, 4, 5]). Any ancient noncollapsed flow in R*
18, up to scaling and rigid motion,
e cither one of the standard shrinkers S, R x S2, R%2 x S! or R3,
e or the 3d-bowl, or Rx2d-bowl, or belongs to the 1-parameter family of
Zs x Og-symmetric translators from [13],
e or the Zs x Ogs-symmetric 3d-oval, or the Oz X Og-symmetric 3d-oval, or
Rx 2d-oval, or belongs to the I1-parameter family of 73 x Og-symmetric
3d-ovals from [10].

In addition to the 1-parameter families of translators and ovals discussed above,
our list of course also contains all classical historical examples, in particular the
two examples of cohomogeneity-one 3d-ovals from [14] and [12], respectively. As
an immediate consequence we obtain a classification of all potential blowup limits
(and thus a canonical neighborhood theorem) for mean-convex flows in R*:

Corollary 1 (canonical neighborhoods). For the mean curvature flow of mean-
convexr hypersurfaces in R* (or in a f-manifold) every blowup limit is given by
one of the solutions from the above list. In particular, for every e > 0 there is an
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H. = H.(My) < oo, such that around any space-time point (p,t) with H(p,t) > H.
the flow is e-close (after rescaling) to one of the solutions from the above list.

More generally, in light of Ilmanen’s multiplicity-one and mean-convex neigh-
borhood conjecture, the conclusion of the corollary is also expected to hold for
blowup limits near any generic singularity.

To outline our approach, let M = {M;} be an ancient noncollapsed mean curvature
flow in R* that is neither a static plane nor a round shrinking sphere. By general
theory the tangent flow at —oo is either a neck or a bubble-sheet. Since the neck-
case has already been dealt with in the fundamental work by Brendle-Choi [2, 3]
and Angenent-Daskalopoulos-Sesum [1], we can from now assume that

(1) lim DAM = {R? x S'(v/2[t]) }i<o -

The analysis of such ancient solutions starts by considering the bubble-sheet
function v = wu(y,d,7), which captures the deviation of the renormalized flow
M, = e™/2M_,» from the round bubble-sheet R? x S'(1/2). The evolution of u
is governed by the Ornstein-Uhlenbeck type operator

(2) L=0; +0,, — %0, — %0, + 305 +1,

which has the unstable eigenfunctions 1, y1, y2, cos ¥, sin?, and the neutral eigen-
functions y? —2, y2—2, y1y2, y1 cos ¥, y1 sin ¥, ya cos ¥, yo sin ). Based on these spec-
tral properties, and taking also into account that the ¥-dependence is tiny thanks
to Zhu’s symmetry improvement result [15], in joint work with Du we proved:

Theorem 2 (normal form [8, 9]). For T — —oo, in suitable coordinates, in Gauss-
ian L2?-norm we have

. dey?—y2 2—y2
(3) u=0("?) or u= \/yglmyQ—!—o(ﬁ) or u:\/glq’fl—i—o(‘?l‘).

Accordingly, the classification problem can be split up into 3 cases, which we
call the case of fast convergence, slow convergence, and mixed convergence, re-
spectively. In the case of fast convergence, which is easiest case, we have:

Theorem 3 (no wings [6]). There are no wing-like ancient noncollapsed flows in
R%. In particular, if the convergence is fast, then M is either a round shrinking
R2 x St or a translating Rx 2d-bowl.

To prove this, we showed that
(4) uX = (a1y1 + azya)e™* + o(e”/?)

for all 7 negative enough depending only on the bubble-sheet scale. Analyzing this
expansion along potential different edges, we concluded that M in fact splits off
a line (hence is not wing-like) and is selfsimilar. The case of slow convergence has
been settled in joint work with B. Choi, Daskalopoulos, Du and Sesum:

Theorem 4 (bubble-sheet ovals [4]). If the convergence is slow, then M is either
the O x Og-symmetric 3d-oval, or belongs to the one-parameter family of 73 x Og-
symmetric 3d-ovals from [10].
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Regarding the proof, let us just mention that (3) in the case of slow convergence
means inwards quadratic bending in all directions, which yields that M; is compact
with axes of length approximately +/2|t|log|t|. Hence, up to technical challenges,
the problem turned out to be amenable to the techniques from [1]. Finally, in joint
work with Choi, we settled the most difficult case of mixed convergence:

Theorem 5 (mixed convergence [5]). If the convergence is mized, then M is either
Rx 2d-oval or is selfsimilarly translating (and hence by [7] is either Rx 2d-bowl, or
belongs to the I-parameter family of Za x Og-symmetric translators from [13]).

Loosely speaking, to capture the (dauntingly small) slope in y;-direction, we
consider the derivative uX = du”X /dy;, which kills the leading order dependence
on Y2, and prove that

(5) uf =ae™? +o(e™/?).

This differential neck theorem, which goes vastly beyond (4), can then be used to
conclude that M is noncompact (hence there are no exotic ovals) and either splits
off a line or is selfsimilarly translating.

Finally, for the related problem for 4d Ricci flow we conjecture:

Conjecture 1 ([11]). Any k-solution in 4d Ricci flow is, up to scaling and finite
quotients, given by one of the following solutions.

o shrinkers: S*, CP?%, 52 x S%2, R x S3 or R? x S52.

o steadies: 4d Bryant soliton, the 3d Bryant soliton times a line, or belongs
to the 1-parameter family of Zo x Os-symmetric steady solitons constructed
by Las.

e owals: the Zy x Og-symmetric 4d ovals from Perelman, the 3d ovals times a
line, the Oy x Og-symmetric 4d ovals constructed by Buttsworth, or belongs
to the 1-parameter family of 73 x Oz-symmetric ovals from [11].
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Closed Einstein manifolds of negative curvature
FRIEDER JACKEL
(joint work with Ursula Hamenstaedt)

A Riemannian metric g on a smooth manifold M is called Finstein if for some
A € R, called the Finstein constant,

Ric(g) = Ag,

that is, if (M, g) has constant Ricci curvature. The study of Einstein metrics
has a long and rich history in Riemannian Geometry (see for example [Bes08§]).
However, it is extremely difficult to construct examples of Einstein metrics on
closed manifolds.

On the other hand, the following philosophy has proven to be fruitful:

There is an abundance of closed manifolds with negative sectional curvature.

In fact, some experts even say that "most” closed manifolds are negatively curved
(for example [S024]). In view of this philosophy, and the fact that Einstein metrics
are objects of high interest in Riemannian Geometry, we believe that the following
question is very natural.

Question 1. Are there, in some sense, many closed manifolds admitting an Ein-
stein metric with negative sectional curvature?

There is a handful of examples of closed manifolds admitting Einstein metrics
with negative Einstein constant A < 0, including;:

(1) locally symmetric spaces of non-compact type, e.g., hyperbolic or complex-
hyperbolic manifolds;

(2) compact Kéhler manifolds with ¢; < 0 admit a Kéhler-Einstein metric
with Einstein constant A < 0 due to the work of Aubin [Aub78] and Yau
[Yau7s];

(3) manifolds obtained by generalized Dehn filling of hyperbolic cusps in di-
mensions n > 4, due to Anderson [And06] and Bamler [Bam12].

Out of these, only the examples in (1) are known to have negative sectional cur-
vature, and these examples have been known for more than a century. In fact,
until recently, locally symmetric spaces of non-compact type were the only known
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examples of Einstein metrics with negative sectional curvature on a closed man-
ifold (in the non-compact case the existence of negatively curved non-symmetric
Einstein metrics has been known for a long time - see for example [GL91]). This
changed a few years ago with the following breakthrough result of Fine-Premoselli
[FP20].

Theorem 1 (Fine-Premoselli). There are infinitely many closed 4-manifolds that
admit an Finstein metric with negative sectional curvature, but that do not admit
any locally symmetric metric (e.g., no hyperbolic or complez-hyperbolic metric).

We extend the result of Fine—Premoselli to all dimensions n > 4, also greatly
simplifying the proof.

Theorem 2 (Hamenstidt-J.). For all n > 4 there exist infinitely many closed
n-manifolds admitting an Einstein metric with negative sectional curvature, but
that do not admit any locally symmetric metric.

In dimensions at least five, these are the first non-trivial examples of closed Ein-
stein manifolds with negative sectional curvature. The proof builds on the original
construction of Fine—Premoselli but exploits an algebraic property of arithmetic
hyperbolic manifolds, called subgroup separability, in order to greatly simplify the
involved analytic arguments, allowing for an extension to all dimensions. Very
recently, this construction was also extended to the Kéhler setting by Guenancia—
Hamenstadt [GH25].
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Mean curvature flow in R3 and the Multiplicity One Conjecture
BRrRUCE KLEINER
(joint work with Richard Bamler)

We introduce almost regular mean curvature flow, a new notion of singular mean
curvature flow in R3. We use this as a framework for addressing several longstand-
ing conjectures, building on a series of recent advances [Brel6, HW20, CHH22,
CCs23].

Theorem 1 (Multiplicity One Conjecture). If M is an almost regular mean
curvature flow, then any tangent flow is a multiplicity one shrinking soliton. In
fact, any blow-up sequence has a subsequential limit which is an almost regular
flow, and has multiplicity one.

Theorem 2 (Existence). Any outermost or innermost flow in the sense of [HW20]
—in particular any nonfattening level set flow — is an almost regular flow.

Theorem 3 (Uniqueness iff nonfattening). If K is a level set flow, then K is
nonfattening iff there is a unique almost regular flow with initial condition Ky.

Theorem 4 (Partial regularity). The spacetime singular set of an almost reqular
flow has spacetime dimension at most 1.

Theorem 5 (Generic singularities). Suppose M C R3 is a compact smooth sur-
face. Then there is a sequence

M M
such that if K7 is the level set flow starting from M7, then:

o K7 is nonfattening.
o All tangent flows of K7 are round spheres or cylinders.

Theorem 6 (Uniqueness in the S? case). If K is a level set flow with initial
condition diffeomorphic to S?, then:

e /C is nonfattening.
e All tangent flows of IC are round spheres or cylinders.
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3-Manifolds with positive scalar curvature and bounded geometry
Y1 LAl
(joint work with Otis Chodosh, Kai Xu)

Yau asked the question of classifying 3-manifolds admitting complete Riemann-
ian metrics with positive scalar curvature; see Question 27 in [1]. A fundamental
observation of Schoen—Yau relates scalar curvature to the stability of minimal
surfaces [2], which ultimately leads to several topological obstructions to the ex-
istence of complete nonnegative scalar curvature metrics on a 3-manifold M. J.
Wang [3, 4] proved that if M is contractible and admits an exhaustion by solid
tori, then M = R3. In particular, the Whitehead manifold does not admit such
a metric. The general classification is widely open. In particular, we note the
following special cases:
e If M is a contractible 3-manifold and admits a complete metric of nonneg-
ative scalar curvature, do we have M = R3? (Asked by J. Wang [3, 4], cf.
51)
e If M, is an open handlebody of genus 7, and admits a complete metric of
non-negative scalar curvature, do we have v < 1?7 (Asked by Gromov [6,
§3.10.2].)

In joint work with O. chodosh and K. Xu, we resolve these two questions under
the additional assumption that the metric has bounded geometry:

(BG) |IRm| < A, inj > A%,
We use R to denote the scalar curvature.

Theorem 1 ([7]). Let (M,g) be a complete, connected, contractible Riemannian
3-manifold satisfying R > 0 and (BG). Then M is diffeomorphic to R3.

Theorem 2 ([7]). Let M, denote the interior of the handlebody of genus . If
(M, g) is a complete Riemannian 3-manifold satisfying R > 0 and (BG), then
v <1

Note that R3 and R? x S (corresponding to v = 0, 1 in Theorem 2) both admit
complete metrics with R > 0 and bounded geometry. Concrete examples are a
capped-off half-cylinder (which actually has R > 1) and the product of Cigar
soliton and S', respectively.

For the stronger uniformly positive scalar curvature condition R > 1, J. Wang
has obtained a complete classification [8]: these 3-manifolds are infinite connect
sums of spherical space forms and S? x S'. In particular, the only contractible
manifold or handlebody admitting such a metric is R3. We note that earlier work
of Bessieres—Besson—Maillot [9] used Ricci flow to prove such a classification with
an additional bounded geometry assumption.

The key novelty introduced in this work is the use of inverse mean curvature
flow as a replacement for u-bubbles in topological applications. A family of hy-
persurfaces is a smooth inverse mean curvature flow (IMCF) if it evolves in the
outwards pointing direction with speed %, where H denotes the mean curvature.
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The relevance of IMCF to scalar curvature is the following: if (M, g) is a Rie-
mannian 3-manifold with nonnegative scalar curvature, and ¥; C M is a compact
family evolving by the smooth IMCF, then || = ef[¥q| and

d 1
1 — H?2< -2 H? 4+ 4wy ().
(1) dt /Et 2 )y, AT (%)

This is known as the Geroch monotonicity formula [10]. In particular, if the flow
exists for all time ¢ € [0, 00) then ¥; cannot have genus > 2 for all large ¢, since
otherwise (1) would force fEt H? to be negative for t > 1, which is impossible.
In particular, this implies that M admits an exhaustion by regions with sphere or
torus boundaries, strongly constraining its topology.

However, there are major issues with the assumption of long-time existence in
practice. First, singularities are likely to develop along the flow. Secondly, it’s
possible that the flow rushes to infinity in finite time if the infinity is not “large”
enough.

To allow for singularities, we can use the notion of weak IMCF introduced by
Huisken—Ilmanen [11] en route to their proof of the Riemannian Penrose inequality.
Intuitively, this solution can be described as running the smooth flow except at
each time replacing > by its least area enclosure. As proven by Huisken—Ilmanen,
the Geroch monotonicity (1) remains true for weak solutions as long as they exist.

A weak IMCF that does not rush to infinity in finite time is called proper. In our
current setting, we inevitably encounter non-proper weak IMCF's (i.e. weak IMCFs
that rush to infinity within finite time). We make essential use of K. Xu’s recent
work [12], which shows that (M, g) always admits a “maximal” (or “innermost”,
“slowest” ) weak IMCF. Assuming bounded geometry and one-endedness of M, we
show that the maximal weak solution satisfies exactly one of the following three
possibilities:

(i) Proper: The solution exists and remains bounded for all time.
(ii) Sweeping: The solution entirely moves to infinity at some time T' € (0, 00).

(iii) Escaping: The solution exists until a time 7' € (0,00), then “jumps” to

infinity.
In the proper case (i), we can obtain a topological obstruction using the mono-
tonicity formula (1) as above. Now we consider the remaining cases (ii) (iii); see
Figure 1 for examples of each of these cases.

Yo Y101 X1_0.01 EOET

FIGURE 1. An IMCF sweeping out the manifold at ¢ = T (left)
and one that escapes at t = T (right).

First, we consider the case of sweeping flow. We can show that for a sequence of
times ¢; T, the surfaces ¥, have uniformly bounded diameters, are uniformly
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C1%-smooth, and are “almost” area-minimizing. Taking a subsequential limit, we
obtain an area-minimizing hypersurface in some limit of M at infinity. By the
scalar curvature lower bound, this limiting hypersurface must be S? or T?, which
in turn implies that all but finitely many ¥, are S? or T2. This again puts strong
constraints on the topology of M.

Finally, we consider the case of escaping flow. In order to find a nice exhausting
sequence and perform a limiting argument, we make a small perturbation of the
metric so that it becomes “larger at infinity”. This will delay the escape time of the
maximal IMCF, thus some new level set will form in the edited region. Letting the
edited region diverge to infinity and making the perturbation smaller and smaller,
we obtain another diverging sequence of hypersurfaces which are “almost” area-
minimizing as well. Then the limiting argument in case (ii) is employed to prove
the main theorems.
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Einstein Constants and Differential Topology
CLAUDE LEBRUN

Recall that a Riemannian metric g is said to be FEinstein if its Ricci curvature,
considered as a function on the unit tangent bundle, is constant. This is of course
equivalent to requiring that the Ricci tensor r of ¢ satisfy

(1) r=>Ag
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for a real number \ that is called the Einstein constant of g. In what follows, the
term Finstein manifold will always mean a compact connected n-manifold M with
empty boundary that is equipped with a Riemannian metric satisfying (1).

In dimension n = 2 or 3, an Einstein manifold necessarily has constant sectional
curvature A/(n—1), and, so, in these low dimensions, the sign of A is consequently
predetermined by the size and structure of the fundamental group of M. Motivated
in part by this observation, the introduction to the highly influential book FEinstein
Manifolds by the pseudonymous A.L. Besse concluded by asking [3, p. 19] whether
the sign of \ is quite generally determined by the diffeomorphism type of M:

“Can Einstein metrics with [Einstein] constants of opposite signs

exist on the same manifold? If this is impossible, it would add

weight to the remark...that positive and negative Einstein met-

rics belong to essentially distinct families.”
Given the negative cast of the final sentence, this passage was often understood to
be conjecturing that the answer to the question would turn out to be no. However,
this expectation actually turned out to be incorrect. Indeed, roughly a decade after
the appearance of Besse’s book, a sequence of counter-examples was constructed
by Fabrizio Catanese and the speaker [5]:

Theorem 1 (Catanese-LeBrun). For each k > 2, there is a closed simply-connected
4k-manifold M that admits a pair of Einstein metrics with Finstein constants of
opposite Signs.

A decade later, Rares Rasdeaconu and Ioana Suvaina then proved [14] a beautiful
improvement of Theorem 1, by means of essentially the same strategy:

Theorem 2 (Rasdeaconu-Suvaina). For every k > 2, there are at least (k;r3)

distinct smooth closed simply-connected 4k-manifolds that admit both A > 0 and
A < 0 Einstein metrics.

These results are proved by first constructing homotopy-equivalent pairs (X, Yz)
of compact complex surfaces, where ¢1(X;) < 0, but where ¢1(Y;) > 0. In
fact, by refining a series of breakthrough results by various algebraic geometers
[2, 10, 12, 13], the cited authors succeeded in constructing four such pairs (X, Yy),
where ¢2(X;) = ¢3(Yy) = £ for £ = 1,2,3,4. For each ¢, the manifold Y; is diffeo-
morphic to the connected sum CPy#(9 — £)CP,, while X, is homeomorphic, but
not diffeomorphic, to Yz; nonetheless, by a theorem of Wall [17], the 4-manifolds X,
and Y are still h-cobordant for every £. The Cartesian products X, x---x Xy, and
Yy, x -+ x Yy, are consequently also h-cobordant, so that, for any k£ > 2, Smale’s
h-cobordism theorem [15] implies that these products are actually diffeomorphic.
However, the Xy admit A = —1 Einstein metrics (that are, incidentally, Kéahler)
by the Aubin-Yau theorem [1, 18], while the Y; all admit A = +1 Einstein metrics
(which are again, incidentally, Kéhler) by the work of Tian-Yau [16]. Endowing
Xo, -+ x Xy, and Yy, x---x Yy, with the corresponding product Einstein metrics
then yields the result, since these products have been shown to be diffeomorphic.

These examples certainly demonstrate that A > 0 and A < 0 Einstein metrics
can coexist on specific smooth compact manifolds. But the list of manifolds where
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this phenomenon has actually been proved to occur remains surprisingly limited,
and consists of spaces than share many rare and peculiar features. One of my key
goals in giving this talk at Oberwolfach was therefore to challenge the community
to try to find entirely new examples that would broaden and deepen our under-
standing of this phenomenon. For example, the examples of Theorems 1 and 2
only occur in even dimensions. Can one construct odd-dimensional examples of
coexistence? Moreover, the constructed Einstein metrics occurring in Theorems 1
and 2 are never Ricci-flat. What can be proved, for example, about the coexistence
of Einstein metrics with A = 0 and A > 07

Of course, all the Einstein metrics used to prove Theorems 1 and 2 actually
had special holonomy, and this naturally reflects the degree to which the majority
of our most powerful methods for constructing Einstein metrics have essentially
arisen in connection with special holonomy. Can any light be shed on the questions
we have just raised by means of ideas related to special holonomy?

Well, any compact, odd-dimensional, non-locally-symmetric Riemannian man-
ifold with irreducible special holonomy is [8] necessarily a 7-manifold of holonomy
G, and every such manifold is automatically Ricci-flat. Fortunately, hundreds
of thousands of diffeotypes of such closed simply-connected A\ = 0 Einstein 7-
manifolds are currently known [6]. On the other hand, there are also infinitely
many diffeotypes of compact, simply-connected 7-manifolds that are now known
to admit A > 0 Einstein metrics [4], even among the examples that arise as Sasaki-
Einstein manifolds. While the latter class of 7-manifolds do not have special ho-
lonomy, they are nonetheless characterized by the property that their metric cones
have holonomy SU(4), and so are Calabi-Yau manifolds of real dimension eight.

All of this might seem to augur well, and one might therefore hope to find some
compact simply-connected 7-manifolds that admitted special Einstein metrics of
both these flavors. However, such hopes are, alas, misguided. These two types of
Einstein metric can never coexist [9] on any smooth compact 7-manifold!

Theorem 3 (L ’25). No smooth compact T-manifold can admit both a Sasaki-
FEinstein metric g1 and a metric go of holonomy Gs.

The key to proving this is the following:

Proposition 1. If M is a smooth compact 7-manifold that carries a Sasaki-
FEinstein metric gy, then the first Pontrjagin class p1(M) € H*(M,Z) is a torsion
class.

Indeed, any Sasaki-Einstein (M7, g) carries a unit-length Killing field &, and
the flow lines of £ are then the leaves of the Reeb foliation § of M. To prove the
proposition, one first shows that the deRham version p (M) of the first Pontrjagin
class p1(M) is represented by a closed 4-form that is basic, in the sense that its
contraction with ¢ is identically zero. This means that p§ (M) belongs to the image
of the basic cohomology H% (M, §) in the deRham cohomology Hjp(M). However,
because the local geometry of the leaf space M/F is Kihler-Einstein, a transverse
version [7] of the Hard Lefschetz Theorem holds, and this can then be used to
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show that the image of Hf(M,§) — Hjx(M) is actually zero. The proposition is
therefore an immediate consequence.

On the other hand, if M7 is a compact 7-manifold that admits a metric go of
holonomy Go, and if ¢ is the fundamental closed 3-form corresponding to gs, then
one has the remarkable identity [8] that

2) (I (M) U [, [M]) = ——

where R denotes the Riemann curvature tensor of go. Thus, the existence of such a
metric go implies that pif(M) # 0, and Theorem 3 therefore becomes an immediate
consequence of the Proposition.

For more details, along with various other related results, see [9].

|R|2dﬂg2 <0
M
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Large mass limit of G2 and Calabi-Yau monopoles
YANG L1

Our general theme lies in the intersection between higher dimensional gauge theory
and calibrated submanifolds. The gauge theory side may be viewed as the general-
ization of the classical theory of monopoles on R3. On a G5 manifold (M, ¢) with
1 = *¢ (resp. Calabi-Yau 3-fold (M,w,?)), let A be a connection on a principal
SU(2)-bundle, and ® be an adjoint valued section, called the Higgs field. We say
(A, ®) is a Gg-monopole (resp. Calabi-Yau monopole), if

Fa ANy =%V,

resp.
Fy AReQ = «V®, FaqAw?=0.

An integration by parts argument shows that ® is parallel on compact M. In
the setting of asymptotically conical M, the previous work of Oliveira et al. [2]
determined the asymptotic boundary condition under mild hypotheses: the mass

m:= lim |®|.
r—r00
exists, the structure group reduces to U(1) asymptotically, the connection con-
verges to a pseudo-HYM connection on the link at infinity, and the Higgs field is
asymptotically parallel. The upshot is that the asymptotic boundary condition is
specified by the topology (which is fixed), except for the mass parameter m > 0,
and the Donaldson-Segal programme [3] asks what happens in the limit m — +o0.
The answer can be summarized in the following slogans:

e In some L}, -sense, the solutions converge to some U(1) Go (resp. Calabi-
Yau) monopole with Dirac singularity along a coassociative/special La-
grangian cycle Q;

e The part of curvature orthogonal to ® is small in the L}, -sense, and the
part parallel to ® dominates;

e The curvature density ﬁ | F|2dvol concentrates on the support of @, and
almost all the energy can be accounted for by monopole bubbling trans-

verse to (.

The most striking consequence is that assuming the existence of the sequence
(A, ®@), then it produces a coassociative (resp. special Lagrangian) cycle, within
a prescribed homology class. This reduces the highly non-perturbative existence
question for these calibrated cycles, to a question in gauge theory. This strategy is
morally analogous to producing holomorphic curves by showing the non-triviality
of some Seiberg-Witten invariant, using Taubes’s famous work that GR = SW.

The big open question is whether we can define counting invariants for both
the gauge theory and the calibrated submanifolds, and then prove some equality
between the two invariants.
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Constructing minimal surfaces of prescribed genus in closed
Riemannian 3-spheres with positive Ricci curvature

YANGYANG LI
(joint work with Adrian Chun-Pong Chu, Zhihan Wang)

In the round 3-sphere S3, there exists an RP3-family of minimal 2-spheres (the
equatorial spheres) and an RP? x RP*-family of minimal tori (the Clifford tori).
Almgren (1966)[1] and Calabi (1967)[2] later proved that the equatorial spheres are
the only minimal 2-spheres, and Brendle (2013)[3] confirmed that the Clifford tori
are the only minimal tori, thereby resolving the Lawson conjecture. The topology
of these moduli spaces motivated Yau (1982)[4] and White (1989)[5] to conjecture
the existence of at least four minimal spheres and five minimal tori, respectively,
in any closed Riemannian 3-sphere. For other topological types, Lawson (1970)[6]
constructed minimal surfaces of arbitrary genus in S*, now known as Lawson sur-
faces. Inspired by Yau’s and White’s conjectures, it is further expected that for
any genus g, there exist multiple genus ¢ minimal surfaces in any closed Riemann-
ian 3-sphere, with the number related to the topology of the space of genus g
Lawson surfaces.

In this talk, I present the resolution of Yau’s conjecture by Wang-Zhou (2023)[7]
and of White’s conjecture by the work of Adrian and myself (2024)[8], in the setting
of positive Ricci curvature. I then discuss how the techniques we developed can
also be applied to construct minimal surfaces of higher genus, particularly genus
2. This is based on joint work with Adrian Chu and Zhihan Wang][9).
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Einstein metrics, Go geometry and geometric flows
JASON D. LoTAy
(joint work with Aaron Kennon, Jakob Stein)

Einstein metrics on compact Riemannian manifolds are of considerable interest but
are currently poorly understood outside of Kéhler geometry, particularly those
which are Ricci-flat. As a case in point, the only non-trivial odd-dimensional
compact Ricci-flat manifolds are Go-manifolds: that is, 7-dimensional Riemannian
manifolds with holonomy Gs. On the other hand, there are many infinitely many
compact nearly Go-manifolds, which have positive Einstein metrics.

Given the success of geometric flows in studying both Riemannian geometry and
special structures, especially Kahler structures, it is natural to ask whether one
can use such methods in Go geometry. This geometry on a 7-manifold is encoded
by a Ga-structure 3-form ¢, which defines a metric and orientation, thus a dual
4-form 1 = *xp. A geometric flow, called the Gs-Laplacian coflow, was proposed
[3] which evolves closed 4-forms 1 by the Hodge Laplacian defined by ¢:

N

(LF) 57 = et and dy =0,

This is the gradient flow of the Hitchin volume functional on the cohomology
class [1)o] of the initial condition and has Ga-manifolds as its critical points, which
are strict maxima (modulo diffeomorphisms). Moreover, nearly Ge-manifolds are
solitons for (LF) or, equivalently, critical points for a suitably normalized (LF).

A rich source of Go-structures comes from 3-Sasakian geometry (which includes
the round 7-sphere S7): 3-Sasakian 7-manifolds always admit two natural con-
tinuous 3-parameter families U+ of closed 4-forms dual to Go-structure 3-forms,
and each family contains a 1-parameter family, depending on & > 0, of nearly
Ga-manifolds defined by 4-forms ¢F. (In particular, one sees that all 3-Sasakian
7-manifolds admit two canonical positive Einstein metrics.) The first result shows
that the ¢ are global attractors for (LF) in U after rescaling.

Theorem 1 (Kennon-L. [4]). Let k > 0 and let v+ € ¥U* on a 3-Sasakian 7-
manifold. Then, after suitable normalization, the Go-Laplacian coflow (LF) ewists
in WE for all time and converges to the nearly Go 1h:F.

This theorem is proved using methods inspired by dynamical systems, as the prob-
lem reduces to a nonlinear ODE system, with some care required as the system
degenerates near the boundary of the parameter space defining ¥*. Theorem 1
in particular shows that the nearly Go 1 are stable for normalized (LF), at least
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in U*; work in [5] indicates that potentially all nearly Go manifolds are stable as
solitons for (LF), not just those in ¥* on 3-Sasakian 7-manifolds.

Despite the good geometric properties of (LF) and the convergence result in
Theorem 1, unfortunately (LF) is not known to even have short-time existence.
As a consequence a modified Ga-Laplacian coflow was introduced [2] which now
has short-time existence, enjoys Shi-type estimates and can be defined for any
K > 0:

oy
(MF) i Ay + 3d((5k — To)yp) and dy =0,
where 719 = *(p Adp). We have that Ge-manifolds are still critical points of (MF)
and nearly Go-manifolds are solitons (or critical points for a normalized flow).
It therefore seems important to understand what behaviour nearly Go-manifolds

have for the modified Go-Laplacian coflow (MF).

Theorem 2 (L.—Stein [5]). Let k > 0 and recall the nearly Go r € ¥+ on
a 3-Sasakian 7T-manifold. Then T is unstable as a critical point of normalized
modified Ga-Laplacian coflow (MF), with index 1 in U*.

Theorem 2 is proved again using ODE systems techniques yet it already con-
trasts with Theorem 1. One is naturally motivated to ask further whether Theorem
2 provides all of the unstable directions for the nearly Go-manifolds given by .
This turns out to very much not to be the case, as the following result shows for
the round 7-sphere (which, we recall, is a particular case of = on a 3-Sasakian
7-manifold).

Theorem 3 (L.—Stein [5]). Consider the round 7-sphere ST with its canonical
nearly Go-structure with dual 4-form 1. Then 1 is unstable as a critical point for
normalized modified Go-Laplacian coflow (MF) with index at least 7T047.

The key to proving Theorem 3 is to identify the unstable directions with eigenforms
for dx acting on certain exact 4-forms with particular eigenvalues. Then the result
follows from representation theory, building on [1], since d* and the space on which
it is acting are invariant under the isometry group of S7.

The results show that (MF) has both positive and negative features in com-
parison to (LF). One can interpret the instability results Theorem 2-3 for nearly
Go-manifolds positively as saying that one should be able to perturb initial con-
ditions so that these should not appear along the flow (MF), which might make
(MF) useful as a means to find Gg-manifolds. However, the flow (LF) is more
natural and has very good geometric features, so it seems worthwhile to try to
obtain the analytic results one needs to make (LF) viable as a means to study
FEinstein metrics and Gy geometry.
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A finiteness theorem for isoparametric foliations
ALEXANDER LYTCHAK
(joint work with Manuel Krannich, Marco Radeschi)

Isoparametric submanifolds in space forms have been introduced by Levi-Civita
and studied for almost a century from differential geometric, topological and alge-
braic perspectives by Segre, Cartan, Muenzner, Ferus, Karcher, Abresch, Palais,
Terng, Thorbergsson, Stolz, Chi, Cecil and many others; we refer for an overview to
[4]. The concept has been generalized to symmetric spaces and arbitrary Riemann-
ian manifolds by Palais, Terng, Thorbergsson, Wang and Alexandrino, we refer to
another survey [5] for the description and the history of this development. While
in space forms and in symmetric spaces one might hope and sometimes achieve
a classification, in more general situation only qualitative topological-geometric
questions are meaningful.

The talk is devoted to the following finiteness theorem obtained jointly with
Manuel Krannich and Marco Radeschi.

Theorem 1. Given n,v, k, D there exists at most finitely many isoparametric foli-
ations up to homeomorphisms on compact simply connected Riemannian manifolds
of dimension n, volume at least v, diameter at most D and sectional curvatures
bounded in absolute values by k.

If n # 5, the finiteness statement holds up to diffeomorphisms.

The theorem is obtained by reformulating the result in terms of submetries onto
intervals, using compactness of such objects and analyzing the limiting procedure
in great details. While many parts of the proof are purely topological, the state-
ment is not. Moreover, being foliated homeomorphic turns our to be a much finer
invariant than having pairwise diffeomorphic fibers as the following result shows.
It is based on results in geometric topology distinguishing between concordance
and isotopies:

Theorem 2. For n > 5 there exists infinitely many Riemannian metrics on the
sphere S™ each equipped with an isoparametric foliation whose singular fibers are
the canonical S*~2 and S* and whose regular fibers are diffeomorphic to S"~2 x S,
such that the foliations are pairwise not foliated homeomorphic.

We explain and verify in the talk why some assumption on the fundamental
group is needed in the statement.

An important step in the proof of the main result is the observation that for a
manifold submetry from a simply connected manifold M of bounded geometry onto
an interval, the interval is uniformly non-collapsed. The second step, the actual
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stability argument, verifies the validity of the following conjecture in the case of
one-dimensional base spaces. Other special cases of this theorem are provided by
Perelman’s stability theorem [2], the equivariant stability theorem of Harvey [1]
and the case of Riemannian submersions verified by Tapp [3].

Conjecture 1. Let P : M; — Y; be manifold submetries. Assume that M; are
compact, of uniformly bounded geometry and converge in the Gromov—Hausdroff
topology to M. Assume that P; converge to a submetry P. If the sequences M;
and Y; do not collapse, then, for all i,j large enough, P; and P; are equivalent up
to homeomorphisms between M; and M; and Y; and Y}, respectively.
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An Overview of Gromov’s p-widths and Their Applications
JARED MARX-KUO

For (M™*1, g) a Riemannian manifold, the “p-widths” (also known as the volume
spectrum), {wp}, are a sequence of invariants introduced by Gromov [8, 9]. Let
P, denote the set of p-sweepouts, ® : XP — Z,(M,Z/2Z) (sce [6] for formal
definitions) such that ®*(\?) #£ 0 € HP(X). Then we define
“r <I>lg7£p meggg@) M(2(=))

The reader may think of ® as a map from some p-dimensional manifold, X =
Dom(®), to the space of hypersurfaces, replacing M(®(x)) — Area(®(z)). In
particular, we compare this with the following definition of A,, the pth eigenvalue
of the laplacian on a closed manifold. Let f’p denote the space of all at most
p-dimensional subspaces of H!(M). Then

\V4 2
Ap = inf sup Mi'?
vep,otrev fy f

If Au, = \yuy, then u, is critical for the L? normalized dirichlet energy.

Originally posed as a non-linear spectrum of the volume functional, the p-widths
have been essential in the study of the existence of minimal surfaces over the past
decade. Given the same min-max formulation as the eigenvalues of the Lapla-
cian, we expect wy, to yield critical points of the area functional on hypersurfaces.
Indeed, we have
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Theorem 1 ([16]). For3<n+1<7 and eachp € Z™,
NP
(1) wp =y myA(E])
i=1
for some collection of {3V}, smooth, embedded, disjoint minimal surfaces, and
some multiplicities, m? € Z+.

The p-widths were an essential tool in the resolution of Yau’s conjecture ([23,
Problem Section]):

Theorem 2 ([3, 22, 17, 11, 24, 12]). On any closed (M"™*, g) with n +1 > 3,
there exist infinitely many embedded minimal hypersurfaces.

When m? =1 for all i,p, i.e. the so called “multiplicity one” setting, we can
deduce that there are infinitely many minimal surfaces if lim,_, o, w, = co. Indeed,
this holds due to the following Weyl law:

Theorem 3 ([9, 10, 14]). For alln+1 > 2, there exists a constant a(n + 1) such
that
lim w,p~ /") = a(n + 1) Vol (M) "+
pP—o0
The reader may compare this with an analogous Weyl law for the eigenvalues of
the laplacian on a closed manifold. We note that even when there is multiplicity
(i.e. m¥ > 1 in equation (1)), the sublinear growth of {w,} was extremely useful
in showing the existence of infinitely many minimal surfaces in [17, 22].
In addition to their existence, the minimal surfaces from equation (1) record
the parameter p in their index, in the “multiplicity one” setting

Theorem 4 ([24]). For g a generic metric on M™ ™!, 3 <n+1<7, ml =1 in
equation

This leads to sharp index estimates for 3:

Theorem 5 ([16, 24]). For g a generic metric as above
NP
p=)Y_ Indx?)
i=1

We also note that the p-widths have been applied to construct constant mean
curvature (CMC) hypersurfaces using mountainpass constructions [5], as well as
CMC hypersurfaces which bound a set of half volume [21]. More recently, there
have been applications to showing the existence of prescribed mean curvature
(PMC) hypersurfaces for certain prescribing functions and ambient manifolds [7].

In the setting of surfaces, the p-widths behave differently.

Theorem 6 ([4]). For (M?,g) closed and each p € 7+,

Np
wpy = me((’ylp)
i1
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for some collection of {7¥'}, smooth, immersed, (potentially non-disjoint) geodesics,
and some multiplicities mt € ZT.

We emphasize the lack of disjointness and embeddedness. In this setting, it is
natural ask

a) Do there exist surfaces for which w, are realized by non-embedded geodesics?
b) Do index bounds for the {77} hold?
¢) Does multiplicity one hold generically?

In joint work with Mantoulidis [15], the author showed that the answer to a) is
“no” by constructing a realization of Almgren’s starfish such that wy = £(v), for
v a topological figure eight. See also related work by Lima [13] for an example
on hyperbolic surfaces of genus at least 2. In joint with Sarnataro and Stryker
[20], the author showed that the index of the {7/} and the number of intersections
(including self-intersections) are bounded above by p. In addition, it was shown
in [20] that multiplicity one does not hold generically, building off of work of
Chodosh-Mantoulidis [4] and Aiex [1].

Surfaces are an interesting setting for the p-widths in that they provide the
simplest examples for which we can compute the p-widths for all p. In fact, the
p-widths are only known for all p in the following three cases:

(1) (52, ground) due to deep work of Chodosh-Mantoulidis [4]

(2) (RP2,G,,unq) due to an adaption by the author [19]

(3) (S?,9) where g is any Zoll metric connected to grouna [18] due to a short
argument by the author.

The author’s construction with Zoll metrics in [18] was the first step towards the
isospectral problem for the p-widths: for which manifolds do the values of {w,}
determine (M, g)? While the author showed that there is no such rigidity for the
sphere, Ambrozio-Marques—Neves showed that RP? is rigid:

Theorem 7 ([2]). Given (M™*1, g) closed, suppose that

Wp = Wp (RP27 yround)

for all p. Then (M, g) = (RP%,G,0una)-

In general, it would be extremely interesting to compute {w,} for all values of
p for the simplest manifolds possible. It would also be of great interest if other
manifolds are p-width isospectrally rigid.
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Energy minimizing harmonic 2-spheres in metric spaces
DAMARIS MEIER
(joint work with Noa Vikman, Stefan Wenger)

The classical existence problem for harmonic maps between a closed surface M,
equipped with a fixed Riemannian metric, and a compact Riemannian manifold
N asks whether a given continuous map ¢: M — N can be deformed, via ho-
motopy, into a harmonic map u: M — N. A result of Lemaire [1], Schoen-Yau
[7] and Sacks-Uhlenbeck [6] shows that if the second homotopy group ma(N) is



Differentialgeometrie im Grofien 1625

trivial, then every homotopy class of maps from M to N contains an energy min-
imizing harmonic map. However, when 7o (N) is non-trivial, the situation is more
involved, and a phenomenon known as “bubbling” may occur. The remarkable
work of Sacks-Uhlenbeck [6] shows that if N is a compact Riemannian manifold
with mo(IN) # 0, then there exists a non-contractible map u: S? — N minimizing
energy and area within its homotopy class. Moreover, every such u is a conformal
branched immersion.

In joint work with Vikman and Wenger [5], we explore a novel and conceptually
simple approach to proving existence of energy minimizers in homotopy classes.
Unlike the method used in [6], our approach does not rely on PDE results and is
applicable to a wide range of metric space targets X. It is based on the existence
and regularity of energy and area-minimizing Sobolev maps in proper metric spaces
satisfying a local quadratic isoperimetric inequality proven in a series of works by
Lytchak-Wenger, see e.g. [2, 3, 4]. Additionally, we assume that the target space
X is compact and quasiconvex. The last requirement is that every continuous map
from S? to X of sufficiently small diameter is null-homotopic. These conditions
are satisfied by a broad class of spaces, including compact Riemannian manifolds,
compact Finsler manifolds, more generally, compact Lipschitz manifolds, compact
locally CAT (k) spaces for k € R, and many more.

Fix a suitable notion of energy and denote by e(y) the infimal energy over
all Sobolev maps contained in the homotopy class of a given continuous map .
The following main theorem of our work [5, Theorem 1.3] generalizes the above
mentioned results from [1, 7, 6].

Theorem 1. Let M and X be as above. Then every continuous map ¢: M — X
has an iterated decomposition po: M — X and @1,...,pr: S? — X satisfying

e(po) +e(pr) +--- +e(pr) = e(p)
and such that every ; contains an energy minimizer in its homotopy class.

The proof of Theorem 1 follows a direct variational approach and crucially de-
pends on the following two key ingredients: A convergence result for minimizing
sequences of uniformly distributed energy [5, Theorem 8.1] and a result [5, Propo-
sitions 9.1 and 9.2] showing that (up to possibly precomposing with a conformal
diffeomorphism) every almost energy minimizer in the homotopy class of an e-
indecomposable map has small energy on balls of small radius. In particular, after
suitably decomposing the initial map ¢, the latter result implies the applicability
of the convergence result.

In addition to the existence result from Theorem 1, we show the following
regularity properties of homotopic energy minimizers [5, Theorem 6.3 and Corol-
lary 3.3]: Every continuous Sobolev map u: M — X that minimizes energy in its
homotopy class is harmonic (i.e. locally minimizes energy) and Holder continuous.
If M = S?, then u is also infinitesimally quasiconformal. We do not know whether
the same holds true in the more general context of harmonic spheres.

Question 1. Let X be as above and let u: S? — X be a harmonic map. Is it true
that u is infinitesimally quasiconformal?
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Using the techniques developed in [6], Sacks-Uhlenbeck moreover showed that
every closed Riemannian manifold with non-trivial k-th homotopy group for some
k > 2 contains a non-trivial harmonic 2-sphere, see [6, Theorem 5.7]. It would be
interesting to know whether a similar result holds in a metric setting.

Question 2. Let X be a compact metric space with non-trivial k-th homotopy
group for some k > 2. Under what additional conditions does X admit a non-
trivial harmonic 2-sphere?
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Complete 3-manifolds of positive scalar curvature with
quadratic decay

STEPHANE SABOURAU
(joint work with Florent Balacheff, Teo Gil Moreno de Mora Sarda)

In his Problem Section [10], Yau asked for a classification of 3-manifolds that admit
a Riemannian metric of positive scalar curvature. The closed case was addressed
by Schoen—Yau [6, 7] using minimal surfaces and in parallel by Gromov—Lawson
[3, 4, 5] using both minimal surfaces and the Dirac operator method, and finally
concluded in the light of Perelman’s work. They proved that a closed orientable
3-manifold which admits a Riemannian metric with positive scalar curvature de-
composes as a connected sum of spherical manifolds and S% x S' summands. A sim-
ilar decomposition theorem has recently been proved for open manifolds admitting
complete Riemannian metrics of uniformly positive scalar curvature independently
by Gromov [2] and Wang [9], using u-bubble theory.

Theorem 1 ([2,9]). Let M be a complete orientable Riemannian 3-manifold with
uniformly positive scalar curvature. Then M decomposes as a possibly infinite
connected sum of spherical manifolds and S* x S*.

We will consider 3-manifolds admitting a complete Riemannian metric of posi-
tive scalar curvature with at most a quadratic decay at infinity.
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Definition 1. Let M be a complete Riemannian n-dimensional manifold. Fiz a
basepoint x € M, and denote by r.(y) = d(x,y) the distance function to x. The
scalar curvature of M has a at most C-quadratic decay at infinity with C > 0 if
there exists a constant Ry > 0 such that for every y € M with r,(y) > Ry,

scal(y) >
Tz (y)

Our main theorem extends the topological decomposition of Theorem 1 to com-
plete Riemannian 3-manifolds of positive scalar curvature with at most a quadratic
decay at infinity for some constant C' > 6472,

Theorem 2 ([1]). Let M be a complete orientable Riemannian 3-manifold. Sup-
pose that M has positive scalar curvature with at most C-quadratic decay at infinity
for some C > 64n2. Then M decomposes as a possibly infinite connected sum of
spherical manifolds and S? x S' summands.

One may wonder whether the conclusion of Theorem 2 holds under a weaker
decay rate. The example of the manifold R? x S! shows this is impossible. Indeed,
the manifold R? xS admits a complete metric of positive scalar curvature decaying
%—quadratically at infinity, but it does not decompose as an infinite connected
sum of spherical manifolds and S? x S!. Therefore, the decay rate in Theorem 2
is optimal. As for the optimal value of the decay constant C' under which the
conclusion of Theorem 2 holds, this last example shows that we cannot hope for
more than C' > 1 (while our result holds for C' > 647?).

More generally, Gromov conjectured the following [2, Section 3.6.1].

Conjecture 1 (Critical Rate of Decay Conjecture [2]). There exists a dimensional
constant Cy,, > 0 such that the following holds. Let M be an orientable n-manifold
that admits a complete Riemannian metric of positive scalar curvature.

(1) For every C < C,, there exists a complete Riemannian metric on M of
positive scalar curvature with at most C'-quadratic decay at infinity.

(2) If M admits a complete Riemannian metric with positive scalar curvature
with C-quadratic decay at infinity for C > Cy,, then M admits a complete
Riemannian metric with uniformly positive scalar curvature.

The following rigidity result, which addresses the case (2) of Conjecture 1, is a
direct consequence of Theorem 2 and an adaptation of Gromov—Lawson’s Surgery
Theorem.

Corollary 1 ([1]). Let M be an orientable 3-manifold. If M admits a complete
Riemannian metric of positive scalar curvature with at most C-quadratic decay at
infinity for some C > 64w2, it also admits a complete Riemannian metric with
uniformly positive scalar curvature.

Actually, we will deduce Theorem 2 from a more general statement, which
involves the following notion of fill radius.
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Definition 2. Let M be a Riemannian n-manifold with possibly nonempty bound-
ary. The fill radius of a contractible closed curve v in M is defined as

fillrad(~y) := sup{R > 0| d(v,0M) > R and [y] #0 € m (U(~, R))}
where U(v, R) denotes the closed R-neighborhood of v in M. Define also
fillrad(M) := sup{fillrad(~y) | v contractible closed curve of M}.

The following bound on the fill radius has been established in [5, 8]: If M is
a complete orientable 3-manifold with bounded geometry and uniformly positive
scalar curvature scal > sg > 0, then the universal Riemannian cover M of M
satisfies fillrad(M) < 27/,/50. Therefore, an upper bound on the fill radius of the
universal cover provides a generalization of the notion of uniformly positive scalar
curvature.

If a complete orientable 3-manifold M has positive scalar curvature decaying
at infinity, then the fill radius is not necessarily bounded in general. Still, if the
decay is not too pronounced, one can control the growth of the fill radius of the
lifts to the universal cover of the closed curves contractible in M. This property
will serve as a generalization of the notion of positive scalar curvature with at
most C-quadratic decay at infinity.

Definition 3. Let M be a complete Riemannian manifold, and denote by M its
universal Riemannian cover. Fiz a basepoint x € M. Denote by B(x, R) the closed
metric ball of radius R centered at x. The fill radius of M has at most c-linear
growth at infinity with ¢ > 0 if there is a constant R}, > 0 such that if R > Ry,
then for every closed curve v lying in B(x, R) and contractible in M, any of its
lifts 7 to M satisfies

fillrad(%) < cR.

We will prove the topological decomposition of Theorem 2 by replacing the
scalar curvature assumption with a weaker condition about the filling disks of the
lifts of contractible closed curves, namely that the fill radius of M has at most
c-linear growth at infinity with ¢ < %

Theorem 3 ([1]). Let M be an orientable complete Riemannian 3-manifold, and
denote by M its universal Riemannian cover. Suppose that the fill radius of M
has at most c-linear growth at infinity for some ¢ < % Then M decomposes as a
possibly infinite connected sum of spherical manifolds and S* x S'.

This result yields the same topological decomposition as Gromov—Wang’s theo-
rem under a weaker, more robust, assumption. In particular, it applies to metrics
of positive scalar curvature with at most C-quadratic decay at infinity for some
C > 6472, and not just of uniformly positive scalar curvature. More generally,
Theorem 3 does not require any curvature assumption and relies on C° topological
arguments, rather than on C2? analytical ones. In particular, the proof of Theorem
3 relies neither on the p-bubble theory, nor on the minimal surface approach. In-
terestingly, and somewhat surprisingly, this general approach leads to an optimal
statement in the decay rate at infinity despite the lack of analytical tools.
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Generic regularity for minimizing hypersurfaces in dimension 11
FELIX SCHULZE
(joint work with Otis Chodosh, Christos Mantoulidis, Zhihan Wang)

Overview. Consider a smooth, closed, oriented (n — 1)-dimensional submanifold
I' ¢ R""!. We are interested in Plateau’s problem. Among all smooth, compact
hypersurfaces M C R"*! with M = I', we want to find one of least area. It’s now
well-known that such M always exists for n+1 < 7, while when n+1 > 8 and for
certain choices of I', no minimizer M can be found among smooth hypersurfaces.
Using geometric measure theory, one can prove the existence of a minimizer among
a wider class of objects which are smooth hypersurfaces except perhaps along an
(n — 7)-dimensional singular set. See [Fed69, MM84, Giu84, Magl2, Fle62, DG65,
Alm66, Sim68, BDGG69, HS79].

In R8, the first dimension that singularities can appear, a fundamental result of
Hardt—Simon [HS85] shows that for a generic choice of Plateau boundary I, there
does exist a smooth M minimizing area. An analogous result in 8-dimensional
manifolds was proven by Smale [Sma93]. These generic regularity results were
recently extended to cover R? and R in [CMS23a] using new ideas from the
works of the first three authors with K. Choi on generic mean curvature flows, and
specifically [CCMS24a, CCMS24b].

In this work we prove that solutions to Plateau’s problem in R!! are generically
smooth. We also prove that in any R""!, an area-minimizing M will have a
< n — 10 — ¢, dimensional singular set after perhaps a C*°-perturbation of the
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Plateau boundary. We had previously obtained the upper bound < n —9 — €, in
[CMS24].

We also prove the analogous results in the context of area-minimization in in-
tegral homology classes of a closed oriented manifold (N"*1, g). As is well-known,
this extends Schoen—Yau’s stable minimal hypersurface obstruction to positive
scalar curvature up to dimension 11 and also implies the positive mass theorem in
these dimensions after a well-known reduction of Lohkamp. See also the work of
Schoen—Yau and Lohkamp [SY?22, Loh23].

The results. We obtain the following generalizations of the main result of
[CMS23a, CMS24]. All submanifolds are considered smoothly embedded, and
if ¥ is such, we denote sing ¥ = ¥\ X. All singular set dimensions are Hausdorff
dimensions.

For the Plateau problem in R"*! we show:

Theorem 1. Consider a smooth, closed, oriented, (n—1)-dimensional submanifold
I' C R, There exist C*°-small perturbations I" of T (in the space of C*°
submanifolds) such that every minimizing integral n-current with boundary [U'] is
of the form [¥'] for a smooth, precompact, oriented hypersurface ¥’ C R™ 1 with
oY =T', and

sing® =0 ifn+1 <11, else dimsing®’ <n — 10 — €,
where £, > 0 is a dimensional constant.

For the homological Plateau problem in a manifold we have:

Theorem 2. Consider a closed, oriented, (n+1)-dimensional Riemannian mani-
fold (N, g). Let [a] € H,(N,Z)\{[0]}. There exist C*°-small perturbations g’ of g
such that every g’'-minimizing integral n-current in [ is of the form Z?Zl AP
for disjoint, smooth, precompact, oriented hypersurfaces X, ..., E’Q C N without
boundary and

singX! =0 if n+1 < 11, else dimsing®, <n — 10 — €,
and multiplicities kY, . . ., kb € Z; again, £, > 0 is a dimensional constant.

Remark. It is a well-known consequence of Allard’s interior regularity theorem
[All72] and Hardt—Simon’s boundary regularity theorem [HS79] that sing ¥’ = () is
an open condition in such a multiplicity-one setting. Therefore, when n 4+ 1 < 11,
the set of IV, ¢’ for which the corresponding minimizers are smooth objects is
simultaneously open (by this observation) and dense (by Theorems 1 and 2), and
thus Baire generic.
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The large-scale structure of complete 4-manifolds with nonnegative

Ricci curvature and Euclidean volume growth
DANIELE SEMOLA
(joint work with Elia Brue, Alessandro Pigati)

A smooth complete 4-manifold (M*, g) with Ric > 0 is said to have Euclidean
volume growth if there exists ¢ > 0 such that for some p € M* there holds

(1)

vol(B,(p))

7 >c¢ forallr>0.
r
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In joint work with E. Brue¢ and A. Pigati we prove that for every such (M?*,g)
there exists a spherical space form S2/T" such that every blow-down of (M*,g) is
a cone with cross-section homeomorphic to S$?/T'. Our main theorem is inspired
by the following result obtained by J. Cheeger and A. Naber earlier in [6]:

Theorem 1. Let (M*,g) be a Ricci-flat 4-manifold satisfying (1). There exists a
finite group T' < O(4) acting freely on S® such that (M*,7=2g,p) — (R*/T, geue1, 0)
as r — oo in the pointed Gromov-Hausdorff sense and in C\5. away from p and 0.

The goal of the talk was to discuss which aspects of Theorem 1 continue to hold
and which ones fail when the Ricci-flat assumption is weakened to Ric > 0.

Let (M*,g) have Ric > 0 and satisfy (1). By Gromov’s precompactness the-
orem, for any sequence r; — 0o, up to the extraction of a subsequence that we
do not relabel, (M4, r;zg,p) — (Y,dy, q) in the pointed Gromov-Hausdorff sense
(from now on abbreviated as pGH), where (Y,dy,q) is a complete and pointed
metric space. Any such metric space is called a blow-down of (M*, g). Note that
neither the dimension nor the Euclidean volume growth condition play any role
for the moment. Without further assumptions, the metric structure of blow-downs
is poorly understood. On the other hand, if the manifold has Euclidean volume
growth, Cheeger and T.-H. Colding proved in [4, Theorem 7.6] that every blow-
down is a metric cone. More precisely, there exists a compact metric space (Z,dy)
(the cross-section of the cone) with diam(Z) < 7 such that

(2) Y =[0,+00) X Z/{0}xz ;
and for every (r1, z1), (r2,22) € Y there holds
(3) d} ((r1,21), (r2, 22)) = 13 + 735 — 2ry179 cos(dz (21, 22)) .

In [9], G. Perelman constructed a manifold (M*, g) with Ric > 0 and Euclidean
volume growth whose blow-down is not unique. Letting

Coo :={(Z,dz) : (Z,dz)is the cross-section of a blow-down of (M*, g)}

be the collection of cross-sections of blow-downs, C., is compact and connected
with respect to the Gromov-Hausdorff topology. Moreover, by volume convergence
[5, Theorem 5.4], the 3-dimensional Hausdorff measure H? is constant on Cu..

The moral behind our main result can be easily illustrated under the additional
assumption that all the elements of Co, are smooth Riemannian manifolds. Under
such assumption, each blow-down C(Z) of (M*, g) has Ric > 0 in the smooth part,
i.e., in the complement of the vertex. An elementary computation shows this holds
if and only if Ricz > 2. Thanks to R. Hamilton’s work, any cross-section must
be diffeomorphic to a spherical space form. Moreover, by Cheeger and Colding’s
stability [5, Theorem A.1.3], the diffeomorphism type is constant on Ce.

In general, no smoothness can be expected for the cross-sections (Z,dy) €
Coo. Nevertheless, a combination of the main results obtained in [3] allows us to
make the previous formal argument fully rigorous also in the general case. More
precisely, we prove:
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Theorem 2. Let (M*,g) be smooth, complete, with Ric > 0 and satisfying (1).
There exists a finite group T' < O(4) acting freely on S such that for every cross-
section of some blow-down (Z,dz) € Coo, (Z,dz, H?) is an RCD(2,3) space with
Z homeomorphic to S3/T.

There are three upshots for Theorem 2:

i) The cross-section of every blow-down is a topological manifold;
ii) The possible topologies of the cross-sections are restricted;
iii) For a fixed (M*, g) the homeomorphism type is unique on Co.

Both i) and iii) might fail in higher dimensions. For i), this can be understood by
considering the blow-down of the product metric ggg + dr? on T*S? x R, where
gen denotes the Eguchi-Hanson metric on the cotangent bundle of S2. Such metric
is Ricci-flat with Euclidean volume growth. Its (unique) blow-down is isometric to
C (S*/(2/27Z)), where Z/2Z acts isometrically by involution with two fixed points
on S*. In particular, the cross-section is an orbifold which is not a topological
manifold. For ii), the potential failure of the uniqueness of the topological type
on Co is illustrated by the examples constructed by Colding and Naber in [7]. In
the recent [10], S. Zhou constructed examples of complete (M*, g) with Ric > 0
and Euclidean volume growth asymptotic to C(S3/T) for every finite I' < O(4)
acting freely on S3. Here, 0 < § = §(I') < 1 denotes the radius of S, which is
endowed with a round metric. This result shows that every admissible topology
for the cross-section of some blow-down according to Theorem 2 can arise. On the
other hand, it is open whether every RCD(2,3) metric on some spherical space
form can arise in this way.
The main ingredients for the proof of Theorem 2 are:

i) A statement ruling out the existence of noncollapsed Ricci limit spaces of
the form R x C(W?) with W2 homeomorphic to RP?, see [3, Thm. 1.6];
ii) A manifold recognition theorem for RCD(2, 3) spaces, see [3, Thm. 1.8];
iii) A topological stability theorem for noncollapsing sequences of RCD(2, 3)
spaces, see [3, Thm. 1.11].

Theorem 2 has been recently used to obtain some restrictions on the topology
of complete 4-manifolds (M*, g) with Ric > 0 and Euclidean volume growth:

i) C. Brena, Brue and Pigati proved in [2] that M* must be orientable;
ii) H. Huang and X.-T. Huang proved in [8] that m; (M*) is isomorphic to a
quotient of the fundamental group of a spherical space form.

Cheeger and Naber’s Theorem 1 can be used to show that a contractible, Ricci-
flat (M*?,g) with Euclidean volume growth must be isometric to the Euclidean
space with the flat metric, see [1, Lemma 6.3]. In the context of Theorem 2, we
raise the following:

Conjecture 1. Let (M*,g) be a smooth, complete, contractible 4-manifold with
Ric > 0 and FEuclidean volume growth. Then the following hold:

i) M* is homeomorphic to R*;
i) for every (Z,dz) € Coo, Z is homeomorphic to S>.
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Fine structure of two-dimensional mod(q) area-minimizing
hypersurfaces near branch points

ANNA SKOROBOGATOVA
(joint work with Luca Spolaor, Salvatore Stuvard)

Let X™ be a minimal surface in a smooth Riemannian manifold (M™*" g). Aside
from existence of such surfaces ¥, a major question concerning the behavior of
such surfaces ¥ is their regularity. In general, minimal surfaces can exhibit sin-
gularities, and in full generality, one does not even know if the dimension of the
singular set is strictly smaller than m. In codimension one, under the additional
assumption of stability and some other structural conditions, there has been some
significant progress in recent years (see e.g. [13, 8]). However, particularly in
higher codimension, very little is known. On the other hand, the regularity the-
ory for area-minimizing surfaces of arbitrary dimension and codimension is much
more approachable. Indeed, in the framework of integral currents, where surfaces
can have integer multiplicies, Almgren’s celebrated Big Regularity Theorem [1]
yields a singular set of dimension m — 2. However, this is better than the regu-
larity that physical soap films exhibit. A natural and more physically reasonable
framework for the study of the Plateau problem is via mod(q) currents, for a given
positive integer ¢. Such currents typically have an (m — 1)-dimensional singular
set, and the regularity theory seems to agree with that expected for more general
stable minimal surfaces, while still maintaining a minimization property. They are
defined as follows.
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For integer rectifiable currents 7™ and S™, recall the mod(q) flat distance
FUT - S) =inf{(M(R) + M(W):T — S =R™+o(W™) +qz™}.

Definition 1. An m-dimensional mod(q) area-minimizing current 7" in (M™*", g)
is a representative in its F9-equivalence class [T, with

M(T) < M(5),

for every S = (T + OR) mod(q) for some (m + 1)-dimensional integer rectifiable
current R in R™T",

One of the first groundbreaking results in the structure of the singularities of
codimension 1 area-minimizing mod(q) currents was the work of Taylor [9], which
showed that a two-dimensional area-minimizing mod(3) surface in R? is locally
a Ch“-perturbation of a two-dimensional Y-singularity near any singular point.
In parituclar, its singular set is locally an embedded C'*“-submanifold. Another
important early result for area-minimizing mod(q) hypersurfaces of any dimension
was due to White [12], who demonstrated that any points of density strictly lower
than £ are regular points, but this is very specific to the codimension being one,
and no longer holds for surfaces of higher codimension, which may have classical
branch points such as {w? = 23} in C? =2 R%.

A combination of the recent works [2, 3, 4, 5, 6, 8, 10, 13] yields the follow-
ing general structural theorem for area-minimizing mod(q) currents of arbitrary
dimension and codimension.

Theorem 1. Let g € N>o. If T™ is a mod(q) area-minimizing current in a smooth
Riemannian manifold (M™% g), then the interior singular set decomposes as

Sing(T) = Sing” *""(T) US™ HT)\ S 3(T)u S™(T)

———
(m — 2)-rectifiable loc. (m — 1)-dim. (m — 2)-rectifiable
ch mfds

where Sing® " (T) denotes the set of branch points, and S*(T) denotes the k-th
stratum T, characterizing the mazimal number of translation-invariant directions
that tangent cones may have.

If n = 1, then locally around every x € S™ YT)\ 8™ 2(T), T is a C1-
perturbation of an open book singularity model, supported by a finite collection of
half-spaces meeting at a common (m — 1)-dimensional interface.

This in particular recovers an analogous structure to that of Taylor for codi-
mension one area-minimizing mod(g) currents near (m — 1)-invariant cones.

A natural follow-up question concerns the structure of such currents near other
singularity models. Particularly, one would like to understand the behavior near
branch points, where the surface has at least one tangent cone supported in an
m-dimensional plane with multiplicity. In joint work [11] with Luca Spolaor and
Salvatore Stuvard, we answer this question in the case when it is two-dimensional
and the codimension is one:
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Theorem 2. Let T be a 2-dimensional area-minimizing current mod(q) in a
smooth Riemannian 3-manifold. Then, for any density & flat singular point p of
T, there exists ro(p) > 0 and o > 0 such that TLB,,(p) is a C1*-perturbation of
the multigraph of a special Z-valued function (see [2]) arising from a superposition
of homogeneous harmonic polynomials of the same degree.

We additionally demonstrate that top density branch points (namely, the “gen-
uine mod(q) ones”) are isolated for two-dimensional surfaces of any codimension.
The key idea is to demonstrate a power law decay for Almgren’s frequency function,
which in this context is used to measure the order of collapsing of such surfaces
near branch points, relative to their (smoothed out) average known as the center
manifold. Such a decay may be obtained by a suitable competitor argument for
the (multi-valued) Dirichlet energy for a suitably strong graphical approximation
to the surface near a given branch point, since the latter approximation is almost
energy-minimizing in a quantitative sense.

The higher codimension case of such perturbative results for two dimensional
surfaces both near branch points and near the (m — 1)-symmetric “classical singu-
larities” described above is ongoing work, and requires us to rule out the possibility
of classical branch points accumulating to top density branch points.
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Isoperimetric gaps in non-positive curvature
STEPHAN STADLER
(joint work with Cornelia Drutu, Urs Lang, Panos Papasoglu, David Urech)

Isoperimetric filling inequalities in dimension n + 1 control the volume needed in
order to fill an n-cycle S by an (n + 1)-chain V. Their specific form is intimately
related to the geometry of the underlying metric space. A central role is played
by isoperimetric inequalites of the Euclidean type

vol,+1(V) < const - Voln,(5)1+1/".

By a fundamental result of Wenger, which builds on earlier work of Gromov,
such inequalities hold in particular in all Banach spaces and CAT(0) spaces. It
is natural to expect that for CAT(0) spaces, Euclidean isoperimetric inequalities
continue to hold when the classes of admissible cycles and fillings are restricted
to Lipschitz spheres and balls, respectively. In the case n = 1 — when circles
are filled by discs — we have a good understanding. It has recently been shown
that non-positive curvature is equivalent to a Euclidean isoperimetric inequality
with the sharp constant 1/(47). Moreover, a length space that admits a quadratic
isoperimetric inequality for curves with a constant strictly smaller than 1/(4m) is
necessarily Gromov hyperbolic. These sharp results were predated by the general
observation, originally due to Gromov, that length spaces with a subquadratic
isoperimetric inequality must in fact satisfy a linear isoperimetric inequality.

In joint work with Cornelia Drutu, Urs Lang and Panos Papasoglu we estab-
lished a sharp isoperimetric gap theorem for fillings of 2-spheres by 3-balls in
CAT(0) spaces.

Theorem 1 ([1, Theorem A]). For a proper CAT(0) space X, the following are
equivalent:

(1) There exists a constant ¢ < 1/(6+/7) such that every Lipschitz 2-sphere
S C X of large area admits a filling by a Lipschitz 3-ball B C X with
volume

vol(B) < ¢ - area(S5)*/2.

(2) For every 6 > 0 there exists a constant C = C(0) such that every Lipschitz
2-sphere S C X extends to a Lipschitz 3-ball B C X with volume

vol(B) < C - area(S)' 1.
(3) The asymptotic rank of X is at most 2.
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The notion of asymptotic rank appearing in the last item is due to Gromov and
plays an important role in large scale geometry. For proper CAT(0) spaces with
cocompact isometry group, the asymptotic rank equals the maximal n such that X
contains an n-flat, that is, an isometric copy of R™. In particular, the isoperimetric
inequality in the second item of Theorem 1 holds for the universal cover X of any
compact manifold of non-positive curvature provided that X contains no 3-flat.
For a general CAT(0) space X, the asymptotic rank is at most n if and only if no
asymptotic cone of X contains an (n + 1)-flat, and it is at most 1 if and only if X
is Gromov hyperbolic.

Gromov conjectured that proper cocompact CAT(0) spaces of asymptotic rank
at most n admit linear isoperimetric inequalities

vol,41 (V') < const - vol, (S)

for fillings of n-cycles by (n + 1)-chains. For general CAT(0) spaces of asymptotic
rank at most n, where n > 2, the best known result in this direction is Wenger’s
sub-Euclidean inequality, stating that every n-cycle of mass s admits a filling with
mass at most o(s'T/") as s — oo.

For closed Lipschitz surfaces of higher genus we can prove the following.

Corollary 1 ([1, Corollary B]). Let X be a proper CAT(0) space of asymptotic
rank at most 2. For every § > 0 and every integer g > 0 there exists a constant
Cy = Cy(0) such that every closed Lipschitz surface ¥ C X of genus g extends to
a Lipschitz handlebody H C X with volume

vol(H) < O - area(X)' 0.

In joint work with Urs Lang and David Urech we address the case of general k-
cycles for k > 2 in a (not necessarily proper) CAT(0) space X of asymptotic rank 2.
We consider the chain complex I, .(X) of metric integral currents with compact
support, which comprises all Lipschitz singular chains. The proof of Theorem 1
made use of the topology of surfaces. To cope with the missing topological control,
we assume that X has finite asymptotic Nagata dimension, a variant of Gromov’s
asymptotic dimension.

Theorem 2 ([2, Theorem 1.1)). Let X be a CAT(0) space of asymptotic rank
and most 2 and of finite asymptotic Nagata dimension. Then for every cycle
T €1 c(X) in X of dimension k > 2 and every 6 > 0 there exists a V € Ijt1q¢(X)
with boundary OV =T and mass

M(V) < C-M(T)*+?

for some constant C depending only on X, k, and 0.
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Scalar Curvature Rigidity and the Higher Mapping Degree
TromAs TONY

A foundational result in scalar curvature comparison geometry is Llarull’s rigid-
ity theorem [2]. It states that every smooth area non-increasing map f: M — S™
from an n-dimensional closed connected Riemannian spin manifold onto the round
sphere, n > 3, with non-zero degree and scaly; > n(n — 1) = scalgn, is an isom-
etry. Goette and Semmelmann [1] generalized this result to area non-increasing
spin maps f: M — N of non-zero A—degree onto a closed connected oriented
Riemannian manifold of non-vanishing Euler characteristic and non-negative cur-
vature operator.

In this report, we present a recent generalization of the extremality and rigidity
statement of Goette and Semmelmann [1, Theorem 2.4] to spin maps between not
necessarily orientable manifolds where the topological condition on the A—degree
is replaced by a less restrictive index-theoretical condition involving the so-called
higher mapping degree (Theorem 1). The proof is based on the Dirac operator
method. While a non-zero classical index always implies a non-trivial kernel of the
corresponding Dirac operator, this is in general no longer true for a non-vanishing
higher index. To overcome this difficulty, a new method is developed by the au-
thor in [5] that extracts from a non-vanishing higher index a geometrically useful
family of almost harmonic sections (Lemma 1).

Theorem 1 ([5, Theorem A]). Let f: (M,gn) — (N,gn) be an area nmon-
increasing spin map between two closed connected Riemannian manifolds of di-
mension n + k and n, respectively. Suppose that the curvature operator of N is
non-negative and

(1) X(N) - degni(f) # 0 € KOy (C*my (M)).

Then scaly; > scaly of on M implies scaly; = scaly of. If, moreover, scaly >
2Ricy > 0 (or f is distance non-increasing and Ricy > 0), then scalys > scaly of
implies that f is a Riemannian submersion.

Here, we call the map f area non-increasing if gps > f*gn holds on A2TM,
and spin if wi(TM) = f*wi(TN) and wo(TM) = f*w2(TN). Moreover, x(N)
denotes the Euler characteristic of N, and the higher mapping degree is defined
as follows.

Definition 1. The higher degree of the map f is defined via
degpi(f) = ind(Dsar, (M), ) € KOR(C*mi(M))

for a reqular value p of the map f. Here SM,, denotes the Clj-linear spinor bundle
of M, = f~1(p), L(M) the Mishchenko bundle of M [3], C*m1(M) the mazimal
group C*-algebra of the fundamental group of M, and KOy (C*my(M)) its k-th Real
K-theory group.

Theorem 1 applies to the projections pry: " x T* — $?* and pr,: RP*" x
¥+ RP?™ for j € {1,2} and ¥/ an exotic sphere with non-vanishing
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Hitchin invariant. In both examples the fl—degree vanishes, hence Theorem 1 is a
proper extension of the classical rigidity statement by Goette and Semmelmann
[1, Theorem 2.4].

The generalization in Theorem 1 is motivated by the fact that the Rosenberg
index [4] of a closed connected spin manifold M is the most general known index-
theoretical obstruction to the existence of a positive scalar curvature metric on M.
Since the Rosenberg index of the n-torus does not vanish, there exists no pos-
itive scalar curvature metric on the n-torus. This information cannot be read
off the classical index of the spin Dirac operator. This is the same phenome-
non as that the classical result by Goette and Semmelmann [1] does not apply to
pry: S?" x T™ — S2" but the higher version in Theorem 1 does. The Rosenberg
index is known to be non-zero for many closed connected spin manifolds, includ-
ing (area-)enlargeable manifolds, those admitting metrics of non-positive sectional
curvature, and aspherical manifolds whose fundamental groups satisfy the Novikov
conjecture.

We now provide an outline of the proof of Theorem 1. Since the map f is
spin, there exists an indefinite spin structure on the vector bundle TM & f*TN
equipped with the indefinite metric gy @ (—f*gn). We fix such an indefinite spin
structure, and twist its induced Cl,,4 »-linear spinor bundle & by the Mishchenko
bundle of M. The induced Dirac operator D, satisfies, as in the classical proof by
Goette and Semmelmann [1], the Schrodinger-Lichnerowicz type formula

(2) Dr > V*V—i—i(scalM—scalNOf).

Moreover, the following index theorem holds.

Theorem 2 ([5, Theorem 5.4]). The higher index of D satisfies
ind(Dz) = x(N) - degni(f) € KOx(C*m1(M)).

We obtain by equation 1 and Theorem 2 that the higher index of D, does not
vanish. A main difficulty in the proof of the extremality and rigidity statement
of Theorem 1 is that a non-vanishing higher index does in general not give rise
to a non-trivial kernel of the corresponding Dirac operator. The following lemma
establishes a new method that extracts from a non-vanishing higher index a family
of geometrically useful sections of the corresponding Dirac bundle.

Lemma 1 ([5, Lemma D]). Let M be a closed Riemannian manifold, A a graded
Real unital C*-algebra, and $ — M a graded Real A-linear Dirac bundle with
induced A-linear Dirac operator ID. If the higher index of ID does not vanish, the
following holds.

(1) There exists a family {uc}eso of almost IP-harmonic sections of $, i.e.

luellz> =1 and || D uc| 2> < € for alli > 1 and all € > 0.
(2) If, moreover, ||Vue|rz < € for all e > 0, then there exist positive constants
C,r such that ||Vue||oo < Ce” for all € € (0,1).

The first part of Lemma 1 is well-known and follows from a standard pro-
cedure using the functional calculus of the Dirac operator. Combined with the
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Schrédinger-Lichnerowicz formula, it provides a proof of the fact that a non-
vanishing Rosenberg index is an obstruction to a positive scalar curvature metric
on closed connected spin manifolds. The proof of the second statement in Lemma
1 is mainly based on Moser iteration as well as the Sobolev embedding and the
elliptic estimates for the Dirac operator. Lemma 1 part (2) is the key observation
that makes it possible to use higher index theory in the context of scalar curvature
rigidity. In addition to the application in Theorem 1, it also yields a spinorial proof
of the rigidity statement that every closed connected Riemannian spin manifold
of non-vanishing Rosenberg index and non-negative scalar curvature is already
Ricci-flat.

We proceed with the proof of Theorem 1. By Theorem 2, Lemma 1 and the
Schrédinger-Lichnerowicz type formula in Equation 2, there exists a family {u¢}eso
of sections of S ® L£(M) which is almost D,-harmonic and almost constant. This
means there exist positive constants C,r such that

_ - . _ 1
[Te — (ue, ue)p|| < Ce",  with T, = W /M<u€,u€>pdp,

for all p € M and all € € (0,1). Finally, we obtain
|| scalys — scaly of||L1 < ||<(sca1M —scaly of)ue, u€>L2 || <e

for all sufficiently small € > 0. Taking the limit ¢ — 0 yields scaly; = scaly of,
and the extremality statement in Theorem 1 is proved. A similar consideration
generalizes the classical proof of the rigidity statement in [1, Section 1.c] to its
higher version in Theorem 1.
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