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Introduction by the Organizers

The workshop “Differentialgeometrie im Großen” brought together a broad group
of mathematicians working in various areas of differential geometry. The focus
was on geometric questions that link local and global behavior, with topics ranging
from geometric flows and scalar curvature to variational problems, singular spaces,
and large-scale geometry.

A significant number of talks were devoted to geometric flows, particularly mean
curvature flow and related evolution equations. Several presentations addressed
ancient solutions and classification of singularities, including work on flows in di-
mension four and connections. The resolution of the Multiplicity One Conjecture
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and its consequences for understanding the structure of singularities in mean cur-
vature flow also featured in one of the talks.

Scalar curvature appeared in many forms throughout the week. Talks addressed
the existence and structure of 3- and 4-manifolds with positive scalar curvature,
rigidity phenomena, and smoothing of singular metrics. Inverse mean curvature
flow was used in one talk as a tool to study scalar curvature and geometric in-
equalities on 3-manifolds.

Minimal surfaces and variational methods formed another core area of the work-
shop. Topics included the construction of minimal surfaces of prescribed genus in
3-manifolds with positive Ricci curvature, regularity of capillary hypersurfaces,
and generic regularity results for minimizing hypersurfaces in dimension 11. An-
other talk discussed the fine structure of two-dimensional area-minimizing currents
near branch points. Related work explored energy-minimizing harmonic spheres
in singular metric spaces.

One talk focused on the large-scale geometry of complete manifolds with non-
negative Ricci curvature and Euclidean volume growth, combining tools from anal-
ysis and metric geometry. Other contributions dealt with width-type invariants
and p-sweepouts in the sense of Gromov, Einstein manifolds, isoperimetric gaps
in nonpositive curvature, and aspects of special holonomy, including constructions
of G2 and Calabi–Yau monopoles and the use of geometric flows in G2-geometry.

The program included 21 talks in total. Most were standard research talks of
around 50 minutes, and three shorter talks of about 30 minutes were given by junior
participants. The schedule left room for informal discussions and collaboration
throughout the week. As usual, the Wednesday afternoon hike was planned, but
due to an ongoing heat wave, only a small and hardy group of participants took
part.

In summary, the workshop covered a broad and lively range of topics. While
the techniques and settings varied widely, many talks reflected a shared interest in
how analytic and geometric tools can be used to study spaces with rich structure,
especially in connection with singularities, curvature, and topology. We hope the
discussions and connections from this week will continue to develop into future
work.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Smoothing L
∞ Riemannian metrics with nonnegative scalar curvature

outside of a singular set

Paula Burkhardt-Guim

We show that any L∞ Riemannian metric g on Rn that is smooth with nonnegative
scalar curvature away from a singular set of finite (n− α)-dimensional Minkowski
content, for some α > 2, admits an approximation by smooth Riemannian metrics
with nonnegative scalar curvature, provided that g is sufficiently close in L∞ to the
Euclidean metric. The approximation is given by time slices of the Ricci-DeTurck
flow, which converge locally in C∞ to g away from the singular set. We also identify
conditions under which a smooth Ricci-DeTurck flow starting from a L∞ metric
that is uniformly bilipschitz to Euclidean space and smooth with nonnegative
scalar curvature away from a finite set of points must have nonnegative scalar
curvature for positive times. The work described here is carried out in [2].

For a Riemannian metric g, let R(g) denote the scalar curvature of g. Let δ
denote the Euclidean metric on Rn. We show the following:

Theorem 1. For all α > 2 and n ≥ 3 there exists ε̄(α, n) such that the following
is true:

Suppose that g is a measurable metric on Rn such that ||g−δ||L∞(Rn) < ε̄, where
|| · ||L∞(Rn) is measured with respect to δ. Suppose that g is smooth on Rn \ S,
where S ⊂ Rn is a set of finite (n− α)-dimensional Minkowski content, and that
R(g) ≥ 0 on Rn \ S. Then there exists a smooth Ricci-DeTurck flow (gt)t∈(0,∞)

with respect to the background metric δ such that

R(gt) ≥ 0 for all t > 0

and

gt
C∞

loc(R
n\S)−−−−−−−→

tց0
g.

In particular, g admits an approximation in C∞
loc(R

n \ S) by smooth metrics with
nonnegative scalar curvature.

Note that in Theorem 1, g need not be continuous, and that, aside from the
Minkowski content requirement, we do not impose geometric conditions on S.

Question 1. For n ≥ 3, does there exist a L∞ metric on Rn that is uniformly
bilipschitz to the Euclidean metric smooth outside of a singular set of finite (n−2)-
dimensional Minkowski content, for which the conclusion of Theorem 1 fails? Does
there exist such a metric for which the (n− 2)-dimensional Minkowski content of
the singular set is 0?

Question 2. Suppose that in the setting of Theorem 1, S has Hausdorff dimension
equal to n− α for some α > 2, rather than finite (n− α)-dimensional Minkowski
content. Does the conclusion of Theorem 1 still hold?
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Given that the scalar curvature under Ricci flow is a supersolution to the heat
equation, Theorem 1 may seem surprising by analogy: consider a negative Gauss-
ian evolving by the heat equation on Rn × (0,∞), which tends to 0 everywhere
except at the origin as t ց 0. This example demonstrates that the conclusion of
Theorem 1 is false when R(gt) is replaced with a solution to the heat equation
with respect to δ. The key differences between this example and the statement
of Theorem 1 are that the evolution of the volume form under Ricci flow is also
influenced by the scalar curvature and also that there is a positive source term in
the evolution equation for the scalar curvature under Ricci flow.

We expect results analogous to Theorem 1 to hold on manifolds for ε perturba-
tions of complete smooth metrics with bounded curvature, in view of [6] and [3].
The condition that the metric g be (1 + ε)-bilipschitz to a fixed complete smooth
background metric of bounded curvature is used in two ways:

(1) To guarantee the existence of a Ricci-DeTurck flow starting from g, as in
the work of [5] or [6], and

(2) To ensure an a priori bound of the form R(gt) ≥ −cε/t for some c > 0, for
all t > 0, which in turn is used to derive an upper bound for a backwards
heat kernel, as in [1, Theorem 2.3].

Interestingly, the second use seems to be somewhat inessential in the case that
the singular set consists of finitely many points:

Theorem 2. Suppose that S ⊂ Rn has finite 0-dimensional Minkowski content.
Suppose that g is a measurable Riemannian metric on Rn that is smooth on Rn \S
and satisfies R(g) ≥ 0 on this region. Suppose that there exists a smooth Ricci-
DeTurck flow (gt)t∈(0,T ), defined for some T > 0, on Rn with respect to the back-
ground metric δ, satisfying:x

(1) gt
C2

loc(R
n\S)−−−−−−−→

tց0
g,

(2) there exists some c > 0 such that for k = 1, 2, |∇k(gt)|δ ≤ c/tk/2, where
∇ is taken with respect to δ,

(3) there exists some b > 0 such that gt is (1 + b)-bilipschitz to δ for all
t ∈ (0, T ), and

(4) there exists some 0 < c0 < n/2 such that for all t ∈ (0, T ), R(gt) ≥ −c0/t.
Then R(gt) ≥ 0 for all t ∈ (0, T ).

We note that any Ricci-DeTurck flow (gt)t∈(0,T ) satisfies a universal lower scalar
curvature bound of the form given by item (4) with c0 = n/2. Theorem 2 does
not address the edge case c0 = n/2.

In a previous draft of this paper that was posted on the arXiv, we posed the
following question concerning the sharpness of the (1 + ε)-bilipschitz condition:

Question 3. Is the (1+ε)-bilipschitz condition necessary? That is, are is Theorem
1 also true for metrics that are merely uniformly bilipschitz to some fixed complete
smooth background metric of bounded curvature?

Question 3 has since been answered by Cecchini – Frenck – Zeidler [4, Theorem
B]. They show that the (1+ε)-bilipschitz condition is indeed necessary: for certain
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n ≥ 8 there exists a metric g on Rn that is uniformly bilipschitz to the Euclidean
metric and smooth with positive scalar curvature on Rn \ {0}, but for which there
exists no smooth family of Riemannian metrics (gt)t∈(0,T ) satisfying both

R(gt) ≥ 0 for all t ∈ (0, T )

and

gt
C2

loc(R
n\{0})−−−−−−−−→

tց0
g.

In particular, Theorem 2 places restrictions on possible Ricci-DeTurck flows, with
the background metric δ, starting from these metrics. We note that the optimal
constant ε needed in Theorem 1 is not known.
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Thom’s gradient conjecture for geometric evolution equations

Beomjun Choi

(joint work with Pei-Ken Hung)

This work is motivated by a conjecture of R. Thom [7], proved affirmatively by
Kurdyka–Mostowski–Parusinski [4]:

Theorem 1 (Thom’s gradient conjecture). Let x(t) be a convergent gradient flow
of an analytic potential f : Rn → R, i.e. ẋ = −∇f(x) with limt→∞ x(t) = x∞.
Then the secant direction

θ(t) =
x(t) − x∞
|x(t) − x∞|

converges to a limit θ∞ ∈ Sn−1 as t→ ∞.

Prior to this,  Lojasiewicz [5] had addressed convergence of gradient flows for
analytic potentials. Thom’s conjecture concerns the finer asymptotics of the di-
rection of convergence.

Many geometric evolution equations, for example the mean curvature flow,
Yamabe flow, and Yang-Mills flow, can be viewed (at least formally) as gradi-
ent flows on infinite-dimensional spaces of surfaces, metrics, or connections. Si-
mon’s pioneering work [6] adopted the  Lojasiewicz inequality into this setting and
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triggered a long line of research on the convergence of solution. Recent progress
in geometric flows, including the classification of ancient solutions, the theory of
generic perturbations, and flows through singularities, hinges crucially on under-
standing finer asymptotics of solutions, going beyond mere convergence results.

Our goal is to characterize the possible rates and directions of convergence for
a class of geometric evolution equations by exploiting their analytic gradient flow
structure. Working on a closed manifold Σ as in Simon’s framework, let a solution
u(t, ·) satisfies either

(1) u̇+ ∇F(u) = N (u),

or

(2) ü+ u̇+ ∇F(u) = N (u).

Here F is an analytic functional on sections of a vector bundle over Σ such that
∇F(u) is the Euler-Lagrange operator whose minus is an elliptic operator, and
N (u) collects lower order nonlinear terms (could be thought as zero for a sake of
simplicity). For the precise assumptions, we refer the reader to our preprint [3].
For convergent solution, after recentering, we may assume that u(t) → 0 and 0 is
a stationary solution to the equation. We state the main theorem by dividing it
into two cases.

Theorem 2 (fast convergence, C.-Hung [3]). If a solution to (1) satisfies ‖u(t)‖ =
O(e−δt) for some δ > 0, then either u ≡ 0 or there exist λ > 0, C 6= 0, and a
smooth eigensection ϕ with ∇2F(0)ϕ = λϕ such that

u(t) = C e−λtϕ+ o
(
e−λt

)
.

Thus exponential decay occurs only along a stable eigendirection of ∇2F(0),
with rate determined by its eigenvalue. Note there holds a corresponding theorem
for solutions to (2).

Next, when exponential decay fails, dynamics in the kernel of ∇2F(0) and
analyticity of F become decisive.

Theorem 3 (slow convergence, C.-Hung [3]). There exists a finite set Z(F) ⊂
Q≥3× (0,∞) such that if ‖u(t)‖eδt → ∞ for every δ > 0, then for some (ℓ, α) ∈ Z
and ϕ ∈ ker∇2F(0) the solution u(t) satisfies

u(t) =
[
αℓ(ℓ − 2)t

]− 1

ℓ−2ϕ+ o
(
t−

1

ℓ−2

)
.

A guiding example for above slow convergence is the 1-D flow ẋ = −(αxℓ)′,
whose solutions obey x(t) ∼ sign(α)[αℓ(ℓ − 2)t]−1/(ℓ−2). Via subtle reduction
method and a refinement of [4], we show any solution eventually falls into finitely
many such model cases.

Combining two theorems, we settle Thom’s gradient conjecture

Corollary 1. For Simon’s class of equations [6], Thom’s gradient conjecture holds:
u(t)/‖u(t)‖ → ϕ smoothly for some ϕ.
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Remarks. (i) Our convergence rate classification is new even for finite dimensional
gradient flows. (ii) Previous constructions of slowly converging solutions in [1][2]

show the existence of solutions which decay at rate t−
1

p−2 for some integer p ≥ 3.
In terms of our result, this p indeed corresponds to the smallest possible ℓ.

Our results naturally suggest extensions to more general settings, such as non-
compact manifolds or singular spaces. Intriguing future directions include classify-
ing ancient solutions when the kernel of second variation operator is non-integrable,
and exploring V. Arnold’s conjecture concerning convergence of the tangent direc-
tion u̇/|u̇|, which is stronger than Thom’s conjecture and, in the case of mean
curvature flow, implies convergence results for the mean curvature vector profile.
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Improved regularity of capillary minimizing hypersurfaces

Nick Edelen

(joint work with Otis Chodosh, Chao Li)

If you observe liquid in a container you’ll notice the surface will meet the container
at a particular angle. This is called a capillary angle condition, and is determined
by the cohesive/adhesive forces in/between the liquid and container. The total
energy of the liquid is captured by the Gauss free energy: if Ωn+1 is a smooth
(n+ 1)-manifold representing the container, and E ⊂ Ω a subset representing the
liquid, then the Gauss free energy of E is

G(E) = Hn(∂E ∩ intΩ) +

∫

∂E∩∂Ω

σdHn +

∫

E

gdHn+1.

Here the first term is the surface tension (with Hk being the k-dimensional Haus-
dorff measure), the second term is the wetting energy (with energy density σ :
∂Ω → (−1, 1)), and the third term is the gravitational energy.

The liquid configuration E will be a minimizer or critical point for G subject
to a volume constraint. Geometrically, being critical for G is equivalent to ∂E
having mean curvature g+(const) inside Ω, and meeting ∂Ω with angle arccos(σ),
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both understood in a distributional sense. One can think of the interface where E
meets ∂Ω as a kind of non-linear free-boundary problem.

Strictly inside the container, minimizers E of G behave like perimeter-mini-
mizers, so by well-known theory ∂E ∩ intΩ is smooth away from a singular set of
dimension ≤ n− 7, where we recall n is the surface dimension of ∂E. Regularity
at the boundary is less well understood. Works of [1], [3] have shown the singular
set of the boundary interface ∂E∩∂Ω is at most (n−3)-dimensional. In our paper
[2] we improve on this estimate, and for certain ranges of angles (near 0◦, 90◦,
180◦) we get even better bounds.

Theorem 1. There is an ǫ(n) so that the following holds. Let E ⊂ Ωn+1 minimize
G, subject to a possible volume constraint. Then M := ∂E ∩ intΩ is a smooth
hypsurface away from a singular set singM satisfying dim(singM ∩ intΩ) ≤ n− 7
and:

• dim(singM ∩ ∂Ω) ≤ n− 4;
• dim(singM ∩ ∂Ω) ≤ n− 7 where |σ| < ǫ;
• dim(singM ∩ ∂Ω) ≤ n− 5 where |σ − 1| < ǫ or |σ + 1| < ǫ.

Like in the interior setting, there are good compactness, monotonicity, and ǫ-
regularity theorems, which allow you to take tangent cones at the capillary bound-
ary, and to apply the principle of dimension reduction. Therefore proving Theorem
1 boils down to classifying low-dimensional capillary minimizing cones (under pos-
sible angle restrictions) in a half-space as planar. The improved estimate n − 4
comes from adapting an argument of Almgren to show that stable 3-dimensional
capillary cones are planar. The improved estimate n − 7 comes from pertubing
the argument of Simons classifying stable 6-dimensional stable cones as planar.

Arguably the most interesting case of Theorem 1 is when the angle is close to
0◦ or 180◦. We show that capillary minimizing surfaces in a half-space with very
small angle can be rigorously approximated by minimizers u : Rn → R of the
Alt-Caffarelli functional

J(u) =

∫

{u>0}
|Du|2 + 1.

(Such u are often referred to as solutions of the one-phase Bernoulli problem.) The
idea of J being the linearization of capillary has been well-known to experts, but we
make this approximation precise, and moreover we prove a regularity theorem that
says whenever the corresponding u is smooth, then the original capillary surface
is smooth also. So regularity of the small-angle capillary problem is dictated by
the regularity of the one-phase Bernoulli problem. The sharp regularity bound for
one-phase Bernoulli is a hard open question, but is know to be ∈ {n−5, n−6, n−7}.

Almost certainly our bounds are not sharp, which leads to the obvious question:
what is the optimal dimension bound for the singular set of capillary minimizers?
Could this optimal dimension change with the angle? The hopeful guess is that the
best dimension bound is n−7 for all angles, but unfortunately we would expect this
problem to be at least as hard as the corresponding one-phase Bernoulli problem.
We also remark also that while [3], [2] give various upper bounds on the singular
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dimension, currently there are no known lower bound for general angles, as we do
not yet have any rigorous examples of singular minimizing capillary cones with
contact angle 6= 90◦.
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Contractibility of spaces of positive scalar curvature metrics
with symmetry

Bernhard Hanke

(joint work with Christian Bär)

Studying spaces of Riemannian metrics of positive scalar curvature on compact
smooth manifolds has been a major research topic during the past decades. More
specifically, one asks: When are these spaces nonempty? If so, what are their
topological types? Both questions are interesting and nontrivial. We will focus on
the second one here.

Suppose that M is an orientable compact connected smooth manifold without
boundary. If dimM = 2, then, by the uniformization theorem, the space of positive
scalar curvature metrics on M is either empty or contractible. The same is true if
dimM = 3, as shown by Bamler and Kleiner [1], using the Ricci flow in families.
If dimM = 4, Ruberman [14] showed that this space can be disconnected, using
a 1-parameter version of Seiberg-Witten theory.

Suppose that M is a compact smooth manifold of dimension at least 5, possibly
with boundary. The space of Riemannian metrics with positive scalar curvature on
M - with suitable boundary conditions if applicable - can have a very rich topology.
This has been demonstrated by the work of Hitchin [11]; Gromov and Lawson [9];
Hanke, Schick, and Steimle [10]; Botvinnik, Ebert, and Randal–Williams [5]; Ebert
and Randal–Williams [7]; and Bär and Hanke [3], using methods from differential
and geometric topology. In fact, on a fixed manifold, this space may have nonzero
homotopy groups in infinitely many degrees. Furthermore, these homotopy groups
may not be finitely generated.

The picture changes significantly under symmetry assumptions. If Γ is a com-
pact, possibly nonconnected, Lie group that acts smoothly and effectively on a
compact connected smooth manifold M , then we denote by RΓ

>0(M) the space of
Γ-invariant Riemannian metrics of positive scalar curvature on M . This space is
equipped with the C∞-topology.

The following Theorems, 1 and 2, appear in our recent preprint [4].



1602 Oberwolfach Report 30/2025

Theorem 1. Let Γ be a compact Lie group and M be a compact connected smooth
Γ-manifold of dimension at least 2 with nonempty (not necessarily connected)
boundary. Then RΓ

>0(M) is contractible.

For Γ = {1}, this follows from Gromov’s h-principle [8]. An equivariant version
of Gromov’s h-principle by Bierstone [6] applies, if for every closed subgroup H <
Γ, each connected component of the union of all Γ-orbits with isotropy group
conjugate to H has a nonempty intersection with the boundary of M .

Our proof of Theorem 1, which is independent of h-principle techniques, is
based on equivariant Morse theory and conformal deformations around unstable
manifolds. In particular, it makes the construction of the relevant contracting
homotopies quite explicit.

Now assume that M is a compact connected smooth Γ-manifold without bound-
ary. Lawson and Yau [12] showed that if Γ is a compact connected non-abelian
Lie group, then RΓ

>0(M) 6= ∅. Wiemeler [15] showed that if Γ is a compact Lie
group containing a normal S1-subgroup with fixed-point components of codimen-
sion 2 in M (and possibly fixed-point components of higher codimension), then
RΓ

>0(M) 6= ∅. This is not true without the codimension-2 assumption. These
results differ from existence results for positive scalar curvature metrics based on
bordism-theoretic methods in that they are independent of spin and fundamental
group assumptions.

Theorem 2. Let Γ be a compact Lie group and let M be a compact connected
smooth Γ-manifold without boundary. Suppose that Γ contains a normal S1-
subgroup with fixed-point components of codimension 2 in M . Then RΓ

>0(M) is
contractible.

This provides the first complete description of homotopy types of spaces of
positive scalar curvature metrics on closed manifolds in dimensions larger than 3.
Note that Theorem 2 strengthens Wiemeler’s existence result.

We give a rough outline of our argument for proving Theorem 2. According to
a classical result by Palais [13], it is sufficient to show that RΓ

>0(M) is weakly con-
tractible, i.e., it is path-connected and has trivial homotopy groups in all degrees.
Now, let m ≥ 0, let Dm be the closed unit m-ball and let

g : ∂Dm → R
Γ
>0(M)

be a continuous map. We have to show that g extends to a continuous map

G : Dm → R
Γ
>0(M).

(For m = 0, this means that RΓ
>0(M) is nonempty.)

Let S1 be a normal subgroup in Γ such that MS1

contains components of
codimension 2 in M . Let S be the union of these components. This is a Γ-
invariant, possibly disconnected submanifold of M .

Pulling back the metrics g(ξ) along appropriate Γ-equivariant diffeomorphisms
of M , one can assume that for sufficiently small ρ > 0, the closed tubular neighbor-
hood S ⊂ Bρ(S) ⊂M of radius ρ with respect to g(ξ) is independent of ξ ∈ ∂Dm.
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Let M̆ be the complement of the interior of Bρ(S) in M . Both Bρ(S) and M̆ are

compact Γ-manifolds with nonempty boundaries and M̆ is connected.
Let ğ : ∂Dm → RΓ

>0(M̆) be induced by g. By Theorem 1, we can extend ğ

to a continuous map Ğ : Dm → RΓ
>0(M̆). The challenge is extending the map

gBρ(S) : ∂Dm → RΓ
>0(Bρ(S)) induced by g to a continuous map GBρ(S) : Dm →

RΓ
>0(Bρ(S)) in such a way that the union of Ğ(ξ) and GBρ(S)(ξ) defines a smooth

metric on M for all ξ ∈ Dm.
To achieve this, using an equivariant version of the local flexibility lemma [2],

we can assume that the metrics gBρ(S)(ξ) on Bρ(S) are Riemannian submersion
metrics projecting onto S. From this, we can construct a continuous extension
GBρ(S) : Dm → RΓ

>0(Bρ(S)) consisting of Riemannian submersion metrics. We
may need to pass to a smaller ρ in these steps.

To smoothly glue the metrics Ğ(ξ) and GBρ(S)(ξ) along ∂M̆ = ∂Bρ(S), we

shrink the S1-orbits near ∂M̆ ⊂ M̆ with respect to Ğ(ξ) and the fibers of the
Riemannian submersion metrics GBρ(S)(ξ). This ensures that the sum of the

mean curvatures of ∂M̆ ⊂ M̆ and of ∂Bρ(S) ⊂ Bρ(S) with respect to these
metrics, for each ξ ∈ Dm, is non-negative, while preserving the positivity of the
scalar curvature. By a further deformation, one can ensure that, for each ξ ∈ Dm,
the metrics Ğ(ξ) and GBρ(S)(ξ) induce the same metric on ∂M̆ = ∂Bρ(S). In
this situation, the smoothing of mean-convex singularities [3] can be applied to
produce the required smooth Γ-invariant metrics on M . All of these constructions
must be performed with continuous dependence on ξ ∈ Dm and without altering
the given metrics g(ξ) for ξ ∈ ∂Dm.

We conclude with an application of Theorem 2. Let T n = (S1)n be the n-torus.
Recall that a torus manifold is a closed connected smooth 2n-dimensional effective
T n-manifold with nonempty fixed-point set. Smooth compact toric varieties are
examples of torus manifolds.

Corollary 1. Let M be a torus manifold of dimension 2n and let H < T n be a
closed subgroup of dimension at least 1. Then RH

>0(M) is contractible.
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Classification of ancient noncollapsed flows in R4

Robert Haslhofer

(joint work with Kyeongsu Choi)

In this note, we discuss our recent classification of all noncollapsed singularities
for the mean curvature flow in R4. In stark contrast to R3, a classification in
R4 until recently seemed out of reach. Fundamentally, this is because of the
existence of examples with reduced symmetry. More precisely, Hoffman-Ilmanen-
Martin-White constructed a 1-parameter family of 3d-translators that interpolate
between the round 3d-bowl and R×2d-bowl, and are only Z2×O2-symmetric [13].
Similarly, in joint work with Du we constructed a 1-parameter family of 3d-ovals
that interpolate between the O2 × O2-symmetric 3d-oval and R×2d-oval, and are
only Z2

2 × O2-symmetric [10]. Recently, in joint work with K. Choi, building also
on our earlier collaborations with B. Choi, Daskalopoulos, Du, Hershkovits, and
Sesum, we obtained a complete classification of all noncollapsed singularities:

Theorem 1 (classification [6, 7, 9, 8, 4, 5]). Any ancient noncollapsed flow in R4

is, up to scaling and rigid motion,

• either one of the standard shrinkers S3, R× S2, R2 × S1 or R3,
• or the 3d-bowl, or R×2d-bowl, or belongs to the 1-parameter family of
Z2 × O2-symmetric translators from [13],

• or the Z2 × O3-symmetric 3d-oval, or the O2 × O2-symmetric 3d-oval, or
R×2d-oval, or belongs to the 1-parameter family of Z2

2 × O2-symmetric
3d-ovals from [10].

In addition to the 1-parameter families of translators and ovals discussed above,
our list of course also contains all classical historical examples, in particular the
two examples of cohomogeneity-one 3d-ovals from [14] and [12], respectively. As
an immediate consequence we obtain a classification of all potential blowup limits
(and thus a canonical neighborhood theorem) for mean-convex flows in R4:

Corollary 1 (canonical neighborhoods). For the mean curvature flow of mean-
convex hypersurfaces in R4 (or in a 4-manifold) every blowup limit is given by
one of the solutions from the above list. In particular, for every ε > 0 there is an
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Hε = Hε(M0) <∞, such that around any space-time point (p, t) with H(p, t) ≥ Hε

the flow is ε-close (after rescaling) to one of the solutions from the above list.

More generally, in light of Ilmanen’s multiplicity-one and mean-convex neigh-
borhood conjecture, the conclusion of the corollary is also expected to hold for
blowup limits near any generic singularity.

To outline our approach, let M = {Mt} be an ancient noncollapsed mean curvature
flow in R4 that is neither a static plane nor a round shrinking sphere. By general
theory the tangent flow at −∞ is either a neck or a bubble-sheet. Since the neck-
case has already been dealt with in the fundamental work by Brendle-Choi [2, 3]
and Angenent-Daskalopoulos-Sesum [1], we can from now assume that

(1) lim
λ→0

DλM = {R2 × S1(
√

2|t|)}t<0 .

The analysis of such ancient solutions starts by considering the bubble-sheet
function u = u(y, ϑ, τ), which captures the deviation of the renormalized flow

M̄τ = eτ/2M−e−τ from the round bubble-sheet R2 × S1(
√

2). The evolution of u
is governed by the Ornstein-Uhlenbeck type operator

(2) L = ∂2y1
+ ∂2y2

− y1

2 ∂y1
− y2

2 ∂y2
+ 1

2∂
2
ϑ + 1,

which has the unstable eigenfunctions 1, y1, y2, cosϑ, sinϑ, and the neutral eigen-
functions y21−2, y22−2, y1y2, y1 cosϑ, y1 sinϑ, y2 cosϑ, y2 sinϑ. Based on these spec-
tral properties, and taking also into account that the ϑ-dependence is tiny thanks
to Zhu’s symmetry improvement result [15], in joint work with Du we proved:

Theorem 2 (normal form [8, 9]). For τ → −∞, in suitable coordinates, in Gauss-
ian L2-norm we have

(3) u = O(eτ/2) or u =
4−y2

1
−y2

2√
8|τ | + o( 1

|τ |) or u =
2−y2

2√
8|τ | + o( 1

|τ |).

Accordingly, the classification problem can be split up into 3 cases, which we
call the case of fast convergence, slow convergence, and mixed convergence, re-
spectively. In the case of fast convergence, which is easiest case, we have:

Theorem 3 (no wings [6]). There are no wing-like ancient noncollapsed flows in
R4. In particular, if the convergence is fast, then M is either a round shrinking
R2 × S1 or a translating R×2d-bowl.

To prove this, we showed that

(4) uX = (a1y1 + a2y2)eτ/2 + o(eτ/2)

for all τ negative enough depending only on the bubble-sheet scale. Analyzing this
expansion along potential different edges, we concluded that M in fact splits off
a line (hence is not wing-like) and is selfsimilar. The case of slow convergence has
been settled in joint work with B. Choi, Daskalopoulos, Du and Sesum:

Theorem 4 (bubble-sheet ovals [4]). If the convergence is slow, then M is either
the O2×O2-symmetric 3d-oval, or belongs to the one-parameter family of Z2

2×O2-
symmetric 3d-ovals from [10].



1606 Oberwolfach Report 30/2025

Regarding the proof, let us just mention that (3) in the case of slow convergence
means inwards quadratic bending in all directions, which yields that Mt is compact
with axes of length approximately

√

2|t| log |t|. Hence, up to technical challenges,
the problem turned out to be amenable to the techniques from [1]. Finally, in joint
work with Choi, we settled the most difficult case of mixed convergence:

Theorem 5 (mixed convergence [5]). If the convergence is mixed, then M is either
R×2d-oval or is selfsimilarly translating (and hence by [7] is either R×2d-bowl, or
belongs to the 1-parameter family of Z2 × O2-symmetric translators from [13]).

Loosely speaking, to capture the (dauntingly small) slope in y1-direction, we
consider the derivative uX1 = ∂uX/∂y1, which kills the leading order dependence
on y2, and prove that

(5) uX1 = aeτ/2 + o(eτ/2).

This differential neck theorem, which goes vastly beyond (4), can then be used to
conclude that M is noncompact (hence there are no exotic ovals) and either splits
off a line or is selfsimilarly translating.

Finally, for the related problem for 4d Ricci flow we conjecture:

Conjecture 1 ([11]). Any κ-solution in 4d Ricci flow is, up to scaling and finite
quotients, given by one of the following solutions.

• shrinkers: S4, CP 2, S2 × S2, R× S3 or R2 × S2.
• steadies: 4d Bryant soliton, the 3d Bryant soliton times a line, or belongs
to the 1-parameter family of Z2×O3-symmetric steady solitons constructed
by Lai.

• ovals: the Z2×O4-symmetric 4d ovals from Perelman, the 3d ovals times a
line, the O2×O3-symmetric 4d ovals constructed by Buttsworth, or belongs
to the 1-parameter family of Z2

2 × O3-symmetric ovals from [11].
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Closed Einstein manifolds of negative curvature

Frieder Jäckel

(joint work with Ursula Hamenstaedt)

A Riemannian metric g on a smooth manifold M is called Einstein if for some
λ ∈ R, called the Einstein constant,

Ric(g) = λg,

that is, if (M, g) has constant Ricci curvature. The study of Einstein metrics
has a long and rich history in Riemannian Geometry (see for example [Bes08]).
However, it is extremely difficult to construct examples of Einstein metrics on
closed manifolds.

On the other hand, the following philosophy has proven to be fruitful:

There is an abundance of closed manifolds with negative sectional curvature.

In fact, some experts even say that ”most” closed manifolds are negatively curved
(for example [So24]). In view of this philosophy, and the fact that Einstein metrics
are objects of high interest in Riemannian Geometry, we believe that the following
question is very natural.

Question 1. Are there, in some sense, many closed manifolds admitting an Ein-
stein metric with negative sectional curvature?

There is a handful of examples of closed manifolds admitting Einstein metrics
with negative Einstein constant λ < 0, including:

(1) locally symmetric spaces of non-compact type, e.g., hyperbolic or complex-
hyperbolic manifolds;

(2) compact Kähler manifolds with c1 < 0 admit a Kähler–Einstein metric
with Einstein constant λ < 0 due to the work of Aubin [Aub78] and Yau
[Yau78];

(3) manifolds obtained by generalized Dehn filling of hyperbolic cusps in di-
mensions n ≥ 4, due to Anderson [And06] and Bamler [Bam12].

Out of these, only the examples in (1) are known to have negative sectional cur-
vature, and these examples have been known for more than a century. In fact,
until recently, locally symmetric spaces of non-compact type were the only known
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examples of Einstein metrics with negative sectional curvature on a closed man-
ifold (in the non-compact case the existence of negatively curved non-symmetric
Einstein metrics has been known for a long time - see for example [GL91]). This
changed a few years ago with the following breakthrough result of Fine–Premoselli
[FP20].

Theorem 1 (Fine–Premoselli). There are infinitely many closed 4-manifolds that
admit an Einstein metric with negative sectional curvature, but that do not admit
any locally symmetric metric (e.g., no hyperbolic or complex-hyperbolic metric).

We extend the result of Fine–Premoselli to all dimensions n ≥ 4, also greatly
simplifying the proof.

Theorem 2 (Hamenstädt-J.). For all n ≥ 4 there exist infinitely many closed
n-manifolds admitting an Einstein metric with negative sectional curvature, but
that do not admit any locally symmetric metric.

In dimensions at least five, these are the first non-trivial examples of closed Ein-
stein manifolds with negative sectional curvature. The proof builds on the original
construction of Fine–Premoselli but exploits an algebraic property of arithmetic
hyperbolic manifolds, called subgroup separability, in order to greatly simplify the
involved analytic arguments, allowing for an extension to all dimensions. Very
recently, this construction was also extended to the Kähler setting by Guenancia–
Hamenstädt [GH25].
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Mean curvature flow in R
3 and the Multiplicity One Conjecture

Bruce Kleiner

(joint work with Richard Bamler)

We introduce almost regular mean curvature flow, a new notion of singular mean
curvature flow in R3. We use this as a framework for addressing several longstand-
ing conjectures, building on a series of recent advances [Bre16, HW20, CHH22,
CCS23].

Theorem 1 (Multiplicity One Conjecture). If M is an almost regular mean
curvature flow, then any tangent flow is a multiplicity one shrinking soliton. In
fact, any blow-up sequence has a subsequential limit which is an almost regular
flow, and has multiplicity one.

Theorem 2 (Existence). Any outermost or innermost flow in the sense of [HW20]
– in particular any nonfattening level set flow – is an almost regular flow.

Theorem 3 (Uniqueness iff nonfattening). If K is a level set flow, then K is
nonfattening iff there is a unique almost regular flow with initial condition K0.

Theorem 4 (Partial regularity). The spacetime singular set of an almost regular
flow has spacetime dimension at most 1.

Theorem 5 (Generic singularities). Suppose M ⊂ R3 is a compact smooth sur-
face. Then there is a sequence

M j C∞

−→M

such that if Kj is the level set flow starting from M j, then:

• Kj is nonfattening.
• All tangent flows of Kj are round spheres or cylinders.

Theorem 6 (Uniqueness in the S2 case). If K is a level set flow with initial
condition diffeomorphic to S2, then:

• K is nonfattening.
• All tangent flows of K are round spheres or cylinders.
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3-Manifolds with positive scalar curvature and bounded geometry

Yi Lai

(joint work with Otis Chodosh, Kai Xu)

Yau asked the question of classifying 3-manifolds admitting complete Riemann-
ian metrics with positive scalar curvature; see Question 27 in [1]. A fundamental
observation of Schoen–Yau relates scalar curvature to the stability of minimal
surfaces [2], which ultimately leads to several topological obstructions to the ex-
istence of complete nonnegative scalar curvature metrics on a 3-manifold M . J.
Wang [3, 4] proved that if M is contractible and admits an exhaustion by solid
tori, then M ∼= R3. In particular, the Whitehead manifold does not admit such
a metric. The general classification is widely open. In particular, we note the
following special cases:

• If M is a contractible 3-manifold and admits a complete metric of nonneg-
ative scalar curvature, do we have M ∼= R3? (Asked by J. Wang [3, 4], cf.
[5].)

• If Mγ is an open handlebody of genus γ, and admits a complete metric of
non-negative scalar curvature, do we have γ ≤ 1? (Asked by Gromov [6,
§3.10.2].)

In joint work with O. chodosh and K. Xu, we resolve these two questions under
the additional assumption that the metric has bounded geometry:

(BG) |Rm| ≤ Λ, inj ≥ Λ−1,

We use R to denote the scalar curvature.

Theorem 1 ([7]). Let (M, g) be a complete, connected, contractible Riemannian
3-manifold satisfying R ≥ 0 and (BG). Then M is diffeomorphic to R3.

Theorem 2 ([7]). Let Mγ denote the interior of the handlebody of genus γ. If
(Mγ , g) is a complete Riemannian 3-manifold satisfying R ≥ 0 and (BG), then
γ ≤ 1.

Note that R3 and R2×S1 (corresponding to γ = 0, 1 in Theorem 2) both admit
complete metrics with R ≥ 0 and bounded geometry. Concrete examples are a
capped-off half-cylinder (which actually has R ≥ 1) and the product of Cigar
soliton and S1, respectively.

For the stronger uniformly positive scalar curvature condition R ≥ 1, J. Wang
has obtained a complete classification [8]: these 3-manifolds are infinite connect
sums of spherical space forms and S2 × S1. In particular, the only contractible
manifold or handlebody admitting such a metric is R3. We note that earlier work
of Bessières–Besson–Maillot [9] used Ricci flow to prove such a classification with
an additional bounded geometry assumption.

The key novelty introduced in this work is the use of inverse mean curvature
flow as a replacement for µ-bubbles in topological applications. A family of hy-
persurfaces is a smooth inverse mean curvature flow (IMCF) if it evolves in the
outwards pointing direction with speed 1

H , where H denotes the mean curvature.
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The relevance of IMCF to scalar curvature is the following: if (M, g) is a Rie-
mannian 3-manifold with nonnegative scalar curvature, and Σt ⊂M is a compact
family evolving by the smooth IMCF, then |Σt| = et|Σ0| and

(1)
d

dt

∫

Σt

H2 ≤ −1

2

∫

Σt

H2 + 4πχ(Σt).

This is known as the Geroch monotonicity formula [10]. In particular, if the flow
exists for all time t ∈ [0,∞) then Σt cannot have genus ≥ 2 for all large t, since
otherwise (1) would force

∫

Σt
H2 to be negative for t ≫ 1, which is impossible.

In particular, this implies that M admits an exhaustion by regions with sphere or
torus boundaries, strongly constraining its topology.

However, there are major issues with the assumption of long-time existence in
practice. First, singularities are likely to develop along the flow. Secondly, it’s
possible that the flow rushes to infinity in finite time if the infinity is not “large”
enough.

To allow for singularities, we can use the notion of weak IMCF introduced by
Huisken–Ilmanen [11] en route to their proof of the Riemannian Penrose inequality.
Intuitively, this solution can be described as running the smooth flow except at
each time replacing Σt by its least area enclosure. As proven by Huisken–Ilmanen,
the Geroch monotonicity (1) remains true for weak solutions as long as they exist.

A weak IMCF that does not rush to infinity in finite time is called proper. In our
current setting, we inevitably encounter non-proper weak IMCFs (i.e. weak IMCFs
that rush to infinity within finite time). We make essential use of K. Xu’s recent
work [12], which shows that (M, g) always admits a “maximal” (or “innermost”,
“slowest”) weak IMCF. Assuming bounded geometry and one-endedness of M , we
show that the maximal weak solution satisfies exactly one of the following three
possibilities:

(i) Proper: The solution exists and remains bounded for all time.
(ii) Sweeping: The solution entirely moves to infinity at some time T ∈ (0,∞).

(iii) Escaping: The solution exists until a time T ∈ (0,∞), then “jumps” to
infinity.

In the proper case (i), we can obtain a topological obstruction using the mono-
tonicity formula (1) as above. Now we consider the remaining cases (ii) (iii); see
Figure 1 for examples of each of these cases.

Figure 1. An IMCF sweeping out the manifold at t = T (left)
and one that escapes at t = T (right).

Σ0 ΣT−0.1 ΣT−0.01 Σ0
ΣT

u ≡ T

First, we consider the case of sweeping flow. We can show that for a sequence of
times ti ր T , the surfaces Σti have uniformly bounded diameters, are uniformly
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C1,α-smooth, and are “almost” area-minimizing. Taking a subsequential limit, we
obtain an area-minimizing hypersurface in some limit of M at infinity. By the
scalar curvature lower bound, this limiting hypersurface must be S2 or T2, which
in turn implies that all but finitely many Σti are S2 or T2. This again puts strong
constraints on the topology of M .

Finally, we consider the case of escaping flow. In order to find a nice exhausting
sequence and perform a limiting argument, we make a small perturbation of the
metric so that it becomes “larger at infinity”. This will delay the escape time of the
maximal IMCF, thus some new level set will form in the edited region. Letting the
edited region diverge to infinity and making the perturbation smaller and smaller,
we obtain another diverging sequence of hypersurfaces which are “almost” area-
minimizing as well. Then the limiting argument in case (ii) is employed to prove
the main theorems.
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Einstein Constants and Differential Topology

Claude LeBrun

Recall that a Riemannian metric g is said to be Einstein if its Ricci curvature,
considered as a function on the unit tangent bundle, is constant. This is of course
equivalent to requiring that the Ricci tensor r of g satisfy

(1) r = λg
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for a real number λ that is called the Einstein constant of g. In what follows, the
term Einstein manifold will always mean a compact connected n-manifold M with
empty boundary that is equipped with a Riemannian metric satisfying (1).

In dimension n = 2 or 3, an Einstein manifold necessarily has constant sectional
curvature λ/(n−1), and, so, in these low dimensions, the sign of λ is consequently
predetermined by the size and structure of the fundamental group of M . Motivated
in part by this observation, the introduction to the highly influential book Einstein
Manifolds by the pseudonymous A.L. Besse concluded by asking [3, p. 19] whether
the sign of λ is quite generally determined by the diffeomorphism type of M :

“Can Einstein metrics with [Einstein] constants of opposite signs
exist on the same manifold? If this is impossible, it would add
weight to the remark. . . that positive and negative Einstein met-
rics belong to essentially distinct families.”

Given the negative cast of the final sentence, this passage was often understood to
be conjecturing that the answer to the question would turn out to be no. However,
this expectation actually turned out to be incorrect. Indeed, roughly a decade after
the appearance of Besse’s book, a sequence of counter-examples was constructed
by Fabrizio Catanese and the speaker [5]:

Theorem 1 (Catanese-LeBrun). For each k≥ 2, there is a closed simply-connected
4k-manifold M that admits a pair of Einstein metrics with Einstein constants of
opposite signs.

A decade later, Rareş Răsdeaconu and Ioana Şuvaina then proved [14] a beautiful
improvement of Theorem 1, by means of essentially the same strategy:

Theorem 2 (Răsdeaconu-Şuvaina). For every k ≥ 2, there are at least
(
k+3
3

)

distinct smooth closed simply-connected 4k-manifolds that admit both λ > 0 and
λ < 0 Einstein metrics.

These results are proved by first constructing homotopy-equivalent pairs (Xℓ, Yℓ)
of compact complex surfaces, where c1(Xℓ) < 0, but where c1(Yℓ) > 0. In
fact, by refining a series of breakthrough results by various algebraic geometers
[2, 10, 12, 13], the cited authors succeeded in constructing four such pairs (Xℓ, Yℓ),
where c21(Xℓ) = c21(Yℓ) = ℓ for ℓ = 1, 2, 3, 4. For each ℓ, the manifold Yℓ is diffeo-
morphic to the connected sum CP2#(9 − ℓ)CP2, while Xℓ is homeomorphic, but
not diffeomorphic, to Yℓ; nonetheless, by a theorem of Wall [17], the 4-manifolds Xℓ

and Yℓ are still h-cobordant for every ℓ. The Cartesian products Xℓ1×· · ·×Xℓk and
Yℓ1 × · · · × Yℓk are consequently also h-cobordant, so that, for any k ≥ 2, Smale’s
h-cobordism theorem [15] implies that these products are actually diffeomorphic.
However, the Xℓ admit λ = −1 Einstein metrics (that are, incidentally, Kähler)
by the Aubin-Yau theorem [1, 18], while the Yℓ all admit λ = +1 Einstein metrics
(which are again, incidentally, Kähler) by the work of Tian-Yau [16]. Endowing
Xℓ1×· · ·×Xℓk and Yℓ1 ×· · ·×Yℓk with the corresponding product Einstein metrics
then yields the result, since these products have been shown to be diffeomorphic.

These examples certainly demonstrate that λ > 0 and λ < 0 Einstein metrics
can coexist on specific smooth compact manifolds. But the list of manifolds where
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this phenomenon has actually been proved to occur remains surprisingly limited,
and consists of spaces than share many rare and peculiar features. One of my key
goals in giving this talk at Oberwolfach was therefore to challenge the community
to try to find entirely new examples that would broaden and deepen our under-
standing of this phenomenon. For example, the examples of Theorems 1 and 2
only occur in even dimensions. Can one construct odd-dimensional examples of
coexistence? Moreover, the constructed Einstein metrics occurring in Theorems 1
and 2 are never Ricci-flat. What can be proved, for example, about the coexistence
of Einstein metrics with λ = 0 and λ > 0?

Of course, all the Einstein metrics used to prove Theorems 1 and 2 actually
had special holonomy, and this naturally reflects the degree to which the majority
of our most powerful methods for constructing Einstein metrics have essentially
arisen in connection with special holonomy. Can any light be shed on the questions
we have just raised by means of ideas related to special holonomy?

Well, any compact, odd-dimensional, non-locally-symmetric Riemannian man-
ifold with irreducible special holonomy is [8] necessarily a 7-manifold of holonomy
G2, and every such manifold is automatically Ricci-flat. Fortunately, hundreds
of thousands of diffeotypes of such closed simply-connected λ = 0 Einstein 7-
manifolds are currently known [6]. On the other hand, there are also infinitely
many diffeotypes of compact, simply-connected 7-manifolds that are now known
to admit λ > 0 Einstein metrics [4], even among the examples that arise as Sasaki-
Einstein manifolds. While the latter class of 7-manifolds do not have special ho-
lonomy, they are nonetheless characterized by the property that their metric cones
have holonomy SU(4), and so are Calabi-Yau manifolds of real dimension eight.

All of this might seem to augur well, and one might therefore hope to find some
compact simply-connected 7-manifolds that admitted special Einstein metrics of
both these flavors. However, such hopes are, alas, misguided. These two types of
Einstein metric can never coexist [9] on any smooth compact 7-manifold!

Theorem 3 (L ’25). No smooth compact 7-manifold can admit both a Sasaki-
Einstein metric g1 and a metric g2 of holonomy G2.

The key to proving this is the following:

Proposition 1. If M is a smooth compact 7-manifold that carries a Sasaki-
Einstein metric g1, then the first Pontrjagin class p1(M) ∈ H4(M,Z) is a torsion
class.

Indeed, any Sasaki-Einstein (M7, g) carries a unit-length Killing field ξ, and
the flow lines of ξ are then the leaves of the Reeb foliation F of M . To prove the
proposition, one first shows that the deRham version pR1 (M) of the first Pontrjagin
class p1(M) is represented by a closed 4-form that is basic, in the sense that its
contraction with ξ is identically zero. This means that pR1 (M) belongs to the image
of the basic cohomologyH4

B(M,F) in the deRham cohomologyH4
dR(M). However,

because the local geometry of the leaf space M/F is Kähler-Einstein, a transverse
version [7] of the Hard Lefschetz Theorem holds, and this can then be used to
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show that the image of H4
B(M,F) → H4

dR(M) is actually zero. The proposition is
therefore an immediate consequence.

On the other hand, if M7 is a compact 7-manifold that admits a metric g2 of
holonomy G2, and if ϕ is the fundamental closed 3-form corresponding to g2, then
one has the remarkable identity [8] that

(2) 〈pR1 (M) ∪ [ϕ], [M ]〉 = − 1

8π2

∫

M

|R|2dµg2 < 0

where R denotes the Riemann curvature tensor of g2. Thus, the existence of such a
metric g2 implies that pR1 (M) 6= 0, and Theorem 3 therefore becomes an immediate
consequence of the Proposition.

For more details, along with various other related results, see [9].
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Large mass limit of G2 and Calabi-Yau monopoles

Yang Li

Our general theme lies in the intersection between higher dimensional gauge theory
and calibrated submanifolds. The gauge theory side may be viewed as the general-
ization of the classical theory of monopoles on R3. On a G2 manifold (M,φ) with
ψ = ∗φ (resp. Calabi-Yau 3-fold (M,ω,Ω)), let A be a connection on a principal
SU(2)-bundle, and Φ be an adjoint valued section, called the Higgs field. We say
(A,Φ) is a G2-monopole (resp. Calabi-Yau monopole), if

FA ∧ ψ = ∗∇Φ,

resp.

FA ∧ ReΩ = ∗∇Φ, FA ∧ ω2 = 0.

An integration by parts argument shows that Φ is parallel on compact M . In
the setting of asymptotically conical M , the previous work of Oliveira et al. [2]
determined the asymptotic boundary condition under mild hypotheses: the mass

m := lim
x→∞

|Φ|.

exists, the structure group reduces to U(1) asymptotically, the connection con-
verges to a pseudo-HYM connection on the link at infinity, and the Higgs field is
asymptotically parallel. The upshot is that the asymptotic boundary condition is
specified by the topology (which is fixed), except for the mass parameter m > 0,
and the Donaldson-Segal programme [3] asks what happens in the limit m→ +∞.

The answer can be summarized in the following slogans:

• In some L1
loc-sense, the solutions converge to some U(1) G2 (resp. Calabi-

Yau) monopole with Dirac singularity along a coassociative/special La-
grangian cycle Q;

• The part of curvature orthogonal to Φ is small in the L1
loc-sense, and the

part parallel to Φ dominates;
• The curvature density 1

2πm |F |2dvol concentrates on the support of Q, and
almost all the energy can be accounted for by monopole bubbling trans-
verse to Q.

The most striking consequence is that assuming the existence of the sequence
(A,Φ), then it produces a coassociative (resp. special Lagrangian) cycle, within
a prescribed homology class. This reduces the highly non-perturbative existence
question for these calibrated cycles, to a question in gauge theory. This strategy is
morally analogous to producing holomorphic curves by showing the non-triviality
of some Seiberg-Witten invariant, using Taubes’s famous work that GR = SW .

The big open question is whether we can define counting invariants for both
the gauge theory and the calibrated submanifolds, and then prove some equality
between the two invariants.
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[2] Fadel, Daniel; Nagy, Ákos; Oliveira, Goncalo. The asymptotic geometry of G2-monopoles.
Mem. Amer. Math. Soc. 303 (2024), no. 1521, v+85 pp. ISBN: 978-1-4704-7126-2; 978-1-
4704-7990-9

[3] Donaldson, S. K.; Thomas, R. P. Gauge theory in higher dimensions. The geometric universe
(Oxford, 1996), 31–47, Oxford Univ. Press, Oxford, 1998.

Constructing minimal surfaces of prescribed genus in closed
Riemannian 3-spheres with positive Ricci curvature

Yangyang Li

(joint work with Adrian Chun-Pong Chu, Zhihan Wang)

In the round 3-sphere S3, there exists an RP
3-family of minimal 2-spheres (the

equatorial spheres) and an RP
2 × RP

2-family of minimal tori (the Clifford tori).
Almgren (1966)[1] and Calabi (1967)[2] later proved that the equatorial spheres are
the only minimal 2-spheres, and Brendle (2013)[3] confirmed that the Clifford tori
are the only minimal tori, thereby resolving the Lawson conjecture. The topology
of these moduli spaces motivated Yau (1982)[4] and White (1989)[5] to conjecture
the existence of at least four minimal spheres and five minimal tori, respectively,
in any closed Riemannian 3-sphere. For other topological types, Lawson (1970)[6]
constructed minimal surfaces of arbitrary genus in S3, now known as Lawson sur-
faces. Inspired by Yau’s and White’s conjectures, it is further expected that for
any genus g, there exist multiple genus g minimal surfaces in any closed Riemann-
ian 3-sphere, with the number related to the topology of the space of genus g
Lawson surfaces.

In this talk, I present the resolution of Yau’s conjecture by Wang-Zhou (2023)[7]
and of White’s conjecture by the work of Adrian and myself (2024)[8], in the setting
of positive Ricci curvature. I then discuss how the techniques we developed can
also be applied to construct minimal surfaces of higher genus, particularly genus
2. This is based on joint work with Adrian Chu and Zhihan Wang[9].
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Einstein metrics, G2 geometry and geometric flows

Jason D. Lotay

(joint work with Aaron Kennon, Jakob Stein)

Einstein metrics on compact Riemannian manifolds are of considerable interest but
are currently poorly understood outside of Kähler geometry, particularly those
which are Ricci-flat. As a case in point, the only non-trivial odd-dimensional
compact Ricci-flat manifolds are G2-manifolds : that is, 7-dimensional Riemannian
manifolds with holonomy G2. On the other hand, there are many infinitely many
compact nearly G2-manifolds, which have positive Einstein metrics.

Given the success of geometric flows in studying both Riemannian geometry and
special structures, especially Kähler structures, it is natural to ask whether one
can use such methods in G2 geometry. This geometry on a 7-manifold is encoded
by a G2-structure 3-form ϕ, which defines a metric and orientation, thus a dual
4-form ψ = ∗ϕ. A geometric flow, called the G2-Laplacian coflow, was proposed
[3] which evolves closed 4-forms ψ by the Hodge Laplacian defined by ϕ:

(LF)
∂ψ

∂t
= ∆ϕψ and dψ = 0.

This is the gradient flow of the Hitchin volume functional on the cohomology
class [ψ0] of the initial condition and has G2-manifolds as its critical points, which
are strict maxima (modulo diffeomorphisms). Moreover, nearly G2-manifolds are
solitons for (LF) or, equivalently, critical points for a suitably normalized (LF).

A rich source of G2-structures comes from 3-Sasakian geometry (which includes
the round 7-sphere S7): 3-Sasakian 7-manifolds always admit two natural con-
tinuous 3-parameter families Ψ± of closed 4-forms dual to G2-structure 3-forms,
and each family contains a 1-parameter family, depending on κ > 0, of nearly
G2-manifolds defined by 4-forms ψ±

κ . (In particular, one sees that all 3-Sasakian
7-manifolds admit two canonical positive Einstein metrics.) The first result shows
that the ψ±

κ are global attractors for (LF) in Ψ± after rescaling.

Theorem 1 (Kennon–L. [4]). Let κ > 0 and let ψ± ∈ Ψ± on a 3-Sasakian 7-
manifold. Then, after suitable normalization, the G2-Laplacian coflow (LF) exists
in Ψ± for all time and converges to the nearly G2 ψ

±
κ .

This theorem is proved using methods inspired by dynamical systems, as the prob-
lem reduces to a nonlinear ODE system, with some care required as the system
degenerates near the boundary of the parameter space defining Ψ±. Theorem 1
in particular shows that the nearly G2 ψ

±
κ are stable for normalized (LF), at least
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in Ψ±; work in [5] indicates that potentially all nearly G2 manifolds are stable as
solitons for (LF), not just those in Ψ± on 3-Sasakian 7-manifolds.

Despite the good geometric properties of (LF) and the convergence result in
Theorem 1, unfortunately (LF) is not known to even have short-time existence.
As a consequence a modified G2-Laplacian coflow was introduced [2] which now
has short-time existence, enjoys Shi-type estimates and can be defined for any
κ ≥ 0:

(MF)
∂ψ

∂t
= ∆ϕψ + 1

2d
(
(5κ− 7τ0)ϕ

)
and dψ = 0,

where 7τ0 = ∗(ϕ∧dϕ). We have that G2-manifolds are still critical points of (MF)
and nearly G2-manifolds are solitons (or critical points for a normalized flow).
It therefore seems important to understand what behaviour nearly G2-manifolds
have for the modified G2-Laplacian coflow (MF).

Theorem 2 (L.–Stein [5]). Let κ > 0 and recall the nearly G2 ψ±
κ ∈ Ψ± on

a 3-Sasakian 7-manifold. Then ψ±
κ is unstable as a critical point of normalized

modified G2-Laplacian coflow (MF), with index 1 in Ψ±.

Theorem 2 is proved again using ODE systems techniques yet it already con-
trasts with Theorem 1. One is naturally motivated to ask further whether Theorem
2 provides all of the unstable directions for the nearly G2-manifolds given by ψ±

κ .
This turns out to very much not to be the case, as the following result shows for
the round 7-sphere (which, we recall, is a particular case of ψ±

κ on a 3-Sasakian
7-manifold).

Theorem 3 (L.–Stein [5]). Consider the round 7-sphere S7 with its canonical
nearly G2-structure with dual 4-form ψ. Then ψ is unstable as a critical point for
normalized modified G2-Laplacian coflow (MF) with index at least 7047.

The key to proving Theorem 3 is to identify the unstable directions with eigenforms
for d∗ acting on certain exact 4-forms with particular eigenvalues. Then the result
follows from representation theory, building on [1], since d∗ and the space on which
it is acting are invariant under the isometry group of S7.

The results show that (MF) has both positive and negative features in com-
parison to (LF). One can interpret the instability results Theorem 2–3 for nearly
G2-manifolds positively as saying that one should be able to perturb initial con-
ditions so that these should not appear along the flow (MF), which might make
(MF) useful as a means to find G2-manifolds. However, the flow (LF) is more
natural and has very good geometric features, so it seems worthwhile to try to
obtain the analytic results one needs to make (LF) viable as a means to study
Einstein metrics and G2 geometry.
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A finiteness theorem for isoparametric foliations

Alexander Lytchak

(joint work with Manuel Krannich, Marco Radeschi)

Isoparametric submanifolds in space forms have been introduced by Levi-Civita
and studied for almost a century from differential geometric, topological and alge-
braic perspectives by Segre, Cartan, Muenzner, Ferus, Karcher, Abresch, Palais,
Terng, Thorbergsson, Stolz, Chi, Cecil and many others; we refer for an overview to
[4]. The concept has been generalized to symmetric spaces and arbitrary Riemann-
ian manifolds by Palais, Terng, Thorbergsson, Wang and Alexandrino, we refer to
another survey [5] for the description and the history of this development. While
in space forms and in symmetric spaces one might hope and sometimes achieve
a classification, in more general situation only qualitative topological-geometric
questions are meaningful.

The talk is devoted to the following finiteness theorem obtained jointly with
Manuel Krannich and Marco Radeschi.

Theorem 1. Given n, v, κ,D there exists at most finitely many isoparametric foli-
ations up to homeomorphisms on compact simply connected Riemannian manifolds
of dimension n, volume at least v, diameter at most D and sectional curvatures
bounded in absolute values by κ.

If n 6= 5, the finiteness statement holds up to diffeomorphisms.

The theorem is obtained by reformulating the result in terms of submetries onto
intervals, using compactness of such objects and analyzing the limiting procedure
in great details. While many parts of the proof are purely topological, the state-
ment is not. Moreover, being foliated homeomorphic turns our to be a much finer
invariant than having pairwise diffeomorphic fibers as the following result shows.
It is based on results in geometric topology distinguishing between concordance
and isotopies:

Theorem 2. For n ≥ 5 there exists infinitely many Riemannian metrics on the
sphere Sn each equipped with an isoparametric foliation whose singular fibers are
the canonical Sn−2 and S1 and whose regular fibers are diffeomorphic to Sn−2×S1,
such that the foliations are pairwise not foliated homeomorphic.

We explain and verify in the talk why some assumption on the fundamental
group is needed in the statement.

An important step in the proof of the main result is the observation that for a
manifold submetry from a simply connected manifold M of bounded geometry onto
an interval, the interval is uniformly non-collapsed. The second step, the actual
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stability argument, verifies the validity of the following conjecture in the case of
one-dimensional base spaces. Other special cases of this theorem are provided by
Perelman’s stability theorem [2], the equivariant stability theorem of Harvey [1]
and the case of Riemannian submersions verified by Tapp [3].

Conjecture 1. Let P : Mi → Yi be manifold submetries. Assume that Mi are
compact, of uniformly bounded geometry and converge in the Gromov–Hausdroff
topology to M . Assume that Pi converge to a submetry P . If the sequences Mi

and Yi do not collapse, then, for all i, j large enough, Pi and Pj are equivalent up
to homeomorphisms between Mi and Mj and Yi and Yj , respectively.
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An Overview of Gromov’s p-widths and Their Applications

Jared Marx-Kuo

For (Mn+1, g) a Riemannian manifold, the “p-widths” (also known as the volume
spectrum), {ωp}, are a sequence of invariants introduced by Gromov [8, 9]. Let
Pp denote the set of p-sweepouts, Φ : Xp → Zn(M,Z/2Z) (see [6] for formal
definitions) such that Φ∗(λp) 6= 0 ∈ Hp(X). Then we define

ωp = inf
Φ∈Pp

sup
x∈Dom(Φ)

M(Φ(x))

The reader may think of Φ as a map from some p-dimensional manifold, X =
Dom(Φ), to the space of hypersurfaces, replacing M(Φ(x)) → Area(Φ(x)). In
particular, we compare this with the following definition of λp, the pth eigenvalue

of the laplacian on a closed manifold. Let P̃p denote the space of all at most
p-dimensional subspaces of H1(M). Then

λp = inf
V ∈P̃p

sup
06=f∈V

∫

M |∇f |2
∫

M
f2

If ∆up = λpup, then up is critical for the L2 normalized dirichlet energy.
Originally posed as a non-linear spectrum of the volume functional, the p-widths

have been essential in the study of the existence of minimal surfaces over the past
decade. Given the same min-max formulation as the eigenvalues of the Lapla-
cian, we expect ωp to yield critical points of the area functional on hypersurfaces.
Indeed, we have
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Theorem 1 ([16]). For 3 ≤ n+ 1 ≤ 7 and each p ∈ Z+,

(1) ωp =

Np∑

i=1

mp
iA(Σp

i )

for some collection of {Σp
i }, smooth, embedded, disjoint minimal surfaces, and

some multiplicities, mp
i ∈ Z+.

The p-widths were an essential tool in the resolution of Yau’s conjecture ([23,
Problem Section]):

Theorem 2 ([3, 22, 17, 11, 24, 12]). On any closed (Mn+1, g) with n + 1 ≥ 3,
there exist infinitely many embedded minimal hypersurfaces.

When mp
i = 1 for all i, p, i.e. the so called “multiplicity one” setting, we can

deduce that there are infinitely many minimal surfaces if limp→∞ ωp = ∞. Indeed,
this holds due to the following Weyl law:

Theorem 3 ([9, 10, 14]). For all n+ 1 ≥ 2, there exists a constant a(n+ 1) such
that

lim
p→∞

ωpp
−1/(n+1) = a(n+ 1)V ol(M)n/(n+1)

The reader may compare this with an analogous Weyl law for the eigenvalues of
the laplacian on a closed manifold. We note that even when there is multiplicity
(i.e. mp

i > 1 in equation (1)), the sublinear growth of {ωp} was extremely useful
in showing the existence of infinitely many minimal surfaces in [17, 22].

In addition to their existence, the minimal surfaces from equation (1) record
the parameter p in their index, in the “multiplicity one” setting

Theorem 4 ([24]). For g a generic metric on Mn+1, 3 ≤ n + 1 ≤ 7, mp
i = 1 in

equation

This leads to sharp index estimates for Σp
i :

Theorem 5 ([16, 24]). For g a generic metric as above

p =

Np∑

i=1

Ind(Σp
i )

We also note that the p-widths have been applied to construct constant mean
curvature (CMC) hypersurfaces using mountainpass constructions [5], as well as
CMC hypersurfaces which bound a set of half volume [21]. More recently, there
have been applications to showing the existence of prescribed mean curvature
(PMC) hypersurfaces for certain prescribing functions and ambient manifolds [7].

In the setting of surfaces, the p-widths behave differently.

Theorem 6 ([4]). For (M2, g) closed and each p ∈ Z+,

ωp =

Np∑

i=1

mp
i ℓ(γ

p
i )
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for some collection of {γpi }, smooth, immersed, (potentially non-disjoint) geodesics,
and some multiplicities mp

i ∈ Z+.

We emphasize the lack of disjointness and embeddedness. In this setting, it is
natural ask

a) Do there exist surfaces for which ωp are realized by non-embedded geodesics?
b) Do index bounds for the {γpi } hold?
c) Does multiplicity one hold generically?

In joint work with Mantoulidis [15], the author showed that the answer to a) is
“no” by constructing a realization of Almgren’s starfish such that ω1 = ℓ(γ), for
γ a topological figure eight. See also related work by Lima [13] for an example
on hyperbolic surfaces of genus at least 2. In joint with Sarnataro and Stryker
[20], the author showed that the index of the {γpi } and the number of intersections
(including self-intersections) are bounded above by p. In addition, it was shown
in [20] that multiplicity one does not hold generically, building off of work of
Chodosh–Mantoulidis [4] and Aiex [1].

Surfaces are an interesting setting for the p-widths in that they provide the
simplest examples for which we can compute the p-widths for all p. In fact, the
p-widths are only known for all p in the following three cases:

(1) (S2, ground) due to deep work of Chodosh–Mantoulidis [4]
(2) (RP2, ground) due to an adaption by the author [19]
(3) (S2, g) where g is any Zoll metric connected to ground [18] due to a short

argument by the author.

The author’s construction with Zoll metrics in [18] was the first step towards the
isospectral problem for the p-widths: for which manifolds do the values of {ωp}
determine (M, g)? While the author showed that there is no such rigidity for the
sphere, Ambrozio–Marques–Neves showed that RP2 is rigid:

Theorem 7 ([2]). Given (Mn+1, g) closed, suppose that

ωp = ωp(RP2, ground)

for all p. Then (M, g) ∼= (RP2, ground).

In general, it would be extremely interesting to compute {ωp} for all values of
p for the simplest manifolds possible. It would also be of great interest if other
manifolds are p-width isospectrally rigid.
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mathématiques de l’IHÉS, 137(1):245–342, 2023.



1624 Oberwolfach Report 30/2025

[5] Akashdeep Dey. Existence of multiple closed cmc hypersurfaces with small mean curvature.
Journal of Differential Geometry, 125(2):379–403, 2023.
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Energy minimizing harmonic 2-spheres in metric spaces

Damaris Meier

(joint work with Noa Vikman, Stefan Wenger)

The classical existence problem for harmonic maps between a closed surface M ,
equipped with a fixed Riemannian metric, and a compact Riemannian manifold
N asks whether a given continuous map ϕ : M → N can be deformed, via ho-
motopy, into a harmonic map u : M → N . A result of Lemaire [1], Schoen-Yau
[7] and Sacks-Uhlenbeck [6] shows that if the second homotopy group π2(N) is
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trivial, then every homotopy class of maps from M to N contains an energy min-
imizing harmonic map. However, when π2(N) is non-trivial, the situation is more
involved, and a phenomenon known as “bubbling” may occur. The remarkable
work of Sacks-Uhlenbeck [6] shows that if N is a compact Riemannian manifold
with π2(N) 6= 0, then there exists a non-contractible map u : S2 → N minimizing
energy and area within its homotopy class. Moreover, every such u is a conformal
branched immersion.

In joint work with Vikman and Wenger [5], we explore a novel and conceptually
simple approach to proving existence of energy minimizers in homotopy classes.
Unlike the method used in [6], our approach does not rely on PDE results and is
applicable to a wide range of metric space targets X . It is based on the existence
and regularity of energy and area-minimizing Sobolev maps in proper metric spaces
satisfying a local quadratic isoperimetric inequality proven in a series of works by
Lytchak-Wenger, see e.g. [2, 3, 4]. Additionally, we assume that the target space
X is compact and quasiconvex. The last requirement is that every continuous map
from S2 to X of sufficiently small diameter is null-homotopic. These conditions
are satisfied by a broad class of spaces, including compact Riemannian manifolds,
compact Finsler manifolds, more generally, compact Lipschitz manifolds, compact
locally CAT(κ) spaces for κ ∈ R, and many more.

Fix a suitable notion of energy and denote by e(ϕ) the infimal energy over
all Sobolev maps contained in the homotopy class of a given continuous map ϕ.
The following main theorem of our work [5, Theorem 1.3] generalizes the above
mentioned results from [1, 7, 6].

Theorem 1. Let M and X be as above. Then every continuous map ϕ : M → X
has an iterated decomposition ϕ0 : M → X and ϕ1, . . . , ϕk : S2 → X satisfying

e(ϕ0) + e(ϕ1) + · · · + e(ϕk) = e(ϕ)

and such that every ϕi contains an energy minimizer in its homotopy class.

The proof of Theorem 1 follows a direct variational approach and crucially de-
pends on the following two key ingredients: A convergence result for minimizing
sequences of uniformly distributed energy [5, Theorem 8.1] and a result [5, Propo-
sitions 9.1 and 9.2] showing that (up to possibly precomposing with a conformal
diffeomorphism) every almost energy minimizer in the homotopy class of an ε-
indecomposable map has small energy on balls of small radius. In particular, after
suitably decomposing the initial map ϕ, the latter result implies the applicability
of the convergence result.

In addition to the existence result from Theorem 1, we show the following
regularity properties of homotopic energy minimizers [5, Theorem 6.3 and Corol-
lary 3.3]: Every continuous Sobolev map u : M → X that minimizes energy in its
homotopy class is harmonic (i.e. locally minimizes energy) and Hölder continuous.
If M = S2, then u is also infinitesimally quasiconformal. We do not know whether
the same holds true in the more general context of harmonic spheres.

Question 1. Let X be as above and let u : S2 → X be a harmonic map. Is it true
that u is infinitesimally quasiconformal?
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Using the techniques developed in [6], Sacks-Uhlenbeck moreover showed that
every closed Riemannian manifold with non-trivial k-th homotopy group for some
k ≥ 2 contains a non-trivial harmonic 2-sphere, see [6, Theorem 5.7]. It would be
interesting to know whether a similar result holds in a metric setting.

Question 2. Let X be a compact metric space with non-trivial k-th homotopy
group for some k ≥ 2. Under what additional conditions does X admit a non-
trivial harmonic 2-sphere?
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Complete 3-manifolds of positive scalar curvature with
quadratic decay

Stéphane Sabourau

(joint work with Florent Balacheff, Teo Gil Moreno de Mora Sardà)

In his Problem Section [10], Yau asked for a classification of 3-manifolds that admit
a Riemannian metric of positive scalar curvature. The closed case was addressed
by Schoen–Yau [6, 7] using minimal surfaces and in parallel by Gromov–Lawson
[3, 4, 5] using both minimal surfaces and the Dirac operator method, and finally
concluded in the light of Perelman’s work. They proved that a closed orientable
3-manifold which admits a Riemannian metric with positive scalar curvature de-
composes as a connected sum of spherical manifolds and S2×S1 summands. A sim-
ilar decomposition theorem has recently been proved for open manifolds admitting
complete Riemannian metrics of uniformly positive scalar curvature independently
by Gromov [2] and Wang [9], using µ-bubble theory.

Theorem 1 ([2, 9]). Let M be a complete orientable Riemannian 3-manifold with
uniformly positive scalar curvature. Then M decomposes as a possibly infinite
connected sum of spherical manifolds and S2 × S1.

We will consider 3-manifolds admitting a complete Riemannian metric of posi-
tive scalar curvature with at most a quadratic decay at infinity.
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Definition 1. Let M be a complete Riemannian n-dimensional manifold. Fix a
basepoint x ∈ M , and denote by rx(y) = d(x, y) the distance function to x. The
scalar curvature of M has a at most C-quadratic decay at infinity with C > 0 if
there exists a constant R0 > 0 such that for every y ∈M with rx(y) ≥ R0,

scal(y) >
C

rx(y)2
.

Our main theorem extends the topological decomposition of Theorem 1 to com-
plete Riemannian 3-manifolds of positive scalar curvature with at most a quadratic
decay at infinity for some constant C > 64π2.

Theorem 2 ([1]). Let M be a complete orientable Riemannian 3-manifold. Sup-
pose thatM has positive scalar curvature with at most C-quadratic decay at infinity
for some C > 64π2. Then M decomposes as a possibly infinite connected sum of
spherical manifolds and S2 × S1 summands.

One may wonder whether the conclusion of Theorem 2 holds under a weaker
decay rate. The example of the manifold R2×S1 shows this is impossible. Indeed,
the manifold R2×S1 admits a complete metric of positive scalar curvature decaying
1
2 -quadratically at infinity, but it does not decompose as an infinite connected

sum of spherical manifolds and S2 × S1. Therefore, the decay rate in Theorem 2
is optimal. As for the optimal value of the decay constant C under which the
conclusion of Theorem 2 holds, this last example shows that we cannot hope for
more than C > 1

2 (while our result holds for C > 64π2).
More generally, Gromov conjectured the following [2, Section 3.6.1].

Conjecture 1 (Critical Rate of Decay Conjecture [2]). There exists a dimensional
constant Cn > 0 such that the following holds. Let M be an orientable n-manifold
that admits a complete Riemannian metric of positive scalar curvature.

(1) For every C < Cn, there exists a complete Riemannian metric on M of
positive scalar curvature with at most C-quadratic decay at infinity.

(2) If M admits a complete Riemannian metric with positive scalar curvature
with C-quadratic decay at infinity for C > Cn, then M admits a complete
Riemannian metric with uniformly positive scalar curvature.

The following rigidity result, which addresses the case (2) of Conjecture 1, is a
direct consequence of Theorem 2 and an adaptation of Gromov–Lawson’s Surgery
Theorem.

Corollary 1 ([1]). Let M be an orientable 3-manifold. If M admits a complete
Riemannian metric of positive scalar curvature with at most C-quadratic decay at
infinity for some C > 64π2, it also admits a complete Riemannian metric with
uniformly positive scalar curvature.

Actually, we will deduce Theorem 2 from a more general statement, which
involves the following notion of fill radius.
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Definition 2. Let M be a Riemannian n-manifold with possibly nonempty bound-
ary. The fill radius of a contractible closed curve γ in M is defined as

fillrad(γ) := sup{R ≥ 0 | d(γ, ∂M) > R and [γ] 6= 0 ∈ π1(U(γ,R))}
where U(γ,R) denotes the closed R-neighborhood of γ in M . Define also

fillrad(M) := sup{fillrad(γ) | γ contractible closed curve of M}.
The following bound on the fill radius has been established in [5, 8]: If M is

a complete orientable 3-manifold with bounded geometry and uniformly positive
scalar curvature scal ≥ s0 > 0, then the universal Riemannian cover M̃ of M
satisfies fillrad(M̃) ≤ 2π/

√
s0. Therefore, an upper bound on the fill radius of the

universal cover provides a generalization of the notion of uniformly positive scalar
curvature.

If a complete orientable 3-manifold M has positive scalar curvature decaying
at infinity, then the fill radius is not necessarily bounded in general. Still, if the
decay is not too pronounced, one can control the growth of the fill radius of the
lifts to the universal cover of the closed curves contractible in M . This property
will serve as a generalization of the notion of positive scalar curvature with at
most C-quadratic decay at infinity.

Definition 3. Let M be a complete Riemannian manifold, and denote by M̃ its
universal Riemannian cover. Fix a basepoint x ∈M . Denote by B(x,R) the closed

metric ball of radius R centered at x. The fill radius of M̃ has at most c-linear
growth at infinity with c > 0 if there is a constant R′

0 ≥ 0 such that if R ≥ R′
0,

then for every closed curve γ lying in B(x,R) and contractible in M , any of its

lifts γ̃ to M̃ satisfies
fillrad(γ̃) < cR.

We will prove the topological decomposition of Theorem 2 by replacing the
scalar curvature assumption with a weaker condition about the filling disks of the
lifts of contractible closed curves, namely that the fill radius of M̃ has at most
c-linear growth at infinity with c < 1

3 .

Theorem 3 ([1]). Let M be an orientable complete Riemannian 3-manifold, and

denote by M̃ its universal Riemannian cover. Suppose that the fill radius of M̃
has at most c-linear growth at infinity for some c < 1

3 . Then M decomposes as a

possibly infinite connected sum of spherical manifolds and S2 × S1.

This result yields the same topological decomposition as Gromov–Wang’s theo-
rem under a weaker, more robust, assumption. In particular, it applies to metrics
of positive scalar curvature with at most C-quadratic decay at infinity for some
C > 64π2, and not just of uniformly positive scalar curvature. More generally,
Theorem 3 does not require any curvature assumption and relies on C0 topological
arguments, rather than on C2 analytical ones. In particular, the proof of Theorem
3 relies neither on the µ-bubble theory, nor on the minimal surface approach. In-
terestingly, and somewhat surprisingly, this general approach leads to an optimal
statement in the decay rate at infinity despite the lack of analytical tools.
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Generic regularity for minimizing hypersurfaces in dimension 11

Felix Schulze

(joint work with Otis Chodosh, Christos Mantoulidis, Zhihan Wang)

Overview. Consider a smooth, closed, oriented (n− 1)-dimensional submanifold
Γ ⊂ Rn+1. We are interested in Plateau’s problem. Among all smooth, compact
hypersurfaces M ⊂ Rn+1 with ∂M = Γ, we want to find one of least area. It’s now
well-known that such M always exists for n+ 1 ≤ 7, while when n+ 1 ≥ 8 and for
certain choices of Γ, no minimizer M can be found among smooth hypersurfaces.
Using geometric measure theory, one can prove the existence of a minimizer among
a wider class of objects which are smooth hypersurfaces except perhaps along an
(n− 7)-dimensional singular set. See [Fed69, MM84, Giu84, Mag12, Fle62, DG65,
Alm66, Sim68, BDGG69, HS79].

In R8, the first dimension that singularities can appear, a fundamental result of
Hardt–Simon [HS85] shows that for a generic choice of Plateau boundary Γ, there
does exist a smooth M minimizing area. An analogous result in 8-dimensional
manifolds was proven by Smale [Sma93]. These generic regularity results were
recently extended to cover R9 and R10 in [CMS23a] using new ideas from the
works of the first three authors with K. Choi on generic mean curvature flows, and
specifically [CCMS24a, CCMS24b].

In this work we prove that solutions to Plateau’s problem in R11 are generically
smooth. We also prove that in any Rn+1, an area-minimizing M will have a
≤ n − 10 − ǫn dimensional singular set after perhaps a C∞-perturbation of the

https://doi.org/10.1007/s00208-025-03192-9
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Plateau boundary. We had previously obtained the upper bound ≤ n− 9 − ǫ′n in
[CMS24].

We also prove the analogous results in the context of area-minimization in in-
tegral homology classes of a closed oriented manifold (Nn+1, g). As is well-known,
this extends Schoen–Yau’s stable minimal hypersurface obstruction to positive
scalar curvature up to dimension 11 and also implies the positive mass theorem in
these dimensions after a well-known reduction of Lohkamp. See also the work of
Schoen–Yau and Lohkamp [SY22, Loh23].

The results. We obtain the following generalizations of the main result of
[CMS23a, CMS24]. All submanifolds are considered smoothly embedded, and
if Σ is such, we denote sing Σ = Σ̄ \ Σ. All singular set dimensions are Hausdorff
dimensions.

For the Plateau problem in Rn+1 we show:

Theorem 1. Consider a smooth, closed, oriented, (n−1)-dimensional submanifold
Γ ⊂ Rn+1. There exist C∞-small perturbations Γ′ of Γ (in the space of C∞

submanifolds) such that every minimizing integral n-current with boundary [[Γ′]] is
of the form [[Σ′]] for a smooth, precompact, oriented hypersurface Σ′ ⊂ Rn+1 with
∂Σ′ = Γ′, and

sing Σ′ = ∅ if n+ 1 ≤ 11, else dim sing Σ′ ≤ n− 10 − ǫn,

where εn > 0 is a dimensional constant.

For the homological Plateau problem in a manifold we have:

Theorem 2. Consider a closed, oriented, (n+1)-dimensional Riemannian mani-
fold (N, g). Let [α] ∈ Hn(N,Z)\ {[0]}. There exist C∞-small perturbations g′ of g

such that every g′-minimizing integral n-current in [α] is of the form
∑Q

i=1 k
′
i[[Σ

′
i]]

for disjoint, smooth, precompact, oriented hypersurfaces Σ′
1, . . . ,Σ

′
Q ⊂ N without

boundary and

sing Σ′
i = ∅ if n+ 1 ≤ 11, else dim sing Σ′

i ≤ n− 10 − ǫn,

and multiplicities k′1, . . . , k
′
Q ∈ Z; again, εn > 0 is a dimensional constant.

Remark. It is a well-known consequence of Allard’s interior regularity theorem
[All72] and Hardt–Simon’s boundary regularity theorem [HS79] that sing Σ′ = ∅ is
an open condition in such a multiplicity-one setting. Therefore, when n+ 1 ≤ 11,
the set of Γ′, g′ for which the corresponding minimizers are smooth objects is
simultaneously open (by this observation) and dense (by Theorems 1 and 2), and
thus Baire generic.
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The large-scale structure of complete 4-manifolds with nonnegative
Ricci curvature and Euclidean volume growth

Daniele Semola

(joint work with Elia Bruè, Alessandro Pigati)

A smooth complete 4-manifold (M4, g) with Ric ≥ 0 is said to have Euclidean
volume growth if there exists c > 0 such that for some p ∈M4 there holds

(1)
vol(Br(p))

r4
≥ c for all r > 0 .
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In joint work with E. Bruè and A. Pigati we prove that for every such (M4, g)
there exists a spherical space form S3/Γ such that every blow-down of (M4, g) is
a cone with cross-section homeomorphic to S3/Γ. Our main theorem is inspired
by the following result obtained by J. Cheeger and A. Naber earlier in [6]:

Theorem 1. Let (M4, g) be a Ricci-flat 4-manifold satisfying (1). There exists a
finite group Γ < O(4) acting freely on S3 such that (M4, r−2g, p) → (R4/Γ, geucl, 0)
as r → ∞ in the pointed Gromov-Hausdorff sense and in C∞

loc away from p and 0.

The goal of the talk was to discuss which aspects of Theorem 1 continue to hold
and which ones fail when the Ricci-flat assumption is weakened to Ric ≥ 0.

Let (M4, g) have Ric ≥ 0 and satisfy (1). By Gromov’s precompactness the-
orem, for any sequence ri → ∞, up to the extraction of a subsequence that we
do not relabel, (M4, r−2

i g, p) → (Y, dY , q) in the pointed Gromov-Hausdorff sense
(from now on abbreviated as pGH), where (Y, dY , q) is a complete and pointed
metric space. Any such metric space is called a blow-down of (M4, g). Note that
neither the dimension nor the Euclidean volume growth condition play any role
for the moment. Without further assumptions, the metric structure of blow-downs
is poorly understood. On the other hand, if the manifold has Euclidean volume
growth, Cheeger and T.-H. Colding proved in [4, Theorem 7.6] that every blow-
down is a metric cone. More precisely, there exists a compact metric space (Z, dZ)
(the cross-section of the cone) with diam(Z) ≤ π such that

(2) Y = [0,+∞) × Z/{0}×Z ,

and for every (r1, z1), (r2, z2) ∈ Y there holds

(3) d2
Y ((r1, z1), (r2, z2)) = r21 + r22 − 2r1r2 cos(dZ(z1, z2)) .

In [9], G. Perelman constructed a manifold (M4, g) with Ric ≥ 0 and Euclidean
volume growth whose blow-down is not unique. Letting

C∞ := {(Z, dZ) : (Z, dZ) is the cross-section of a blow-down of (M4, g)}

be the collection of cross-sections of blow-downs, C∞ is compact and connected
with respect to the Gromov-Hausdorff topology. Moreover, by volume convergence
[5, Theorem 5.4], the 3-dimensional Hausdorff measure H3 is constant on C∞.

The moral behind our main result can be easily illustrated under the additional
assumption that all the elements of C∞ are smooth Riemannian manifolds. Under
such assumption, each blow-down C(Z) of (M4, g) has Ric ≥ 0 in the smooth part,
i.e., in the complement of the vertex. An elementary computation shows this holds
if and only if RicZ ≥ 2. Thanks to R. Hamilton’s work, any cross-section must
be diffeomorphic to a spherical space form. Moreover, by Cheeger and Colding’s
stability [5, Theorem A.1.3], the diffeomorphism type is constant on C∞.

In general, no smoothness can be expected for the cross-sections (Z, dZ) ∈
C∞. Nevertheless, a combination of the main results obtained in [3] allows us to
make the previous formal argument fully rigorous also in the general case. More
precisely, we prove:
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Theorem 2. Let (M4, g) be smooth, complete, with Ric ≥ 0 and satisfying (1).
There exists a finite group Γ < O(4) acting freely on S3 such that for every cross-
section of some blow-down (Z, dZ) ∈ C∞, (Z, dZ ,H3) is an RCD(2, 3) space with
Z homeomorphic to S3/Γ.

There are three upshots for Theorem 2:

i) The cross-section of every blow-down is a topological manifold;
ii) The possible topologies of the cross-sections are restricted;

iii) For a fixed (M4, g) the homeomorphism type is unique on C∞.

Both i) and iii) might fail in higher dimensions. For i), this can be understood by
considering the blow-down of the product metric gEH + dr2 on T ∗S2 × R, where
gEH denotes the Eguchi-Hanson metric on the cotangent bundle of S2. Such metric
is Ricci-flat with Euclidean volume growth. Its (unique) blow-down is isometric to
C
(
S4/(Z/2Z)

)
, where Z/2Z acts isometrically by involution with two fixed points

on S4. In particular, the cross-section is an orbifold which is not a topological
manifold. For ii), the potential failure of the uniqueness of the topological type
on C∞ is illustrated by the examples constructed by Colding and Naber in [7]. In
the recent [10], S. Zhou constructed examples of complete (M4, g) with Ric ≥ 0
and Euclidean volume growth asymptotic to C(S3

δ/Γ) for every finite Γ < O(4)
acting freely on S3. Here, 0 < δ = δ(Γ) ≤ 1 denotes the radius of S3, which is
endowed with a round metric. This result shows that every admissible topology
for the cross-section of some blow-down according to Theorem 2 can arise. On the
other hand, it is open whether every RCD(2, 3) metric on some spherical space
form can arise in this way.

The main ingredients for the proof of Theorem 2 are:

i) A statement ruling out the existence of noncollapsed Ricci limit spaces of
the form R× C(W 2) with W 2 homeomorphic to RP2, see [3, Thm. 1.6];

ii) A manifold recognition theorem for RCD(2, 3) spaces, see [3, Thm. 1.8];
iii) A topological stability theorem for noncollapsing sequences of RCD(2, 3)

spaces, see [3, Thm. 1.11].

Theorem 2 has been recently used to obtain some restrictions on the topology
of complete 4-manifolds (M4, g) with Ric ≥ 0 and Euclidean volume growth:

i) C. Brena, Bruè and Pigati proved in [2] that M4 must be orientable;
ii) H. Huang and X.-T. Huang proved in [8] that π1(M4) is isomorphic to a

quotient of the fundamental group of a spherical space form.

Cheeger and Naber’s Theorem 1 can be used to show that a contractible, Ricci-
flat (M4, g) with Euclidean volume growth must be isometric to the Euclidean
space with the flat metric, see [1, Lemma 6.3]. In the context of Theorem 2, we
raise the following:

Conjecture 1. Let (M4, g) be a smooth, complete, contractible 4-manifold with
Ric ≥ 0 and Euclidean volume growth. Then the following hold:

i) M4 is homeomorphic to R4;
ii) for every (Z, dZ) ∈ C∞, Z is homeomorphic to S3.
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Fine structure of two-dimensional mod(q) area-minimizing
hypersurfaces near branch points

Anna Skorobogatova

(joint work with Luca Spolaor, Salvatore Stuvard)

Let Σm be a minimal surface in a smooth Riemannian manifold (Mm+n, g). Aside
from existence of such surfaces Σ, a major question concerning the behavior of
such surfaces Σ is their regularity. In general, minimal surfaces can exhibit sin-
gularities, and in full generality, one does not even know if the dimension of the
singular set is strictly smaller than m. In codimension one, under the additional
assumption of stability and some other structural conditions, there has been some
significant progress in recent years (see e.g. [13, 8]). However, particularly in
higher codimension, very little is known. On the other hand, the regularity the-
ory for area-minimizing surfaces of arbitrary dimension and codimension is much
more approachable. Indeed, in the framework of integral currents, where surfaces
can have integer multiplicies, Almgren’s celebrated Big Regularity Theorem [1]
yields a singular set of dimension m − 2. However, this is better than the regu-
larity that physical soap films exhibit. A natural and more physically reasonable
framework for the study of the Plateau problem is via mod(q) currents, for a given
positive integer q. Such currents typically have an (m − 1)-dimensional singular
set, and the regularity theory seems to agree with that expected for more general
stable minimal surfaces, while still maintaining a minimization property. They are
defined as follows.
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For integer rectifiable currents Tm and Sm, recall the mod(q) flat distance

Fq(T − S) = inf{M(R) + M(W ) : T − S = Rm + ∂(Wm+1) + qZm}.

Definition 1. Anm-dimensional mod(q) area-minimizing current T in (Mm+n, g)
is a representative in its Fq-equivalence class [T ]q with

M(T ) ≤ M(S),

for every S ≡ (T + ∂R) mod(q) for some (m + 1)-dimensional integer rectifiable
current R in Rm+n.

One of the first groundbreaking results in the structure of the singularities of
codimension 1 area-minimizing mod(q) currents was the work of Taylor [9], which
showed that a two-dimensional area-minimizing mod(3) surface in R3 is locally
a C1,α-perturbation of a two-dimensional Y-singularity near any singular point.
In parituclar, its singular set is locally an embedded C1,α-submanifold. Another
important early result for area-minimizing mod(q) hypersurfaces of any dimension
was due to White [12], who demonstrated that any points of density strictly lower
than q

2 are regular points, but this is very specific to the codimension being one,
and no longer holds for surfaces of higher codimension, which may have classical
branch points such as {w2 = z3} in C2 ∼= R4.

A combination of the recent works [2, 3, 4, 5, 6, 8, 10, 13] yields the follow-
ing general structural theorem for area-minimizing mod(q) currents of arbitrary
dimension and codimension.

Theorem 1. Let q ∈ N≥2. If T
m is a mod(q) area-minimizing current in a smooth

Riemannian manifold (Mm+n, g), then the interior singular set decomposes as

Sing(T ) = Singbranch(T )
︸ ︷︷ ︸

(m − 2)-rectifiable

⊔Sm−1(T ) \ Sm−2(T )
︸ ︷︷ ︸

loc. (m − 1)-dim.

C1,α mfds

⊔ Sm−2(T)
︸ ︷︷ ︸

(m − 2)-rectifiable

,

where Singbranch(T ) denotes the set of branch points, and Sk(T ) denotes the k-th
stratum T , characterizing the maximal number of translation-invariant directions
that tangent cones may have.

If n = 1, then locally around every x ∈ Sm−1(T ) \ Sm−2(T ), T is a C1,α-
perturbation of an open book singularity model, supported by a finite collection of
half-spaces meeting at a common (m− 1)-dimensional interface.

This in particular recovers an analogous structure to that of Taylor for codi-
mension one area-minimizing mod(q) currents near (m− 1)-invariant cones.

A natural follow-up question concerns the structure of such currents near other
singularity models. Particularly, one would like to understand the behavior near
branch points, where the surface has at least one tangent cone supported in an
m-dimensional plane with multiplicity. In joint work [11] with Luca Spolaor and
Salvatore Stuvard, we answer this question in the case when it is two-dimensional
and the codimension is one:
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Theorem 2. Let T be a 2-dimensional area-minimizing current mod(q) in a
smooth Riemannian 3-manifold. Then, for any density q

2 flat singular point p of

T , there exists r0(p) > 0 and α > 0 such that T Br0(p) is a C1,α-perturbation of
the multigraph of a special q

2 -valued function (see [2]) arising from a superposition
of homogeneous harmonic polynomials of the same degree.

We additionally demonstrate that top density branch points (namely, the “gen-
uine mod(q) ones”) are isolated for two-dimensional surfaces of any codimension.
The key idea is to demonstrate a power law decay for Almgren’s frequency function,
which in this context is used to measure the order of collapsing of such surfaces
near branch points, relative to their (smoothed out) average known as the center
manifold. Such a decay may be obtained by a suitable competitor argument for
the (multi-valued) Dirichlet energy for a suitably strong graphical approximation
to the surface near a given branch point, since the latter approximation is almost
energy-minimizing in a quantitative sense.

The higher codimension case of such perturbative results for two dimensional
surfaces both near branch points and near the (m− 1)-symmetric “classical singu-
larities” described above is ongoing work, and requires us to rule out the possibility
of classical branch points accumulating to top density branch points.
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Isoperimetric gaps in non-positive curvature

Stephan Stadler

(joint work with Cornelia Druţu, Urs Lang, Panos Papasoglu, David Urech)

Isoperimetric filling inequalities in dimension n+ 1 control the volume needed in
order to fill an n-cycle S by an (n+ 1)-chain V . Their specific form is intimately
related to the geometry of the underlying metric space. A central role is played
by isoperimetric inequalites of the Euclidean type

voln+1(V ) ≤ const · voln(S)1+1/n.

By a fundamental result of Wenger, which builds on earlier work of Gromov,
such inequalities hold in particular in all Banach spaces and CAT(0) spaces. It
is natural to expect that for CAT(0) spaces, Euclidean isoperimetric inequalities
continue to hold when the classes of admissible cycles and fillings are restricted
to Lipschitz spheres and balls, respectively. In the case n = 1 – when circles
are filled by discs – we have a good understanding. It has recently been shown
that non-positive curvature is equivalent to a Euclidean isoperimetric inequality
with the sharp constant 1/(4π). Moreover, a length space that admits a quadratic
isoperimetric inequality for curves with a constant strictly smaller than 1/(4π) is
necessarily Gromov hyperbolic. These sharp results were predated by the general
observation, originally due to Gromov, that length spaces with a subquadratic
isoperimetric inequality must in fact satisfy a linear isoperimetric inequality.

In joint work with Cornelia Druţu, Urs Lang and Panos Papasoglu we estab-
lished a sharp isoperimetric gap theorem for fillings of 2-spheres by 3-balls in
CAT(0) spaces.

Theorem 1 ([1, Theorem A]). For a proper CAT(0) space X, the following are
equivalent:

(1) There exists a constant c < 1/(6
√
π) such that every Lipschitz 2-sphere

Ŝ ⊂ X of large area admits a filling by a Lipschitz 3-ball B̂ ⊂ X with
volume

vol(B̂) ≤ c · area(Ŝ)3/2.

(2) For every δ > 0 there exists a constant C = C(δ) such that every Lipschitz
2-sphere S ⊂ X extends to a Lipschitz 3-ball B ⊂ X with volume

vol(B) ≤ C · area(S)1+δ.

(3) The asymptotic rank of X is at most 2.
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The notion of asymptotic rank appearing in the last item is due to Gromov and
plays an important role in large scale geometry. For proper CAT(0) spaces with
cocompact isometry group, the asymptotic rank equals the maximal n such that X
contains an n-flat, that is, an isometric copy of Rn. In particular, the isoperimetric
inequality in the second item of Theorem 1 holds for the universal cover X of any
compact manifold of non-positive curvature provided that X contains no 3-flat.
For a general CAT(0) space X , the asymptotic rank is at most n if and only if no
asymptotic cone of X contains an (n+ 1)-flat, and it is at most 1 if and only if X
is Gromov hyperbolic.

Gromov conjectured that proper cocompact CAT(0) spaces of asymptotic rank
at most n admit linear isoperimetric inequalities

voln+1(V ) ≤ const · voln(S)

for fillings of n-cycles by (n+ 1)-chains. For general CAT(0) spaces of asymptotic
rank at most n, where n ≥ 2, the best known result in this direction is Wenger’s
sub-Euclidean inequality, stating that every n-cycle of mass s admits a filling with
mass at most o(s1+1/n) as s→ ∞.

For closed Lipschitz surfaces of higher genus we can prove the following.

Corollary 1 ([1, Corollary B]). Let X be a proper CAT(0) space of asymptotic
rank at most 2. For every δ > 0 and every integer g ≥ 0 there exists a constant
Cg = Cg(δ) such that every closed Lipschitz surface Σ ⊂ X of genus g extends to
a Lipschitz handlebody H ⊂ X with volume

vol(H) ≤ Cg · area(Σ)1+δ.

In joint work with Urs Lang and David Urech we address the case of general k-
cycles for k ≥ 2 in a (not necessarily proper) CAT(0) spaceX of asymptotic rank 2.
We consider the chain complex I∗,c(X) of metric integral currents with compact
support, which comprises all Lipschitz singular chains. The proof of Theorem 1
made use of the topology of surfaces. To cope with the missing topological control,
we assume that X has finite asymptotic Nagata dimension, a variant of Gromov’s
asymptotic dimension.

Theorem 2 ([2, Theorem 1.1]). Let X be a CAT(0) space of asymptotic rank
and most 2 and of finite asymptotic Nagata dimension. Then for every cycle
T ∈ Ik,c(X) in X of dimension k ≥ 2 and every δ > 0 there exists a V ∈ Ik+1,c(X)
with boundary ∂V = T and mass

M(V ) ≤ C ·M(T )1+δ

for some constant C depending only on X, k, and δ.
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Scalar Curvature Rigidity and the Higher Mapping Degree

Thomas Tony

A foundational result in scalar curvature comparison geometry is Llarull’s rigid-
ity theorem [2]. It states that every smooth area non-increasing map f : M → Sn

from an n-dimensional closed connected Riemannian spin manifold onto the round
sphere, n ≥ 3, with non-zero degree and scalM ≥ n(n − 1) = scalSn , is an isom-
etry. Goette and Semmelmann [1] generalized this result to area non-increasing

spin maps f : M → N of non-zero Â-degree onto a closed connected oriented
Riemannian manifold of non-vanishing Euler characteristic and non-negative cur-
vature operator.

In this report, we present a recent generalization of the extremality and rigidity
statement of Goette and Semmelmann [1, Theorem 2.4] to spin maps between not

necessarily orientable manifolds where the topological condition on the Â-degree
is replaced by a less restrictive index-theoretical condition involving the so-called
higher mapping degree (Theorem 1). The proof is based on the Dirac operator
method. While a non-zero classical index always implies a non-trivial kernel of the
corresponding Dirac operator, this is in general no longer true for a non-vanishing
higher index. To overcome this difficulty, a new method is developed by the au-
thor in [5] that extracts from a non-vanishing higher index a geometrically useful
family of almost harmonic sections (Lemma 1).

Theorem 1 ([5, Theorem A]). Let f : (M, gM ) → (N, gN ) be an area non-
increasing spin map between two closed connected Riemannian manifolds of di-
mension n + k and n, respectively. Suppose that the curvature operator of N is
non-negative and

(1) χ(N) · deghi(f) 6= 0 ∈ KOk(C∗π1(M)).

Then scalM ≥ scalN ◦f on M implies scalM = scalN ◦f . If, moreover, scalN >
2 RicN > 0 (or f is distance non-increasing and RicN > 0), then scalM ≥ scalN ◦f
implies that f is a Riemannian submersion.

Here, we call the map f area non-increasing if gM ≥ f∗gN holds on Λ2TM ,
and spin if w1(TM) = f∗w1(TN) and w2(TM) = f∗w2(TN). Moreover, χ(N)
denotes the Euler characteristic of N , and the higher mapping degree is defined
as follows.

Definition 1. The higher degree of the map f is defined via

deghi(f) := ind(DSMp⊗L(M)|Mp
) ∈ KOk(C∗π1(M))

for a regular value p of the map f . Here SMp denotes the Clk-linear spinor bundle
of Mp := f−1(p), L(M) the Mishchenko bundle of M [3], C∗π1(M) the maximal
group C∗-algebra of the fundamental group of M , and KOk(C∗π1(M)) its k-th Real
K-theory group.

Theorem 1 applies to the projections pr1 : S2n × T k → S2n and pr1 : RP2n ×
Σ8k+j → RP2n for j ∈ {1, 2} and Σ8k+j an exotic sphere with non-vanishing
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Hitchin invariant. In both examples the Â-degree vanishes, hence Theorem 1 is a
proper extension of the classical rigidity statement by Goette and Semmelmann
[1, Theorem 2.4].

The generalization in Theorem 1 is motivated by the fact that the Rosenberg
index [4] of a closed connected spin manifold M is the most general known index-
theoretical obstruction to the existence of a positive scalar curvature metric on M .
Since the Rosenberg index of the n-torus does not vanish, there exists no pos-
itive scalar curvature metric on the n-torus. This information cannot be read
off the classical index of the spin Dirac operator. This is the same phenome-
non as that the classical result by Goette and Semmelmann [1] does not apply to
pr1 : S2n × T n → S2n but the higher version in Theorem 1 does. The Rosenberg
index is known to be non-zero for many closed connected spin manifolds, includ-
ing (area-)enlargeable manifolds, those admitting metrics of non-positive sectional
curvature, and aspherical manifolds whose fundamental groups satisfy the Novikov
conjecture.

We now provide an outline of the proof of Theorem 1. Since the map f is
spin, there exists an indefinite spin structure on the vector bundle TM ⊕ f∗TN
equipped with the indefinite metric gM ⊕ (−f∗gN). We fix such an indefinite spin
structure, and twist its induced Cln+k,n-linear spinor bundle S by the Mishchenko
bundle of M . The induced Dirac operator DL satisfies, as in the classical proof by
Goette and Semmelmann [1], the Schrödinger-Lichnerowicz type formula

(2) DL ≥ ∇∗∇ +
1

4
(scalM − scalN ◦f).

Moreover, the following index theorem holds.

Theorem 2 ([5, Theorem 5.4]). The higher index of DL satisfies

ind(DL) = χ(N) · deghi(f) ∈ KOk(C∗π1(M)).

We obtain by equation 1 and Theorem 2 that the higher index of DL does not
vanish. A main difficulty in the proof of the extremality and rigidity statement
of Theorem 1 is that a non-vanishing higher index does in general not give rise
to a non-trivial kernel of the corresponding Dirac operator. The following lemma
establishes a new method that extracts from a non-vanishing higher index a family
of geometrically useful sections of the corresponding Dirac bundle.

Lemma 1 ([5, Lemma D]). Let M be a closed Riemannian manifold, A a graded
Real unital C∗-algebra, and /S → M a graded Real A-linear Dirac bundle with
induced A-linear Dirac operator /D. If the higher index of /D does not vanish, the
following holds.

(1) There exists a family {uǫ}ǫ>0 of almost /D-harmonic sections of /S, i.e.

‖uǫ‖L2 = 1 and ‖ /Di
uǫ‖L2 < ǫi for all i ≥ 1 and all ǫ > 0.

(2) If, moreover, ‖∇uǫ‖L2 < ǫ for all ǫ > 0, then there exist positive constants
C, r such that ‖∇uǫ‖∞ < Cǫr for all ǫ ∈ (0, 1).

The first part of Lemma 1 is well-known and follows from a standard pro-
cedure using the functional calculus of the Dirac operator. Combined with the
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Schrödinger-Lichnerowicz formula, it provides a proof of the fact that a non-
vanishing Rosenberg index is an obstruction to a positive scalar curvature metric
on closed connected spin manifolds. The proof of the second statement in Lemma
1 is mainly based on Moser iteration as well as the Sobolev embedding and the
elliptic estimates for the Dirac operator. Lemma 1 part (2) is the key observation
that makes it possible to use higher index theory in the context of scalar curvature
rigidity. In addition to the application in Theorem 1, it also yields a spinorial proof
of the rigidity statement that every closed connected Riemannian spin manifold
of non-vanishing Rosenberg index and non-negative scalar curvature is already
Ricci-flat.

We proceed with the proof of Theorem 1. By Theorem 2, Lemma 1 and the
Schrödinger-Lichnerowicz type formula in Equation 2, there exists a family {uǫ}ǫ>0

of sections of S ⊗ L(M) which is almost DL-harmonic and almost constant. This
means there exist positive constants C, r such that

‖uǫ − 〈uǫ, uǫ〉p‖ < Cǫr, with uǫ :=
1

vol(M)

∫

M

〈uǫ, uǫ〉pdp,

for all p ∈M and all ǫ ∈ (0, 1). Finally, we obtain
∥
∥ scalM − scalN ◦f

∥
∥
L1

.
∥
∥
〈
(scalM − scalN ◦f)uǫ, uǫ

〉

L2

∥
∥ . ǫ

for all sufficiently small ǫ > 0. Taking the limit ǫ → 0 yields scalM = scalN ◦f ,
and the extremality statement in Theorem 1 is proved. A similar consideration
generalizes the classical proof of the rigidity statement in [1, Section 1.c] to its
higher version in Theorem 1.
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Mathématiques Appliquées, UMR 8050
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Université Paris-Est Créteil
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Département de Mathématiques
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