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Abstract. The subject of operator algebras is a very active area of math-
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geometry, functional analysis, (geometric) group theory, topology, random
matrices, harmonic analysis and quantum information theory.

The goals of this workshop were to stimulate new collaborations across
these fields of mathematics, to disseminate recent progress by giving partici-
pants a global view on the subject and to specially focus on several important
developments, including progress on Connes’ rigidity conjecture for property
(T) groups, a deeper understanding of the analogs of group boundaries in
both C∗ and von Neumann algebra theory, C∗-simplicity and selflessness of
groups, and progress in (equivariant) classification of C∗-algebras.
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Introduction by the Organizers

The Oberwolfach C∗-algebra workshops hold a key role in the operator algebra
research landscape worldwide. In contrast to the numerous specialized confer-
ences, it is one of the rare meetings where participants learn about all the major
developments in C∗-algebras and von Neumann algebras, and their interactions
with other fields of mathematics. The workshop also has an important commu-
nity building role. We therefore pay particular attention to a systematic renewal
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of the team of organizers, to inviting promising junior researchers and to gender
diversity.

The 2025 workshop gave a broad overview over recent exciting developments in
the field, with particular emphasis on recent results related to strict comparison of
group C∗-algebras, on equivariant classification and new insights into the structure
and classification of Cartan subalgebras of nuclear C∗-algebras, and on results
around W∗-superrigidity.

In terms of talks an effort was made to follow the Oberwolfach tradition to
balance a substantial program with generous space for informal interaction. There
were 27 regular talks, plus one informal evening talk (by Marius Junge) and one
(also informal) open problem session (moderated by Stuart White).

As particular highlights illustrating the stimulating atmosphere at Oberwol-
fach workshops, we would like to mention two recent papers which to a large
part originated at this workshop and which were written directly afterwards: In
arXiv:2508.07938, Narutaka Ozawa proves that the reduced group C∗-algebras
of infinite countable discrete groups having topologically-free extreme boundaries
are selfless in the sense of Robert. This generalizes previous (and also quite re-
cent) results of Amrutam, Gao, Kunnawalkam Elayavalli, and Patchell, and of
Vigdorovich; it was at least in part inspired by Patchell’s talk on selflessness and
strict comparison.

In arXiv:2508.05834, David Jekel proved that the unitary groups of SOT-
separable II1 factors are SOT-contractible. The proof was conceived during the
workshop and the paper written directly afterwards; it was accepted by Mathe-
matische Annalen only a month or so after the workshop.

In other news, we are happy to report that Ilijas Farah has agreed to write an
Oberwolfach Snapshot entitled “Games in the Matrix”.
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Abstracts

W∗-superrigidity for group and quantum group von Neumann algebras

Stefaan Vaes

(joint work with Milan Donvil)

A discrete group G is said to be W∗-superrigid if the group von Neumann algebra
L(G), generated by the regular representation of G, fully remembers the group G.
The first instances of W∗-superrigid groups G were found in [6]. They are given
by a generalized wreath product construction, i.e. of the form G = (Z/2Z)(I) ⋊Γ,
given specific actions of a countable group Γ on a countable set I.

If for such a group G, the group von Neumann algebra M = L(G) has another
group von Neumann algebra decomposition M = L(Λ), generated by unitary el-
ements (vs)s∈Λ, one finds the comultiplication embedding ∆ : M → M ⊗ M :
∆(vs) = vs ⊗ vs. In specific situations, Popa’s deformation/rigidity theory allows
to describe all such embeddings ∆, which ultimately leads to proving that the uni-
taries (vs)s∈Λ can be unitarily conjugated to (multiples of) the unitaries (ug)g∈G

that canonically generate L(G).
Over the years, the methods to classify all comultiplication type embeddings of

classes of II1 factors M into their tensor powers have been refined. In particular in
[5], this led to the first instances of W∗-superrigid groups with Kazhdan’s property
(T). A wide open conjecture in this direction is due to Connes and predicts that
all lattices in higher rank simple Lie groups are W∗-superrigid.

In [1], a classification theorem of comultiplication embeddings led to the fol-
lowing new types of W∗-superrigidity theorems for groups G of the form G =
(Z/2Z)(Γ)⋊(Γ×Γ) given by a group Γ that belongs to the so-called class C. These
are groups that are nonamenable, weakly amenable, biexact and have the prop-
erty that the centralizer of any nontrivial element is amenable. This class includes
all torsion free hyperbolic groups, all free groups, and all free products of infinite
amenable groups.

In [1], we proved on the one hand that these groups G remain W∗-superrigid
when their group von Neumann algebras are twisted by a scalar 2-cocycle: if
µ ∈ H2(G,T) is any scalar 2-cocycle, and (Λ, ω) is any other pair of a discrete
group Λ with scalar 2-cocycle ω ∈ H2(Λ,T), and if the twisted group von Neumann
algebras Lµ(G) and Lω(Λ) are isomorphic, then the pairs (G,µ) and (Λ, ω) must
be isomorphic. This means that there must exist a group isomorphism δ : G→ Λ
such that the 2-cocycles ω ◦ δ and µ are cohomologous.

Moreover in [1], we prove the same result up to virtual isomorphisms: if Lµ(G)
is virtually isomorphic to Lω(Λ), which can be expressed by the existence of a
finite index Hilbert bimodule, or equivalently by the existence of a finite index
embedding of one into an amplification of the other, then the pairs (G,µ) and
(Λ, ω) are virtually isomorphic. The latter means that the groups are isomorphic
up to passage to finite index subgroups and quotients by finite normal subgroups,
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and that such a virtual group isomorphism preserves the 2-cocycles, up to 2-
cocycles given by finite-dimensional projective representations.

In the talk, we discussed two other applications of [1]: the construction from [2]

of groups G̃ that are W∗-superrigid and have infinite center, and the new notion
from [3] of W∗-superrigidity in the larger category of discrete quantum groups.

Assume that e → C → G̃ → G → e is a central extension of G by the abelian
group C. Denote by Ω ∈ H2(G,C) the associated 2-cocycle. By definition, the

group von Neumann algebra L(C) is contained in the center of L(G̃). Identifying

L(C) ∼= L∞(Ĉ) by Pontryagin duality, the corresponding direct integral decom-
position is given by

L(G̃) =

∫ ⊕

Ĉ

Lµ◦Ω(G) dµ .

This immediately leads to two obstructions to W∗-superrigidity of G̃. First, if

G̃′ is another central extension of G by C such that the associated 2-cocycle

Ω′ ∈ H2(G,C) has the property that µ◦Ω = µ◦Ω′ in H2(G,T) for all µ ∈ Ĉ, then

L(G̃) ∼= L(G̃′) and the group G̃ is not W∗-superrigid. In this case, Ω0 = Ω − Ω′

is a 2-cocycle with the property that µ ◦ Ω0 = 1 for all µ ∈ Ĉ. By the universal
coefficient theorem, such 2-cocycles Ω0 come from an abelian extension of the
abelianization Gab by C. So to avoid the first obstruction, one has to assume that
Ext1(Gab, C) is trivial.

A second obstruction to W∗-superrigidity of G̃ arises as follows: if the contin-

uous group homomorphism Ĉ → H2(G,T) : µ 7→ µ ◦ Ω has a nontrivial kernel, we

find a proper subgroup C0 < C such that this kernel is given by Ĉ/C0. Then,

L(G̃) ∼= L(C/C0) ⊗

∫ ⊕

Ĉ0

Lµ◦Ω(G) dµ .

Since the abelian group C/C0 is typically not W∗-superrigid, this prevents G̃ from
being W∗-superrigid.

The main result of [2] says that for groups G = (Z/2Z)(Γ) ⋊ (Γ × Γ), where
Γ belongs to class C and Aut Γ is countable, and arbitrary central extensions

e → C → G̃ → G → e with C torsion free, the two obvious obstructions to

W∗-superrigidity for G̃ are the only obstructions. This then leads to numerous
W∗-superrigid groups with infinite center. Note here that in [4], W∗-superrigid
groups with infinite center and property (T) were obtained.

Every discrete group G is also a discrete quantum group, and every discrete
quantum group generates a von Neumann algebra using the regular representa-
tion. It is thus quite natural to wonder if some of the W∗-superrigid groups G
remain superrigid in this broader category of quantum groups. In [3], we coined
this notion as quantum W∗-superrigidity. By definition, this notion is stronger than
W∗-superrigidity. Much to our surprise, we proved in [3] that it is often strictly
stronger: none of generalized wreath product groups G = (Z/2Z)(I) ⋊Γ are quan-
tum W∗-superrigid! The reason is that the dual compact quantum group (L(G),∆)
always admits nontrivial (dual) 2-cocycles. These are unitaries Ω ∈ L(G) ⊗ L(G)
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satisfying

(Ω ⊗ 1)(∆ ⊗ id)(Ω) = (1 ⊗ Ω)(id ⊗ ∆)(Ω) .

It follows that the twisted comultiplication a 7→ Ω∆(a)Ω∗ defines a new quantum
group structure on the same von Neumann algebra L(G).

To avoid this obstruction to quantum W∗-superrigidity, we thus introduce in [3]
a broader class of wreath-like product (quantum) groups. Given a Kac type com-
pact quantum group (A0,∆0) (in particular, given a group von Neumann algebra
(L(H0),∆0)), and given an action Γ yβ (A0,∆0) by quantum group automor-

phisms, we consider the tensor product (A,∆) = (A0,∆0)⊗Γ with embeddings
πk : A0 → A for all k ∈ Γ, and define the action Γ × Γ yα A given by

α(g,h)πk(a) = πgkh−1 (βg(a)) for all g, h, k ∈ Γ, a ∈ A0.

Then the von Neumann algebra M = A ⋊α (Γ × Γ) carries a natural quantum
group structure ∆ : M → M ⊗M . Note that when (A0,∆0) = (L(H0),∆0) and

β is the trivial action, then M = L(G) where G = H
(Γ)
0 ⋊ (Γ × Γ).

The main result of [3] now says that under the appropriate nontriviality and
rigidity assumption on Γ yβ (A0,∆0) and under the appropriate conditions en-
suring that (M,∆) has no nontrivial dual 2-cocycles, the quantum group algebra
(M,∆) is indeed quantum W∗-superrigid. This then leads to numerous exam-
ples of discrete groups G that are quantum W∗-superrigid, and also to numerous
instances of quantum W∗-superrigidity for quantum groups that are neither com-
mutative, nor cocommutative.
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Tensorial primeness of ultraproducts of tracial von Neumann algebras

Ilijas Farah

(joint work with Andrea Vaccaro)

A C∗-algebra is called (tensorially) prime if it is not a tensor product of two
infinite-dimensional C∗-algebras. Ghasemi proved in [13] that prime C∗-algebras
include all ultraproducts, asymptotic sequence algebras, coronas of σ-unital C∗-
algebras, and relative commutants of separable C∗-subalgebras of such algebras.
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More precisely, all countably degree-1 saturated C∗-algebras (in particular, all
SAW∗-algebras) are prime; see [6, §15.3]. This was motivated by a question of
Simon Wasserman, who asked whether the Calkin algebra Q(H) (defined as the
quotient B(H)/K(H) for a separable, infinite-dimensional, Hilbert space H) is
isomorphic to Q(H) ⊗ Q(H) (here and below ⊗ is the minimal tensor product).
The following is still open.

Question 1. Is Q(H) ⊗Q(H) ∼= Q(H) ⊗Q(H) ⊗Q(H)?

A considerably more ambitious question is the following.

Question 2. Suppose that m and n are in N and that Ai, for i < m, Bj , for
j < n, are SAW∗-algebras such that

⊗
i<mAi

∼=
⊗

j<nBj .
Can we conclude that m = n?
If so, is there a permutation π ofm such that Ai andBπ(i) are stably isomorphic?

If all of the Ai and Bj , are abelian, then the answer to each of the parts of
Question 2 is ‘yes’. This is a consequence of [5, Theorem 3] (see [6, Notes for
Chapter 15], also [3] for the origins of this study).

From the primality of norm ultrapowers of C∗-algebras we move on to the
question of primality of (tracial) ultraproducts of tracial von Neumann algebras.
In [16], Popa proved a remarkable lemma about orthogonality in tracial von Neu-
mann algebras. Soon after it was noticed independently by Popa and others that
this lemma easily implies that the ultrapower of any II1 factor is not a tensor
product of two II1 factors ([17], [4], [14], [10]). It is however unclear what the
correct definition of ‘prime’ is for tracial von Neumann algebras.

Example. Let M be a type II1 tracial von Neumann algebra with diffuse center.
Then M absorbs ℓ∞(N) tensorially. This is because for every ε > 0 there is a central
projection p in M such that pM ∼= M .1 The proof relies on [7, Corollary 5.3],
showing that the first-order theory of a direct integral can be computed from the
distribution of the theories of the fibers (see also [11]).

This example motivates the following.

Definition 1. A tracial von Neumann algebra is prime if it is not isomorphic to
a (von Neumann) tensor product of two von Neumann algebras whose unit balls
are not ‖ · ‖2-compact. Equivalently, it is not a tensor product of two diffuse von
Neumann algebras.

Even with this definition, no ultrapower of a diffuse type I tracial von Neumann
algebra is tensorially prime. This is a consequence of Maharam’s theorem from
measure theory (see e.g., [9, §331]), which implies that every diffuse type I von
Neumann algebra absorbs L∞[0, 1] tensorially; see the discussion in [8, §2]. The
following question was motivated by our (unsuccessful) attempts to solve Ozawa’s
notorious “exercise” on von Neumann algebras ([15]), and it in turn motivated the
study presented here.

1Our proof of this fact uses the Continuum Hypothesis.
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Question 3. Take an ultrapower of L∞[0, 1]⊗̄M for a II1 factor M . Is it prime?

By [1, §29] such ultrapower is a direct integral of a measurable field of II1
factors, but it is not clear whether this field can be taken to be constant. The
following are [8, Theorem 4 and Corollary 4].

Theorem 1. An ultraproduct
∏U

Mn of diffuse tracial von Neumann algebras is

prime if and only if it is not of type I. If N has separable predual and
∏U Mn∩N ′

is diffuse, then it is tensorially prime if and only if it is diffuse.

Corollary 1. Suppose that M is a II1 factor and U is a nonprincipal ultrafilter
over N. Then (L∞[0, 1]⊗̄M)U is not isomorphic to L∞(Ω, µ)⊗̄N for any type II1
tracial von Neumann algebra N and probability measure space (Ω, µ).

Our original proof of Theorem 1 used Cohen’s method of forcing introduced to
prove the independence of the Continuum Hypothesis from ZFC ([2]). Stefaan Vaes
suggested an improvement (Definition 2 below), and Adrian Ioana found a proof
that uses only ideas from the standard deformation rigidity theory in addition to
a standard consequence of countable quanifier-free saturation. In the following
EZ(M) is the conditional expectation of M to its center Z(M).

Definition 2. A unitary w in a tracial von Neumann algebra is uniformly Haar
if EZ(M)(w

k) = 0 for all k ≥ 1.

If M is a factor, then every Haar unitary is uniformly Haar. If M is type II1
then it has a unital copy of the hyperfinite II1 factor R and a Haar unitary in R
is uniformly Haar in M .

We can now sketch a proof of the nontrivial implication in Theorem 1. Suppose
that M an ultraproduct or a relative commutant of a separable subalgebra of an
ultraproduct, diffuse, and not of type I. By passing to a corner, we may assume
that M is of type II1. Suppose M = P ⊗̄Q, both P and Q are diffuse, and P not
of type I.

Let w0, w1 be uniformly Haar unitaries in P and Q. Then w0⊗w1 and w0⊗1Q
are uniformly Haar inM . It is straightforward to see that every two uniformly Haar
unitaries are approximately unitarily equivalent. Therefore the system of equations
(type) ‖x(w0 ⊗w1)x∗ −w0⊗ 1Q‖2 = 0, ‖xx∗− 1‖2 = 0 has approximate solutions.
By [6, Corollary 16.4.7], M is countably quantifier-free saturated (cqfs), meaning
that for any system of countably many equations of the form ‖Pn(x)‖2 = rn its
finite subsystems have approximate solutions if and only if the system has an exact
solution ([6, Definition 15.2.1]). Hence this system has an exact solution u. Let u
be such that u(w0 ⊗ w1)u∗ = w0 ⊗ 1Q. Note that EP⊗1Q(wk

0 ⊗ 1Q) = w0 ⊗ 1Q, a

unitary, while limk→∞ ‖EP⊗1Q(a(wk
0 ⊗ wk

1 )b)‖2 = 0 for all a, b; contradiction.
The following permanence property is straightforwaard (see Proposition 16.5.6

in the second edition of [6]).

Lemma 1. A tracial von Neumann algebra M is cqfs if and only if M t is cqfs
for some (all) t > 0. If M is cqfs and N is a von Neumann subalgebra of M with
separable predual, then M ∩N ′ is cqfs.
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Almost almost periodic type III1 factors and their
3-cohomological obstructions

Amine Marrakchi

Let M be a factor with separable predual. The Tomita-Takesaki theory associates
to every faithful normal state ϕ on M a continuous one-parameter automorphism
group σϕ : R → Aut(M) called the modular flow of ϕ. We say that ϕ is almost
periodic [Co74] if the closure of σϕ(R) is a compact subgroup of Aut(M). Almost
periodic states play a fundamental role in the classification of type III factors
because their modular theory is much simpler to handle.

Since the celebrated work of Connes [Co72], it is known that the modular flow
σϕ does not depend on the choice of the state ϕ up to inner automorphisms. In
other words, if we let Out(M) = Aut(M)/Inn(M) be the quotient of Aut(M) by
the subgroup of inner automorphisms, then the modular flow σϕ descends to one-
parameter group σM : R → Out(M), called the outer modular flow of M , that
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does not depend on the choice of ϕ. If we moreover assume that M is full, that
is if Inn(M) is closed in Aut(M), then Out(M) inherits a well-behaved Hausdorf
quotient topology for which σM is continuous.

Connes observed that if the full factor M admits some almost periodic state,
then σM must also be almost periodic. What about the converse? If σM is almost
periodic does it mean that M admits an almost periodic state?

Surprinsingly, we show that the answer to this question is negative in general
and that the counter-examples are quite subtle. Indeed, we prove that σM is
almost periodic if and only if M⊗R admits an almost periodic state, where R is
the hyperfinite II1 factor. Moreover, we give a complete and precise description of
the 3-cohomological obstruction to the existence of an almost periodic state on M
itself. We interpret this obstruction in terms of an integral quadratic form on the

Lie algebra of the compactification K = σM (R), we show that the infinitesimal
generator of the outer modular flow σM : R → K must be an isotropy vector for
this integral quadratic form and that this is the only restriction.

This talk is based on [Ma25].
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Flows on stably projectionless C*-algebras: Exploring
uncharted territory

Gábor Szabó

(joint work with Johannes Christensen & Robert Neagu)

In this talk I motivated ongoing work in progress with my coauthors from the
point of view of the broader theme of trying to understand flows on C*-algebras,
i.e., continuous actions of R. Roughly speaking, the two conceptual main problems
about flows one can work on are:

(1) Understand rigidity or classification phenomena for well-behaved flows on
well-understood C*-algebras.

(2) Understand how rich the class of flows really is on well-understood C*-
algebras.

These two goals are of course interrelated and progress on either can lead to
progress on both. The term “well-understood C*-algebra” can in practice be taken
to mean that it falls within the scope of Elliott’s classification program for sim-
ple amenable C*-algebras. The term “well-behaved flow” may have an ambiguous
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meaning (and may continue to be ambiguous as the state-of-the-art evolves), but
with the current methodology, this typically refers to flows satisfying Kishimoto’s
Rokhlin property [5].

Indeed, Kishimoto had conjectured early on that these flows ought to be ac-
cessible for classification and he obtained various partial results that served as
convincing evidence for his suspicion. In my prior work [8], I demonstrated that
this is indeed the case. Firstly, I showed that Rokhlin flows on Kirchberg algebras
are unique up to cocycle conjugacy (confirming a conjecture of Kishimoto), where
the existence of such flows on all Kirchberg algebras was shown in [1]. Secondly,
I showed in the same article that when A is a stable classifiable KK-contractible
C*-algebra, then any Rokhlin flow α : R y A is determined by the induced trace
action T (α) : R y T+(A) up to cocycle conjugacy. As of writing this report,
this remains the only classification theorem covering Rokhlin flows on finite C*-
algebras, although one may expect further progress in the future.

If one considers the Elliott invariant consisting of K-theory and traces, then the
only very obvious classification invariant for flows would be the aforementioned
induced (continuous affine) action of R on the traces. In the unital case, the
tracial invariant would consist of the Choquet simplex of tracial states, but for
the purpose of this talk we also want to utilize the tracial cone of a (possibly
nonunital) C*-algebra, i.e., the set of densely defined lower semicontinuous tracial
weights. A less obvious but important cocycle conjugacy invariant for flows α :
R y A is Connes’ rotation map defined in [2]. This provides a dynamically
induced interaction between K-theory and traces, and can be viewed as a group
homomorphism rα : K1(A) → Aff(T+(A)α,R).

Along the lines of the second goal above, there are mainly two prior results
to overview concerning these two dynamical invariants. In general, it is not well
understood what actions of R on T+(A) are induced from a flow, but Kishimoto–
Kumjian have shown in [7] that certain stably projectionless C*-algebras admit so
called trace-scaling flows (with a fixed scaling constant). Concerning the rotation
map, Kishimoto observed for any Rokhlin flow α : R y A on a unital C*-algebra
that evaluating on any given trace τ ∈ T (A)α yields a homomorphism K1(A) → R

with dense range. This provides a concise conceptual justification why Rokhlin
flows cannot exist on unital AF algebras. In the opposite direction, he proved in
[6] that if A is unital simple AT, has real rank zero and is monotracial, then any
homomorphism K1(A) → R with dense range is the rotation map of some Rokhlin
flow on A. Although the class of such C*-algebras is not vast from today’s point of
view, it covers numerous examples such as noncommutative tori. To my knowledge,
there has been little progress since these results in the 1990s on the question of
realizing more abstract invariants as (Rokhlin) flows.

Before we state the main result, let us introduce some ad-hoc terminology:

(a) A lattice cone C is the positive part C = E+ in a locally compact real
vector lattice E.

(b) We call a continuous affine action σ : R y C a scaling action if σ preserves
all the extremal rays in C.
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We note that a scaling action σ has the property that for any τ ∈ C belonging
to an extremal ray, there exists some b > 0 such that σt(τ) = bt · τ for all t ∈ R.
However, the scaling constant b is allowed to depend on τ . A special case where it
is easy to describe all the scaling actions is when the lattice cone C is of “Bauer
type”, i.e., C is affinely homeomorphic to Mf (X), the set of finite Borel measures
on a compact metrizable space X . In that case, it is easy to see that scaling actions
are in a canonical one-to-one correspondence with continuous maps X → R>0.

Our main result (in progress) then goes as follows. Note that the class of C*-
algebras determined by the assumptions stated below was classified in [4].

Theorem 1. Let A be a separable simple amenable C*-algebra that is projection-
less, stable, satisfies the UCT, and A ∼= A ⊗Z0. Let σ : R y T+(A) be a scaling
action and let r : K1(A) → Aff(T (A)σ,R) be any homomorphism. Then there
exists a flow α : R y A such that

• T (α) = σ as actions of R on T+(A).
• rα = r.
• α has the rational Rokhlin property, i.e., α⊗ idU has the Rokhlin property
for any infinite-dimensional UHF algebra U .

As a not so hard corollary of this theorem (using also [3]), one gets that every
stable classifiable C*-algebraB has some crossed product decompositionB ∼= A⋊R

for A belonging to the above class.
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[8] G. Szabó, The classification of Rokhlin flows on C*-algebras, Comm. Math. Phys. 382

(2021), 2015–2070.

On Hausdorff covers for non-Hausdorff groupoids

Xin Li

(joint work with Kevin Aguyar Brix, Julian Gonzales, Jeremy B. Hume)

In my talk, I reported on the paper [2]. The main objects of study are topological
groupoids, which arise naturally in a variety of areas such as dynamics, topol-
ogy, geometry, group theory and C∗-algebras, building bridges between all these
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areas of mathematics. The link between topological groupoids and C∗-algebras
is established by the construction of convolution algebras [19, 5, 6]. Many im-
portant classes of C∗-algebras arise from groupoids (for example AF-algebras,
Cuntz-Krieger algebras, graph algebras etc., see also [16]), and groupoid models
are very helpful for studying structural properties or interesting invariants of the
corresponding C∗-algebras. For topological groupoids which are Hausdorff (as well
as locally compact and étale), there are satisfactory results characterising funda-
mental properties of groupoid C∗-algebras such as simplicity, the ideal intersection
property or nuclearity in terms of the underlying groupoids (see [7, 3, 12, 1]), and
the notion of Cartan subalgebras allows to reconstruct groupoids from their C∗-
algebras [14, 21]. However, several of these results, such as characterisations of
simplicity, the ideal intersection property, or reconstruction results using Cartan
subalgebras, do not carry over to non-Hausdorff groupoids (see [7] and also a
related example due to Skandalis in [20]), and new challenges arise in the non-
Hausdorff setting because we have to work with compact sets which are not closed
and functions which are not continuous. At the same time, important examples
of groupoids arising as groupoid of germs, from foliations or self-similar groups
typically are non-Hausdorff (see [8, 17, 18] for some examples), which provides
a strong motivation to systematically develop a better understanding of non-
Hausdorff groupoids and their C∗-algebras.

In this context, a new construction called essential groupoid C∗-algebras has
been introduced for non-Hausdorff groupoids [9, 15], and simplicity as well as the
ideal intersection property have been characterised for this new construction in
terms of the underlying groupoids [4, 12]. While these recent developments and
their algebraic analogues in the setting of Steinberg algebras have led to progress in
our understanding of non-Hausdorff groupoids, it remains an open question when
essential groupoid C∗-algebras agree with the more classical reduced groupoid
C∗-algebras, and there is an analogous open question for Steinberg algebras (see
[23, 24, 27, 11] for progress in the case of groupoids arising from self-similar groups).

The goal of [2] is to develop a new approach to non-Hausdorff groupoids and
their algebras, based on the construction of Hausdorff covers as in [25] (similar
constructions appeared in [13, 26]). Given a non-Hausdorff étale groupoid G with

Hausdorff unit space, its Hausdorff cover G̃ is a Hausdorff étale groupoid given
by the closure of G in the space of non-empty closed subsets of G with respect to
the Fell topology [10]. Alternatively, we can think of G̃ as the Gelfand spectrum
of the smallest commutative C∗-algebra of bounded, complex-valued functions on
G containing Cc(G) := span({Cc(U) : U ⊆ G open, Hausdorff}). Here Cc(U) is
the algebra of continuous functions U → C with compact support contained in
U , and we extend a function in Cc(U) by zero to view it as a function on G.
Using the Hausdorff cover, we develop new tools in the non-Hausdorff setting and
reduce questions about non-Hausdorff groupoids to the Hausdorff case. Here is a
summary of our main achievements.

• We establish a complete characterisation when singular ideals vanish in
Steinberg algebras over arbitrary rings in terms of a groupoid property. In



C∗-Algebras 1901

combination with [23, Theorem A], this completely characterises simplicity
of Steinberg algebras over fields, which answers [4, Question 1].

• We also completely characterise when the C∗-algebraic singular ideal of a
non-Hausdorff étale groupoid G has trivial intersection with Cc(G). This
leads to a characterisation when the C∗-algebraic singular ideal vanishes,
under the assumption that the closure of the unit space G(0) of G has finite
fibres over G(0). In combination with existing simplicity characterisations
for essential groupoid C∗-algebras in [12], this yields a characterisation in
terms of a groupoid property when the reduced groupoid C∗-algebra of
G is simple, which provides a partial answer to [4, Question 2]. Another
consequence is that, for a non-Hausdorff ample groupoid G satisfying our
finiteness condition, simplicity of the complex Steinberg algebra of G im-
plies simplicity of the reduced groupoid C∗-algebra of G, which provides a
partial answer to [4, Question 3]. We also obtain a conceptual explanation
for the results on groupoids of contracting self-similar groups in [11].

• We show, for a non-Hausdorff étale groupoid G which can be covered
by countably many open bisections, that the ideal intersection property
for the essential groupoid C∗-algebra C∗

ess(G) is equivalent to the ideal

intersection property of the reduced C∗-algebra C∗
r (G̃ess), where G̃ess is

the restriction of G̃ to a closed invariant subset of the unit space of G̃.
Since G̃ess is Hausdorff, we obtain a conceptual explanation for results on
simplicity or the ideal intersection property for essential C∗-algebras of
non-Hausdorff étale groupoids in [4, 9, 15, 12].

• We show that nuclearity of the reduced C∗-algebra of a non-Hausdorff
étale groupoid G is equivalent to topological amenability of its Hausdorff
cover G̃. If G is σ-compact, results in [22] imply that this is equivalent to
amenability of G itself (in the sense of [22, Definition 2.7]). This reduces
questions about nuclearity and amenability to the Hausdorff case.
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Uniqueness theorems for maps into II1-factors and
ultraproducts of matrices

Shanshan Hua

(joint work with Stuart White)

Starting with Elliott’s classification of approximately finite dimensional C∗-alge-
bras and over the past few decades, the classification results for C∗-algebras have
been built on those of morphisms. Recently, to recapture the unital classification
theorem obtained in 2015, Carrión, Gabe, Schafhauser, Tikuisis and White clas-
sified, via an abstract approach, unital and full ∗-homomorphisms A → Bω up
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to unitary equivalence in [1], by enriched K-theoretical and tracial data. Their
underlying assumptions are: A is nuclear and satisfies the universal coefficient the-
orem (UCT), and B is simple and satisfies a regularity condition called Z-stability.
This regularity property resembles the McDuff property for II1-factors and means
that A ∼= A ⊗ Z, where Z is the Jiang-Su algebra. See [6] for a survey of this
abstract classification approach.

The only place where the full force of Z-stability is needed in [1] instead of its
consequences, such as strict comparison and uniform property Γ, is in the proof
of the uniqueness statement. A proper “Z-stability” notion, called separable Z-
stability, for Bω is involved in the proof. If B is Z-stable, then Bω is usually
not Z-stable, but are separably Z-stable, which means that for any separable C∗-
subalgebra, there exists a separable Z-stable C∗-subalgebra containing it.

In collaboration with Stuart White, we target to prove uniqueness statements
for more general maps lacking such Z-stability assumption. One important ex-
ample is the class of unital embeddings from a separable and nuclear C∗-algebras
into a II1-factor, which is the starting point of the modern abstract classifica-
tion approach pioneered by Schafhauser in [5] and further developed in [1]. The
uniqueness of such maps in the ‖ · ‖2-norm topology induced by the unique trace
of the II1-factor is well-known as a consequence of Connes’ characterizations for
hyperfiniteness for von Neumann algebras.

Theorem 1 (Connes; c.f. [5, Proposition 1.1]). Let A be a separable and nuclear
C∗-algebra and M is a II1-factor. Let φ, ψ : A→ M be unital ∗-homomorphisms
such that τM ◦ φ = τM ◦ ψ, then there exists a sequence of unitaries (un)n in M
such that

(1) ‖unφ(a)u∗n − ψ(a)‖2,τM → 0, a ∈ A.

We manage to prove a similar uniqueness theorem in the norm topology, with
the additional assumption that the domain C∗-algebra satisfies the UCT.

Theorem 2 (H., White). Let A be a separable, unital and nuclear C∗-algebra
satisfying the UCT and M be a II1-factor. Let φ, ψ : A → M be unital and
faithful ∗-homomorphisms such that τM ◦φ = τM ◦ψ, then there exists a sequence
of unitaries (un)n in M such that

(2) ‖unφ(a)u∗n − ψ(a)‖ → 0, a ∈ A.

Theorem 2 is not covered by techniques in [1], since for instance it is open
whether R is separably Z-stable. This result is new and interesting even when the
domain is commutative, in which case the UCT is automatic and the faithfulness of
maps is not needed. The UCT assumption is needed in general to access the KK-
machinery. It is conjectured that the UCT holds for every separable and nuclear
C∗-algebra, and all such concrete examples that people have checked indeed have
the UCT. Thus, Theorem 2 is widely applicable in practice.

Another class of maps of interest can be considered as the uniqueness counter-
part of quasidiagonality for nuclear C∗-algebras. A separable, unital and nuclear
C∗-algebra A is quasidiagonal if there exists a unital map from A into

∏
ωMkn
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for some sequence of natural numbers (kn)n, or equivalently into Qω, where Q
is the universal UHF-algebra. Maps into Qω are classified by Schafhauser in [5].
Comparing to Qω, which is separably Z-stable since Q is Z-stable, the algebra∏

ωMkn
is not separably Z-stable, since the corresponding tracial ultraproduct

does not have the property Γ. The following theorem generalizes Lin’s result in
[4] for commutative A and for certain AH-algebras.

Theorem 3 (H., White). Let A be a separable, unital and nuclear C∗-algebra
satisfying the UCT. Let φ, ψ : A →

∏
ωMkn

be full and unital ∗-homomorphisms
such that K(φ) = K(ψ) and τω ◦ φ = τω ◦ψ, where τω is the unique limit trace on∏

ωMkn
. Then there exists a unitary u ∈

∏
ωMkn

such that φ = Ad(u) ◦ ψ.

To prove Theorem 2 and Theorem 3, appropriate KK-uniqueness theorems for
maps are needed, the proof of which follows the same strategy as in the work
[2] of Dadarlat and Eilers. The Paschke duality gives an isomorphism between
KK-group and K1-group of the so-called Paschke dual algebra. To obtain the
KK-uniqueness theorem, it suffices to show that the Paschke dual algebra is K1-
injective, meaning that every unitary with the trivial K1-class is path connected
in the unitary group to the identity. When codomain C∗-algebras are Z-stable,
the proof of the so-called Z-stable KK-uniqueness theorems in [1] instead works
with the Z-stabilization of the Paschke dual algebra, which is automatically K1-
injective by Jiang’s result ([3]). For cases that we are interested in, due to the
absence of Z-stability, we show K1-injectivity results directly.

Combining such KK-uniqueness theorems with the abstract approach in [5] and
[1], we prove the main uniqueness theorem, which covers Theorem 2 and Theorem
3 as spacial cases and goes beyond the previous scope of classification.

Theorem 4 (H., White). Let A be a separable, unital and nuclear C∗-algebra
satisfying the UCT. Let (Bn)∞n=1 be a sequence of simple and unital C∗-algebras
which have real rank zero, stable rank one, tracial states τn, totally ordered Murray–
von Neumann semigroups V (Bn) and K1(Bn) = 0. We write Bω for

∏
ω Bn.

Given full and unital ∗-homomorphisms φ, ψ : A → Bω with τBω
◦ φ = τBω

◦ ψ
and K(φ) = K(ψ), there exists a unitary u ∈ Bω with ψ = (Adu) ◦ φ.
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Selflessness of reduced free product C
∗-algebras

Ben Hayes

(joint work with Srivatsav Kunnawalkam Elayavalli, and Leonel Robert)

Let A be a C∗-algebra equipped with a state ρ. Robert in [12] defined (A, ρ) is
selflessness if there exists a C∗-algebra C with a state κ so that (A, ρ) ∗ (C, κ) has
a state-preserving embedding into (Aω,‖·‖, ρω) for some cofinal ultrafilter ω on a
directed set I. Robert (see [12, Theorem 2.6]) showed that if (A, ρ) is selfless, then
whenever B is a C∗-algebra with a state ψ such that (B,ψ) has a state-preserving
embedding into (Aω,‖·‖, ρω), it necessarily follows that (A, ρ) ∗ (B,ψ) has a state-
preserving embedding into (Aω,‖·‖, ρω). Note that for any such (B,ψ) selflessness
is equivalent to saying that A →֒ A∗B is a sequentially split inclusion in the sense
of [2]. This definition can be taken as an analogue of a theorem of Popa in [11],
showing that the ultrapower of any II1-factor contains a Haar unitary which is
freely independent of the diagonal embedding.

The crucial significance of this is that by [2, Theorem 2.9],[12, Theorem 3.1] it
follows that selfless C∗-algebras automatically enjoy several desirable properties,
e.g. they are all simple. Additionally, if ρ is not a trace, they are automatically
purely infinite and have real rank zero. When ρ is a trace, they have stable rank
one and have strict comparison. Strict comparison is a desirable property recently
for the classification theory of C∗-alegbras (see e.g [3, 4, 5, 6, 13, 14, 15]), and has
been open for a while for many non-nuclear C∗-algebras, such as the reduced free
group C∗-algebra, and the C∗-algebra generated by r free semicirculars for r ≥ 2
(this last question being a problem of Gabe-Phillips).

In the breakthrough work [1], the authors show selflessness for a broad class
of reduced group C∗-algebras, including free groups and more generally finitely
generated acylindrically hyperbolic groups with trivial finite radical (see also [8]
for rapidly changing and exciting developments). It required as a crucial input the
rapid decay property for these groups. Despite this work being of fundamental
importance, it nevertheless left open the question of selflessness for C∗-algebras of
more general free products.

In order to address this question, we first develop a general notion of rapid
decay property, which encompasses the group setting and in the commutative case
reduces to the classical theory of orthogonal polynomials.

Definition 1. Let A be a unital C∗-algebra equipped. A filtration of A is a
sequence (Vn)∞n=0 of subspaces of A so that:

• V0 = C1,
• Vn ⊆ Vn+1 for every natural number n,
• Vn is closed under ∗,
•
⋃

n Vn is norm dense in A.

For example, if G is a finitely generated group and S is a finite generating set,
the for an integer n ≥ 0 we use

B(e, n) = {s1 · · · sr : si ∈ S ∪ S−1 ∪ {e}}.
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For A = C∗
λ(G), we then have a filtration given by Vn = Span({λg : g ∈ B(e, n)}).

For A = C([a, b]) with a < b real numbers, we may consider Vn = Span({xk :
0 ≤ k ≤ n}).

Definition 2. Let A be a C∗-algebra and ρ a state on A. Given a filtration
(Vn)∞n=0 of A, we say that (Vn)∞n=0 has the rapid decay property if there constants
C,α ≥ 0 so that

‖x‖ ≤ C(n+ 1)α‖x‖2, for all x ∈ Vn.

The reader can check that reduces to the definition for groups given in [9], if
one uses the filtration coming from balls in a Cayley graph as above.

Using fundamental results of Ricard-Xu [10], we show the following.

Theorem 1. Let (Aj , ρj), j = 1, · · · ,m be unital C∗-algebras equipped with states.
For all j = 1, · · · ,m let (Vn,j)

∞
n=0 be filtrations of Aj . For integers 0 ≤ t ≤ n, let

Wt,n be the span of all words of the form x1 · · ·xt where:

• xi ∈ Vn,j(i) ⊖ C1,
• j : {1, · · · , t} → {1, · · · ,m} has j(i) 6= j(i+ 1) for all 1 ≤ i ≤ t− 1.

Set Vn =
∑n

t=0Wt,n. Then:

(1) (Vn)∞n=0 is a filtration of A1 ∗ · · · ∗Am,
(2) if each (Vn,j)

∞
n=0 has the rapid decay property with respect to ρj, then

(Vn)∞n=0 has the rapid decay property with respect to ρ1 ∗ ρ2 ∗ · · · ∗ ρm.

Using this, we prove the following theorem, settling the question of Gabe-
Phillips, and also establishing selfness for a large family of reduced free products.

Theorem 2. Let (Aj , ρj), j = 1, 2 be unital C∗-algebras equipped with states
ρj , j = 1, 2. Suppose each (Aj , ρj) has a filtration with the rapid decay prop-
erty, and that ρ1 is a trace. Let M be the GNS completion of A1 with respect to
ρ1. Assume that one of the following conditions hold:

(1) M is a II1-factor, or
(2) Mω,‖·‖2 ∩M ′ is diffuse (e.g. if M has diffuse center).

Then (A1, ρ1) ∗ (A2, ρ2) is selfless.

We remark here that, while we take the strategy of [1] as a roadmap, there are
crucial differences. Namely, in [1] the authors conjugate part of the free product
A1 ∗A2 ∗A1 by unitaries that come from the filtration of A1 to define maps which
prove selflessness. Note that for the filtration of (C([−2, 2]),

∫
· dx
2π

√
4−x2

) given by

polynomials does not have any nonconstant untiaries. So we cannot follow this
strategy and are led to conjugate by unitaries outside of the filtration. In order
to preserve the appropriate rapid decay estimates, we need to better analyze the
combinatorial structure of this map and the theorem of Ricard-Xu. In the case
that M is a II1-factor, we use Popa’s theorem [11] to find a sequence of unitaries
in A1 asymptotically free from M . In the case that Mω,‖·‖2 ∩ M ′ is diffuse,
we use a nontrivial theorem of Kirchberg-Rørdam to find unitaries in A which
asymptotically commute in norm with every element of A and are asymptotically
orthogonal to all of A. With these crucial ingredients, we can then modify the
strategy of [1] to prove the above theorem.
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[2] S. Barlack and G. Szabó, Sequentially split ∗-homomorphisms between C∗-algebras, Inter-
national Journal of Mathematics, 27 (2016).

[3] J. Carrión, J. Gabe, C. Schafhauser, A. Tikuisis, and S. White, Classifying ∗-
homomorphisms I: Unital simple nuclear C∗-algebras, arXiv:2307.06480

[4] J. Castillejos, S. Evington, and A. Tikuisis, Uniform property Γ, International Mathematics
Research Notices, 13 (2022), 9864–9908.

[5] G. Gong, H. Lin, and Z. Niu, A classification of finite simple amenable Z-stable C∗-
algebras, I: C*-algebras with generalized tracial rank one, Comptes Rendus Mathématiques

de l’Académie des Sciences. La Société Royale du Canada. Mathematical Reports of the
Academy of Science. The Royal Society of Canada, 42 (2020), 63–450.

[6] G. Gong, H. Lin, Z. Niu, A classification of finite simple amenable Z-stable C∗-algebras,
II: C∗-algebras with rational generalized tracial rank one,Comptes Rendus Mathématiques
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New Examples of Strict Comparison in C
∗-Algebras

Gregory Patchell

(joint work with Tattwamasi Amrutam, David Gao,
and Srivatsav Kunnawalkam Elayavalli)

One of the most fundamental ways to compare matrices is via their rank. For
two matrices X and Y, rank(X) is less than or equal to rank(Y) if and only if
there are matrices S and T such that X = SYT. The rank can be generalized to
C∗-algebras using dimension functions and the latter algebraic condition can be
generalized to a condition known as Cuntz subequivalence. C∗-algebras for which
the dimension functions recover Cuntz subequivalence are said to have strict com-
parison, see [5, 36, 14, 2]. Strict comparison is known to have applications to
classification of *-homomorphisms of C∗-algebras, including existence and unique-
ness of embeddings of the Jiang–Su algebra [34, 19, 15, 32]; to the calculation of
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the Cuntz semigroup [8, 19, 7]; and to a breakthrough in the C∗-algebraic ana-
logue of Tarski’s problem determining non-elementary equivalence of the reduced
group C∗-algebras of free groups, strikingly contrasting Sela’s results to elemen-
tary equivalence of free groups [38, 39]. In the nuclear setting, strict comparison
is equivalent to tensorial absorption of the Jiang–Su algebra [27]. However, previ-
ously there was a severe lack of non-nuclear examples of strict comparison in the
setting of reduced group C*-algebras. In 1991, Anderson–Blackadar–Haagerup
showed strict comparison for free products of finite-dimensional abelian algebras
[1]; in 1998 Dykema–Rørdam showed that infinite reduced free products have strict
comparison [13]; but, even for the free group on two generators, strict comparison
of the reduced group C∗-algebra was a long-standing open problem. In our work
we show that the reduced group C∗-algebra of the free group on two generators
has strict comparison. Our methods are very general and lead to proving strict
comparison (and the stronger property of selflessness, due to Robert [35]) for all
acylindrically hyperbolic groups with the rapid decay property.

Our methods combine two properties for groups, the rapid decay property and a
quantitative version of the mixed-identity free property. A group G is said to have
rapid decay if there is some polynomial P such that for all ϕ ∈ C[G] supported on
the radius N ball, ‖ϕ‖ ≤ P (N)‖ϕ‖2. The rapid decay property (see the survey
[37]) was first proved by Haagerup for the free groups [18]. It was then generalized
to Gromov hyperbolic groups [23, 20], relatively hyperbolic groups with peripheral
subgroups having rapid decay [37], cocompact lattices in SL3(R) or SL3(C) [25, 9],
mapping class groups of surfaces [4], large type Artin groups [10], hierarchically
hyperbolic groups [3], and more. Rapid decay is extremely influential and has been
used to prove several important problems, including the Novikov conjecture [11],
the Baum-Connes conjecture [26], and others including [17]. A group G is said
to be mixed-identity free if for all nontrivial words w(x) ∈ G ∗ 〈x〉 there is g ∈ G
such that w(g) 6= e. This is equivalent to G embedding existentially in G ∗ Z, see
Section 5 in [22]. For our purposes, we require something stronger, namely that
there is a polynomial Q such that every word w(x) as before of length N can be
violated by a group element g of length at most Q(N). We are able to show this
strengthened version of the mixed-identity free property for all free groups as well
as the much broader class of acylindrically hyperbolic groups with trivial finite
radical [29]. A group is said to be acylindrically hyperbolic if it admits a non-
elementary acylindrical action on a Gromov hyperbolic metric space. See [28] for
context, examples, and references. Recall also the finite radical for a group is the
largest finite normal subgroup. Within the class of acylindrically hyperbolic groups
G, it turns out that the finite radical being trivial is equivalent to C∗

r (G) having
unique trace, which is in turn equivalent to C∗

r (G) being simple (see Theorem 1.4
of [7] and Theorem 2.35 of [12]).

Our methods show that in fact C∗
r (G) is selfless for G having rapid decay and

being acylindrically hyperbolic with trivial finite radical. A C∗-algebra (A, φ) is
selfless if (A, φ) embeds existentially in (A, φ) ∗r (C(T), λ). This can be seen as
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a C∗-algebraic analogue of Popa’s theorem that all II1 factors are freely com-
plemented in their tracial ultrapowers [31]. As seen in [35], all tracial selfless
C∗-algebras are simple, have stable rank 1, and have strict comparison.

Since the time of our work, there have been several developments in selfless
C∗-algebras. Vigdorovich showed that cocompact lattices in PSLd(K) have lin-
ear size violators of mixed identities for any local field K and any d ≥ 2 [40].
In particular, in combination with Lafforgue’s result that cocompact lattices in
SL3(R) and SL3(C) have rapid decay [25], this shows that the reduced group C∗-
algebras of such groups are selfless. Bradford–Sisto were able to greatly improve
upon our estimates of mixed-identity violation in acylindrically hyperbolic groups
with trivial finite radical and show that, in fact, the violators can be chosen with
linear growth [6]. Hayes–Kunnawalkam Elayavalli–Robert showed that free prod-
ucts of C∗-algebras with filtrations admitting rapid decay are selfless under some
mild assumptions [21]. This allowed them to prove selflessness for C∗-algebras not
arising from groups, such as the reduced free products of continuous functions on
the interval. Raum–Thiel–Vilalta show that twisted reduced group C∗-algebras
arising from the same groups as we considered (quantitative mixed-identity free
and rapid decay) are selfless. They also note that selflessness implies pureness and
use this to prove strict comparison for the reduced group C∗-algebras of acylindri-
cally hyperbolic groups with non-trivial finite radical and rapid decay [33]. Most
recently, Ozawa found both a dynamical criterion (existence of a topologically free
extremely proximal minimal action) which implies selflessness and showed stabil-
ity of selflessness under minimal tensor products in the presence of exactness [30].
In particular, this implies that non mixed-identity free groups can have selfless
reduced group C∗-algebras, such as F2 × F2.

Several questions remain regarding strict comparison and selflessness. For in-
stance, Robert asks whether every C∗-simple group has selfless reduced group C∗-
algebra [35]. Whether strict comparison for C∗(G) is equivalent to C∗-simplicity
or whether selflessness is equivalent to strict comparison plus C∗-simplicity are
also open problems. Whether the torsion Tarski monsters are selfless is also open;
notably, these have not just a mixed identity but an identity and are C∗-simple.
A similar question can be asked about free Burnside groups. In light of Ozawa’s
result on extremely proximal actions [30], is there a dynamical condition charac-
terizing selflessness? There are also many questions regarding crossed products.
Giol–Kerr constructed a crossed product of Z on C(X) which is simple but fails
to have comparison [16]. Of course, C∗

r (Z) is not simple, much less selfless. But
are there minimal actions of C∗-selfless groups giving rise to non-selfless reduced
crossed products? To the author’s knowledge, this is open even for minimal actions
of Fn at the moment. Note that all such crossed products are simple by Kawabe
[24]. More generally, can one characterize selflessness of reduced crossed products
either through a dynamical condition or a condition on the stabilizer subgroups?
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Selfless higher rank lattices

Itamar Vigdorovich

Given a unital C∗-algebra A, several structural properties play a central role as
regularity inputs for classification. Very roughly:

(1) Cuntz subequivalence: a relation on positive elements a, b ∈ A+ asserting
that a can be approximately cut out of b by inner conjugation; this gives
rise to the Cuntz semigroup Cu(A).

(2) Strict comparison: traces detect Cuntz subequivalence for positive ele-
ments (if dτ (a) < dτ (b) for all traces τ , then a - b).

(3) Stable rank 1: invertible elements are dense. This is a noncommutative
low-dimensionality condition that drastically simplifies the K-theory.

(4) The Jiang–Su algebra Z: embeddings of Z into A and their uniqueness
up to approximate unitary equivalence are key regularity features.

(5) Selflessness: existence in A of a sequence of Haar unitaries that is asymp-
totically freely independent from A.

The last property, selflessness, was introduced by L. Robert and, in the settings
relevant here, it implies the other regularity properties above, so we focus on it.

Definition 1 (Selfless C∗-algebra [5]). Let (A,ϕ) be a unital C∗-algebra with
a faithful state ϕ, and fix a free ultrafilter ω on N. Write ∆: A → Aω for the
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diagonal embedding into the C∗-ultrapower Aω. Let m be Haar measure on T,
and denote by (A,ϕ) ∗r

(
C(T),m

)
the reduced free product. We say that A is

selfless if there exists a unital ∗-monomorphism

Ψ: A ∗r C(T) −→ Aω

such that the diagram

A ∗r C(T)

Ψ

$$❏
❏❏

❏❏
❏❏

❏❏

A

ιA
::✈✈✈✈✈✈✈✈✈✈

∆
// Aω

commutes; i.e. Ψ ◦ ιA = ∆.

A typical example of a selfless C∗-algebra is an infinite free product, e.g.
C∗

r (F∞) (see [5]). Beyond this, natural examples are harder to come by. For
instance, until recently it was open whether C∗

r (F2) has strict comparison. A
recent breakthrough by Amrutam–Gao–Kunnawalkam Elayavalli–Patchell settled
this positively by proving selflessness (and hence strict comparison) for C∗

r (G) for
large classes of groups, including all hyperbolic groups and many acylindrically
hyperbolic groups [1]. However, their argument crucially exploits hyperbolic ge-
ometry, and they asked for examples of a different nature, specifically for higher
rank lattices.

Theorem 1. If Γ is a cocompact lattice in SL3(R), then C∗
r (Γ) is selfless.

Idea of the proof (following the general AGKEP strategy).

(1) Effective selflessness at the group level. Produce a sequence γn ∈ Γ that is,
in a quantitative sense, free from the radius-n ball BΓ(n), with word-length
|γn| growing at most linearly (or, at worst, subexponentially).

(2) Upgrade via (RD). Use the effectiveness above together with the rapid
decay property to pass from the group level to C∗

r (Γ).

Luckily, the groups in Theorem 1 have property (RD): for SL3(R) and SL3(C) by

V. Lafforgue [2], and for groups acting on Ã2-buildings by Ramagge–Robertson–
Steger [4]. In contrast, (RD) remains open for many nonuniform lattices (e.g.
SL3(Z)), and it is widely conjectured to hold for further cocompact lattices in
simple Lie groups but remains notoriously hard.

The theorem above follows from the following group-theoretic statement.

Theorem 2 (Group-level effective freeness; see [6]). Let Γ be a cocompact lattice
in PSLn(R) and fix a finite generating set S. There exists C > 0 and a sequence
γn ∈ Γ with |γn|S ≤ Cn such that γn is “freely independent from the ball BΓ(n)”
in the sense of effective mixed-identity-freeness defined in [6].

Open question. Is C∗
r (SL3(Z)) selfless? In the absence of (RD), new ideas seem

necessary. In this direction, see the recent work of Ozawa on extremely proximal
boundaries and selflessness [3], which arose from this very Oberwolfach meeting.
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W∗-superrigidity for property (T) groups with infinite center

Adriana Fernández Quero

(joint work with Ionuţ Chifan, Denis Osin and Hui Tan)

To any countable group G, one can associate its von Neumann algebra L(G) [10],
defined as the weak operator closure of the complex group algebra C[G], acting by
left convolution on the Hilbert space ℓ2G of square-summable functions on G. A
major research theme in the field of von Neumann algebras, which has garnered
considerable attention over the years, is understanding the extent to which L(G)
retains algebraic information about the underlying group G.

Recall that a group G is said to have the ICC property if the conjugacy class of
every non-trivial element of G is infinite. In [4] A. Connes discovered that II1
factors associated with ICC Kazhdan property (T) groups exhibit strong rigidity
under small perturbations; in particular, he showed that both the fundamental
group and the outer automorphism group of every such II1-factor is countable.
These result and their fairly conceptual proofs motivated Connes to conjecture
that if G,H are ICC property (T) groups with L(G) ∼= L(H), then G ∼= H , [5].

The first W∗-rigidity results for von Neumann algebras L(G) groupsG with infinite
center were obtained in [2], focusing on direct products G = A×K, where A is an
infinite abelian group and K is an ICC property (T) wreath-like product group
as in [3]. Such product groups cannot be W∗-superrigid as their center cannot
be reconstructed from their von Neumann algebra. However, in [2] it was shown
that this is the only obstruction to their W∗-superrigidity: any group H with
L(G) ∼= L(H) must be a direct product of the form H ∼= B × K, where B is an
infinite abelian group.

The main goal of this paper is to construct examples of property (T) groups
with infinite center that are W∗-superrigid. Our approach builds on methods
from [2] and uses a generalization of the notion of wreath-like products of groups
introduced in [3]. These, along with the non-property (T) examples involving left-
right wreath product groups obtained by Donvil and Vaes in parallel, independent
work [8], constitute the first known W∗-superrigid groups with an infinite center.
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For given groups A and B and an action B y I on a set I, we denote by
WR(A,B y I) the class of wreath-like products of A and B corresponding to
the action B y I introduced in [3]. Recall G ∈ WR(A,B y I) if there exists a
short exact sequence

1 → ⊕i∈IAi →֒ G
ε
։ B → 1

such that Ai
∼= A for all i ∈ I and gAig

−1 = Aε(g)·i for every g ∈ G, where Ai

is the i-th copy of A in ⊕i∈IAi. When I = B, this class is denoted simply by
WR(A,B) and its elements are called regular wreath-like products of A and B.
Our first result is the following.

Theorem 1. Let A be a nontrivial free abelian group, B a nontrivial ICC subgroup
of a hyperbolic group, B y I an action on a countable set I with amenable
stabilizers. Every property (T) group G with infinite center such that G/Z(G) ∈
WR(A,B y I) is virtually W∗-superrigid. That is, if H is an arbitrary countable
group for which L(H) ∼= L(G), then the groups G and H are virtually isomorphic.

We note that the virtual W∗-superrigidity in the conclusion of Theorem A can-
not be promoted to the genuine W∗-superrigidity. Indeed, let Q be any infinite
property (T) group and let A and B be any nonisomorphic finite abelian groups
of the same order (e.g., we can take A = Znm and B = Zn ×Zm for some positive
integers n,m ≥ 2 which are not co-prime). Consider G = A×Q and H = B ×Q.
Since G and H are finite index extensions of Q and the latter has property (T),
it follows that G and H have property (T). Clearly, we have G ≇ H . However,

L(G) ∼= C|B| ⊗ L(Q) ∼= L(H).

As with the majority of previous rigidity results for group factors [9, 1, 3, 7], it is
desirable to provide a complete description of the ∗-isomorphism between L(G) ∼=
L(H) in terms of the virtual isomorphism between the underlying groups, G ∼=v H ,
along with other relevant data about these groups, such as their multiplicative
characters, or more generally, their finite-dimensional representations, inductions
from their finite-index subgroups, etc.

Theorem 2. Let W ∈ WR(A,B y I) and 1 → Z(G) →֒ G → W ։ 1 be
groups as in the statement of Theorem 1. Additionally, assume that G has trivial
abelianization and Out(G) = {1}. If H is an arbitrary countable group for which
Θ : L(G) → L(H) is a von Neumann algebra isomorphism, then there exists a
group isomorphism δ : G→ H and a unitary w ∈ L(H) for which

Θ(ug) = wvδ(g)w
∗, for all g ∈ G.

Using an approach that combines our construction of central extensions with the
control of outer automorphisms of Dehn fillings from [6], we are able to obtain
examples of groups satisfying the assumptions of Theorem 2.

Theorem 3. For each n ∈ N, there is a central extension 1 → Z(Q) →֒ Q →
W ։ 1 satisfying

(a) Z(Q) ∼= Zn;
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(b) W ∈ WR(Z, B y I) is an ICC group where B is ICC hyperbolic, B y I
is transitive with finite stabilizers and Out(B) = {1}; and

(c) Q has property (T), trivial abelianization and Out(Q) = {1}.

We also mention in passing that the previous two results yield, in particular,
property (T) groups G with infinite centers extensions for which Out(L(G)) =
1. To the best of our knowledge, this is the first concrete computation of outer
automorphisms of property (T) von Neumann algebras with diffuse center.
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Strong convergence of unitary representations

Mikael de la Salle

(joint work with Michael Magee)

Let Γ be a finitely generated group. Every unitary representation of Γ gives rise
to a semi-norm on C∗(Γ). A sequence of unitary representations πn is said to
converge strongly to π∞ if the corresponding semi-norms converge pointwise:

∀a ∈ C∗(Γ), lim
n

‖πn(a)‖ = ‖π∞(a)‖.

In this talk, we were mainly interested in the case when:

• π∞ = λ is the left-regular representation of Γ on ℓ2(Γ): λ(γ)f = f(γ−1·),
• πn is a finite-dimensional unitary representation.

When such a sequence exists, we say [14] that Γ is PMF (Purely Matricial
Field). The terminology comes from the fact that, in that case, we obtain an
embedding of C∗

λ(Γ) into a C∗-algebraic ultraproduct of matrix algebras (sending



1916 Oberwolfach Report 35/2025

λ(γ) to (πn(γ))n): C∗
λ(Γ) is MF (Marticial Field) in the vocabulary of Blackadar

and Kirchberg [1].
PMF groups are necessary residually finite by Mal’cev’s theorem, and every

amenable residually finite group is PMF. Finding examples and non-examples
apart from these almost obvious cases turned out to be a challenge. The first
examples were free groups, as proven by Haagerup and Thorbjørnsen [9] by means
of random matrices. Since then, many other examples of random matrix models
have been shown to strongly converge to the left-regular representation of the free
group (for example [8, 13, 2, 5, 3, 4, 7, 6, 15], the list is far from complete). These
results have important applications [9, 12, 10].

Michael Magee, with Lars Louder and Joe Thomas, has initiated the project of
finding other examples of PMF groups, and succeeded [11, 16].

In my talk, I gave a survey of the known results and provided a detailed proof
of the following result, that gives the first examples of residually finite groups that
are not PMF.

Theorem 1. [14] Every nonzero finite-dimensional unitary representation of

SL4(Z) has a nonzero vector that is fixed by the subgroup

(
SL2(Z) 0

0 id2

)
.

The reason why this theorem implies that Γ = SL4(Z) is not PMF is because the

subgroup Λ =

(
SL2(Z) 0

0 id2

)
is not amenable: if S is a finite symmetric generat-

ing set of Λ and a =
∑

s∈S s, then we know by Kesten’s theorem that ‖λ(a)‖ < 1,
whereas the theorem implies that ‖π(a)‖ = 1 for every finite-dimensional unitary
representation of Γ.
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Operator System Limits of C∗-Algebras

Kristin Courtney

(joint work with Niklas Galke, Lauritz van Luijk, Alexander Stottmeister,
Wilhelm Winter)

We consider inductive sequences of C∗-algebras in the operator system category,
meaning the usual ∗-homomorphic connecting maps are replaced with completely
positive contractive (c.p.c.) maps (so-called c.p.c. systems. These sequences arise
naturally in a number of settings. For example, the dual statement (over C) of
Lazar and Lindenstrauss’ theorem [4] that any metrizable Choquet simplex is the
projective limit of finite-dimensional simplices, says that the affine function space
on a metrizable simplex is the limit of a c.p.c. system C → C2 → C3 → . . ..

Given a finite-dimensional c.p.c. system, one can ask what properties of the
sequences, such as nuclearity, are transferred to the limit.

Theorem 1 (C.–Galke–van Luijk–Stottmeister, Ding–Peterson). The limit of a
finite-dimensional c.p.c. system is nuclear.

Another question is whether or not it is (completely order isomorphic to) a
C∗-algebra. For Choquet simplices, this is asking whether the limit is Bauer.

Theorem 2 (C.,Blackadar–Kirchberg, C.–Winter). For a finite-dimensional c.p.c.
system, consider the following.

(1) The limit of the system is a C∗-algebra.
(2) The system is NF (in the sense of [1]).*
(3) The system is CPC∗ (in the sense of [3]).*
(4) The system is C∗-encoding (in the sense of [2]). *

Then we have (2) =⇒ (3) =⇒ (4) ⇐⇒ (1). (Where (∗) indicates the claim holds
up to passing to cofinal subsystems.)

Condition (4) characterizes when a nuclear operator system is a C∗-algebra
(and can also tell whether a simplex is Bauer). With this, we give new examples
of operator systems that are not C∗-algebras, which are sparse in the literature. On
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the other hand, to capture structural information of the limit, e.g., its K-theoretic
or tracial information, one needs the structure inherent in (2) and (3).
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Relative solidity results and their applications to computations of
some II1-factor invariants

Ionuţ Chifan

(joint work with J.F. Ariza Mejia, N. Amaraweera Kahitotage, J. Lim, K. Khan)

For this talk I will show that whenever G is a group that is hyperbolic rela-
tive to a family of exact residually finite subgroups {H1, H2, . . . , Hn}, the corre-
sponding von Neumann algebra L(G) is solid relative to the family of subalgebras
{L(H1), L(H2), . . . , L(Hn)}. Building on this result and combining it with find-
ings from geometric group theory, I will construct a continuum of icc property (T)
relative hyperbolic groups that give rise to pairwise non-isomorphic factors, each
of which has trivial one-sided fundamental group. In addition, I will explain the
construction of the first property (T) groups G such that the Jones index set of
L(G) consists of all positive integers.

Biexact von Neumann algebras

Jesse Peterson

(joint work with Changying Ding)

We introduce the notion of biexactness for von Neumann algebras. This generalizes
the notion for groups as introduced by Ozawa. I.e., a discrete group Γ is biexact
if and only if LΓ is biexact. As a consequence it follows that if G and H are
semisimple real Lie groups with G having real rank 1 and H having real rank
greater than 1, then for any lattices Γ ⊂ G and Λ ⊂ H we have LΓ 6 →֒ LΛ. Other
biexactness results will also be presented.
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Contractibility of the automorphism group of a von Neumann algebra

Narutaka Ozawa

I first talked about the contractibility problem of the unitary group U(M) of a
von Neumann algebra M (with separable predual) equipped with the ultraweak
topology, particular emphasis on type II1 factors, the last case still unsolved.
(After the talk, during the workshop, David Jekel ([1]) found a proof that they
are all contractible.) I then moved to the contractibility problem of the auto-
morphism group Aut(M), equipped with the u-topology, which makes Aut(M) a
Polish group. Thanks to the progress in the classification theory of type II1 fac-
tors, we know a large variety of groups that appear as Out(M) (e.g., all countable
discrete groups or more generally locally compact second countable groups were
realized by Popa and Vaes). The study of the homotopy type of the automorphism
group of a von Neumann algebra was initiated by Popa and Takesaki (1993), where
the homotopy types of the hyperfinite factor (with separable predual) of type I,
II1, II∞, and IIIλ (0 < λ < 1) were determined, leaving the cases of type III0
and III1 unsettled. I outlined my proof of contractibility of the approximate in-
ner automorphism group Inn(M) of a strongly stable von Neumann algebra M .
Since the hyperfinite factors are strongly stable and Aut(RIII1) = Inn(RIII1) for
the hyperfinite factor RIII1 of type III1, this settles the contractibility problem for
Aut(RIII1) and reduces the problem for the remaining type III0 case to a problem
on ergodic flows (which looks very complicated). The talk was based on [2].
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On a question of Blecher and Quantum Games

Marius Junge

In this joint work with Roy Araiza and Carlos Palazuelos we solve a problem
raised by David Blecher [Ble92] approximately 30 years ago and re-emphasised
by seminal work by Pisier and Shlyakhtenko [PS02] on the operator space version
of Grothendieck’s inequality. The tool for this analysis is the tensor theory of
quantum games and an example of a so-called non-signaling strategy for a game
introduced by Bavarian and Shor [BS14].
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Basic homotopy lemmas via abstract classification

Aaron Tikuisis

(joint work with José Carrión, Jamie Gabe, Chris Schafhauser, Stuart White)

Basic homotopy lemmas, as a first approximation, are results saying that an ap-
proximately central unitary in a C*-algebra can be connected to the unit by a
continuous path of approximately central unitaries, provided K-theoretic obstruc-
tions vanish; they go back to work of Bratteli, Elliott, Evans, and Kishimoto from
the ’90s. Such lemmas are often very technical in order to deal with the approxi-
mation and spell out the obstruction; for simplicity, I presented variations which
are more conceptual (and shorter), and also I mostly stuck to the real rank zero
case where additional obstructions do not arise. With this in mind, here is a
recasting of one of the original results of Bratteli, Elliott, Evans, and Kishimoto.

Theorem 1 (Bratteli, Elliott, Evans, Kishimoto [2, Theorem 8.1] and Kishimoto
[5, Theorem 4.4]). Let B be a real rank zero simple unital AT algebra and let u be
a unitary in C([0, 1], B)U ∩B′. Then u(0) is homotopic to u(1) in BU ∩B′.

This result was generalized significantly by Matui [7, Lemma 3.9] and Lin [6,
Theorem 8.1]. Our further generalization is as follows.

Theorem 2 (Carrión, Gabe, Schafhouser, Tikuisis, White [1]). Let A be a sep-
arable unital exact C*-algebra satisfying the UCT, let B be a unital Z-stable C*-
algebra with strict comparison with respect to T (B) and with real rank zero. Let
φ : A→ BU be full, unital, and exact. If u ∈ C([0, 1], B)U ∩ φ(A)′ and u(0) = 1BU

then u(1) = eiheik for self-adjoint elements h, k ∈ BU ∩ φ(A)′ of norm ≤ π.

There have been a number of applications of basic homotopy lemmas in the past.
It allows a vanishing cohomology result (by a technique due to Kishimoto) which
feeds into the Evans–Kishimoto intertwining technique [3]. It has also been used to
classify certain homomorphisms up to asymptotic unitary equivalence (for example
in [4]), as demanded to use Winter’s classification-by-localization technique from
[8].

A further application of the basic homotopy lemma is a K-theoretic computa-
tion for relative commutants as follows

Theorem 3 (Carrión, Gabe, Schafhouser, Tikuisis, White [1]). Let A be a separa-
ble exact C*-algebra satisfying the UCT, let B be a unital Z-stable C*-algebra with
strict comparison with respect to T (B) and with real rank zero. Let φ : A→ BU be
full, unital, and exact. Then

K1(BU ∩ φ(A)′) ∼= HomΛ(K(SA),K(BU )).

This application illustrates the K-theoretic obstruction (which appears as an
approximate obstruction in the actual basic homotopy lemma). Our proof relies
on a classification of (full nuclear) ∗-homomorphisms, where we take the domain to
be C(T, A) (the universal C*-algebra generated by a copy of A and a commuting
unitary), and the codomain to be BU . It is crucial that our classification of ∗-
homomorphisms allows non-simple domains.
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Beyond the real rank zero case, the path component of 1 can have infinite
path-diameter, making a result as strong as Theorem 2 unrealistic. This can be
rectified by including Hausdorffized unitary algebraicK1-data in the invariant, and
yielding a computation of the Hausdorffized unitary algebraic K1 of the relative
commutant, as a generalization of Theorem 3.
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Paper-folding models for the CAR algebra

Grigoris Kopsacheilis

(joint work with Wilhelm Winter)

The Connes–Feldman–Weiss theorem [4] asserts that any two Cartan subalgebras
(in the sense of Vershik and Feldman–Moore [5]) in the hyperfinite II1 factor R
are conjugate, i.e. there is an automorphism carrying the one onto the other. It is
natural to ask what is the analogous picture on the side of C∗-algebras, i.e. what
is the structure of Cartan subalgebras and C∗-diagonals (this time in the sense of
Renault and Kumjian [13, 7]) for uniformly hyperfinite (UHF) C∗-algebras, and
more generally approximately finite (AF) C∗-algebras. Any AF algebra

A = lim
−→

(F1
ϕ1

−→ F2
ϕ2

−→ . . . )

(where the Fi are finite-dimensional C∗-algebras) admits a natural C∗-diagonal
with totally disconnected spectrum, namely DA := lim

−→
DFn

, where DFn
⊂ Fn

are maximal abelian ∗-subalgebras (masas) for all n ≥ 1 such that the connecting
maps preserve normalizers (recursively choosing DFn

to obtain such a sequence
of masas is always possible; cf. [15]). It is well-known that any two Cartan sub-
algebras in A arising in this fashion are conjugate by an (approximately inner)
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automorphism [12, Theorem 5.7] – these are called AF diagonals or standard di-
agonals. The motivating question at this point becomes if all Cartan subalgebras
of A are necessarily AF diagonals.

Obviously, for a Cartan subalgebra to be an AF diagonal, it is necessary that
it has the same spectrum as that of the AF diagonals, and to be a diagonal (as
opposed to being only Cartan). It is not at all obvious that there do exist Cartan
subalgebras in AF algebras that fail each of these necessary conditions, but that
is indeed the case:

• In [2], Blackadar showed that the CAR algebra (the UHF algebra of type
2∞) admits a C∗-diagonal with spectrum S1 × Ω, where Ω is the Cantor
space.

• In [10], Mitscher and Spielberg showed that the continued fraction AF
algebras of Effros and Shen admit non-diagonal Cartan subalgebras with
Cantor spectrum.

The question thus becomes: in an AF algebra, are all Cantor spectrum diagonals
AF diagonals? We show that this is not the case, and thus the topological picture
is more complicated than the measure-theoretic one.

Theorem 1. [6, Theorems A & B]. The CAR algebra admits a Cantor spectrum
C∗-diagonal that is not (conjugate to) an AF diagonal. In fact, there are (at least)
countably many pairwise non-conjugate Cantor spectrum C∗-diagonals with Cantor
spectrum in the CAR algebra.

As in [2, 10], the main idea in our approach is to identify a dynamical object
with the desired features, for which we can show that the associated C∗-algebra
lies in the domain of a classification theorem and has computable invariant, with
the chance of being the same as that of the C∗-algebra for which we wish to give a
dynamical presentation (in our case the CAR algebra); see the discussion around
Problem XLVII in [14], that asks for a criterion that determines when a Cartan
subalgebra of an AF algebra is an AF-diagonal.

The dynamical system that is key in our construction involves the well-known
paper-folding sequence described as follows: take a strip of paper and fold it infin-
itely many times, every time by making a fold to the right. Unfold it, and observe
the resulting crest: whenever a right turn appears, mark 1, and whenever a left
turn appears, mark 0. The resulting sequence is

1101100111001001110110001100100 . . .

The acting group in the free minimal action that we construct is the product of the
infinite dihedral group Z ⋊ Z2 together with the locally finite group

⊕
N
Z. After

K-theoretic calculations (using Thomsen’s work in [16] that builds on [3] and is
using Natsume’s exact sequence [11]), it follows by classification theory that the
crossed product C∗-algebra of our Cantor system (Z ⋊ Z2) ×

⊕
N
Z2 y X is the

CAR algebra. To conclude that the Cantor spectrum diagonal C(X) is not an AF
diagonal, we employ a result of Archbold and Kumjian [1], that entails that any
C∗-algebra sitting between an AF diagonal and the ambient AF algebra must be
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AF. This condition is not satisfied in our construction: there is a C∗-algebra with
non-trivial K1-group between the constructed diagonal and the CAR algebra.

The countably many pairwise non-conjugate Cantor spectrum diagonals arise
as tensor powers of the diagonal described above (using that the CAR algebra is
strongly self-absorbing), and we distinguish these by the different values of their
diagonal dimension, as defined by Li, Liao and Winter in [9].
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A Logical Classification Theorem for C∗-Algebras

Jennifer Pi

(joint work with Micha l Szachniewicz, Mira Tartarotti)

In the paper “Games on AF-Algebras”, the authors demonstrate a logical analogue
of Elliott’s initial classification result for AF-algebras (see [2, Theorem A]). They
additionally ask if a similar result holds for unital Kirchberg algebras satisfying
the UCT. Our joint ongoing work answers not only this question, but also uses
tools from descriptive set theory to obtain an analogous theorem for all classifiable
C∗-algebras.
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We first establish a general notion of Ehrenfeucht-Fräıssé games, following the
presentation of [1, § 3] and the partial isomorphism games of [2]. As a vague
notion, the moves of the game between two structures A and B involve trying to
extend partial isomorphisms between substructures of A and B one step at a time.
Under this framework, we say that two structures A,B are equivalent up to rank
α, denoted A ≡α B, if any game with starting clock α has a winning strategy
under which the plays of the game generates an isomorphism. (Details can be
found in [2, Definition 2.1 and 2.4]).

Our main result is that there is a function θ : ω1 → ω1 such that, for any
classifiable C∗-algebras A and B, we have

KTu(A) ≡θ(α) KTu(B) =⇒ A ≡α B,

where by “classifiable” we mean a unital, simple, separable, nuclear, Z-stable
C∗-algebra satisfying the UCT, and KTu(·) denotes the invariant given in [3,
Definition 2.3]. The crux of the argument, after some reductions using standard
machinery from descriptive set theory, is to show that the class of separable C∗-
algebras satisfying the UCT is an analytic set. We do this by developing a general
first-order model theory for functors on Borel categories (i.e. categories equipped
with a standard Borel space structure on the objects and morphisms, and Borel
composition map on the morphisms). We then leverage the well-known facts that
a C∗-algebra satisfies the UCT if and only if it is KK-equivalent to a commutative
C∗-algebra, along with the characterization of KK as a universal functor satisfying
certain properties [6]. After establishing a way of interpreting the category of
separable C∗-algebras as a Borel category, following the presentation of [5], this
allows us to say that there is a set of proofs (in our model theory for functors over
the Borel category of C∗-algebras) characterizing those algebras which have the
UCT. By combining with the fact that the map taking a separable C∗-algebra to
its invariant is a Borel map (see [4, Theorem 3.3]), we are able to conclude our
main result.

One notable thing about our approach is that we do not implement a “transfer
of strategies” proof using standard intertwining arguments, as is done in [2]. While
this gives a novel approach to the problem, it also means we are unable to control
or compute what form the function θ takes. Additionally, our proof that the
set of separable C∗-algebras satisfying the UCT is analytic begs the question: is
it Borel, or strictly analytic? Finally, our work develops an interesting general
model-theoretic approach for functors over suitably nice categories of objects, and
a natural direction of further study is other applications of this framework.
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On Chern classes of almost representations

Marius Dadarlat

(joint work with Forrest Glebe)

Let Γ be a discrete group and let (An) be a sequence of unital Banach algebras.
A sequence of unital maps {ρn : Γ → GL (An)}n is called an asymptotic homo-
morphism if

lim
n→∞

‖ρn(a)ρn(b) − ρn(ab)‖ = 0 and sup
n

||ρn(a)|| <∞, for all a, b ∈ Γ.

We abelianize the kernel of the extension associated with an asymptotic ho-
momorphism to tracial Banach algebras (An, τn) using the de la Harpe-Skandalis
pre-determinant. Using the tracial property, we obtain in fact a central extension
leading to a 2-cohomology class

[(ρn)] ∈ H2(Γ, Q(C)) ∼= Hom(H2(Γ,Z), Q(C)),

where Q(C) = c0(N,C)/c00(N,C). If An are tracial C∗-algebras and ρn : Γ →
U (An) , then [(ρn)] ∈ H2(Γ, Q(R)). If ‖ρn(a) − ρ′n(a)‖ → 0 for all a ∈ Γ, then
[(ρn)] = [(ρ′n)] and if all ρn are homomorphisms, then [(ρn)] = 0. Consequently, we
can use nonvanishing of 2-cohomology to show non-stability by this method. For
matricial algebras An = Mkn

(C), the pairing between [(ρn)] and each homology
class c ∈ H2(Γ,Z) is an element 〈ρ, c〉 of Q(C) whose components are eventually
equal to winding numbers of Kazhdan and Exel-Loring type, divided by kn. For
general tracial C∗-algebras, these components belong to (τn)∗(K0(An)).

To illustrate our method, let σ ∈ Z2(Γ,R) be a 2-cocycle, set ωn = e2πiσ/n ∈
Z2(Γ,T), and consider the canonical sequence of unital maps ρn : Γ → U(L(Γ, ωn))
to the unitary groups of twisted group von Neumann algebras L(Γ, ωn).

These maps factor through both the full and the reduced twisted C∗-algebras
C∗(Γ, ωn) and C∗

r (Γ, ωn) and they constitute an asymptotic homomorphism. In-
deed, since ρn(s)ρn(t)ρn(st)−1 = e2πiσ(s,t)/n1n we have that

lim
n→∞

‖ρn(s)ρn(t) − ρn(st)‖ = 0, ∀ s, t ∈ Γ.

Moreover, if the 2-cocycle σ : Γ × Γ → R is a bounded function, then

lim
n→∞

sup
s,t∈Γ

‖ρn(s)ρn(t) − ρn(st)‖ = 0.
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Theorem 1 ([1]). Let Γ be a discrete countable group. Let σ be a normalized
2-cocycle with [σ] ∈ H2(Γ,R) \ {0}. For the canonical sequence of maps ρn : Γ →
U(L(Γ, e2πiσ/n)), there exists no sequence of group homomorphisms πn : Γ →
GL(L(Γ, e2πiσ/n)) such that limn→∞ ‖ρn(s) − πn(s)‖ = 0, for all s ∈ Γ.

In particular, this shows that the full group C∗-algebraC∗(Γ) of a discrete group
Γ is not C∗-stable if H2(Γ,R) 6= 0 and in fact, Γ is not stable in operator norm
with respect to tracial von Neumann algebras. The comparison map H2

b (Γ,R) →
H2(Γ,R) is known to be surjective for all hyperbolic groups, by work of Mineyev.
Therefore, if Γ is a hyperbolic group with H2(Γ,R) 6= 0, then Γ is not uniform-to-
local stable with respect to the class of unital tracial C∗-algebras and with respect
to the class of separable von Neumann algebras endowed with a faithful trace.

Suppose now that we consider asymptotic homomorphisms {ρn : Γ → U(kn)}n.
One can obtained higher dimensional obstructions to group stability with re-
spect to the operator norm by using vector bundles on compact subspaces of
the classifying space BΓ. For simplicity, we will work with individual unital maps
ρ : Γ → U(n) such that ‖ρ(st) − ρ(s)ρ(t)‖ < ε for s, t in a “large” finite subset F
of Γ for a “very small” ε. We say that ρ is an (F, ε)-almost representation.

Atiyah-Segal’s map which associates to a finite dimensional representation of a
discrete group Γ, a flat vector bundle on BΓ, generalizes to almost representations.
For any compact subspace Y of BΓ, one can associate a rank n vector bundle Eρ
on Y, to each map ρ : Γ → U(n) which is sufficiently approximately multiplicative.
We compute the first Chern class of Eρ in terms of ρ.

Theorem 2 ([2]). Let Γ be a discrete countable group. For every compact subspace
of BΓ there are F and ε such that for any (F, ε)-almost representation ρ : Γ →
U(n). the formula ω(a, b) := 1

2πiTr(log(ρ(a)ρ(b)ρ(ab)−1)), defines a local 2-cocycle
on Γ and

c1(Eρ) = [ω] ∈ H2(Y,R).

If moreover, ρ is both a projective representation and an (F, ε)-almost representa-
tion, then the Chern character of Eρ is given by

ch(Eρ) = ne
1

n
c1(Eρ) = n e

1

n
[ω].

As an application, we find invariants that obstruct perturbation of almost
representations to almost representations constructed algebraically from projec-
tive representations. These invariants are rationally complete for residually finite
amenable groups, in a stable sense.
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On the (Local) Lifting Property

Tatiana Shulman

(joint work with Dominic Enders)

The celebrated Choi-Effros Theorem [6] states that if A is a nuclear C*-algebra,
then any contractive completely positive map from A to a quotient C*-algebra
admits a contractive completely positive lifting:

B

A B/I

In [10] Kirchberg introduced the following properties.

Definition. A C*-algebra A has the (Local) Lifting Property ((L)LP) if any c.c.p.
map from A to a quotient C*-algebra lifts (locally) to a c.c.p. map.

In general ccp maps lift more often than ∗-homomorphisms. A C*-algebra A
such that any ∗-homomorphism from A to a quotient C*-algebra lifts to a ∗-
homomorphism is called projective, and projectivity is a very strong and there-
fore rare property. That for liftability of ccp maps it is sufficient to lift ∗-
homomorphisms was observed already in the proof that C∗(Fn) has the LP ([5,
Th. 13.1.3]). This observation was stated explicitly in [8, Prop. 6.6] and [7, Cor.
2.9].

In [9] we prove that to be able to lift ccp maps, a certain lifting condition for
∗-homomorphisms is not only sufficient but also necessary.

Theorem ([9]). Let A be separable. The following are equivalent:

(i) A has the LP;

(ii) for any σ-unital C*-algebra B, its ideal I and a ∗-homomorphism f : A→
B/I there is a ∗-homomorphism g : A → M(B/I ⊗K) such that f ⊕ g lifts to a
∗-homomorphism A→M(B ⊗K);

(iii) for any σ-untal C*-algebra B, its ideal I and a ∗-homomorphism f : A→
B/I there is a ∗-homomorphism g : A → M(B/I ⊗K) such that f ⊕ g lifts to a
ccp map A→M(B ⊗K).

The LLP also can be reformulated in terms of lifting ∗-homomorphisms ([9,
Cor. 3.3]).

Despite of the fact that the properties LP and LLP are of central importance,
there are not many examples of C*-algebras with the (L)LP outside the class of
nuclear C*-algebras. In [10] Kirchberg proved that the (L)LP is preserved under
certain operations, e.g. both LP and LLP are closed under tensoring with nuclear
C*-algebras, and the LLP is closed under extensions. Boca proved that the LP is
closed under free products [3] and Pisier proved the same for the LLP [14]. The
latter result was generalized by Ozawa who showed that the LLP is closed under
an amalgamated free product over a finite dimensional C*-subalgebra [12]. Ozawa
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states that it is not known whether the LP is preserved under an amalgamated
free product over a finite dimensional C*-subalgebra ([12, p. 15]).

Our characterization of the LP above is a tool that allows to settle the afore-
mentioned question about free products amalgamted over a finite-dimensional C*-
subalgebra.

Theorem ([9]). Let F be a finite-dimensional C*-subalgebra of A and B. If A
and B have the LP, then A ∗F B has the LP.

As a consequence we obtain that finite tree products with finite edge groups and
in particular finitely generated virtually free groups have full group C*-algebras
with the LP. Our technique for amalgamated free products applies also to some
other lifting properties. We give a new proof of Blackadar’s result stating that
semiprojectivity passes to free products amalgamated over a finite-dimensional
subalgebra. We give a new proof of Li and Shen’s characterization of when uni-
tal free products amalgamated over a finite-dimensional subalgebra are RFD and
obtain a characterization in the non-unital case.

Currently it is not many examples of C*-algebras with the LP besides nuclear
C*-algebras and C*-algebras obtained from them by the constructions mentioned
above. The following theorem provides examples of different nature. Recall that
the soft torus C(T2)ǫ is the universal C*-algebra generated by two unitaries com-
mmuting up to ǫ:

C(T2)ǫ = C∗〈u, v | u and v are unitaries and ‖[u, v]‖ ≤ ǫ〉.

Theorem ([9]). Soft tori have the LP.

The full group C*-algebra C∗(F2 × F2) plays an important role in the C*-
algebra theory. The Connes Embeding Problem is equivalent to the question of
whether or not C∗(F2 × F2) is residually finite-dimensional (RFD). The following
is a long-standing open question.

Question. Does C∗(F2 × F2) have the (L)LP?

Using techniques developed in the proof of previous theorem we obtain the
following result.

Theorem ([9]). C∗(F2 × F2) is inductive limit of RFD C*-algebras with the LP.

We further consider the semigroup Ext of extensions by compact operators.
The semigroup Ext was introduced in the celebrated work of Brown-Douglas-
Fillmore [4]. The first example of a C*-algebra A such that Ext(A) is not a group
was constructed by J. Anderson [1]. Since then more examples were found but
still there is no clear understanding of when Ext is a group. It is known that the
LLP implies that Ext is a group and it is not known whether these properties are
equivalent.

Question. Does A have the LLP if and only if Ext(A) is a group?

Here we prove that for an interesting class of C*-algebras, including C∗(Fn×Fn)
and all contractible C*-algebras, they are equivalent.
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Theorem. Suppose A is an inductive limit, with surjective connecting maps, of
separable C*-algebras that are RFD and have the LP (e.g. A = C∗(Fn ×Fn) or A
is any contractible C*-algebra). Then A has the LLP if and only if Ext(A) is a
group.

Kirchberg proved that a separable C*-algebra A has the LLP if and only if
Ext(cone(A)) is a group [10]. Since cone(A) has the LLP if and only if A has, and
cones are contractible, the theorem above generalizes Kirchberg’s theorem.

As mentioned above it is not known whether C∗(F2×F2) has the LLP, but now
we can say that the problem is equivalent to the question of whether Ext(C∗(F2×
F2)) is a group.
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Representation stability and classification of ∗-homomorphisms

Rufus Willett

For a discrete group Γ, an approximate representation of Γ is a map from Γ to
a finite-dimensional linear group (or some other ‘well-understood’ group like a
symmetric group) that approximately satisfies the relations needed to be a repre-
sentation. The motivating question for this talk (and a well-studied problem in
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general) is whether a given approximate representation can be perturbed to an
actual representation.

There are several different settings where this has been studied: in particular,
one has to specify what sort of (approximate) representations one is interested in,
and what metric to put on the target group to measure how good an approximation
one has. For us, we will be interested in unitary representations, and the norm
used will be the operator norm. We make everything precise as follows.

Definition 1. Let Γ = 〈S | R〉 be a finitely presented group. For a tuple (us)s∈S

in GL(n,C) indexed by the generating set, and for r = sǫ11 · · · sǫmm ∈ R (with si ∈ S
and ǫi ∈ {±1}), write ur := uǫ1s1 · · ·u

ǫm
sm ∈ GL(n,C).

For δ ≥ 0, a δ-representation of Γ is a tuple π = (us)s∈S in some GL(n,C) such
that ‖1 − ur‖ ≤ δ for all r ∈ R and ‖u∗sus − 1‖ ≤ δ for all s ∈ S.

Note that for δ = 0, giving a δ-representation is the same as giving an actual
representation, i.e. a homomorphism Γ → U(n,C). We will just say ‘representa-
tion’ for a tuple (us)s∈S as above satisfying ur = 1 for all r ∈ R and u∗sus = 1 for
all s ∈ S.

Definition 2. Let Γ = 〈S | R〉 be a finitely presented group, and let δ, ǫ ≥
0. A δ-representation (us)s∈S with values in GL(n,C) can be ǫ-perturbed to a
representation if there is a representation (ws)s∈S with values in GL(n,C) such
that ‖us − ws‖ ≤ ǫ for all s ∈ S.

More generally, (us)s∈S can be stably ǫ-perturbed to a representation if there
are representations (vs) with values in GL(m,C) for some m ≥ 0 and (ws) with
values in GL(n+m,C) such that ‖(us ⊕ vs) − ws‖ < ǫ for all s ∈ S.

Our question is then whether for any ǫ, there is a δ such that any δ-representation
is (stably) ǫ-close to an actual representation. The answer is no in general, due to
the existence of K-theoretic obstructions. This is conceptually easiest to explain
when Γ satisfies the following assumptions, which will be in force for the rest of
this note:

(1) Γ admits a finite CW complex model for its classifying space BΓ;
(2) if C∗Γ is the maximal group C∗-algebra, then the Baum-Connes-Kasparov

assembly map µ : K∗(BΓ) → K∗(C∗Γ) is an isomorphism, and C∗(Γ)
satisfies the universal coefficient theorem.

The second condition above is satisfied for all a-T-menable groups, and in partic-
ular all amenable, groups due to work of Higson-Kasparov [10].

Now, under these assumptions, for any suitably small δ, a δ representation π
induces a map π∗ : K0(C∗Γ) → Z. We define also

K̃0(C∗Γ) := Kernel(t∗ : K0(C∗Γ) → Z).

where t : C∗Γ → C is the trivial representation.
The following theorem, which combines work of many authors stretching from

1982 to 1999, is the jumping-off point for our work.

Theorem 1 (Kazhdan [11], Voiculescu [14], Loring [13], Gong-Lin [8], Eilers-Lor-
ing Pedersen [6, 7]). Let Γ be either Z⊕Z, or Z⋊Z (the semidirect product for the
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unique non-trivial action of Z on itself), i.e. the fundamental groups of the torus
and Klein bottle respectively. Then for any ǫ > 0, there exists δ > 0 such that for
a δ-representation π, the following are equivalent:

(1) π can be ǫ-perturbed to a representation;
(2) π can be stably ǫ-perturbed to a representation;

(3) π∗(K̃0(C∗Γ)) = 0.

Note that for Γ = Z⋊Z, K̃0(C∗Γ) = 0, so the third condition above is vacuous

for this group. On the other hand, for Γ = Z ⊕ Z, K̃0(C
∗Γ) ∼= Z, and combining

the work of Kazhdan, Voiculescu, and Loring cited above shows that for any δ > 0,

there is a δ-representation π such that π∗(K̃0(C∗Γ)) 6= 0, so the third condition is
not vacuous in this case.

Our main motivation was to generalize the above result to the fundamental
group of any closed surface: one would hope for precise analogues of the results

for Z ⊕ Z (in the orientable case, when K̃0(C∗Γ) ∼= Z) and for Z ⋊ Z (in the

non-orientable case, when K̃0(C∗Γ) = 0). However, there are serious technical
difficulties arising from non-amenability of such groups. Our main theorem is a
generalization of the equivalence of the second and third points above to a much
wider class of groups.

Theorem 2. In addition to our standing assumptions on Γ, assume the following:

(a) C∗Γ satisfies Kirchberg’s LLP;
(b) C∗Γ is RFD;
(c) the torsion subgroup of the K-homology group K0(C∗Γ) is generated by formal

differences σ∗ − ρ∗ of the classes associated to finite-dimensional representa-
tions.

Then for any ǫ > 0, there exists δ > 0 such that for a δ-representation π, the
following are equivalent:

(1) π can be stably ǫ-perturbed to a representation;

(2) π∗(K̃0(C∗Γ)) = 0.

Let us comment briefly on these assumptions. The LLP assumption is a con-
sequence of amenability by the Choi-Effros lifting theorem, and is known to hold
more generally: for example, it holds for free groups and free-by-cyclic groups.
The RFD assumption follows if the group is amenable and residually finite, and
again is known somewhat more generally including for free-by-cyclic groups and
surface groups. The assumption on torsion classes is the most mysterious, but is
at least satisfied if K0(C∗Γ) is torsion free (or equivalently, if K1(C∗Γ) is torsion
free), which is often the case; one can also (we say more about this below) estab-
lish it if BΓ has dimension at most three, which covers the case of surface groups.
Unfortunately, the theorem does not cover the case of general surface groups, as
the LLP is not yet known for such groups (the consensus of experts seems to be
that it is likely to hold, however).

Let us say with a few words on the strategy of the proof of the main theorem.
The key steps are as follows.
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(1) Use the LLP assumption to show that a δ-representation π can be ap-
proximated by the restriction of an almost multiplicative ucp map C∗Γ →
Mn(C). It thus suffices to consider such maps.

(2) Following Lin [12] and Dadarlat-Eilers [4], establish a ‘stable uniqueness’
theorem for almost multiplicative ucp maps C∗Γ → Mn(C), which says
roughly that two such maps are approximately unitally equivalent (up
to adding an auxiliary almost-multipliciative ucp map) if and only if they
define the same class inK-homology. They main difficulty here is that C∗Γ
is not exact, so one cannot use the same arguments as Lin and Dadarlat-
Eilers. Instead, we base our arguments on the controlled K-homology
groups developed by Yu and the speaker [15].

(3) Use the RFD assumption to show that the auxiliary almost multiplica-
tive ucp map one has to add in the previous stage can be taken to be a
representation.

(4) Use the UMCT of Dadarlat-Loring [5] to show there is a short exact se-
quence

0 → Hom(Tor(K1(C∗Γ)),Q/Z) → K0(C∗Γ) → Hom(K0(C∗Γ),Z) → 0.

The assumption that π∗(K̃0(C∗Γ)) = 0 for an approximate representation
π implies that the image of π∗ in Hom(K0(C∗Γ),Z) agrees with the class
ρ∗ of an actual representation. Hence the difference π∗ − ρ∗ lies in the
subgroup Hom(Tor(K1(C∗Γ)),Q/Z) of K0(C∗Γ). This subgroup is gen-
erated by formal differences of representations by the assumption (c) on
the torsion subgroup of K0(C∗Γ), which completes the proof.

Finally, let us conclude with a few words about establishing the validity of
the relatively mysterious condition (c) above. Conceivably, this could hold for all
groups satisfying the other assumptions, but this seems quite far out of reach.
We know three different methods to show that it holds for groups with BΓ of
dimension at most three (and somewhat more generally):

(1) using the ζ map of Gong-Lin-Niu [9] and Carrión-Gabe-Schafhauser-
Tikuisis-White [3] and Hausdorffized unitary algebraic K1;

(2) using the relative eta invariants and index theory for flat bundles of Atiyah-
Patodi-Singer [1];

(3) using the theory of flat bundles and the Atiyah-Segal completion theorem
[2].

The computations needed suggest new relations between the ingredients in (1),
(2), and (3) above, which seem interesting in of themselves: there seems likely to
be much more to say here.
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Rigidity for graph product von Neumann algebras

Camille Horbez

(joint work with Adrian Ioana)

Over the past two decades, Popa’s deformation/rigidity theory has led to major
advances in the classification of von Neumann algebras, including striking rigidity
results, often accompanied by the computations of the symmetries of the von
Neumann algebras considered. The goal of the talk was to extend the scope of
these rigidity phenomena to the context of graph products of tracial von Neumann
algebras.

Graph products were originally defined by Green [Gr90] in the context of groups,
and later extended to von Neumann algebras by Caspers–Fima [CF17].

Let Γ be a finite simple graph, i.e. Γ has no loop-edge and no multiple edges
between vertices, and let (Gv)v∈V Γ be a family of groups, one per vertex of Γ. The
graph product ∗v,ΓGv is the group obtained from the free product of the groups
Gv by adding as only additional relations that Gv and Gw commute whenever v, w
are adjacent. Graph products of groups encompass direct products (when Γ is a
complete graph), free products (when Γ is edgeless) and right-angled Artin groups
(when all vertex groups are isomorphic to Z). A lot of work has revolved around the
computation of the automorphism group of a graph product, e.g. [GM19, Ge24]. In
particular, if AΓ is a right-angled Artin group associated to a finite simple graph Γ,
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a theorem of Laurence [La95] (confirming a conjecture of Servatius [Se89]) asserts
that Out(AΓ) is finite if and only if

(1) Γ is transvection-free, i.e. there are no distinct vertices v, w ∈ Γ such that
B(v, 1) \ {v} ⊆ B(w, 1) (otherwise v 7→ vw gives an infinite-order outer
automorphism);

(2) Γ has no partial conjugation, i.e. for every vertex v ∈ Γ, the ball B(v, 1)
does not disconnect Γ (otherwise, conjugating one complementary compo-
nent by v gives an infinite-order outer automorphism).

Likewise, given a family of tracial von Neumann algebras (Mv, τv), their graph
product MΓ := ∗v,Γ(Mv, τv) is a tracial von Neumann algebra that contains all Mv

as subalgebras, in which Mv,Mw generate their tensor product if v, w are adjacent,
and their free product otherwise.

Our main theorem is as follows.

Theorem 1 (Horbez–Ioana [HI25]). Let Γ, Λ be two finite simple graphs which
are transvection-free, do not contain a square, and are not reduced to a vertex. Let
(Mv, τv)v∈Γ and (Nw, τw)w∈Λ be families of diffuse tracial von Neumann algebras.

If θ : MΓ → NΛ is any ∗-isomorphism, then the graphs Γ and Λ are isomorphic
and there exists a graph isomorphism α : Γ → Λ such that θ(Mv) ≺s

NΛ
Nα(v) and

Nα(v) ≺
s
NΛ

θ(Mv), for every v ∈ Γ.

Here ≺s denotes strong intertwining in the sense of Popa. In particular, a
consequence of the conclusion is that θ(Mv) has a corner that embeds as a finite-
index subalgebra in a corner of Nα(v), and vice versa.

Previous works giving rigidity theorems for graph product von Neumann alge-
bras include [CDD25, BCC24, DV25], but with stronger assumptions on the vertex
algebras. In novel fashion, our main theorem covers non-factorial vertex algebras.

In different regimes for the vertex algebras, we obtain variations over our main
theorem: the same conclusion holds if

(1) Γ,Λ are only assumed to be transvection-free (and not reduced to one
vertex), but the algebras Mv, Nw are assumed to be diffuse and amenable;

(2) Γ,Λ are only assumed to be transvection-free and strongly reduced (and
not reduced to one vertex), but the algebras Mv, Nw are assumed to be II1
factors – strongly reduced means that no proper subgraph of Γ,Λ can be
collapsed to a vertex to give a new graph product structure for MΓ, NΛ.

As a consequence of the first point, we get the following W ∗-classification the-
orem for right-angled Artin groups.

Corollary 1 (Horbez–Ioana [HI25]). Let Γ,Λ be transvection-free finite simple
graphs. Then L(AΓ) ≃ L(AΛ) if and only if AΓ ≃ AΛ (if and only if Γ ≃ Λ).

When the vertex algebras are II1 factors, with more assumptions on the graphs,
we reach a stronger conclusion and manage to compute the fundamental group and
outer automorphism group in some cases.
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Theorem 2 (Horbez–Ioana [HI25]). Let Γ,Λ be finite simple graphs of girth at
least 5, with no vertex of valence 0 or 1. Let (Mv, τv)v∈Γ and (Nw, τw)w∈Γ be
families of II1 factors. Let MΓ = ∗v,Γ(Mv, τv) and NΛ = ∗w,Λ(Nw, τw). Then

(1) If θ : MΓ → NΛ is an isomorphism, then there exist a graph isomorphism
α : Γ → Λ and unitaries uv ∈ NΛ, such that θ(Mv) = uvNα(v)u

∗
v for every

v ∈ Γ.
(2) The fundamental group of MΓ is trivial.
(3) If in addition Γ has no separating star, then

Out(MΓ) ≃ (⊕v∈ΓAut(Mv)) ⋊ Aut(Γ;MΓ),

where Aut(Γ;MΓ) ⊆ Aut(Γ) is the subgroup preserving the isomorphism
types of the vertex algebras.

The first class of II1 factors with trivial fundamental group was given by Popa
in his breakthrough work [Po06a]. We obtain new examples coming from graph
products. In the special case where the vertex algebras are group von Neumann
algebras, we reach the following corollary.

Corollary 2 (Horbez–Ioana [HI25]). Let Γ,Λ be two finite simple graphs of girth
at least 5, which contain no vertices of valence 0 or 1. Let (Gv)v∈Γ and (Hw)w∈Λ

be families of ICC groups. Let GΓ = ∗v,ΓGv and HΛ = ∗w,ΛHw be the associated
graph product groups. Then the following conditions are equivalent:

(1) L(GΓ) ≃ L(HΛ).
(2) L(GΓ) and L(HΛ) are stably isomorphic.
(3) There exists a graph isomorphism α : Γ → Λ such that Gv is W∗-equivalent

to Hα(v), for every v ∈ Γ.

This yields a von Neumann algebraic analogue to a similar classification theorem in
measured group theory, obtained with Huang for right-angled Artin groups [HH22],
and with Escalier for general graph products [EH24]. Recall that two countable
groups are orbit equivalent if they have essentially free, measure-preserving actions
on a standard probability space with (essentially) the same orbits.

Theorem 3 (Escalier–Horbez [EH24]). Let Γ,Λ be two finite simple graphs, not
reduced to one vertex, which are transvection-free and have no partial conjugations.
Let (Gv)v∈Γ and (Hw)w∈Λ be families of infinite groups. Let GΓ = ∗v,ΓGv and
HΛ = ∗w,ΛHw be the associated graph product groups.

Then GΓ and HΛ are orbit equivalent if and only if there exists a graph isomor-
phism α : Γ → Λ such that Gv is orbit equivalent to Hα(v), for every v ∈ Γ.

This is also equivalent to GΓ and HΛ being measure equivalent. In fact this
theorem, when combined with uniqueness of Cartan subalgebras obtained in the
realm of deformation/rigidity theory (see specifically [CKE24] for graph products)
also yields structural information about cross-product von Neumann algebras as-
sociated to free, ergodic, probability measure-preserving actions of graph products
of groups as in the statement, like the triviality of their fundamental group.
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Strong convergence to operator-valued semicirculars

David Jekel

(joint work with Yoonkyeong Lee, Brent Nelson, Jennifer Pi)

In [3], we establish a framework for weak and strong convergence of Gaussian ma-
trix models to the operator-valued semicircular systems introduced by Speicher
[5] and Shlyakhtenko [7]. Strong convergence (or non-commutative laws) refers to
convergence of the operator norms of polynomials in random matrices (or other
operators) to the norms of the corresponding polynomial in the limiting opera-
tor tuple X . While the weak convergence of non-commutative laws produces an
embedding of W∗(X) into the W∗-ultraproduct of matrices, strong convergence
enables an embedding into the C∗-ultraproduct. Our results in particular give ex-
amples of natural generators for interpolated free group factors that admit strongly
convergence random matrix models, and hence generate an MF C∗-algebra.

Strong convergence was first studied by the seminal work of Haagerup and
Thorbjørnsen in 2005, and it has been a topic of much recent research. No-
tably, Hayes showed that strong convergence of certain tensor product matrix
models could be used to solve the Peterson–Thom conjecture on the free group
von Neumann algebras; the tensor strong convergence conjecture was subsequently
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addressed by Belinschi and Capitaine, Bordenave and Collins, Magee and de la
Salle, Parraud, and Chen–Garza Vargas–van Handel. The depth of this result is
illustrated by the diversity of different techniques used in the proof, which offer
different kinds of robustness. For instance, the “polynomial method” of Chen,
Garza Vargas, and van Handel allows the largest size of coefficient matrices to
be used with the GUE matrices, but heavily exploits that the expected trace of
a polynomial is an analytic function of 1/n. Meanwhile, Parraud’s approach can
be extended to the setting of free Gibbs laws with sufficiently smooth potentials,
while Magee and de la Salle investigate strongly convergent approximations of
larger classes of groups. The idea of strong convergence has also motivated some
of the recent work on selfless C∗-algebras used to obtain strict comparison in other
results discussed in this conference. We use results and techniques of Bandeira,
Boedihardjo, and van Handel which gives sharp estimates comparing the spectrum
of a general Gaussian matrix with the spectrum of a corresponding semicircular;
although this work did not prove the Peterson–Thom conjecture, it is well-suited
to the study of general Gaussian matrices.

Our work focuses on extending strong convergence to general Gaussian random
matrix models (the entrywise covariances can be essentially arbitrary) where the
limiting models are given by operator-valued semicirculars. These are an extension
of free semicircular families that serve as central limit distributions for free inde-
pendence with amalgamation over a subalgebra B. B-valued semicircular families
(Xi)i∈I (with mean zero) are specified in terms of the maps ηi,j(b) = EB[XibXj]
for b ∈ B, which together form an operator-valued covariance matrix (ηi,j)i,j∈I .
In a parallel way, a mean-zero jointly Gaussian family of n×n self-adjoint random

matrices (X
(n)
i )i∈I can be specified in terms of an Mn-valued covariance matrix

(η
(n)
i,j )i,j∈I where η

(n)
i,j (b) = E[X

(n)
i bX

(n)
j ] where E is the classical expectation ap-

plied to a matrix-valued random variable. The matrix giving the covariances of the

individual entries (X
(n)
i )i∈F for a finite index subset F , turns out to be nothing but

the Choi matrix of the completely positive map (η
(n)
i,j )i,j∈F . To adapt the notions

of weak and strong convergence to the B-valued setting, we replace the ordinary
non-commutative polynomials with “covariance polynomials,” which are expres-
sions depending on operators (bω)ω∈Ω as well as a covariance matrix η = (ηi,j),
which involve algebraic operations on the variables together with applications of
the maps ηi,j . An example would be

f(η, b) = η1,2[b1η3,1(b2)b3]b2 + b3η2,3(b2).

Our result in [3] thus considers the following setup:

• A tracial von Neumann algebra B and generators (bω)ω∈Ω.
• A B-valued covariance η = (ηi,j)i,j∈I .
• A (B, η)-semicircular family (Xi)i∈I .

• Matrix approximations (b
(n)
ω )ω∈Ω.

• An Mn-valued covariance η(n) = (η
(n)
i,j ).

• An η(n)-Gaussian matrix ensemble X(n) = (X
(n)
i ).
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Assuming that the operator norm of the Choi matrix for η(n) (associated to each
finite subset of the indices) vanishes as n→ ∞, and that that (η(n), b(n)) converge
weakly to (η, b), we obtain weak convergence of (η(n), b(n), X(n)) to (η, b,X) using
ideas from [1].

For strong convergence, we assume that the norm of the Choi matrix vanishes
faster than 1/(logn)3 to apply further results from [1], which then allows us to
compare the norms of ordinary polynomials in the Gaussians to corresponding
operator-valued semicirculars–specifically the (Mn, η

(n)) semicircular families that
depend on n. We next need to reduce the study of the operator norm for covariance
polynomials to the operator norm of ordinary polynomials. To accomplish this, we
use an averaging trick based on the free law of large numbers where we simulate
the application of ηi,j(b) by an average of Xi,kbXj,k where (Xi,k) are free copies
of (Xi) with amalgamation over B. We thus need to assume in our hypotheses
that infinitely many free copies of the (Mn, η

(n))-semicircular families strongly
converge to the (B, η(n))-semicircular family. We do not know convenient sufficient
conditions for this in general, but we remark that if the base algebra is fixed, then
the free exactness theorem of Skoufranis and Pisier can be applied.

Finally, we apply these results to the case of Gaussian matrices with indepen-
dent entries, but with variances weighed using a discretization of some continuous
function. This in particular includes smoothed out versions of Gaussian block
matrices [2] and Gaussian band matrices [6]. More specifically, it includes matrix
approximations for Rădulescu’s model of interpolated free group factors [4].
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Actions of free groups and stable rank one

David Kerr

(joint work with Jamie Bell, Shirly Geffen)

The notion of stable rank was introduced by Rieffel in the 1980s in the context
of nonstable K-theory [11]. It has also appeared more recently in connection
with phenomena around classification theory such as rank realization, Z-stability,
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strict comparison, and divisibility [12, 13, 8]. For simple separable unital finite
C∗-algebras, the property of stable rank one (which boils down in the unital case
to the density of invertible elements) is strictly weaker than Z-stability (the op-
erative regularity hypothesis in classification theory), even in the nuclear setting,
although it can fail there as well [12, 14, 1, 7]. Stable rank one is thus not in
complete alignment with the regularity properties associated to classification and
can hold under more general structural conditions, and for this reason it can serve
as a touchstone for understanding and distinguishing various general classes of
C∗-algebras. Most interesting in this regard are those C∗-algebras that arise as
crossed products of topologically free minimal actions of countably infinite groups
G on compact metrizable spaces X for which the space MG(X) of invariant Borel
probability measures is nonempty. It is not known whether stable rank one ever
fails in this case, and it always holds when G = Zd [7], despite the fact that
Z-stability sometimes fails for such actions [5]. Beyond Zd, however, we do not
know much about when the properties of stable rank one and Z-stability diverge,
although Z-stability occurs quite frequently for amenable G, for example when G
is elementary amenable and X is finite-dimensional [6, 9].

In the present work we venture into the world of nonnuclear tracial reduced
crossed products and show that stable rank one is generic within two natural
spaces of minimal actions of the free group Fd on the Cantor set X with MFd

(X) 6=
∅. Our approach is inspired by Li and Niu’s stable rank one theorem in the
amenable setting (which assumes the uniform Rokhlin property and a weak form
of dynamical comparison) [7] and is driven by the discovery, for a generic action,
that at some scale the effects of amenability of one generator of Fd (specifically,
dynamical tilings with approximate invariance properties) overpower the relation
of freeness with the other generators. The two spaces in question, each equipped
with the natural Polish topology, are (i) the set of all weakly mixing topologically
free minimal actions Fd y X with MFd

(X) 6= ∅, and (ii) the set of all topologically
free actions Fd y X with MFd

(X) 6= ∅ that are spectrally aperiodic and minimal
on each standard generator. If we consider all topologically free minimal actions
Fd y X with MFd

(X) 6= ∅ then there is in fact a generic action, the universal
odometer [4], and so we have imposed conditions that preclude periodic behaviour.
Nevertheless, in case (i) we have not been able to rule out the existence of a generic
action. One the other hand, using a theorem of Ormes on ergodic realization up
to orbit equivalence in minimal Cantor systems [10] along with Blanchard’s local
entropy technique for establishing disjointness [3], we have been able to verify that
conjugacy classes are meagre in the second space.

Our methods also show that if Gy X and H y Y are topologically free min-
imal actions of countable groups on compact metrizable spaces with G infinite,
and the first action has the uniform Rokhlin property and dynamical compari-
son, then the reduced crossed product of the product action has stable rank one.
In fact the genericity results in the previous paragraph hinge in a similar kind
of product construction, with the key difference that this must be performed in-
ternally as a diagonal product using a common acting group, which leads to a
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lengthy analysis involving tools from ergodic theory like measure disjointness and
the Jewett–Krieger theorem. Taking a diagonal product acts like a type of sta-
bilization that allows one to avoid having to use dynamical comparison, which
we do not know to hold for any of the actions in question. It is in fact still an
unresolved problem whether all free minimal actions (even those on the Cantor
set) have dynamical comparison. We also do know whether any of the crossed
products at play have strict comparison, although for the reduced C∗-algebra of
Fd itself this was shown recently in [2] using very different techniques, notably the
rapid decay property.
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Ultrapowers of reduced free group C∗-algebras

Christopher Schafhauser

(joint work with Srivatsav Kunnawalkam Elayavalli)

Murray and von Neumann’s free group factor remains problem one of the oldest
open questions in operator algebras: if Fn denotes the free group on n ≥ 2 gen-
erators, does the free group factor L(Fn) depend on n? A natural variation of
this question, which appears to be just as difficult, asks which free group factors
are elementarily equivalent, or equivalently, have isomorphic (tracial) ultrapowers.
Modifying these questions in another way, one can ask about the isomorphism
and elementary equivalence classes of the reduced free group C∗-algebras C∗

r(Fn).
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A fundamental result of Pimsner and Voiculescu ([8]) provides a solution to the
isomorphism problem: the reduced free group C∗-algebras C∗

r(Fn) are mutually
non-isomorphic. In fact, as a by-product of their solution to one of Kadison’s Ba-
ton Rouge problems, showing C∗

r(Fn) has no non-trivial projections, they compute
K1(C

∗
r(Fn)) ∼= Zn. This talk focused on the elementary equivalence problem for

these C∗-algebras, recently solved in [4].
It is easy to see that free abelian groups of different (countable) rank are not

elementarily equivalent. For example, using ω to denote a free ultrafilter on N and
Zn
ω to denote the discrete group ultrapower of Zn, [Zn

ω : 2Zn
ω] = [Zn : 2Zn] = 2n. So

the naive approach to the elementary equivalence problem for reduced free group
C∗-algebras is to show that for a C∗-algebra A, the elementary equivalence class
of K1(A) (as a discrete group) depends only on the elementary equivalence class
of A (as a C∗-algebra). This, however, is false, with the first counterexamples due
to Phillips in [7]. The main technical result in [4] is that the statement is true if
one restricts to unital simple C∗-algebras with unique trace and strict comparison,
including C∗

r(Fn), where strict comparison was recently shown in [1] (see also
[6, 10]).

In more detail, for each C∗-algebra A, using Aω to denote the operator norm
ultrapower of A, there is a natural group homomorphism

(1) ηA : K1(Aω) → K1(A)ω ,

given on representatives by sending a unitary u ∈ M∞(Aω) to a representing
sequence of unitaries (un)∞n=1 ⊆ M∞(A). The goal becomes to show ηA is an
isomorphism when A = C∗

r(Fn), n ≥ 2, or more generally, ηA is an isomorphism
whenever A is a unital simple C∗-algebra with unique trace and strict compari-
son ([4, Corollary 4.2]). This readily implies the C∗-algebras C∗

r(Fn) have non-
isomorphic ultrapowers, as outlined in the previous paragraph.

In general, the map ηA in (1) is neither injective nor surjective. The issue with
surjectivity is easier to see. Elements in K1(A) are represented by unitaries in
matrix algebras Md(A), and in general, one needs arbitrarily large integers d to
realize all K1 elements. When A has stable rank one, Rieffel ([9]) has shown one
can in fact realize all K1-elements with d = 1, making ηA surjective. This covers
the case of reduced free group C∗-algebras by a result of Dykema, Haagerup, and
Rørdam ([3]), and the more general class of A discussed above have stable rank
one by a recent result of Lin ([5]). For injectivity, there is a related problem. Two

unitaries u, v ∈ A, agree in K1(A) if and only if u ⊕ 1
⊕(d−1)
A and v ⊕ 1

⊕(d−1)
A are

in the same path component of the unitary group of Md(A), but again, there is
generally no upper bound on d. Rieffel also solved this problem in the stable rank
one case showing one can take d = 1. This shows that when A has stable rank
one, K1(A) is precisely the group of path components of the unitary group of A
That is, K1(A) = U(A)/U0(A), where U(A) is the unitary group of A and U0(A)
is the path component of U(A) containing 1A.

There is another more subtle issue regarding the injectivity of ηA. In fact, even
in the stable rank one case, the map ηA need not be surjective. It is an elementary
fact that if u ∈ U0(A), there are self-adjoint h1, . . . , hn ∈ A with ‖hi‖ ≤ π such
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that

(2) u = eih1 · · · eihn .

Further, up to increasing n, one may assume ‖hi‖ ≤ π for all i = 1, . . . , n (replace
eih with eih/2eih/2 as needed). However, in general, n cannot be chosen uniformly
over u ∈ U0(A), which prevents ηA from being surjective. In fact, the de la
Harpe–Skandalis determinant provides lower bounds on n for a given u ∈ U0(A):
if u = eik1 · · · eikm for self-adjoint ki ∈ A (possibly or large norm), then for any
other such decomposition u = eih1 · · · eihn ,

(3)

n∑

i=1

‖hi‖ ≥ inf
x∈K0(A)

sup
τ∈T (A)

∣∣∣
m∑

i=1

τ(ki) − 2πτ(x)
∣∣∣,

where T (A) denotes the set of tracial states on A.
When A is a unital C∗-algebra with unique trace, the right hand side of (3)

is at most π, so there are no determinant obstructions. Combining the vanishing
of the determinant obstruction with trace-kernel techniques (see [2], for example)
produces the following result. Roughly, the strict comparison hypothesis gives
suitable regularity results on the trace-kernel ideal JA EAω , and the determinant
obstructions appear in the group K1(JA). The theorem does not quite bound n
in (2), but this slightly weaker result is still enough for K-theoretic computations.

Theorem 1 ([4, Theorem 1.2]). If A is a unital simple C∗-algebra with unique
trace and strict comparison (e.g. A = C∗

r(Fn), n ≥ 2), then for u ∈ U0(A), there
are self-adjoint h, k, l ∈ M2(A) of norm at most π such that u ⊕ 1A = eiheikeil.
Further, one can take l to have arbitrarily small norm.

In particular, this implies the map ηA from (1) is an isomorphism. Then re-
stricting to the case when A is a reduced free group C∗-algebra shows that C∗

r(Fm)
and C∗

r(Fn) have isomorphic ultrapowers if and only if m = n.
The statement in Theorem 1 is presumably not optimal. It is not clear to me

what the optimal bound on the number of exponentials should be, but I strongly
expect that the 2 × 2 matrix amplification is not needed. As far as hypotheses
on the algebra, it is reasonable to suspect that the conclusion of Theorem 1 may
hold for all unital simple C∗-algebras with strict comparison for which projections
separate (quasi)traces, although the techniques in [4] do use the unique trace
assumption in a crucial way.
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Open Problem Session

Collected by Stuart White

(joint work with all and sundry)

This informal session was devoted to collect and present a number of open problems
in the area. The problems were suggested by the participants, collected by Stuart
White, and briefly discussed during the session.

Problem 1. Let Z y A be a continuous action on a separable C∗-algebra A. Let
U be a non-principal ultrafilter on N. Does the continuous part of the induced
action Z y AU lift to ℓ∞(A)?

Problem 2. Let p ∈ R be a projection with irrational trace in the hyperfinite II1
factor R. Is p⊗ 1R ∼MvN 1R ⊗ p in R⊗R?

Problem 3. Is there an autormorphism α on O∞ ⊗ K which fixes the diagonal
and satisfies K0(α) = −id?

Problem 4. Does there exist a relatively free group G such that C∗
r (G) is selfless?

Problem 5. Let α : R y W ⊗K satisfy τ ◦ αt = etτ , where W ⊗K denotes the
stabilised Razak-Jacelon algebra. Does α have the Rokhlin property?

Problem 6. Consider the embeddings ι1, ι2 : O∞ → O∞ ∗O∞ into the unital full
free product O∞ ∗O∞. Do there exist non-trivial projections p, q ∈ O∞ such that
ι1(p) ∼h ι2(q)?

Problem 7. Does there exist a simple C∗-algebra which is not K1-injective?

Problem 8. Let G be a locally compact group. When is L(G) almost almost
unimodular?

Problem 9. Is every ε-C∗-algebra close to a C∗-algebra?

Problem 10. Let ϕ : A→ A be a completely positive map such that ‖ϕ− ϕ2‖cb
is small. Is ϕ ‖.‖cb-close to a conditional expectation?

Problem 11. Consider the construction of the CAR algebra M2∞ via the canon-
ical anticommutation relations. Then, for some separable Hilbert space H where
the relations are satisfied, one has A : H → B(H) and C∗(A(H)) ∼= M2∞ .
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Consider {Fijk | i, j = 1, . . . , n, k = 1, . . . , d}, where Fijk are pairwise orthogo-
nal. Define Xk = ( 1√

n
A(Fijk))ni,j=1 ∈ Mn(M2∞). Does Xk converge strongly to a

free circular distribution?

Problem 12. Are q-Gaussian C∗-algebras selfless for −1 < q < 1, q 6= 0?

Problem 13. Given a factor M , find a localization for M ∼= M⊗̄P where P is a
hyperfinite III0 factor.

Problem 14. Consider L(SL2(Z))U ,
∏

U Mn and L(F2)U for a non-principal ul-
trafilter U on N. Are any two of these algebras isomorphic?

Problem 15. Does a group G exist which is not mixed identity-free and such
that C∗

r (G) is selfless?

Problem 16. Does C∗(F2 × F2) have the (local) lifting property?

Problem 17. Does there exist a non-amenable group G without free subgroups
such that C∗

r (G) has the rapid decay property?

Problem 18. Let K be compact and convex. Does Omin − Aff(K) = Omax −
Aff(K) imply that K is a Choquet simplex?

Problem 19. Is L(F2) ≇ L(F3)?

Problem 20. Is Z∗n
(r,τ)

∼= Z∗m
(r,τ)? Is there a dichotomy?

Problem 21. Is every unital simple separable C∗-algebra singly generated?

Problem 22. Do classifiable C∗-algebras admit filtrations such that the rapid
decay property is satisfied?

Problem 23. Is F2 C
∗
r -(super)rigid (within hyperbolic groups)?

Problem 24. Let M be a von Neumann algebra with a faithful state ϕ. When
is (M,ϕ) selfless as a von Neumann algebra?

Reporter: Philipp Sibbel
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