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Introduction by the Organizers

The workshop Cohomology theories for automorphic forms and enumerative al-
gebra, organized by Claudia Alfes (U Bielefeld), YoungJu Choie (POSTECH,
Pohang), Anke Pohl (U Bremen), and Christopher Voll (U Bielefeld), was well
attended with 25 participants (2 online) providing a gender-balanced blend of se-
nior and junior researchers of various research directions within the overarching
theme of cohomology theories for automorphic forms and enumerative algebra. It
featured 20 presentations as well as ample and highly appreciated opportunities
for individual scientific collaborations and discussions.
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A recurrent overall theme in cohomology theory is to forge connections between
different objects via suitable cohomology theories, hereby creating novel research
tools, re-interpretating existing results, and creating vantage points for further
research. Within the rich realm of mathematical cohomology theories, the work-
shop focused on those in the research areas of automorphic forms and enumerative
algebra.

Roelof Bruggeman explained the interpretation of Maass cusp forms in para-
bolic cohomology that was developed by him, Lewis and Zagier, and reported on
ongoing developments. Complementary to his talk, Anke Pohl surveyed the rela-
tion of parabolic cohomology with the dynamics of hyperbolic orbisurfaces and the
Selberg zeta function. Roberto Miatello discussed Poincaré series for semisimple
Lie groups of real rank one and showed the state of art in regard to the question
of which automorphic forms on these Lie groups can be obtained from these se-
ries. Jens Funke focused in his survey talk on harmonic weak Maass forms and
showed that the cohomological periods of two differential operators applied to the
forms coincide. Martin Raum presented the theory of vector-valued modular forms
and introduced the notion of modular forms of virtually-arithmetic type which he
developed in work with Michael Mertens and Tobias Magnusson.

Nikolaos Diamantis considered iterated integrals, a generalization of Manin’s
modular symbols. He discussed an extension of standard cohomology reflecting
structures emerging in the study of modular symbols and false theta functions, of
which a characterization of classes of iterated integrals is an application. Also in
the spirit of understanding iterated integrals as generalizations of modular symbols
and related to multiple zeta values, Morten Risager discussed the limiting distri-
butions of iterated integrals and showed computer-generated figures that indicated
the difficulties for higher length situations.

For certain Laurent polynomials, the Mahler measure is related to special val-
ues of L-functions. An important proof is by Deninger’s cohomological method.
Jungwon Lee described generalizations of this method obtained by her and Wei
He. Dohyeong Kim analyzed the behavior of Dedekind zeta functions over Z,-
extension with a focus on the Euler—Kronecker constants.

In his survey talk on zeta functions in enumerative algebra, Joshua Maglione
pointed to a number of “cohomological shadows” in this area, suggesting a co-
homological explanation for non-negativity and self-reciprocity phenomena seen
in various local zeta functions associated with groups, rings, and modules. In a
similar vain, Tobias Rossmann surveyed phenomena observed in and conjectured
about reduced and topological versions of such zeta functions, pointing towards
connections with Hilbert series of Cohen—Macaulay graded rings and modules.
Bianca Marchionna talked about her recent work on a conjecture of Rossmann’s
on residues of local zeta functions associated with pattern algebras, using multi-
variate p-adic integrals.

Mima Stanojkovski discussed joint work with Oihana Garaialde on isomorphism
classes of extensions of finite p-groups. Paul Kiefer reported on ongoing joint work
with Lennart Gehrmann in which they construct A-adic families of Funke-Millson
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cycles. Min Lee presented joint work with Jonathan Bober, Andrew R. Booker,
Claire Burrin, Vivian Kuperberg, David Lowry-Duda, Catinca Mujdei, and Hsin-
Yi Yang in which they prove the existence of murmurations for elliptic curves
which was observed by Al techniques.

Bo-Hae Im presented the proof of the Zagier—Hoffman conjectures for Nth mul-
tiple zeta values in positive characteristic which she obtained in joint work with
Hojin Kim, Khac Nhuan Le, Tuan Ngo Dac, and Lan Huong Pham. In her on-
line talk Winnie Li reported on her results with Jerome Hoffmann, Ling Long,
and Fang-Ting Tu on the computation of traces of Hecke operators via hyperge-
ometric character sums. Gabriele Bogo discussed deformations of modular forms
and extensions of symmetric tensor representations motivated by the uniformiza-
tion theorem for Riemann surfaces. Lakshmi Ramesh closed the workshop with a
presentation of her joint work with Janko Bohm and Santosh Gnawali on the com-
putation of cohomology of coherent sheaves. Integral to this work is an algorithm,
implemented in the computer algebra system SINGULAR.

Wednesday afternoon featured a lively problem session. Participants confirmed
the organizers’ impression of an enjoyable and highly productive workshop.
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Abstracts

Cohomological shadows from two zeta functions from algebra
JOSHUA MAGLIONE

1. SUBALGEBRA ZETA FUNCTIONS

Let A be a finitely generated Z-algebra. For us, this means that (A, +) is an abelian
group, and its product is Z-bilinear. So algebras need not have a multiplicative
unit nor be associative. The subalgebra zeta function of A is

Cals) =) |4: B|™,

B<A

where the sum runs over all finite index subalgebras B in A. By the structure
theorem of abelian groups, the finite quotient of Z-modules A/ B decomposes into
cyclic groups. This leads to an Euler product decomposition of the subalgebra
zeta function counting subalgebras of p-power index:

Cals) = [ ¢an()

p prime

Let us look at a few examples of the subalgebra zeta function. First, let A = Z;
then there is a unique subalgebra of index n for each n € N. Hence, (z(s) =
((s) is the Riemann zeta function. Now consider A = Z? with component-wise
multiplication. By Datskovsky and Wright [1],

Gz2(s) = ¢(5)°¢(25) T*C(3s — 1),

Lastly, we consider A = Z?® with component-wise multiplication. Nakagawa [6]
and Liu [3] independently showed

. 1+4p =5+ 2p 25 4 ... —2p2~Ts _4p2—8s _ 295
CZ3 (S) - H (1 _p_s)Q(l _p2_4s)(1 — p3—68) .

(1)

p prime

A remarkable feature of the local zeta functions in (1) is that the coeflicients
of the numerators are palindromic, up to multiplying by —1. The reason for this
is that these local subalgebra zeta functions satisfy a functional equation. The
following deep theorem tells us that this always happens.

Theorem 1 (Voll [8]). Assume A is torsion free and rank n. For almost all
primes p,

Can(9)] s = (=1)pE) ¢4 4 (s).
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We consider a slight variant of the subalgebra zeta function that will exemplify
the two cohomology theories in Theorems 1. There is a way to encode the elliptic
curve E = y? + 23 — x into a Lie algebra Lg, see for example [4]. The ideal zeta
function of Lg is

CFL(s) =Wi(p,p~°) + #E(F,) - Walp,p~°),

such that Wy (X1, V1) = —X36Y15 and Wa (X1 Y1) = —X3Ty15,

We have two cohomology theories in the proof of Theorem 1: the ¢-adic coho-
mology from the Weil conjectures and simplicial cohomology from counting integral
points on polyhedral cones.

Question 1. Is there a bespoke cohomology theory for subalgebra zeta functions
that unifies these two theories?

If there is such a cohomology theory that answers Question 1, it might also
provide a way understand the poles arising in these zeta functions. Currently, we
have no way of getting even a finite set of candidate poles.

2. FLAG HILBERT-POINCARE SERIES

Now we explore a more combinatorial zeta function within enumerative algebra.
Let A be a finite set of hyperplanes in A% with K a number field. Write £(.A) for
the set of all possible intersections of the hyperplanes of A, excluding A%.. The
flag Hilbert—Poincaré series of A is

fHP 4 (Y, (Tx ) xer(a)) ZT"F ) ] Ix

xer 1~ Ix

where the sum runs over all flags F' of subspaces in £(A) and 7r(Y) is a product
of Poincaré polynomials like those for the complex manifold C™ \ 4 H.
Theorem 2 (M.—Voll [5]). There exist substitutions of fHP 4 yielding

e the Igusa local zeta function associated with A,
e the motivic zeta function associated with A,
e the ask zeta function of co-graphical group schemes.

Ifl:= Npea H # 9, then
HPA(Y ™, (T Y)x) = (=Y) 7Ty - (HP 4 (Y, (Tx) x)-

Similar to Theorem 1, two cohomology theories come together in Theorem 2.
We can observe more shadows by simplifying fHP 4; define the bivariate coarsening
NA (Ya T)
( 1— T)rk(.A) :
It is not difficult to show that N 4(Y,0) = m4(Y), the Poincaré polynomial of the
complex manifold C" \ (Jy . 4 H. Additionally,

N4(0,T) = Hilb(SR 4, T),

cfHP A(Y,T) = fHP 4 (Y, (T)x) =
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where SR 4 is a Stanley—Reisner ring associated with A. The polynomial N4 (Y, T)
seems to record more cohomological information.

Theorem 3 (Dorpalen-Barry-M.—Stump [2]). The coefficients of Na(Y,T) are
non-negative.

Theorem 4 (Stump [7]). Letting CH(A) be the Chow ring associated with A,
Hilb(CH(A),t) = Na(t, —t).
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(Strong) isomorphism of p-groups and orbit counting
MIMA STANOJKOVSKI
(joint work with Oihana Garaialde)

Let G and N be finite groups. A group extension
(1) 1—N-5%E-5SG—1

of G by N is called central if ((IN) is a central subgroup of E: in this case, the
action of G on N that is induced by ¢ and 7 is trivial, i.e. N is a trivial ZG-module.

Since non-trivial groups of prime power order have non-trivial center, every
such group can be realized as a central extension as in (1) where N is a trivial
F,G-module and p is the unique prime number dividing the order of G.

Let now p be a prime number and recall that a finite group is called a p-group
if its order equals a power of p. Assume, moreover, that GG is an abelian p-group
and that N is cyclic of order p. Then an extension of G by N is either abelian
or with commutator subgroup of order p. Thanks to the classification of finite
abelian groups, the first family is easily described up to isomorphism. Instead,
the latter has been classified in [2] with respect to the group order and relies on
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the classification of bilinear forms. In [3], we study these extensions and employ
cohomological tools to classify them as we now explain.

Classically, the second cohomology group H?(G; N) parametrizes the extensions
of G by N up to equivalence: If

1-—N-SFE e —s1

is another extension like (1), then their equivalence translates to the existence of
an isomorphism ¢ : E — E’ such that the following diagram commutes:

Relaxing the requirement on ¢ to simply induce, by restriction, an isomorphism
t(N) — /(N), one speaks of strong isomorphism classes of extensions of G by N.
The following is a weaker version of Theorem 4.7' from [1]:

Proposition 1. Let p be a prime, G a finite group, and N a trivial F,G-module.
Then the set of strong isomorphism classes of extensions of G by N is in bijection
with the orbits of the natural action of Aut(G) x Aut(N) on H?(G; N).

Assume now the following: p is a prime number and G is a finite abelian p-group
with no summands of order 2. Let, moreover, A = Aut(G) x Z;, and consider
the natural action of A on H?(G;F,). Under these assumptions, H*(G;F,) is an
F,-vector space with a canonical split short exact sequence of A-modules:

0 — Ext’(G;F,) — H*(G;F,) — Hom(A*(G/pG),F,) — 0.
Since Hom(A%(G/pG),F,) equals the span of the cup product

U : Hom(G,F,) x Hom(G;F,) — H*(G;F,),

(fr9) — fUg = ((2,9) = f2)g(y)),
the following equality holds: H?(G;F,) = Ext'(G;F,) ® (imU). Moreover, imU
being A-stable, the following is sound:
Proposition 2. ([3, Cor. 3.11]) Fori = 1,2 define S'(G) = {M < G : G/M = Fi}.
Then there is an isomorphism of A-sets
Y PExt' (G;F,) x PimU — SY(G) x S*(G).

In the next definition, for a subgroup 7" of G and a positive integer s, denote by
T[s] the s-torsion subgroup of T'.

IThe most general version of this theorem allows for N to be any FpG-module and
parametrizes strong isomorphism classes in terms of an action of the compatible pairs of
A = Aut(G) x Aut(N) (in our case, all elements of A).
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Definition 3. Let M and T be subgroups of G.
(1) The T-levels of M are given by the pair (Ly (M) = (ér(M),Lr(M)) where
o (p(M) =1+ max{0 <i<log,exp(T) : T[p'] C M NT},
o Lp(M)=min{j € Z>o : T[p’]+ (M NT)=T}.
(2) The index of M in T is

0 ifMCT,

1  otherwise.

i(T:M):{

If T = G, simply write /L(M) for {Lg(M).

Theorem 1. ([3, Thm. 6.1]) Let ¢,d € Ext'(G;F,) and let w,¥ € imU. Denote
(T, M) = ¢(c,w) and (S,N) = 1(d,9). Then the following are equivalent:

(1) c+w and d+ 1V are in the same A-orbit,
(2) (PL(M)),L(T), fLp(M),i(T : M)) = ((L(N)),LL(S),fLs(N),i(S : N)).

As applications of the last theorem we deduce the numbers and sizes of all orbits
of A acting on H?(G;F,) when G is generated by at most 3 elements. We hope to
come back to the study of higher rank tensors, and thus to a full classification of
orbits independently on the number of generators, in the future.

REFERENCES
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Order complexes, nested permutohedra, and ask zeta functions
ALEC SCHMUTZ

1. COMBINATORIAL DENEF FORMULAE

For a finite poset P, a combinatorial Denef formula is loosely defined to be a
multivariate rational function expressible in the following form:

> et [l =

FeA(P) zEF

where A(P) denotes the order complex of P, that is the abstract simplicial com-
plex whose faces consist of chains of P, and where ®r(X) € Z[X] is a polynomial
encoding combinatorial information about the summand. Such finitary sums arise
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in numerous enumeration problems, where upon suitable substitutions of the vari-
ables, one recovers a local factor for some zeta function. A prototypical example
is given by the n-th Igusa zeta function

Lo(X, (T)iem) = Y < > H1—

IC[n] X ier

where (?) + denotes the Gaussian multinomial coefficient. Upon suitable substi-
tutions of the variables, namely by evaluating I,,(p~*, (p("~*=*)))r_,) for a prime
p, one recovers the subgroup zeta function ngn (s) (cf. [6, Example 2.20]).

In some cases, such combinatorial Denef foprmulae are malleable to cohomolog-
ical methods, which in turn clarify the behaviours of the coefficients appearing in
the numerator of these rational functions. For instance in [3], Cohen-Macaulayness
of the Stanley-Reisner ring F[A(L(A))], where L£(.A) denotes the intersection lat-
tice of some hyperplane arrangement A, is leveraged in order to deduce non-
negativity of the coefficients of the corresponding Hilbert series.

2. ASK ZETA FUNCTIONS

Introduced in [4], ask zeta functions are rational generating functions which enu-
merate average sizes of kernels of matrices of linear forms defined over finite rings.
More precisely, fixing a ring R and an R-algebra S, we let A(X) € Myx.(R[X1,...,
X)) be a matrix whose entries consist of linear forms. Whenever S is finite, the
average size kernel of A(X) is

askg(A(X) — Z |ker(A
|5 ™ s
Setting R = O to be a compact DVR, the (analytic) ask zeta function of A(X) is
then given by the following Dirichlet series:

Cifo(s) = aske g (A(X)) g%,
k>0

Such zeta functions are of group-theoretic interest, as they relate to the (conju-
gacy) class-counting zeta functions of unipotent groups associated with graphs,
namely graphical group schemes; cf. [5, Propositon 1.1]. This enables one to
tackle problems reminiscent of G. Higman’s conjecture [2], postulating that the
number of conjugacy classes (class number) of the full upper-unitriangular matrix
group U, (F,) is given by a polynomial in gq.

For a graph T = ({v1,...,v,}, E), we build the (antisymmetric) matrix of linear
forms A € M, (O[XEg]) by “linearising” the adjacency matrix of I, viz.

X, if v; ~c v; and @ < j,
(Ap)ij = —Xe if vy ~c vj and i > 7,
0 otherwise.

It turns out that whenever T is a cograph, i.e., a Py-free graph, its associated ask
zeta function can be recovered by a combinatorial formula of Denef type:
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Theorem 1 (Rossmann-Voll [5, Theorems C & DJ). For any cograph T’ = (V, E),
there exists a modelling hypergraph H = (V, (ur)1cv) such that for any compact
DVR O with residue field size q, one has that CZSE‘/D(S) = Wy (q,q™%), where

r

XIWN=2rnsge b1

1) Wy (X, T)= Z (1_X—1)\sup<F)\g .

_ |J|*210J¢z D%
FeA(2ln]) X T

By virtue of [5, Proposition 1.1], the previous theorem yields polynomial ex-
pressions in ¢ for the class numbers of the cographical groups Gr(O/9"). In the
spirit of previously discussed non-negativity results, the combinatorial nature of
Theorem 1 moreover imposes the non-negativity of the coefficients of these poly-
nomials, when expressed in ¢ — 1; cf. [5, Theorem EJ. It is of natural interest to
determine whether Theorem 1 can be extended to a larger family of graphs:

Question 1 (Rossmann-Voll [5, Question 1.8 (iii)]). Is there a meaningful com-
binatorial formula (in the spirit of Theorem 1) for the functions Wi (X, T') which
is valid for all graphs on a given vertex set?

One attempt at answering the previous question is to relate the order complex
A(2[") appearing in (1) to the face lattice of the permutohedron, which we denote
by L(P,). Identifying the permutohedron with its dual fan, the cones of the Braid
fan Br,, determine regions where one has a total ordering on the n vertices of the
given graph I'. An obstruction to obtaining a formula akin to (1) for arbitrary
graphs is, in essence, due to “sandwiches”: for a given cone of the Braid fan where

Ur=1(1) S Vr-1(2) <0 < Upi(),

one often has to compare “two-sums” of the form v -1¢;) + vz-1(;) and vy-1¢;) +
Ur—1(k), Where 1 < ¢ < j < k <[l < n. Such a comparison is unnecessary when
dealing with cographs, but are prevalent amongst non-cographs.

Introduced in [1], the nested Braid fan Br? (dual to the nested permutohedron)
resolves in some situations the aforementioned pesky sandwiches. Moreover, the
nested Braid fan admits a combinatorial description in terms of the ordered (set)
partition poset; cf. [1, Proposition 4.10]. These observations prompt the following
question:

Question 2. For which family of graphs do the corresponding ask zeta functions
admit a combinatorial Denef formula in terms of the nested braid fan Bri ?
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Maass cusp forms and cohomology
ROELOF BRUGGEMAN

I gave an introduction to the relation between Maass cusp forms and cohomology
groups, as developed in [1]. I kept mainly to the context of the modular group
I' = PSL»(Z).

For holomorphic cusp forms the relation with cohomology goes back to Eich-
ler’s paper [2]. Changing the polynomial kernel function (7 — X)¥~2 to a more
complicated kernel, built with the Poisson kernel R(¢,z)®, we arrive at cocycles

To
v [u(z), R(t, 2)°]
z=y~17o

with values in the space V< of analytic vectors in the principal series representation
with a spectral parameter s such that s(1 — s) is the eigenvalue of the hyperbolic
Laplace operator on the Maass form u. Changing the base point zy in the upper
half-plane does not influence the cohomology class. For a cusp form u the expo-
nential decay at cusps allows us to use a cusp £ € RU{oo} as the base point. Then
the cocycle is only a C'°°-function at the points & and v~ !£. In this way we arrive
at a linear map from the space of Maass cusp forms with eigenvalue s(1 — s) to
the cohomology group le)b(I‘; Vu‘*’o’oo). By w® we indicate that the principal series
vectors are analytic outside a finite number of cusps, and by oo that the vectors
are smooth at those cusps.

This map is not surjective. We have to impose an additional property at the
cusps where the principal series vectors are not analytic. With the smaller I'-
module V;"O’C’o’exc we arrive at a linear bijection between the space of Maass cusp
forms with spectral parameter s satisfying 0 < Res < 1 and the parabolic coho-
mology group H;b (P;V;"O"’O’exc). Theorem B in [1] gives this isomorphism, and
some more cohomology groups isomorphic to the same space of Maass cusp forms.

A parabolic cocycle ¥ representing a class in H;b (F; VS“’D’O"’QXC) is determined
by its values on the generators S = + ((1) 7(1]) and T = + ((1) }) of I'. There is a
unique choice such that )7 = 0. Then the cohomology class is determined by the
function g, which satisfies

Vs(—1/t) = —[t| > vs(t) for t € R\ {0},
Us(t) =vs(t+1)+(t+ 1) " ws(t/(t+1))  fort € (0,00,
s € C*°(R) and 9 is real-analytic on R\ {0} .



Cohomology Theories for Automorphic Forms and Enumerative Algebra 2079

John Lewis [3] found functions satisfying equivalent relations associated to even
Maass cusp forms. He and Don Zagier gave a thorough treatment, including the
relation to cohomology, in [4]. This is extended to all cofinite discrete subgroups
of PSLy(R) in [1].

It turned out that functions with similar properties had arisen in the study of
the Gauss map by Mayer, [5]. In this way we may consider parabolic cohomol-
ogy groups like le)b (I‘; V;"O’oo’exc) as intermediate between Maass cusp forms and
eigenspaces of a transfer operator arising in the study of a dynamical system.
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From geodesics to period functions, parabolic cohomology and the
Selberg zeta function: a survey

ANKE POHL

The development of cohomological interpretations of automorphic functions and
forms was initiated with the highly influential work by Eichler [5] and Shimura [13],
and it continues till today. A few recent examples are [2, 6, 1, 3, 11], which were
partly discussed in the talks by R. Bruggeman, N. Diamantis and myself. In
addition, J. Funke presented a (yet unpublished) cohomological interpretation of
weakly holomorphic modular forms.

For this report we focus on (classical) Maass cusp forms for Fuchsian groups.
For these functions, Bruggeman, Lewis and Zagier [2] provide an interpretation
in parabolic 1-cohomology. Using tools of parabolic cohomology only, for a few
special Fuchsian groups, such as PSLy(Z), the parabolic cocycle classes were seen
to be in linear isomorphism with sufficiently regular solutions of certain explicit
finite-term functional equations. These solutions are indeed period functions, the
functional equation arises from a certain change of path of integration, and the
period functions serve in a very precise way as building blocks for parabolic co-
cycle classes. (The history of these discoveries is highly involved and included
important work by D. Mayer, Chang and Mayer [8, 9, 4] as well as by Lewis and
Zagier [7].) One of the difficult steps in establishing such an isomorphism is to
find the “correct” functional equation. Solving this problem for generic Fuchsian
groups seemed (and still seems) to be out of reach without further insights.

However, the intimate relation between geometric and dynamical entities of
hyperbolic orbisurfaces on the one side and spectral entities on the other side
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allowed us to develop such an insight. The Selberg zeta function is one, arguably
one of the most important, objects that realize such a relation by connecting
the geodesic length spectrum to the Laplace spectrum and, in particular, to the
spectral parameters of Maass cusp forms. However, this zeta function is based on
the static geometry only.

Taking advantage of the dynamics of the geodesics as well, a careful construction
of symbolic dynamics for the geodesic flow in combination with transfer operator
techniques provide an algorithm to find the requested functional equations. Here,
the determining equations of eigenfunctions with eigenvalue 1 of the arising trans-
fer operators are precisely those functional equations. This construction further
helps to detect the necessary regularity and growth properties of period functions,
and it provides a geometric approach to parabolic cohomology that allowed us to
extend investigations from cofinite Fuchsian groups to non-cofinite ones. In addi-
tion, a parabolic induction (cuspidal acceleration) algorithm yields closely related
“companion” transfer operator families whose Fredholm determinant equals the
Selberg zeta function. More details can be found in, e.g., [10, 3], and informal
explanations are provided, e.g., by the survey article [12] and [3, Chapter 8].
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Cohomolgical aspects of weakly holomorphic modular forms
JENS FUNKE

Let I" be a congruence subgroup of SLy(Z). For k > 0 a non-negative integer, we
let M3, o(T) be the space of weakly holomorphic modular forms, and let Sy, 5 (T)
be the subspace of “weak cusp forms”, consisting of those forms whose constant
term vanishes at all cusps. We also let S;,j‘ (T) C Sh,.o(I) be the orthogonal
complement of the space of cusp forms Sog42(I") under the (suitably) regularized
Petersson scalar product. We have

M4 5(T) = Sajya(T) ® Eisop2 () @ Syt (1),

Here Eisop12(I") denotes the space of Eisenstein series of weight 2k + 2 for T'.
We let H' ,, (T') be the space of harmonic weak Maass forms of weight —2k for
I". So in particular,

E-21(f) € My 4o (D).

Here (with 2z = @ +iy) {_ox f(2) = y**2L_ox f(2) with L, = —2iy®Z, the Maass
lowering operator. We let H_5(I") be the subspace of those forms such that
&_ok(f) € Sak42(I'). By [4], section 3, we have

okt Hoop(T) /M o, (T") = Sappo(I0).
Recall that we also have the operator D = ﬁ%.

D*¥Y(f) € Myyy5(T)

for f € H',, (). By [5], section 4, the image of D?*! is equal to S;kl(I‘) In
fact, using Proposition 3.19 in [4], we have the isomorphism

(1) DL H gy (D) = Syt o (D).

By Bol’s Lemma we have

We therefore see that the images of H_o, (") under {_o and D21 both lie in
S, 4o(I") but are disjoint and perpendicular.

We let W = W; be the standard (complex) representation of I' with standard
basis ¢; and ex. We let W,,, = Sym™W be the irreducible self-dual representation
of dimension m + 1 of highest weight m.

Let X = I'\H be the modular curve associated to I', and let W,, be the lo-
cal system on X associated to W,,. We then can consider H*(X, W,,), the (de
Rham) cohomology of X with coefficients in W,,, which is isomorphic to the group
cohomology H*(I', W,,,). The cohomology groups are in a natural fashion Hecke-
modules. Note we also have homology groups He (X, W,,).

Let f(z) € M3, ,(T'). Then

(2) 0= f(2)dz ® (201 + e2)*"

defines a holomorphic 1-form on H which descends to a holomorphic 1-form on X
with values in the local system Wsy. Thus the assignment f — [1)f] gives a map

3) (1] : Moy 5 (T) — H' (X, War).
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It is well-known that n when restricted to regular holomorphic forms induces the
Eichler-Shimura isomorphisms

(4) EngkJrz(P) @ Sak42 (F) D SQkJrQ(F) o~ Hl(X, Wzk),
(5) Saky2(T) @ San42(T) ~ H (X, War).

Here H|'(X,Wsyt2) is the inner cohomology of X, that is, the image of the
compactly supported cohomology HJ}(X,Ws;) in the absolute cohomology
H'(X,Wsy). Further, the restriction of 1 to weak cusp forms yields a map

(6) (1) + Sy (T) — H(X, War).

The isomorphisms (4)and (5) are Hecke-equivariant under the map (3), that is,
17, £] = Tm[ny]-

for any Hecke operator T), and any modular form f € My yo(T).

The main result presented in the lecture is

Theorem 1. Let f € HL%(I‘) be a weak Maass form. Then there is an explicit
non-zero constant ¢y, such that

[ 1 (5)) = exliipariip)]
as classes in H'(X,Wag). In particular, if f € M',, (') is weakly holomorphic,

[7’]D2k+1(f)] =0.

The theorem is proved by constructing an explicit coboundary relating the two
classes. We note that Brown [3] obtained this result as well in a more general
context.

Guerzhoy [7] observed that the subspace D*¥1(M!,, (T')) of Mj, ,(T) is pre-
served by the action of the Hecke algebra, and hence considered the quotient

My, . o(T)/D*+1(M!",, (I)) as a Hecke module. In particular, he calls f € Mj, o (T)

an eigenform under T;,, with eigenvalue A, if there exists a g € M L% (I

Tmf = )\mf+D2k+1(g)

Theorem 1 gives a cohomological interpretation for Guerzhoy’s definition, since
for f as above we have

Tnlngl = [nmy 5] = Amlng).
Theorem 1 together with (1) also immediately implies

Theorem 2. The assignment f — [nf] induces the following isomorphisms of
Hecke modules:

(i) M3y (D) /DM, (T) ~ HY (X, Way),
(i7) Shppa(T)/ DML (T)) = HNX, Wai) = Sopi2(T) @ Sapr2(T),
(iii) Sngrg(F)/DQkH(Mf%(F)) ~ H"' (X, War,) = Sojs2(T).



Cohomology Theories for Automorphic Forms and Enumerative Algebra 2083

This recovers and extends Theorem 1.5 in [1] to arbitrary congruence subgroups
while also giving a cohomological interpretation for their “multiplicity 2 statement”
for Hecke eigenvalues (in the sense of Guerzhoy) in the space Sh; , ,(T').

Remark 3. Theorem 2 (iii) shows that H, !0 (X, Whs) can be realized by meromor-
phic differential 1-forms with poles at the cusps. Using the Riemann-Roch theorem
this is a very natural result in Riemann surface theory, and we can view this aspect
of Theorem 1 as an explicit version of this statement.

Theorem 1 also implies that (co)homological periods of & o (f) and ¢, D**+1(f)
coincide, that is, pairings of [ne_,, (s)] and c[p2r+1(5)] with homology classes in
Hy (X, Whay) coincide.

Given x = [a,b,c] € Z* with discriminant D = b? — 4ac > 0, we consider the
corresponding geodesic Dy in the upper half plane by

Dy = {z € H; a|z|* + bRe(z) + ¢ = 0}.

Then Dy defines a closed geodesic Cx in X if D is not an integral square. One
can then equip these special cycles with coefficients to define classes [Cy ] in
H, (X, Way), see eg [6]. We conclude

Theorem 4. Let f € H' 5, (T). Then

(0 o 11 [Cx, i) = crl[mp2etr gl [Cu )
Ezxplicitly,

/ (E_ornf)(2)(az? + bz + ¢)Fdz = ck/ (D241 £)(2)(az? 4 bz + ¢)*dz.

Cx Cx

For T' = SLy(Z), this result was obtained independently by Bringmann, Guerzhoy,
and Kent [2] using a completely different approach.

Furthermore, the approach outlined here can be used to interpret special values
of an appropriately defined L-function for weakly holomorphic forms.
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Iterated integrals and cohomology
NIKOLAOS DIAMANTIS
(joint work with Kathrin Bringmann)

The presented work is motivated by the different behaviour certain iterated inte-

grals exhibit when considered over different domains, in [2] and in [3] respectively.
Specifically, if f1, f2 are cusp forms for T'g(NV) of half-integral weights k1, ko and

multiplier systems x1, x2 respectively, we consider the iterated integral:

100 100
Iy g (7) = / fi(w)(wy =) 2 Fa(w2)(wa — 7)*2 "2 dwadw,.
T w1

In 2] If, f, is viewed as a function on the lower half-plane H and the I'o(V)-action
on it is studied. By contrast, in [3], a 1-dimensional analogue of I, s, is studied
on the upper half-plane H. In [3], the effect of the action was more complicated
than in [2] due to the branch cut of a square root appearing in the integrand.

In our work [1] we reconcile the above differences in behaviour employing an
approach used in [4] to associate a cohomology to arbitrary real weight modular
forms. We first define the module D*»>**¢: For a € QU {ioc}, aq,cq4 € Ry set

Valag,€q) : {M7 € H; |R(7)| < aq, (1) > €4}y

where M € SLy(Z) is such that M (ico) = a. Then, if E' = {ai,...a,} C QU{ico},
we call © C Pl a E-excised neighbourhood of H U P} if there is a neighbourhood
U of HUP} such that U \ U, Vy, (aq,,€a,) C Q. We then set

D“*%ay,...ap] :thO(Q)

where () ranges over all E-excised neighbourhoods of HUP} and O(€2) is the space
of holomorphic functions on 2. With this notation, we define the space

w,00,eXC ,__ 13 w,00,eXC 00 (T 1
D .—thD [a1,...a,] NC®(HUPR),

where [a1,...a,] ranges over all n-tuples of elements of QU {iocc}. Crucially, if x
is a weight r multiplier system D ***¢ is closed under the action |, given by

(glrax V(7)== x(V)(eyz +dy) " g(77).
We can now interpret our objects. For v € I'o(N), we define the period functions

100

r (V)(7) 1:/ J1(wr)(wy —T)kl*del and
vy~ lico
s = | T ) - 1B [ falwn)(ws — 1) dwsdun.
v~ tico w1

We then have (all propositions that follow are stated and proved in [1])
Proposition 1. For all v1,v2 € To(N), we have

If1,f2|4*k1*k27X1X2 (’Y - 1) = "Tf,f2 (’7) +rp (7)rf2 (7) —Tf (V)Ifm
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on H, where I, is the usual (1-dimensional) Eichler integral attached to fi and

Tf1,f2 (7271) T fe (72)|4*7€1*k2,X1X271 T fe ('Yl) =Tf (72)|2*k1,X1 “Tf (’Yl)'

This and the following propositions and definitions hold for the generalisations of
T#,.f, associated to arbitrarily many cusp forms f;.

Proposition 2. For each v € T'o(N), we have
T (’Y) e pw:oosexe g Th o (’Y) € DWioo et o [w,00,emc

Proposition 2 gives the coefficient module for the desired cohomological frame-
work. To express the cocycle-like relation of Prop. 1 cohomologically, we have the
following inductive definition. We present it here for only up to “length 2”.

Let G be a group. First, if M, N are G-modules and C™(G, N) the group of
m-cochains, we introduce the map u : C"(G,M)® C"(G,N) = C"*™(G,M @ N)
induced by the assignment p(o; ® o2) = 01 U 0a (the cup product of o1, 03.)

Definition. Let My, Ms be G-modules. For each m € Ny set:

i. LZ’{) = 0, w1y =identity map on C'(G, M) and d?}) = d™ = standard dif-
ferential on C™(G, My). We then set Z{7)(G, My) = ker(d(})), B{)(G,My) =
ker(d(}y ") and H{p) (G, My) = Z73) (G, M)/ B™(1)(G, My).

ii. Ly = Z (G My)@C™ (G, My), m(2) =identity map on C* (G, M1®M,) and
d) Cm(G M1 ® Ma2) /(L)) — — C™H(G, My ®M2)/,u(Lm+1) the map induced
by dm. We then set Z(m?‘)(G,Ml ® M) = ker(dm ), B (G M, @ M) = ker(d@;l)
and HTS (G, M1 (24 MQ) = Z(TS) (G, Ml (24 MQ)/B?QL) (G, Ml X Mg)

Since H(} (G M) = H™(G, My), this extends the usual cohomology. We have:

Theorem 1. Suppose that T'o(N) acts diagonally on the tensor product in terms
of the actions |a—k,, |2—k,. Then, the map r¢, 5, induces an element [ry, 5] of the
group Z(12) (Fo(N), Dw>oo,eze Dw,oo,emc).

In the positive even weight case, Theorem 1 holds with the coefficient module
replaced by the smaller space Cj_s[7] of polynomials of degree < k — 2 over C

Corollary 1. Let ki,ko € 2N. The map ry, 5, induces an element [ry, t,| of
Z(5)(To(N), Cp, —2[7] @ Cg, —2[7]).

Applications to mulitple L-series
If k1, k2 € 2N and ¢ € Q, we define the additive twist of the double L-series by

Lf17f2(a/b; s1, 82) _ Z Cl(TM)CQ(nQ)

(n1 +mn2)*1n3’

e?ﬂ’i(nl +n2)a/b

ni,n2

for all R(s1), R(s2) > 1, where ¢;(n) is the n-th Fourier coefficient of f;(7). Values
of this function at s; € N in the special case of @ = 0 have been studied by
Manin, Choie, Provost and others. Because of the analogy of Ly, ¢,(0;s1, s2) with
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the double zeta function ((s1, s2), it is natural to ask if Ly, ¢, (a/b; s1,s2) satisfies
relations analogous to those satisfied by ((s1, s2), e.g., for 2 < j < k/2,

2(j) = CG)C(k — ), where 2(j) = ; (CZ)+(5h) oo

The following proposition allows us to deduce similar relations for Ly, r, from the
cocycle relation of ry, y,:

Proposition 3. i. For R(s1),R(s2) > 1, we have

(—2mi)s1ts2

Ly, p,(a/b;s1,82) = Ay, po(a/b;s1,s2)  where

I(s1)[(s2)
a 100 an s1—1 100 _—
Af17f2 (3;51, 82) = fl(wl) (w1 — 5) fQ(U}Q)(U)Q — ’LU1)‘2 d’LUQd’LUl.
< w1
it. For each v € T'o(N), we have
ki1+ko—4
NG Z Ly 5 (y 1iOO, n)('yilioo —7)"

where Ly, 1, ($,n) is given by the sum

k1+ko—nm—2
ko —2\ (k1 + ko —no—4
Z <2 ><1+ 2T )Afhfz(%;k1+k2—n2—n—3,n2+1)

n2:0 n2 n
Combining with Corollary 1, we obtain

Theorem 2. For each pair of v1,72 € To(N), there are ky + ko — 3 Q-linear com-
binations of Ay, 1, ((y172) " ticoyn,m), Ay, 1, (91 Hicosn,m), Ay, g, (75 oo n,m)
(n e[l ki—1],me [1 k1+ke—n— 3]), each of which equals a Q-linear combination
of products Ay, (vy tico,n)Ay, (5 tico,m) (1<n <k —1,1<m<ky—1).

Corollary 2. For each k € N, we have
Lisak) = (An (1) A Ap, (= h
fi,f2 = f1 N(k—|—1) f1 Nk fa Nk , where

-1
Lt s (k) = £f1,fz (m, ki1 + ko — 4)
ki+ko—4

n —4—n -1 -1
- Z (—k—1) (k‘N)lirkz 4 Ly fo (W;n>_£f17f2 (m;k1+k2—4>.

n=0

If f1, fo are normalised Hecke eigenforms, then, all Ly, y,(k) belong to a 4-dimen-
sional vector space over the field generated by the Fourier coefficients of f1, fa.
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A A-adic Family of Funke—Millson Cycles and a A-adic
Funke—Millson Lift

PAuL KIEFER
(joint work with Lennart Gehrmann)

In my talk I reported on work in progress with Lennart Gehrmann about A-adic
families of Funke-Millson cycles generalizing previous work by Glenn Stevens [6]
in the case of the Shintani lift. Therefore, let L be an even lattice of signature
(2,n) with quadratic form ¢ and

D={zCL®R| dim(z) =n,q|, <0}

the Grassmannian of negative definite planes. It can be endowed with a complex
structure and has complex dimension n. For a vector v € L with ¢(v) > 0 the real
analytic submanifold
D,={2€D|zLv}

has real dimension (and codimension) n. For a neat arithmetic subgroup T' C
SO(L), the quotient C, o = I',\D, can be embedded into I'\D, so that we obtain a
submanifold, which can be endowed with a natural orientation. Given a Schwartz
function ¢ € S(L ® Ay) that is fixed by I', we define the weighted cycle

Cm,O = Z QP(U)C@,Oa

vel\LR®Q

q(v)=m
called special cycle or Kudla—Millson cycle. The chosen Schwartz function ¢ and
the arithmetic subgroup I' will always be implicit in the notation. Integrating a
compactly supported cohomology class n € H(I'\D) over this cycle yields, by
Poincaré duality a cohomology class that we will also denote Cy, o € H™(I'\D) and
we denote the corresponding pairing by (1, Cpm.0)-

In [1], Funke and Millson promoted these special cycles for all k& € N to Funke—
Millson cycles Cp, 1 € H™(I'\D, V;) with coefficients in the local system associated
to a [-module Vj, and proved the following generalization of the results of Kudla—
Millson [3].

Theorem 1 ([1]). The geometric theta function
Ok(r) = Y Core(mr), e(z) = ™% 1 c H

meQx>o
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is a cusp form for some congruence subgroup of SLa(Z) with values in H™(T'\D, V4),
i.e. for allm € H}T\D,Vy) the function

(0,0u(r) = Y (1,Cp)e(mr)

meQso

is a modular form and we call the map n — (1, Ok(7)) the Funke-Millson lift.

This is a cohomological version of the result by Oda [4], who generalized work
of Shintani [5] from signature (2,1) to general signature (2,n), see [2] for the
signature (2,1) case. The aim of the talk was to explain a A-adic version of this
theorem.

Therefore, let A = Zy[[Z)]] = lim ZplZ) /(1 + p"Zp)]. Tt has the universal

property
—x _
I—Iorncont.grp.(Z;)< 5 Qp ) = Homcont.alg.(Aa Qp)
In particular, the continuous group homomorphism ¢ t* induces a continuous
algebra homomorphism Ay : A — Q,, for all k¥ € N. Moreover, we will fix an

embedding @p CcC.
Theorem 2. There is a A-module V with specialization maps
H™(T\D,V) — H"(T'\D, V})

such that for a certain choice of Schwartz function ¢ € S(L ® Ay) and arithmetic
subgroup T' C SO(L) there is a cohomology class C,, € H™(T\D,V) which is
mapped to Cp, 1. under the specialization map for all k € N.

We call the cohomology class C,, of the theorem a A-adic family of Funke—
Millson cycles.
Further, there is another A-module I given by Z,-valued measures and special-
ization maps
H}(T\D,D) — H}(T\D,V))), N N
for all £k € N. The following theorem yields a A-adic Funke—Millson lift.
Theorem 3. There is a pairing
H}(T\D,D) x H*(T'\D,V) — A
which satisfies _
Ae((7,Cm)) = (1, Cm i) € Q, € C.
In particular, the formal power series
O(r) = > Cme(mr) € Alle(r)]]
meQ>o

is a A-adic family of modular forms with values in H™(I'\D, V) in the sense that
for all k € N and all n € H»(I'\D, D) the function

M((0,0()) = Y Ael(m,C))e(mr) = Y (nr, Con)e(mT) = (i, Ox(7))

meQxo meQso

18 a modular form.
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Murmurations
MIN LEE

(joint work with Jonathan Bober, Andrew R. Booker, Claire Burrin, Vivian
Kuperberg, David Lowry-Duda, Catinca Mujdei, Hsin-Yi Yang)

The notion of “Murmurations,” originally describing the cloud-like movements of
flocks of birds, is now used for phenomena related to elliptic curves and, more
generally, families of L-functions. He, Lee, Oliver and Pozdnyakov considered
the following average associated with elliptic curves and discovered that it shows
cloud-like oscillating patterns [2]:

1

TN N ap(E),

#E [Ny, Vo] Eeg'%\;l,]\fz]
where &,.[N1, No] is the set of elliptic curves (ordered by the size of the conductor)
of rank r, conductor N € [N1, No], and a,(E) =p+ 1 — #E(F,) for primes p not
dividing N. They named the pattern “murmurations” and sought mathematical
explanations. Further numerical experiments followed [4], and the following were
observed.

(1) There is a correlation of a,(E) with the root number of E (not just rank).

(2) It is scale-invariant — the prime p should be scaled relative to the conductor
N.

(3) Murmuration is a more general phenomenon — it occurs in families of L-
functions.

In his letter to Zubrilina and Sutherland [3], Sarnak explained the murmuration
phenomena — a phase transition in the 1-level density of the low-lying zeros of
these families.

For this talk, we focused on the murmurations of modular forms in different
aspects.
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For an even positive integer k and a positive integer N, let Hi(N) be an orthog-
onal basis of holomorphic cuspidal newforms of weight k& and level N, consisting
of Hecke eigenfunctions. For primes p not dividing N, let Ay(p) be the pth Hecke
eigenvalue of f € Hp(N). By Weil, we know that the Ramanujan—Petersson con-
jecture is true in this case, so |A\¢(p)| = Of(1). Let e € {—1,1} be the root

number of f. The L-function of f has conductor of size N (%)2.

In 2023 [5], Zubrilina achieved a breakthrough on the murmuration problem,
proving the murmurations of modular forms in the level aspect. Fix k € 2Z> 0.
Let X, Y and P be parameters — oo with P prime. Assume that Y = (1 +
0(1))X17% and P < X'+ for 0 < 26; <62 < 1 and let y = £. Then

SNelXX+Y] e ) €4 (P)VP o
square-free _ Mk(y)+oe (X—min{%,¥}+51+6+P—1)’
DoNE[X,X+Y] 2 pem(N) L

square-free

where

12 P
(k=DIL,0 - @ +p)1){1;[ (1 RSO 1)) v

-”%11}(1—@2’%1)2) 2 e WU“(M)“S’“‘W’}'

1<r<2y

My (y) =

Here Ug_s(cosf) = sin((k—1)8) i5 the Chebyshev polynomial and

sin 6

=T (1+ ).

plr

On the other hand, in 2023, Bober, Booker, Lowry-Duda and myself proved the
murmurations of modular forms in the level aspect. Our motivation, suggested by
Sarnak in a workshop at ICERM (July 2023), was to explore murmurations of non-
arithmetic families of L-functions. As Sarnak observed in his letter [3], since the
size of the family is small compared to the conductor in this case (in the level aspect
Y nvex #Hi(N) = O(X?) and in the weight aspect Y.y #Hi(1) = O(X)), we
needed to take an extra average over primes n. B

We proved the following result. Assume Generalised Riemann Hypothesis
(GRH) for L-functions of Dirichlet characters and modular forms. Fix ¢ € (0, 15),
§ € {0,2} (index for the root numbers, i.e., e; = (—1)° for f € Hy(1) with
k = 20 mod 4) and compact interval E C Rsg, |E| > 0. Let K, H € Ry with
K8+t < H < K'7¢ and set N = (%)2. As K — oo, we have

n prime logn mo A
> ieE g Zk 26 d42fer(1 f()_(_1)5 (V(E)

- + OF 6(1)) 9
n prime logn =25 mo E '
> %eE g Zk@%émg(}# Yorer )1 VN \ |E|
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where

(E) = - Z na)? ¢

¢(2) et a1, (q)*0(q) @
L2
1 & p?—p— 1/ (27775)
== —— [ cos| — | dy.
2 t:z_:oo ol pP-p Jp VY

Here the * means terms are occurring at the end points of F are halved.

Finally, and most recently, at the workshop WINE 5 (Women In Numbers in
Europe 5) this August, Burrin, Kuperberg, Mujdei, Yang and myself proved the
murmurations of modular forms in the “depth aspect,” suggested by Booker in his
talk at RIMS in 2023.

We proved the following result. Let ¢ > 2 be a prime. Assume GRH for L-
functions of Dirichlet characters. Fix a compact interval E C Rso with |E| > 0.
As e — oo, we have

Zn prlme loganeH (2e+1) €f/\f( )\/_

ZerT €F o 1 24(_1)§+1 H p(p2 —Dp— 1)
don prlme IOganer(e%H) 1 |E| m(k—1) (p*=1(p-1)
ZerT €F
p’—p t
VAl —t2U_5 | —— | dx
/ ; H(zﬂ—p—l) * 2(2\/&5)
p\ft
[t]<20x

+ Ocpop(£75F9).

The methods are all based on the Eichler—Selberg trace formula.
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Mahler measure and special values of L-function: Deninger’s
cohomological method

JUNGWON LEE
(joint work with Wei He)

The Mahler measure is defined, for a Laurent polynomial P € Clz{,--- ,zX] with
complex coefficients, by
1 dxq dz,
1 P)=—+— log |P(xq, -+ ,2p)|— - —2
o n(P) = e [ t0gPlan e )| 2L 2

where T denotes the real n-torus.

The quantity m(P) naturally arises from the diverse contexts in number theory
or dynamical system, for instance as a height function on polynomials or a topo-
logical entropy. Here, we focus on its mysterious connection to special values of
L-functions.

One of the first relations between Mahler measure and special L-values goes
back to Smyth and Boyd, who discovered

m(l+ax+y)=L'(-1,x3),
m(l+z+1/z+y+1/y)=re-L'(0,E),

where x3 : (Z/3Z)* — C* is the unique non-trivial Dirichlet character modulo 3,
FE is an elliptic curve of conductor 15 defined by the given equation and rg € Q*.
There have been numerous such instances, which precisely take the form:

L'(0)
(2) m(P)

where P € Q[z7, z¥], and either L(s — 1,x) or L(s) = L(s, E). See [5, 2].

Naturally this lead to several questions, e.g. given a Laurent polynomial P, can
we determine which L-function is related to m(P)? Conversely, given a Dirichlet
character or an elliptic curve, is the special L-value always related to the Mahler
measure of one or more polynomials? In general, these questions are out of reach.

In this note, we discuss the breakthrough work of Deninger, which partially and
theoretically confirms an answer in the case of elliptic curves. We then describe
our result that is a generalisation of Deninger’s cohomological method for Dirichlet
characters.

€ Q~

1. DENINGER’'S METHOD

We briefly outline the work of Deninger, later further refined by the work of Besser—
Deninger.

In [3], Deninger showed that if P does not vanish on 7", then the Mahler
measure of P can be viewed as a Deligne period of the motive Zp associated to
the variety defined by P = 0. This implied that the value is related to the Beilinson
regulator map, hence to L-values.
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Let P € Clzi,--- ,x] be a non-zero Laurent polynomial and set P* to be the
leading coefficient of P as a polynomial in z,. Let Zp C G%’C be the zero locus
of Pand Ap :={|z1]| =+ =|2zn-1] = 1, |2n| < 1} be the subspace.

e Suppose P* # 0 on 7"~ !, applying Jensen’s formula, we have

1 drq dx,
m(P) =m(P*) — ————— log|zp|— A+ A —.
(P) = m(P") = (e [ ol =
Denote by np the smooth differential form in the integration.
e Reinterpret the integration as a period pairing of np and Ap. To do so,
one has to consider Z;fg C Zp on which np is a closed form and Ap is
compactly embedded. Then the integral becomes

<70D({P7x17 T 7xn})’ [AP] ® (27Ti)17n>

where rp denotes the Beilinson regulator applied to a motivic cohomology
class induced by P and log|z;|. Abusing the notation, denote by rp this
pairing in the below.

This suggests that given P satisfying certain non-vanishing assumptions, the
Mahler measure is given by the regulator map, accordingly related to certain L-
function associated to the motive defined by P. Conversely, given an arithmetic
object, one can try to find a corresponding polynomial in this cohomological con-
text. Indeed, in [1], they proved that there exists Pg € Q[x1, x2] that corresponds
E g with CM by imaginary quadratic fields of class number 1 and with technical
assumptions such that

3) m(Pg) —m(Pp) =rp - L'(0,E), rpe Q.

2. RESuLT

We now state our main result, which is a GLj-analogue of (3) for Dirichlet L-
values. The proof rests on Deninger’s foundational work described in Section 1
with an appropriate choice of the polynomial and motive attached.

Let Hy,; and H7, denote the Motivic and Deligne cohomology group respectively.

Theorem 1 (He.-L [4], 2025). There exists ¥ := Uy € Zlx1, 2] associated to
N-th cyclotomic polynomials such that the regulator map

77 Jap

rp: Hy(Zw,0Aw,Q(2)) = Hp(Zw,0Aw,R(2)) C

is given by
rp({¥, z1,22}) = m(¥) —m(¥") = Z - L'(=£,x)
xe@
where G = Gal(Q(un)/Q), e =0 when x is even and € = 1 when x is odd.
Then we have a natural short exact sequence

4) 0 Hy(Xe,Q2) = Hy(Zy,043,Q(2))"~"" = Hy (Ye,Q(1)) = 0
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induced from the long exact sequence of relative motivic cohomologies for some
suitable integral models Xg and Yy of Spec(Q(un)), where ¢ is induced by the
involution on (Zy,0Ap) from the interchange of two variables.

Theorem 2 (He.-L [4], 2025). Under certain Q-linear independence assumption
on partial L-values at 0 and —1, we have a canonical splitting

Hiy(Zy,049,Q(2))'7 7" = Hy (X, Q(2) & Hy (Yo, Q(1))

of the exact sequence (4) that is compatible with the regulator maps.

Thus we have an induced G-module structure on Hy, and for each x € G’, we
have rp({¥, x1,z2}X) =1y - L'(—¢, X).

Concluding remarks.

In Theorem 1, we remark that it is given by a linear combination of L-values,
contrast to the Besser—Deninger formula. This appearance is essentially due to
the Galois conjugate structure in our GL; setting.

In Theorem 2, we show that one can extract the single L-values by splitting
the exact sequence under extra QQ-linear independent assumption. Hence it also
strongly suggests an answer to the converse question; Given a Dirichlet character
x modulo N, it is likely to have some WY, € L[xq, 2] such that m(¥X) is related
to L'(—1,x), where L is a number field containing the Hecke field Q(x).
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Analytic properties of the Dedekind zeta function over Z,-extensions
Donyeong Kim
(joint work with Harin Jung)

Let p be a prime and L/K a Zp,-extension of number fields. For each n > 0, the
extension L/K has a unique subextension of degree p" which we denote by L™,
The p-primary subgroup of the ideal class group of L(™) shall be denoted by A,.
Iwasawa’s celebrated theorem asserts that there is a strong regularity among A,’s.
Precisely, he showed that there are three integers u, A and v, with pu,v > 0, such
that the size of A, is p°" with e, = up™ + An + v, for all sufficiently large n.

Are there other regularities in Z,-extensions? Our aim is to exhibit a regularity
among the Dedekind zeta functions of L(")’s by studying the asymptotic behavior
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of the Euler-Kronecker constants along Z,-extensions. The aforementioned con-
stant generalizes the better-known constant v named after Euler and Mascheroni,
which admits a concise definition:-

. 1 1
v:= lim ((1+—+---—|——)—logn>.
n—o0 2 n

Approximately, one has v ~ 0.577. Thara [1] introduced an invariant vr € R for a
number field F' in a way that implies vg = 7. The definition of vyr is as follows.
Consider the Dedekind zeta function (z(s), which is given by the Dirichlet series
— convergent when the real part of s is greater than 1 —

Cr(s) = SON(@)™

where a runs over the set of all nonzero integral ideals of F. Here, N(a) denotes
the norm of a. It is well-known that (r(s) has a meromorphic continuation to
s € C and has a unique pole at s = 1 which is simple. Therefore, the Laurent
series expansion at s = 1 takes the form

Cr(s) = ;_;11+c0+--- .
From the Laurent series expansion, one simply defines yp := ¢g/c_1, which we call
the Euler—Kronecker constant of F.

What kind of arithmetic information does yr encode? Thara, based on his
explicit formula for yp, could justify the phenomenon that v tends to be located
near —oo when F' has many primes of small norms. At this point it is instructive
to consider Q(¢,), where m > 1 is an integer and (,, a primitive m-th root of
unity. It seemed “fairly likely” that vg(,.) > 0 always holds [1]. However, it was
discovered later [2] that yg(,,) & —0.1823 when m = 964477901. Moreover, the
Hardy—Littlewood conjecture predicts that such negative values occur infinitely
often [2]. Nevertheless, the same conjecture predicts that the positivity holds with
density one. See [2] for a further discussion.

We would like to explore the connection between the sign of yr and the pres-
ence of many primes of small norms from a different perspective. Instead of asking
whether vg > 0 holds, one may consider two number fields F; and F5 for which
one asks whether the difference vr, — vr, is positive. Here one may impose the
condition that F; and F» have the same degree and their discriminants are com-
parable. Then one may put forward the working hypothesis: vp, — v, is positive
if F5 has more primes of small norm than F; has.

Our main result supports the above working hypothesis. To state it, we need
to recall some standard notions about Z,-extensions. First, we recall that Q has a
unique Z,-extension which we denote by Q.y. and call the cyclotomic Z,-extension.
Its n-th layer Qéﬁl is the unique subextension of degree p" in Q((yn+1). For any
number field K, define K.y. to be the compositum of K and Qcy., which is a Z,-
extension of K. We call it the cyclotomic Zy-extension of K. On the other hand,
if L/K is a Z,-extension and there is a subfield K’ C K of degree two such that
L/K' is Galois with a non-abelian Galois group, then we call L/ K a Z,-extension
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of anti-cyclotomic type. Such extensions exist, for example, if K contains a totally
imaginary extension of a totally real field, also known as a CM field. If K is totally
real, the Leopoldt conjecture for K is equivalent to the assertion that there is
only one Z,-extension which must be the cyclotomic Z,-extension. The Leopoldt
conjecture is known if K is abelian over Q but not known in general. Having
recalled the necessary notions about Z,-extensions, we proceed to point out a
key difference between the cyclotomic and anticyclotomic ones. In the cyclotomic
Z,-extension, no primes split completely. In contrast, in any Z,-extension of anti-
cyclotomic type half of the primes in K split completely. Combining it with the
working hypothesis, one obtains a concrete statement, which we were able to prove
albeit conditionally.

Theorem. Assume the generalized Riemann hypothesis. If K is a number field
and L/K is a Z,-extension of anti-cyclotomic type, then

(1) Vi > Yo
for all sufficiently large n.

Our proof uses the explicit formula of Thara and, therefore, relies on the gener-
alized Riemann hypothesis.

To conclude, we would like to remind the reader of the Iwasawa’s formula for
size of p-primary class groups along a Z,-extension. Our result shows that such
regularities is not contrained to the p-primary class groups and can be found
among the Euler—Kronecker constants. The author speculates that the observed
regularity among the Euler—Kronecker constants is an evidence for other patterns
to be found among the Dedekind zeta functions of layers of a Z,-extension.
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Distribution of Manin’s iterated integrals
MORTEN S. RISAGER
(joint work with Y. Petridis and Nils Matthes)

Consider f1,..., f; holomorphic cusp forms of weight 2 for the congruence group
I'o(g). Manin [5] considered iterated integrals

b z1 Z9 Z1—1
12<f1,...,fl>=/f1<zl)/ fQ(ZQ)/ f3<zS>~--/ i) dadzy - de
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These are fascinating generalizations of the classical modular symbols, and they
have many properties analogous to multiple zeta values; for instance they satisfy
the following shuffle product relation

(1) I(zz)(fla"'afl) ’ I(lz)(fl-i-la"'afl-i-m) = Z Ig(fa(l)v"-vfa(ler))

o0EYX ] m
where ¥ ,,, is the set of permutations o on [ + m elements satisfying
o' < <ot Dand oM (1 +1) < <o H(m +1).

One also shows that if @ = ioco and b = y(ico) where v € T'g(q) they are equal to
the central value of a certain multiple L-series twisted by an additive character.
Let

T(M)={%<cQnI0,1):c< M,q|c,(a,c) =1}.

We study the asymptotic behavior as M goes to infinity of the random variable

a

{2 eT(M): IS (fr,..., fi) € A}

where - ,
¢ vol(To(g)\H) \"*
I . =(—— e e
zoo(.fla afl) ( 810gC lOO(fl? 7fl)
is a normalization of the iterated integral, and A is a Borel set.
If one specializes to | = 1 which is the case of the classical modular symbols,
then we prove the following results

Theorem 1. Let I =1 and assume that the Petersson norm of f equals ||f|| = 1.
Then Zy; converges in distribution to the complex Gaussian, i.e. the random
variable Z with density %6_‘2‘2.

This theorem was conjectured by Mazur and Rubin [7], and proved by Petridis
and Risager [9]. Different proofs were given by Constantinescu [3], Sun and Lee
[10], Bettin and Drappeau [1], Nordentoft [8], and Matthes and Risager [6]. It
was furthermore extended to general weight by Nordentoft [8] and by Bettin and
Drappeau [1], to Bianchi groups by Constantinescu [3], and to Maass forms by
Drappeau and Nordentoft [4].

For [ = 2 the situation is not as precisely understood.

Theorem 2 (Matthes-Risager [6]). Letl = 2. The random variable Zy; converges
in distribution to a radially symmetric distribution Zy, r, which depends only on
the Gram matriz {(f;, f;)}i,j=1,2 of the Petersson inner products of fi, fa.

We know the precise form of Zy, r, only in two extreme cases:

(1) If f1 = fo with ||f;|| = 1 then Zy, , has the Kotz-type distribution with
density ﬁeiQ‘Z |, This follows from the shuffle relation which gives that
in this case I°(f1, f1) = I%(f1)?/2, and the Kotz-type distribution is the
square of the complex Gaussian.
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(2) If f1,f2 forms an orthonormal set then Zy, f, has distribution function

1 sinh [ —=zL
i), iy mhf(j@)) .

4
Vy(l-y)

Proving this involves proving a non-trivial identity relating shuffling coef-
ficients to Euler numbers.

For | = 3 we understand even less

Theorem 3 (Matthes-Risager [6]). Let | = 3. All asymptotic moments of Zy
exist and are finite, and there exists at least one (but possibly infinitely many)
radially symmetric distributions with these moments.

Unfortunately we do not know convergence in distribution to any of the possible
limit distributions indicated in Theorem 3, except in the case of f; = fo = f3 with
IIfill = 1 when Zj; converges in distribution to the Kotz-type distribution with
distribution function

12 ¢~ 162"

T |62[4/3
This distribution function is known to be indeterminate, i.e. there are infinitely
many distribution functions with the same moments as this distribution.

To prove the above theorems we compute all asymptotic moments of Z,;, but
for the method of moments to apply these asymptotic moments should determine
a unique distribution; as the f; = fo = f3 case shows this is not the case in general.
It would be interesting to see if Stein’s method would allow us to determine the
distribution.

To compute the moments we investigate a twisted Eisenstein series defined by
Chinta, Horozov, and O’Sullivan [2]. By analyzing the analytic properties and
the Fourier coefficients of these twisted Eisenstein series we obtain asymptotic
formulas for the moments of Z,;.
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On completeness of Poincaré series for SU(2,1)
ROBERTO J. MIATELLO

In the paper [2] we define and study generalized Poincaré series on the Lie group
SU(2,1) and prove completeness results in spaces of cusp forms.

Classically, the idea of a Poincaré series is to take as a germ a simple function
h on a space X and to form the sum of transformed functions x — > h(y2).
If this sum converges absolutely one has a I'-invariant function on X. Poincaré
(1882) used this idea to construct what he called fonctions thétafuchsiennes.

For the well-known cuspidal Poincaré series in the theory of holomorphic mod-
ular forms, the germ h(z) = €2™"* n € Z>; on the upper half-plane is invariant
under the transformation z +— z + 1. With a suitable automorphy factor, it leads
to series that converge absolutely, where the sum is over I'oo\SL2(Z), and T is

1 1
0 1
type span the spaces of holomorphic cusp forms.

Now, the function

he(x + iy) = 27T yy1/2 Is_1/2(2m[n|y)

generated by + . Petersson (1932) showed that the non-zero series of this

on the complex upper half-plane, with I,_;,, an exponentially increasing modi-
fied Bessel function, is an eigenfunction of the hyperbolic Laplace operator on the
upper half-plane H and, for Res > 1, the sum EWGFW\SLQ(Z) hs(vz) converges
absolutely and defines a real-analytic Maass form with exponential growth. The
resulting family of functions, called real-analytic Poincaré series, have a meromor-
phic continuation to the complex plane and the spaces of Maass cusp forms are
spanned by residues of these families. (See Neunhoffer [5], Niebur [6].)

In [8], by extending the work of Neunhoffer ([5]) and Niebur ([6]) for G =
SL(2, R) to semisimple Lie groups of real rank one, Miatello and Wallach defined
families of Poincaré series attached to a unitary character x of 'M N \I'. For such
a group G = NAK and x a unitary character of ' N \ N, set

(1) MX(&V797¢): Z MX(€7V5795¢)

yeTNN\T

for MX(£,v,9,¢) an eigenfunction of the Casimir operator on G, ¢ € M and
Re(v) > p. It was proved that such a series is absolutely convergent for Re(v) > p
and extends meromorphically to C, with possible simple poles at spectral values
of v. By taking the residues at these poles and certain special values, one obtains
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square integrable automorphic forms. By computing the inner product of such
a residue or value with a square integrable automorphic form f one obtains a
non-zero multiple of ¢, (f), the x-Fourier coefficient of f. As a consequence, by
collecting the residues and values of the family MX (€, v, g,$) one can detect all
automorphic forms f such that ¢, (f) # 0 for the given x.

This method yields most square integrable automorphic forms for the group
G = SO(n, 1), since the unipotent subgroup N is abelian. However, for other
real rank one groups such as SU(n,1) and Sp(n,1), there are many non-zero
automorphic forms for which all Fourier coefficients ¢, (f) are equal to zero, and
hence cannot be detected by using a series as above. This happens, for instance,
for automorphic forms f in the holomorphic and antiholomorphic discrete series
for the group SU(n, 1), for n > 2 (see Gelbart-Piatetski-Shapiro [4]).

In recent years, in collaboration with Roelof Bruggeman we have constructed, in
the particular case of the group G = SU(2, 1), a complete set of automorphic forms
by means of generalized Poincaré series. For this purpose, we defined Poincaré
series attached to each irreducible, unitary, infinite dimensional representation of
the unipotent subgroup N (not just unitary characters) with the goal of detecting
all square integrable I'-automorphic forms on G.

Then, for each A a realization of an irreducible unitary representation of N in
L*(T' NN\ N), in [1] we constructed a family M~ (¢,v, g, ¢) of eigenfunctions of
the Casimir operator of GG, and defined a Poincaré series of the form

MV (& v g,0) = Y MN(Ev,79.0).

yELNN\T

Furthermore, we give the meromorphic continuation of the family and we prove
that the poles are simple (except possibly for v = 0, that is a double pole) and
occur at spectral parameters of square integrable representations. These Poincaré
series have in general exponential growth.

In [2] we use results on abelian and non-abelian Fourier term modules obtained
in [1] to compute the inner product of truncations of these series with square in-
tegrable automorphic forms, in connection with their Fourier expansions. As a
consequence, we obtain general completeness results for SU(2,1) that, in partic-
ular, generalize those valid for the classical holomorphic (and antiholomorphic)
modular forms.

We do expect that an extension of this method applied to a similar family,
should hold for SU(n, 1) for all values of n and, possibly, also for all real rank one
groups.
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On bases of alternating and cyclotomic multiple zeta values in
positive characteristic

Bo-HAE Im

(joint work with Bo-Hae Im, Hojin Kim, Khac Nhuan Le, Tuan Ngo Dac,
Lan Huong Pham)

In this talk, we completely establish, for all positive integer N, Zagier-Hoffman’s
conjectures for Nth cyclotomic multiple zeta values in positive characteristic. By
working with the tower of all cyclotomic extensions, we present a proof that is uni-
form on N and give an effective algorithm to express any cyclotomic multiple zeta
value in the chosen basis. This generalizes all previous work on these conjectures
for MZV’s and alternating MZV’s in positive characteristic [2].

Let ¢ be a power of a prime number p, and let F, denote the finite field with ¢
elements. Carlitz introduced analogues of the classical Riemann zeta function in
this setting, leading to the notion of MZVs in positive characteristic. These values
have been extensively studied due to their connections to arithmetic geometry and
transcendence theory.

Let A = F,[0] be the polynomial ring in the variable 6 over a finite field k :=
F, of ¢ elements and characteristic p > 0. We denote by A, the set of monic
polynomials in A. Let K = F,(#) be the fraction field of A equipped with the
rational point co. Let Koo = k((1/60)) be the completion of K at co, and let Coo
be the completion of a fixed algebraic closure K of K at oo.

We fix N € N and denote by ky C k the cyclotomic field over k generated by
a primitive Nth root of unity (. The group of Nth roots of unity is denoted by
I'n, whose cardinality is denoted by vx. We put

ANZICN[@], KNZICN(G), and KNpo:kN((l/@)).

Cyclotomic MZVs extend classical MZVs by incorporating Nth roots of unity.
Forey, ..., €. €'y, the group of Nth roots of unity, and positive integers ny, ..., n,
with (n,,€.) # (1,1), one defines
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k
<<€1 Gr): €$l...rnr’
ny ... Ny 0<k1;~<kr kYo Ky
where k; are integers.
The main focus of this work is to provide a complete description of the vector
spaces spanned by these cyclotomic MZVs, confirming the positive characteristic
analogues of the Zagier-Hoffman conjectures.

Hoffman-like Basis ([3, Theorem A]). For each positive integer N and weight

w, let CSn,» denote the vector space over Ky spanned by all Nth cyclotomic

MZVs of weight w and let C'Sy,,, be the subset consisting of cyclotomic Carlitz

multiple polylogarithms Li (:Ll o ;T) such that ¢ { n; for all i. Then, C'Sy 4,
1 e

forms a basis of C Ny .

Dimension Formula - Zagier-type ([3, Theorem B]). Let dy(w) denote the
dimension of C'Sy . Then we find an explicit recurrence formula for dy(w) as
follows:

1 if w=0,
J v (v + 10t if 1 <w<gq,
N(w) - ,.YN((,.YN + 1)11)—1 _ 1) if w= q,

'YN( ?;fdzv(w—i)) +dy(w—q) ifw>q.

The main ingredients of the proofs include the following:

e Anderson t-motives and Carlitz modules: These structures provide a
natural framework to encode the arithmetic of cyclotomic MZVs.

e ABP criterion (Anderson—Brownawell-Papanikolas): A central tool for
establishing linear independence of MZVs. It can be stated as follows:

Theorem 1 (ABP Criterion [1, Theorem 3.1.1]). Let ® € Mat,(K[t]) be a
matric such that

det ® = c(t — 0)°

for some ¢ € K and s € Zx¢o. Let ¢ € Matyx1(E) (see [3, §1.1] for £) be a
vector satisfying

P =0y
and let p € Maty«¢(K) be such that
p(0) = 0.

Then there exists a vector P € Matyx¢(KK[t]) such that
Pyp=0 and P(0)=p.
Treating all cyclotomic extensions together allows a uniform approach to arbi-

trary N and yields explicit formulas expressing any cyclotomic MZV in terms of
the basis.
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On local submodule zeta functions of nilpotent incidence algebras
BIiaANCA MARCHIONNA

(Local) submodule zeta functions. The submodule zeta functions of non-

unital matrix algebras & < Mat, (Z) encode, within a Dirichlet series, how the

number of £-invariant Z-submodules of Z" grows by their index. In detail, for

every m > 1, let a,,, (€ ~ Z™) be the number of Z-submodules L < Z"™ which are

E-invariant, i.e., L-£ C L for every £ € £, and have index m in Z". The submodule

zeta function of € ~ Z'™ is the following Dirichlet series in the complex variable s:
Cerzn(s) =Y am(€ A Z")m™".

m=1

The polynomial growth of (am &€ Z")) in m guarantees the absolute con-

m>1
vergence of the series above in some non-empty half-plane {s € C | R(s) > a}.
The previous notions can be extended verbatim by replacing the coefficient
ring Z with any unital commutative ring R for which (am(é' N R"))m>1 grows
polynomially in m. A remarkable case in which this holds is when R is the ring Z,
of p-adic integers. One refers to local submodule zeta functions whenever one deals
with Cgng (s) for some £ < Mat,(Z,) and some prime p. The Euler product

decomposition

(1) Cenzn(s) = H Cewz,nzn (),
pprime
links the relevant submodule zeta functions over Z and over every localisation of Z
at a prime ideal, i.e., over Z, for every prime p.
The study of local submodule zeta functions is generally more favourable than
the corresponding ”integral counterpart”. A motivation is their expression via
p-adic integrals. Following [3], for every Z,-algebra & < Mat,,(Z,) one has

1 n )
N N = i | [ MO O
? (1 —-Pp 1)77, Ve 11;[1
where Vg is the set of all upper triangular matrices x € Tr,(Z,) such that Zjz
is E-invariant in Zj, and p is the probabilistic Haar measure on Tr,(Z,). The
fact before is heavily based on the compactness of Z, and the presence of a Her-
mite normal form for matrices over Z,. The expression in (2) may be helpful
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for performing some explicit computations for small values of n. Du Sautoy and
Grunewald [2] observed that p-adic cone integrals (as the one in (2)) determine
rational functions in p~° with integral coefficients. In our case, this implies that
(am(E ™~ Zy))m>1 satisfies a linear recurrence and provides a meromorphic con-
tinuation of Cenzp (s). However, deriving an explicit formula for this rational
function necessitates a resolution of singularities, which makes the problem con-
sistently challenging in general. Alongside this approach, Rossmann [5, 6] and
Voll [8] introduced other effective methods based on the theories of generating
functions of rational cones and Bruhat—Tits buildings, respectively. These facil-
itate the production of explicit formulae when £ varies within specific classes of
(usually nilpotent) algebras (cf. [1, 5, 6, 7, 9]).

The difficulty of finding general formulae remains one of the primary obstacles
in the study of submodule zeta functions. However, some general patterns have
begun to surface. For instance, Rossmann [5, Conj. IV] conjectured that, whenever
€ is nilpotent, the value at s = 0 of Cg~zp (s)/Clo}Azz (s) does not depend on €.
Below, we outline a proof of a weaker version of this conjecture for nilpotent
incidence algebras, using an approach that avoids direct computations.

The case of nilpotent incidence algebras. Nilpotent incidence matrix alge-
bras are defined by means of finite natural posets. A finite poset P = (P,<p)
with P C {1,...,n} (possibly empty) and n € Z>1, is natural if i <p j implies
i < j. Given P as before and a ring R, the nilpotent incidence R-algebra Ep ,(R)
associated to P and n is the following algebra of strictly upper triangular matrices:

Epn(R) :={xeMat,(R) | z;; #0=1<p j}.

Inspired by (2), we introduce a multivariate version of (g¢~zy(s) for any £ <
Mat,,(Z,) via the p-adic cone integral

1 n
(3) Cenzp (81,3 8n) i= m /v H |4

€4=1

S (),

and obtain the following.

Theorem 1 ([4]). For every finite natural poset P = (P,<p) with P C {1,...,n}
for some n > 1, and for every prime p, one has

(4)
n—1 1
lim, ( <81;g10 (Jm(1—p 1><sp,n<zp>mz,g<sl,...,sn>)> ) =1l

=1

To prove (4), we first recursively describe the set Vg, (z,). Based on this, we
introduce a sequence of functions ( fi(Siyoony sn)) |<i<n» defined as appropriate p-

adic cone integrals, such that fi(s1,...,s,) represents the general term of the limit
in (4) and, for every 1 <i <n —1,

fi(si, ey Sn) = (]. —piisi)ilfprl(slurl, ceey Sn).
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A straightforward computation allows us to express the function f,,(s,) explicitly,
leading to the conclusion. Finally, if the following limit exists

li 1—p= %t n ...
(51,...,Sn1)12(0,...,0)( P~ )Cer @)z (815 8n)),
— an assumption supported by all the examples we can compute — then Theorem 1
implies that Rossmann’s conjecture [5, Conj. IV] holds for &p ., (Z,).
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Reduced and topological zeta functions in enumerative algebra
ToBiAs ROSSMANN

Setup. Let (an)n>1 be a sequence of numbers attached to an instance of an al-
gebraic counting problem. Classical examples are obtained by letting a,, denote
the number of subgroups or subalgebras of index n in a given group G or alge-
bra A, respectively, or by taking a,, to be the number of irreducible representations
G — GL,(C), counted up to suitable equivalence. A common theme in enumer-
ative algebra is to study such sequences by means of the associated global zeta
function Z(s) = >, apn~*. Under suitable assumptions, this series will admit
an Euler product decomposition Z(s) = [, Zy(s), where p ranges over primes
and the local zeta function at p is Z,(s) = > pe o arp~ ™. Subject to further as-
sumptions on the shapes of the Z,(s), the reduced and topological zeta functions
Z,ed(T) and Zyop(s) are two related but subtly different rational functions obtained
by taking limits of Z,(s) as “p — 1”.



2106 Oberwolfach Report 38/2025

Topological zeta functions. Informally, the topological zeta function Zip(s) €
Q(s) is the constant term of (1 — p~1)°Z,(s) as a power series in p — 1. Here,
the exponent e € Z depends both on the counting problem and on the particular
instance. In a surprising number of cases of interest, the local zeta functions
Z,(s) are (almost) uniform in the sense that there exists a single rational function
W(X,T) € Q(X,T) such that Z,(s) = W(p,p~*) for (almost) all primes p. In
such cases, we formally expand W (p,p~*) using the binomial series p~* = (1 +
(p—1) =30 (%) (p—1)™ and we obtain Zyp(s) as indicated above.

The key difficulty in rigorously defining topological zeta functions is to over-
come the restriction to (almost) uniform cases. The dependence of Z,(s) on p is
often governed by a formula of a type that first appeared in work of Denef [1,
§3]. In these cases, there are schemes Vi,...,V, (over Z) and rational func-
tions W1 (X, T),...,W,(X,T) such that for almost all primes p, we have Z,(s) =
S #Vi(Fp)W;(p, p~*). Using such a formula, Denef and Loeser [2] gave a rig-
orous definition of the topological zeta functions associated with a polynomial.
The functions W;(p,p~*) are again expanded using the binomial series. Using
{-adic interpolation arguments based on Grothendieck’s trace formula, the limit
of #V;(F,) as “p — 1”7 is x(V;(C)), the topological Euler characteristic of the
complex analytic space attached to V;. By [10, §3], in almost uniform cases, our
informal approach agrees with the rigorous one.

In [3], Denef and Loeser gave another, independent description of the topologi-
cal zeta function associated with a polynomial by means of a suitable specialisation
of the associated motivic zeta function. In [5, §8], du Sautoy and Loeser defined
topological subalgebra zeta functions by specialising motivic ones, having intro-
duced the latter in the same paper. An f-adic approach to topological subobject
zeta functions based on [2] was developed in [8, §5].

Global and local subalgebra zeta functions. Subalgebra zeta functions were
introduced by Grunewald, Segal, and Smith [7, §3]. For the remainder of this
abstract, let A be a (not necessarily associative) Z-algebra whose underlying Z-
module is free of finite rank d. Let a,(A) denote the number of subalgebras B of
A of additive index |A : B] = n. Let Z4(s) = Y77, an(A)n™* be the associated
(global) subalgebra zeta function. By the Chinese remainder theorem, we obtain
an Euler product Z4(s) = II, Zl‘?(s) as above. The local subalgebra zeta function
Z:\(s) enumerates subalgebras of the Z,-algebra A ® Z,. In [4], du Sautoy and
Grunewald established Denef-style formulae for local subalgebra zeta functions
associated with a fixed algebra A. Voll [12, Thm A] established a local functional
equation of subalgebra zeta functions under “inversion of p” of the form
(*) Z3(s)| = (=1l z(s),
PP~

Voll’s proof relied on a delicate interplay of (a) the functional equations sat-
isfied by Hasse-Weil zeta functions of smooth projective varieties and (b) a self-
reciprocity property of generating functions enumerating lattice points within cer-
tain cones. Part (a) is explained by Poincaré duality in ¢-adic cohomology while
Stanley [11, Ch. I] elegantly explained (b) in terms of local cohomology.
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Reduced and topological subalgebra zeta functions. Using our informal
approach, the topological subalgebra zeta function Z{}Dp(s) € Q(s) is the constant
term of (1 —p~1)9Z#(s) as a series in p — 1. Introduced by Evseev [6], the reduced
subalgebra zeta function Ziy(T) € Q[T] N Q(T) is obtained by viewing Z:(s)
as a series in T = p~® and applying a limit “p — 1”7 to its coefficients. In
(almost) uniform cases in which Z2(s) = W (p,p~*) for (almost) all p, the reduced
subalgebra zeta function is given by Z2 ,(T) = W(1,T).

Upon taking the limit “p — 17, Voll’s local functional equation (*) implies
that Z2,(T) satisfies the self-reciprocity identity Z2,(T~!) = (=1)47¢ - Z4 (1),
a property reminiscent of Hilbert series of graded Gorenstein algebras.

Conjectures. Reduced and topological zeta functions are seemingly quite dif-
ferent invariants. Both constructions are, however, conjecturally related by the
“coincidence conjecture” below. We first recall the following conjecture which
predicts the vanishing order of topological subalgebra zeta functions at infinity.

Degree conjecture ([8, Conj. I]). deg(Z{},(s)) = —d.

Evseev [6, Prop. 4.1] showed that if A admits a particular type of basis, then
there exists a d-dimensional cone C C R<, such that the reduced zeta function
ZA (T) is the (coarse) Hilbert series of the affine monoid algebra Q[CNZ?]. Using
the explicit description of C by Evseev, results from combinatorial commutative

algebra (see [11, Ch. 1]) show that Q[C N Z9] is Gorenstein.

Hilbert series conjecture (Voll). There exists a (natural, meaningful) No-
graded Gorenstein algebra of dimension d whose Hilbert series is Z:,(T).

While Voll’s Hilbert series conjecture has been informally shared with researchers
for quite some time, it took more cautious forms in the published literature. In-
spired by the preceding two conjectures, define

Miop(A) = 57UZ8, 7| L meald) = (1= T)Z8,(T)|
The topological degree conjecture is equivalent to mgop(A) being nonzero and
finite. Similarly, if the Hilbert series conjecture is true, then Z4 (T') has a pole of
order d at T = 1 whence m,eq(A) is nonzero and finite.

Coincidence conjecture. meq(A4) = myiop(A) and the common value is a posi-
tive rational number.

While the preceding conjecture has been informally communicated for at least
a decade, to the best of the author’s knowledge, it too has not, so far, been
formally stated as such in a published document. This notwithstanding, apart from
the numerical evidence provided by computer calculations [8, 9], the coincidence
conjecture has been verified for some families of algebras; see e.g. [13, §3.4].
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Traces of Hecke operators via hypergeometric character sums
WEN-CHING WINNIE LI
(joint work with Jerome Hoffman, Ling Long, Fang-Ting Tu)

The eigenvalues of Hecke operators 7}, convey important arithmetic information
about modular forms. We are interested in explicit formulae for the traces of 1}, on
the space Si+2(I") of cusp forms of weight k+2 > 3 for a congruence subgroup I' of
SL2(R), assuming the Shimura canonical model for the modular curve Xr is defined
over Q. This includes cusp forms for elliptic modular groups I' commensurable
with SLo(Z) and modular forms for cocompact groups I' commensurable with the
norm 1 subgroup O of a maximal order Op of an indefinite nonsplit quaternion
algebra B defined over Q.

This was previously done for I'g(2), I'9(4), T'0(8), SL2(Z), I'o(3), and I'g(9) us-
ing the Selberg trace formula. We obtain explicit Hecke trace formulae in terms
of hypergeometric character sums for certain arithmetic triangle groups I' of type
a) or b) explained below. Our geometric approach gives a unified treatment for

I elliptic modular, including aforementioned groups, and I' arising from the in-

definite quaternion algebra Bg = (%) over Q with discriminant 6. The same

method can also be applied to obtain eigenvalues of the Hecke operators. As an
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application, Hecke traces for congruence subgroups IV not of type a) or b) can also
be obtained as long as the modular curve Xt is defined over Q and there is an
explicit Q-rational covering map from Xp to Xt for some T" of type a) or b).

Geometric interpretation of traces of Hecke operators and our approach.
Using the moduli interpretation of Xr, Deligne [2] for I non-cocompact and Ohta
[6] for T' cocompact constructed, for each prime ¢, an automorphic ¢-adic sheaf
V*(), on Xt ® Q which provided the following geometric interpretation of the
Hecke traces. It was due to Deligne [2] for I elliptic modular and Ohta [7] for T’
quaternionic.

Theorem 1. Given a prime £, for all primes p # £ where Xr has good reduction,
we have

Tr(Ty | Sus2(T)) = Tr(Froby | Hy(Xr ® Q, V(D))

Combined with the Grothendieck-Lefschetz fixed point formula, we obtain a
geometric interpretation of the Hecke trace in terms of the sum of Frobenius traces:

(1) —Tr(Ty | Ska(T)) = > Tr(Froby | (VF(T)e)5)-
)\EXF(]FP)

Here
Tr(Froby | (VF(I)e)5) = Tr(Frob, | (V¥()e)x)

for any algebraic point A’ on Xt which reduces to A modulo a degree-1 prime ‘B
above p.

For contributions in (1) from generic points A € X (F,), the computation is
further reduced to that on V*(I'), for I elliptic modular not containing -Id, and
V2(I'), for T’ containing -Id.

Our strategy is to find suitable groups I' such that either V!(T'), or V*(T'), is
isomorphic, up to a rank-1 twist, to the hypergeometric sheaf H(HD(T")), attach to
a hypergeometric datum HD(T") introduced by Katz in [4, 5] and further extended
by Beukers, Cohen and Mellit in [1] for which the Galois action on a stalk has
Frobenius traces explicitly expressed by hypergeometric character sums.

The groups we consider. Let ej, ea, €3 be elements in Zso U {oo}. Defined in
terms of generators and relations, an arithmetic triangle group

(e1,e2,e3) := (91,92, 93 | 91" = 95° = 95> = 919293 = id)

can be realized as a discrete subgroup I' of PSLo(R) acting on $. The modular
curve Xr is a hyperbolic triangle with three vertices v; fixed by elements of order
e;. If e; = oo, then v; is a cusp of I', otherwise v; is an elliptic point of order e;.
The concerns on the required properties of the hypergeometric sheaves over
Q on Xr led us to the seven I' = (e, eq,e3) listed below; those of type a) are
isomorphic to a subgroup of SLy(Z) not containing -Id, while those of type b)
are projective groups, which, for the sake of modular forms, may be regarded as
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subgroups of SLy(R) containing - 1d:

Type a) (3,00,00) = T'1(3), (00, 00,00) =~ T'1(4);

Type b) (2,00,00) =~ To(2)/{zId}, (2,3, 00) ~ PSLy(Z),
(2,4,00) = ([(2), wa) /{=1d} = ['y(2)*/{£1d},
(2,6,00) = (T'o(3), ws)/{=£Id} = To(3)" /{=Id},
(2,4,6) = <036,1U2,1U3,w6>/{:|21d}.

Here ws, w3, wg are Atkin-Lehner involutions.

Statements of main results. To each of the above seven groups I', we associate
a primitive hypergeometric datum HD(T") = {a(T"), 5(T")} as follows.

I' |(3,00,00) | (00, 00,00)]|(2,00,00) | (2,3,00) | (2,4, 00) (2,6,09) (2,4,6)
o] (LI (31 QLD LLYGLHNLL LY
sy {1,1} {1,1} {L,1,1} [ {1, [ {3 [ {1, 1} [{1,2, %}

Since each datum HD(I') is defined over Q, for each prime p and A € F,
Beukers, Cohen and Mellit defined in [1] the hypergeometric character sum
H,(HD(T'), \) using Gauss sums. We shall express Tr(Tp, Sp+2(I")) in terms of
these hypergeometric character sums according to the type of T

Theorem 2. [3] Let I' € {(3, 00,0), (00,00,00)} be a group of type a). Then for
all integers k > 1 and a prime p where Xt has good reduction, we have

Lk/2] o
SRS DD SV G AT B RV}

AEFS A#£1 J=0

where
k
AN RNk
& =14 (=) 4=
(O0,00,00)(p7 ) + ( ’ ) 4 5 7
and
-3 k
E(3,00,00) (P, F) =1+ <_) n
p
0 ifp=—1 mod 3, k odd,
(—p)k/Q ifp=—-1 mod 3, k even,
+ . 11 k—21
(—=1)* Z T, (3 3> ifp=1 mod 3,
0<i<k
k=2i mod 3

—

in which Fy = (w) and J,(a,b) = > zer, w®=Da ()P~ (1 — ) is a Jacobi sum.
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To state our results for groups of type b), for integers m > 1, let F,,(S,T) be
the degree—m polynomial in S and T defined by the recursive relation

Frni1(S,T) = (S — T)Fn(S,T) — T?F,,_1(S,T), Fo(S,T)=1, F(S,T)=S5.

Theorem 3. [3] Let I’ € {(2,00,),(2,3,0),(2,4,0),(2,6,00),(2,4,6)} be a
group of type b). Then each elliptic point z of Xr is a CM point by an imaginary
quadratic field K, = Q(\/d) as follows:

I' |(2,00,00)| (2,3,00) (2,4,00) (2,6,00) (2,4,6)
\/@ \/__47_7_ \/__47\/__37_ \/__87\/__47_ \/__37 \/__;_ \/_24; \/__4; \/__3

Denote by N(z) its order. Let p be a prime where Xr has good reduction. Then
for each even integer k > 2 we have

_’I‘I‘(Tpvsk‘FQ(r)) = Z Fk/?(aF(Avp)vp)+ Z 1+ Z EF('Z?pv k)a

AEFS AL 2€Xp(Fp) cusp  2€Xp(Fp) elliptic
where _
SUUN) pH,(HD(I),1/A)  if T = (2,4,6),
and

£r( k) (—p)k/Q if p is inert in K,
r{z,p, = iN(z . . .
P Z ki< _k Pk/Q(a?V(z),p/p) N(=) if p splits in K.

T2N(z) == 2N.(z)
In the latter case, upon picking any prime ideal p of the ring of integers of K, above
P, QN (z),p can be chosen as any generator of the principal ideal p when N(z) > 2.

When N(z) =2, a?v(z)m can be taken as any root of T?— (_73) Lp“Hp(HD(F); 1T+
p? =0, where u=1if ' = (2,4,6), and u = 0 else.

REFERENCES

(1] F. Beukers, H. Cohen, and A. Mellit, Finite hypergeometric functions, Pure Appl. Math. Q.
11 (2015), no. 4, 559-589.

[2] P. Deligne, Formes modulaires et représentations {-adiques, Séminaire Bourbaki vol.
1968/69, Lecture Notes in Math., no. 175, Springer, 1971, pp. [exposé] 355, pp. 139-172.

(3] J. W. Hoffman, W-C. W. Li, L. Long, and F-T. Tu, Traces of Hecke operators via hyperge-
ometric character sums, preprint, 2024. https://arxiv.org/abs/2408.02918

[4] N. M. Katz, Fzponential Sums and Differential Equations, Annals of Mathematical Studies,
no. 124, Princeton University Press, 1990.

[5] N. M. Katz, Another look at the Dwork family, Algebra, arithmetic, and geometry, II: In
honor of Yu. I. Manin (Y. Tschinkel, ed.), Progr. Math. , no. 270, Birkhduser, Boston, 2009,
pp- 89-126.

[6] M. Ohta, On {-adic representations attached to automorphic forms, Japan. J. Math. (N.
S.), 8 (1982), no. 1, 1-47.

[7] M. Ohta, On the zeta function of an abelian scheme over the Shimura curve, Japan. J.
Math. (N. S.) 9 (1983), no. 1, 1-25.



2112 Oberwolfach Report 38/2025

On deformations of modular forms and extensions of symmetric tensor
representations

GABRIELE BoGo

In the 1880s, Poincaré envisioned the possibility of describing algebraic curves
using curvilinear polygons in the complex plane—an intuition that would later
(in 1907) lead to the uniformization theorem for Riemann surfaces. As a conse-
quence of the uniformization theorem, every Riemann surface X (except for P!(C),
C, and C\ {0}) has the upper half-plane H as its universal covering, and the curvi-
linear polygon associated with X is a fundamental domain for the action of the
(Fuchsian) deck group I of the covering H — X. Poincaré’s early attempts toward
the uniformization theorem focused on the explicit construction of a (multivalued)
inverse 17: X — H to the covering map H — X, based on the known relationship,
explored by Schwarz, Klein, and others, between conformal maps and differential
equations (see [5] for the history of the uniformization theorem)

Let us restrict to the case of genus zero Riemann surfaces, i.e., punctured
spheres. Let

(1) X =PYC)\{o0,1,0,a1,...,a,}, a; € C\{0,1}, a;#a;ifi#j,

The (multivalued) map n: X — H must satisfy two assumptions: each single-
valued determination of 7 is a local biholomorphism; different branches of 7 are
interchanged by Mdbius transformations. Such map arise as the ratio of linearly
independent solutions of the linear differential equation

d*y(t) dy(t) < -
2) P(t P'(t) -2 X-y(t) =0, Pl)=t{t-1 t—a;),
@ PO PO+ 30w =ttt =L a0
where A, ..., \, are complex parameters called accessory parameters. The ac-
cessory parameters problem asks to find the unique set A\p = (Ap,,...,Ar,) of

accessory parameters such that the ratio of independent solutions of (2), seen as
a single-valued function on the universal covering X of X , gives an identifica-
tion X ~ H. Up to now, nobody has been able to determine the correct choice of
parameters in general, and the accessory parameters problem remains wide open.

Which are the consequences of the right choice of accessory parameters? First,
the image of the monodromy representation 7 (X, z9) — GL2(C) is a Fuchsian
group I' € SLo(R) of the first kind (choices of accessory parameters not “too
far” from the correct values still give an uniformization of X, but in terms of quasi-
Fuchsian groups [1]). Second, the lift of a holomorphic solution of (2), seen as a
function f on H, is a modular form of weight 1 (possibly with non-trivial multiplier
system) on the group I'. The g-expansion of f at a cusp can be computed from
the holomorphic solution of (2) via manipulation of power series. Let y1(\,t)
and ya(A, 1) = log(t)y1 (A, t) + y2(A, £) be the local solutions in ¢ = 0, where we
consider A = (A, ..., \,) as parameters. Define

QA1) = exp(ya(t)/y1(t)) =t +---, tAQ)=Q+---,
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where t(\, Q) has been obtained by formally inverting the series Q(\,¢) with re-
spect to the variable t. Substitute finally ¢(\, Q) into y1 (A, Q) to get

(3) FOLQ) =y (Mt Q) Zﬂﬁ ,

where f,,()) is a polynomial in )\, ..., A\, for every m > 0. By specializing to the
correct values Ap of the accessory parameters in the Q-expansion of f(\, Q) we
get the g-expansion of a modular form. For instance, if X = P!(C)\ {c0,1,0,1/9},
then n=1and \g =1 and A\; = 1/3, and Q = ¢ = *™'" for 7 € H, and

(4) f((1,1/3),Q) =1+ 3q+3¢° +3¢°> + - € My(I'1(5)).

In [2] a numerical method to compute the accessory parameter in the case of sphere
with 4 punctures (i.e., the case n = 1) is described, based on the modularity
of f(\, Q) for the correct determination of .

In my talk, I discussed certain deformation operators on the space of modular
forms, defined in terms of accessory parameters. The deformation operators can be
described in terms of deformation of complex structures and Teichmiiller theory;
the interested reader can find this description in Section 2.3 of [3].

Let X be a punctured sphere as above, let f(\, Q) be as in (3) and let f(7) =
f(Ar, Q) € My(T). For j € {1,...,n} (notice that the case j = 0 is not included)

define
af(A
6 o1 =LA

The deformations can be extended to the space of modular forms M, (I'). We first
look at how the deformation J = 0y acts on the example (4) related to I'1(5). We
find, for f = f((1,1/3),q) in (4), that

36057

153 , 543
(6) Of =9+ —-¢* +105¢> + ——¢" + ¢+

2 4 200
An immediately noticeable difference between (4) and (6) is the appearance of
denominators in the coefficients of the latter. Where do they come from? From
the Eichler integral of a cusp form h € Sy(T).

Theorem 1 (Theorem 1, [3]). Let X = P(C)\ {00,1,0,a1,...,a,} be as in (1),
and let T’ be its uniformizing Fuchsian group. For j =1,...,n let 0; denote the
deformation operator (5). There exist cusp forms hi,...,hy, € Sa(I") such that,
for every f € My(T) it holds

d

0;f = kfh;+2f'h=[f hyl1, %w@

where Ej is the Eichler integral of the cusp form hj, i.e., if hy = Zm21 hjmq™,
then Ej =2 >t hTJn;”q Here [,]1 denotes the first Rankin-Cohen bracket.

Cusp forms of weight four should be interpreted as quadratic differentials on the
Riemann surface X. The space S4(T") of quadratic differentials is the cotangent
space to the Teichmiiller space of (n + 3)-punctured spheres at the point X. This
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space governs the deformation of complex structure of X, and this explains the
appearance of weight four cusp forms in the action of the deformation operators.

Another aspect I discussed in my talk is the modularity of 9;f. The proof of
Theorem 1 shows that deformations are related to differential operators of higher
order obtained by composition of second-order linear differential operators. Their
monodromy is an extension of standard representations of I'. It is therefore reason-
able to expect 0;f to have some modularity property as a vector-valued modular
form with respect to extensions of standard representations of I' (or their sym-
metric powers Sym™(C?)). This is precisely what happens.

Let pj(v;7) = rj2(v)7? +7;1(7)T +7j0(7) be the period polynomial of Ej. The
polynomial p;(vy, 7) measures the failure of the modularity of h;: for every v € T’

hi(y7) - (er +d) 2 = hy(r) = pi(v,7), 7= <(cL Z)

Consider the class [U&Q] € Exty(Sym®(C?), Sym?(C?)) represented by

1| 7rj2(y) r1(9) Uﬁg”

_f(a b iy | O] @ 2ab b
(7) v = (C d) = Uo,z('}/) - 0 ac ad + be bd
0 2 2cd d?

Theorem 2 (Proposition 4 in [3]). The vector 8_; !
= 2 f ?{FfQT f
8jf = 7_f/ + f )
f/
defines a vector-valued modular form for the representation v(j)"Q.

Final remarks. The two theorems show that infinitesimal deformations of the un-
derlying complex structure send modular forms to vector-valued modular forms
attached to extensions defined by periods of cusp forms of weight four.

In a recent work [6], A. Keilthy and M. Raum defined and studied the deforma-
tions 0; from a cohomological perspective, and relate them to motivic periods.
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Vector-valued modular forms and two connections to cohomology
MARTIN RAUM
(joint work with Michael Mertens, Tobias Magnusson)

The transformation behavior of modular forms can be described by a represen-
tation. In the most classical setting, a modular form is fixed by the slash action
of SL(Z) on functions f: H — C:

flev=f.

In an alternative point of view, if f # 0 the one-dimensional space C f is a right-
representation for SLo(Z) that is trivial. Slightly more generally, if f is a modular
form for, say, a Dirichlet character y modulo N, then

flev=x()f x((¢4)) =x().

In other words, if f # 0 then C f is isomorphic to the one-dimensional represen-
tation

To(N) — Uy (R) € GLy(C), (28) — x(d).

Vector-valued modular forms f : H — V(p) for a representation p of SLa(Z)
with representation space V(p) are associated with the modular covariance condi-
tion

fley=p(H)of.

The case of one-dimensional p corresponds to classical, scalar-valued modular
forms. Higher-dimensional representations that are commonly encountered in-
clude the Weyl representations associated with integral quadratic forms of even
rank and inductions of characters.

The space of components of f

{/\of:)\EV(p)v}

is isomorphic to a quotient of the dual p¥ of p. If p has finite index kernel, it
consists of modular forms for ker(p). That is, vector-valued modular forms in
these cases help to organize relations among modular forms, but do not give rise
to genuinely new kinds of modular forms.

This remains mostly true for the symmetric powers sym? of the standard rep-
resentation of SLa(R). We realize this representation on complex polynomials of
degree at most d in a formal variable X endowed with the slash action of weight —d.
In this realization, we find modular forms

(X _T)da

which are modular covariant of weight —d under the whole Lie group SLa(R). This
yields an injection

Mpipd — My (sym?), fr— (X —7)¢-f.
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We introduce a vector-valued raising operator that in combination with this em-
bedding for k£ > d yields a decomposition
d
My (Symd) = @ My ;.
j=—d
j=d (mod 2)

The exceptional cases k < d can be accommodated by the modular forms
((X —71)Es + %)d € My (symd),

where FEs is the quasi-modular, holomorphic Eisenstein series of weight 2.

Building upon symmetric power representations, we investigate modular forms
for their extension classes: virtually real-arithmetic types. Their simplest variant
fits into a short exact sequence

d

O—>symd—>p—>sym’—>0.

We demonstrate that, in contrast to the other examples given above, they ac-
commodate variations of modular forms that are usually not considered as mod-
ular forms. In particular, mock modular forms and higher order modular forms
are components of modular forms of virtually real-arithmetic type. Further, all
truncations of Brown’s universal iterated integral are modular forms of virtually
real-arithmetic type.

To illustrate the use of the presented formulation, we highlight a relation be-
tween multiple L-values, which appear as components of modular forms for two
different virtually real-arithmetic types. We link them to each other via a suit-
able homomorphism of representations and deduce a relation between them from
a vanishing statement for modular forms.

Computing cohomologies of coherent sheaves
LAKSHMI RAMESH
(joint work with Janko Bohm, Santosh Gnawali)

We aim to compute objects that are isomorphic to each graded part of the coho-
mology modules, H!(P", F(d)), the dth graded part of the ith cohomology module.
We are interested in obtaining the cohomology numbers

(1) h'(P", F(d)),

or the dimensions of each graded part.

In this talk, we discuss a correspondence, shown by Eisenbud, Flgystadt and
Schreyer in [1], between the Tate resolution of a module M over the graded polyno-
mial ring and the cohomology of the corresponding coherent sheaf M over projec-
tive space. Thus, one can compute the cohomology numbers from 1 by computing
the Tate resolution of a representing module.

The Tate resolution is a doubly infinite exact sequence of modules over the
exterior algebra. The only non-trivial aspect of computing it is in the computation
of the minimal free resolution of a module over the exterior algebra. I present a
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sketch of the algorithm presented by Janko Béhm and myself in [2], which uses a
modification of the Schreyer theorem to a non-commutative case, and the theory
of relative Grébuner bases. This algorithm has been implemented in SINGULAR [3],
and can be found in the library sresext.lib.

We adapted the refined Schreyer algorithm to compute free resolutions, pre-
sented by Erocal, Motsak and Schreyer in [4], to the case of non-commutative
modules. Thus, the algorithm in [2] is in fact parallelisable. In ongoing work with
Santosh Gnawali and Janko Bohm, we use the massively-parallel framework of
GPI-SPACE and its interface with SINGULAR [5] to implement an algorithm for
parallel computations. This work is based on the algorithm for massively parallel
computations of free resolutions of modules over a polynomial ring by Gnawali in
[6].
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Problem session
CHAIRED BY JENS FUNKE. NOTES BY INDIVIDUAL PRESENTERS.

1. MARTIN RAUM: [terated integrals and polyharmonic Maass forms

Mock modular forms yield important generating series of combinatorial origin.
Many of their properties, such as asymptotic expansions or exact formulas, are
derived via their modular completions. For instance, for a given mock modular
form f7, there exists a companion function f~ (subject to natural analytic condi-
tions) such that their sum f* + f~ is modular invariant. These sums are known
as harmonic weak Maass forms.

While the existence of modular completions is the standard way to define mock
modular forms, a more intrinsic characterization exists: it is through the repre-
sentations of the modular group that they generate under the slash action. For
example, in integral weights these representations have finite length, and their com-
position factors extend to the real Lie group. This perspective naturally places
mock modular forms within the context of iterated integrals, which conjecturally
in even integral weights encompass all functions with this property. These can be
viewed as mock modular forms of higher depth.
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Harmonic weak Maass forms also admit a representation-theoretic interpreta-
tion via (g, K)-modules. Similar to mock modular forms, the resulting representa-
tions have finite length, and their composition factors are either finite-dimensional
or (limits of) discrete series.

Moving to generalizations, in integral weight iterated integrals connect to mo-
tivic geometry. This connection can be harnessed to extend the concept of modular
completions. From this viewpoint, mock modular forms and their generalizations
are multi-valued periods on a suitable moduli space of elliptic curves, and their
modular completions correspond to the images under the single-valued projec-
tion. This formalism has been explicitly developed in the physics literature. After
a minor adjustment of weights using Maass operators, modular completions are
found to be linear combinations of products of essentially holomorphic and anti-
holomorphic functions. Within the framework of (g, K)-modules, this shows that
modular completions relate to tensor products of Harish-Chandra modules, which
are notoriously difficult to study.

There is also a natural generalization for harmonic weak Maass forms: polyhar-
monic weak Maass forms. Even in the case of Eisenstein series, these forms reveal
special values of derivatives of Dirichlet L-series, making them inherently inter-
esting. They still offer a well-behaved interpretation in terms of (g, K)-modules,
but the representations generated by the modular group are as mysterious as the
tensor products of Harish-Chandra modules encountered with iterated integrals.
At the level of Fourier coefficients, this is reflected by the limited existing results
on the motivic nature of derivatives of L-series.

While at depth 1 we observe a remarkable parallelism between the representa-
tion theory of the modular group and that of the real Lie group associated with
mock modular forms and harmonic weak Maass forms, this picture diverges for
higher-depth examples.

Problem: Connect higher-depth mized mock modular forms and iterated integrals
to polyharmonic weak Maass forms. Through this connection, explain the shift
from a well-behaved representation theory for the modular group to a well-behaved
representation theory for the real Lie group.

Remark: As a starting point, iterated Eisenstein integrals (from the motivic
perspective) and polyharmonic Eisenstein series (from the analytic perspective)
present the fewest complications. However, it is currently unclear whether they
are directly related, or whether cusp forms and weak forms interfere.

Remark: Generalizations of mock modular forms to higher depth exist in both
integral and half-integral weights. One of the first examples in half-integral weights
has been linked to class numbers for real-quadratic fields. It is therefore natural
to extend the stated problem to the case of half-integral weights. However, even
at depth one, the representation theory of the modular group is more complex as
it involves infinite-dimensional composition factors.
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2. EDGAR ASSING: How many coefficients of cusp forms are needed?

Let S, 1 (4N) denote the space of holomorphic cusp forms of half-integral weight

k + 3 for the group I'g(4N). Each f € Sk41(4N) has a Fourier expansion of the
form

f2) =) ap(n)e™".

It is now natural to ask: How many of the coefficients ay(n) are necessary to
determine the form f uniquely? This question is rather vague and can be made
precise in several ways. We have the following version in mind.

We fix a set X C N. Given two forms fi, fo € S,H%(ZlN) we write fi ~x fa
if af, (n) = ayg,(n) for all n € X. We can restate the question as: For which sets
X C N does f1 ~x f2 imply f1 = f2?

A case of historical importance arises when taking X’ to be the set

Xtq = {|D|: D fundmental discriminant, (—1)*D > 0}.

In this setting the question above has been raised by W. Kohnen (for Hecke eigen-
forms) in [2]. This case has been solved in subsequent works, most notably [1] and
3.
| ]A very interesting question, which is still open, is if we can take X to be the
set of primes

Xpr = {p: prime}.
In other words, we are asking wheter a form f € 5, 1 (4N) is determined by its
Fourier coefficients a¢(p) at primes p € &p,. Solving this appears to be a hard
problem. While the methods used in the case of X4 can be extended to handle
almost primes, the prime case seems to require new ideas.

3. LaksuMi RAMESH: Calculating cohomology

Many participants of this workshop used group cohomology theories to understand
automorphic forms and related geometric objects. For a finitely presented group G
and a G—vector space M, the software GAP can compute H*(G; M). However, for
a general group G, checking if H*(G; M) = 0 for k > 2 is shown to be undecidable.
There are however special classes of groups for which combinatorial properties may
be used to determine the cohomology numbers h*(G; M). The problem posed is
to identify these groups and these counting problems, and to construct (efficient)
algorithms to compute cohomology numbers.

4. MARTIN RAUM: Siegel modular generating series

The theory of modular forms, particularly its analytic aspects, has been signifi-
cantly impacted by generating series of combinatorial origin. For instance, asymp-
totic and exact formulas for Fourier coefficients of (weakly holomorphic) modular
forms, as well as the study of congruences for Fourier coefficients, have been driven
by connections to integer partitions. Most such generating series yield modular
forms for subgroups of SLy(Z).
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In the case of theta series (a specific type of generating series that tracks vector
lengths in Euclidean lattices) generalization to sublattices yields Siegel modu-
lar forms associated with symplectic groups. The connection between Euclidean
lattices and Siegel modular forms has significantly shaped the field, where the as-
ymptotic behavior of Fourier coefficients has attracted considerable interest. In
return, these results provide excellent bounds for the number of sublattices with
prescribed geometry.

However, there are significantly fewer examples of Siegel modular generating
series compared to classical modular generating series. Beyond theta series, exam-
ples include Borcherds—Kac—Weyl denominator formulas, Kudla generating series,
generating series of Gromov—Witten invariants, and BPS counting functions from
string theory.

Problem: Find natural counting problems in enumerative algebra that yield Siegel
modular forms, and formulate clear questions for the Siegel modular forms com-
munity regarding which properties should be proved about the coefficients.
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