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Introduction by the Organizers

The workshop Cohomology theories for automorphic forms and enumerative al-
gebra, organized by Claudia Alfes (U Bielefeld), YoungJu Choie (POSTECH,
Pohang), Anke Pohl (U Bremen), and Christopher Voll (U Bielefeld), was well
attended with 25 participants (2 online) providing a gender-balanced blend of se-
nior and junior researchers of various research directions within the overarching
theme of cohomology theories for automorphic forms and enumerative algebra. It
featured 20 presentations as well as ample and highly appreciated opportunities
for individual scientific collaborations and discussions.
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A recurrent overall theme in cohomology theory is to forge connections between
different objects via suitable cohomology theories, hereby creating novel research
tools, re-interpretating existing results, and creating vantage points for further
research. Within the rich realm of mathematical cohomology theories, the work-
shop focused on those in the research areas of automorphic forms and enumerative
algebra.

Roelof Bruggeman explained the interpretation of Maass cusp forms in para-
bolic cohomology that was developed by him, Lewis and Zagier, and reported on
ongoing developments. Complementary to his talk, Anke Pohl surveyed the rela-
tion of parabolic cohomology with the dynamics of hyperbolic orbisurfaces and the
Selberg zeta function. Roberto Miatello discussed Poincaré series for semisimple
Lie groups of real rank one and showed the state of art in regard to the question
of which automorphic forms on these Lie groups can be obtained from these se-
ries. Jens Funke focused in his survey talk on harmonic weak Maass forms and
showed that the cohomological periods of two differential operators applied to the
forms coincide. Martin Raum presented the theory of vector-valued modular forms
and introduced the notion of modular forms of virtually-arithmetic type which he
developed in work with Michael Mertens and Tobias Magnusson.

Nikolaos Diamantis considered iterated integrals, a generalization of Manin’s
modular symbols. He discussed an extension of standard cohomology reflecting
structures emerging in the study of modular symbols and false theta functions, of
which a characterization of classes of iterated integrals is an application. Also in
the spirit of understanding iterated integrals as generalizations of modular symbols
and related to multiple zeta values, Morten Risager discussed the limiting distri-
butions of iterated integrals and showed computer-generated figures that indicated
the difficulties for higher length situations.

For certain Laurent polynomials, the Mahler measure is related to special val-
ues of L-functions. An important proof is by Deninger’s cohomological method.
Jungwon Lee described generalizations of this method obtained by her and Wei
He. Dohyeong Kim analyzed the behavior of Dedekind zeta functions over Zp-
extension with a focus on the Euler–Kronecker constants.

In his survey talk on zeta functions in enumerative algebra, Joshua Maglione
pointed to a number of “cohomological shadows” in this area, suggesting a co-
homological explanation for non-negativity and self-reciprocity phenomena seen
in various local zeta functions associated with groups, rings, and modules. In a
similar vain, Tobias Rossmann surveyed phenomena observed in and conjectured
about reduced and topological versions of such zeta functions, pointing towards
connections with Hilbert series of Cohen–Macaulay graded rings and modules.
Bianca Marchionna talked about her recent work on a conjecture of Rossmann’s
on residues of local zeta functions associated with pattern algebras, using multi-
variate p-adic integrals.

Mima Stanojkovski discussed joint work with Oihana Garaialde on isomorphism
classes of extensions of finite p-groups. Paul Kiefer reported on ongoing joint work
with Lennart Gehrmann in which they construct Λ-adic families of Funke–Millson
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cycles. Min Lee presented joint work with Jonathan Bober, Andrew R. Booker,
Claire Burrin, Vivian Kuperberg, David Lowry-Duda, Catinca Mujdei, and Hsin-
Yi Yang in which they prove the existence of murmurations for elliptic curves
which was observed by AI techniques.

Bo-Hae Im presented the proof of the Zagier–Hoffman conjectures for Nth mul-
tiple zeta values in positive characteristic which she obtained in joint work with
Hojin Kim, Khac Nhuan Le, Tuan Ngo Dac, and Lan Huong Pham. In her on-
line talk Winnie Li reported on her results with Jerome Hoffmann, Ling Long,
and Fang-Ting Tu on the computation of traces of Hecke operators via hyperge-
ometric character sums. Gabriele Bogo discussed deformations of modular forms
and extensions of symmetric tensor representations motivated by the uniformiza-
tion theorem for Riemann surfaces. Lakshmi Ramesh closed the workshop with a
presentation of her joint work with Janko Böhm and Santosh Gnawali on the com-
putation of cohomology of coherent sheaves. Integral to this work is an algorithm,
implemented in the computer algebra system SINGULAR.

Wednesday afternoon featured a lively problem session. Participants confirmed
the organizers’ impression of an enjoyable and highly productive workshop.





Cohomology Theories for Automorphic Forms and Enumerative Algebra 2069

Workshop: Cohomology Theories for Automorphic Forms and
Enumerative Algebra

Table of Contents

Joshua Maglione
Cohomological shadows from two zeta functions from algebra . . . . . . . . . . 2071

Mima Stanojkovski (joint with Oihana Garaialde)
(Strong) isomorphism of p-groups and orbit counting . . . . . . . . . . . . . . . . . 2073

Alec Schmutz
Order complexes, nested permutohedra, and ask zeta functions . . . . . . . . . 2075

Roelof Bruggeman
Maass cusp forms and cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2078

Anke Pohl
From geodesics to period functions, parabolic cohomology and the Selberg
zeta function: a survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2079

Jens Funke
Cohomolgical aspects of weakly holomorphic modular forms . . . . . . . . . . . 2081

Nikolaos Diamantis (joint with Kathrin Bringmann)
Iterated integrals and cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2084

Paul Kiefer (joint with Lennart Gehrmann)
A Λ-adic Family of Funke–Millson Cycles and a Λ-adic
Funke–Millson Lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2087

Min Lee (joint with Jonathan Bober, Andrew R. Booker, Claire Burrin,
Vivian Kuperberg, David Lowry-Duda, Catinca Mujdei, Hsin-Yi Yang)
Murmurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2089

Jungwon Lee (joint with Wei He)
Mahler measure and special values of L-function: Deninger’s
cohomological method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2092

Dohyeong Kim (joint with Harin Jung)
Analytic properties of the Dedekind zeta function over Zp-extensions . . . 2094

Morten S. Risager (joint with Y. Petridis and Nils Matthes)
Distribution of Manin’s iterated integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 2096

Roberto J. Miatello
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Abstracts

Cohomological shadows from two zeta functions from algebra

Joshua Maglione

1. Subalgebra zeta functions

Let A be a finitely generated Z-algebra. For us, this means that (A,+) is an abelian
group, and its product is Z-bilinear. So algebras need not have a multiplicative
unit nor be associative. The subalgebra zeta function of A is

ζA(s) =
∑

B6A

|A : B|−s,

where the sum runs over all finite index subalgebras B in A. By the structure
theorem of abelian groups, the finite quotient of Z-modules A/B decomposes into
cyclic groups. This leads to an Euler product decomposition of the subalgebra
zeta function counting subalgebras of p-power index:

ζA(s) =
∏

p prime

ζA,p(s).

Let us look at a few examples of the subalgebra zeta function. First, let A = Z;
then there is a unique subalgebra of index n for each n ∈ N. Hence, ζZ(s) =
ζ(s) is the Riemann zeta function. Now consider A = Z2 with component-wise
multiplication. By Datskovsky and Wright [1],

ζZ2(s) = ζ(s)3ζ(2s)−2ζ(3s− 1).

Lastly, we consider A = Z3 with component-wise multiplication. Nakagawa [6]
and Liu [3] independently showed

ζZ3(s) =
∏

p prime

1 + 4p−s + 2p−2s + · · · − 2p2−7s − 4p2−8s − p2−9s
(1 − p−s)2(1 − p2−4s)(1− p3−6s) .(1)

A remarkable feature of the local zeta functions in (1) is that the coefficients
of the numerators are palindromic, up to multiplying by −1. The reason for this
is that these local subalgebra zeta functions satisfy a functional equation. The
following deep theorem tells us that this always happens.

Theorem 1 (Voll [8]). Assume A is torsion free and rank n. For almost all
primes p,

ζA,p(s)|p→p−1 = (−1)np(n2)−nsζA,p(s).
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We consider a slight variant of the subalgebra zeta function that will exemplify
the two cohomology theories in Theorems 1. There is a way to encode the elliptic
curve E = y2 + x3 − x into a Lie algebra LE, see for example [4]. The ideal zeta
function of LE is

ζ⊳LE
(s) =W1(p, p

−s) + #E(Fp) ·W2(p, p
−s),

such that W1(X
−1, Y −1) = −X36Y 15 and W2(X

−1, Y −1) = −X37Y 15.
We have two cohomology theories in the proof of Theorem 1: the ℓ-adic coho-

mology from the Weil conjectures and simplicial cohomology from counting integral
points on polyhedral cones.

Question 1. Is there a bespoke cohomology theory for subalgebra zeta functions
that unifies these two theories?

If there is such a cohomology theory that answers Question 1, it might also
provide a way understand the poles arising in these zeta functions. Currently, we
have no way of getting even a finite set of candidate poles.

2. Flag Hilbert–Poincaré series

Now we explore a more combinatorial zeta function within enumerative algebra.
Let A be a finite set of hyperplanes in An

K with K a number field. Write L(A) for
the set of all possible intersections of the hyperplanes of A, excluding An

K . The
flag Hilbert–Poincaré series of A is

fHPA
(
Y, (TX)X∈L(A)

)
=
∑

F

πF (Y )
∏

X∈F

TX
1− TX

,

where the sum runs over all flags F of subspaces in L(A) and πF (Y ) is a product
of Poincaré polynomials like those for the complex manifold Cn \⋃H∈AH .

Theorem 2 (M.–Voll [5]). There exist substitutions of fHPA yielding

• the Igusa local zeta function associated with A,
• the motivic zeta function associated with A,
• the ask zeta function of co-graphical group schemes.

If 1̂ :=
⋂

H∈AH 6= ∅, then

fHPA(Y
−1, (T−1X )X) = (−Y )−rk(A)T1̂ · fHPA(Y, (TX)X).

Similar to Theorem 1, two cohomology theories come together in Theorem 2.
We can observe more shadows by simplifying fHPA; define the bivariate coarsening

cfHPA(Y, T ) = fHPA(Y, (T )X) =
NA(Y, T )

(1− T )rk(A)
.

It is not difficult to show that NA(Y, 0) = πA(Y ), the Poincaré polynomial of the
complex manifold Cn \⋃H∈AH . Additionally,

NA(0, T ) = Hilb(SRA, T ),
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where SRA is a Stanley–Reisner ring associated with A. The polynomial NA(Y, T )
seems to record more cohomological information.

Theorem 3 (Dorpalen-Barry–M.–Stump [2]). The coefficients of NA(Y, T ) are
non-negative.

Theorem 4 (Stump [7]). Letting CH(A) be the Chow ring associated with A,
Hilb(CH(A), t) = NA(t,−t).
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(Strong) isomorphism of p-groups and orbit counting

Mima Stanojkovski

(joint work with Oihana Garaialde)

Let G and N be finite groups. A group extension

(1) 1 −→ N
ι−→ E

π−→ G −→ 1

of G by N is called central if ι(N) is a central subgroup of E: in this case, the
action of G on N that is induced by ι and π is trivial, i.e. N is a trivial ZG-module.

Since non-trivial groups of prime power order have non-trivial center, every
such group can be realized as a central extension as in (1) where N is a trivial
FpG-module and p is the unique prime number dividing the order of G.

Let now p be a prime number and recall that a finite group is called a p-group
if its order equals a power of p. Assume, moreover, that G is an abelian p-group
and that N is cyclic of order p. Then an extension of G by N is either abelian
or with commutator subgroup of order p. Thanks to the classification of finite
abelian groups, the first family is easily described up to isomorphism. Instead,
the latter has been classified in [2] with respect to the group order and relies on

https://arxiv.org/abs/2406.18932
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the classification of bilinear forms. In [3], we study these extensions and employ
cohomological tools to classify them as we now explain.

Classically, the second cohomology group H2(G;N) parametrizes the extensions
of G by N up to equivalence: If

1 −→ N
ι′−→ E′

π′

−→ G −→ 1

is another extension like (1), then their equivalence translates to the existence of
an isomorphism ϕ : E → E′ such that the following diagram commutes:

E

ϕ

��

π

  ❇
❇❇

❇❇
❇❇

❇

1 // N

ι

>>⑥⑥⑥⑥⑥⑥⑥⑥

ι′   ❆
❆❆

❆❆
❆❆

❆ N // 1.

E′
π′

>>⑥⑥⑥⑥⑥⑥⑥⑥

Relaxing the requirement on ϕ to simply induce, by restriction, an isomorphism
ι(N)→ ι′(N), one speaks of strong isomorphism classes of extensions of G by N .
The following is a weaker version of Theorem 4.71 from [1]:

Proposition 1. Let p be a prime, G a finite group, and N a trivial FpG-module.
Then the set of strong isomorphism classes of extensions of G by N is in bijection
with the orbits of the natural action of Aut(G) ×Aut(N) on H2(G;N).

Assume now the following: p is a prime number and G is a finite abelian p-group
with no summands of order 2. Let, moreover, A = Aut(G) × Z∗p and consider

the natural action of A on H2(G;Fp). Under these assumptions, H2(G;Fp) is an
Fp-vector space with a canonical split short exact sequence of A-modules:

0 −→ Ext1(G;Fp) −→ H2(G;Fp) −→ Hom(Λ2(G/pG),Fp) −→ 0.

Since Hom(Λ2(G/pG),Fp) equals the span of the cup product

∪ : Hom(G,Fp)×Hom(G;Fp) −→ H2(G;Fp),

(f, g) 7−→ f ∪ g = ((x, y) 7→ f(x)g(y)),

the following equality holds: H2(G;Fp) = Ext1(G;Fp) ⊕ 〈im∪〉. Moreover, im∪
being A-stable, the following is sound:

Proposition 2. ([3, Cor. 3.11]) For i = 1, 2 define Si(G) = {M ≤ G : G/M ∼= Fi
p}.

Then there is an isomorphism of A-sets

ψ : PExt1(G;Fp)× Pim∪ −→ S1(G)× S2(G).
In the next definition, for a subgroup T of G and a positive integer s, denote by
T [s] the s-torsion subgroup of T .

1The most general version of this theorem allows for N to be any FpG-module and
parametrizes strong isomorphism classes in terms of an action of the compatible pairs of
A = Aut(G)× Aut(N) (in our case, all elements of A).
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Definition 3. Let M and T be subgroups of G.

(1) The T -levels ofM are given by the pair ℓLT (M) = (ℓT (M),LT (M)) where
• ℓT (M) = 1 +max{0 ≤ i ≤ logp exp(T ) : T [pi] ⊆M ∩ T },
• LT (M) = min{j ∈ Z≥0 : T [pj] + (M ∩ T ) = T }.

(2) The index of M in T is

i(T :M) =

{
0 if M ⊆ T,
1 otherwise.

If T = G, simply write ℓL(M) for ℓLG(M).

Theorem 1. ([3, Thm. 6.1]) Let c, d ∈ Ext1(G;Fp) and let ω, ϑ ∈ im∪. Denote
(T,M) = ψ(c, ω) and (S,N) = ψ(d, ϑ). Then the following are equivalent:

(1) c+ ω and d+ ϑ are in the same A-orbit,
(2) (ℓL(M)), ℓL(T ), ℓLT (M), i(T :M)) = (ℓL(N)), ℓL(S), ℓLS(N), i(S : N)).

As applications of the last theorem we deduce the numbers and sizes of all orbits
of A acting on H2(G;Fp) when G is generated by at most 3 elements. We hope to
come back to the study of higher rank tensors, and thus to a full classification of
orbits independently on the number of generators, in the future.
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Order complexes, nested permutohedra, and ask zeta functions

Alec Schmutz

1. Combinatorial Denef formulae

For a finite poset P , a combinatorial Denef formula is loosely defined to be a
multivariate rational function expressible in the following form:

∑

F∈∆(P )

ΦF (X)
∏

x∈F

Tx
1− Tx

,

where ∆(P ) denotes the order complex of P , that is the abstract simplicial com-
plex whose faces consist of chains of P , and where ΦF (X) ∈ Z[X ] is a polynomial
encoding combinatorial information about the summand. Such finitary sums arise
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in numerous enumeration problems, where upon suitable substitutions of the vari-
ables, one recovers a local factor for some zeta function. A prototypical example
is given by the n-th Igusa zeta function

In(X, (Ti)i∈[n]) =
∑

I⊂[n]

(
n

I

)

X

∏

i∈I

Ti
1− Ti

,

where
(
n
I

)
X

denotes the Gaussian multinomial coefficient. Upon suitable substi-

tutions of the variables, namely by evaluating In(p
−1, (p(n−i−s)i)ni=0) for a prime

p, one recovers the subgroup zeta function ζ≤Zn
p
(s) (cf. [6, Example 2.20]).

In some cases, such combinatorial Denef formulae are malleable to cohomolog-
ical methods, which in turn clarify the behaviours of the coefficients appearing in
the numerator of these rational functions. For instance in [3], Cohen-Macaulayness
of the Stanley-Reisner ring F[∆(L(A))], where L(A) denotes the intersection lat-
tice of some hyperplane arrangement A, is leveraged in order to deduce non-
negativity of the coefficients of the corresponding Hilbert series.

2. Ask zeta functions

Introduced in [4], ask zeta functions are rational generating functions which enu-
merate average sizes of kernels of matrices of linear forms defined over finite rings.
More precisely, fixing a ring R and an R-algebra S, we let A(X) ∈Md×e(R[X1, . . . ,
Xm]) be a matrix whose entries consist of linear forms. Whenever S is finite, the
average size kernel of A(X) is

askS(A(X)) =
1

|S|m
∑

x∈Sm

|ker(A(x))|.

Setting R = O to be a compact DVR, the (analytic) ask zeta function of A(X) is
then given by the following Dirichlet series:

ζaskA/O(s) =
∑

k≥0
askO/Pk(A(X)) q−ks.

Such zeta functions are of group-theoretic interest, as they relate to the (conju-
gacy) class-counting zeta functions of unipotent groups associated with graphs,
namely graphical group schemes; cf. [5, Propositon 1.1]. This enables one to
tackle problems reminiscent of G. Higman’s conjecture [2], postulating that the
number of conjugacy classes (class number) of the full upper-unitriangular matrix
group Un(Fq) is given by a polynomial in q.

For a graph Γ = ({v1, . . . , vn}, E), we build the (antisymmetric) matrix of linear
forms A−Γ ∈Mn(O[XE ]) by “linearising” the adjacency matrix of Γ, viz.

(A−Γ )ij =





Xe if vi ∼e vj and i ≤ j,
−Xe if vi ∼e vj and i > j,

0 otherwise.

It turns out that whenever Γ is a cograph, i.e., a P4-free graph, its associated ask
zeta function can be recovered by a combinatorial formula of Denef type:
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Theorem 1 (Rossmann-Voll [5, Theorems C & D]). For any cograph Γ = (V,E),
there exists a modelling hypergraph H = (V, (µI)I⊂V ) such that for any compact
DVR O with residue field size q, one has that ζask

A−
Γ /O

(s) =WHΓ(q, q
−s), where

(1) WHΓ(X,T ) =
∑

F∈∆(2[n])

(1−X−1)|sup(F )| ∏

J∈F

X |J|−
∑

I∩J 6=∅
µIT

1−X |J|−
∑

I∩J 6=∅
µIT

.

By virtue of [5, Proposition 1.1], the previous theorem yields polynomial ex-
pressions in q for the class numbers of the cographical groups GΓ(O/P

k). In the
spirit of previously discussed non-negativity results, the combinatorial nature of
Theorem 1 moreover imposes the non-negativity of the coefficients of these poly-
nomials, when expressed in q − 1; cf. [5, Theorem E]. It is of natural interest to
determine whether Theorem 1 can be extended to a larger family of graphs:

Question 1 (Rossmann-Voll [5, Question 1.8 (iii)]). Is there a meaningful com-
binatorial formula (in the spirit of Theorem 1) for the functions W−Γ (X,T ) which
is valid for all graphs on a given vertex set?

One attempt at answering the previous question is to relate the order complex
∆(2[n]) appearing in (1) to the face lattice of the permutohedron, which we denote
by L(Pn). Identifying the permutohedron with its dual fan, the cones of the Braid
fan Brn determine regions where one has a total ordering on the n vertices of the
given graph Γ. An obstruction to obtaining a formula akin to (1) for arbitrary
graphs is, in essence, due to “sandwiches”: for a given cone of the Braid fan where

vπ−1(1) ≤ vπ−1(2) ≤ · · · ≤ vπ−1(n),

one often has to compare “two-sums” of the form vπ−1(i) + vπ−1(l) and vπ−1(j) +
vπ−1(k), where 1 ≤ i < j < k < l ≤ n. Such a comparison is unnecessary when
dealing with cographs, but are prevalent amongst non-cographs.

Introduced in [1], the nested Braid fan Br2n (dual to the nested permutohedron)
resolves in some situations the aforementioned pesky sandwiches. Moreover, the
nested Braid fan admits a combinatorial description in terms of the ordered (set)
partition poset; cf. [1, Proposition 4.10]. These observations prompt the following
question:

Question 2. For which family of graphs do the corresponding ask zeta functions
admit a combinatorial Denef formula in terms of the nested braid fan Br2n?
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Maass cusp forms and cohomology

Roelof Bruggeman

I gave an introduction to the relation between Maass cusp forms and cohomology
groups, as developed in [1]. I kept mainly to the context of the modular group
Γ = PSL2(Z).

For holomorphic cusp forms the relation with cohomology goes back to Eich-
ler’s paper [2]. Changing the polynomial kernel function (τ − X)k−2 to a more
complicated kernel, built with the Poisson kernel R(t, z)s, we arrive at cocycles

γ 7→
∫ τ0

z=γ−1τ0

[
u(z), R(t, z)s

]

with values in the space Vω
s of analytic vectors in the principal series representation

with a spectral parameter s such that s(1− s) is the eigenvalue of the hyperbolic
Laplace operator on the Maass form u. Changing the base point z0 in the upper
half-plane does not influence the cohomology class. For a cusp form u the expo-
nential decay at cusps allows us to use a cusp ξ ∈ R∪{∞} as the base point. Then
the cocycle is only a C∞-function at the points ξ and γ−1ξ. In this way we arrive
at a linear map from the space of Maass cusp forms with eigenvalue s(1 − s) to

the cohomology group H1
pb(Γ;Vω0,∞

ν ). By ω0 we indicate that the principal series
vectors are analytic outside a finite number of cusps, and by ∞ that the vectors
are smooth at those cusps.

This map is not surjective. We have to impose an additional property at the
cusps where the principal series vectors are not analytic. With the smaller Γ-

module Vω0,∞,exc
s we arrive at a linear bijection between the space of Maass cusp

forms with spectral parameter s satisfying 0 < Re s < 1 and the parabolic coho-

mology group H1
pb

(
Γ;Vω0,∞,exc

s

)
. Theorem B in [1] gives this isomorphism, and

some more cohomology groups isomorphic to the same space of Maass cusp forms.

A parabolic cocycle ψ representing a class in H1
pb

(
Γ;Vω0,∞,exc

s

)
is determined

by its values on the generators S = ±
(
0
1
−1
0

)
and T = ±

(
1
0
1
1

)
of Γ. There is a

unique choice such that ψT = 0. Then the cohomology class is determined by the
function ψS , which satisfies

ψS(−1/t) = −|t|−2sψS(t) for t ∈ R \ {0} ,
ψS(t) = ψS(t+ 1) + (t+ 1)−2s ψS

(
t/(t+ 1)

)
for t ∈ (0,∞) ,

ψS ∈ C∞(R) and ψ is real-analytic on R \ {0} .
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John Lewis [3] found functions satisfying equivalent relations associated to even
Maass cusp forms. He and Don Zagier gave a thorough treatment, including the
relation to cohomology, in [4]. This is extended to all cofinite discrete subgroups
of PSL2(R) in [1].

It turned out that functions with similar properties had arisen in the study of
the Gauss map by Mayer, [5]. In this way we may consider parabolic cohomol-

ogy groups like H1
pb

(
Γ;Vω0,∞,exc

s

)
as intermediate between Maass cusp forms and

eigenspaces of a transfer operator arising in the study of a dynamical system.
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From geodesics to period functions, parabolic cohomology and the
Selberg zeta function: a survey

Anke Pohl

The development of cohomological interpretations of automorphic functions and
forms was initiated with the highly influential work by Eichler [5] and Shimura [13],
and it continues till today. A few recent examples are [2, 6, 1, 3, 11], which were
partly discussed in the talks by R. Bruggeman, N. Diamantis and myself. In
addition, J. Funke presented a (yet unpublished) cohomological interpretation of
weakly holomorphic modular forms.

For this report we focus on (classical) Maass cusp forms for Fuchsian groups.
For these functions, Bruggeman, Lewis and Zagier [2] provide an interpretation
in parabolic 1-cohomology. Using tools of parabolic cohomology only, for a few
special Fuchsian groups, such as PSL2(Z), the parabolic cocycle classes were seen
to be in linear isomorphism with sufficiently regular solutions of certain explicit
finite-term functional equations. These solutions are indeed period functions, the
functional equation arises from a certain change of path of integration, and the
period functions serve in a very precise way as building blocks for parabolic co-
cycle classes. (The history of these discoveries is highly involved and included
important work by D. Mayer, Chang and Mayer [8, 9, 4] as well as by Lewis and
Zagier [7].) One of the difficult steps in establishing such an isomorphism is to
find the “correct” functional equation. Solving this problem for generic Fuchsian
groups seemed (and still seems) to be out of reach without further insights.

However, the intimate relation between geometric and dynamical entities of
hyperbolic orbisurfaces on the one side and spectral entities on the other side
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allowed us to develop such an insight. The Selberg zeta function is one, arguably
one of the most important, objects that realize such a relation by connecting
the geodesic length spectrum to the Laplace spectrum and, in particular, to the
spectral parameters of Maass cusp forms. However, this zeta function is based on
the static geometry only.

Taking advantage of the dynamics of the geodesics as well, a careful construction
of symbolic dynamics for the geodesic flow in combination with transfer operator
techniques provide an algorithm to find the requested functional equations. Here,
the determining equations of eigenfunctions with eigenvalue 1 of the arising trans-
fer operators are precisely those functional equations. This construction further
helps to detect the necessary regularity and growth properties of period functions,
and it provides a geometric approach to parabolic cohomology that allowed us to
extend investigations from cofinite Fuchsian groups to non-cofinite ones. In addi-
tion, a parabolic induction (cuspidal acceleration) algorithm yields closely related
“companion” transfer operator families whose Fredholm determinant equals the
Selberg zeta function. More details can be found in, e.g., [10, 3], and informal
explanations are provided, e.g., by the survey article [12] and [3, Chapter 8].
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Cohomolgical aspects of weakly holomorphic modular forms

Jens Funke

Let Γ be a congruence subgroup of SL2(Z). For k ≥ 0 a non-negative integer, we
letM !

2k+2(Γ) be the space of weakly holomorphic modular forms, and let S!
2k+2(Γ)

be the subspace of “weak cusp forms”, consisting of those forms whose constant

term vanishes at all cusps. We also let S!,⊥
2k (Γ) ⊂ S!

2k+2(Γ) be the orthogonal
complement of the space of cusp forms S2k+2(Γ) under the (suitably) regularized
Petersson scalar product. We have

M !
2k+2(Γ) = S2k+2(Γ)⊕ Eis2k+2(Γ)⊕ S!,⊥

2k+2(Γ).

Here Eis2k+2(Γ) denotes the space of Eisenstein series of weight 2k + 2 for Γ.
We let H !

−2k(Γ) be the space of harmonic weak Maass forms of weight −2k for
Γ. So in particular,

ξ−2k(f) ∈M !
2k+2(Γ).

Here (with z = x+ iy) ξ−2kf(z) = y2k−2L−2kf(z) with Lr = −2iy2 ∂
∂z̄ , the Maass

lowering operator. We let H−2k(Γ) be the subspace of those forms such that
ξ−2k(f) ∈ S2k+2(Γ). By [4], section 3, we have

ξ−2k : H−2k(Γ)/M
!
−2k(Γ) ≃ S2k+2(Γ).

Recall that we also have the operator D = 1
2πi

∂
∂z . By Bol’s Lemma we have

D2k+1(f) ∈M !
2k+2(Γ)

for f ∈ H !
−2k(Γ). By [5], section 4, the image of D2k+1 is equal to S!,⊥

2k (Γ). In
fact, using Proposition 3.19 in [4], we have the isomorphism

(1) D2k+1 : H−2k(Γ) ≃ S!,⊥
2k+2(Γ).

We therefore see that the images of H−2k(Γ) under ξ−2k and D2k+1 both lie in
S!
2k+2(Γ) but are disjoint and perpendicular.

We let W = W1 be the standard (complex) representation of Γ with standard
basis e1 and e2. We let Wm = SymmW be the irreducible self-dual representation
of dimension m+ 1 of highest weight m.

Let X = Γ\H be the modular curve associated to Γ, and let Wm be the lo-
cal system on X associated to Wm. We then can consider H•(X,Wm), the (de
Rham) cohomology of X with coefficients inWm, which is isomorphic to the group
cohomology H•(Γ,Wm). The cohomology groups are in a natural fashion Hecke-
modules. Note we also have homology groups H•(X,Wm).

Let f(z) ∈M !
2k+2(Γ). Then

(2) ηf := f(z)dz ⊗ (ze1 + e2)
2k

defines a holomorphic 1-form on H which descends to a holomorphic 1-form on X
with values in the local system W2k. Thus the assignment f 7→ [ηf ] gives a map

(3) [η] :M !
2k+2(Γ) −→ H1(X,W2k).
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It is well-known that η when restricted to regular holomorphic forms induces the
Eichler-Shimura isomorphisms

Eis2k+2(Γ)⊕ S2k+2(Γ)⊕ S2k+2(Γ) ≃ H1(X,W2k),(4)

S2k+2(Γ)⊕ S2k+2(Γ) ≃ H1
! (X,W2k).(5)

Here H1
! (X,W2k+2) is the inner cohomology of X, that is, the image of the

compactly supported cohomology H1
c (X,W2k) in the absolute cohomology

H1(X,W2k). Further, the restriction of η to weak cusp forms yields a map

(6) [η] : S!
2k+2(Γ) −→ H1

! (X,W2k).

The isomorphisms (4)and (5) are Hecke-equivariant under the map (3), that is,

[ηTmf ] = Tm[ηf ].

for any Hecke operator Tm and any modular form f ∈M2k+2(Γ).

The main result presented in the lecture is

Theorem 1. Let f ∈ H !
−2k(Γ) be a weak Maass form. Then there is an explicit

non-zero constant ck such that

[ηξ−2k(f)] = ck[ηD2k+1(f)]

as classes in H1(X,W2k). In particular, if f ∈M !
−2k(Γ) is weakly holomorphic,

[ηD2k+1(f)] = 0.

The theorem is proved by constructing an explicit coboundary relating the two
classes. We note that Brown [3] obtained this result as well in a more general
context.

Guerzhoy [7] observed that the subspace D2k+1(M !
−2k(Γ)) of M !

2k+2(Γ) is pre-
served by the action of the Hecke algebra, and hence considered the quotient
M !

2k+2(Γ)/D
2k+1(M !

−2k(Γ)) as a Hecke module. In particular, he calls f∈M !
2k+2(Γ)

an eigenform under Tm with eigenvalue λm if there exists a g ∈M !
−2k(Γ)

Tmf = λmf +D2k+1(g).

Theorem 1 gives a cohomological interpretation for Guerzhoy’s definition, since
for f as above we have

Tm[ηf ] = [ηTmf ] = λm[ηf ].

Theorem 1 together with (1) also immediately implies

Theorem 2. The assignment f 7→ [ηf ] induces the following isomorphisms of
Hecke modules:

(i) M !
2k+2(Γ)/D

2k+1(M !
−2k(Γ)) ≃ H1(X,W2k),

(ii) S!
2k+2(Γ)/D

2k+1(M !
−2k(Γ)) ≃ H1

! (X,W2k) ≃ S2k+2(Γ)⊕ S2k+2(Γ),

(iii) S!,⊥
2k+2(Γ)/D

2k+1(M !
−2k(Γ)) ≃ H0,1

! (X,W2k) ≃ S2k+2(Γ).
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This recovers and extends Theorem 1.5 in [1] to arbitrary congruence subgroups
while also giving a cohomological interpretation for their “multiplicity 2 statement”
for Hecke eigenvalues (in the sense of Guerzhoy) in the space S!

2k+2(Γ).

Remark 3. Theorem 2 (iii) shows that H0,1
! (X,W2k) can be realized by meromor-

phic differential 1-forms with poles at the cusps. Using the Riemann-Roch theorem
this is a very natural result in Riemann surface theory, and we can view this aspect
of Theorem 1 as an explicit version of this statement.

Theorem 1 also implies that (co)homological periods of ξ−2k(f) and ckD2k+1(f)
coincide, that is, pairings of [ηξ−2k(f)] and ck[ηD2k+1(f)] with homology classes in
H1(X,W2k) coincide.

Given x = [a, b, c] ∈ Z3 with discriminant D = b2 − 4ac > 0, we consider the
corresponding geodesic Dx in the upper half plane by

Dx = {z ∈ H; a|z|2 + bRe(z) + c = 0}.
Then Dx defines a closed geodesic Cx in X if D is not an integral square. One
can then equip these special cycles with coefficients to define classes [C

x,[k]] in
H1(X,W2k), see eg [6]. We conclude

Theorem 4. Let f ∈ H !
−2k(Γ). Then

〈[ηξ−2kf ], [Cx,[k]]〉 = ck〈[ηD2k+1f ], [Cx,[k]〉.
Explicitly,

∫

Cx

(ξ−2kf)(z)(az
2 + bz + c)kdz = ck

∫

Cx

(D2k+1f)(z)(az2 + bz + c)kdz.

For Γ = SL2(Z), this result was obtained independently by Bringmann, Guerzhoy,
and Kent [2] using a completely different approach.

Furthermore, the approach outlined here can be used to interpret special values
of an appropriately defined L-function for weakly holomorphic forms.
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Iterated integrals and cohomology

Nikolaos Diamantis

(joint work with Kathrin Bringmann)

The presented work is motivated by the different behaviour certain iterated inte-
grals exhibit when considered over different domains, in [2] and in [3] respectively.

Specifically, if f1, f2 are cusp forms for Γ0(N) of half-integral weights k1, k2 and
multiplier systems χ1, χ2 respectively, we consider the iterated integral:

If1,f2(τ) :=

∫ i∞

τ̄

f1(w1)(w1 − τ)k1−2
∫ i∞

w1

f2(w2)(w2 − τ)k2−2dw2dw1.

In [2] If1,f2 is viewed as a function on the lower half-plane H̄ and the Γ0(N)-action
on it is studied. By contrast, in [3], a 1-dimensional analogue of If1,f2 is studied
on the upper half-plane H. In [3], the effect of the action was more complicated
than in [2] due to the branch cut of a square root appearing in the integrand.

In our work [1] we reconcile the above differences in behaviour employing an
approach used in [4] to associate a cohomology to arbitrary real weight modular
forms. We first define the module Dω,∞,exc: For a ∈ Q ∪ {i∞}, aa, εa ∈ R+ set

Va(aa, εa) : {Mτ ∈ H; |ℜ(τ)| ≤ aa,ℑ(τ) > εa},
whereM ∈ SL2(Z) is such thatM(i∞) = a. Then, if E = {a1, . . . an} ⊂ Q∪{i∞},
we call Ω ⊂ P1

C a E-excised neighbourhood of H̄ ∪ P1
R if there is a neighbourhood

U of H̄ ∪ P1
R such that U \ ∪ni=1Vai(aai , εai) ⊂ Ω. We then set

Dω,exc[a1, . . . an] = lim
−→
O(Ω)

where Ω ranges over all E-excised neighbourhoods of H̄∪P1
R and O(Ω) is the space

of holomorphic functions on Ω. With this notation, we define the space

Dω,∞,exc := lim
−→

Dω,∞,exc[a1, . . . an] ∩ C∞(H̄ ∪ P1
R),

where [a1, . . . an] ranges over all n-tuples of elements of Q ∪ {i∞}. Crucially, if χ
is a weight r multiplier system Dω,∞,exc is closed under the action |r,χ given by

(g|r,χγ)(τ) := χ(γ)(cγz + dγ)
−rg(γτ).

We can now interpret our objects. For γ ∈ Γ0(N), we define the period functions

rf1(γ)(τ) :=

∫ i∞

γ−1i∞
f1(w1)(w1 − τ)k1−2dw1 and

rf1,f2(γ)(τ) :=

∫ i∞

γ−1i∞
f1(w1)(w1 − τ)k1−2

∫ i∞

w1

f2(w2)(w2 − τ)k2−2dw2dw1.

We then have (all propositions that follow are stated and proved in [1])

Proposition 1. For all γ1, γ2 ∈ Γ0(N), we have

If1,f2 |4−k1−k2,χ1χ2(γ − 1) = −rf1,f2(γ) + rf1(γ)rf2 (γ)− rf2 (γ)If1 ,
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on H̄, where If1 is the usual (1-dimensional) Eichler integral attached to f1 and

rf1,f2(γ2γ1)− rf1,f2(γ2)|4−k1−k2,χ1χ2γ1 − rf1,f2(γ1) = rf1(γ2)|2−k1,χ1 · rf2 (γ1).
This and the following propositions and definitions hold for the generalisations of
rf1,f2 associated to arbitrarily many cusp forms fi.

Proposition 2. For each γ ∈ Γ0(N), we have

rf1 (γ) ∈ Dω,∞,exc and rf1,f2(γ) ∈ Dω,∞,exc ⊗Dω,∞,exc

Proposition 2 gives the coefficient module for the desired cohomological frame-
work. To express the cocycle-like relation of Prop. 1 cohomologically, we have the
following inductive definition. We present it here for only up to “length 2”.

Let G be a group. First, if M,N are G-modules and Cn(G,N) the group of
m-cochains, we introduce the map µ : Cn(G,M)⊗Cn(G,N)→ Cn+m(G,M ⊗N)
induced by the assignment µ(σ1 ⊗ σ2) = σ1 ∪ σ2 (the cup product of σ1, σ2.)

Definition. Let M1,M2 be G-modules. For each m ∈ N0 set:
i. Lm

(1) = 0, π(1) =identity map on C1(G,M1) and dm(1) = dm = standard dif-

ferential on Cm(G,M1). We then set Zm
(1)(G,M1) = ker(dm(1)), B

m
(1)(G,M1) =

ker(dm−1(1) ) and Hm
(1)(G,M1) = Zm

(1)(G,M1)/B
m(1)(G,M1).

ii. Lm
(2) = Z1

(1)(G,M1)⊗Cm−1(G,M2), π(2) =identity map on C1(G,M1⊗M2) and

dm(2) : C
m(G,M1 ⊗M2)/µ(L

m
(2))→ Cm+1(G,M1 ⊗M2)/µ(L

m+1
(2) ) the map induced

by dm. We then set Zm
(2)(G,M1⊗M2) = ker(dm(2)), B

m
(2)(G,M1⊗M2) = ker(dm−1(2) )

and Hm
(2)(G,M1 ⊗M2) = Zm

(2)(G,M1 ⊗M2)/B
m
(2)(G,M1 ⊗M2).

Since Hm
(1)(G,M1) = Hm(G,M1), this extends the usual cohomology. We have:

Theorem 1. Suppose that Γ0(N) acts diagonally on the tensor product in terms
of the actions |2−k1 , |2−k2 . Then, the map rf1,f2 induces an element [rf1,f2 ] of the
group Z1

(2)(Γ0(N), Dω,∞,exc ⊗Dω,∞,exc).

In the positive even weight case, Theorem 1 holds with the coefficient module
replaced by the smaller space Ck−2[τ ] of polynomials of degree ≤ k − 2 over C

Corollary 1. Let k1, k2 ∈ 2N. The map rf1,f2 induces an element [rf1,f2 ] of
Z1
(2)(Γ0(N),Ck1−2[τ ]⊗ Ck2−2[τ ]).

Applications to mulitple L-series
If k1, k2 ∈ 2N and a

b ∈ Q, we define the additive twist of the double L-series by

Lf1,f2(a/b; s1, s2) =
∑

n1,n2

c1(n1)c2(n2)e
2πi(n1+n2)a/b

(n1 + n2)s1n
s2
2

for all ℜ(s1),ℜ(s2)≫ 1, where ci(n) is the n-th Fourier coefficient of fi(τ). Values
of this function at si ∈ N in the special case of a = 0 have been studied by
Manin, Choie, Provost and others. Because of the analogy of Lf1,f2(0; s1, s2) with
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the double zeta function ζ(s1, s2), it is natural to ask if Lf1,f2(a/b; s1, s2) satisfies
relations analogous to those satisfied by ζ(s1, s2), e.g., for 2 ≤ j ≤ k/2,

Z(j) = ζ(j)ζ(k − j), where Z(j) :=

k−1∑

ℓ=2

((
ℓ− 1

j − 1

)
+

(
ℓ− 1

k − j − 1

))
ζ(k − ℓ, ℓ).

The following proposition allows us to deduce similar relations for Lf1,f2 from the
cocycle relation of rf1,f2 :

Proposition 3. i. For ℜ(s1),ℜ(s2)≫ 1, we have

Lf1,f2(a/b; s1, s2) =
(−2πi)s1+s2

Γ(s1)Γ(s2)
Λf1,f2(a/b; s1, s2) where

Λf1,f2

(a
b
; s1, s2

)
=

∫ i∞

a
b

f1(w1)
(
w1 −

a

b

)s1−1 ∫ i∞

w1

f2(w2)(w2 − w1)
s2−1dw2dw1.

ii. For each γ ∈ Γ0(N), we have

rf1,f2(γ)(τ) =

k1+k2−4∑

n=0

Lf1,f2(γ−1i∞, n)(γ−1i∞− τ)n

where Lf1,f2
(
a
b , n
)
is given by the sum

k1+k2−n−2∑

n2=0

(
k2 − 2

n2

)(
k1 + k2 − n2 − 4

n

)
Λf1,f2

(a
b
; k1 + k2 − n2 − n− 3, n2 + 1

)

Combining with Corollary 1, we obtain

Theorem 2. For each pair of γ1, γ2 ∈ Γ0(N), there are k1 + k2− 3 Q-linear com-
binations of Λf1,f2

(
(γ1γ2)

−1i∞;n,m
)
, Λf1,f2

(
γ−11 i∞;n,m

)
, Λf1,f2

(
γ−12 i∞;n,m

)

(n ∈ [1, k1−1],m ∈ [1, k1+k2−n−3]), each of which equals a Q-linear combination
of products Λf1(γ

−1
1 i∞, n)Λf2(γ

−1
2 i∞,m) (1 ≤ n ≤ k1 − 1, 1 ≤ m ≤ k2 − 1).

Corollary 2. For each k ∈ N, we have

Lf1,f2(k) =

(
Λf1

( −1
N(k + 1)

, 1

)
− Λf1

(−1
Nk

, 1

))
Λf2

(−1
Nk

, 1

)
, where

Lf1,f2(k) := Lf1,f2
( −1
N(k + 1)

; k1 + k2 − 4

)

−
k1+k2−4∑

n=0

(−k−1)n(kN)k1+k2−4−nLf1,f2
(−1
N

;n

)
−Lf1,f2

(−1
Nk

; k1 + k2 − 4

)
.

If f1, f2 are normalised Hecke eigenforms, then, all Lf1,f2(k) belong to a 4-dimen-
sional vector space over the field generated by the Fourier coefficients of f1, f2.
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A Λ-adic Family of Funke–Millson Cycles and a Λ-adic
Funke–Millson Lift

Paul Kiefer

(joint work with Lennart Gehrmann)

In my talk I reported on work in progress with Lennart Gehrmann about Λ-adic
families of Funke–Millson cycles generalizing previous work by Glenn Stevens [6]
in the case of the Shintani lift. Therefore, let L be an even lattice of signature
(2, n) with quadratic form q and

D = {z ⊆ L⊗ R | dim(z) = n, q|z < 0}
the Grassmannian of negative definite planes. It can be endowed with a complex
structure and has complex dimension n. For a vector v ∈ L with q(v) > 0 the real
analytic submanifold

Dv = {z ∈ D | z ⊥ v}
has real dimension (and codimension) n. For a neat arithmetic subgroup Γ ⊆
SO(L), the quotient Cv,0 = Γv\Dv can be embedded into Γ\D, so that we obtain a
submanifold, which can be endowed with a natural orientation. Given a Schwartz
function ϕ ∈ S(L⊗ Af ) that is fixed by Γ, we define the weighted cycle

Cm,0 =
∑

v∈Γ\L⊗Q
q(v)=m

ϕ(v)Cv,0,

called special cycle or Kudla–Millson cycle. The chosen Schwartz function ϕ and
the arithmetic subgroup Γ will always be implicit in the notation. Integrating a
compactly supported cohomology class η ∈ Hn

c (Γ\D) over this cycle yields, by
Poincaré duality a cohomology class that we will also denote Cm,0 ∈ Hn(Γ\D) and
we denote the corresponding pairing by (η, Cm,0).

In [1], Funke and Millson promoted these special cycles for all k ∈ N to Funke–
Millson cycles Cm,k ∈ Hn(Γ\D, Vk) with coefficients in the local system associated
to a Γ-module Vk and proved the following generalization of the results of Kudla–
Millson [3].

Theorem 1 ([1]). The geometric theta function

Θk(τ) =
∑

m∈Q>0

Cm,ke(mτ), e(x) = e2πix, τ ∈ H
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is a cusp form for some congruence subgroup of SL2(Z) with values in Hn(Γ\D, Vk),
i.e. for all η ∈ Hn

c (Γ\D, V ∗k ) the function

(η,Θk(τ)) =
∑

m∈Q>0

(η, Cm,k)e(mτ)

is a modular form and we call the map η 7→ (η,Θk(τ)) the Funke–Millson lift.

This is a cohomological version of the result by Oda [4], who generalized work
of Shintani [5] from signature (2, 1) to general signature (2, n), see [2] for the
signature (2, 1) case. The aim of the talk was to explain a Λ-adic version of this
theorem.

Therefore, let Λ = Zp[[Z
×
p ]] = lim←−n

Zp[Z
×
p /(1 + pnZp)]. It has the universal

property

Homcont.grp.(Z
×
p ,Q

×
p ) = Homcont.alg.(Λ,Qp).

In particular, the continuous group homomorphism t 7→ tk induces a continuous
algebra homomorphism λk : Λ → Qp for all k ∈ N. Moreover, we will fix an

embedding Qp ⊆ C.

Theorem 2. There is a Λ-module V with specialization maps

Hn(Γ\D,V)→ Hn(Γ\D,Vk)
such that for a certain choice of Schwartz function ϕ ∈ S(L⊗Af ) and arithmetic
subgroup Γ ⊆ SO(L) there is a cohomology class Cm ∈ Hn(Γ\D,V) which is
mapped to Cm,k under the specialization map for all k ∈ N.

We call the cohomology class Cm of the theorem a Λ-adic family of Funke–
Millson cycles.

Further, there is another Λ-module D given by Zp-valued measures and special-
ization maps

Hn
c (Γ\D,D)→ Hn

c (Γ\D,V ∗k ), η 7→ ηk

for all k ∈ N. The following theorem yields a Λ-adic Funke–Millson lift.

Theorem 3. There is a pairing

Hn
c (Γ\D,D)×Hn(Γ\D,V)→ Λ

which satisfies
λk((η, Cm)) = (ηk, Cm,k) ∈ Qp ⊆ C.

In particular, the formal power series

Θ(τ) =
∑

m∈Q>0

Cme(mτ) ∈ Λ[[e(τ)]]

is a Λ-adic family of modular forms with values in Hn(Γ\D,V) in the sense that
for all k ∈ N and all η ∈ Hn

c (Γ\D,D) the function

λk((η,Θ(τ))) =
∑

m∈Q>0

λk((η, Cm))e(mτ) =
∑

m∈Q>0

(ηk, Cm,k)e(mτ) = (ηk,Θk(τ))

is a modular form.
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Murmurations

Min Lee

(joint work with Jonathan Bober, Andrew R. Booker, Claire Burrin, Vivian
Kuperberg, David Lowry-Duda, Catinca Mujdei, Hsin-Yi Yang)

The notion of “Murmurations,” originally describing the cloud-like movements of
flocks of birds, is now used for phenomena related to elliptic curves and, more
generally, families of L-functions. He, Lee, Oliver and Pozdnyakov considered
the following average associated with elliptic curves and discovered that it shows
cloud-like oscillating patterns [2]:

1

#Er[N1, N2]

∑

E∈Er[N1,N2]

ap(E),

where Er[N1, N2] is the set of elliptic curves (ordered by the size of the conductor)
of rank r, conductor N ∈ [N1, N2], and ap(E) = p+ 1−#E(Fp) for primes p not
dividing N . They named the pattern “murmurations” and sought mathematical
explanations. Further numerical experiments followed [4], and the following were
observed.

(1) There is a correlation of ap(E) with the root number of E (not just rank).
(2) It is scale-invariant – the prime p should be scaled relative to the conductor

N .
(3) Murmuration is a more general phenomenon – it occurs in families of L-

functions.

In his letter to Zubrilina and Sutherland [3], Sarnak explained the murmuration
phenomena – a phase transition in the 1-level density of the low-lying zeros of
these families.

For this talk, we focused on the murmurations of modular forms in different
aspects.
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For an even positive integer k and a positive integer N , let Hk(N) be an orthog-
onal basis of holomorphic cuspidal newforms of weight k and level N , consisting
of Hecke eigenfunctions. For primes p not dividing N , let λf (p) be the pth Hecke
eigenvalue of f ∈ Hk(N). By Weil, we know that the Ramanujan–Petersson con-
jecture is true in this case, so |λf (p)| = Of (1). Let ǫf ∈ {−1, 1} be the root

number of f . The L-function of f has conductor of size N
(
k−1
4π

)2
.

In 2023 [5], Zubrilina achieved a breakthrough on the murmuration problem,
proving the murmurations of modular forms in the level aspect. Fix k ∈ 2Z> 0.
Let X , Y and P be parameters → ∞ with P prime. Assume that Y = (1 +
o(1))X1−δ2 and P ≪ X1+δ1 for 0 < 2δ1 < δ2 < 1 and let y = P

X . Then

∑
N∈[X,X+Y ]
square-free

∑
f∈Hk(N) ǫfλf (P )

√
P

∑
N∈[X,X+Y ]
square-free

∑
f∈Hk(N) 1

=Mk(y)+Oε

(
X−min{ δ2

2 ,
1+δ2

2 }+δ1+ε+P−1
)
,

where

Mk(y) =
12

(k − 1)
∏

p(1− (p2 + p)−1)

{∏

p

(
1 +

p

(p+ 1)2(p− 1)

)√
y

+(−1) k
2−1

∏

p

(
1− p

(p2 − 1)2

) ∑

1≤r≤2√y

c(r)
√

4y − r2Uk−2

(
r

2
√
y

)
− δk=2πy

}
.

Here Uk−2(cos θ) =
sin((k−1)θ)

sin θ is the Chebyshev polynomial and

c(r) =
∏

p|r

(
1 +

p2

(p2 − 1)2 − p

)
.

On the other hand, in 2023, Bober, Booker, Lowry-Duda and myself proved the
murmurations of modular forms in the level aspect. Our motivation, suggested by
Sarnak in a workshop at ICERM (July 2023), was to explore murmurations of non-
arithmetic families of L-functions. As Sarnak observed in his letter [3], since the
size of the family is small compared to the conductor in this case (in the level aspect∑

N≤X #Hk(N) = O(X2) and in the weight aspect
∑

k2≤X #Hk(1) = O(X)), we
needed to take an extra average over primes n.

We proved the following result. Assume Generalised Riemann Hypothesis
(GRH) for L-functions of Dirichlet characters and modular forms. Fix ε ∈ (0, 1

12 ),

δ ∈ {0, 2} (index for the root numbers, i.e., ǫf = (−1)δ for f ∈ Hk(1) with
k ≡ 2δ mod 4) and compact interval E ⊂ R>0, |E| > 0. Let K, H ∈ R>0 with

K
5
6+ε < H < K1−ε and set N =

(
K−1
4π

)2
. As K →∞, we have

∑
n prime

n
N ∈E

logn
∑

k≡2δ mod 4
|k−K|≤H

∑
f∈Hk(1)

λf (p)

∑
n prime

n
N ∈E

logn
∑

k≡2δ mod 4
|k−K|≤H

∑
f∈Hk(1)

1
=

(−1)δ√
N

(
ν(E)

|E| + oE,ε(1)

)
,
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where

ν(E) =
1

ζ(2)

∗∑

a,q∈Z,(a,q)=1,
q2

a2 ∈E

µ(q)2

ϕ(q)2σ(q)

q3

a3

=
1

2

∞∑

t=−∞

∏

p|t

p2 − p− 1

p2 − p

∫

E

cos

(
2πt√
y

)
dy.

Here the ∗ means terms are occurring at the end points of E are halved.
Finally, and most recently, at the workshop WINE 5 (Women In Numbers in

Europe 5) this August, Burrin, Kuperberg, Mujdei, Yang and myself proved the
murmurations of modular forms in the “depth aspect,” suggested by Booker in his
talk at RIMS in 2023.

We proved the following result. Let ℓ > 2 be a prime. Assume GRH for L-
functions of Dirichlet characters. Fix a compact interval E ⊂ R>0 with |E| > 0.
As e→∞, we have

∑
n prime

n

ℓ2e+1 ∈E
logn

∑
f∈Hk(ℓ2e+1) ǫfλf (n)

√
n

∑
n prime

n

ℓ2e+1 ∈E
logn

∑
f∈Hk(ℓ2e+1) 1

=
1

|E|
24(−1) k

2+1

π(k − 1)

∏

p

p(p2 − p− 1)

(p2 − 1)(p− 1)

×
∫

E

∑

t∈Z
|t|<2ℓx

cℓ(t)

ℓ− 1

∏

p|ℓt

(
p2 − p

p2 − p− 1

)√
4ℓ2x− t2Uk−2

(
t

2
√
ℓx

)
dx

+Oε,k,ℓ,E(ℓ
− e

5+ε).

The methods are all based on the Eichler–Selberg trace formula.
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Mahler measure and special values of L-function: Deninger’s
cohomological method

Jungwon Lee

(joint work with Wei He)

The Mahler measure is defined, for a Laurent polynomial P ∈ C[x±1 , · · · , x±n ] with
complex coefficients, by

(1) m(P ) =
1

(2πi)n

∫

Tn

log |P (x1, · · · , xn)|
dx1
x1
· · · dxn

xn

where T n denotes the real n-torus.
The quantity m(P ) naturally arises from the diverse contexts in number theory

or dynamical system, for instance as a height function on polynomials or a topo-
logical entropy. Here, we focus on its mysterious connection to special values of
L-functions.

One of the first relations between Mahler measure and special L-values goes
back to Smyth and Boyd, who discovered

m(1 + x+ y) = L′(−1, χ3),

m(1 + x+ 1/x+ y + 1/y) = rE · L′(0, E),

where χ3 : (Z/3Z)× → C× is the unique non-trivial Dirichlet character modulo 3,
E is an elliptic curve of conductor 15 defined by the given equation and rE ∈ Q×.
There have been numerous such instances, which precisely take the form:

(2)
L′(0)
m(P )

∈ Q×

where P ∈ Q[x±1 , x
±
2 ], and either L(s− 1, χ) or L(s) = L(s, E). See [5, 2].

Naturally this lead to several questions, e.g. given a Laurent polynomial P , can
we determine which L-function is related to m(P )? Conversely, given a Dirichlet
character or an elliptic curve, is the special L-value always related to the Mahler
measure of one or more polynomials? In general, these questions are out of reach.

In this note, we discuss the breakthrough work of Deninger, which partially and
theoretically confirms an answer in the case of elliptic curves. We then describe
our result that is a generalisation of Deninger’s cohomological method for Dirichlet
characters.

1. Deninger’s method

We briefly outline the work of Deninger, later further refined by the work of Besser–
Deninger.

In [3], Deninger showed that if P does not vanish on T n, then the Mahler
measure of P can be viewed as a Deligne period of the motive ZP associated to
the variety defined by P = 0. This implied that the value is related to the Beilinson
regulator map, hence to L-values.
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Let P ∈ C[x±1 , · · · , x±n ] be a non-zero Laurent polynomial and set P ∗ to be the
leading coefficient of P as a polynomial in xn. Let ZP ⊂ Gn

m,C be the zero locus

of P and AP := {|z1| = · · · = |zn−1| = 1, |zn| ≤ 1} be the subspace.

• Suppose P ∗ 6= 0 on T n−1, applying Jensen’s formula, we have

m(P ) = m(P ∗)− 1

(2πi)n−1

∫

AP

log |xn|
dx1
x1
∧ · · · ∧ dxn

xn
.

Denote by ηP the smooth differential form in the integration.
• Reinterpret the integration as a period pairing of ηP and AP . To do so,
one has to consider Zreg

P ⊂ ZP on which ηP is a closed form and AP is
compactly embedded. Then the integral becomes

〈rD({P, x1, · · · , xn}), [AP ]⊗ (2πi)1−n〉
where rD denotes the Beilinson regulator applied to a motivic cohomology
class induced by P and log |xi|. Abusing the notation, denote by rD this
pairing in the below.

This suggests that given P satisfying certain non-vanishing assumptions, the
Mahler measure is given by the regulator map, accordingly related to certain L-
function associated to the motive defined by P . Conversely, given an arithmetic
object, one can try to find a corresponding polynomial in this cohomological con-
text. Indeed, in [1], they proved that there exists PE ∈ Q[x1, x2] that corresponds
E/Q with CM by imaginary quadratic fields of class number 1 and with technical
assumptions such that

(3) m(PE)−m(P ∗E) = rE · L′(0, E), rE ∈ Q×.

2. Result

We now state our main result, which is a GL1-analogue of (3) for Dirichlet L-
values. The proof rests on Deninger’s foundational work described in Section 1
with an appropriate choice of the polynomial and motive attached.

LetH∗M andH∗D denote the Motivic and Deligne cohomology group respectively.

Theorem 1 (He.-L [4], 2025). There exists Ψ := ΨN ∈ Z[x1, x2] associated to
N -th cyclotomic polynomials such that the regulator map

rD : H2
M (ZΨ, ∂AΨ,Q(2))→ H2

D(ZΨ, ∂AΨ,R(2))
1

2πi

∫
AP−−−−−→ C

is given by

rD({Ψ, x1, x2}) = m(Ψ)−m(Ψ∗) =
∑

χ∈Ĝ

rχ · L′(−ε, χ)

where G = Gal(Q(µN )/Q), ε = 0 when χ is even and ε = 1 when χ is odd.

Then we have a natural short exact sequence

(4) 0→ H1
M (XΨ,Q(2))→ H2

M (ZΨ, ∂AΨ,Q(2))i=−1 → H1
M (YΨ,Q(1))→ 0



2094 Oberwolfach Report 38/2025

induced from the long exact sequence of relative motivic cohomologies for some
suitable integral models XΨ and YΨ of Spec(Q(µN )), where i is induced by the
involution on (ZΨ, ∂AP ) from the interchange of two variables.

Theorem 2 (He.-L [4], 2025). Under certain Q-linear independence assumption
on partial L-values at 0 and −1, we have a canonical splitting

H2
M (ZΨ, ∂AΨ,Q(2))i=−1 ∼= H1

M (XΨ,Q(2))⊕H1
M (YΨ,Q(1))

of the exact sequence (4) that is compatible with the regulator maps.

Thus we have an induced G-module structure on H2
M and for each χ ∈ Ĝ, we

have rD({Ψ, x1, x2}χ) = rχ · L′(−ε, χ).
Concluding remarks.

In Theorem 1, we remark that it is given by a linear combination of L-values,
contrast to the Besser–Deninger formula. This appearance is essentially due to
the Galois conjugate structure in our GL1 setting.

In Theorem 2, we show that one can extract the single L-values by splitting
the exact sequence under extra Q-linear independent assumption. Hence it also
strongly suggests an answer to the converse question; Given a Dirichlet character
χ modulo N , it is likely to have some Ψχ

N ∈ L[x1, x2] such that m(Ψχ) is related
to L′(−1, χ), where L is a number field containing the Hecke field Q(χ).
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Analytic properties of the Dedekind zeta function over Zp-extensions

Dohyeong Kim

(joint work with Harin Jung)

Let p be a prime and L/K a Zp-extension of number fields. For each n ≥ 0, the

extension L/K has a unique subextension of degree pn which we denote by L(n).
The p-primary subgroup of the ideal class group of L(n) shall be denoted by An.
Iwasawa’s celebrated theorem asserts that there is a strong regularity among An’s.
Precisely, he showed that there are three integers µ, λ and ν, with µ, ν ≥ 0, such
that the size of An is pen with en = µpn + λn+ ν, for all sufficiently large n.

Are there other regularities in Zp-extensions? Our aim is to exhibit a regularity

among the Dedekind zeta functions of L(n)’s by studying the asymptotic behavior
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of the Euler–Kronecker constants along Zp-extensions. The aforementioned con-
stant generalizes the better-known constant γ named after Euler and Mascheroni,
which admits a concise definition:-

γ := lim
n→∞

((
1 +

1

2
+ · · ·+ 1

n

)
− logn

)
.

Approximately, one has γ ≈ 0.577. Ihara [1] introduced an invariant γF ∈ R for a
number field F in a way that implies γQ = γ. The definition of γF is as follows.
Consider the Dedekind zeta function ζF (s), which is given by the Dirichlet series
– convergent when the real part of s is greater than 1 –

ζF (s) =
∑

a

N(a)−s

where a runs over the set of all nonzero integral ideals of F . Here, N(a) denotes
the norm of a. It is well-known that ζF (s) has a meromorphic continuation to
s ∈ C and has a unique pole at s = 1 which is simple. Therefore, the Laurent
series expansion at s = 1 takes the form

ζF (s) =
c−1
s− 1

+ c0 + · · · .

From the Laurent series expansion, one simply defines γF := c0/c−1, which we call
the Euler–Kronecker constant of F .

What kind of arithmetic information does γF encode? Ihara, based on his
explicit formula for γF , could justify the phenomenon that γF tends to be located
near −∞ when F has many primes of small norms. At this point it is instructive
to consider Q(ζm), where m ≥ 1 is an integer and ζm a primitive m-th root of
unity. It seemed “fairly likely” that γQ(ζm) > 0 always holds [1]. However, it was
discovered later [2] that γQ(ζm) ≈ −0.1823 when m = 964477901. Moreover, the
Hardy–Littlewood conjecture predicts that such negative values occur infinitely
often [2]. Nevertheless, the same conjecture predicts that the positivity holds with
density one. See [2] for a further discussion.

We would like to explore the connection between the sign of γF and the pres-
ence of many primes of small norms from a different perspective. Instead of asking
whether γF > 0 holds, one may consider two number fields F1 and F2 for which
one asks whether the difference γF1 − γF2 is positive. Here one may impose the
condition that F1 and F2 have the same degree and their discriminants are com-
parable. Then one may put forward the working hypothesis: γF1 − γF2 is positive
if F2 has more primes of small norm than F1 has.

Our main result supports the above working hypothesis. To state it, we need
to recall some standard notions about Zp-extensions. First, we recall that Q has a
unique Zp-extension which we denote byQcyc and call the cyclotomic Zp-extension.

Its n-th layer Q
(n)
cyc is the unique subextension of degree pn in Q(ζpn+1). For any

number field K, define Kcyc to be the compositum of K and Qcyc, which is a Zp-
extension of K. We call it the cyclotomic Zp-extension of K. On the other hand,
if L/K is a Zp-extension and there is a subfield K ′ ⊂ K of degree two such that
L/K ′ is Galois with a non-abelian Galois group, then we call L/K a Zp-extension
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of anti-cyclotomic type. Such extensions exist, for example, if K contains a totally
imaginary extension of a totally real field, also known as a CM field. If K is totally
real, the Leopoldt conjecture for K is equivalent to the assertion that there is
only one Zp-extension which must be the cyclotomic Zp-extension. The Leopoldt
conjecture is known if K is abelian over Q but not known in general. Having
recalled the necessary notions about Zp-extensions, we proceed to point out a
key difference between the cyclotomic and anticyclotomic ones. In the cyclotomic
Zp-extension, no primes split completely. In contrast, in any Zp-extension of anti-
cyclotomic type half of the primes in K split completely. Combining it with the
working hypothesis, one obtains a concrete statement, which we were able to prove
albeit conditionally.

Theorem. Assume the generalized Riemann hypothesis. If K is a number field
and L/K is a Zp-extension of anti-cyclotomic type, then

γ
K

(n)
cyc

> γL(n)(1)

for all sufficiently large n.

Our proof uses the explicit formula of Ihara and, therefore, relies on the gener-
alized Riemann hypothesis.

To conclude, we would like to remind the reader of the Iwasawa’s formula for
size of p-primary class groups along a Zp-extension. Our result shows that such
regularities is not contrained to the p-primary class groups and can be found
among the Euler–Kronecker constants. The author speculates that the observed
regularity among the Euler–Kronecker constants is an evidence for other patterns
to be found among the Dedekind zeta functions of layers of a Zp-extension.

References

[1] Yasutaka Ihara, On the Euler-Kronecker constants of global fields and primes with small
norms In: Ginzburg, V. (eds) Algebraic Geometry and Number Theory. Progress in Math-
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Distribution of Manin’s iterated integrals

Morten S. Risager

(joint work with Y. Petridis and Nils Matthes)

Consider f1, . . . , fl holomorphic cusp forms of weight 2 for the congruence group
Γ0(q). Manin [5] considered iterated integrals

Iba(f1, . . . , fl) =

∫ b

a

f1(z1)

∫ z1

a

f2(z2)

∫ z2

a

f3(z3) · · ·
∫ zl−1

a

fl(zl)dzldzl−1 · · · dz1

https://doi.org/10.1007/978-0-8176-4532-8_5
 https://doi.org/10.1090/S0025-5718-2013-02749-4


Cohomology Theories for Automorphic Forms and Enumerative Algebra 2097

These are fascinating generalizations of the classical modular symbols, and they
have many properties analogous to multiple zeta values; for instance they satisfy
the following shuffle product relation

(1) Iba(f1, . . . , fl) · Iba(fl+1, . . . , fl+m) =
∑

σ∈Σl,m

Iba(fσ(1), . . . , fσ(l+m))

where Σl,m is the set of permutations σ on l +m elements satisfying

σ−1(1) < · · · < σ−1(l) and σ−1(1 + l) < · · · < σ−1(m+ l).

One also shows that if a = i∞ and b = γ(i∞) where γ ∈ Γ0(q) they are equal to
the central value of a certain multiple L-series twisted by an additive character.
Let

T (M) = {ac ∈ Q ∩ [0, 1) : c ≤M, q|c, (a, c) = 1}.
We study the asymptotic behavior asM goes to infinity of the random variable

(2) ZM (A) =
{ac ∈ T (M) :

˜
I
a
c
i∞(f1, . . . , fl) ∈ A}

#T (M)

where
˜
I
a
c
i∞(f1, . . . , fl) =

(
vol(Γ0(q)\H)

8 log c

)l/2

I
a
c
i∞(f1, . . . , fl)

is a normalization of the iterated integral, and A is a Borel set.
If one specializes to l = 1 which is the case of the classical modular symbols,

then we prove the following results

Theorem 1. Let l = 1 and assume that the Petersson norm of f equals ‖f‖ = 1.
Then ZM converges in distribution to the complex Gaussian, i.e. the random

variable Z with density 1
π e
−|z|2 .

This theorem was conjectured by Mazur and Rubin [7], and proved by Petridis
and Risager [9]. Different proofs were given by Constantinescu [3], Sun and Lee
[10], Bettin and Drappeau [1], Nordentoft [8], and Matthes and Risager [6]. It
was furthermore extended to general weight by Nordentoft [8] and by Bettin and
Drappeau [1], to Bianchi groups by Constantinescu [3], and to Maass forms by
Drappeau and Nordentoft [4].

For l = 2 the situation is not as precisely understood.

Theorem 2 (Matthes-Risager [6]). Let l = 2. The random variable ZM converges
in distribution to a radially symmetric distribution Zf1,f2 which depends only on
the Gram matrix {〈fi, fj〉}i,j=1,2 of the Petersson inner products of f1, f2.

We know the precise form of Zf1,f2 only in two extreme cases:

(1) If f1 = f2 with ‖fi‖ = 1 then Zf1,f2 has the Kotz-type distribution with

density 1
π|z|e

−2|z|. This follows from the shuffle relation which gives that

in this case Iba(f1, f1) = Iba(f1)
2/2, and the Kotz-type distribution is the

square of the complex Gaussian.
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(2) If f1,f2 forms an orthonormal set then Zf1,f2 has distribution function

1

4

∫ 1

0

1

y(1− y)
sinh

(
π|z|

2
√

y(1−y)

)

cosh2

(
π|z|

2
√

y(1−y)

)dy.

Proving this involves proving a non-trivial identity relating shuffling coef-
ficients to Euler numbers.

For l = 3 we understand even less

Theorem 3 (Matthes-Risager [6]). Let l = 3. All asymptotic moments of ZM

exist and are finite, and there exists at least one (but possibly infinitely many)
radially symmetric distributions with these moments.

Unfortunately we do not know convergence in distribution to any of the possible
limit distributions indicated in Theorem 3, except in the case of f1 = f2 = f3 with
‖fi‖ = 1 when ZM converges in distribution to the Kotz-type distribution with
distribution function

12

π

e−|6z|
2/3

|6z|4/3 .

This distribution function is known to be indeterminate, i.e. there are infinitely
many distribution functions with the same moments as this distribution.

To prove the above theorems we compute all asymptotic moments of ZM , but
for the method of moments to apply these asymptotic moments should determine
a unique distribution; as the f1 = f2 = f3 case shows this is not the case in general.
It would be interesting to see if Stein’s method would allow us to determine the
distribution.

To compute the moments we investigate a twisted Eisenstein series defined by
Chinta, Horozov, and O’Sullivan [2]. By analyzing the analytic properties and
the Fourier coefficients of these twisted Eisenstein series we obtain asymptotic
formulas for the moments of ZM .
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On completeness of Poincaré series for SU(2, 1)

Roberto J. Miatello

In the paper [2] we define and study generalized Poincaré series on the Lie group
SU(2, 1) and prove completeness results in spaces of cusp forms.

Classically, the idea of a Poincaré series is to take as a germ a simple function
h on a space X and to form the sum of transformed functions x 7→ ∑

γ∈Γ h(γx).
If this sum converges absolutely one has a Γ-invariant function on X . Poincaré
(1882) used this idea to construct what he called fonctions thêtafuchsiennes.

For the well-known cuspidal Poincaré series in the theory of holomorphic mod-
ular forms, the germ h(z) = e2πinz , n ∈ Z≥1 on the upper half-plane is invariant
under the transformation z 7→ z + 1. With a suitable automorphy factor, it leads
to series that converge absolutely, where the sum is over Γ∞\SL2(Z), and Γ∞ is

generated by ±
(
1 1
0 1

)
. Petersson (1932) showed that the non-zero series of this

type span the spaces of holomorphic cusp forms.
Now, the function

hs(x+ iy) = e2πinx y1/2 Is−1/2(2π|n|y)
on the complex upper half-plane, with Is−1/2 an exponentially increasing modi-
fied Bessel function, is an eigenfunction of the hyperbolic Laplace operator on the
upper half-plane H and, for Re s > 1, the sum

∑
γ∈Γ∞\SL2(Z) hs(γz) converges

absolutely and defines a real-analytic Maass form with exponential growth. The
resulting family of functions, called real-analytic Poincaré series, have a meromor-
phic continuation to the complex plane and the spaces of Maass cusp forms are
spanned by residues of these families. (See Neunhöffer [5], Niebur [6].)

In [8], by extending the work of Neunhöffer ([5]) and Niebur ([6]) for G =
SL(2, R) to semisimple Lie groups of real rank one, Miatello and Wallach defined
families of Poincaré series attached to a unitary character χ of Γ∩N \Γ. For such
a group G = NAK and χ a unitary character of Γ ∩N \N , set

(1) Mχ(ξ, ν, g, φ) =
∑

γ∈Γ∩N\Γ
Mχ(ξ, ν, γg, φ)

for Mχ(ξ, ν, g, φ) an eigenfunction of the Casimir operator on G, ξ ∈ M̂ and
Re(ν) > ρ. It was proved that such a series is absolutely convergent for Re(ν) > ρ
and extends meromorphically to C, with possible simple poles at spectral values
of ν. By taking the residues at these poles and certain special values, one obtains
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square integrable automorphic forms. By computing the inner product of such
a residue or value with a square integrable automorphic form f one obtains a
non-zero multiple of cχ(f), the χ-Fourier coefficient of f . As a consequence, by
collecting the residues and values of the family Mχ(ξ, ν, g, φ) one can detect all
automorphic forms f such that cχ(f) 6= 0 for the given χ.

This method yields most square integrable automorphic forms for the group
G = SO(n, 1), since the unipotent subgroup N is abelian. However, for other
real rank one groups such as SU(n, 1) and Sp(n, 1), there are many non-zero
automorphic forms for which all Fourier coefficients cχ(f) are equal to zero, and
hence cannot be detected by using a series as above. This happens, for instance,
for automorphic forms f in the holomorphic and antiholomorphic discrete series
for the group SU(n, 1), for n ≥ 2 (see Gelbart-Piatetski-Shapiro [4]).

In recent years, in collaboration with Roelof Bruggeman we have constructed, in
the particular case of the group G = SU(2, 1), a complete set of automorphic forms
by means of generalized Poincaré series. For this purpose, we defined Poincaré
series attached to each irreducible, unitary, infinite dimensional representation of
the unipotent subgroup N (not just unitary characters) with the goal of detecting
all square integrable Γ-automorphic forms on G.

Then, for each N a realization of an irreducible unitary representation of N in
L2(Γ ∩N \N), in [1] we constructed a family MN (ξ, ν, g, φ) of eigenfunctions of
the Casimir operator of G, and defined a Poincaré series of the form

MN (ξ, ν, g, φ) =
∑

γ∈Γ∩N\Γ
MN (ξ, ν, γg, φ).

Furthermore, we give the meromorphic continuation of the family and we prove
that the poles are simple (except possibly for ν = 0, that is a double pole) and
occur at spectral parameters of square integrable representations. These Poincaré
series have in general exponential growth.

In [2] we use results on abelian and non-abelian Fourier term modules obtained
in [1] to compute the inner product of truncations of these series with square in-
tegrable automorphic forms, in connection with their Fourier expansions. As a
consequence, we obtain general completeness results for SU(2, 1) that, in partic-
ular, generalize those valid for the classical holomorphic (and antiholomorphic)
modular forms.

We do expect that an extension of this method applied to a similar family,
should hold for SU(n, 1) for all values of n and, possibly, also for all real rank one
groups.
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On bases of alternating and cyclotomic multiple zeta values in
positive characteristic

Bo-Hae Im

(joint work with Bo-Hae Im, Hojin Kim, Khac Nhuan Le, Tuan Ngo Dac,
Lan Huong Pham)

In this talk, we completely establish, for all positive integer N, Zagier-Hoffman’s
conjectures for Nth cyclotomic multiple zeta values in positive characteristic. By
working with the tower of all cyclotomic extensions, we present a proof that is uni-
form on N and give an effective algorithm to express any cyclotomic multiple zeta
value in the chosen basis. This generalizes all previous work on these conjectures
for MZV’s and alternating MZV’s in positive characteristic [2].

Let q be a power of a prime number p, and let Fq denote the finite field with q
elements. Carlitz introduced analogues of the classical Riemann zeta function in
this setting, leading to the notion of MZVs in positive characteristic. These values
have been extensively studied due to their connections to arithmetic geometry and
transcendence theory.

Let A = Fq[θ] be the polynomial ring in the variable θ over a finite field k :=
Fq of q elements and characteristic p > 0. We denote by A+ the set of monic
polynomials in A. Let K = Fq(θ) be the fraction field of A equipped with the
rational point ∞. Let K∞ = k((1/θ)) be the completion of K at ∞, and let C∞
be the completion of a fixed algebraic closure K̄ of K at ∞.

We fix N ∈ N and denote by kN ⊂ k the cyclotomic field over k generated by
a primitive Nth root of unity ζN . The group of Nth roots of unity is denoted by
ΓN , whose cardinality is denoted by γN . We put

AN = kN [θ], KN = kN (θ), and KN,∞ = kN ((1/θ)).

Cyclotomic MZVs extend classical MZVs by incorporating Nth roots of unity.
For ǫ1, . . . , ǫr ∈ΓN , the group ofNth roots of unity, and positive integers n1, . . . , nr

with (nr, ǫr) 6= (1, 1), one defines
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ζ

(
ǫ1 . . . ǫr
n1 . . . nr

)
=

∑

0<k1<···<kr

ǫk1
1 . . . ǫkr

r

kn1
1 . . . knr

r
,

where ki are integers.
The main focus of this work is to provide a complete description of the vector

spaces spanned by these cyclotomic MZVs, confirming the positive characteristic
analogues of the Zagier-Hoffman conjectures.

Hoffman-like Basis ([3, Theorem A]). For each positive integer N and weight
w, let CSN,w denote the vector space over KN spanned by all Nth cyclotomic
MZVs of weight w and let CSN,w be the subset consisting of cyclotomic Carlitz

multiple polylogarithms Li

(
ǫ1 . . . ǫr
n1 . . . nr

)
such that q ∤ ni for all i. Then, CSN,w

forms a basis of CNN,w.

Dimension Formula - Zagier-type ([3, Theorem B]). Let dN (w) denote the
dimension of CSN,w. Then we find an explicit recurrence formula for dN (w) as
follows:

dN (w) =





1 if w = 0,

γN (γN + 1)w−1 if 1 ≤ w < q,

γN ((γN + 1)w−1 − 1) if w = q,

γN

(∑q−1
i=1 dN (w − i)

)
+ dN (w − q) if w > q.

The main ingredients of the proofs include the following:

• Anderson t-motives and Carlitz modules: These structures provide a
natural framework to encode the arithmetic of cyclotomic MZVs.
• ABP criterion (Anderson–Brownawell–Papanikolas): A central tool for
establishing linear independence of MZVs. It can be stated as follows:

Theorem 1 (ABP Criterion [1, Theorem 3.1.1]). Let Φ ∈ Matℓ(K̄[t]) be a
matrix such that

det Φ = c(t− θ)s
for some c ∈ K and s ∈ Z≥0. Let ψ ∈ Matℓ×1(E) (see [3, §1.1] for E) be a
vector satisfying

ψ(−1) = Φψ

and let ρ ∈Mat1×ℓ(K̄) be such that

ρψ(θ) = 0.

Then there exists a vector P ∈Mat1×ℓ(K̄K[t]) such that

Pψ = 0 and P (θ) = ρ.

Treating all cyclotomic extensions together allows a uniform approach to arbi-
trary N and yields explicit formulas expressing any cyclotomic MZV in terms of
the basis.
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On local submodule zeta functions of nilpotent incidence algebras

Bianca Marchionna

(Local) submodule zeta functions. The submodule zeta functions of non-
unital matrix algebras E ≤ Matn(Z) encode, within a Dirichlet series, how the
number of E-invariant Z-submodules of Zn grows by their index. In detail, for
every m ≥ 1, let am(E y Zn) be the number of Z-submodules L ≤ Zn which are
E-invariant, i.e., L ·ξ ⊆ L for every ξ ∈ E , and have index m in Zn. The submodule
zeta function of E y Zn is the following Dirichlet series in the complex variable s:

ζEyZn(s) :=

∞∑

m=1

am(E y Zn)m−s.

The polynomial growth of
(
am(E y Zn)

)
m≥1 in m guarantees the absolute con-

vergence of the series above in some non-empty half-plane {s ∈ C | ℜ(s) ≥ α}.
The previous notions can be extended verbatim by replacing the coefficient

ring Z with any unital commutative ring R for which
(
am(E y Rn)

)
m≥1 grows

polynomially in m. A remarkable case in which this holds is when R is the ring Zp

of p-adic integers. One refers to local submodule zeta functions whenever one deals
with ζEyZn

p
(s) for some E ≤ Matn(Zp) and some prime p. The Euler product

decomposition

(1) ζEyZn(s) =
∏

pprime

ζE⊗ZpyZn
p
(s),

links the relevant submodule zeta functions over Z and over every localisation of Z
at a prime ideal, i.e., over Zp for every prime p.

The study of local submodule zeta functions is generally more favourable than
the corresponding ”integral counterpart”. A motivation is their expression via
p-adic integrals. Following [3], for every Zp-algebra E ≤ Matn(Zp) one has

(2) ζEyZn
p
(s) =

1

(1− p−1)n
∫

VE

n∏

i=1

|xii|s−idµ(x), ℜ(s) ≥ n

where VE is the set of all upper triangular matrices x ∈ Trn(Zp) such that Zn
px

is E-invariant in Zn
p , and µ is the probabilistic Haar measure on Trn(Zp). The

fact before is heavily based on the compactness of Zp and the presence of a Her-
mite normal form for matrices over Zp. The expression in (2) may be helpful
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for performing some explicit computations for small values of n. Du Sautoy and
Grunewald [2] observed that p-adic cone integrals (as the one in (2)) determine
rational functions in p−s with integral coefficients. In our case, this implies that
(am(E y Zn

p ))m≥1 satisfies a linear recurrence and provides a meromorphic con-
tinuation of ζEyZn

p
(s). However, deriving an explicit formula for this rational

function necessitates a resolution of singularities, which makes the problem con-
sistently challenging in general. Alongside this approach, Rossmann [5, 6] and
Voll [8] introduced other effective methods based on the theories of generating
functions of rational cones and Bruhat–Tits buildings, respectively. These facil-
itate the production of explicit formulae when E varies within specific classes of
(usually nilpotent) algebras (cf. [1, 5, 6, 7, 9]).

The difficulty of finding general formulae remains one of the primary obstacles
in the study of submodule zeta functions. However, some general patterns have
begun to surface. For instance, Rossmann [5, Conj. IV] conjectured that, whenever
E is nilpotent, the value at s = 0 of ζEyZn

p
(s)/ζ{0}yZn

p
(s) does not depend on E .

Below, we outline a proof of a weaker version of this conjecture for nilpotent
incidence algebras, using an approach that avoids direct computations.

The case of nilpotent incidence algebras. Nilpotent incidence matrix alge-
bras are defined by means of finite natural posets. A finite poset P = (P,≤P )
with P ⊆ {1, . . . , n} (possibly empty) and n ∈ Z≥1, is natural if i ≤P j implies
i ≤ j. Given P as before and a ring R, the nilpotent incidence R-algebra EP,n(R)
associated to P and n is the following algebra of strictly upper triangular matrices:

EP,n(R) := {x ∈Matn(R) | xij 6= 0⇒ i �P j}.

Inspired by (2), we introduce a multivariate version of ζEyZn
p
(s) for any E ≤

Matn(Zp) via the p-adic cone integral

(3) ζEyZn
p
(s1, . . . , sn) :=

1

(1− p−1)n
∫

VE

n∏

i=1

|xii|si−idµ(x),

and obtain the following.

Theorem 1 ([4]). For every finite natural poset P = (P,≤P ) with P ⊆ {1, . . . , n}
for some n ≥ 1, and for every prime p, one has
(4)

lim
sn→0

(
· · ·
(

lim
s2→0

(
lim
s1→0

(1− p−s1)ζEP,n(Zp)yZn
p
(s1, . . . , sn)

))
· · ·
)

=

n−1∏

i=1

1

1− pi .

To prove (4), we first recursively describe the set VEP,n(Zp). Based on this, we

introduce a sequence of functions
(
fi(si, . . . , sn)

)
1≤i≤n, defined as appropriate p-

adic cone integrals, such that f1(s1, . . . , sn) represents the general term of the limit
in (4) and, for every 1 ≤ i ≤ n− 1,

fi(si, . . . , sn) = (1− pi−si)−1fi+1(si+1, . . . , sn).
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A straightforward computation allows us to express the function fn(sn) explicitly,
leading to the conclusion. Finally, if the following limit exists

lim
(s1,...,sn)→(0,...,0)

(1− p−s1)ζEP,n(Zp)yZn
p
(s1, . . . , sn),

– an assumption supported by all the examples we can compute – then Theorem 1
implies that Rossmann’s conjecture [5, Conj. IV] holds for EP,n(Zp).
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Reduced and topological zeta functions in enumerative algebra

Tobias Rossmann

Setup. Let (an)n≥1 be a sequence of numbers attached to an instance of an al-
gebraic counting problem. Classical examples are obtained by letting an denote
the number of subgroups or subalgebras of index n in a given group G or alge-
bra A, respectively, or by taking an to be the number of irreducible representations
G → GLn(C), counted up to suitable equivalence. A common theme in enumer-
ative algebra is to study such sequences by means of the associated global zeta
function Z(s) =

∑∞
n=1 ann

−s. Under suitable assumptions, this series will admit
an Euler product decomposition Z(s) =

∏
p Zp(s), where p ranges over primes

and the local zeta function at p is Zp(s) =
∑∞

k=0 apkp−ks. Subject to further as-
sumptions on the shapes of the Zp(s), the reduced and topological zeta functions
Zred(T ) and Ztop(s) are two related but subtly different rational functions obtained
by taking limits of Zp(s) as “p→ 1”.
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Topological zeta functions. Informally, the topological zeta function Ztop(s) ∈
Q(s) is the constant term of (1 − p−1)eZp(s) as a power series in p − 1. Here,
the exponent e ∈ Z depends both on the counting problem and on the particular
instance. In a surprising number of cases of interest, the local zeta functions
Zp(s) are (almost) uniform in the sense that there exists a single rational function
W (X,T ) ∈ Q(X,T ) such that Zp(s) = W (p, p−s) for (almost) all primes p. In
such cases, we formally expand W (p, p−s) using the binomial series p−s = (1 +
(p− 1))−s =

∑∞
m=0

(−s
m

)
(p− 1)m and we obtain Ztop(s) as indicated above.

The key difficulty in rigorously defining topological zeta functions is to over-
come the restriction to (almost) uniform cases. The dependence of Zp(s) on p is
often governed by a formula of a type that first appeared in work of Denef [1,
§3]. In these cases, there are schemes V1, . . . , Vr (over Z) and rational func-
tions W1(X,T ), . . . ,Wr(X,T ) such that for almost all primes p, we have Zp(s) =∑r

i=1 #Vi(Fp)Wi(p, p
−s). Using such a formula, Denef and Loeser [2] gave a rig-

orous definition of the topological zeta functions associated with a polynomial.
The functions Wi(p, p

−s) are again expanded using the binomial series. Using
ℓ-adic interpolation arguments based on Grothendieck’s trace formula, the limit
of #Vi(Fp) as “p → 1” is χ(Vi(C)), the topological Euler characteristic of the
complex analytic space attached to Vi. By [10, §3], in almost uniform cases, our
informal approach agrees with the rigorous one.

In [3], Denef and Loeser gave another, independent description of the topologi-
cal zeta function associated with a polynomial by means of a suitable specialisation
of the associated motivic zeta function. In [5, §8], du Sautoy and Loeser defined
topological subalgebra zeta functions by specialising motivic ones, having intro-
duced the latter in the same paper. An ℓ-adic approach to topological subobject
zeta functions based on [2] was developed in [8, §5].

Global and local subalgebra zeta functions. Subalgebra zeta functions were
introduced by Grunewald, Segal, and Smith [7, §3]. For the remainder of this
abstract, let A be a (not necessarily associative) Z-algebra whose underlying Z-
module is free of finite rank d. Let an(A) denote the number of subalgebras B of
A of additive index |A : B| = n. Let ZA(s) =

∑∞
n=1 an(A)n

−s be the associated
(global) subalgebra zeta function. By the Chinese remainder theorem, we obtain
an Euler product ZA(s) =

∏
p Z

A
p (s) as above. The local subalgebra zeta function

Z
A
p (s) enumerates subalgebras of the Zp-algebra A ⊗ Zp. In [4], du Sautoy and

Grunewald established Denef-style formulae for local subalgebra zeta functions
associated with a fixed algebra A. Voll [12, Thm A] established a local functional
equation of subalgebra zeta functions under “inversion of p” of the form

(⋆) Z
A
p (s)

∣∣∣
p←p−1

= (−1)dp(d2)−ds · ZA
p (s).

Voll’s proof relied on a delicate interplay of (a) the functional equations sat-
isfied by Hasse-Weil zeta functions of smooth projective varieties and (b) a self-
reciprocity property of generating functions enumerating lattice points within cer-
tain cones. Part (a) is explained by Poincaré duality in ℓ-adic cohomology while
Stanley [11, Ch. I] elegantly explained (b) in terms of local cohomology.
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Reduced and topological subalgebra zeta functions. Using our informal
approach, the topological subalgebra zeta function ZA

top(s) ∈ Q(s) is the constant

term of (1− p−1)dZA
p (s) as a series in p− 1. Introduced by Evseev [6], the reduced

subalgebra zeta function ZA
red(T ) ∈ Q[[T ]] ∩ Q(T ) is obtained by viewing ZA

p (s)

as a series in T = p−s and applying a limit “p → 1” to its coefficients. In
(almost) uniform cases in which Z

A
p (s) =W (p, p−s) for (almost) all p, the reduced

subalgebra zeta function is given by ZA
red(T ) =W (1, T ).

Upon taking the limit “p → 1”, Voll’s local functional equation (⋆) implies
that ZA

red(T ) satisfies the self-reciprocity identity ZA
red(T

−1) = (−1)dT d · ZA
red(T ),

a property reminiscent of Hilbert series of graded Gorenstein algebras.

Conjectures. Reduced and topological zeta functions are seemingly quite dif-
ferent invariants. Both constructions are, however, conjecturally related by the
“coincidence conjecture” below. We first recall the following conjecture which
predicts the vanishing order of topological subalgebra zeta functions at infinity.

Degree conjecture ([8, Conj. I]). deg(ZA
top(s)) = −d.

Evseev [6, Prop. 4.1] showed that if A admits a particular type of basis, then
there exists a d-dimensional cone C ⊂ Rd

≥0 such that the reduced zeta function

ZA
red(T ) is the (coarse) Hilbert series of the affine monoid algebra Q[C∩Zd]. Using

the explicit description of C by Evseev, results from combinatorial commutative
algebra (see [11, Ch. 1]) show that Q[C ∩ Zd] is Gorenstein.

Hilbert series conjecture (Voll). There exists a (natural, meaningful) N0-
graded Gorenstein algebra of dimension d whose Hilbert series is ZA

red(T ).

WhileVoll’s Hilbert series conjecture has been informally shared with researchers
for quite some time, it took more cautious forms in the published literature. In-
spired by the preceding two conjectures, define

mtop(A) := s−dZA
top(s

−1)
∣∣∣
s=0

, mred(A) := (1− T )dZA
red(T )

∣∣∣
T=1

.

The topological degree conjecture is equivalent to mtop(A) being nonzero and
finite. Similarly, if the Hilbert series conjecture is true, then ZA

red(T ) has a pole of
order d at T = 1 whence mred(A) is nonzero and finite.

Coincidence conjecture. mred(A) = mtop(A) and the common value is a posi-
tive rational number.

While the preceding conjecture has been informally communicated for at least
a decade, to the best of the author’s knowledge, it too has not, so far, been
formally stated as such in a published document. This notwithstanding, apart from
the numerical evidence provided by computer calculations [8, 9], the coincidence
conjecture has been verified for some families of algebras; see e.g. [13, §3.4].
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Traces of Hecke operators via hypergeometric character sums

Wen-Ching Winnie Li

(joint work with Jerome Hoffman, Ling Long, Fang-Ting Tu)

The eigenvalues of Hecke operators Tp convey important arithmetic information
about modular forms. We are interested in explicit formulae for the traces of Tp on
the space Sk+2(Γ) of cusp forms of weight k+2 ≥ 3 for a congruence subgroup Γ of
SL2(R), assuming the Shimura canonical model for the modular curveXΓ is defined
over Q. This includes cusp forms for elliptic modular groups Γ commensurable
with SL2(Z) and modular forms for cocompact groups Γ commensurable with the
norm 1 subgroup O1

B of a maximal order OB of an indefinite nonsplit quaternion
algebra B defined over Q.

This was previously done for Γ0(2), Γ0(4), Γ0(8), SL2(Z), Γ0(3), and Γ0(9) us-
ing the Selberg trace formula. We obtain explicit Hecke trace formulae in terms
of hypergeometric character sums for certain arithmetic triangle groups Γ of type
a) or b) explained below. Our geometric approach gives a unified treatment for
Γ elliptic modular, including aforementioned groups, and Γ arising from the in-

definite quaternion algebra B6 =
(
−1,3
Q

)
over Q with discriminant 6. The same

method can also be applied to obtain eigenvalues of the Hecke operators. As an
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application, Hecke traces for congruence subgroups Γ′ not of type a) or b) can also
be obtained as long as the modular curve XΓ′ is defined over Q and there is an
explicit Q-rational covering map from XΓ′ to XΓ for some Γ of type a) or b).

Geometric interpretation of traces of Hecke operators and our approach.
Using the moduli interpretation of XΓ, Deligne [2] for Γ non-cocompact and Ohta
[6] for Γ cocompact constructed, for each prime ℓ, an automorphic ℓ-adic sheaf
V k(Γ)ℓ on XΓ ⊗ Q̄ which provided the following geometric interpretation of the
Hecke traces. It was due to Deligne [2] for Γ elliptic modular and Ohta [7] for Γ
quaternionic.

Theorem 1. Given a prime ℓ, for all primes p 6= ℓ where XΓ has good reduction,
we have

Tr(Tp | Sk+2(Γ)) = Tr(Frobp | H1
ét(XΓ ⊗Q, V k(Γ)ℓ)).

Combined with the Grothendieck-Lefschetz fixed point formula, we obtain a
geometric interpretation of the Hecke trace in terms of the sum of Frobenius traces:

−Tr(Tp | Sk+2(Γ)) =
∑

λ∈XΓ(Fp)

Tr(Frobλ | (V k(Γ)ℓ)λ̄).(1)

Here

Tr(Frobλ | (V k(Γ)ℓ)λ̄) = Tr(Frobp | (V k(Γ)ℓ)λ̄′)

for any algebraic point λ′ on XΓ which reduces to λ modulo a degree-1 prime P

above p.
For contributions in (1) from generic points λ ∈ XΓ(Fp), the computation is

further reduced to that on V 1(Γ)ℓ for Γ elliptic modular not containing -Id, and
V 2(Γ)ℓ for Γ containing -Id.

Our strategy is to find suitable groups Γ such that either V 1(Γ)ℓ or V 2(Γ)ℓ is
isomorphic, up to a rank-1 twist, to the hypergeometric sheafH(HD(Γ))ℓ attach to
a hypergeometric datum HD(Γ) introduced by Katz in [4, 5] and further extended
by Beukers, Cohen and Mellit in [1] for which the Galois action on a stalk has
Frobenius traces explicitly expressed by hypergeometric character sums.

The groups we consider. Let e1, e2, e3 be elements in Z>0 ∪ {∞}. Defined in
terms of generators and relations, an arithmetic triangle group

(e1, e2, e3) := 〈g1, g2, g3 | ge11 = ge22 = ge33 = g1g2g3 = id〉

can be realized as a discrete subgroup Γ of PSL2(R) acting on H. The modular
curve XΓ is a hyperbolic triangle with three vertices vi fixed by elements of order
ei. If ei =∞, then vi is a cusp of Γ, otherwise vi is an elliptic point of order ei.

The concerns on the required properties of the hypergeometric sheaves over
Q on XΓ led us to the seven Γ = (e1, e2, e3) listed below; those of type a) are
isomorphic to a subgroup of SL2(Z) not containing -Id, while those of type b)
are projective groups, which, for the sake of modular forms, may be regarded as
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subgroups of SL2(R) containing - Id:

Type a) (3,∞,∞) ≃ Γ1(3), (∞,∞,∞) ≃ Γ1(4);

Type b) (2,∞,∞) ≃ Γ0(2)/{±Id}, (2, 3,∞) ≃ PSL2(Z),

(2, 4,∞) ≃ 〈Γ0(2), w2〉/{±Id} = Γ0(2)
+/{±Id},

(2, 6,∞) ≃ 〈Γ0(3), w3〉/{±Id} = Γ0(3)
+/{±Id},

(2, 4, 6) = 〈O1
B6
, w2, w3, w6〉/{±Id}.

Here w2, w3, w6 are Atkin-Lehner involutions.

Statements of main results. To each of the above seven groups Γ, we associate
a primitive hypergeometric datum HD(Γ) = {α(Γ), β(Γ)} as follows.

Γ (3,∞,∞) (∞,∞,∞) (2,∞,∞) (2, 3,∞) (2, 4,∞) (2, 6,∞) (2, 4, 6)

α(Γ) { 13 , 23} { 12 , 12} { 12 , 12 , 12} { 12 , 16 , 56} { 12 , 14 , 34} { 12 , 13 , 23} { 12 , 14 , 34}
β(Γ) {1, 1} {1, 1} {1, 1, 1} {1, 1, 1} {1, 1, 1} {1, 1, 1} {1, 56 , 76}

Since each datum HD(Γ) is defined over Q, for each prime p and λ ∈ F×p ,
Beukers, Cohen and Mellit defined in [1] the hypergeometric character sum
Hp(HD(Γ), λ) using Gauss sums. We shall express Tr(Tp, Sk+2(Γ)) in terms of
these hypergeometric character sums according to the type of Γ.

Theorem 2. [3] Let Γ ∈ {(3,∞,∞), (∞,∞,∞)} be a group of type a). Then for
all integers k ≥ 1 and a prime p where XΓ has good reduction, we have

−Tr(Tp, Sk+2(Γ)) =
∑

λ∈F×
p ,λ6=1

⌊k/2⌋∑

j=0

(−1)j
(
k − j
j

)
pj ·Hp (HD(Γ); 1/λ)

k−2j
+EΓ(p, k),

where

E(∞,∞,∞)(p, k) = 1 +

(−1
p

)k

+
1 + (−1)k

2
,

and

E(3,∞,∞)(p, k) = 1 +

(−3
p

)k

+

+





0 if p ≡ −1 mod 3, k odd,

(−p)k/2 if p ≡ −1 mod 3, k even,

(−1)k
∑

0≤i≤k

k≡2i mod 3

pi · Jω
(
1

3
,
1

3

)k−2i
if p ≡ 1 mod 3,

in which F̂×p = 〈ω〉 and Jω(a, b) =
∑

x∈Fp
ω(p−1)a(x)ω(p−1)b(1−x) is a Jacobi sum.
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To state our results for groups of type b), for integers m ≥ 1, let Fm(S, T ) be
the degree−m polynomial in S and T defined by the recursive relation

Fm+1(S, T ) = (S − T )Fm(S, T )− T 2Fm−1(S, T ), F0(S, T ) = 1, F1(S, T ) = S.

Theorem 3. [3] Let Γ ∈ {(2,∞,∞), (2, 3,∞), (2, 4,∞), (2, 6,∞), (2, 4, 6)} be a
group of type b). Then each elliptic point z of XΓ is a CM point by an imaginary
quadratic field Kz = Q(

√
dz) as follows:

Γ (2,∞,∞) (2, 3,∞) (2, 4,∞) (2, 6,∞) (2, 4, 6)√
dz
√
−4, -, -

√
−4,
√
−3, -

√
−8,
√
−4, -

√
−3,
√
−3, -

√
−24,

√
−4,
√
−3

Denote by N(z) its order. Let p be a prime where XΓ has good reduction. Then
for each even integer k ≥ 2 we have

−Tr(Tp, Sk+2(Γ)) =
∑

λ∈F
×
p ,λ 6=1

Fk/2(aΓ(λ, p), p)+
∑

z∈XΓ(Fp) cusp

1+
∑

z∈XΓ(Fp) elliptic

EΓ(z, p, k),

where

aΓ(λ, p) =







(

1−1/λ
p

)

Hp(HD(Γ), 1/λ) if Γ 6= (2, 4, 6),
(

−3(1−1/λ)
p

)

pHp(HD(Γ), 1/λ) if Γ = (2, 4, 6),

and

EΓ(z, p, k) =

{

(−p)k/2 if p is inert in Kz,
∑

− k
2N(z)

≤i≤ k
2N(z)

pk/2(α2
N(z),p/p)

iN(z) if p splits in Kz.

In the latter case, upon picking any prime ideal p of the ring of integers of Kz above
p, αN(z),p can be chosen as any generator of the principal ideal p when N(z) > 2.

When N(z)= 2, α2
N(z),p can be taken as any root of T 2−

(
−3
p

)u
puHp(HD(Γ); 1)T+

p2 = 0, where u = 1 if Γ = (2, 4, 6), and u = 0 else.
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On deformations of modular forms and extensions of symmetric tensor
representations

Gabriele Bogo

In the 1880s, Poincaré envisioned the possibility of describing algebraic curves
using curvilinear polygons in the complex plane–an intuition that would later
(in 1907) lead to the uniformization theorem for Riemann surfaces. As a conse-
quence of the uniformization theorem, every Riemann surfaceX (except for P1(C),
C, and C\{0}) has the upper half-plane H as its universal covering, and the curvi-
linear polygon associated with X is a fundamental domain for the action of the
(Fuchsian) deck group Γ of the covering H→ X . Poincaré’s early attempts toward
the uniformization theorem focused on the explicit construction of a (multivalued)
inverse η : X → H to the covering map H→ X , based on the known relationship,
explored by Schwarz, Klein, and others, between conformal maps and differential
equations (see [5] for the history of the uniformization theorem)

Let us restrict to the case of genus zero Riemann surfaces, i.e., punctured
spheres. Let

(1) X = P1(C) \ {∞, 1, 0, a1, . . . , an} , ai ∈ C \ {0, 1} , ai 6= aj if i 6= j ,

The (multivalued) map η : X → H must satisfy two assumptions: each single-
valued determination of η is a local biholomorphism; different branches of η are
interchanged by Möbius transformations. Such map arise as the ratio of linearly
independent solutions of the linear differential equation

(2) P (t)
d2y(t)

dt2
+ P ′(t)

dy(t)

dt
+

n∑

j=0

λj · y(t) = 0 , P (t) = t(t− 1)
n∏

i=1

(t− ai) ,

where λ0, . . . , λn are complex parameters called accessory parameters. The ac-
cessory parameters problem asks to find the unique set λF = (λF0 , . . . , λFn) of
accessory parameters such that the ratio of independent solutions of (2), seen as

a single-valued function on the universal covering X̃ of X , gives an identifica-

tion X̃ ≃ H. Up to now, nobody has been able to determine the correct choice of
parameters in general, and the accessory parameters problem remains wide open.

Which are the consequences of the right choice of accessory parameters? First,
the image of the monodromy representation π1(X, x0) → GL2(C) is a Fuchsian
group Γ ⊂ SL2(R) of the first kind (choices of accessory parameters not “too
far” from the correct values still give an uniformization of X , but in terms of quasi-
Fuchsian groups [1]). Second, the lift of a holomorphic solution of (2), seen as a
function f on H, is a modular form of weight 1 (possibly with non-trivial multiplier
system) on the group Γ. The q-expansion of f at a cusp can be computed from
the holomorphic solution of (2) via manipulation of power series. Let y1(λ, t)
and y2(λ, t) = log(t)y1(λ, t) + ỹ2(λ, t) be the local solutions in t = 0, where we
consider λ = (λ0, . . . , λn) as parameters. Define

Q(λ, t) := exp(y2(t)/y1(t)) = t+ · · · , t(λ,Q) = Q+ · · · ,
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where t(λ,Q) has been obtained by formally inverting the series Q(λ, t) with re-
spect to the variable t. Substitute finally t(λ,Q) into y1(λ,Q) to get

(3) f(λ,Q) = y1(λ, t(λ,Q)) =

∞∑

m=0

fm(λ)Qm ,

where fm(λ) is a polynomial in λ0, . . . , λn for every m ≥ 0. By specializing to the
correct values λF of the accessory parameters in the Q-expansion of f(λ,Q) we
get the q-expansion of a modular form. For instance, if X = P1(C)\{∞, 1, 0, 1/9},
then n = 1 and λ0 = 1 and λ1 = 1/3, and Q = q = e2πiτ for τ ∈ H, and

(4) f((1, 1/3), Q) = 1 + 3q + 3q2 + 3q3 + · · · ∈M1(Γ1(5)) .

In [2] a numerical method to compute the accessory parameter in the case of sphere
with 4 punctures (i.e., the case n = 1) is described, based on the modularity
of f(λ,Q) for the correct determination of λ.

In my talk, I discussed certain deformation operators on the space of modular
forms, defined in terms of accessory parameters. The deformation operators can be
described in terms of deformation of complex structures and Teichmüller theory;
the interested reader can find this description in Section 2.3 of [3].

Let X be a punctured sphere as above, let f(λ,Q) be as in (3) and let f(τ) =
f(λF , Q) ∈M1(Γ). For j ∈ {1, . . . , n} (notice that the case j = 0 is not included)
define

(5) ∂jf(τ) :=
∂f(λ,Q)

∂λj

∣∣∣
λ=λF

.

The deformations can be extended to the space of modular forms M∗(Γ). We first
look at how the deformation ∂ = ∂1 acts on the example (4) related to Γ1(5). We
find, for f = f((1, 1/3), q) in (4), that

(6) ∂f = 9q +
153

2
q2 + 105q3 +

543

4
q4 +

36057

200
q5 + · · · .

An immediately noticeable difference between (4) and (6) is the appearance of
denominators in the coefficients of the latter. Where do they come from? From
the Eichler integral of a cusp form h ∈ S4(Γ).

Theorem 1 (Theorem 1, [3]). Let X = P1(C) \ {∞, 1, 0, a1, . . . , an} be as in (1),
and let Γ be its uniformizing Fuchsian group. For j = 1, . . . , n let ∂j denote the
deformation operator (5) . There exist cusp forms h1, . . . , hn ∈ S4(Γ) such that,
for every f ∈Mk(Γ) it holds

∂jf = kfh̃′j + 2f ′h̃ = [f, h̃j]1 ,
′ = q

d

dq

where h̃j is the Eichler integral of the cusp form hj, i.e., if hj =
∑

m≥1 hj,mq
m,

then h̃j =
∑

m≥1
hj,m

m3 q
m. Here [ , ]1 denotes the first Rankin-Cohen bracket.

Cusp forms of weight four should be interpreted as quadratic differentials on the
Riemann surface X . The space S4(Γ) of quadratic differentials is the cotangent
space to the Teichmüller space of (n+ 3)-punctured spheres at the point X . This
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space governs the deformation of complex structure of X , and this explains the
appearance of weight four cusp forms in the action of the deformation operators.

Another aspect I discussed in my talk is the modularity of ∂jf . The proof of
Theorem 1 shows that deformations are related to differential operators of higher
order obtained by composition of second-order linear differential operators. Their
monodromy is an extension of standard representations of Γ. It is therefore reason-
able to expect ∂jf to have some modularity property as a vector-valued modular
form with respect to extensions of standard representations of Γ (or their sym-
metric powers Symn(C2)). This is precisely what happens.

Let pj(γ; τ) = rj,2(γ)τ
2+rj,1(γ)τ +rj,0(γ) be the period polynomial of h̃j. The

polynomial pj(γ, τ) measures the failure of the modularity of hj : for every γ ∈ Γ

h̃j(γτ) · (cτ + d)−2 − h̃j(τ) = pj(γ, τ) , γ =

(
a b
c d

)
.

Consider the class [vj0,2] ∈ Ext1Γ(Sym
0(C2), Sym2(C2)) represented by

(7) γ =

(
a b
c d

)
7→ vj0,2(γ) =




1 rj,2(γ) rj,1(γ) rj,0(γ)
0 a2 2ab b2

0 ac ad+ bc bd
0 c2 2cd d2


 .

Theorem 2 (Proposition 4 in [3]). The vector ~∂jf

~∂jf =




∂jf
τ2f ′ + 2τf
τf ′ + f
f ′


 ,

defines a vector-valued modular form for the representation vj0,2.

Final remarks. The two theorems show that infinitesimal deformations of the un-
derlying complex structure send modular forms to vector-valued modular forms
attached to extensions defined by periods of cusp forms of weight four.

In a recent work [6], A.Keilthy and M.Raum defined and studied the deforma-
tions ∂j from a cohomological perspective, and relate them to motivic periods.
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Vector-valued modular forms and two connections to cohomology

Martin Raum

(joint work with Michael Mertens, Tobias Magnusson)

The transformation behavior of modular forms can be described by a represen-
tation. In the most classical setting, a modular form is fixed by the slash action
of SL2(Z) on functions f : H→ C:

f |k γ = f .

In an alternative point of view, if f 6= 0 the one-dimensional space C f is a right-
representation for SL2(Z) that is trivial. Slightly more generally, if f is a modular
form for, say, a Dirichlet character χ modulo N , then

f |k γ = χ(γ) f , χ
((

a b
c d

))
= χ(d).

In other words, if f 6= 0 then C f is isomorphic to the one-dimensional represen-
tation

Γ0(N) −→ U1(R) ⊂ GL2(C),
(
a b
c d

)
7−→ χ(d).

Vector-valued modular forms f : H → V (ρ) for a representation ρ of SL2(Z)
with representation space V (ρ) are associated with the modular covariance condi-
tion

f |k γ = ρ(γ) ◦ f .
The case of one-dimensional ρ corresponds to classical, scalar-valued modular
forms. Higher-dimensional representations that are commonly encountered in-
clude the Weyl representations associated with integral quadratic forms of even
rank and inductions of characters.

The space of components of f
{
λ ◦ f : λ ∈ V (ρ)∨

}

is isomorphic to a quotient of the dual ρ∨ of ρ. If ρ has finite index kernel, it
consists of modular forms for ker(ρ). That is, vector-valued modular forms in
these cases help to organize relations among modular forms, but do not give rise
to genuinely new kinds of modular forms.

This remains mostly true for the symmetric powers symd of the standard rep-
resentation of SL2(R). We realize this representation on complex polynomials of
degree at most d in a formal variableX endowed with the slash action of weight−d.
In this realization, we find modular forms

(X − τ)d,
which are modular covariant of weight −d under the whole Lie group SL2(R). This
yields an injection

Mk+d −→ Mk

(
symd

)
, f 7−→ (X − τ)d · f .
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We introduce a vector-valued raising operator that in combination with this em-
bedding for k > d yields a decomposition

Mk

(
symd

) ∼=
d⊕

j=−d
j≡d (mod 2)

Mk+j .

The exceptional cases k ≤ d can be accommodated by the modular forms
(
(X − τ)E2 +

6i
π

)d ∈ Md

(
symd

)
,

where E2 is the quasi-modular, holomorphic Eisenstein series of weight 2.
Building upon symmetric power representations, we investigate modular forms

for their extension classes: virtually real-arithmetic types. Their simplest variant
fits into a short exact sequence

0 −→ symd −→ ρ −→ symd
′ −→ 0.

We demonstrate that, in contrast to the other examples given above, they ac-
commodate variations of modular forms that are usually not considered as mod-
ular forms. In particular, mock modular forms and higher order modular forms
are components of modular forms of virtually real-arithmetic type. Further, all
truncations of Brown’s universal iterated integral are modular forms of virtually
real-arithmetic type.

To illustrate the use of the presented formulation, we highlight a relation be-
tween multiple L-values, which appear as components of modular forms for two
different virtually real-arithmetic types. We link them to each other via a suit-
able homomorphism of representations and deduce a relation between them from
a vanishing statement for modular forms.

Computing cohomologies of coherent sheaves

Lakshmi Ramesh

(joint work with Janko Böhm, Santosh Gnawali)

We aim to compute objects that are isomorphic to each graded part of the coho-
mology modules, Hi(Pn,F(d)), the dth graded part of the ith cohomology module.
We are interested in obtaining the cohomology numbers

hi(Pn,F(d)),(1)

or the dimensions of each graded part.
In this talk, we discuss a correspondence, shown by Eisenbud, Fløystadt and

Schreyer in [1], between the Tate resolution of a moduleM over the graded polyno-

mial ring and the cohomology of the corresponding coherent sheaf M̃ over projec-
tive space. Thus, one can compute the cohomology numbers from 1 by computing
the Tate resolution of a representing module.

The Tate resolution is a doubly infinite exact sequence of modules over the
exterior algebra. The only non-trivial aspect of computing it is in the computation
of the minimal free resolution of a module over the exterior algebra. I present a
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sketch of the algorithm presented by Janko Böhm and myself in [2], which uses a
modification of the Schreyer theorem to a non-commutative case, and the theory
of relative Gröbner bases. This algorithm has been implemented in Singular [3],
and can be found in the library sresext.lib.

We adapted the refined Schreyer algorithm to compute free resolutions, pre-
sented by Erocal, Motsak and Schreyer in [4], to the case of non-commutative
modules. Thus, the algorithm in [2] is in fact parallelisable. In ongoing work with
Santosh Gnawali and Janko Böhm, we use the massively-parallel framework of
GPI-Space and its interface with Singular [5] to implement an algorithm for
parallel computations. This work is based on the algorithm for massively parallel
computations of free resolutions of modules over a polynomial ring by Gnawali in
[6].
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Problem session

Chaired by Jens Funke. Notes by individual presenters.

1. Martin Raum: Iterated integrals and polyharmonic Maass forms

Mock modular forms yield important generating series of combinatorial origin.
Many of their properties, such as asymptotic expansions or exact formulas, are
derived via their modular completions. For instance, for a given mock modular
form f+, there exists a companion function f− (subject to natural analytic condi-
tions) such that their sum f+ + f− is modular invariant. These sums are known
as harmonic weak Maass forms.

While the existence of modular completions is the standard way to define mock
modular forms, a more intrinsic characterization exists: it is through the repre-
sentations of the modular group that they generate under the slash action. For
example, in integral weights these representations have finite length, and their com-
position factors extend to the real Lie group. This perspective naturally places
mock modular forms within the context of iterated integrals, which conjecturally
in even integral weights encompass all functions with this property. These can be
viewed as mock modular forms of higher depth.



2118 Oberwolfach Report 38/2025

Harmonic weak Maass forms also admit a representation-theoretic interpreta-
tion via (g,K)-modules. Similar to mock modular forms, the resulting representa-
tions have finite length, and their composition factors are either finite-dimensional
or (limits of) discrete series.

Moving to generalizations, in integral weight iterated integrals connect to mo-
tivic geometry. This connection can be harnessed to extend the concept of modular
completions. From this viewpoint, mock modular forms and their generalizations
are multi-valued periods on a suitable moduli space of elliptic curves, and their
modular completions correspond to the images under the single-valued projec-
tion. This formalism has been explicitly developed in the physics literature. After
a minor adjustment of weights using Maass operators, modular completions are
found to be linear combinations of products of essentially holomorphic and anti-
holomorphic functions. Within the framework of (g,K)-modules, this shows that
modular completions relate to tensor products of Harish-Chandra modules, which
are notoriously difficult to study.

There is also a natural generalization for harmonic weak Maass forms: polyhar-
monic weak Maass forms. Even in the case of Eisenstein series, these forms reveal
special values of derivatives of Dirichlet L-series, making them inherently inter-
esting. They still offer a well-behaved interpretation in terms of (g,K)-modules,
but the representations generated by the modular group are as mysterious as the
tensor products of Harish-Chandra modules encountered with iterated integrals.
At the level of Fourier coefficients, this is reflected by the limited existing results
on the motivic nature of derivatives of L-series.

While at depth 1 we observe a remarkable parallelism between the representa-
tion theory of the modular group and that of the real Lie group associated with
mock modular forms and harmonic weak Maass forms, this picture diverges for
higher-depth examples.

Problem: Connect higher-depth mixed mock modular forms and iterated integrals
to polyharmonic weak Maass forms. Through this connection, explain the shift
from a well-behaved representation theory for the modular group to a well-behaved
representation theory for the real Lie group.

Remark: As a starting point, iterated Eisenstein integrals (from the motivic
perspective) and polyharmonic Eisenstein series (from the analytic perspective)
present the fewest complications. However, it is currently unclear whether they
are directly related, or whether cusp forms and weak forms interfere.

Remark: Generalizations of mock modular forms to higher depth exist in both
integral and half-integral weights. One of the first examples in half-integral weights
has been linked to class numbers for real-quadratic fields. It is therefore natural
to extend the stated problem to the case of half-integral weights. However, even
at depth one, the representation theory of the modular group is more complex as
it involves infinite-dimensional composition factors.
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2. Edgar Assing: How many coefficients of cusp forms are needed?

Let Sk+ 1
2
(4N) denote the space of holomorphic cusp forms of half-integral weight

k + 1
2 for the group Γ0(4N). Each f ∈ Sk+ 1

2
(4N) has a Fourier expansion of the

form

f(z) =
∞∑

n=1

af (n)e
2πinz .

It is now natural to ask: How many of the coefficients af (n) are necessary to
determine the form f uniquely? This question is rather vague and can be made
precise in several ways. We have the following version in mind.

We fix a set X ⊂ N. Given two forms f1, f2 ∈ Sk+ 1
2
(4N) we write f1 ∼X f2

if af1(n) = af2(n) for all n ∈ X . We can restate the question as: For which sets
X ⊆ N does f1 ∼X f2 imply f1 = f2?

A case of historical importance arises when taking X to be the set

Xfd = {|D| : D fundmental discriminant, (−1)kD > 0}.
In this setting the question above has been raised by W. Kohnen (for Hecke eigen-
forms) in [2]. This case has been solved in subsequent works, most notably [1] and
[3].

A very interesting question, which is still open, is if we can take X to be the
set of primes

Xpr = {p : prime}.
In other words, we are asking wheter a form f ∈ Sk+ 1

2
(4N) is determined by its

Fourier coefficients af (p) at primes p ∈ Xpr. Solving this appears to be a hard
problem. While the methods used in the case of Xfd can be extended to handle
almost primes, the prime case seems to require new ideas.

3. Lakshmi Ramesh: Calculating cohomology

Many participants of this workshop used group cohomology theories to understand
automorphic forms and related geometric objects. For a finitely presented group G
and aG−vector spaceM , the softwareGAP can computeH1(G;M). However, for
a general group G, checking if Hk(G;M) = 0 for k ≥ 2 is shown to be undecidable.
There are however special classes of groups for which combinatorial properties may
be used to determine the cohomology numbers hk(G;M). The problem posed is
to identify these groups and these counting problems, and to construct (efficient)
algorithms to compute cohomology numbers.

4. Martin Raum: Siegel modular generating series

The theory of modular forms, particularly its analytic aspects, has been signifi-
cantly impacted by generating series of combinatorial origin. For instance, asymp-
totic and exact formulas for Fourier coefficients of (weakly holomorphic) modular
forms, as well as the study of congruences for Fourier coefficients, have been driven
by connections to integer partitions. Most such generating series yield modular
forms for subgroups of SL2(Z).
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In the case of theta series (a specific type of generating series that tracks vector
lengths in Euclidean lattices) generalization to sublattices yields Siegel modu-
lar forms associated with symplectic groups. The connection between Euclidean
lattices and Siegel modular forms has significantly shaped the field, where the as-
ymptotic behavior of Fourier coefficients has attracted considerable interest. In
return, these results provide excellent bounds for the number of sublattices with
prescribed geometry.

However, there are significantly fewer examples of Siegel modular generating
series compared to classical modular generating series. Beyond theta series, exam-
ples include Borcherds–Kac–Weyl denominator formulas, Kudla generating series,
generating series of Gromov–Witten invariants, and BPS counting functions from
string theory.

Problem: Find natural counting problems in enumerative algebra that yield Siegel
modular forms, and formulate clear questions for the Siegel modular forms com-
munity regarding which properties should be proved about the coefficients.
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