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Abstract. Stein’s method, a powerful tool rooted in probability and sto-
chastic analysis, has recently showcased its efficacy in addressing diverse
challenges encountered in deep learning, optimisation, sampling, and causal
inference. The primary focus of the workshop is to strengthen the proba-
bilistic and analytic foundations of Stein’s method, while simultaneously ex-
ploring novel avenues for its application. Bringing together researchers from
the analysis, probability, statistics, and machine learning communities, who
share a common interest in Stein’s method, the workshop aims to facilitate
idea exchange, tackle open problems, and foster collaborations to advance the
forefront of knowledge in these fields. Of particular importance is the em-
phasis placed on the intersection of these disciplines, where Stein’s method
plays a pivotal role.
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Introduction by the Organizers

The half workshop Stein’s Method in Stochastic Geometry, Statistical Learning,
and Optimisation, organized by Krishnakumar Balasubramanian (Davis), Murat
A. Erdogdu (Toronto), Larry Goldstein (Los Angeles), and Gesine Reinert (Ox-
ford), attracted over 20 researchers worldwide with diverse backgrounds and at
various career stages. After a small number of introductory talks, participants
were encouraged to suggest and form working groups on open problems. These
groups periodically reported back to the workshop at large, sharing progress and
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receiving feedback on possible approaches. At the close of the meeting, partici-
pants arranged modes of continued collaboration to extend their work beyond the
week at Oberwolfach.

Scope and Themes

The workshop explored the rapidly developing interface between Stein’s method
and contemporary problems in stochastic geometry, statistics, and data science.
The central theme was to advance both the analytic foundations of Stein’s method
and its application to pressing questions in diverse areas such as privacy, learning
theory, dependence structures, geometric probability, and approximation theory.
A distinctive feature of the workshop was the breadth of disciplines represented –
ranging from classical probability to current applications in data science – under-
scoring the unifying role Stein’s method can play across these domains.

The working group format proved especially effective in fostering concentrated
discussions and stimulating new directions of research.

Working Groups and Results

Several working groups formed organically over the course of the week:

• Data Privacy. One group investigated how Stein’s method may provide
utility guarantees for differentially private mechanisms. Differential pri-
vacy offers quantitative bounds on the risk of recovering individual items
from a database after a sanitizing mechanism has been applied, with utility
typically measured via distances between the distributions of the original
and sanitized data. For explicit mechanisms such as the exponential, and
under a statistical model for the underlying database, Stein operators can
be employed to analyze the discrepancy between the true and sanitized dis-
tributions. The discussions during the week clarified the potential of this
approach and identified several concrete directions for further research.

• Extensions of Slepian’s Inequality. Considerable progress was made
in extending Slepian’s classical Gaussian comparison inequality to broader
contexts. Building on the interpolation method, the group demonstrated
that an analogous argument can be carried out along trajectories gener-
ated by optimal transport between distributions. This insight opens the
door to comparison principles beyond the Gaussian setting, with potential
implications for dependent structures in high-dimensional statistics and
learning theory.

• Extreme Value Approximations for Geometric Functionals. This
group examined limiting laws for functionals of Poisson processes, focusing
on extreme value behavior. By analyzing a sandbox model with signifi-
cant dependence, the group established what appear to be optimal error
rates in approximating the Gumbel distributional limit. Their approach
combined a direct analysis of the Stein equation for the Gumbel, though
coupling techniques based on fixed-point characterizations were also con-
sidered. The methods developed should generalizable to more complex
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situations, such as the maximum nearest neighbor distances of points of
Poisson process, having applications in high dimensional statistics.

• Dickman Approximation. Another group extended the reach of Dick-
man-type limits by identifying close couplings for the classical case of sums
of weighted indicators that converge to the Dickman distribution. Their
construction enabled sharper Wasserstein-1 distance bounds, improving
upon existing results and suggesting generalizations to broader classes of
combinatorial structures, such as networks that grow over time, such as
those on the web.

• Additional Explorations. Other participants pursued potential charac-
terizations of the uniform distribution on high-dimensional spheres, con-
necting Stein’s method to further geometric techniques. These efforts
underscored the versatility of the method and its adaptability to novel
probabilistic settings.

Concluding Remarks

The workshop was marked not only by technical achievements but also by a lively
spirit of collaboration. The Oberwolfach environment, with its distinctive blend of
intellectual intensity and informal camaraderie, was central to the success of the
meeting. Participants took full advantage of the bicycles, running paths, and the
music room, and many commented on how these activities enriched the scientific
exchanges. The parallel workshop taking place during the same week provided
further opportunities for cross-fertilization of ideas, with several joint discussions
revealing unexpected common ground.

The organizers are especially grateful to the Oberwolfach staff for their out-
standing support, which ensured that all aspects of the workshop ran smoothly.
The atmosphere of openness, curiosity, and collegiality fostered during the week
has already led to concrete collaborations, and we are confident that the Overleaf
projects created by these groups before the end of the meeting will guarantee the
continued interactions of these groups in the future.
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Abstracts

Stein’s Method and Stochastic Geometry

Joseph Yukich

This talk surveys some of the interactions between stochastic geometry and Stein’s
method of normal approximation. The talk reviews the following topics: (i) de-
pendency graphs and their utility in establishing quantitative CLTs (ii) martingale
difference methods (iii) weakly stabilizing Poisson functionals (iv) Malliavin-Stein
methods applied to Poisson functionals (v) stabilizing score functions and the nor-
mal approximation of sums of stabilizing scores in the univariate and multivariate
CLT.

Random Networks: Questions, Models, Approaches.
A brief Overview.

Gesine Reinert

In this talk, first real-life examples of networks are introduced to motivate the
small-world phenomenon. These examples include Padgett’s Florentine family
marriage network, Zachary’s karate club network, a protein-protein interaction
network for yeast, a trade network, a political blog network, and an internet net-
work. In many real-world network, high local clustering jointly occurring with
with relatively short shortest path lengths is observed.

To explain this phenomenon, a range of models are surveyed, such as Bernoulli
random graphs, Watts-Strogatz small world networks, Barabási-Albert models,
configuration models, the Chung-Lu model, geometric random graph models, ex-
ponential random graph models, and duplication-divergence models. Here, new
developments regarding duplication-divergence models with edge deletion are high-
lighted.

Then several approaches for assessing the probabilistic behaviour of local and
global structures in random networks are discussed: Stein’s method for subgraph
counts, percolation for connectedness, branching process approximations for short-
est path lengths, and localisation as well as stabilisation methods for local spatial
statistics. A general question arises: When can we approximate an involved net-
work model by a simpler network model? This is the kind of question which can
often be addressed using Stein’s method. In this talk, for comparing random net-
work models using Stein’s method, first the generator approach, using Glauber
dynamics, is given. Results for approximating exponential random graph models
by Bernoulli random graphs are detailed. Then new results on adapting the Stein
density approach to networks are provided.

The talk touches on some success stories of network analysis: detecting unusual
structures in co-memberships of board of directors in large companies, identifying
essential proteins based on their position in a protein-protein interaction network
(which is relevant in network pharmacology), identifying anomalies in networks of
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financial transactions, and nowcasting GDP from trade flow network data The talk
concludes with an outlook, including issues in time series of networks, hypergraphs,
and spatio-temporal networks.

Learning Quadratic Neural Networks in High-dimensions

Murat A. Erdogdu

We study the optimization and sample complexity of gradient based training of a
two-layer student neural network with quadratic activation function in the high-
dimensional regime, where the input is Gaussian and the response is generated
from a two-layer teacher network with quadratic activation, and the power law
decay on the second layer coefficients. We provide a sharp analysis of the SGD
dynamics in the feature learning regime, and derive scaling laws for the prediction
risk that highlight the power-law dependences on the optimization time, sample
size, and model width.

This result demonstrates the effect of data distribution on neural scaling laws,
and reconciles recent theoretical studies with frontier AI practice. The perfor-
mance of modern AI models critically depends on how computational resources
are allocated – particularly between model size and training duration. Empirical
studies consistently demonstrate a power-law relationship between compute bud-
get and performance: the optimal model size scales as nξ while the loss decreases
as n−η, where n is the total computational budget. These scaling laws offer valu-
able guidance for efficient model design and resource allocation, and have become
central to training large-scale neural networks.

Specifically, our setting allows for an extensive number of signals to be learned
from data, as one would expect to see in practice, and we proved that neural
networks can efficiently recover those signals. Our crucial contribution is that
we present a sharp analysis of the SGD dynamics in the feature learning regime,
and derive scaling laws for the prediction risk that highlight the power-law depen-
dencies on the optimization time, sample size, and model width. This analysis
combines a precise characterization of the associated matrix Riccati differential
equation with novel matrix monotonicity arguments to establish convergence guar-
antees for the infinite-dimensional effective dynamics. The importance of this work
is two-fold: (i) it is the first work to demonstrate scaling laws in the feature learn-
ing regime (ii) it reconciles the practical neural scaling laws behaviour with the
recent single-index/SGD analysis developed by Ben Arous et al.

Stein’s method for spatial random graphs

Leoni Wirth

Spatial random graphs provide an important framework for the analysis of relations
and interactions in networks. In particular, the random geometric graph has been
intensively studied and applied in various frameworks like network modeling or
percolation theory.
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In this talk we focus on approximation results for a generalization of the random
geometric graph that consists of vertices given by a Gibbs process and (cond.)
independent edges generated from a connection function. Using Stein’s method,
we compare this graph model with general spatial random graphs with respect
to general integral probability metrics, providing concrete rates in the case of a
suitable Wasserstein metric. We then present an application of our results to the
soft Boolean model. Finally, we describe how associated kernel Stein discrepancies
can be used for goodness-of-fit testing in the framework of point processes and, as
future work, spatial random graphs.

Stein’s method for the Dickman distribution

Matthias Schulte

(joint work with Chinmoy Bhattacharjee)

The aim of this research is to derive bounds for the Kolmogorov distance between
certain weighted sums of independent random variables and the so-called Dickman
distribution by Stein’s method. The details can be found in the paper [4].

The Dickman function ̺ : [0,∞) → [0,∞) is the solution of the differential
delay equation

x̺′(x) + ̺(x− 1) = 0, x ∈ (1,∞),

with the initial condition ̺(x) = 1 for x ∈ [0, 1] and appeared first in the work
by Dickman on smooth numbers [5]. For independent random variables (Uk)k∈N

uniformly distributed on [0, 1] the random variable

D =

∞
∑

j=1

j
∏

k=1

Uk = U1 + U1U2 + U1U2U3 + . . .

has, surprisingly, a constant times the Dickman function as density. Its distribution
is called the standard Dickman distribution and satisfies the distributional fixed
point equation

D
d
= U(1 +D),

where U is uniformly distributed on [0, 1] and independent of D. More generally,
one says that a random variable Dθ follows a Dickman distribution with parameter
θ ∈ (0,∞) if

Dθ
d
= U1/θ(1 +Dθ)

with U uniformly distributed on [0, 1] and independent of Dθ. For further details
on the Dickman distribution we refer to the survey [10].

The Dickman distribution arises as limiting distribution in different contexts
such as logarithmic combinatorial structures [2], the running time of the Quicks-
elect algorithm [7, 8], or edge-length functionals of the minimal directed span-
ning tree [11]. A typical situation is that, for a fixed θ ∈ (0,∞) and a se-
quence of independent Bernoulli distributed random variables (Bk)k≥⌈θ⌉ such that
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P(Bk = 1) = θ
k for k ≥ ⌈θ⌉,

1

n

n
∑

k=⌈θ⌉

kBk
d

−→ Dθ as n → ∞.

In such cases, we are interested in rates of convergence for the Kolmogorov dis-
tance. The latter is given by

dK(Y, Z) = sup
a∈[0,∞)

|P(Y ≤ a)−P(Z ≤ a)|

for two non-negative random variables Y and Z. One of our main results is as
follows:

Theorem 1 (Theorem 1.1 in [4]). For θ > 0, β ∈ R and n, l ∈ N with n ≥ l ≥ θ−β,
let Wn = 1

n

∑n
k=l kBk with independent Bernoulli distributed random variables

(Bk)k≥l such that P(Bk = 1) = θ
k+β for k ≥ l. Then, there exists a constant

C ∈ (0,∞) depending only on θ and β such that

dK(Wn, Dθ) ≤

{

C(l+|β| log(n/l))
n , θ ≥ 1,

Clθ

nθ , θ ∈ (0, 1).

For θ ≥ 1 the rate of convergence in Theorem 1 slows down for β 6= 0 by
an additional logarithmic factor. By deriving lower bounds for the Kolmogorov
distance, one can show that the bound in Theorem 1 is of optimal order in n.

A result analogous to Theorem 1 remains valid if the underlying independent
Bernoulli distributed random variables are replaced by independent Poisson dis-
tributed random variables with the same parameters. For a similar bound in the
Poisson case we refer to [2, Theorem 11.12]. As its proof relies on properties of the
Poisson distribution, it is unclear if the approach of [2], which also employs Stein’s
method, can be used for weighted sums of Bernoulli distributed random variables.
The works [1, 3, 6] on Dickman approximation via Stein’s method do not consider
the Kolmogorov distance but distances based on smooth test functions.

The idea of Stein’s method for the Dickman distribution (see [2, 6]) is to consider
the Stein equation

x

θ
f ′(x) + f(x)− f(x+ 1) = h(x)−E[h(Dθ)], x ∈ [0,∞),

for a given test function h : [0,∞) → R. For the Kolmogorov distance, one has to
study the case h = 1[0,a] with a ∈ (0,∞). We show that there exists a solution
fa whose derivative has certain boundedness and monotonicity properties. This
allows us to control

∣

∣

∣

∣

E

[

Wn

θ
f ′
a(Wn) + fa(Wn)− fa(Wn + 1)

]∣

∣

∣

∣

.

Since our upper bound on that quantity becomes large for small a, we employ a
lemma that, for a0 ∈ (0,∞),

dK(Wn, Dθ) ≤ sup
a≥a0

|P(Wn ≤ a)−P(Dθ ≤ a)|+Rθ,a0
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with an error term Rθ,a0
depending on θ and a0, and choose a0 as a function of

n. This proof is for the even more general situation that Wn is a weighted sum
of certain independent random variables that are themselves sums of independent
Bernoulli distributed random variables.

Some arguments of the proof are employed in [9], where Dickman approxima-
tion is used to study the content of m-smooth numbers with respect to certain
probability measures.

The minimal directed spanning tree is a spatial random graph whose vertices
are the points of a homogeneous Poisson process ηs with intensity s > 0 on [0, 1]2

and the origin. Each point of ηs is connected by an edge to the closest coordinate-
wise smaller vertex (i.e., its nearest neighbour in the south-west). In [11], it is
shown that sums of powers of the lengths of edges incident to the origin converge
in distribution to a Dickman distribution, i.e.,

∑

x∈ηs

1{0 ↔ x}‖x‖τ
d

−→ D2/τ as s → ∞

for τ > 0, where 0 ↔ x indicates an edge between 0 and x. These edge-length
functionals are not weighted sums of independent random variables. In an ongoing
work, we aim to derive rates of convergence for this limit theorem.
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Kernel Stein discrepancy (KSD) for comparing and
testing distributions

Wenkai Xu

Stein’s method provides a strong ground to compare and bound distributions, e.g.
for normal distributions or Poisson distributions. By considering measures in the
form of Integral Probability Metric (IPM), distribution bounds are provided via
Wasserstein distance, total variation distance, etc. However, the supreme norm
over specified test function class may not be easily achieved/computed in the IPM.
In this talk, we introduce the Reproducing Kernel Hilbert Space (RKHS) as the
test function class to compute the Stein discrepancy in closed-form. The Stein
operator used also enable the KSD to address unnormalized models where com-
puting of partition function is prohibitive. Moreover, we introduce KSD-based
testing procedure beyond Euclidean space, including Riemannian manifold, sim-
plex, and others.

Stein’s method for Fréchet approximation

Yvik Swan

We develop a new approach to quantitative approximation of extreme value laws
in the Fréchet domain using Stein’s method. Building on the generator compar-
ison framework, we derive explicit, tractable bounds on the Kolmogorov, total
variation, and Wasserstein distances between the normalized maximum of i.i.d.
samples and the Fréchet limit. Our bounds are expressed in terms of a Stein-type
discrepancy measuring the deviation from regular variation, and allow for sharp
convergence rates across a wide range of classical distributions. Applications in-
clude detailed analyses of Student-t, Burr, Cauchy, and Pareto maxima.

Normal Approximation for Sums of Scores

Tara Trauthwein

(joint work with Joseph Yukich)

We study functions of Poisson point processes which can be expressed as sums
of scores, i.e. F =

∑

x∈P ξ(x, P ). Under weak conditions on the functions ξ, we
can show quantitative CLTs with good speeds of convergence. The score functions
ξ need to ‘localize’ with high probability, they need to be close in law to the
same function evaluated on a finite but large neighborhood. This is a significantly
weaker requirement than what is known as ‘stabilization’. Our proofs are based
on the Malliavin-Stein method. In particular, we establish a new second-order
Poincaré inequality for the normal approximation of general Poisson functionals
under 4th moment assumptions, a result which extends work from (Last, Peccati,
Schulte 2016) and (Trauthwein 2025). The new bound removes spurious terms
which were present in previous works and adds marks. Applications include local
U-statistics in metric spaces, stabilization in hyperbolic space, random sequential
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adsorption, Spin systems and more. This talk is based on joint work with Joseph
Yukich.

Normal approximation for exponential random graphs

Xiao Fang

(joint work with Song-Hao Liu, Qi-Man Shao, Yi-Kun Zhao)

We use Stein’s method to prove the central limit theorem (CLT) for the total
number of edges in exponential random graph models. As a result of our proof, we
also derive a convergence rate for the CLT, an explicit formula for the asymptotic
variance, and the CLT for general subgraph counts. This is joint work with Song-
Hao Liu, Qi-Man Shao, and Yi-Kun Zhao.

Efficient finite sample guarantees by Gaussian approximation

Morgane Austern

Concentration inequalities for the sample mean, such as those by Bernstein and
Hoeffding, are valid for any sample size but often yield overly conservative confi-
dence intervals. In contrast, the central limit theorem (CLT) provides asymptot-
ically optimal intervals, but these lack validity for finite samples. To bridge this
gap, we develop new computable concentration inequalities with asymptotically
optimal size, finite-sample validity, and sub-Gaussian decay. These results enable
efficient construction of confidence intervals with correct coverage for any sample
size, as well as empirical Berry-Esseen bounds that require no prior knowledge of
the population variance. We achieve these bounds via tight control of non-uniform
Kolmogorov and Wasserstein distances to a Gaussian using zero-bias couplings and
Stein’s method of exchangeable pairs. Complementing these advances, we propose
a computable version of the Komlós–Major–Tusnády (KMT) inequality for par-
tial sums of bounded i.i.d. random variables, addressing its reliance on unknown
constants. By introducing an additional logarithmic factor, our version depends
only on the variables’ range and standard deviation, and we further derive an
empirical variant that achieves nominal coverage without prior knowledge of the
standard deviation. We illustrate the utility of these bounds through applications
to online change point detection and first hitting time probabilities, highlighting
their practicality in real-world scenarios.

Reporter: Tara Trauthwein
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