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ABSTRACT. This workshop explored how modern machine learning can both
accelerate mathematical discovery and preserve rigorous standards. It fo-
cused on three angles: using Al techniques to help mathematicians make
advances on challenging problems; using mathematics to understand Al pre-
dictions; and using deep-learning models for automated theorem proving.
Key discussions included using machine learning as a tool for constructing in-
teresting mathematical constructions and navigating in mathematical search
spaces, to uncover conjectures and high-quality examples (e.g., sphere pack-
ings via DiffuseBoost, combinatorial objects via AlphaEvolve); Integrating
Large Language Models (LLMs) with formal systems (e.g., Lean/mathlib) to
create scalable, certifiable Al-based automated theorem prover; Collabora-
tive formalization (e.g., the Carleson theorem project), autoformalization for
high-quality supervised data, and reinforcement learning/search methods for
proof generation and algorithmic reasoning.
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Introduction by the Organizers

Having intelligent computers able to solve complicated problems on their own has
been a sci-fi fantasy for almost as long as computers have existed. The progress of
Artificial Intelligence (AI), and in particular Deep Neural Networks, in the last 20
years has made this a reality for a number of tasks and has revolutionized some
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areas such as vision [26, 29] or translation and natural language processing [?, 25].
While it is usually conceivable that an Al could translate words, play chess, or
process data as well or better than humans, it has often been hard to believe
that they could perform abstract mathematics on their own. Nevertheless, over
the last few years, works on Al for mathematics have been developing at a rapid
pace and Al techniques have enabled new discoveries in mathematics [9, 12, 31]
in knot theory [21, 9, 15], representation theory [3], partial differential equations
[28], dynamical systems [1], control theory [18, 2] and many others. Interestingly,
in many cases the neural networks involved are relatively small, far from large
language models. This may indicate that neural networks exploit yet unknown
structures and representations, and that understanding their mode of operation
may shed new light on the underlying mathematical problems.

On the other hand, applications of Reinforcement Learning (RL) and Large
Language Models (LLMs) to automated theorem proving have also made drastic
progress in the last six years [24, ?, 22, ?, 7, 32] The tandem workshop Machine
Learning and Al for Mathematics, organized by Frangois Charton (Paris), Jan
de Gier (Melbourne), Amaury Hayat (Paris), Julia Kempe (New-York), Geordie
Williamson (Sydney), aimed at discussing how AI methods can help mathemati-
cian advance mathematics. It was well attended, with over 40 participants. It
focused on three angles:

e Using Al techniques to help mathematicians make advances on hard prob-
lems;

e Using mathematics to understand Al predictions;

e Using deep-learning models for automated theorem proving.

Since neural networks are notoriously good at spotting and learning weak signals
and hidden structures, even in complex problems, they can be trained to suggest
solutions to hard problems or counterexamples to conjectures, in the manner of
an “artificial intuition”. In this workshop we focused on several related lines of re-
search. One considers problem solving as a translation task: the model is trained
from pairs of problems and solutions to translate problems, encoded as a “sen-
tence” (i.e. a sequence of symbols) into their solutions (also encoded as sequences
of symbols), just as they would learn to translate a sentence from one language
to another. A second line of research leverages the ability of machine learning
techniques to learn efficient representations of large amounts of data, that reveal
unexpected regularities, or relations between different quantities, that mathemati-
cians then seek to understand. This was applied successfully, for instance, to knot
theory [17, 21, 9] and representation theory [9]. A third line of research consists
in using the ability of machine learning training procedures either to provide very
efficient optimization in non-convex and/or high-dimensional frameworks or find
interesting constructions in highly combinatorial spaces [6, 13]. Concerning auto-
mated theorem proving, formal proof assistants such as Cogq, Isabelle, and more
recently Lean [23], were developed to express mathematics with full logical pre-
cision and verify proofs [14, 4]. Although their rigorous syntax remains far from
informal mathematical writing and is often tedious, a growing community has
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nevertheless formalized large parts of both classical and modern mathematics, in
particular in Lean [11, 10, 16, 8, 30, 5]. Recent advances in deep neural networks,
especially LLMs, have renewed hopes that Al could assist in proof construction.
Such tools could

(i) make formal languages more accessible by automatically completing rou-
tine steps;
(ii) translate informal human proofs into fully formal ones, ensuring correct-
ness and consistency;
(iii) ultimately help mathematicians discover new proofs.

This workshop was a unique blend of researchers from all around the world
with various backgrounds in Number Theory, Algebraic Geometry, Representation
Theory, Dynamical Systems, Control Theory, Logic, Theoretical Physics, Knot
Theory, Analysis of PDEs, Optimization, Formalized Mathematics, and, of course,
Machine Learning.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

A Mathematician’s AI Wishlist
MELANIE MATCHETT WOOD

“I want Al to do my laundry and dishes so that I can do art and writing, not for
Al to do my art and writing so that I can do my laundry and dishes.” — Joanna
Maciejewska

Question: What can we imagine Al doing for mathematicians that would make
us more effective and efficient at doing high-quality mathematics?

1. MATH FROM AN LLM AT GRADUATE/RESEARCH LEVEL IS
DISTURBINGLY UNRELIABLE

e Largely correct on calculus, linear algebra. Risk for young mathematicians
to trust too much.

e Undergraduate level group theory question: Chat GPT 5 gave me both a
proof and a counterexample, Gemini 2.5 Pro gave a correct proof

e Chat GPT 5 Pro, Gemini 2.5 Pro repeatedly gives false statements, cos-
metically similar to true statements, in graduate level topics of group
cohomology, cohomology of schemes.

e Will it “learn more math” or will low coverage always be an issue?

e How do we verify?

2. THE WISHLIST

Some basic features of a math assistant LLM, all of which are lacking in current
reasoning LLM models.

(1) Find a reference for a statement, without hallucination.

(2) Find where a notation is defined in a reference

(3) Find mathematical mistakes

(4) An LLM that speaks like a mathematician (reflecting the need to have
proofs and specific references in mathematics, understanding a result and
counterexample can’t both be true, understanding that proving something
stronger proves something weaker, trained to be skeptical, trained to find
mistakes, distinguishing conjectures and theorems)

Given the amount of content LLMs produce, autoformalization will be neces-
sary to make sure mathematics does not become awash is a sea of nonsense and
unproven assertions. One possible low-hanging fruit would be natural language
computations and auto-formalization. This would allow for exploring examples in
more abstract fields. An agent that could do this would list good examples to try
to computations on, be able to do in natural language the kind of computation a
graduate student might spend a few days on—procedures for which there is no ar-
ticulated algorithm, but are somewhat straightforward perhaps with a few adhoc
tricks. Then these natural language computations would be natural candidates to
formalize into Lean, as computations are often more accessible to formalize.
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We will eventually need autoformalization more generally.

(1) Check my arguments: I write a natural language proof. Can AI confirm
the details in a Lean verified proof?

(2) Check LLM’s arguments: Don’t trust, and verify.

(3) Check all the arguments: I think the future is going to be filled with highly
persuasive, incorrect mathematical text, and formalization is going to be
required to keep mathematics mathematics.

Boosting sphere packings using diffusion and flow-matching models
GERGELY BERCZI
(joint work with Adam Zsolt Wagner, Jonas Kliiver, Baran Hashemi)

Aim. We explore whether modern generative models can construct high-quality
finite sphere packings in a bounded domain, and thereby suggest patterns that
may inform densest packings and lower bounds in higher dimension. The talk
reported initial progress on a hybrid pipeline that alternates local optimization
with global generation from diffusion/flow-matching models, in the spirit of a “lo-
cal — global — local” boosting loop.

Context. For dimensions 8 and 24, Viazovska and Cohn—Kumar—Miller—
Radchenko—Viazovska proved optimality of the Fg and Leech lattice packings,
respectively; in general dimension, recent work gives improved (asymptotic) lower
bounds and new lattice constructions.! While these landmarks concern the infinite-
volume density, we focus on the practical surrogate of packing congruent balls in
a unit cube, which avoids boundary-volume estimation issues and yields directly
checkable candidates.

Pipeline (“DiffuseBoost”).

e Local search (Physics-Push / SRP): Starting from random centers in [r, 1 —
7], we iteratively repel overlaps (force-based “physics push”), or minimize
an overlap energy by stochastic repulsion (SRP) with annealed, normal-
ized gradient steps followed by a box-constrained L-BFGS-B polish. This
produces large sets of near-valid packings that concentrate near good radii
and provide diverse training data.

e Global generation (conditional flow matching): We train a time-dependent
vector field ug(x, t) that transports easy seeds (e.g. jittered lattice samples)
to the empirical distribution of good packings along a simple probability
path. Training is “simulation-free” regression to an analytic conditional
velocity; sampling integrates the learned ODE from ¢t =0 to t = 1.

1See, e.g., M. Viazovska: The sphere packing problem in dimension 8 (Ann. Math. 185
2017)) and Cohn et al.: The sphere packing problem in dimension 24 (Ann. Math. 185
2017) for d = 8,24; Campos—Jenssen—Michelen—Sahasrabudhe (arXiv:2312.10026) and Klartag
arXiv:2504.05042) for high-dimensional lower bounds. These references are for context; our con-
ribution is algorithmic and empirical.

(
(
(
t
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e Projection-corrected sampling (PCFM): During sampling we interleave
predict — project — correct. Each ODE step is projected onto the non-
overlap constraints (pairwise and wall), followed by a small proximal re-
laxation toward the learned flow to avoid fighting the projection.

e Final refinement: A short physics-push/SRP stage removes residual con-
tacts and aligns candidates with nearby local optima.

Preliminary observations. Across moderate numbers of balls (e.g. a few dozen
in d = 3 and hundreds of circles in d = 2), the diffusion/flow stage shifts the
distribution of minimal pairwise separations to the right, compared with local
search alone, and increases the yield of near-record configurations. Iterating the
loop further boosts the right tail (“boost effect”). Architecturally, flow-matching
models are more sensitive to training choices than transformer encoders, but give
better global moves once tuned. (Plots and examples appeared in the talk.)

Relation to PatternBoost. Our strategy adapts the “PatternBoost”? idea —
local search to seed a small generative model, then local repair—which we pre-
viously used to slightly improve bounds for bootstrap percolation on hypercubes.
Here, replacing sequence models by diffusion/flow significantly improves coverage
of the design space and the quality of de novo proposals.

Open questions and conjectures.

(1) Generalization across n and d. Can a single conditional model, trained on
a mixture of ball counts and dimensions, extrapolate to larger instances
while maintaining or improving minimal separations after projection?

(2) From finite boxzes to periodic packings. Training on periodic cells with
lattice variables and hard contact constraints: will the pipeline discover
known extremal lattices in d = 4,5,6,7 or propose plausible non-lattice
candidates for d > 97

(3) Improve PCFM. Prove convergence guarantees for projection-corrected
flow matching under non-convex, inequality constraints of contact type;
relate to score-based samplers with constraint manifolds.

Outlook. Even when not producing ultimate records, the sampler supplies high-
quality, diverse seeds that substantially reduce time-to-solution for downstream
local optimization. We view this as a construction heuristic that complements
analytic bounds and may reveal structural patterns worth formalizing.

Acknowledgements. I thank the organizers and participants for a stimulating
workshop, and my collaborators Adam Zsolt Wagner, Jonas Kliiver and Baran
Hashemi for many contributions.

2angois Charton, Jordan S. Ellenberg, Adam Zsolt Wagner, Geordie Williamson: Pattern-
Boost: Constructions in Mathematics with a Little Help from AlI, arXiv:2411.00566
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An Introduction to ICARM
MATTHEW R. BALLARD

The Institute for Computer-Aided Reasoning in Mathematics (ICARM) is a new
NSF Mathematical Sciences Research Institute designed to accelerate mathemat-
ical research by leveraging artificial intelligence and computer-aided reasoning.
Located at Carnegie Mellon University and operating as a 3-year pilot program,
ICARM addresses the rapidly evolving landscape of Al technologies in mathemat-
ics through a distinctive mission centered on three pillars: empowering mathemati-
cians to keep mathematics central in Al-driven discovery, fostering collaboration
across disciplines and career stages, and ensuring equitable access to emerging
technologies.

A key innovation of ICARM is the creation of Innovation Engineers—a new
professional role bridging mathematics and technology. These technical staff work
alongside mathematicians to provide training, documentation, and tutorials; offer
hands-on support through office hours, site visits, and online platforms; maintain
communal resources including formal libraries like Mathlib, benchmark datasets,
and computational infrastructure; develop and disseminate tools spanning formal-
ization, automated reasoning, and machine learning for mathematics; and collab-
orate on longer-term research projects.

ICARM’s scientific activities encompass multiple formats designed to engage
the broad mathematical community. Two-week summer schools offer hands-on
training in formalization, automated reasoning, and machine learning for math-
ematics, with the first week dedicated to tutorials and guided exercises and the
second week focused on collaborative projects. These schools welcome participants
from PhD students to senior mathematicians, with travel, housing, and stipends
available to support broad participation. One-week research workshops bring to-
gether 20-30 participants for highly interactive sessions that minimize traditional
lectures in favor of collaborative work, aiming to spark new projects and long-
term partnerships. Research group visits support short- to medium-term stays (2
weeks to 1 semester) for individuals or small groups who require tools, training, or
collaborations not available at their home institutions, with Innovation Engineers
providing expert guidance throughout.

The institute benefits from substantial infrastructure support, including com-
puting resources from Carnegie Mellon University and the Pittsburgh Supercom-
puting Center, commitments from industry partners, and crucially, the expertise
and engagement of the mathematical community itself. ICARM actively invites
mathematicians to participate in summer schools and workshops, propose topics
for future programs, apply for collaborative research visits, work directly with
Innovation Engineers, and help shape the institute’s direction. Through these
mechanisms, ICARM aims to build a national and international hub for Al and
computer-aided reasoning in mathematics, bridging mathematicians, computer sci-
entists, academia, industry, education, and outreach—ensuring that as Al trans-
forms mathematical practice, mathematicians remain at the center of mathemat-
ical discovery.
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AT for Mathematics — From Digitization to Intelligentization
BIN Dona

THE BOTTLENECKS IN MATHEMATICAL RESEARCH

In my talk, I wanted to begin by arguing that modern mathematical research, for
all its successes, faces several significant bottlenecks that limit our efficiency. One
of the most critical is the process of proving and verifying results. Proofreading
mathematical papers is a tedious and error-prone task. Even for the most ac-
complished mathematicians, small errors can creep into proofs written in natural
language, sometimes going undiscovered for years. As was discussed in a blog post
by Terence Tao, there is hope that Al tools may soon help automate parts of this
process, but we are not there yet.

Furthermore, we often say that research is done by “standing on the shoulders
of giants,” but it is not always easy to locate these shoulders. A quick search
on the internet or asking experts can be helpful, but it is difficult to be certain
whether a theorem or an idea is genuinely new. Finally, tackling a new problem
often requires learning entirely new mathematical concepts and tools, which can be
a time-consuming and challenging endeavor. These are precisely the areas where
I believe AI has the potential to help us achieve breakthroughs.

FroM AI-ASSISTED DISCOVERY TO A MATHEMATICAL “APPRENTICE”

Early explorations into “Al for Mathematics” have shown great promise. A well-
known study by DeepMind and Geordie Williamson [1] demonstrated how machine
learning can augment a mathematician’s intuition to discover new patterns and
conjectures. Inspired by this, my collaborator Xu-Hua He and I used similar meth-
ods to explore the dimension formula of Affine Deligne-Lusztig varieties (ADLV)
[2]. While we did not solve the problem completely, the machine learning insights
led us to prove a new theorem establishing an upper bound for the error between
the virtual and true dimensions.

This approach of building specialized Al tools for specific problems is effective,
but it does not address the core bottleneck of theorem proving and verification,
which remains a human task. A more systematic solution, I believe, lies in lever-
aging large language models (LLMs). The goal here is more ambitious: to train
an “Al apprentice.” However, for an LLM to be genuinely useful for research-level
mathematics, it must overcome its current limitations, such as unreliability and
the challenge of verification; while verifying proofs for lower-level mathematics is
feasible, this task becomes increasingly difficult for the advanced topics.

The success of LLMs is built upon the concept of foundation models, which are
designed to generalize across a wide variety of tasks. The key technology enabling
this is the Transformer architecture. Transformers manage to handle diverse, often
multimodal, data and tasks through a few core principles: tokenization unifies
different modalities into a common representation, the objective of next-token
prediction provides a universal framework for different tasks, and the architecture
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itself scales remarkably well with more data and computational resources. This
has proven to be incredibly effective for natural language, and there is good reason
to believe it will be for mathematics as well, because, at its core, mathematics is
also a language.

THE KEY: DIGITALIZATION OF MATHEMATICS WITH LEAN

The key to unlocking the potential of AI for mathematics is, in our view, the
further digitalization of mathematics. By translating mathematical knowledge
from natural language into a formal language that a computer can understand and
verify, we can build a “mathematical reasoning simulator.” This simulator would
provide the ideal environment to train Al models to first mimic, and hopefully one
day surpass, human reasoning.

Currently, one of the most mature formal language systems is Lean, a proof
assistant developed by Microsoft. Its main mathematics library, mathlib, is a
massive, collaborative effort containing over 190,000 theorems and 90,000 defini-
tions. However, working with Lean presents a steep learning curve. This motivated
our AT4M team at Peking University (a diverse group of pure mathematicians, ap-
plied mathematicians, and engineers) to develop tools that bridge the gap between
informal natural language mathematics and its formal counterpart.

RECENT PROGRESS FROM THE AI4M TeEAM AT PKU

Our team is focused on a long-term goal of resolving open problems in mathemat-
ics, starting with algebra where mathlib is most mature. To guide our progress,
we have developed a series of formal benchmark suites of increasing difficulty:
FATE-M (entry level), FATE-H (Master’s level), and FATE-X (close to research
level) [3]. Along the way, we have produced several tools and resources that we
believe are of interest to the community.

e LeanSearch: An effective tool to help users find relevant theorems and
definitions within the vast mathlib library, addressing the common prob-
lem of spending too much time just searching for the right lemma [4].

e Herald: A high-quality dataset of paired natural language and formal
language statements, created to train translation models for autoformal-
ization [5]. Our Herald Translator model significantly outperforms existing
open-source models on graduate-level mathematics.

e REAL-Prover: An open-source, step-by-step theorem prover for Lean
4 [7]. On the ProofNet dataset and our new FATE-M benchmark, it has
surpassed current state-of-the-art performance. We have also released it
as a lightweight tactic in Lean, reap, to help users draft formal proofs
interactively [6].

These tools represent our initial steps toward creating a unified “copilot” for
interactive theorem proving.
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A VISION AND OPEN QUESTIONS FOR THE FUTURE

Looking ahead, our vision for Al in mathematics extends beyond proof assistance.
Some of the most valued achievements in the field involve building bridges, creating
meaningful connections between different areas of mathematics. However, it’s
extremely difficult for any single mathematician or team to master all these areas;
it is simply beyond human limits. This is a barrier Al can help us overcome.
Our hope is that Al will be able to effectively integrate the vast knowledge of
mathematics and become a powerful research assistant, helping to uncover the
deep connections that drive mathematical progress.

As William Thurston wrote in his classic article, “On Proof and Progress in
Mathematics” [8], the goal of mathematics is not just proof, but understanding.
As Al matures to handle the tedious and mechanical aspects of proof verification,
it will free us to focus on the more creative and enjoyable activities: building
intuition, asking deep questions, and gaining true understanding.

In this spirit, I would like to propose two key questions to promote new research:

(1) How can we build an agentic Al system that effectively mimics the full
workflow of a human mathematicianj*from exploring examples and for-
mulating conjectures to strategically proving theoremsj?and can it au-
tonomously solve problems from research-level benchmarks like FATE-X?

(2) What is the most effective architecture for combining the pattern-recognition
strengths of neural networks with the rigorous, logical deduction of sym-
bolic reasoners to produce novel, human-readable proofs?

Our work is still in its early stages, and the results are provisional. However,
we are optimistic about the future and welcome collaborations.
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The Carleson project: a collaborative formalization
MARIA INES DE FRUTOS-FERNANDEZ, FLORIS VAN DOORN

(joint work with Lars Becker, Leo Diedering, Sébastien Gouézel, Asgar
Jamneshan, Evgenia Karunus, Edward van de Meent, Pietro Monticone, Jasper
Mulder-Sohn, Jim Portegies, Joris Roos, Michael Rothgang, Rajula Srivastava,

James Sundstrom, Jeremy Tan, Christoph Thiele)

Trigonometric series represent functions as possibly infinite linear combinations of
pure frequencies. They gained particular prominence through the work of Fourier,
who used them in his analytical theory of heat, thereby establishing them as a tool
for solving partial differential equations. Fourier also made the groundbreaking
claim that a wide range of functions could be represented using trigonometric
series. This sparked the interest of many mathematicians, including Dirichlet, who
gave some rigorous conditions for convergence of Fourier series, as trigonometric
series are now called. Dirichlet also opened a branch of analytic number theory
partially inspired by the ideas of Fourier. Nowadays, Fourier analysis plays an
important role in many areas of mathematics.

With Euler’s formula to represent pure frequencies in mind, a trigonometric
polynomial can be expressed as

N .
(1) Sn(w) = ) cae™ .
n=—N

The Fourier series is then defined as the limit f of such a sequence Sy as N tends
to co. Fourier’s vision to represent rather general functions raises two fundamental
questions. The first question is to identify the appropriate choice of coefficients ¢,
to use to represent a given f. The second question addresses the convergence of
Sn to f.

The first question has a fairly canonical and standard answer, provided by the

Fourier integral formula:

N 1 [27 ,
) eni= o= [ fl@)en da,
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where the precise interpretation of the integral depends on the chosen theory of
integration. For a continuous function f, Riemann’s notion of the integral suffices.
More generally, if f is a distribution in the sense of Schwartz, supported in [0, 27]
the integral can be understood as an evaluation against the periodic test function
e~ The more general definition reduces to the simpler one within the respective
more restrictive domain. Hence, the Fourier coefficients given by (2) serve as a
universal choice. This choice is unique in several respects, in particular if one is
to exactly reproduce a trigonometric polynomial f in the form (1).

The second question of convergence bifurcates into the question of pointwise
convergence of the series (1) (with coefficients given by (2)) for a given z on the
one hand and convergence of the functions Sy to the function f in a suitable
function space with corresponding topology on the other hand. There are at least
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as many function spaces for the question of convergence as there are different def-
initions of the integral elaborated earlier. There are some very canonical answers
to the convergence question in function spaces, albeit not known at the time of
Fourier and Dirichlet. One example is convergence in the Hilbert space sense for
f in L%(0,27), as discovered in the first decade of the twentieth century as a con-
sequence of the rapid development of Lebesgue integration theory. For some other
natural spaces, such as L!(0, 27), there is no guarantee of convergence in the norm
of that space even if f is in the space.

In contrast to these examples of function spaces with a very natural theory
of convergence of Fourier series in the topology of the function space, there are
no similarly elegant solutions to the characterization of pointwise convergence.
In particular, the space of functions f such that the sequence Sy(z) converges
for every = does not have a good characterization in terms of f it/\self. Similarly,
the space of all functions f such that the sequence of coefficients f,, is absolutely
summable has also no good characterization.

When the Fourier integral is defined in the Lebesgue sense and f € L!(0,27),
then the function f itself is meaningful not everywhere but only pointwise almost
everywhere in the Lebesgue sense. The question of pointwise convergence to f for
all x then becomes meaningless, and instead one asks for almost everywhere con-
vergence. Such convergence was conjectured by N. Luzin for the space L%(0,27),
and proven by Carleson in the 1960s [2]. In particular, Carleson also proved the
more elementary statement

Theorem 1 (classical Carleson). Let f be a 2m-periodic complez-valued continuous
function on R. Then for almost all x € R we have

3) Jim Sy f(@) = f(@),

where Sy f is the N-th partial Fourier sum of f defined in (1) with coefficients
(2).

Here, almost every x means in the Lebesgue sense, i.e., for every ¢ > 0 the
set of x where convergence fails can be covered by a sequence of intervals such
that the sum of the lengths of these intervals is less than e. While Carleson
had proven the more general Luzin conjecture for functions in L2[0,27], even
the more elementary statement for continuous functions was not known before
Carleson’s work. Moreover, until now, the elementary statement has not seen any
substantially easier proof than those generalizing to L2, partially because there is
no readily usable criterion on the level of Fourier coefficients to distinguish between
continuous functions and L? functions.

In the 1970s, Fefferman gave an alternative proof of Carleson’s theorem via an
a priori bound for Carleson’s operator, the maximally modulated singular integral

(4) Tf(x) = sup / NV y%dy.

Various strengthenings of Fefferman’s estimates for Carleson’s operator have ap-
peared since.
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In this talk, we describe a formalization in Lean of a further generalization of
the polynomial Carleson operator towards doubling metric measure spaces, which
is a new theorem described in the preprint [1]. This new result is an axiomatic
approach to Carleson type theorems on doubling metric measure spaces, which is
suitable for formalization and provides a good route towards the classical theorem,
which we also formalize as a corollary.

Early drafts of the preprint [1] existed in summer 2023. Based on this, a first
draft of a blueprint for the formalization was written in the first half of 2024, con-
taining a much more detailed proof, which involved increasing the size by a factor of
four, and adding the derivation of Carleson’s classical result. In June 2024, Floris
van Doorn launched a public website to post the blueprint, using the open-source
software leanblueprint developed by Patrick Massot, calling for contributions to
formalize the proof. The goal was to formalize the blueprint in the Lean proof
assistant [3], building on top of its mathematical library Mathlib [4]. The work
was split up into about 180 tasks, to be claimed by individual contributors. Most
tasks were to formalize the proof of a single lemma from the blueprint, and some
were to develop basic theory or refactor existing code. The contributors adapted
the blueprint to fix some gaps found during the formalization and gave feedback
that led to discussions about the proof. This even resulted in a few changes to
the general setup and the main theorems. All of the gaps found required only
fairly localized changes to the blueprint, indicating that the initial blueprint was
already of high quality. The formalization was completed in July 2025, and the
latest version can be found on Github.

Everyone that completed a substantial amount of tasks is included as a coauthor
of the blueprint. The authors acknowledge contributions in the form of small
formalization additions, pointing out corrections to the blueprint, or supplying
ideas to the Lean efforts by the following people: Michel Alexis, Bolton Bailey,
Julian Berman, Joachim Breitner, Martin Dvoidk, Georges Gonthier, Aaron Hill,
Austin Letson, Bhavik Mehta, Eric Paul, Clara Torres, Dennis Tsar, Andrew Yang,
Ruben van de Velde.
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Finding interesting mathematical objects with ML tools
ADAM ZsOoLT WAGNER

Proofs are at the heart of mathematics, they are certainly one of the most impor-
tant things mathematicians care about. But there are many situations where the
focus is not actually on proofs, but rather on how to find interesting mathematical
constructions instead. This happens for example when we encounter a conjecture
that we believe to be false. In this case, our task is to come up with a weird graph,
matrix, or set system, the demonstrates that the conjecture is false. Usually once
we have found a counterexample it is easy to verify it actually works, the hard
bit is how to find this construction in the first place. Another similar situation
happens when we face a problem where we don’t even know what the optimal
constructions might look like. In these cases it would be extremely helpful if we
could ask an oracle to tell us the optimal constructions for, say, n = 10, 20, 50, or
100. Once we can see these constructions, we can stare at them, start spotting
patterns, which will eventually lead to new observations, new conjectures, new
theorems, and new mathematics.

Gil Kalai once said “The methods for coming up with useful examples in math-
ematics [...] are even less clear than the methods for proving mathematical state-
ments”. Given this quote, and how important I perceive this theme of finding
constructions in mathematics to be, I firmly believe that if we can get simple and
useful computational tools into the hands of mathematicians, that will lead to lots
of new mathematics in the future.

This talk is focused on tools that in some way use machine learning. My goal is
to present a spectrum of different tools mathematicians can use in their research,
then compare them, so that at the end of the talk we have a better understanding of
what tools would be best for the problems we care about. I start with the simplest
possible learning-based tools, and work my way up to more modern LLM-based
methods such as AlphaEvolve.

The very first method I present is simple, vanilla reinforcement learning. I
demonstrate that while this method is extremely simple, in some cases it is good
enough and can lead to discoveries of new objects without much effort. Often this
method is not good enough to find a counterexample or a good construction all
by itself, but it might still give us insights that we can use. A mathematicians
could then take these new insights and find a counterexample by themselves. This
human-AT collaboration is often what leads to the best results, with every method
we discuss here.

The second method I present is PatternBoost. When we humans think about
a program we don’t just think about it locally. We might create a global picture
of the optimal constructions in our head, then zoom in to check if all the local
restrictions are satisfied, if not we would zoom out and revise our global plan, and
so on. We can do a little bit of this local-global search by modifying our previous
setups slightly, and I will show that this leads to much better results.

Finally, in the second half of the talk, I discuss language based methods, specifi-
cally FunSearch and AlphaEvolve. The idea is the following. We understand what
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the basic idea of a local search in the space of graphs looks like: we have a graph,
we compute its score, then we add/remove an edge, compute the score of the new
graph, and if the score increased then we replace the old graph with the new one
and repeat. In other words, we follow the path where the score goes up, always
jumping to nearby graph.

We will now do the same thing in language space: instead of working with
graphs, we will work now with python programs that generate graphs. The score
of a python program is the score of the graph it produces. We can do the same
local search as before: jumping from one program to a nearby program (where
“nearby” is up to an LLM to judge), and following a path where the score goes
up. This has advantages and disadvantages. For many natural problems, the
optimal construction has a simple description in python, whereas the many local
maxima that standard local search methods might get stuck in, do not. Moreover,
even if there is only one unique optimal construction, there are often many natural
python programs representing it. So while we might still be looking for a needle in
a haystack, with this method the needle could be bigger, and there could be many
more of them in the haystack. The downside is that for every new construction
we have to make an LLM call, which is often slower and more expensive than
standard local search ran on a CPU.

A solution to this, by AlphaEvolve, is to combine all methods we have mentioned
so far. Instead of walking around in the space of python programs that generate
constructions, we will walk around in the space of search functions, that have a
fixed time budget to explore many graphs in any way they want, and only after
the time is up do they have to return the best construction they have found. This
solves the disadvantage mentioned above: a single LLM call generates a search
method that can unleash a flurry of cheap exploration. AlphaEvolve will then
explore the space of heuristic search algorithms to find one that works well for the
problem.

There are several additional ideas one can add onto this setup, which we discuss.
But one theme I emphasize is the importance of the expert guidance. In the
prompt given to AlphaEvolve, we can always put some hints about what the
optimal constructions might look like. A better hint yields a better result, and I
show some experiments highlighting just how important a good initial advice is. I
will also show that AlphaEvolve always retains the melody of the original advice
it was given, it simply tries to squeeze as much out of it as possible. So this tool
can be used by mathematicians to test big picture ideas they might have on a
problem, without having to work out all the details by themselves.

One thing that is clear to me is that there are lots of capabilities of these tools
that are not yet fully explored and there are lots of low hanging fruits. I am very
excited to see what you will all come up with in the next years!
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Reasoning machines with RL - Experiences from the field
ALBERT JIANG

In this talk, we introduce Magistral, Mistral’s first reasoning model, which lever-
ages a scalable reinforcement learning (RL) pipeline. Unlike previous approaches
that rely on distilled reasoning traces from prior models, Magistral is trained from
scratch using a ground-up approach, leveraging Mistral’s own models and infras-
tructure. We demonstrate the effectiveness of pure RL training for large language
models (LLMs), present a method to enforce multilingual reasoning, and show
that RL on text data alone can maintain and even improve the initial model’s
capabilities.

Our training methodology involves using Group Relative Policy Optimization
(GRPO) with several modifications to enhance stability and exploration. These
modifications include eliminating the KL divergence penalty, normalizing the loss,
and relaxing the trust region’s upper bound. The reward shaping strategy ensures
the model adheres to proper format, length, and language usage.

The infrastructure for distributed RL training coordinates trainers, generators,
and verifiers. Trainers maintain the model weights and perform gradient updates,
generators perform roll-outs, and verifiers evaluate completions. The system pri-
oritizes efficiency and operates generators continuously at maximum throughput
without waiting for trainers.

Our data curation process involves extensive filtering and difficulty assessment
for both math and code problems. For math, problems are filtered based on format
and difficulty. For code, problems are selected based on the availability of solutions
and tests.

Experimental results show significant performance improvements on reasoning
benchmarks, including a nearly 50% boost in AIME-24 (pass@1) for Magistral
Medium. Magistral Small, trained with RL on top of reasoning SF'T bootstrap-
ping, also demonstrates substantial performance gains. The model’s multilingual
capabilities are evaluated on translations of the AIME 2024 benchmark.

Ablation studies provide insights into the effects of different training parame-
ters and choices, such as batch and minibatch sizes, and advantage normalization
methods. These studies show that performance is not strongly dependent on batch
size but degrades when there are more than two minibatches in a batch.
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Our analysis investigates the dynamics of RL training and the impact on mul-
timodal capabilities. The findings suggest that RL training improves multimodal
reasoning and maintains tool-calling and instruction-following capabilities.

We conclude with a discussion of future research directions, including scaling up
RL training, optimizing loss functions, and exploring new applications in tool-use,
multimodality, and agents.

CayleyPy — Python Al-based library for google size Cayley graphs
ALEXANDER CHERVOV

(joint work with A. Soibelman, S.Galkin, D. Fedoriaka, E. Konstantinova, A.
Naumov, I. Kiselev, A. Sheveleva, I. Koltsov, S. Lytkin, A. Smolensky, F.
Levkovich-Maslyuk, R. Grimov, D. Volovich, H. Isambert et al.)

We present “CayleyPy” project applying artificial intelligence methods to prob-
lems in group theory. We announce the first public release of CayleyPy, an open-
source Python library for computations with Cayley and Schreier (coset) graphs.
Compared with state-of-the-art systems based on classical methods, such as GAP
and Sage, CayleyPy handles significantly larger graphs and performs several orders
of magnitude faster.

Using CayleyPy we obtained about 200 new mathematical conjectures on Cay-
ley and Schreier graphs, with special regard to their diameters and growths.

For many Cayley graphs of symmetric groups S,, we observe quasi-polynomial
diameter formulas: a small set of quadratic or linear polynomials indexed by n
mod s, and conjecture that it is a general phenomenon. These lead to efficient
diameter computation, despite the problem being NP-hard in general. We propose
refinement of the Babai-type conjecture on diameters of S, : %n2—|—4n upper bounds
for the diameters in the standard undirected case, as compared to prior conjectural
bounds of O(n?). We also provide explicit generator families, related to involutions
in a simple “square-with-whiskers” pattern, which we conjecture to maximize the
diameter; extensive (and in some cases exhaustive) search confirms this for all
n < 15. We conjecture an answer to the celebrated open question raised by the
”founding father of Soviet cybernetics” V.M. Glushkov in 1968: the diameter of
the directed Cayley graph generated by the left cyclic shift and the transposition of
the first two elements is equal to (3n? —8n+9)/4 for n odd, and to (3n>—8n+12)/4
for n even.

For nilpotent groups we conjecture an improvement of J.S. Ellenberg’s results
on the diameters of the upper unitriangular matrices over Z/pZ, presenting a
phenomenon of linear dependence of the diameter on p. Moreover, the growth for
nilpotent groups is conjectured to closely follow Gaussian distributions, that is, to
exhibit a central limit phenomenon similar to the results of P. Diaconis for S,,.

Some of our conjectures are "LLM-friendly” — they can be stated as sorting
problems, which are easy to formulate for LLM, and their solutions can be given
by an algorithm or by a Python code, which is easy to verify, so they can be used
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to test LLM’s abilities to solve research problems. To benchmark various meth-
ods of path-finding on Cayley graphs we create more than 10 benchmark datasets
in the form of Kaggle challenges, making benchmarking easy and public to the
community. CayleyPy works with arbitrary permutation or matrix groups, and
supports a pre-defined collection of more than a hundred generators including puz-
zle groups. Our code for direct growth computation outperforms similar functions
on the standard computer algebra system GAP/SAGE up to 1000 times both in
speed and in maximum sizes of the graphs that it can handle.
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Generalization in the symmetric group
ALEXANDR GARBALI
(joint work with Max Petschack and Jan de Gier)

We study [1] the capacity of transformer neural networks to learn the structure
of the symmetric group S,, when trained only on smaller subgroups S,, C S,.
The task is to map a word in generators of S,, (expressed as transpositions) to
the corresponding permutation in one-line notation, without explicitly encoding
group relations. This provides a natural and noise-free benchmark for testing
generalization and interpretability in machine learning applied to abstract algebra.

Methodology. Training data consist of pairs (z,p), where © = (x1,...,2n) is
a word in generators of S, and p is the resulting permutation of (1,...,n). To
allow comparison across group sizes, we embed words from S, into S, through
identity augmentation: unreduced words are modified by insertions of segments of
words representing the identity permutation so that all inputs have fixed context
length N = n(n—1)/2. The transformer is then trained autoregressively to predict
permutation tokens.

Two regimes are explored:

(1) general transpositions s; j, with training on Si¢ and testing on Sos;

(2) adjacent transpositions s; = s; 11, with training on S1o and testing on Sy.
In both cases we used a partitioned window method to embed representations

of S, into representations of S,, to prevent the network from memorizing local
substructures.

Results. In both regimes the models achieve near 100% accuracy when general-
izing from S, to S, indicating that structural features learned on smaller groups
transfer effectively to larger ones. Analysis of the learned embeddings shows that
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e token embeddings capture algebraic relationships between generators (for
example, s; ; correlating with s; , and s;;);

e positional embeddings display emergent correlation patterns reflecting the
maximal reduced word length of the training subgroup S,,, revealing a
learned length scale L,, = m(m—1)/2 in the covariance of position vectors.

Discussion. These results demonstrate that transformer models can internalize
the algebraic structure of the symmetric group and generalize beyond the distri-
bution seen in training. The embedding method provides a scalable strategy for
symbolic problems with natural inclusion maps between vocabularies, and the po-
sitional covariance analysis offers a new probe into the model’s inductive bias. Po-
tential extensions include applications to Hecke algebras, Kazhdan—Lusztig poly-
nomials and braid group word problems, where similar embedding hierarchies
(may) exist.
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Tropical Attentions: Novel Algorithmic Reasoning for
Combinatorial Algorithms

BARAN HASHEMI

Dynamic programming algorithms for combinatorial optimization problems often
involve taking max, min, and classical addition in their recursion algorithms. The
associated value functions correspond to convex polyhedra in (max, +) semiring.
Existing Neural Algorithmic Reasoning (NAR) models, however, rely on softmax-
normalized dot-product reasoning core, where the smooth operator smooths ev-
erything, blurs these sharp polyhedral structures and collapses when evaluated in
out-of-distribution (OOD) settings. We introduce Tropical Attention, a novel rea-
soning core that operates natively in the (max, +) semiring of Tropical geometry,
with Tropical Hilbert projective metric as the distance measure. We prove that
Tropical Attention can universally approximate tropical circuits of DP-type com-
binatorial algorithms. Our results demonstrates that Tropical Attention restores
the sharp, scale-invariant reasoning absent from softmax, over NP-hard/complete
tasks.
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Lean Method Zoo — Paradigms to Scale Formal Proving
FABIEN GLOCKLE

I presented different methods to use language models with interactive theorem
proving such as Lean. These methods include fine-level tree search, and reinforce-
ment learning extensions: MCTS, whole-proof generation and its iterative variants
(multi-turn debugging), natural language conditional and hierarchical decomposi-
tion (Lean-conjecturing) variants.

For each of the methods, we make an attempt at analyzing its scaling behavior,
because the ultimate question is: which paradigm shall we use to scale large-scale
reinforcement learning for Lean ?

Why Autoformalization Will Be Both Feasible and Necessary?
CHRISTIAN SZEGEDY

Here we gave a motivation and overview of autoformalization as a promising path
towards making a superhuman AT mathematician. My presentation explained how
autoformalization will give rise to necessary training data for verifiable mathemat-
ical reasoning, and also demonstrate the feasibility of autoformalization by the
possibility of autoformalization by example of the Gauss system that was success-
fully employed to formalize the classical prime number theorem by Hadamard and
de la Vallée Poussin.

Reporter: Antoine Peyronnet
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