J. Spectr. Theory 16 (2026), 93-143 © 2025 European Mathematical Society
DOI 10.4171/JST/587 Published by EMS Press
This work is licensed under a CC BY 4.0 license

Spectral properties
of symmetrized AMYV operators

Manuel Dias and David Tewodrose

Abstract. The symmetrized Asymptotic Mean Value Laplacian A, obtained as limit of approx-
imating operators A, is an extension of the classical Euclidean Laplace operator to the realm
of metric measure spaces. We show that, as r |, 0, the operators Ay eventually admit isolated
eigenvalues defined via min-max procedure on any compact uniformly locally doubling metric
measure space. Then we prove L2 and spectral convergence of A, to the Laplace-Beltrami
operator of a compact Riemannian manifold, imposing Neumann conditions when the manifold
has a non-empty boundary.

1. Introduction

In the past thirty years, much research has been carried out to extend the classi-
cal Euclidean Laplace operator to metric measure spaces: see e.g., [4, 8,9, 13]. This
paper deals with such an extension, namely the symmetrized Asymptotic Mean Value
(AMV) Laplacian, proposed in [15], see also [1,2, 12, 14]. The symmetrized AMV
Laplacian is set as

A =1limA,, (1)

where for yu-a.e. x € X,

~ 1 V(x,r)
B =55 (1 Yo
By (x)

Y O) = £x) du(y).

Here f is a locally integrable function defined on a metric measure space (X, d, u).
Throughout the paper, B,(z) denotes the metric open ball centered at z € X with
radius r > 0, the notation V(z, r) stands for w(B,(z)), and fBr (z) 18 shorthand for
V(z,r) ! I3,z

Part of the study on the symmetrized AMV Laplacian consists in finding a relevant
meaning to the limit in (1). If this is intended in the L2 sense, then the associated
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spectral convergence can be investigated. This is the goal of the present paper. For
any k € N, set
- . E.(f)

Ay == inf sup ,
Vegi 1 (L2X.) rev |If 2

Ng

where 9y 1 (L?(X, u)) is the (k + 1)-th Grassmannian of L?(X, ), and E, (f)is
the energy functional naturally associated with A, (Definition 3.10). These form a
non-decreasing sequence of non-negative numbers. Our first main result states that
these numbers eventually correspond to isolated eigenvalues of —A, when (X,d, )
is compact and uniformly locally doubling (Definition 2.8).

Theorem 1. Let (X, d, u) be a compact uniformly locally doubling metric measure
space. For any integer k > 2, there exists ry > 0 such that for any r € (0, ry), the
operator — A, admits k + 1 eigenvalues

0=20(=A,) < A1(=A,) < -+ < Ak(=A,)
such that /\i(—zr) = ;\i,r foranyi € {0,...,k}.

Our second main result deals with a smooth manifold M endowed with a smooth
Riemannian metric g. We write A, for the (negative) Laplace—Beltrami operator of
(M, g). We let m > 2 be the dimension of M, and we set

1 1

Cpi=-48&ds = ——,

" 2%515 2(m +2)
BY (0)

2
where B"(0) is the unit Euclidean ball of R™. In this context, it follows from the
equality between symmetrized and non-symmetrized AMV Laplacian and a simple
calculation in normal coordinates that

R f(0) 25 g () 3)

for any f € €2?(M) and any interior point x € M, see [14, 15] — the convergence is
even locally uniform in the interior of M, see [1]. We refer to [1,2, 14, 15] for related
pointwise results in various settings like Carnot groups or Alexandrov spaces.

In this paper, we are interested in the L? version of (3) with a particular interest
in the case where M admits a non-empty boundary dM = 0. In this case, we write
dy f € €*°(0M) for the normal derivative of a smooth function f: M — R, and we
define

€X(M) = {f € €°(M): 3, f =0}. o)

We see (M, g) as a metric measure space (M, dg, voly) where d, and volg are the Rie-
mannian distance and volume measure on M associated with g. Then our statement
reads as follows.
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Theorem 2. Let (M™, g) be a compact, connected, smooth Riemannian manifold
with a non-empty (resp. empty) boundary OM. Then for any f € € °(M) (resp.
€>®(M)), asr | 0,

~ L2
Arf =5 CuAy f.

We point out that the boundaryless version of this result is rather easy to obtain,
while a non-empty boundary is quite tricky to handle. The Neumann condition in the
latter case is crucial to ensure convergence: indeed, the sequence A, f may blow-up
if this is not imposed.

After the previous L2-convergence result, we address the question of spectral
convergence, that is to say, the convergence of the associated eigenvalues and eigen-
functions. In this regard we show that, for any k € N, the function r — ik,r is
bounded in a neighborhood of 0, as proved in the course of Theorem 1. This ensures
that the k-th lowest eigenvalue of the operator —A,, which we denote Ax(—A,),
exists for small enough r, and that it coincides with ;\k,,. Let fx., be an L?-nor-
malized eigenfunction of —A, associated with Ax(—A,). Recall that if IM =
(resp. M # @), a Laplace (resp. Neumann) eigenvalue of (M, g) is a number y > 0
for which there exists an associated eigenfuction f € €*(M) (resp. €°(M)) of

—Ag,ie, —puf =Ag f.

Theorem 3. Let (M™, g) be a compact, connected, smooth Riemannian manifold.
Assume that IM = @ (resp. OM # @). For k € N, let iy, be the k-th lowest Laplace
(resp. Neumann) eigenvalue of Ag. For any (r,) C (0, +00) such that r,, — 0, there
exists an L?-normalized Laplace (resp. Neumann) eigenfunction f € € (M) (resp.
€°(M)) associated with [ux such that, up to a subsequence,

Ak(_zrn) - le’Lk7

L2
fk,rn - f

We point out that the question of spectral convergence for the Gaussian approx-
imation of the Laplace—Beltrami operator of a compact Euclidean submanifold with
boundary was raised in [5]. This has been one motivation for the present work: to
study this convergence with the intrinsic approximation provided by the symmetrized
AMV operators A, instead of the extrinsic Gaussian one.

2. Averaging-like operators

In this section, we consider a fixed metric measure space, that is to say, a triple
(X, d, u) where (X, d) is a metric space and u is a fully supported regular Borel
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measure on (X, d) such that
V(x,r) = pn(Br(x)) < +00

for any x € X and r > 0, where B, (x) denotes the open ball {y € X :d(x,y) <r}.
Notice that for any x € X and r > 0,

V(ix,r) >0,

because p is fully supported. Moreover, if X is compact, then
u(X) < +o0

since p is finite on any ball of radius the diameter of X. We set

0<m(r):= xlg( Vix,r)y < M(r) = sug V(x,r) < 4o0.
X€E

Note that our assumptions yield the following preliminary result.
Lemma 2.1. L2(X, ) is separable.

Proof. We start by proving that (X, d) is a second countable space. Fix 0 € X. Given
&> 0and N € N positive, consider the value given by

ae,n = sup{itlBy (o) (UnBe(xn)) : {xntnen C X}, 5)

where j4| By (0) () := (- N By (0)). First we show this supremum is attained. Consider
O — 0 and let {x,’f}neN C X such that

Wy @ (U Be(xy)) > @ — 8.

Taking
{yn}nEN = Uk{XS}nGN

we have that
/’LIBN(O)(UnBe(yn)) = Qg,N -

Now, we prove o, v = (By(z)) < 00. If ey < (By(2)), then

(B (2)\U, Be(yn)) > 0,

where {y, }neN is @ maximizer of (5). Since the measure is inner regular, there must
exist some compact K C By (z)\|UJ,, B¢(y») such that

w(K) > 0.
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Since we can cover K by a finite number of balls B, (zy), there must exist some z = z,
such that
w(Bs(z) N K) > 0.

‘We then have

/L|BN(0) (UnBs(yn) U Bs(z)) > PL|BN(0)(UnB£(yn) ) (BE(Z) N K))
= M(UnBe(Yn)) + n(Be(z) N K) > ane.

And s0 {yn }nen U {z} contradicts the maximality of {y, }nen. This shows that o, y =
w(Bn (0)). Since |, Bs(y») N By (o) has full measure in the support By (o) of
I|By (0)» it is a dense subset of By (0). This implies that | J, B2¢(y,) is a countable
cover of By (o). To build a countable basis of X, consider a sequence & — 0. For
any k, take |, ey Bs, (y;’f ’N) a countable cover of By (z). Then the set given by

B= | JBs, OF)}nen
k,NeN

is a countable basis of X. Given this basis B8 we can create a new basis given by
the finite union of elements of B, and we call this new basis B’, which will also
be countable. In particular, we have that given some open set V' C X we can find a
sequence V}, such that

Vi CVar1, U,V =V

This is the case since 8B is a countable basis, we can find elements By € 8B such that
U B = V.

We conclude by taking V, = |Jz_; Bx € B’. To construct our dense subset of
L?(X, i) we take finite sums with rational coefficients of the characteristic func-
tions yy, with V' € B’. To show that this is dense in L?(X, ), we only need to show
that we can approximate arbitrarily well simple functions yy where U C X is open
and u(U) < oo since the measure y is outer regular. Given such an open set U, take
xu, where U, € 8" and U, C U,y and | J,U, = U. Then we have by dominated
convergence

XUn 7 L2(X,10) XU>

concluding the proof. ]

2.1. Averaging operator
For any x,y € X and r > 0, set

1Br(x) (y) .

ar(x,y) = V(x,r)
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Consider u € L}

ioc(X, ). For any x € X and r > 0 such that u is u-integrable on
B, (x), set

A = fudu = [ o) auo).
B (x) X
Notice that, since u is locally integrable, for any x € X there exists r, > 0 such that
Ar u(x) is well defined. However, there may be no uniform r > 0O for which the
integral A,u(x) is well defined for every x € X.

Let us also set
1B, (»)

V(y.r)
forany x, y € X and r > 0. Consider u € L°%(X, u) such that v(-) := u(-)/V(-,r) €
Ll (X,p).Forany x € X and r > 0 such that v is j-integrable on B, (x), set

Afu(x) = /M = /a;“(x,y)u(y)du(y).
X

a:(x7y) = ar(yﬂx) =

V(y,r)
By (x)

Notice that, just like A4,u(x), A¥u(x) may not make sense uniformly with respect to
xeX.
For any r > 0, we introduce the following conditions:

471 loo < +o0, dr)

V(i r)te LY(X, ). (IL,)

Note that (II,-) implies (I, ) since

dpe(y) </ dn(y)

Viy.r) = J V(y,r)
By (x) X

47 ow = sup 4710 = sup |
xeX xeX

In the next lemma, we discuss the boundedness and the compactness of the aver-
aging operator A, acting on Lebesgue spaces.

Lemma 2.2. Assume that there exists r > 0 such that (1) holds. Then for any p €
[1, +o<] the linear operator A,: LP (X, ) — LP (X, ) is well defined and bounded
with

l4rllp—p < 11471227

Moreover, if (11,) holds, then A,: L*>(X, ) — L?*(X, i) is compact.

Proof. The case p = +o0 is obvious and holds regardless of (I,). Let us assume that
p < +oo.Letu € LP(X, u). By Jensen’s inequality, for any x € X,

A 5( flul”du)-

By (x)
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Thus,

14l = [ s [ WO dnt) anco)

X B,(x)
/ / — 15,09 0) MNP () dp)
X X _lBr(J/)(x)
dp(x)

[| 5 )|Pf e () = 147 el
X Br()’)

———

=471(»)

where we have used the Fubini—Tonelli theorem to get the second equality and (1)
for the last inequality.
Let us now assume that (II,) holds. Since

X/ X/ 26 = [ o faumaue = [ 2

X By (x) X

we obtain that A, is a Hilbert—Schmidt integral operator acting on the separable space
L?(X, i) (recall Lemma 2.1); in particular, A, is compact [16, Section IV.6]. [ ]

In the next statement, we provide an alternative way to prove the compactness of
Ay from L2(X, ) to itself. This goes through the compactness of A, from L2(X, i)
to the space of continuous functions € (X) which we obtain for compact spaces X
satisfying the following condition:

sug w(Sr(x)) =0, (Sr)

where S, (x) :=={y € X : d(x,y) =r}.
Lemma 2.3. Assume that (X, d, t) is compact and satisfies (S, ) for some r > 0. Then
Ay L?(X, ) — €(X) is compact and satisfies

(6)

||Ar||2—>oo =

1
m(r)l /2
Proof. We start by noticing that if u € L?(X, ), then A,(u) is continuous. This

follows from V(-,r)~! and |, By (x) u(y)du(y) being continuous. The former holds by
assumption. To prove the latter, assume that |[u||;2(x) = 1. Then for any x,z € X,

< 1B, x) = 1B, @) lL2cy Il L2 (x)

< W(Brtde.)(X) = Br—ae.y )Y, (D)

‘ /u(y)dﬂ(y)—/u(y)dﬂ(y)

B"(x) B"(z)
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and w(Br4d(x,z)(X) — Br—d(x,z)(x)) = 0 as d(x, z) — 0 due to (S,). Moreover, the
bound (6) is obtained via Holder’s inequality: for any x € X,

1/2 1
2
|Aru(x)] < ( ][” dﬂ) = W
By (x)

To prove compactness, consider { f,,} C L?(X, u) such that sup,, || /x|l < 1. Uniform
boundedness of {A,(f,)} follows from (6), and equicontinuity can be obtained by
using the inequality (7) applied to the sequence. By the Ascoli—Arzela theorem, we
can extract from {4, (f,)} a subsequence which converges in €(X), concluding the
proof. |

2.2. Adjoint

Let us focus now on the boundedness and the compactness of the adjoint operator A.
We begin with a simple observation.

Lemma 2.4. The operator A*: L'(X, u) — LY (X, ) is a contraction for any r > 0.

Proof. Forany u € L' (X, u),

/ Ao < [ [ '(y)' d(y) dpa(x)

X Br(x)
lu(y)l
= 1 d d
/ / 0 ()L A ()
X X
lu(y)|
[ (1 (X)dM(X)) ) = [ Wl auo).
/ (/ ) V(y.r)
X X X
where we used the Fubini—Tonelli theorem to get the penultimate equality. [

We continue with the next lemma which covers the case p > 1.

Lemma 2.5. Assume that there exists r > 0 such that (1) holds. Then for any p €
[1, +o00], the linear operator A}: LP (X, nu) — LP (X, p) is well defined and bounded
with

147 lp—p < I AFLIED/P

Moreover, this operator is the adjoint of Ay: L1(X, u) — L9(X, u) forq € [1, +00]
such that 1/p + 1/q = 1. Lastly, if (11,) holds, then the operator A*: L>(X, u) —
L?(X, p) is compact.
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Proof. For the proof of the first assertion, consider u € L°°(X, u). Thanks to (I,), for
u-ae.x € X,

MWWhE/%%%WUhﬂMw/
B, (x) ' By (x)

du(y) «
< |A*1 )
Vo) = |47 1loo |2l 0o

Thus, AF: L*°(X, u) — L*®(X, u) is bounded with || A7 ||co—o00 < |4} 1]|oo- The con-
clusion for p € (1, +00) follows from the Riesz-Thorin theorem and Lemma 2.4.

Let us prove that A, and A} are adjoint of each other. Consider u € L?(X, 1) and
v e L9(X, n). Then

/Afu(x)v(x)du(x) :[/13,(x)(y) Vbz(y)r)v(x)du(y)du(x)
X X X Y
=/ﬁ§% L, (o ()0 () dpa(x) ()
X X
= /u(y)Arv(y)du(y),
X

where we used the Fubini—Tonelli to get the second equality, and the equality

18, (¥) = 1B, () (x)

to get the last one. As for the compactness of A} under (II,.), this result is a direct
consequence of the Schauder theorem for compact operators which can be applied
thanks to Lemma 2.2. ]

2.3. Discussion on the assumptions

Let us discuss the validity of (I,-) and (II,-). Recall first that (I[,) = (I, ). Both prop-
erties hold on totally bounded spaces, as seen in the next lemma.

Lemma 2.6. Assume that (X, d) is totally bounded. Then (11,) (and then (1)) holds
foranyr > 0.

Proof. Consider r > 0 and a finite cover { B,/2(x;)} of X. For any x € X, there exists
i such that x € B,/»(x;). Then B,(x) contains B,/(x;) so V(x,r) > V(x;,r/2) >
min; V(x;,r/2) > 0. Thus,

/ dux) _ pn(X)

V(x,r) ~ min; V(xj,r/2) < oo .
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Remark 2.7. If u(X) = 400 and M(r) < +oo then (II,) cannot hold:

JEE
Vix,r) = M(r)
X
This happens, for instance, on R” endowed with the Euclidean distance and the
Lebesgue measure. More generally, this property cannot hold on a locally compact
topological group endowed with a left-invariant metric compatible with the Haar mea-
sure and with infinite volume (see [17, Lemma 1] for more details about these spaces).
If £(X) < oo and m(r) > 0, then (II, ) always holds:

/dM(X) _ X -
V(ix,r) = m(r)

+o00
X

In this regard, observe that if X is not totally bounded, then there exist > 0 small
enough and a countable family of disjoint balls {B, (x;)} in X, so that u(X) < co and
m(r) > 0 cannot hold simultaneously:

w(X) =y Vixir).

Let us now focus on (I,). We show below that this condition holds on so-called
doubling spaces. Let us recall this classical property and its uniform local variant, see
e.g., [10] for more details.

Definition 2.8. The space (X, d, i) is called globally doubling if there exists C > 0
such that for any x € X and r > 0,

V(x,2r) < CV(x,r). ®)

It is called uniformly locally doubling if there exist C, ro > 0 such that (8) holds for
any x € X and r € (0, rg).

The celebrated Bishop—Gromov theorem (see e.g., [7, Theorem II1.4.5]) implies
that any complete Riemannian manifold with a uniform lower bound on the Ricci
curvature is uniformly locally doubling, and globally doubling if the uniform bound is
non-negative. This is also true for metric spaces with generalized sectional curvature
bounded from below in the sense of Alexandrov [6, Theorem 10.6.6] and CD(K, N)
metric measure space [18, Corollary 30.14].

The next lemma relates the uniformly local doubling condition with (I;.).

Lemma 2.9. Let (X, d, u) be uniformly locally doubling with parameters C, ry.
Then (1) holds with |A}1|ec < C foranyr € (0, ro).
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Proof. For any x € X and r € (0, ro), the triangle inequality yields that B,(x) C
By, (y) for any y € B,(x). Then

k1N _ V(x,r) V(y,2r) -
A l(x) = ][ Vo) du(y) =< mdu(y) =C. =
By (x) By (x)

Remark 2.10. Of course, if (X, d, u) is globally doubling with constant C, then (1)
holds with |4} 1||cc < C for any r > 0.

Remark 2.11. The previous result notably implies that (I,) may hold in situations
where (II,) does not. This happens e.g., on a non-compact Riemannian manifold
(M, g) with non-negative Ricci curvature endowed with its canonical Riemannian
distance d and volume measure . Indeed, such a space has infinite volume, and the
Bishop—Gromov theorem implies that M (r) < V"(r) for any r > 0, where V" (r) is
the Lebesgue measure of an Euclidean ball of radius r in R”. From Remark 2.7, we
get that M cannot satisfy (II,) for any r > 0, while it does satisfies (I,-) thanks to the
global doubling condition.

We conclude this discussion with two final remarks. First, if m(r) > 0 and M(r) <
~+00, then (1) always holds with

M(r)
m(r)

This happens on locally compact topological groups endowed with a left-invariant

A7 oo <

distance and their Haar measure, compare with Remark 2.7. Secondly, (I,) can easily
be seen as a weak variant of the comparability conditions introduced in [3, 15].

2.4. Symmetrization
Forany x,y € X and r > 0, set

ar(x,y) = %(ar(x,y) + a7 (x.y))

1 1 1
- E(V(x,r) + V(y,r))lB’(x)(y)

(X, ) such that v(-) := u(-)/V(,r) € L (X, ). Forany x € X

: 1
Consider u € L ioc

loc
and r > 0 such that ¥ and v are p-integrable on B, (x), set

~ 1
Tu(x) = 5400 + 47000 = [ 7Gx ) ). ©)
X

Then the next lemma is an obvious consequence of Lemma 2.2 and Lemma 2.5.
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Corollary 2.12. Assume that there exists r > 0 such that (1) holds. Then the map
Ay L2(X, ) — L*(X, ) is a self-adjoint operator such that
14722 < 471118

oo

Moreover, if (1) holds, then A,: L2(X, 1) — L*(X, j1) is compact.

3. Symmetrized AMYV operators

In this section, we provide our working definition of the symmetrized AMV r-Laplace
operator A, and we derive several spectral properties in a general setting.

3.1. Definitions

For this subsection, we consider a metric measure space (X, d, u) satisfying (I,) for
some fixed r > 0.

Definition 3.1. The symmetrized AMV r-Laplace operator of (X, d, u) is
~ 1 ~ ~
Ay = _Z(Ar — [4-1]D),
r

where we recall that /Tr is defined in (9).

Remark 3.2. We may use the notation Zrax to specify that we work on the metric
measure space X = (X, d, ).

Lemma 3.3. A, is a bounded, self-adjoint operator acting on L*(X, i) with
X 1 *111/2 *
1Arl2s2 = 55 @A™ + 147 oo + 1. (10)

Proof. The self-adjointness of A, is obvious because A, and [A, 1]I are self-adjoint
too. The boundedness is a consequence of Lemma 2.12. Indeed,

5 1~ -
[Ar]l2—52 < r_2(||Ar||2—>2 + I[Ar1]1 [l2—2)

< L QAT 4 18 oo 1 122)

r R_pl—/
Il + 14 1
2
Lt 14 e
]

IA

1 *

(14701 +
1 *

= S (1az +

hence A,: L2(X, ) — L2(X, 11) is bounded and (10) holds. n
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Definition 3.4. The energy functional E, of (X, d, n) is the quadratic form on the
space L?(X, t) defined by

B =g [ [1noo(as + 7o) ()
X X

The associated bilinear form, which we still denote by E.,is given by

~ 1 1 1
EGv=g [ [1500(Gas* 707)
X X
LU = [N ) = ()

72

dp(y) dp(x).

dp(y) dp(x).

Remark 3.5. A suitable use of the Fubini—Tonelli theorem shows that the energy
functional E,(f) equals the approximate Korevaar—Schoen energy [11]

_ 2
L[ fUDIOR a0,

X Br(x)

Remark 3.6. We may also use the notation E r.% to specify the metric measure space
X = (X,d, ).

The next lemma goes back to [2, Lemma 3.1]. We provide a quick proof for com-
pleteness.

Lemma 3.7. Forany f.v € L*(X, ),

E,(f9) = (<A £ )12, an
Proof. Note that
E(f, )
_ 1 ! 1\ () = FONY ()
- Z/ /(V(x,r) " V(y,r)) 2 du(y) dp(x)
X Br(x)

! ! 1\ () = fONY ()
a Z)[X/ 1Br(x)(y)<V(x,r) + V(y,r)) 2 du(y) dp(x).

Using 13, (x)(¥) = 1B, (y)(x) and then the Fubini theorem, we can rewrite the second
term as the opposite of the first one, so that we eventually get (11). ]

Remark 3.8. Observe that (11) implies that —A,isa non-negative operator, since for
any f € L*(X, p),
(=Ar fo )2 = E(f) 20
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Let us recall the definition of spectrum.

Definition 3.9. We let o(—A,) denote the spectrum of —A,, that is to say, the set of
elements A € C* such that —A, — AL: L?(X, ) — L?(X, 1) is not a bijection.

It is well known from classical functional analysis that the spectrum o (7)) of a
bounded operator 7" acting on a Banach space E can be decomposed as

o(T) = 0p(T) Uoce(T) U au(T),

where

* 0,(T) is the point spectrum, that is to say, the set of A€ CT such that (T —AI) f =0
for some non-zero f € E, in which case A is called an eigenvalue and f an
eigenvector of T

» 0.(T) is the compression spectrum, that is to say, the set of A € C* whose conju-
gate A is an eigenvalue of the adjoint 7*;

» 0,(T) is the approximate point spectrum, that is to say, the set of A € C* for which
there exists ( f;) C E with || f|| = 1 for any n such that ||(T — AL) f,|| — O.

Since —A, is self-adjoint and non-negative, we know that
o(=A,) C [0, +00].
This implies that o,(—A,) = 0c(—A,), so that
o(=Ar) = 0y(=A,) Uou(—A,). (12)
Definition 3.10. For any k € N, we define

E.(f)

inf ,
Vegi 1 (L2(X) rev |If 12

/\k,r =

where 91 (L?(X, ) is the (k + 1)-th Grassmannian of L?(X, ).

Remark 3.11. Let aess(—Z,) denote the essential spectrum of —Zr, i.e., the closed
subset of 0(—&,) made of those A such that —5, — Al is not a Fredholm opera-
tor. Since —A, is self-adjoint, the Fischer—Polya minimum-maximum principle (see
e.g., [19, p. 12]) asserts that if there exists a positive integer N such that A Ny <
min oess(—zr), then —Zr admits N + 1 isolated eigenvalues

Ao(=A,) < - < An(=A,) < minoe(—A,)
such that for any k € {0,..., N},

Mer = Ae(=A,).
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3.2. Spectral properties

Our first spectral result on A, is the following. Note that we need the compactness of
A, here, thus we assume (II,.).

Proposition 3.12. Let (X, d, u) be a metric measure space satisfying (11, for some
fixed r > 0. Assume that . € o(—A,) satisfies

yeX r

Then X is an isolated eigenvalue of — A, which does not belong 10 Gess(—A,).

Proof. Let us first show that A is an eigenvalue, that is to say, that A belongs to the
point spectrum. According to (12), it is enough to show that if A is in the approximate
point spectrum, then it is in the point spectrum. If this is the case, then there exists a
sequence ( f,) € L?(X, u) such that | fallL2(x) = 1 and

Ar fo

[4,1] ~3) - At

r2

| — ern — )Kfn||L2(X) = H(

13
20 13)

Since A, is compact, we have that A, fn converges up to a subsequence, and as such
by equation (13) so does ([A,1] — r2) f,, with limit g € L?(X). Consider § > 0 such
that 0 < A + 8/r? < infyex[A,1](y)/r? and define

by(x) 1= [A,1] —r?A = 6.
Thus, we have that f := g/b, € L?>(X, j1), and so

d

§
fn br

L2(X) < lbr fu — g||L2(X) — 0.
Thus, f;, converges in L2(X, 1) to the limit function f. Using continuity of —A, we
conclude that

_er = /\ﬂ

and thus A is in the point spectrum.

To prove that A is an isolated point, we suppose by contradiction that there exists
an infinite sequence (A,) C o(—Z ) of distinct values such that A,, — A. Then there
exists § > 0 such that for any high enough #,

A+ 8/r% < ing AW

)f( oI An — A
Y€ r
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From the previous paragraph, we know that A, is in the point spectrum, thus there
exists f, € L*(X, p) satisfying || f,]|l12(x) = 1. such that

—Rs fo = Do fo
This can be written as _ _
= (=B 5
Using compactness of jfr, we know that A, fn converges up to a subsequence. This
implies that (r2A,, — [4,1]) f, converges up to a subsequence to some g € L2(X, ).

Define
byp(x) := [A1] = %Ay,

With this we have that

g 4 g g
e =1 2 )
Jn by lL2x) — Jn byallLzcxy by, b, llL2x)
4 4
< lbyn fo — 5‘ & & .
< r,nfn g||L2(X) + br,n b, lL20x)
We have that [|b,» fu — gll2(x) — 0 and also ||% - lf’_r”B(X) — 0since 0 < § <

brn, by and A, — A. Thus, f, converges. However, since all the eigenvalues are
different, we know that (f,, f;) = 8,,;, and so the sequence cannot converge up
to a subsequence, achieving contradiction. This shows that A is an isolated point of
o(—A,) finishing the first part of the proof.

Let us now prove that —A, — Al is a Fredholm operator.

To show that ker(—A, — A7) is finite dimensional we proceed by contradiction.
Assume that there exists an infinite sequence ( f,) C ker(—A, — AT) such that

(fmfj) = Sn,j-

Thus,

fTrfn _ ()L— [A’Zfrl]

r2 r2

)do

Similar to before we can use compactness of A, and the condition on A to conclude
that f, converges in L2(X, t) up to a subsequence. However, this is prevented by

(fnafj) = Sn,j-

To show that the image of —A r — Al is closed, consider a sequence
gn = (=B, = AD)(fy)

such that g, — g. Similarly to before, we can conclude that since g, converges, then
fn converges to some f, and thus g = (—A, — AI)(f). ]
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Corollary 3.13. Let (X, d, i) be a metric measure space such that for some ry > 0
the assumption (11,.) holds for any r € (0, ry). Then

lim(min oess (—A,)) = +00.
ri0

Proof. Proposition 3.12 implies that

[Ar 1)

nf < min o (—A,). (14)

But for any r > 0,

~ 1 . 1 1

hence (14) implies that

min Oess (—A,) > AL +00. n

1
2r2
Let us provide our second spectral result on Ar.

Proposition 3.14. Let (X, d, n) be a connected metric measure space satisfying (II )
for some fixed r > 0. Then the kernel of A, contains constant functions only, and E,
defines a scalar product on

(X, p) = {f e L*(X, ) : / fdu = o}. (15)
X

Proof. Consider f € L2(X, 1)\{0} such that A, f = 0. Then we have E,(f) = 0.
This implies that for y-a.e. x € X,

/lBr(x)(Y)(V(;’r) + V(yl’r))(f(x);f(y))zdu(y) =0
X

which implies, in turn,
p(y € Br(x): f(y) = f(x)}) = n(Br(x)).
Consider F := {x € X : f(x) is a well-defined real number} and
={xeF:u(yeBr(x): f(y) = fx)}) = u(Br(x))}.

Then
n(X\A4) = 0.
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Take z € A and let ¢ = f(z). Consider
I={xeA: f(x)=c}, I'={xeA: f(x)#c},
and notice that I U I’ = A. Suppose by contradiction that I’ # @. Set

we=JB.(x). V=B

xel yel’

Since V and W are open sets whose union contains A which has full measure in X,
we must have
wWuv =X,

otherwise X'\ A would contain an open ball with positive measure. Since W and V
form an open cover of X, and X is connected, if both V' and W are different from the
empty set, then there exist x € I and y € I’ such that

By (x) N By (y) # 0.
However,
flB.nB,opy(w) = f(x) p-ae weX,
f1B-onB (W) = f(y) p-ae weX.

This is not possible since f(x) # f(y) and u(B,(x) N B,(y)) > 0. This implies
that I = A and that f(w) = ¢ for p-a.e. w € X. Then —A, has a non-trivial ker-
nel consisting of the constant functions only. Moreover, since —A, is non-negative
(Remark 3.8), we get the desired property on (15). ]

We are now in a position to prove Theorem 1. We recall that the context of this
statement is a compact uniformly locally doubling metric measure space (X, d, ).
The compactness of the space ensures that (I1I,-) holds for any r > 0, see Lemma 2.6.

Proof. For k > 1 integer, let xq, ..., X € X be distinct points. Set

. . d(xi, x))
Fr := min ————-
0<i#j<k 4

Foranyi € {0,...,k}and y € X, define

: d(xi, )\ * fiy)
i =(1- — d i = ="
)= (1-75) ad )=

Note that each f; is an L2-normalized Lipschitz function supported in By, (x;), and
that ( fo, ..., fx) is an orthonormal family of L2(X, j1). Set

V = Span(fo. ..., fk) € k1 (L2 (X, 1))
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and observe that for any r > 0,
iy < max E.(f).
eV
17 l2=1

Consider r € (0,7%) andi # j in{0,...,k}. If x € By, (x;), then f;(y) = O for any
Y € B, (x), while if x ¢ By (x;), then f;(y) = 0 for any y € B,(x). In both cases,

(/i) = fiyD(fi(x) = £ (y)) =0

for any y € B,(x). Thus,
E-(fi. fj) =0. (16)

Consider f € V suchthat || f|| = 1. Then f = Zf:o a; f; for some ag, ...,ar €R
such that Y%_, a? = 1. By (16), we get

k
E(f)=) alE(fi) < [max E (f).
i=0 - =

Let rg, C be the parameters of the uniform local doubling property of (X, d, i), see
Definition 2.8. Then for any i € {0, ...,k} and r € (0, rg),

2
Ep) < 1P LD [ (14 Ky S0 ) g
»h,_/

¥ Bty et ) V(y,r)
e <14C2 =1
- Lip®(f;)(1 + CHu(X)
- 4
Therefore, for any r < 7 := min(7, R), we get
. ~ 1+ CHuX
Aer<C = A+ ) o Lip?(f;)- (17)
4 o<i<k

By Corollary 3.13, there exists r¢ € (0, 7%) such that C < min oess(—A,) for any
r € (0, r¢). Then Remark 3.11 implies that for such an r the operator —A, admits
k + 1 eigenvalues Ao(—A,) < A1(—A,) <--- < Ax(—A,) such that A; (—A,) = ii,r
forany i € {0,...,k}. That Ag(—A,) = 0 follows from Proposition 3.14. Moreover,
by Remark 3.11 and Proposition 3.14, we know that

- B

1, min ,
T renx || fa

where TI(X, u) is as in (15). Since —A, has a kernel which is L?-orthogonal to
I1(X, u) (Proposition 3.14), we have E,(f) > 0 for any f € I1(X, u), hence we get

il,r > 0. ]
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4. First eigenvalue of torus and hypercubes

In this section, we derive some results which will be applied in Section 6. We let m
be a positive integer kept fixed throughout the section.

4.1. A preliminary lemma

We begin with a result where we use the normalized sinc function, namely

| ) g p e RGO},
sinc(p) =
1 ifp=0,
and the following notation: for any p = (p1,..., pm) € Z™,

J(p)={i e{l,....m}:p; #0}, j(p)=#J(p).
Lemma 4.1. We have

liminf inf
r—>0 0#pezm

l(1 — l_[sinc(pir))‘ > 0. (18)

72
ieJ(p)

Proof. We start by pointing out that for any » > 0 and p € Z™\{0},
[ [sinc(pir) # 1.

ieJ(p)

‘riz(l — Hsinc(pir))) > 0.

ieJ(p)

Moreover, for any r > 0, if | p|oo := max;<j<m | pi| — 400, then

‘rlz(l —l_[sinc(p,-r))‘ — riz >0,

ieJ(p)

so that

hence there exists R > 0 such that

1 1
inf ‘—(1 — sinc(p;r )‘ = min ‘—(1 — sinc(p;r )‘ > 0.
L v]‘[ (pi))| = min_ |- _1‘[ (pir)
ieJ(p) |Ploc<R ieJ(p)

If (18) were to fail, due to the previous line, there would exist sequences (r,) C
(0, +00) and (p™) c Z™\{0} such that r, — 0 and

i(1 — H sinc(pi(n)r))‘ =0. (19)

lim 2
n ieJ(p)

n
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We have two cases:
e thereexistsa > 0and j € {1,...,m} such that liminf, p](-")r,, >«
e forany j €{l,...,m}, one has liminf, pj(.n)r,, = 0.
If the first one were true, then we would have
lin}linf|1 - l_[sinc(pi(")r)‘ > |1 —al,
ieJ(p)

and so (19) could not hold. On the contrary, if the second case were true, up to

extracting a subsequence we would have p(-")

. rn — 0 for any j € {l,...,m}. For
any y = (y1,....ym) € R™, set

G(y)=1- 1_[ sinc(y;).

Jj=1

Then G is smooth on R™ and satisfies
1
GO =P +olyP), Iyl —0.

As a consequence, for y € R™ such that |y| is small enough,

1
GO = Iyl
Then, for large enough n,

. 1 1
|1 =TT sinc(p{"r)| = Grup®™) = 1rup® 2 = 512,

iel(p™)

because p™ = 0 implies that there exists at least one i such that | pl-(")| > 1. Thus, we

obtain : |
lim —2(1 - l_[sinc(npi(")rn)ﬂ > 2
BT
and so (19) could not hold. This concludes the proof. [ ]
4.2. Torus

Consider the torus
T :=R™/(-1+2Z)"

with its natural quotient map 7: R™ — T™. Let 7! be the inverse of the bijective
map
-1, )" - T™.
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Let dso be the distance in R™ associated with the infinity norm, given by
doo(x,y) ;= max{|x; — y;| : i €{1,...,m}}

forany x = (x1,...,xp) and y = (y1,..., ym) in R™. With respect to this distance,
the open ball of radius r > 0 centered at x € R™ is

0,(x):= l_[(—r + xi,x; +r). (20)

i=1
For any x,y € T™, set

deo(x,y) = inf  deo(z, w).
ZEn_l(x
wern~1(y)

Then doo defines a distance on T, and we denote by Qr (x) the open ball of radius
r > 0 centered at x € T™ with respect to this distance. We also introduce the proba-
bility measure
xm
L™ = JT#(—)
2m
on T™. Note that this is also the normalized Haar measure of T seen as a Lie group.

It is obvious that the metric measure space T := (T", doo, L™) satisfies the
assumptions of Theorem 1, hence we know that for any small enough r,

Xir = Ai(=4,) > 0.
Then the following holds.
Proposition 4.2. We have
liminf A1 (—A,) > 0.
r—>0
Proof. For any x € T™ and r > 0 small enough, the ball Qr (x) € T™ is given by
0r(x) = m(Q: (%)),
where X is any element in 77! (x), and Q, (%) is as in (20). Then

£7(0,(%) _

L™(Qr(x) = =7 1)

so that the r-energy functional of T writes as
= 1 (x) = f()\2
Eren(f) = = / / (LSO qumyame @)
T Qr(x)

forany f € L2(T™,L™).
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We act by contradiction. Assume that there exist r, — 0 and { f,,} C L>(T™,LL™)
satisfying [, fn dL™ = 0 and || fu|lp2¢pmy = 1, such that
~Bryfo =B o M(=R,) 0. (23)

With no loss of generality, we assume that each r, is small enough to ensure that

E,, =m writes as in (22).
From (21) we can write, for any n and L™-a.e. x € T™,

Ry ful) = riz(fn(x)— = [ 1g,n(x)(y)fn(y>dm'"(y))

’]I‘ln

- r%(f”(x) - L(lérnm) * f)()). (24)

m
rl’l

We consider the Fourier decomposition of f,, 1an (0> and —A rn Jn, namely

Jo = Zap,nep, 1an(0) = pr,nep, _Zrnfn = Zcp,nep7

PEL™ pEL™ pezm
where {e,}pezm is the orthonormal basis of L2(T™,L™) given by
ep:T™ 5 x > ™7™ forall p e 2™,

Since the Fourier coefficients of a convolution are the product of the coefficients, we
obtain from (24) that

1 bp,n __Appn 1 bi n
Cpn = S\pn— — ~ldpn) = )
r rl

2 m
n Tn Ty

We can compute each coefficient b, , by means of Fubini’s theorem; we obtain

o dE™(x) )
bpn = /e’””x—zm =r 1_[ sinc(pirn).
01y (0) ieJ(p)

Thus,

a .
Cpn = :zn (1 - 1_[ smc(p,-rn)).

n ieJ(p)

Using Lemma 4.1, for p € Z\{0} we conclude that there exists « > 0 such that

1 .
r_2|1 - l_[smc(pirn)| > a.
m ieJ(p)

This implies that
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By Parseval’s identity, and since f, € I1(T"™,L™) we have ag, = 0,

N 2 2 2.2 2 2
” - Arn fn||L2(']I‘m) = Z |cp,n| = Z |ap,n| o =o Hf””LZ(Tm)’
pEL™ PEZ™\{0}

in contradiction with | — A,, f,|| r2(rm) — 0 provided by (23). [

4.3. Shrinking hypercubes

For any b > 0, consider the metric measure space Q™ (b) := ([0, b]", deo, £™). It
trivially satisfies the assumptions of Theorem 1, so that for any small enough r,

Ay = (=B, gm@p)) > 0. (25)
Then the following holds.
Lemma 4.3. We have
lim inf lim AM(=A,gm@p)) = 4o0o0. (26)

Proof. We suppose by contradiction that (26) fails. Then there exist b, —0 and r,, —0
such that
lim A (=Ay, gm@)) < +00.

Since we are first taking the limit in r and then in b, we can assume 7, := r, /b, — 0.
For any n, by a simple scaling argument we have

~ 1 ~
M(Brame) = T3h (=87, 8m )
n

thus
/\1 (_Afn,,&m(l)) — 0.

From (25), assuming that each r, is small enough, we know that there exists f, €
H([O, l]m, cfm) SuCh that ||fn||L2([0,1]m’$m) - 1 and

E;, am@y(fn) = 2 (=As, ama))-

Consider the continuous function

T:T™ — [0, 1]™,
X = (|Xj1|’--'y |A_Cm|)y’

where ¥ = 7~ !(x) € [~1, 1)™. For any n, set

fo= faoT € L3(T™ L™).
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From this we have that f,, € I1(T™,L™) Let us prove that

I fullz2¢em Lmy = 1.
Let Cq, ..., Cym denote the 2™ sets of the form /1 x --- x I,, where each I; is either
[-1,0] or [0, 1]. For any j € {1,...,2™}, set

N;:[0,1]" — C;,
E1sesbm) > (i1, embm),

where ¢; is 1 if /; = [0, 1] and —1 otherwise. Note that N; is an isometry which
preserves the Lebesgue measure, and that 7" o w o N; is equal to the identity. Then

~ 1
olacomum = [(GnoTialm = o (ot o agn
Tm [—1,1]"

2m
zzimz [(fnoTon)dem

—1
J C;

2m
1
=2—mE /(fnoToyron)zdéCm
Jj=1 [0,1]"

2 —
” fn ||L2([0,1]m’$m) - 1

We claim that
E;n,§m (fn) < ZmE;n,Qm(l)(fn). (27)

Since f~,, e II(T™, L™), the latter provides a contradiction with Proposition 4.2,
namely
0 < A1(=Af,zm) <2"A1(=Af, . amq)) = 0.

Given x € T™, define

Gu(x) = % (f"(x)f;nf"(y))z

07, (%)

dL™(y).

For any x € [0, 1]™, set

Jn(X) = fu(y) m
Gn(x) = /(V(xl,fn) * V(yl,fn))( - i - )de ).

Or, (x)

where
V(z,r) = £"(Qr(z) N[0, 1]™)
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for any z € [0, 1]™. Then
sEr, (i) = [ Ga) L")
’]I‘m
s am) () = [ Ga) 42" ().
[0,1)™
Moreover, for all x € T™,
1 2m 2m
— = = =) (28)
w T L™, (T(x) N[0, 1)) V(T(x),7n)
For any x € T, there exists some k € {1,...,2™} and X € C such that 7(X) = x.
We will now consider for each j € {1,...,2"} the rectangle given by
Ruj(x) 1= T(x(Cy) N 07, (x)) € [0.1]".
and we point out that
Rp,j(x) C Ry k(x) =[0,1]" N Q5, (T (x)) (29)
for any j € {l,...,2™}. This follows since for eachi € {1,...,m} we have 4 possi-

bilities
D) [xi| <7a
(2) 1 =xi| <rn
@) | =1=xi| <y
@ =(()vE@)VvQA).

If m;: R™ — R is the projection in the i -th coordinate, we conclude

(0,7, + [x:[] if (1),

| R IR Q.

S TSR e

[_fnvfn] if (4)7

and
i (Ry1(x)) = 7i (Ry k() if m;(C) = mi (Cy),

[0, 7 — |X;]] if (1) and —(7; (C;) = 7 (Cy)),
T (Ru k(X)) = 4 [2 =70 — %], 1] if (2) and —(7; (Cj) = 7 (Cy)),
(2 —7n — %], 1] if (3) and —(7; (C;) = i (Ck)),
@ if (4) and —'(Jti (Cj) =T (Ck)).
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Thus, we conclude that for alli € {1,...,m}and!/ € {1,...,2™} we have
i (R 1 (x)) C 70 (Rp i (X)),

and since these sets are rectangles, we conclude equation (29).
From (28), we can deduce

Gl = - /(ﬁ,(x);ﬁ,(y))zdlm(y)
O, (x)

om om Ja(T(x) = fu(TODN2 -
§~[(V(T(x),fn) * V(T(y),f,,))( : 7 . ) dL™(y)
Q7 (x)

- o o
=2 | Garerm * wworm)

Oy ()N(C)) - (T(x)) — fo(T
y (f( (x)) an( (y)))zdLm(y)

1 2" >
3 | Gaom * vawonm)

710, (INC; Fu(T(x) — (T ()))\2
X( - fn : ) dL" ().

For each integral, change coordinates by N; to conclude

1 & om om
~om ; ~/ (V(T(X),fn) * V(T ((N; (y))),fn))
j_l(ﬂ_l(an x)NC;)
y (fn(T(x)) — fa(T((N;(y))))

In

) azm ).

‘We have that
N7 @05, () N Cj) = Ry, (x),

so by equation (29) and the fact that 7 o w o N; = id, we conclude

2m om 2m
Gu(x) < om ; [(V(T(x) 7n) V(T(y),fn))
Ry (x) § (fn(T(x))—fn(y))2

n

dL™(y)
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1 & om
f_mz / <V(T<x) ) V(y,fn)>

=1 Ry k) § (fn(T(X)) — Jn (y>)2 4L (y)
I'n
= Gaam )T

[0,11"NQF, (T'(x))

= 2MG,(T(x)).

Now, we integrate both sides in T and change variables by w and N; to conclude

AE7, wm(fn) = / Gn(x)dL™(x) < 2™ / G, (T (x))dL™(x)

’]I‘I‘ﬂ ’]I‘m

— [ Gy arn - 5 [ Gar e ez

[—1,1)M i=lg¢,
2m 2m
=Y [arawmmenm =Y [ G
=1 10,17m I=L o, 1pm
= 2M4E;, toaym (fr) = 2M4A (= Af, am))-
With this we obtain (27). ]

5. L? convergence

In this section, we prove Theorem 2. Let M be a smooth, compact, connected man-
ifold of dimension m > 2. Assume that M is endowed with a smooth Riemannian
metric g and let dg and volg be the associated Riemannian distance and volume mea-
sure on M.

In this smooth context, the function V(-, r) is obviously continuous for any r > 0.
Since M is compact, this implies that the metric measure space (M dg, volg) sat-
isfies (II,) and (I,). Then Lemma 3.3 applies and ensures that Ar is a bounded
self-adjoint operator acting on L2 (M, volg ). The compactness of M also ensures that
(M, dg, volg) is locally Ahlfors regular: there exists a constant C > 1 such that for
any x € M and r € (0, diam(M )],

C™l™m <V(x,ry<Cr™. (30)

Note that this condition trivially implies a uniform local doubling property for (M, d,,
volg).
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5.1. Convergence in the sense of distributions

Recall that C,, is defined in (2). For any x € M\0M, we let exp, be the exponential
map centered at x. We identify T M with R” and write B (v) for the Euclidean ball
in R™ centered at v with radius » > 0. Then there exists § > 0 such that the restriction
of exp, to BY'(0) is a diffeomorphism onto its image; recall that the injectivity radius
ipr(x) of M at x is the supremum of the set of such numbers §. We let Jy be the
Radon-Nikodym derivative of the measure (exp;l)#volg with respect to the Lebesgue
measure £™. It is well known that for any & € B (0),

Je(§) = 1+ Ok ([E]%),

where for any & > 0, the notation Ok () stands for a quantity independent on x € K
whose absolute value divided by % is bounded. Here K is a compact subset of M. We
write O instead of Ops. Then the following holds.

Proposition 5.1. Consider f,\y € C*>(M). Then

i (&, £ )2 = G [ (40 dvol. G31)

r—0
M

Proof. Forany x € M and r > 0, set

V(x, V)) (f(x) = fONW(x) — ¥ (y))
V(y,r) r2

Gy =g f(1+ dvolg (7)

By (x)

so that

(R fY)2 = / & (f 0 y) dvolg ().
M

On one hand,

s _ 1 Vx,r)\ [ f(x) = fOD)IIY(x) =y ()]
e (vl = 4 f(l + V(y,r)) 5 dvolg ()
By (x)
1 V(x,r)\ Lip(f) Lip(¥)d3 (x, y)
~ 4 ][(1 + V(y,r)) r? dvol, (v)
By (x)
Lip( /) Lip(y/) V(x,r)
R f(l + m) dvol ().
By (x)
By (30), we obtain
6 (S| < SROLPOH(A+C) (32)

4



M. Dias and D. Tewodrose 122

On the other hand, assume that r is smaller than ips (x), and consider f = f oexp,
and = o exp, on B (0). The first-order Taylor expansion of f and ¥ yields

&) = £(0) + (df)oE) + Oy (IE1),
V(&) = ¥(0) + (dY)o(§) + Oy (E[?).
Then

/ () — FONW @) — P (7)) dvolg (»)

By (x)

= /(f(O) — J©)W0) =y (§))J (€) d2™ (§)

B (0)

= [((df)o(é) + 00y (r) (Ao (§) + 01y () (1 + Oy0p) dL™ (£)

B (0)

= 3 [@A)ol[(@)ol; / £5 dL™ () + Opoy (™)
i,j=1

B (0)
— @fo- @ [ E4L7©) + 0 ™),
B} (0)
Moreover, it is known that (see e.g., [15, Remark 2.11])

Vix,r)
V(y.r)
and since V(x,r)/£™ (B (0))) — 1 asr | 0, we obtain

=2+ Q{x}(rz)

Vix,r)
) (f )(1 T ) = FON ) =y () dvolg ()

_ "B O)C + Op(r
- V(x,r)

2 ~ ~ ~ ~
) fuo-fendo-ieeaene

B/ (0)

— e+ Q{x}(rz))((df)o @i f g azme + Q{o}("3))-

B} (0)
Since (df)o - (d¥)o = {df,dy)(x) and
f £24L™ () = 2r°Cpy

B} (0)
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by change of variable £ <> 1/r2, we eventually obtain that
er(fyix) = Cu(df.dY)g(x) + Ogxy(r) asr — 0.

By (32) and the compactness of M, we can apply the dominated convergence theorem
to the functions €, ( f, ¥ ;). Then we get (31). ]

Using integration by parts in (31), we immediately obtain the following.

Corollary 5.2. Let dg be the Riemannian metric induced by g on dM. For any f €
€ (M), the following convergence holds in the sense of distributions as r |, 0:

(A, f)voly — Cu((Ag f)volg + (35 f)volag).

5.2. Pointwise convergence

We aim to prove Theorem 2 in a similar way as Proposition 5.1, that is to say, by
means of the dominated convergence theorem. To this aim, we first establish that

pointwise convergence holds volg-a.e. on M. We recall that dM is a volg-negligible
subset of M.

Proposition 5.3. Let f € C°°(M). Then for any x € M — 0M,
rlg% er(x) = CmAg f(x).

Moreover, the convergence is uniform on any compact subset of M — oM.

Proof. Let K be a compact subset of M — dM . Consider x € K and r € (0, ipr(x)).
Set fy := f oexp,. Acting like in the proof of Proposition 5.1, we get

QO™ [ 5
2D [ - fronazm©.

B (0)

K ) =

The second-order Taylor expansion of f; yields

Fe®) = F2(0) + @F0(®) + 5@ fi)ol&.£) + Ok (£)
hence we get
f Fe®) — Fo(0)d2™ (8)
B} (0)

= f @@ aL"@ + 5 f @ Foe.£)dL"©) + 0x ().

B/ (0) B (0)
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The first term vanishes by symmetry. The second term is equal to

SAF:0) f 8 a2m€) = 8, G,

B (0)
In the end we get
~ 2 + Ok (r?
& = 28, 102G + 0k ()
= (1 + Ok () (Cnlg f(x) + Ok (1))
from which follows the desired result, by letting r |, 0. ]

5.3. Uniform bound

We wish now to provide a uniform L°° bound for the functions —Zrl/f, where r is in
a neighborhood of zero.
Let us first consider the case dM = @. From Proposition 5.3, we have uniform
convergence
”er —Cnlg flloo—0

so that
[Arf = Cnlg fll2 = |Ar f — Cnlg flloovolg (M) — 0.

Let us now deal with the case dM # @.

Proposition 5.4. Assume that OM # Q. Consider f € C°(M). Then there exists
ro > 0 such that
sup [ Ay flLeo(ary < +oo0.

0<r<ro

Proof. Since dM is compact, we can find a finite collection of smooth parameteriza-
tions v;: (—4,4)™~! — 9M such that

M = ;v (-1, 11771, (33)

Step 1. We work with any of the previous v; which we denote by . For any x € dM,
let v, € Tx M be the unit inner normal vector of dM at x. Since dM is smooth, there
exists € > 0 such that the map E: dM x [0,&] — M given by

E(x,t) = expi"’(lvx)

is an embedding, and there exists a smooth family of metrics {g}e[0,s] on M such
that for any (x,t) € dM x [0, ¢],

(E*$) ey = (81 ® dT%) (x.0)- (34)
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Pulling back each metric g; by ¥ we have, for any £ € (—4,4)" ! and v,w € R™"!,
(W*g)e,w) =v" - Ay - w, (35)

for some positive definite, symmetric (m — 1)-square matrix A ;). From the non-
degeneracy of the metric and a Lipschitz bound, we have that there exist C,¢ > 0
such that for all 7, s € [0, ¢], £ € [-3,3]"" ', v € R™ we have

[(V*g:) ® dT?]e0)(v.v) = T[>, (36)

I[(W*gr) ® dt?]e.ny(v.v) — [(¥*gs) ® d?]eny(v.v)| < Clo*lt —s|.  (37)

Claim 1. There exists K > 0 such that for any t,s € [0,¢], £ € [-3,3]"", v € R™
such that
|0, 1,5,v)] < K|v]- [t =5, (38)

where
O t.5.v) = [(¥*g) ® A7) (v.v) — [(¥*gs) ® A7) 3 (w.v).  (39)

Proof. Consider ¢ > 0 given by (36). We know that there exists M > 0 such that the
map ,/-:[¢, +00) — R is M -Lipschitz. By homogeneity in |v| of (38), we can assume
that |[v| = 1. Then the Lipschitz condition and (37) yield
0G.1.5.0)| = (Vg0 ® A1 (0. 0) — [ g5) @ A1 . v)]
< M|[(¥*g) & d*]e.n(v,v) = [(V*&5) ® dT?]en) (v, )|
<MCv]*|t —s| = MC|t —s|. ]

Step 2. Let T'(e) == E(dM x [0, ¢]) be the & tubular neighborhood of the boundary.
Then E is a diffeomorphism between dM x [0, €] and T (¢). For fixed s € [0, €], con-
sider the product metric gy @ d 2 in dM x [0, €] and define the metric in 7'(¢)

Ns = (E_l)*(gs 52 dfz)-

Let d, be the distance induced from this metric. Consider the map ®: (—4, 4)"~1 x
[0, €] — M given by
. 1) = EW(5).1) (40)

and note that (34) implies that for any (£,7) € (—4,4)™! x [0, €],

(@* ) ey = W gr ® dT)e.p). 41)

Set H” := {v € R™ : v,, > 0}. Let L(y) be the Euclidean length of a curve
7:10,1] - R™,
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Claim 2. Let ¢ > 0 be given by (36). For any r > 0 and s € [0, €], if a couple

(£,1) € [-2,2]" 1 x [0, €] is such that Bmf(é HNH™ c[-3,3]"! x [0, €], then
the following holds for any y € M.

(1) Ifd(®(&,1), y) <r, then the image of any d-minimizing geodesic y:[0,1] —> M

is contained in @(B:’;ﬁ(“g‘, 1) NH™) and 7 = 1 o y satisfies L(j) <r//¢.

(2) Ifds(®(£,1),y) <r, then the image of any ds-minimizing geodesic y:[0,1]— M

is contained in @(B:’;ﬁ(“g‘, 1) NH™) and 7 = 1 o y satisfies L(j) <r//¢.

Proof. We prove the first result only since the proof of the second one follows from
similar lines. Consider a d-minimizing geodesic y: [0, 1] — M from ®(£,¢) to y. Set

8 :=sup{t € [0,1] : y(s) € CD(IB%r/f(E,t) N H™) for any s € [0,1)},
7= oylpa,
and observe that y ([0, 1]) C CD(Br/f(E’ t) N H™) if and only if § = 1. We claim that

dg (P(5.1). 7).
NG
Indeed, setting (&, 7,) := 7, where @: [0, 8] — [~3,3]™~! and 7,,: [0, 8] — [0, &], we

have

L(y) = (42)

1 )

4D 1), y) = / e1(2y ) pw) dw = [ g2 (). pw) du

0

§
— [@ oz G Fw)
0

= [0 g3 ® A, G0 F ) dw (by (41)
)
> / VI (w)] dw (by (36))
0
= VEL().
Now, we claim that
§<1 = dg(®(.t),y)>r. (43)

Indeed, if § < 1, since y(0) = (£,¢) and y(3) € BBZ«@(S’ t) N H™, then

L(y) > f



Spectral properties of symmetrized AMV operators 127

and we get dg (®(&,1), y) > r from (42). Therefore, if dg (®(§,7), y) < r, then (43)
implies that § = 1 which means ([0, 1]) is included in @(B:’;ﬁ@, t) N H™), and (42)
yields L(7) < r/+/¢ as desired. [

Claim 3. There exists K > 0 such that for all (£,1), (n,s) € [<2,2]"! x [0, ] and
r > 0 such that B;’;ﬁ(“g‘,t) NH™ c [-3,3]"! x [0, ¢]:
d(®(.1), @(n.5) <r = di(P(E,1). P(n.5) <1+ Kr?, (44)
d(®(E, 1), @(1,5)) = r = di(D(E,1), @(1,5) = r — Kr?. (45)
Proof. Suppose that d(®(&, 1), P(n,s)) < r. Let y:[0,1] - M be a d-minimizing

geodesic between P (&, t) and ®(n, s). Then by Claim 2, we have that y([0, 1]) C
@(Bi’;ﬁ(é, t) N H™), and by defining (&, ) = 7 := ®! o y, we have that L(}) <

r/ /. Thus, we obtain

1

A@ED. 0015 = [ g2, (w). pw) du
0
1

1
= [ ey iy ds = [0l 0w, 5w
0 1 0
+ [0z, o). sy
1 0
= /(w*gym(w) ©® dfz)(lé(zw),ym(w))(f/(w)a )7(11))) dw
’ 1
- [ e ®a) G 5 F) F@) du
01
+ [0l 0w sw)a
0
1

_ / 0@ W), m(w), 1, (w)) dw

0
1
+ [@olfz 0wy dw. 46)
0
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where we use (39) to get the last equality. By Claim 1, we have that

1 1
' / O@(w). (W), 1. j(w)) dw| < / 0@ W), (W), £, (W) dw
0 0

1
< [ Kl = fmtw) v
0
By Claim 2, we have that |t — 7, (s)| < r/~/¢ and L(J) < r/~/€, hence we get

1
‘ [ OG(W). T (w). 1. 7(w)) dw
0

< %/Iy(w)ldw < K— 47)

Thus,
1
4 (D(E.1). D(.5)) < / )12, (W), (w)) dw
0

1
< d(DE.1). D(.5)) + ’ / O(@E(W). fm(w). 1. j(w)) du
0r2
< d(@(E.0). 901.) + K
r2

<r—|—KT,
c

where we use (46) to get the second inequality and (47) to get the third one. This
proves (44).

To prove (45), we may assume d(P(&,¢), (n,s)) > r and d,;(P(§,1), D(n,s)) <r.
Let y: [0, 1] — M be a geodesic in the metric g; ® d 2. By Claim 2, we have
y([0,1]) C @(B:’;ﬁ(é, t) N H™) with (&, ) = 7 = ! o y satisfying L(y) <
r/ /. The same estimates as before are satisfied, hence we conclude

1

< d@(E0. 09 = [ )2, (). 7w) du
0

/ (102, (7). 7(w)) dw + ‘ [ O (w), Fm(w), 1, (w)) duw

<4/ (@(E. 0, O(1.5)) + =72 .



Spectral properties of symmetrized AMV operators 129

We omit the proof of the next elementary claim.

Claim 4. Let (x,t),(y,t) € OM x [0,¢] and s € [0, ¢]. Let y:[0, 1] — OM be the
geodesic between x and y in the metric gs. Then the curve

we[0,1] = (y(w), (1 —w)t + wrt)

is a geodesic in the metric gs ® dt°.

Step 3. Forevery t € [0, €], consider the exponential map exp# given by the metric g;.
Since g; varies smoothly with respect to z, and dM X [0, ] is compact, we know that
there exists § > 0 lower than the injectivity radius of each exp®?. For any (§,¢, ¢, s) in

Ds = [-1,1]""" x [0,¢] x BJ*"1(0) x [0, €]
define
W(E1.8.5) = E(expSe, (dY)eAg 0. 5).

We may write
Yen(€.s) = W(E.1.8.9)

to see W as a function of the two last variables only, the two first being frozen. Observe
that for any (§,¢,¢) in [-1, 1]™7! x [0, ¢] x BY"~1(0),

(801 (@) AG L (@) AG N0 = (g P (A0 A
= (T AP A AT (by (35)
= [¢| <.
Since § is lower than the injectivity radius of the exponentials, the map
£ € BY1(0) > expll (dY)e A D)

is injective. Thus, for every (§,7) € [—1, 1]™™1 x [0, ¢] the map W ) defined on
Bg"_l (0) x [0, €] is a local parametrization of M. Moreover,

Ve (0,0) = E(Y(§),1) = (1), (48)

and
det([W(e h&lony) = 1.

Claim 5. Consider (£,1) € [-1,1]"" x [0, ¢], and ({.s) € B'~(0) x [0, £]. Then

di (Ve (& 5), Ve (0.1)) = VIEI> + (1 — 5)%
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Proof. By Claim 4, the geodesic between E~1 (W 1(0,7)) and E~1 (Vg (¢, 5)) in
the metric g; @ d 2 is

yiw € [0.1] > (exp¥e, (dV)e A wd). (1 — w)t + ws)

= ((w), ym(w)).
Then we also know that, for any w € [0, 1],
(8 oy (F(w). F(w)) = [¢].

Thus,

1
di (W(e) (6. 5). Wieay (0.1)) = / V(€)% Fw). 5w)) + (s = 1)2duw
0

= VIEP+ G- 07 .

Claim 6. There exist ro, k > 0 such that for all (£,t) € [-2,2]"" x [0, /2] and
r € (0, ro) such that B:”/ﬁ(é,t) C [-3.3]"71 x [0, €], we have

L7 (B0, 1) A (WGl (B (e (0,0)))) < icr™*,

Proof. For any (£,t) € [<2,2]""! x [0, £/2], there exists ro(£, ) > 0 small enough
such that

By (W(g.)(0.1)) = Bro(P(E,1)) C Wie.n B 1(0) x [0, ¢]). (49)

By compactness of [-2,2]™~! x [0, &/2] and continuity of the maps ‘IJ(_EII), we get that
there exists a common ¢ > 0 such that the previous holds for any (£,7) € [-2,2]" ! x
[0,£/2]. Consider r < rg and (£,1) € [<2,2]™"! x [0, &/2], then

By (W(e,)(0,2)) C Im(W(e,p).

Set Ay := ‘IJ(_E}t) (Br (W, (0,7))) and A, := B (0, 7). We will show that there exists

K > 0 such that

A\Az CB™ 2 (0.0\B"(0,1). (50)

For (¢,s) € A1\ A3, we know that

d(qj(f,t) (é‘v S), q’(g,z)(o, Z)) <r.
Therefore, from (48) and Claim 3, we conclude that there exists K > 0 such that

de (W) (£, 5), Yien(0,1) < r + Kr?.
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Then we get from Claim 5 that

VIR + (=92 <r +Kr?
hence (50) is proved. A similar proof shows that
A\A; C B0, 0)\B , >(0,1).
From the latter and (50), we conclude that

AlAAz C B:‘n—i-Krz(O’ t)\B:_n Krz(O, t).

Thus,

L7 (A1AAz) = L™ (B, 12 (0,0)\B ¢ 5(0.1))
< r"E" (BT g, (0\BY g, (0))
=1r"w,((1+ Kr)™ —(1—-Kr)™)
<r"C(Kr) (for some C > 0)
< (CK)r™+1, "

Claim 7. There exist C, rg > 0 such that for all r € (0, ry) and
(&,1,¢,8) € 1, 1]"’_1 x [0, e/4] x [B%g"_l(O) x [0, €]
such that B;”r/\/g(é,t) NH™ C [-2,2]"! x[0,/2] and d(Y(g,1)(C. 5), P(E, 1)) <,

then
1 1 C

VWen@s).r)  Lm(Br.s) NH™) |~ pmT

Proof. Let us first consider the map G: Ds — R given by

G(E.1.8.5) = det([ ¥ gl /-

This map is C°, and its value at any (£,¢) x (0,¢) is 1, thus by a Taylor expansion
in the variable (¢, s) centered at (0, ¢), and compactness of Dg, we obtain that there
exists k > 0 such that for all (§,¢,¢,s5) € Dg we have

| det((¥ 1 8les)/? = 1 < KI(G.) = (0.1)]. (51)
In particular, there exists C > 0 such that for all (§,7,¢,s) € Dg,

| det([W(s  gles) 2l < C.
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Let us now consider r,&,¢,, s as in the statement of the claim. Set y := W 1) ({,5).
Since d(y, ®(&,¢)) <r,and B;’;/ﬁ(g, t) C[-2,2]""1 x [0,&/2], we know by Claim 2
that y € @([B%Zﬁ(é, t) N H™). Thus, if we set

(.7) =@ (y) € [-2.2]"" x [0,£/2], (52)
we obtain that

B, (0.0 NH" CBY  ~(6.0) NH™ C [-2.2]"7" x [0.2/2].
Thus, by Claim 2, we conclude that B, (y) = B,(®(n, 1)) C @(Bzﬁ(n, 7)).
By (48) and (40), we easily see that
s =T1. (53)

Moreover, by (52) and (53), we also have that

Yin.5(0,8) = EW(n),s) =P(1.s) =y.

Choose rg such that ro/~/¢ < £/4. Since t < /4 and (1), 5) € BZﬁ(E’ t), this implies
that s < /2. Thus, we can use Claim 6 to ensure that

LM (B0, ) A(Yin.0)  (Br (W50, ) < rr™tL. (54)
Then
Vo= [ 1det®f, gl a2" w)
ol (Br(»)
= /l-d:(i’"(w) + 0™t (by (51))
Vi (Br(»))
= £™(B"(0,5) N H™) + O™ (by (54))

that is, there exists C > 0 such that
[volg (B (y)) — £™(B}(0.z) N H™)| < Crm+!

Thus, using the local Ahlfors regularity of (M, g) and Claim 6, we obtain

1 1 L™(B(0,z) N H™) — volg (B (y))
volg (B, (3)) B LmB7(0,z) N H”’)‘ - ) volg (B, (y))£™(Bm(0,z) N H™)
- CCrmtl
—rmEmBm0,z) N H™)
cC

= EmB70) N Hm)mT

concluding the proof. |
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Step 4. We start with the following claim.

Claim 8. Forall f € C®(M), there exists C > 0 such that for all (€,t,(,s) € Dg
we have

|/ oWen (8 s) = f oWen0.0)] = C[(&s) — (0.0)]l2
and

|f oWen(C.s) = foWen(0,1) = V(f o¥en)on - ((§s)—(0,1))]
< Cl(&5) = 0.0]5.

Also if 0y, f |apr = O, then there exists C > 0 such that
|0m f o Wn(0,1)] < Ct (55)

Proof. The map f~((§, 1), (&, 8)) = foWen(L, s)is C, thus by a Taylor expan-
sion of order 1 and 2 respectively, and compactness of Dg, we conclude the first two
inequalities. For the last, we notice that

Im [ 0 V(£,0)(0.0) = (3, /)(Y(§.0)) = 0.
Thus, by a Taylor expansion and compactness of D we conclude (55). |

Now, we will fix a function f € C°° (M) such that 9, f|sps = 0, and show that
for x € M such that d(x, dM) < /4 then A, f(x) is uniformly bounded. The proof
for points x with d(x, dM) > &/4, follows from the uniform convergence obtained in
Proposition 5.3. We will study the following term of the AMV:

1 1
Gr(x) := r_2/ m(f(Y) — f(x))dvolg (y)
r(x)
since the bound for the remainder follows similarly.
We notice that by equation (33) we have that there exists some i € {1,...,/} and
(£,1) € [-1,1]™! x [0, /4] such that x = ®; (&, ). We let ® = ;. Also by (49),
for 0 < r < rg in the conditions of the claim, we have that

B, (x) = Br(W(g,)(0.1)) C We (B (0) x [0, ]).

Also we can choose ¢ small enough so that for all (£,7) € [—1, 1] x [0, e/4] we
have B, , /z(x,1) N H"™ C [-2,2]"" x [0, £/2]. With this we can apply Claim 2
to conclude that B, (W (g 1)(0,1)) C @(Bi’;ﬁ(é, t)) and we can also apply Claim 7 for

points Wg 1) (8, 5) € Br (Vg (0,1)).
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Thus, we can change variables of the integral to obtain

Gr(x) =

Lo 1
2 volg (B (V.1 (L, 5)))

Vel (Br (¥ (0.0))

X (f (Wi (6 5)) = (. (0.0))) det((WEs , gle.) V> AL (E. 5)

1 / J(Wen @) = f(Wen(0.1))
72 xm(]Bg;n(()’ s) N Hm)
Vgl (Br (e (0.0)))

X det([lliéjt)(gr];’s)l/2 d£™(¢,s) + O(1) (by Claims 7 and 8)

1 / SeEn (@ s) — f(Yen(0,1))

r2 £m(B7(0,5) N H™)

B} (0,0)NH™
x det([W(; ;) 8le.s)"/? dL™ (¢, 5) + O(1) (by Claims 6 and 8)

1 / JWen(©.9) — f(Wen(0.1)
r? £m(B™(0,s) N H™)
B (0,6)NH™

x d£™(Z,s) + O(1) (by (51) and Claim 8)
1 iy 35 0 W) (0. 0)8i + dm (S © Wen)(0,1)(s —1)
r2 £m (B (0, 5) N H™)
B (0,1)NH"™
x dE™(C,5) + O(1) (by Claim 8)

1 / S0 0 Wien) (0.8 + dm(f 0 Wig))(0.1)(s — 1)
r2

£m (B (0,5) N H™)
B (0,£)NH™

x dE™ 1) dL(s) + 0(1) (by Claim 8)

1 / Om(f © ¥en)0.0)(s — 1)
r2 £m B (0,s) N H™)
B (0,6)NH”

x dE™ 1 () dL(s) + O(1). (by symmetry)

Now, we separate further in two cases. First, if d(x, dM) > 2r, then ¢t > 2r and
so for all (£,s) € B”(0,¢) N H™ we have

LM (B0, 5) NH™) = £™ (B (0)),
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and so we conclude that

1 / Im (f © Wien)(0.0)(s — 1)

m—1
2 e @Br0,s) N OF (©)dL(s)

B (0,1)NH™
1 m—1
= gy ] U Ve 006 -0 427 0 aze) =0
B (0,)NH™

This shows that G,(x) = O(1) for x such that 2r < d(x,dM) < &/4 since there are
only a finite number of parametrizations. On the other hand, if d(x, dM) < 2r, then
we have by Lemma 8 that for r < 2r then |0,,(f o W(x,1))(0,7)| < 2Cr, and so

1 / Im(f 0 Wix,n)(0,2)(s —1)
r2 £m(B7(0,s) N H™)
B (0,1)NH™

dL£™ " (y) dL(s) = 0(1),

which shows that G, (x) = O(1) for x such that d(x, M) < 2r. ]

6. Spectral convergence

In this section, we prove Theorem 3. We consider a smooth, compact, connected man-
ifold M™ endowed with a smooth Riemannian metric g. We let d, and volg be the
associated Riemannian distance and volume measure on M, respectively. If IM = ¢
(resp. IM # @), we let {ux }xen be the sequence of Laplace (resp. Neumann) eigen-
values of (M, g).

6.1. Existence of limit eigenfunctions

Recalling that C° (M) is defined in (4), we define the Hilbert space
H = Csx)(M)II-Ilwz,z.

We let IT(M, vol, ) be defined as in (15) and we consider the operator
T:TI(M,voly) - H*

which maps any f € I1(M, volg) to

T(f):= (v €EHr —/ngvdvolg).
M

Lemma 6.1. The operator T is injective.
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Proof. For f € I1(M, volg) such that f # 0,let v € H be the solution of
—Agv=f inM,
dyv =0 in OM.

The solution to this problem exists since f w/f=0= f ap 9Ovv. In fact, by regularity
theory we can conclude that v € H, and so we conclude that

T(f)(v) = — | fAgvdvoly = [ f*dvolg # 0.
o]

Thus, T(f) # 0, concluding that T is injective. ]
Let us now prove the existence of L2-weak limit eigenfunctions.

Proposition 6.2. Let (r,,) be a sequence of positive numbers such that r,, — 0. For any
n, let (A r, ) be the eigenvalues of the operator Zrn and let ( fx ;,) be corresponding
eigenfunctions. Then for any k, there exists a Laplace (resp. Neumann) eigenfunction
f of (M, g) with associated eigenvalue w such that, up to extracting subsequences,
satisfy

L2

fk,rn - f7 (56)
Ak,r,, — Cn L,

sup Er, (fie,r, — f) < +o0.
n

Proof. By the proof of Theorem 1, in particular (17), there exists A > 0 and a subse-
quence such that A; (—Zrn) — A up to subsequence. Since || fir,llL2(ary = 1 for
any n, there exists f € L*(M, volg) such that the weak convergence (56) holds
up to subsequence. Therefore, by Theorem 2, we get that for any ¢ € C*°(M)
(resp. Cg’j (M)),

1 ~ 1 ~
/ngw dVOlg = lim — / fk n Arnl/ldvolg = —lim/(Arn fk rn)l/f dVOlg
n Cy, > C, n i
M M M

| ~ 1
— o tima-B,) [ S pavoly == [ Sy vl
M M

Moreover, since for any » it holds that Ag ., > 0 and

0= /—Zrn Jk,r, dvolg = /ik,rn Jx.r, dvolg,
M M

we get that [}, fk,r, = 0. Thus, [;, f dvol, = 0 by weak convergence.
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Now, let v € W?22(M) be the solution of

—Agv=2-f inM,
v =0 in 9M

satisfying [y, v = 0. Then we have that for € H N C*®°(M),

1
/vAgl// dvolg = —C—)L/fl/f dvolg =/ngwdvolg.
"M M

M

Since this is a dense subspace of H and the functionals are continuous with respect to
W?22(M) in ¥, the equality holds for all H. Thus, by Lemma 6.1 we conclude that
v = f,and so f satisfies

A f=&f inM,
0 f=0 in 0M,

thus f is a Neumann eigenfunction, and so it must be C*°(M). Also since both
Jkrms f € II(M, volg), we know by Proposition 3.14 using triangle inequality of the
inner product,

Ern (fk,rn - f)1/2 =< Ern (fk,rn)l/2 + Ern (f)l/z‘

We know that Ey, (fk.,r,) = Ak,ry | firn lL2(01) = Ak,r,, Which is uniformly bounded.
Also since f € C*°(M), by Lemma 5.1, we know that E,, (f) is also uniformly
bounded, concluding the proof. |

6.2. Energy comparison

Let us now compare the energy of a map defined on M with the energy of the image
of the map through a local chart parametrizing a neighborhood of an open subset of
dM . To this aim, up to scaling, we consider a map ®: (—1,1)"~! x [0,1) — M which
is a bi-Lipschitz homeomorphism onto its image. We set

Q = (—1/2,1/2)"1 x[0,1/2). (57)

Lemma 6.3. There exist constants C = C(®) > 0 and ¢ = &(®) > 0 such that for
any f € L*(M), forany r € (0,1/2),

Ezra(f o®) < CE.an(f),

where Q == (@, doo, £™) and W .= (M, d, ).
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Proof. We start by pointing out that there exist constants ¢ = ¢(®) > 0 and C =
C(®) > O such that forall x € @ and r € (0,1/2),

D(Qcr(x)) C Br(P(x)) C P(Qcr(x)),
V(®(x).r) < CL™(Qer(x) N Q),
det(gx) > 0,

where g is the metric in the coordinates given by ®. Then for any x,y € @,

15, @) (P(¥)) ( : + 1 )

argn(®(x), (1)) V(@(x).r)  V(®(p).r)

1 1
_ Gerax.y)
o C

Thus,

Eran(f) = // dr,gm(p,q)(w)zdvolg(q)dvolg(p)

®(@)2

_ // @ (@(x), o) (LEDL OO

Qz x \Jdet(g,) det(gy) dZ™ () L™ (x)

. // %dcr’g(x’ymf(@(x»;f(q>(y)))2d$m(y)dim(x)
@2

= %Ecr,&(f © (D)-

Taking ¢ = ¢ and C=cC /c, we obtain the result. ]

6.3. Proof of Theorem 3

We are now in a position to prove Theorem 3. Recall the context of this result: (r,,) C
(0, +00) is a sequence such that r, — 0, (M™, g) is a compact, connected, smooth
Riemannian manifold with dM = @ (resp. IM # 0 ), k is a positive integer, [y is the
k-th lowest Laplace (resp. Neumann) eigenvalue of A, and f ,, is an eigenfunction
of —Zrn associated with the k-th eigenvalue Az (—A r,) of this operator.
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Proof. We proceed it two steps.

Step 1. First we show strong L?-convergence of the sequence ( f,, ). We proceed by
contradiction. By Proposition 6.2, we can assume that there exist o > 0, f € L2(M, 1)
which is a Neumann eigenfunction, and (r,) C (0, +00) such that r,, — 0 and

L2
fk,rn - £ ”fk,rn - f”iz ) = o
(M)

Since M is a compact manifold with boundary, up to scaling there exist finitely many
bi-Lipschitz homeomorphisms {®;: (—1, 1)1 x [0, 1) — M };e(1....¢y such that

U,;@;(@) = M,
where @ is as in (57), and
U, @ ((=1/2,1/2)"71 x {0}) = M.
Then there exists j € {1,..., £} such that, up to a subsequence,
. 2 o
inf | |fkr, — f| dvolg > 7 > 0.
n
(@)
From this, we conclude that there exists & > 0 such that
inf/|fk,rn—f|zocbjd§€m >a > 0.
n
Q
Let us set @ := ®;. Then there exist C, 5, ¢ > 0 such that for any n,

C > Ern (fren —F) (by Proposition 6.2)
> C ' Eepy (S — f) 0 D). (by Lemma 6.3)

By the weak convergence, we also have

2
hn = Sy = f) 0@ =0, (58)

Let us set 7, = ¢ry,. For an integer N to be chosen later, consider a decomposition of
@ into Ly disjoint subcubes {Q;} of size 1/N. For any x, y € @, we set

1 1
ar(x,y) = XQ’(x)ﬂ@(y)(im(Qr(x) N a@Q) + Em(0,(y) N (Q)>’

1 1
ari(x,y) = X0,(x)ne, (y)(é(f”’(Qr(x) N Q) + (0, (y) N (Q,))
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and we point out that for x, y € @;

1
ar(an) Z 2_mar,i(x7y)-

We also set for any n,

Ein N = /hn d£™, 64N = max|g 4 N
1
Q;

We obtain that for any n,

~ _ 2
E;mg(h )= / (/a;n(x,y) (hn(x) fzhn(y)) déﬁm(y)) dé(im(x)
Q n
hy ha(1))?
—Z/(/arn 00 =1 ) g
hy hn(3))?
> 5% [ ( / o,y PO g ) ) aie

~ 1 ~
= 2—,,, > Erpai (i) = o0 ) Ery 0, (in = €in,)
i i

%

1 ~
o Z in = 850,817 2@y A1 (=B,

A(—= Arn gm(l/N)) Z
[|n

2
Si,n,N ”Lz(é‘l,')

A(=Az, 2M(1/N))
2m

X Z(”hn”iz(@l) —28i,n’N/hn dgem + xm(@z)ein,N)
i
Q;

A=A, ama/ny)

= 2’m (”hn”iZ(Q) - 3Ln(Sn,N)
(A, ama/ny) -
> 1 r2m /) ( 3Ln8n,N)-

By Lemma 4.3, we choose N big enough to ensure that for any n,

~2m+2
M (A, aa/n) > CC
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By the weak convergence (58), we know that §, y — 0, and so we can choose n big
enough to guarantee

) < «
n,N 6LN

With these choices we eventually get

Er,(firrn = £) > C,

which is a contradiction.

Step 2. Now, we show that ;\k,rn — WUk, Where g is the k-th Neumann eigenvalue.
Let r,, — 0. We know by Proposition 6.2 that there exist eigenfunctions fy, ..., f
with Neumann eigenvalue Ay, ..., A such that

2
firn 5 £ foralli €{0.....k},
ik,rn g Cm/’\k7

and
Ai <A foralli €{0,...,k}. 59)

Since ( fi r,, fi.rm) = 8, ;. we also have by strong convergence that (f;, f;) = 6 ;.
Thus, we have that

Vit1 = Span(fo, ..., fx) € Gk+1(L*(M,voly)),

and so by equation (59), we conclude

(VA VS)

Cnpr = max ———— = Cpuig =1im)~tk,n.
" f€Virr NS llze " n

This shows that lim inf, ¢ ik,rn > Cp ik

To prove limsup,_,, ik,r < Cmpk, let {fo,..., fx} be an (-, -)»-orthonormal
family of Laplace (resp. Neumann) eigenfunctions associated with the eigenvalues
{io, - .., i} respectively satisfying (o < --- < ug. By elliptic regularity, we know
that these functions belong to C°°(M'). Then Proposition 5.1 implies that given & > 0,

there exists 7. > 0 such that for r € (0, r,),
(=&, fis fi)2 = 81, Cmpts] < s,

where d; ; is the usual Kronecker delta. Set U := Span( fo, ..., fx) and

k
V= Zail/fi

i=1
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for some a = (ai,...,ax) € SK~1. Then

k k k
(=& v,v) — Zaizcmﬂi = ) Z aiaj(—A, fi, f) — Zaizcmﬂi

i=1 ij=1 i=1

< kZe.

Since U is a k + 1-dimensional subspace, we conclude that

( Arv’v) 2 2
X _max—fmax a;ui +k“e < + k7e
kr velU ||U||% aeSk Z Hi Hie

Take the limit superior as r — 0 and then let ¢ — 0 to obtain lim sup,._, A kr < Cmlik.
Combined with Corollary 3.13, the latter implies the existence of r; > 0 such that
min ess(—Ay) > pg + 1 > )Lk,r for any r € (0, rg), so that )Lk,r indeed coincides

with Ag (=A,). ]
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