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Spectral properties
of symmetrized AMV operators

Manuel Dias and David Tewodrose

Abstract. The symmetrized Asymptotic Mean Value Laplacian z�, obtained as limit of approx-
imating operators z�r , is an extension of the classical Euclidean Laplace operator to the realm
of metric measure spaces. We show that, as r # 0, the operators z�r eventually admit isolated
eigenvalues defined via min-max procedure on any compact uniformly locally doubling metric
measure space. Then we prove L2 and spectral convergence of z�r to the Laplace–Beltrami
operator of a compact Riemannian manifold, imposing Neumann conditions when the manifold
has a non-empty boundary.

1. Introduction

In the past thirty years, much research has been carried out to extend the classi-
cal Euclidean Laplace operator to metric measure spaces: see e.g., [4, 8, 9, 13]. This
paper deals with such an extension, namely the symmetrized Asymptotic Mean Value
(AMV) Laplacian, proposed in [15], see also [1, 2, 12, 14]. The symmetrized AMV
Laplacian is set as

z� WD lim
r#0

z�r ; (1)

where for �-a.e. x 2 X ,

z�rf .x/ WD
1

2r2

−
Br .x/

�
1C

V.x; r/

V .y; r/

�
.f .y/ � f .x// d�.y/:

Here f is a locally integrable function defined on a metric measure space .X; d; �/.
Throughout the paper, Br.z/ denotes the metric open ball centered at z 2 X with
radius r > 0, the notation V.z; r/ stands for �.Br.z//, and

¬
Br .z/

is shorthand for
V.z; r/�1

R
Br .z/

.
Part of the study on the symmetrized AMV Laplacian consists in finding a relevant

meaning to the limit in (1). If this is intended in the L2 sense, then the associated
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spectral convergence can be investigated. This is the goal of the present paper. For
any k 2 N, set

Q�k;r WD inf
V 2GkC1.L

2.X;�//
sup
f 2V

zEr.f /

kf k2
;

where GkC1.L
2.X; �// is the .k C 1/-th Grassmannian of L2.X; �/, and zEr.f / is

the energy functional naturally associated with z�r (Definition 3.10). These form a
non-decreasing sequence of non-negative numbers. Our first main result states that
these numbers eventually correspond to isolated eigenvalues of �z�r when .X; d; �/
is compact and uniformly locally doubling (Definition 2.8).

Theorem 1. Let .X; d; �/ be a compact uniformly locally doubling metric measure
space. For any integer k � 2, there exists rk > 0 such that for any r 2 .0; rk/, the
operator �z�r admits k C 1 eigenvalues

0 D �0.�z�r/ < �1.�z�r/ � � � � � �k.�z�r/

such that �i .�z�r/ D Q�i;r for any i 2 ¹0; : : : ; kº.

Our second main result deals with a smooth manifold M endowed with a smooth
Riemannian metric g. We write �g for the (negative) Laplace–Beltrami operator of
.M; g/. We let m � 2 be the dimension of M , and we set

Cm WD
1

2

−
Bm
1
.0/

�21 d� D
1

2.mC 2/
; (2)

where Bm1 .0/ is the unit Euclidean ball of Rm. In this context, it follows from the
equality between symmetrized and non-symmetrized AMV Laplacian and a simple
calculation in normal coordinates that

z�rf .x/
r#0
��! Cm�gf .x/ (3)

for any f 2 C2.M/ and any interior point x 2 M , see [14, 15] – the convergence is
even locally uniform in the interior of M , see [1]. We refer to [1, 2, 14, 15] for related
pointwise results in various settings like Carnot groups or Alexandrov spaces.

In this paper, we are interested in the L2 version of (3) with a particular interest
in the case where M admits a non-empty boundary @M ¤ 0. In this case, we write
@�f 2 C1.@M/ for the normal derivative of a smooth function f WM ! R, and we
define

C1� .M/ WD ¹f 2 C1.M/ W @�f D 0º: (4)

We see .M;g/ as a metric measure space .M;dg ;volg/where dg and volg are the Rie-
mannian distance and volume measure on M associated with g. Then our statement
reads as follows.
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Theorem 2. Let .Mm; g/ be a compact, connected, smooth Riemannian manifold
with a non-empty (resp. empty) boundary @M . Then for any f 2 C1� .M/ (resp.
C1.M/), as r # 0,

z�rf
L2

��! Cm�gf:

We point out that the boundaryless version of this result is rather easy to obtain,
while a non-empty boundary is quite tricky to handle. The Neumann condition in the
latter case is crucial to ensure convergence: indeed, the sequence z�rf may blow-up
if this is not imposed.

After the previous L2-convergence result, we address the question of spectral
convergence, that is to say, the convergence of the associated eigenvalues and eigen-
functions. In this regard we show that, for any k 2 N, the function r 7! Q�k;r is
bounded in a neighborhood of 0, as proved in the course of Theorem 1. This ensures
that the k-th lowest eigenvalue of the operator �z�r , which we denote �k.�z�r/,
exists for small enough r , and that it coincides with Q�k;r . Let fk;r be an L2-nor-
malized eigenfunction of �z�r associated with �k.�z�r/. Recall that if @M D ;
(resp. @M ¤ ;), a Laplace (resp. Neumann) eigenvalue of .M; g/ is a number � � 0
for which there exists an associated eigenfuction f 2 C1.M/ (resp. C1� .M/) of
��g , i.e., ��f D �gf .

Theorem 3. Let .Mm; g/ be a compact, connected, smooth Riemannian manifold.
Assume that @M D ; (resp. @M ¤ ;). For k 2 N, let �k be the k-th lowest Laplace
(resp. Neumann) eigenvalue of �g . For any .rn/ � .0;C1/ such that rn ! 0, there
exists an L2-normalized Laplace (resp. Neumann) eigenfunction f 2 C1.M/ (resp.
C1� .M/) associated with �k such that, up to a subsequence,8<:�k.�z�rn/! Cm�k;

fk;rn
L2

��! f:

We point out that the question of spectral convergence for the Gaussian approx-
imation of the Laplace–Beltrami operator of a compact Euclidean submanifold with
boundary was raised in [5]. This has been one motivation for the present work: to
study this convergence with the intrinsic approximation provided by the symmetrized
AMV operators z�r instead of the extrinsic Gaussian one.

2. Averaging-like operators

In this section, we consider a fixed metric measure space, that is to say, a triple
.X; d; �/ where .X; d/ is a metric space and � is a fully supported regular Borel
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measure on .X; d/ such that

V.x; r/ WD �.Br.x// < C1

for any x 2 X and r > 0, where Br.x/ denotes the open ball ¹y 2 X W d.x; y/ < rº.
Notice that for any x 2 X and r > 0,

V.x; r/ > 0;

because � is fully supported. Moreover, if X is compact, then

�.X/ < C1

since � is finite on any ball of radius the diameter of X . We set

0 � m.r/ WD inf
x2X

V.x; r/ �M.r/ WD sup
x2X

V.x; r/ � C1:

Note that our assumptions yield the following preliminary result.

Lemma 2.1. L2.X; �/ is separable.

Proof. We start by proving that .X; d/ is a second countable space. Fix o 2 X . Given
" > 0 and N 2 N positive, consider the value given by

˛";N D sup
®
�jBN .o/

�S
nB".xn/

�
W ¹xnºn2N � X

¯
; (5)

where�jBN .o/.�/ WD�.� \BN .o//. First we show this supremum is attained. Consider
ık ! 0 and let ¹xknºn2N � X such that

�jBN .o/
�S

nB".x
k
n /
�
> ˛ � ık :

Taking
¹ynºn2N D

S
k¹x

k
nºn2N

we have that
�jBN .o/

�S
nB".yn/

�
D ˛";N :

Now, we prove ˛";N D �.BN .z// <1. If ˛";N < �.BN .z//, then

�
�
BN .z/n

S
nB".yn/

�
> 0;

where ¹ynºn2N is a maximizer of (5). Since the measure is inner regular, there must
exist some compact K � BN .z/n

S
nB".yn/ such that

�.K/ > 0:
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Since we can coverK by a finite number of ballsB".zk/, there must exist some zD zk
such that

�.B".z/ \K/ > 0:

We then have

�jBN .o/
�S

nB".yn/ [ B".z/
�
� �jBN .o/

�S
nB".yn/ [ .B".z/ \K/

�
D �

�S
nB".yn/

�
C �.B".z/ \K/ > ˛N;":

And so ¹ynºn2N [¹zº contradicts the maximality of ¹ynºn2N . This shows that ˛";N D
�.BN .o//. Since

S
nB".yn/ \ BN .o/ has full measure in the support BN .o/ of

�jBN .o/, it is a dense subset of BN .o/. This implies that
S
nB2".yn/ is a countable

cover of BN .o/. To build a countable basis of X , consider a sequence ık ! 0. For
any k, take

S
n2N Bık .y

k;N
n / a countable cover of BN .z/. Then the set given by

B D
[

k;N2N

¹Bık .y
k;N
n /ºn2N

is a countable basis of X . Given this basis B we can create a new basis given by
the finite union of elements of B, and we call this new basis B 0, which will also
be countable. In particular, we have that given some open set V � X we can find a
sequence Vn such that

Vn � VnC1;
S
nVn D V:

This is the case since B is a countable basis, we can find elements Bk 2 B such thatS
kBk D V:

We conclude by taking Vn D
Sn
kD1 Bk 2 B 0. To construct our dense subset of

L2.X; �/ we take finite sums with rational coefficients of the characteristic func-
tions �V , with V 2 B 0. To show that this is dense in L2.X;�/, we only need to show
that we can approximate arbitrarily well simple functions �U where U � X is open
and �.U / <1 since the measure � is outer regular. Given such an open set U , take
�Un where Un 2 B 0 and Un � UnC1 and

S
nUn D U . Then we have by dominated

convergence
�Un !L2.X;�/ �U ;

concluding the proof.

2.1. Averaging operator

For any x; y 2 X and r > 0, set

ar.x; y/ WD
1Br .x/.y/

V .x; r/
�
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Consider u 2 L1loc.X; �/. For any x 2 X and r > 0 such that u is �-integrable on
Br.x/, set

Aru.x/ WD

−
Br .x/

u d� D
Z
X

ar.x; y/u.y/ d�.y/:

Notice that, since u is locally integrable, for any x 2 X there exists rx > 0 such that
Arxu.x/ is well defined. However, there may be no uniform r > 0 for which the
integral Aru.x/ is well defined for every x 2 X .

Let us also set

a�r .x; y/ WD ar.y; x/ D
1Br .x/.y/

V .y; r/

for any x; y 2 X and r > 0. Consider u 2 L0.X; �/ such that v.�/ WD u.�/=V .�; r/ 2
L1loc.X; �/. For any x 2 X and r > 0 such that v is �-integrable on Br.x/, set

A�ru.x/ WD

Z
Br .x/

u.y/ d�.y/
V .y; r/

D

Z
X

a�r .x; y/u.y/ d�.y/:

Notice that, just like Aru.x/, A�ru.x/ may not make sense uniformly with respect to
x 2 X .

For any r > 0, we introduce the following conditions:

kA�r 1k1 < C1; (Ir )

V.�; r/�1 2 L1.X; �/: (IIr )

Note that (IIr ) implies (Ir ) since

kA�r 1k1 D sup
x2X

jA�r 1.x/j D sup
x2X

Z
Br .x/

d�.y/
V .y; r/

�

Z
X

d�.y/
V .y; r/

�

In the next lemma, we discuss the boundedness and the compactness of the aver-
aging operator Ar acting on Lebesgue spaces.

Lemma 2.2. Assume that there exists r > 0 such that (Ir ) holds. Then for any p 2
Œ1;C1� the linear operator Ar WLp.X; �/! Lp.X; �/ is well defined and bounded
with

kArkp!p � kA
�
r 1k

1=p
1 �

Moreover, if (IIr ) holds, then Ar WL2.X; �/! L2.X; �/ is compact.

Proof. The case p D C1 is obvious and holds regardless of (Ir ). Let us assume that
p < C1. Let u 2 Lp.X; �/. By Jensen’s inequality, for any x 2 X ,

jAru.x/j
p
�

� −
Br .x/

jujp d�
�
:
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Thus,

kAruk
p
p �

Z
X

1

V.x; r/

Z
Br .x/

ju.y/jp d�.y/ d�.x/

D

Z
X

Z
X

1

V.x; r/
1Br .x/.y/„ ƒ‚ …
D1Br.y/.x/

ju.y/jp d�.y/ d�.x/

D

Z
X

ju.y/jp
Z

Br .y/

d�.x/
V .x; r/„ ƒ‚ …

DA�r 1.y/

d�.y/ � kA�r 1k1kuk
p
p ;

where we have used the Fubini–Tonelli theorem to get the second equality and (Ir )
for the last inequality.

Let us now assume that (IIr ) holds. SinceZ
X

Z
X

a2r .x; y/ d�.y/ d�.x/ D
Z
X

1

V.x; r/

−
Br .x/

d�.y/ d�.x/ D
Z
X

d�.x/
V .x; r/

we obtain that Ar is a Hilbert–Schmidt integral operator acting on the separable space
L2.X; �/ (recall Lemma 2.1); in particular, Ar is compact [16, Section IV.6].

In the next statement, we provide an alternative way to prove the compactness of
Ar from L2.X;�/ to itself. This goes through the compactness of Ar from L2.X;�/

to the space of continuous functions C.X/ which we obtain for compact spaces X
satisfying the following condition:

sup
x2X

�.Sr.x// D 0; (Sr )

where Sr.x/ WD ¹y 2 X W d.x; y/ D rº.

Lemma 2.3. Assume that .X;d;�/ is compact and satisfies (Sr ) for some r > 0. Then
Ar WL

2.X; �/! C.X/ is compact and satisfies

kArk2!1 �
1

m.r/1=2
� (6)

Proof. We start by noticing that if u 2 L2.X; �/, then Ar.u/ is continuous. This
follows from V.�; r/�1 and

R
Br .x/

u.y/d�.y/ being continuous. The former holds by
assumption. To prove the latter, assume that kukL2.X/ D 1. Then for any x; z 2 X ,ˇ̌̌̌ Z

Br .x/

u.y/d�.y/ �

Z
Br .z/

u.y/d�.y/

ˇ̌̌̌
� k1Br .x/ � 1Br .z/kL2.X/kukL2.X/

� �.BrCd.x;z/.x/ � Br�d.x;z/.x//
1=2; (7)
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and �.BrCd.x;z/.x/ � Br�d.x;z/.x//! 0 as d.x; z/! 0 due to (Sr ). Moreover, the
bound (6) is obtained via Hölder’s inequality: for any x 2 X ,

jAru.x/j �

� −
Br .x/

u2 d�
�1=2

�
1

m.r/1=2
�

To prove compactness, consider ¹fnº � L2.X;�/ such that supn kfnk2 � 1. Uniform
boundedness of ¹Ar.fn/º follows from (6), and equicontinuity can be obtained by
using the inequality (7) applied to the sequence. By the Ascoli–Arzelà theorem, we
can extract from ¹Ar.fn/º a subsequence which converges in C.X/, concluding the
proof.

2.2. Adjoint

Let us focus now on the boundedness and the compactness of the adjoint operator A�r .
We begin with a simple observation.

Lemma 2.4. The operator A�r WL
1.X;�/! L1.X;�/ is a contraction for any r > 0.

Proof. For any u 2 L1.X; �/,Z
X

jA�ru.x/j d�.x/ �
Z
X

Z
Br .x/

ju.y/j

V.y; r/
d�.y/ d�.x/

D

Z
X

Z
X

1Br .x/.y/
ju.y/j

V.y; r/
d�.y/ d�.x/

D

Z
X

�Z
X

1Br .y/.x/ d�.x/
�
ju.y/j

V.y; r/
d�.y/ D

Z
X

ju.y/j d�.y/;

where we used the Fubini–Tonelli theorem to get the penultimate equality.

We continue with the next lemma which covers the case p > 1.

Lemma 2.5. Assume that there exists r > 0 such that (Ir ) holds. Then for any p 2
Œ1;C1�, the linear operator A�r WL

p.X;�/! Lp.X;�/ is well defined and bounded
with

kA�r kp!p � kA
�
r 1k

.p�1/=p
1

Moreover, this operator is the adjoint of Ar WLq.X; �/! Lq.X; �/ for q 2 Œ1;C1�
such that 1=p C 1=q D 1. Lastly, if (IIr ) holds, then the operator A�r WL

2.X; �/!

L2.X; �/ is compact.
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Proof. For the proof of the first assertion, consider u 2 L1.X;�/. Thanks to (Ir ), for
�-a.e. x 2 X ,

jA�ruj.x/ �

Z
Br .x/

ju.y/j

V.y; r/
d�.y/ � kuk1

Z
Br .x/

d�.y/
V .y; r/

� kA�r 1k1kuk1:

Thus,A�r WL
1.X;�/!L1.X;�/ is bounded with kA�r k1!1 � kA

�
r 1k1. The con-

clusion for p 2 .1;C1/ follows from the Riesz-Thorin theorem and Lemma 2.4.
Let us prove that Ar and A�r are adjoint of each other. Consider u 2 Lp.X;�/ and

v 2 Lq.X; �/. ThenZ
X

A�ru.x/v.x/ d�.x/ D
Z
X

Z
X

1Br .x/.y/
u.y/

V .y; r/
v.x/ d�.y/ d�.x/

D

Z
X

u.y/

V .y; r/

Z
X

1Br .x/.y/v.x/ d�.x/ d�.y/

D

Z
X

u.y/Arv.y/ d�.y/;

where we used the Fubini–Tonelli to get the second equality, and the equality

1Br .x/.y/ D 1Br .y/.x/

to get the last one. As for the compactness of A�r under (IIr ), this result is a direct
consequence of the Schauder theorem for compact operators which can be applied
thanks to Lemma 2.2.

2.3. Discussion on the assumptions

Let us discuss the validity of (Ir ) and (IIr ). Recall first that (IIr ) H) (Ir ). Both prop-
erties hold on totally bounded spaces, as seen in the next lemma.

Lemma 2.6. Assume that .X; d/ is totally bounded. Then (IIr ) (and then (Ir )) holds
for any r > 0.

Proof. Consider r > 0 and a finite cover ¹Br=2.xi /º ofX . For any x 2 X , there exists
i such that x 2 Br=2.xi /. Then Br.x/ contains Br=2.xi / so V.x; r/ � V.xi ; r=2/ �
minj V.xj ; r=2/ > 0. Thus,Z

X

d�.x/
V .x; r/

�
�.X/

minj V.xj ; r=2/
< C1:
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Remark 2.7. If �.X/ D C1 and M.r/ < C1 then (IIr ) cannot hold:Z
X

d�.x/
V .x; r/

�
�.X/

M.r/
D C1:

This happens, for instance, on Rn endowed with the Euclidean distance and the
Lebesgue measure. More generally, this property cannot hold on a locally compact
topological group endowed with a left-invariant metric compatible with the Haar mea-
sure and with infinite volume (see [17, Lemma 1] for more details about these spaces).

If �.X/ <1 and m.r/ > 0, then (IIr ) always holds:Z
X

d�.x/
V .x; r/

�
�.X/

m.r/
< C1:

In this regard, observe that if X is not totally bounded, then there exist r > 0 small
enough and a countable family of disjoint balls ¹Br.xi /º inX , so that �.X/ <1 and
m.r/ > 0 cannot hold simultaneously:

�.X/ �
X
i

V.xi ; r/:

Let us now focus on (Ir ). We show below that this condition holds on so-called
doubling spaces. Let us recall this classical property and its uniform local variant, see
e.g., [10] for more details.

Definition 2.8. The space .X; d; �/ is called globally doubling if there exists C > 0

such that for any x 2 X and r > 0,

V.x; 2r/ � CV.x; r/: (8)

It is called uniformly locally doubling if there exist C; r0 > 0 such that (8) holds for
any x 2 X and r 2 .0; r0/.

The celebrated Bishop–Gromov theorem (see e.g., [7, Theorem III.4.5]) implies
that any complete Riemannian manifold with a uniform lower bound on the Ricci
curvature is uniformly locally doubling, and globally doubling if the uniform bound is
non-negative. This is also true for metric spaces with generalized sectional curvature
bounded from below in the sense of Alexandrov [6, Theorem 10.6.6] and CD.K;N /
metric measure space [18, Corollary 30.14].

The next lemma relates the uniformly local doubling condition with (Ir ).

Lemma 2.9. Let .X; d; �/ be uniformly locally doubling with parameters C; r0.
Then (Ir ) holds with kA�r 1k1 � C for any r 2 .0; r0/.
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Proof. For any x 2 X and r 2 .0; r0/, the triangle inequality yields that Br.x/ �
B2r.y/ for any y 2 Br.x/. Then

A�r 1.x/ D

−
Br .x/

V.x; r/

V .y; r/
d�.y/ �

−
Br .x/

V.y; 2r/

V .y; r/
d�.y/ � C:

Remark 2.10. Of course, if .X; d; �/ is globally doubling with constant C , then (Ir )
holds with kA�r 1k1 � C for any r > 0.

Remark 2.11. The previous result notably implies that (Ir ) may hold in situations
where (IIr ) does not. This happens e.g., on a non-compact Riemannian manifold
.M; g/ with non-negative Ricci curvature endowed with its canonical Riemannian
distance d and volume measure �. Indeed, such a space has infinite volume, and the
Bishop–Gromov theorem implies that M.r/ � V n.r/ for any r > 0, where V n.r/ is
the Lebesgue measure of an Euclidean ball of radius r in Rn. From Remark 2.7, we
get that M cannot satisfy (IIr ) for any r > 0, while it does satisfies (Ir ) thanks to the
global doubling condition.

We conclude this discussion with two final remarks. First, ifm.r/ > 0 andM.r/ <
C1, then (Ir ) always holds with

kA�r 1k1 �
M.r/

m.r/
�

This happens on locally compact topological groups endowed with a left-invariant
distance and their Haar measure, compare with Remark 2.7. Secondly, (Ir ) can easily
be seen as a weak variant of the comparability conditions introduced in [3, 15].

2.4. Symmetrization

For any x; y 2 X and r > 0, set

Qar.x; y/ D
1

2
.ar.x; y/C a

�
r .x; y//

D
1

2

� 1

V.x; r/
C

1

V.y; r/

�
1Br .x/.y/

Consider u 2 L1loc.X; �/ such that v.�/ WD u.�/=V .�; r/ 2 L1loc.X; �/. For any x 2 X
and r > 0 such that u and v are �-integrable on Br.x/, set

zAru.x/ WD
1

2
.Aru.x/C A

�
ru.x// D

Z
X

Qar.x; y/u.y/ d�.y/: (9)

Then the next lemma is an obvious consequence of Lemma 2.2 and Lemma 2.5.
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Corollary 2.12. Assume that there exists r > 0 such that (Ir ) holds. Then the map
zAr WL

2.X; �/! L2.X; �/ is a self-adjoint operator such that

k zArk2!2 � kA
�
r 1k

1=2
1 :

Moreover, if (IIr ) holds, then zAr WL2.X; �/! L2.X; �/ is compact.

3. Symmetrized AMV operators

In this section, we provide our working definition of the symmetrized AMV r-Laplace
operator z�r and we derive several spectral properties in a general setting.

3.1. Definitions

For this subsection, we consider a metric measure space .X; d; �/ satisfying (Ir ) for
some fixed r > 0.

Definition 3.1. The symmetrized AMV r-Laplace operator of .X; d; �/ is

z�r WD
1

r2
. zAr � Œ zAr1�I/;

where we recall that zAr is defined in (9).

Remark 3.2. We may use the notation z�r;X to specify that we work on the metric
measure space X D .X; d; �/.

Lemma 3.3. z�r is a bounded, self-adjoint operator acting on L2.X; �/ with

kz�rk2!2 �
1

2r2
.2kA�r 1k

1=2
1 C kA

�
r 1k1 C 1/: (10)

Proof. The self-adjointness of z�r is obvious because zAr and Œ zAr1�I are self-adjoint
too. The boundedness is a consequence of Lemma 2.12. Indeed,

kz�rk2!2 �
1

r2
.k zArk2!2 C kŒ zAr1�Ik2!2/

�
1

r2
.kA�r 1k

1=2
1 C k

zAr1k1 kIk2!2„ ƒ‚ …
D1

/

�
1

r2

�
kA�r 1k

1=2
1 C

kAr1k1 C kA
�
r 1k1

2

�
D

1

r2

�
kA�r 1k

1=2
1 C

1C kA�r 1k1

2

�
;

hence z�r WL2.X; �/! L2.X; �/ is bounded and (10) holds.
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Definition 3.4. The energy functional zEr of .X; d; �/ is the quadratic form on the
space L2.X; �/ defined by

zEr.f / WD
1

4

Z
X

Z
X

1Br .x/.y/
� 1

V.x; r/
C

1

V.y; r/

��f .x/ � f .y/
r

�2
d�.y/ d�.x/:

The associated bilinear form, which we still denote by zEr , is given by

zEr.f;  / WD
1

4

Z
X

Z
X

1Br .x/.y/
� 1

V.x; r/
C

1

V.y; r/

�
�
.f .x/ � f .y//. .x/ �  .y//

r2
d�.y/ d�.x/:

Remark 3.5. A suitable use of the Fubini–Tonelli theorem shows that the energy
functional zEr.f / equals the approximate Korevaar–Schoen energy [11]

1

2

Z
X

−
Br .x/

jf .y/ � f .x/j2

r2
d�.y/ d�.x/:

Remark 3.6. We may also use the notation zEr;X to specify the metric measure space
X D .X; d; �/.

The next lemma goes back to [2, Lemma 3.1]. We provide a quick proof for com-
pleteness.

Lemma 3.7. For any f; 2 L2.X; �/,

zEr.f;  / D h�z�rf; iL2 : (11)

Proof. Note that

zEr.f;  /

D
1

4

Z
X

Z
Br .x/

� 1

V.x; r/
C

1

V.y; r/

� .f .x/ � f .y// .x/
r2

d�.y/ d�.x/

�
1

4

Z
X

Z
X

1Br .x/.y/
� 1

V.x; r/
C

1

V.y; r/

� .f .x/ � f .y// .y/
r2

d�.y/ d�.x/:

Using 1Br .x/.y/ D 1Br .y/.x/ and then the Fubini theorem, we can rewrite the second
term as the opposite of the first one, so that we eventually get (11).

Remark 3.8. Observe that (11) implies that�z�r is a non-negative operator, since for
any f 2 L2.X; �/,

h�z�rf; f iL2 D zEr.f / � 0
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Let us recall the definition of spectrum.

Definition 3.9. We let �.�z�r/ denote the spectrum of �z�r , that is to say, the set of
elements � 2 C� such that �z�r � �IWL2.X; �/! L2.X; �/ is not a bijection.

It is well known from classical functional analysis that the spectrum �.T / of a
bounded operator T acting on a Banach space E can be decomposed as

�.T / D �p.T / [ �c.T / [ �a.T /;

where

• �p.T / is the point spectrum, that is to say, the set of �2CC such that .T ��I/f D0
for some non-zero f 2 E, in which case � is called an eigenvalue and f an
eigenvector of T ;

• �c.T / is the compression spectrum, that is to say, the set of � 2 CC whose conju-
gate N� is an eigenvalue of the adjoint T �;

• �a.T / is the approximate point spectrum, that is to say, the set of �2CC for which
there exists .fn/ � E with kfnk D 1 for any n such that k.T � �I/fnk ! 0.

Since �z�r is self-adjoint and non-negative, we know that

�.�z�r/ � Œ0;C1�:

This implies that �p.�z�r/ D �c.�z�r/, so that

�.�z�r/ D �p.�z�r/ [ �a.�z�r/: (12)

Definition 3.10. For any k 2 N, we define

Q�k;r WD inf
V 2GkC1.L

2.X;�//
sup
f 2V

zEr.f /

kf k2
;

where GkC1.L
2.X; �// is the .k C 1/-th Grassmannian of L2.X; �/.

Remark 3.11. Let �ess.�z�r/ denote the essential spectrum of �z�r , i.e., the closed
subset of �.�z�r/ made of those � such that �z�r � �I is not a Fredholm opera-
tor. Since �z�r is self-adjoint, the Fischer–Polyà minimum-maximum principle (see
e.g., [19, p. 12]) asserts that if there exists a positive integer N such that Q�N;r <
min �ess.�z�r/, then �z�r admits N C 1 isolated eigenvalues

�0.�z�r/ � � � � � �N .�z�r/ < min �ess.�z�r/

such that for any k 2 ¹0; : : : ; N º,

Q�k;r D �k.�z�r/:
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3.2. Spectral properties

Our first spectral result on z�r is the following. Note that we need the compactness of
zAr here, thus we assume (IIr ).

Proposition 3.12. Let .X; d; �/ be a metric measure space satisfying (IIr ) for some
fixed r > 0. Assume that � 2 �.�z�r/ satisfies

� < inf
y2X

Œ zAr1�.y/

r2
:

Then � is an isolated eigenvalue of �z�r which does not belong to �ess.�z�r/.

Proof. Let us first show that � is an eigenvalue, that is to say, that � belongs to the
point spectrum. According to (12), it is enough to show that if � is in the approximate
point spectrum, then it is in the point spectrum. If this is the case, then there exists a
sequence .fn/ 2 L2.X; �/ such that kfnkL2.X/ D 1 and

k � z�rfn � �fnkL2.X/ D



� Œ zAr1�

r2
� �

�
fn �

zArfn

r2





L2.X/

! 0: (13)

Since zAr is compact, we have that zArfn converges up to a subsequence, and as such
by equation (13) so does .Œ zAr1�� r2�/fn, with limit g 2L2.X/. Consider ı > 0 such
that 0 � �C ı=r2 < infy2X Œ zAr1�.y/=r2 and define

br.x/´ Œ zAr1� � r
2� � ı:

Thus, we have that f ´ g=br 2 L
2.X; �/, and so

ı



fn � g

br





L2.X/

� kbrfn � gkL2.X/ ! 0:

Thus, fn converges in L2.X;�/ to the limit function f . Using continuity of �z�r we
conclude that

�z�rf D �f;

and thus � is in the point spectrum.
To prove that � is an isolated point, we suppose by contradiction that there exists

an infinite sequence .�n/ � �.�z�r/ of distinct values such that �n ! �. Then there
exists ı > 0 such that for any high enough n,

�n C ı=r
2 < inf

y2X

Œ zAr1�.y/

r2
; �n ! �:
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From the previous paragraph, we know that �n is in the point spectrum, thus there
exists fn 2 L2.X; �/ satisfying kfnkL2.X/ D 1, such that

�z�rfn D �nfn:

This can be written as

�
zAr

r2
fn D

�
�n �

Œ zAr1�

r2

�
fn:

Using compactness of zAr , we know that zArfn converges up to a subsequence. This
implies that .r2�n � Œ zAr1�/fn converges up to a subsequence to some g 2 L2.X;�/.
Define

br;n.x/´ Œ zAr1� � r
2�n:

With this we have that

ı



fn � g

br





L2.X/

� ı
�


fn � g

br;n





L2.X/

C




 g

br;n
�
g

br





L2.X/

�
� kbr;nfn � gkL2.X/ C ı




 g

br;n
�
g

br





L2.X/

:

We have that kbr;nfn � gkL2.X/ ! 0 and also


 g
br;n
�

g
br




L2.X/

! 0 since 0 < ı �
br;n; br and �n ! �. Thus, fn converges. However, since all the eigenvalues are
different, we know that hfn; fj i D ın;j , and so the sequence cannot converge up
to a subsequence, achieving contradiction. This shows that � is an isolated point of
�.�z�r/ finishing the first part of the proof.

Let us now prove that �z�r � �I is a Fredholm operator.
To show that ker.�z�r � �I/ is finite dimensional we proceed by contradiction.

Assume that there exists an infinite sequence .fn/ � ker.�z�r � �I/ such that

hfn; fj i D ın;j :

Thus,

�
zArfn

r2
D

�
� �

Œ zAr1�

r2

�
fn:

Similar to before we can use compactness of zAr and the condition on � to conclude
that fn converges in L2.X; �/ up to a subsequence. However, this is prevented by
hfn; fj i D ın;j .

To show that the image of �z�r � �I is closed, consider a sequence

gn´ .�z�r � �I/.fn/

such that gn ! g. Similarly to before, we can conclude that since gn converges, then
fn converges to some f , and thus g D .�z�r � �I/.f /.
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Corollary 3.13. Let .X; d; �/ be a metric measure space such that for some r0 > 0
the assumption (IIr ) holds for any r 2 .0; r0/. Then

lim
r#0
.min �ess.�z�r// D C1:

Proof. Proposition 3.12 implies that

inf
y2X

Œ zAr1�.y/

r2
� min �ess.�z�r/: (14)

But for any r > 0,
zAr1 D

1

2
.Ar1C A

�
r 1/ �

1

2
Ar1 D

1

2

hence (14) implies that

min �ess.�z�r/ �
1

2r2
r#0
��! C1:

Let us provide our second spectral result on z�r .

Proposition 3.14. Let .X; d; �/ be a connected metric measure space satisfying (IIr )
for some fixed r > 0. Then the kernel of z�r contains constant functions only, and zEr
defines a scalar product on

….X;�/ WD

²
f 2 L2.X; �/ W

Z
X

f d� D 0
³
: (15)

Proof. Consider f 2 L2.X; �/n¹0º such that z�rf D 0. Then we have zEr.f / D 0.
This implies that for �-a.e. x 2 X ,Z

X

1Br .x/.y/
� 1

V.x; r/
C

1

V.y; r/

��f .x/ � f .y/
r

�2
d�.y/ D 0

which implies, in turn,

�.¹y 2 Br.x/ W f .y/ D f .x/º/ D �.Br.x//:

Consider F WD ¹x 2 X W f .x/ is a well-defined real numberº and

A´ ¹x 2 F W �.¹y 2 Br.x/ W f .y/ D f .x/º/ D �.Br.x//º:

Then
�.XnA/ D 0:
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Take z 2 A and let c D f .z/. Consider

I D ¹x 2 A W f .x/ D cº; I 0 D ¹x 2 A W f .x/ ¤ cº;

and notice that I [ I 0 D A. Suppose by contradiction that I 0 ¤ ;. Set

W ´
[
x2I

Br.x/; V ´
[
y2I 0

Br.y/:

Since V and W are open sets whose union contains A which has full measure in X ,
we must have

W [ V D X;

otherwise XnA would contain an open ball with positive measure. Since W and V
form an open cover of X , and X is connected, if both V andW are different from the
empty set, then there exist x 2 I and y 2 I 0 such that

Br.x/ \ Br.y/ ¤ ;:

However,

f jBr .x/\Br .y/.w/ D f .x/ �-a.e. w 2 X;

f jBr .x/\Br .y/.w/ D f .y/ �-a.e. w 2 X:

This is not possible since f .x/ ¤ f .y/ and �.Br.x/ \ Br.y// > 0. This implies
that I D A and that f .w/ D c for �-a.e. w 2 X . Then �z�r has a non-trivial ker-
nel consisting of the constant functions only. Moreover, since �z�r is non-negative
(Remark 3.8), we get the desired property on (15).

We are now in a position to prove Theorem 1. We recall that the context of this
statement is a compact uniformly locally doubling metric measure space .X; d; �/.
The compactness of the space ensures that (IIr ) holds for any r > 0, see Lemma 2.6.

Proof. For k � 1 integer, let x0; : : : ; xk 2 X be distinct points. Set

Nrk WD min
0�i¤j�k

d.xi ; xj /
4

�

For any i 2 ¹0; : : : ; kº and y 2 X , define

Qfi .y/ WD
�
1 �

d.xi ; y/
Nrk

�C
and fi .y/ WD

Qfi .y/

k Qfik2
�

Note that each fi is an L2-normalized Lipschitz function supported in B Nrk .xi /, and
that .f0; : : : ; fk/ is an orthonormal family of L2.X; �/. Set

V WD Span.f0; : : : ; fk/ 2 GkC1.L
2.X; �//
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and observe that for any r > 0,

Q�k;r � max
f 2V
kf k2D1

zEr.f /:

Consider r 2 .0; Nrk/ and i ¤ j in ¹0; : : : ; kº. If x 2 B2 Nrk .xi /, then fj .y/D 0 for any
y 2 Br.x/, while if x … B2 Nrk .xi /, then fi .y/ D 0 for any y 2 Br.x/. In both cases,

.fi .x/ � fi .y//.fj .x/ � fj .y// D 0

for any y 2 Br.x/. Thus,
zEr.fi ; fj / D 0: (16)

Consider f 2 V such that kf k2 D 1. Then f D
Pk
iD0 aifi for some a0; : : : ; ak 2 R

such that
Pk
iD0 a

2
i D 1. By (16), we get

zEr.f / D

kX
iD0

a2i
zEr.fi / � max

0�i�k

zEr.fi /:

Let r0; C be the parameters of the uniform local doubling property of .X; d; �/, see
Definition 2.8. Then for any i 2 ¹0; : : : ; kº and r 2 .0; r0/,

zEr.fi / �
Lip2.fi /

4

Z
X

−
Br .x/

�
1C

V.x; r/

V .y; r/

�
„ ƒ‚ …

�1CC2

d2.x; y/
r2„ ƒ‚ …
�1

d�.y/ d�.x/

�
Lip2.fi /.1C C 2/�.X/

4
�

Therefore, for any r < Qrk WD min. Nrk; R/, we get

Q�k;r � zC WD
.1C C 2/�.X/

4
max
0�i�k

Lip2.fi /� (17)

By Corollary 3.13, there exists rk 2 .0; Qrk/ such that zC < min �ess.�z�r/ for any
r 2 .0; rk/. Then Remark 3.11 implies that for such an r the operator �z�r admits
k C 1 eigenvalues �0.�z�r/ � �1.�z�r/ � � � � � �k.�z�r/ such that �i .�z�r/D Q�i;r
for any i 2 ¹0; : : : ; kº. That �0.�z�r/ D 0 follows from Proposition 3.14. Moreover,
by Remark 3.11 and Proposition 3.14, we know that

Q�1;r D min
f 2….X;�/

zEr.f /

kf k2
;

where ….X; �/ is as in (15). Since ��r has a kernel which is L2-orthogonal to
….X;�/ (Proposition 3.14), we have zEr.f / > 0 for any f 2….X;�/, hence we get

Q�1;r > 0:
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4. First eigenvalue of torus and hypercubes

In this section, we derive some results which will be applied in Section 6. We let m
be a positive integer kept fixed throughout the section.

4.1. A preliminary lemma

We begin with a result where we use the normalized sinc function, namely

sinc.�/ WD

8<:
sin.��/
��

if � 2 Rn¹0º;

1 if � D 0;

and the following notation: for any p D .p1; : : : ; pm/ 2 Zm,

J.p/ WD ¹i 2 ¹1; : : : ; mº W pi ¤ 0º; j.p/ WD #J.p/:

Lemma 4.1. We have

lim inf
r!0

inf
0¤p2Zm

ˇ̌̌ 1
r2

�
1 �

Y
i2J.p/

sinc.pir/
�ˇ̌̌
> 0: (18)

Proof. We start by pointing out that for any r > 0 and p 2 Zmn¹0º,Y
i2J.p/

sinc.pir/ ¤ 1;

so that ˇ̌̌ 1
r2

�
1 �

Y
i2J.p/

sinc.pir/
�ˇ̌̌
> 0:

Moreover, for any r > 0, if jpj1 WD max1�i�m jpi j ! C1, thenˇ̌̌ 1
r2

�
1 �

Y
i2J.p/

sinc.pir/
�ˇ̌̌
!

1

r2
> 0;

hence there exists R > 0 such that

inf
0¤p2Zm

ˇ̌̌ 1
r2

�
1 �

Y
i2J.p/

sinc.pir/
�ˇ̌̌
D min
0¤p2Zm

jpj1<R

ˇ̌̌ 1
r2

�
1 �

Y
i2J.p/

sinc.pir/
�ˇ̌̌
> 0:

If (18) were to fail, due to the previous line, there would exist sequences .rn/ �
.0;C1/ and .p.n// � Zmn¹0º such that rn ! 0 and

lim
n

ˇ̌̌ 1
r2n

�
1 �

Y
i2J.p/

sinc.p.n/i r/
�ˇ̌̌
D 0: (19)
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We have two cases:

• there exists ˛ > 0 and j 2 ¹1; : : : ; mº such that lim infn p
.n/
j rn > ˛;

• for any j 2 ¹1; : : : ; mº, one has lim infn p
.n/
j rn D 0.

If the first one were true, then we would have

lim inf
n

ˇ̌̌
1 �

Y
i2J.p/

sinc.p.n/i r/
ˇ̌̌
> j1 � ˛j;

and so (19) could not hold. On the contrary, if the second case were true, up to
extracting a subsequence we would have p.n/j rn ! 0 for any j 2 ¹1; : : : ; mº. For
any y D .y1; : : : ; ym/ 2 Rm, set

G.y/ WD 1 �

mY
jD1

sinc.yj /:

Then G is smooth on Rm and satisfies

G.y/ D
1

2
jyj2 C o.jyj3/; jyj ! 0:

As a consequence, for y 2 Rm such that jyj is small enough,

jG.y/j �
1

4
jyj2:

Then, for large enough n,ˇ̌̌
1 �

Y
i2I.p.n//

sinc.p.n/i rn/
ˇ̌̌
D G.rnp

.n// �
1

4
jrnp

.n/
j
2
�
1

4
r2n ;

because p.n/ ¤ 0 implies that there exists at least one i such that jp.n/i j � 1. Thus, we
obtain

lim
n

ˇ̌̌ 1
r2n

�
1 �

Y
i2J.p/

sinc.�p.n/i rn/
�ˇ̌̌
�
1

4

and so (19) could not hold. This concludes the proof.

4.2. Torus

Consider the torus
Tm
´ Rm=.�1C 2Z/m

with its natural quotient map � WRm ! Tm. Let ��1 be the inverse of the bijective
map

� W Œ�1; 1/m ! Tm:
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Let d1 be the distance in Rm associated with the infinity norm, given by

d1.x; y/´ max¹jxi � yi j W i 2 ¹1; : : : ; mºº

for any x D .x1; : : : ; xm/ and y D .y1; : : : ; ym/ in Rm. With respect to this distance,
the open ball of radius r > 0 centered at x 2 Rm is

Qr.x/´

mY
iD1

.�r C xi ; xi C r/: (20)

For any x; y 2 Tm, set

Qd1.x; y/ D inf
z2��1.x/

w2��1.y/

d1.z; w/:

Then Qd1 defines a distance on Tm, and we denote by zQr.x/ the open ball of radius
r > 0 centered at x 2 Tm with respect to this distance. We also introduce the proba-
bility measure

Lm WD �#

�Lm

2m

�
on Tm. Note that this is also the normalized Haar measure of Tm seen as a Lie group.

It is obvious that the metric measure space Tm WD .Tm; Qd1;Lm/ satisfies the
assumptions of Theorem 1, hence we know that for any small enough r ,

Q�1;r D �1.�z�r/ > 0:

Then the following holds.

Proposition 4.2. We have
lim inf
r!0

�1.�z�r/ > 0:

Proof. For any x 2 Tm and r > 0 small enough, the ball zQr.x/ � Tm is given by

zQr.x/ D �.Qr. Qx//;

where Qx is any element in ��1.x/, and Qr. Qx/ is as in (20). Then

Lm. zQr.x// D
Lm.Qr. Qx//

2m
D rm (21)

so that the r-energy functional of Tm writes as

zEr;Tm.f / D
1

rm

Z
Tm

Z
zQr .x/

�f .x/ � f .y/
r

�2
dLm.y/ dLm.x/ (22)

for any f 2 L2.Tm;Lm/.
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We act by contradiction. Assume that there exist rn! 0 and ¹fnº � L2.Tm;Lm/

satisfying
R

Tm fn dLm D 0 and kfnkL2.Tm/ D 1, such that

�z�rnfn D �1.�
z�rn/fn; �1.�z�rn/! 0: (23)

With no loss of generality, we assume that each rn is small enough to ensure that
zErn;Tm writes as in (22).

From (21) we can write, for any n and Lm-a.e. x 2 Tm,

�z�rnfn.x/ D
1

r2n

�
fn.x/ �

1

rmn

Z
Tm

1 zQrn .x/
.y/fn.y/ dLm.y/

�
D

1

r2n

�
fn.x/ �

1

rmn
.1 zQrn .0/

� fn/.x/
�
: (24)

We consider the Fourier decomposition of fn, 1 zQrn .0/, and �z�rnfn, namely

fn D
X
p2Zm

ap;nep; 1 zQrn .0/
D

X
p2Zm

bp;nep; �z�rnfn D
X
p2Zm

cp;nep;

where ¹epºp2Zm is the orthonormal basis of L2.Tm;Lm/ given by

epWT
m
3 x 7! ei�p��

�1.x/ for all p 2 Zm:

Since the Fourier coefficients of a convolution are the product of the coefficients, we
obtain from (24) that

cp;n D
1

r2n

�
ap;n �

bp;n

rmn
ap;n

�
D
ap;n

r2n

�
1 �

bk;n

rmn

�
:

We can compute each coefficient bp;n by means of Fubini’s theorem; we obtain

bp;n D

Z
Qrn .0/

ei�p�x
dLm.x/

2m
D rmn

Y
i2J.p/

sinc.pirn/:

Thus,
cp;n D

ap;n

r2n

�
1 �

Y
i2J.p/

sinc.pirn/
�
:

Using Lemma 4.1, for p 2 Zn¹0º we conclude that there exists ˛ > 0 such that

1

r2n

ˇ̌̌
1 �

Y
i2J.p/

sinc.pirn/
ˇ̌
� ˛:

This implies that
jcp;nj

2
� jap;nj

2˛2:
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By Parseval’s identity, and since fn 2 ….Tm;Lm/ we have a0;n D 0,

k � z�rnfnk
2
L2.Tm/ D

X
p2Zm

jcp;nj
2
�

X
p2Zmn¹0º

jap;nj
2˛2 D ˛2kfnk

2
L2.Tm/;

in contradiction with k � z�rnfnkL2.Tm/ ! 0 provided by (23).

4.3. Shrinking hypercubes

For any b > 0, consider the metric measure space Qm.b/ WD .Œ0; b�m; d1;Lm/. It
trivially satisfies the assumptions of Theorem 1, so that for any small enough r ,

Q�1;r D �1.�z�r;Qm.b// > 0: (25)

Then the following holds.

Lemma 4.3. We have

lim inf
b!0

lim
r!0

�1.�z�r;Qm.b// D C1: (26)

Proof. We suppose by contradiction that (26) fails. Then there exist bn!0 and rn!0
such that

lim
n
�1.�z�rn;Qm.b// < C1:

Since we are first taking the limit in r and then in b, we can assume Nrn´ rn=bn! 0.
For any n, by a simple scaling argument we have

�1.�z�rn;Qm.bn// D
1

b2n
�1.�z� Nrn;Qm.1//

thus
�1.�z� Nrn;Qm.1//! 0:

From (25), assuming that each rn is small enough, we know that there exists fn 2
….Œ0; 1�m;Lm/ such that kfnkL2.Œ0;1�m;Lm/ D 1 and

zE Nrn;Qm.1/.fn/ D �1.�z� Nrn;Qm.1//:

Consider the continuous function

T WTm! Œ0; 1�m;

x 7! .j Nx1j; : : : ; j Nxmj/; ;

where Nx D ��1.x/ 2 Œ�1; 1/m. For any n, set

Qfn D fn ı T 2 L
2.Tm;Lm/:
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From this we have that fn 2 ….Tm;Lm/ Let us prove that

k QfnkL2.Tm;Lm/ D 1:

Let C1; : : : ; C2m denote the 2m sets of the form I1 � � � � � Im where each Ii is either
Œ�1; 0� or Œ0; 1�. For any j 2 ¹1; : : : ; 2mº, set

Nj W Œ0; 1�
m! Cj ;

.�1; : : : ; �m/ 7! ."i�1; : : : ; "m�m/;

where "i is 1 if Ii D Œ0; 1� and �1 otherwise. Note that Nj is an isometry which
preserves the Lebesgue measure, and that T ı � ıNj is equal to the identity. Then

k Qfnk
2
L2.Tm;Lm/ D

Z
Tm

.fn ı T /
2 dLm D

1

2m

Z
Œ�1;1�m

.fn ı T ı �/
2 dLm

D
1

2m

2mX
jD1

Z
Cj

.fn ı T ı �/
2 dLm

D
1

2m

2mX
jD1

Z
Œ0;1�m

.fn ı T ı � ıNj /
2 dLm

D kfnk
2
L2.Œ0;1�m;Lm/

D 1:

We claim that
zE Nrn;Tm. Qfn/ � 2

m zE Nrn;Qm.1/.fn/: (27)

Since Qfn 2 ….Tm; Lm/, the latter provides a contradiction with Proposition 4.2,
namely

0 < �1.�z� Nrn;Tm/ � 2m�1.�z� Nrn;Qm.1//! 0:

Given x 2 Tm, define

zGn.x/ WD
1

Nrmn

Z
zQNrn .x/

� Qfn.x/ � Qfn.y/
Nrn

�2
dLm.y/:

For any x 2 Œ0; 1�m, set

Gn.x/ WD

Z
zQNrn .x/

� 1

V.x; Nrn/
C

1

V.y; Nrn/

��fn.x/ � fn.y/
Nrn

�2
dLm.y/;

where
V.z; r/ WD Lm.Qr.z/ \ Œ0; 1�

m/
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for any z 2 Œ0; 1�m. Then

4 zE Nrn;Tm. Qfn/ D

Z
Tm

zGn.x/ dLm.x/

4 zE Nrn;Qm.1/.fn/ D

Z
Œ0;1�m

Gn.x/ dLm.x/:

Moreover, for all x 2 Tm,

1

Nrmn
�

2m

Lm.Q Nrn.T .x// \ Œ0; 1�
m/
D

2m

V.T .x/; Nrn/
: (28)

For any x 2Tm, there exists some k 2 ¹1; : : : ; 2mº and Nx 2Ck such that �. Nx/D x.
We will now consider for each j 2 ¹1; : : : ; 2mº the rectangle given by

Rn;j .x/´ T .�.Cj / \ zQ Nrn.x// � Œ0; 1�
m:

and we point out that

Rn;j .x/ � Rn;k.x/ D Œ0; 1�
m
\Q Nrn.T .x// (29)

for any j 2 ¹1; : : : ; 2mº. This follows since for each i 2 ¹1; : : : ; mº we have 4 possi-
bilities

(1) j Nxi j < Nrn

(2) j1 � Nxi j < Nrn

(3) j � 1 � Nxi j < Nrn

(4) :..1/ _ .2/ _ .3//.

If �i WRm ! R is the projection in the i -th coordinate, we conclude

�i .Rn;k.x// D

8̂̂̂̂
<̂
ˆ̂̂:
Œ0; Nrn C j Nxi j� if .1/;

Œ�Nrn C j Nxi j; 1� if .2/;

Œ�Nrn C j Nxi j; 1� if .3/;

Œ�Nrn; Nrn� if .4/;

and

�l.Rn;k.x// D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�i .Rn;l.x// D �i .Rn;k.x// if �i .Cj / D �i .Ck/;

Œ0; Nrn � j Nxi j� if .1/ and :.�i .Cj / D �i .Ck//;

Œ2 � Nrn � j Nxi j; 1� if .2/ and :.�i .Cj / D �i .Ck//;

Œ2 � Nrn � j Nxi j; 1� if .3/ and :.�i .Cj / D �i .Ck//;

; if .4/ and :.�i .Cj / D �i .Ck//:
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Thus, we conclude that for all i 2 ¹1; : : : ; mº and l 2 ¹1; : : : ; 2mº we have

�i .Rn;l.x// � �i .Rn;k.x//;

and since these sets are rectangles, we conclude equation (29).
From (28), we can deduce

zGn.x/ D
1

Nrmn

Z
zQNrn .x/

� Qfn.x/ � Qfn.y/
Nrn

�2
dLm.y/

�

Z
zQNrn .x/

� 2m

V.T .x/; Nrn/
C

2m

V.T .y/; Nrn/

��fn.T .x// � fn.T .y//
Nrn

�2
dLm.y/

D

2mX
jD1

Z
zQNrn .x/\�.Cj /

� 2m

V.T .x/; Nrn/
C

2m

V.T .y/; Nrn/

�
�

�fn.T .x// � fn.T .y//
Nrn

�2
dLm.y/

D
1

2m

2mX
jD1

Z
��1. zQNrn .x//\Cj

� 2m

V.T .x/; Nrn/
C

2m

V.T .�.y//; Nrn/

�
�

�fn.T .x// � fn.T .�.y///
Nrn

�2
dLm.y/:

For each integral, change coordinates by Nj to conclude

zGn.x/ �
1

2m

2mX
jD1

Z
N�1
j
.��1. zQNrn .x//\Cj /

� 2m

V.T .x/; Nrn/
C

2m

V.T .�.Nj .y///; Nrn/

�

�

�fn.T .x// � fn.T .�.Nj .y////
Nrn

�2
dLm.y/:

We have that
N�1j .��1. zQ Nrn.x// \ Cj / D Rn;j .x/;

so by equation (29) and the fact that T ı � ıNj D id , we conclude

zGn.x/ �
1

2m

2mX
jD1

Z
Rn;j .x/

� 2m

V.T .x/; Nrn/
C

2m

V.T .y/; Nrn/

�
�

�fn.T .x// � fn.y/
Nrn

�2
dLm.y/



M. Dias and D. Tewodrose 120

�
1

2m

2mX
jD1

Z
Rn;k.x/

� 2m

V.T .x/; Nrn/
C

2m

V.y; Nrn/

�
�

�fn.T .x// � fn.y/
Nrn

�2
dLm.y/

D

Z
Œ0;1�m\QNrn .T .x//

� 2m

V.T .x/; Nrn/
C

2m

V.y; Nrn/

��fn.T .x// � fn.y/
Nrn

�2
dLm.y/

D 2mGn.T .x//:

Now, we integrate both sides in Tm and change variables by � and Nj to conclude

4 zE Nrn;Tm. Qfn/ D

Z
Tm

zGn.x/ dLm.x/ � 2m
Z

Tm

Gn.T .x// dLm.x/

D

Z
Œ�1;1/m

Gn.T .�.x/// dLm.x/ D

2mX
jD1

Z
Cj

Gn.T .�.x/// dLm.x/

D

2mX
jD1

Z
Œ0;1�m

Gn.T .�.Nj .x//// dLm.x/ D

2mX
jD1

Z
Œ0;1�m

Gn.x/ dLm.x/

D 2m4 zE Nrn;Œ0;1�m.fn/ D 2
m4�1.�z� Nrn;Qm.1//:

With this we obtain (27).

5. L2 convergence

In this section, we prove Theorem 2. Let M be a smooth, compact, connected man-
ifold of dimension m � 2. Assume that M is endowed with a smooth Riemannian
metric g and let dg and volg be the associated Riemannian distance and volume mea-
sure on M .

In this smooth context, the function V.�; r/ is obviously continuous for any r > 0.
Since M is compact, this implies that the metric measure space .M; dg ; volg/ sat-
isfies (IIr ) and (Ir ). Then Lemma 3.3 applies and ensures that z�r is a bounded
self-adjoint operator acting on L2.M; volg/. The compactness ofM also ensures that
.M; dg ; volg/ is locally Ahlfors regular: there exists a constant C > 1 such that for
any x 2M and r 2 .0; diam.M/�,

C�1rm � V.x; r/ � Crm: (30)

Note that this condition trivially implies a uniform local doubling property for .M;dg ;
volg/.
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5.1. Convergence in the sense of distributions

Recall that Cm is defined in (2). For any x 2Mn@M , we let expx be the exponential
map centered at x. We identify TxM with Rm and write Bmr .v/ for the Euclidean ball
in Rm centered at v with radius r > 0. Then there exists ı > 0 such that the restriction
of expx to Bm

ı
.0/ is a diffeomorphism onto its image; recall that the injectivity radius

iM .x/ of M at x is the supremum of the set of such numbers ı. We let Jx be the
Radon-Nikodym derivative of the measure .exp�1x /#volg with respect to the Lebesgue
measure Lm. It is well known that for any � 2 BmiM .0/,

Jx.�/ D 1C
x
OK.j�j

2/;

where for any h > 0, the notation
x
OK.h/ stands for a quantity independent on x 2 K

whose absolute value divided by h is bounded. HereK is a compact subset ofM . We
write

x
O instead of

x
OM . Then the following holds.

Proposition 5.1. Consider f; 2 C 2.M/. Then

lim
r!0
h�z�rf; i2 D Cm

Z
M

hdf; d ig dvolg : (31)

Proof. For any x 2M and r > 0, set

Qer.f;  I x/ WD
1

4

−
Br .x/

�
1C

V.x; r/

V .y; r/

� .f .x/ � f .y//. .x/ �  .y//
r2

dvolg.y/

so that
h�z�rf; i2 D

Z
M

Qer.f;  Iy/ dvolg.y/:

On one hand,

j Qer.f;  I x/j �
1

4

−
Br .x/

�
1C

V.x; r/

V .y; r/

�
jf .x/ � f .y/jj .x/ �  .y/j

r2
dvolg.y/

�
1

4

−
Br .x/

�
1C

V.x; r/

V .y; r/

�Lip.f /Lip. /d2g.x; y/
r2

dvolg.y/

�
Lip.f /Lip. /

4

−
Br .x/

�
1C

V.x; r/

V .y; r/

�
dvolg.y/:

By (30), we obtain

j Qer.f;  I x/j �
Lip.f /Lip. /.1C C 2/

4
� (32)
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On the other hand, assume that r is smaller than iM .x/, and consider Qf WD f ı expx
and Q WD  ı expx on Bmr .0/. The first-order Taylor expansion of Qf and Q yields

Qf .�/ D Qf .0/C .d Qf /0.�/C
x
O¹0º.j�j

2/;

Q .�/ D Q .0/C .d Q /0.�/C
x
O¹0º.j�j

2/:

Then Z
Br .x/

.f .x/ � f .y//. .x/ �  .y// dvolg.y/

D

Z
Bmr .0/

. Qf .0/ � Qf .�//. Q .0/ � Q .�//J.�/ dLm.�/

D

Z
Bmr .0/

..d Qf /0.�/C
x
O¹0º.r

2//..d Q /0.�/C
x
O¹0º.r

2//.1C
x
O¹0º/ dLm.�/

D

mX
i;jD1

Œ.d Qf /0�i Œ.d Q /0�j

Z
Bmr .0/

�j �i dLm.�/C
x
O¹0º.r

mC3/

D .d Qf /0 � .d Q /0

Z
Bmr .0/

�21 dLm.�/C
x
O¹0º.r

mC3/:

Moreover, it is known that (see e.g., [15, Remark 2.11])

1C
V.x; r/

V .y; r/
D 2C

x
O¹xº.r

2/

and since V.x; r/=Lm.Bmr .0///! 1 as r # 0, we obtain−
Br .x/

�
1C

V.x; r/

V .y; r/

�
.f .x/ � f .y//. .x/ �  .y// dvolg.y/

D
Lm.Bmr .0//.2C

x
O¹xº.r

2//

V .x; r/

−
Bmr .0/

. Qf .0/ � Qf .�//. Q .0/ � Q .�//J.�/ dLm.�/

D .2C
x
O¹xº.r

2//

�
.d Qf /0 � .d Q /0

−
Bmr .0/

�21 dLm.�/C
x
O¹0º.r

3/

�
:

Since .d Qf /0 � .d Q /0 D hdf; d ig.x/ and−
Bmr .0/

�21 dLm.�/ D 2r2Cm
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by change of variable � $ �=r2, we eventually obtain that

Qer.f;  I x/ D Cmhdf; d ig.x/C
x
O¹xº.r/ as r ! 0.

By (32) and the compactness ofM , we can apply the dominated convergence theorem
to the functions Qer.f;  I �/. Then we get (31).

Using integration by parts in (31), we immediately obtain the following.

Corollary 5.2. Let @g be the Riemannian metric induced by g on @M . For any f 2
C1.M/, the following convergence holds in the sense of distributions as r # 0:

.z�rf /volg ! Cm..�gf /volg C .@g�f /vol@g/:

5.2. Pointwise convergence

We aim to prove Theorem 2 in a similar way as Proposition 5.1, that is to say, by
means of the dominated convergence theorem. To this aim, we first establish that
pointwise convergence holds volg -a.e. on M . We recall that @M is a volg -negligible
subset of M .

Proposition 5.3. Let f 2 C1.M/. Then for any x 2M � @M ,

lim
r!0

z�rf .x/ D Cm�gf .x/:

Moreover, the convergence is uniform on any compact subset of M � @M .

Proof. Let K be a compact subset of M � @M . Consider x 2 K and r 2 .0; iM .x//.
Set Qfx WD f ı expx . Acting like in the proof of Proposition 5.1, we get

z�rf .x/ D
.2C

x
OK.r

2//

2r2

−
Bmr .0/

. Qfx.�/ � Qfx.0// dLm.�/:

The second-order Taylor expansion of Qfx yields

Qfx.�/ D Qfx.0/C .d Qfx/0.�/C
1

2
.d.2/ Qfx/0.�; �/C

x
OK.j�j

3/

hence we get−
Bmr .0/

Qfx.�/ � Qfx.0/ dLm.�/

D

−
Bmr .0/

.d Qfx/0.�/ dLm.�/C
1

2

−
Bmr .0/

.d.2/ Qfx/0.�; �/ dLm.�/C
x
OK.r

3/:
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The first term vanishes by symmetry. The second term is equal to

1

2
� Qfx.0/

−
Bmr .0/

�21 dLm.�/ D �gf .x/r
2Cm:

In the end we get

z�rf .x/ D
2C
x
OK.r

2/

2r2
.�gf .x/r

2Cm C
x
OK.r

3//

D .1C
x
OK.r

2//.Cm�gf .x/C
x
OK.r//

from which follows the desired result, by letting r # 0.

5.3. Uniform bound

We wish now to provide a uniform L1 bound for the functions �z�r , where r is in
a neighborhood of zero.

Let us first consider the case @M D ;. From Proposition 5.3, we have uniform
convergence

kz�rf � Cm�gf k1 ! 0

so that
kz�rf � Cm�gf k2 � kz�rf � Cm�gf k1volg.M/! 0:

Let us now deal with the case @M ¤ ;.

Proposition 5.4. Assume that @M ¤ ;. Consider f 2 C1� .M/. Then there exists
r0 > 0 such that

sup
0<r<r0

kz�rf kL1.M/ < C1:

Proof. Since @M is compact, we can find a finite collection of smooth parameteriza-
tions  i W .�4; 4/m�1 ! @M such that

@M D
S
i i .Œ�1; 1�

m�1/: (33)

Step 1. We work with any of the previous  i which we denote by  . For any x 2 @M ,
let �x 2 TxM be the unit inner normal vector of @M at x. Since @M is smooth, there
exists " > 0 such that the map EW @M � Œ0; "�!M given by

E.x; t/ D expMx .t�x/

is an embedding, and there exists a smooth family of metrics ¹gtºt2Œ0;"� on @M such
that for any .x; t/ 2 @M � Œ0; "�,

.E�g/.x;t/ D .gt ˚ d�
2/.x;t/: (34)
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Pulling back each metric gt by  we have, for any � 2 .�4; 4/m�1 and v;w 2 Rm�1,

. �gt /�.v; w/ D v
T
� A.�;t/ � w; (35)

for some positive definite, symmetric .m � 1/-square matrix A.�;t/. From the non-
degeneracy of the metric and a Lipschitz bound, we have that there exist C; Qc > 0

such that for all t; s 2 Œ0; "�; � 2 Œ�3; 3�m�1; v 2 Rm we have

Œ. �gt /˚ d�
2�.�;t/.v; v/ � Qcjvj

2; (36)

jŒ. �gt /˚ d�
2�.�;t/.v; v/ � Œ. 

�gs/˚ d�
2�.�;t/.v; v/j � C jvj

2
jt � sj: (37)

Claim 1. There exists K > 0 such that for any t; s 2 Œ0; "�, � 2 Œ�3; 3�m�1, v 2 Rm

such that
jO.�; t; s; v/j � Kjvj � jt � sj; (38)

where

O.�; t; s; v/ D Œ. �gt /˚ d�
2�
1=2

.�;t/
.v; v/ � Œ. �gs/˚ d�

2�
1=2

.�;t/
.v; v/: (39)

Proof. Consider Qc > 0 given by (36). We know that there exists M > 0 such that the
map
p
�W Œ Qc;C1/!R isM -Lipschitz. By homogeneity in jvj of (38), we can assume

that jvj D 1. Then the Lipschitz condition and (37) yield

jO.�; t; s; v/j D jŒ. �gt /˚ d�
2�
1=2

.�;t/
.v; v/ � Œ. �gs/˚ d�

2�
1=2

.�;t/
.v; v/j

�M jŒ. �gt /˚ d�
2�.�;t/.v; v/ � Œ. 

�gs/˚ d�
2�.�;t/.v; v/j

�MC jvj2jt � sj DMC jt � sj:

Step 2. Let T ."/ WD E.@M � Œ0; "�/ be the " tubular neighborhood of the boundary.
Then E is a diffeomorphism between @M � Œ0; "� and T ."/. For fixed s 2 Œ0; "�, con-
sider the product metric gs ˚ d�2 in @M � Œ0; "� and define the metric in T ."/

�s WD .E
�1/�.gs ˚ d�

2/:

Let ds be the distance induced from this metric. Consider the map ˆW .�4; 4/m�1 �
Œ0; "�!M given by

ˆ.�; t/ D E. .�/; t/ (40)

and note that (34) implies that for any .�; t/ 2 .�4; 4/m�1 � Œ0; "�,

.ˆ�g/.�;t/ D . 
�gt ˚ d�2/.�;t/: (41)

Set Hm WD ¹v 2 Rm W vm � 0º. Let L. Q
/ be the Euclidean length of a curve
Q
 W Œ0; 1�! Rm.
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Claim 2. Let Qc > 0 be given by (36). For any r > 0 and s 2 Œ0; "�, if a couple
.�; t/ 2 Œ�2; 2�m�1 � Œ0; "� is such that Bm

r=
p
Qc
.�; t/\Hm � Œ�3; 3�m�1 � Œ0; "�, then

the following holds for any y 2M .

(1) If d.ˆ.�; t/;y/<r , then the image of any d-minimizing geodesic 
 W Œ0;1�!M

is contained inˆ.Bm
r=
p
Qc
.�; t/\Hm/ and Q
 Dˆ�1 ı 
 satisfiesL. Q
/< r=

p
Qc.

(2) If ds.ˆ.�;t/;y/<r , then the image of any ds-minimizing geodesic 
 W Œ0;1�!M
is contained inˆ.Bm

r=
p
Qc
.�; t/\Hm/ and Q
 Dˆ�1 ı 
 satisfiesL. Q
/< r=

p
Qc.

Proof. We prove the first result only since the proof of the second one follows from
similar lines. Consider a d-minimizing geodesic 
 W Œ0; 1�!M from ˆ.�; t/ to y. Set

ı WD sup¹t 2 Œ0; 1� W 
.s/ 2 ˆ.Bm
r=
p
c
.�; t/ \Hm/ for any s 2 Œ0; t/º;

Q
 WD ˆ�1 ı 
 jŒ0;ı�;

and observe that 
.Œ0; 1�/ � ˆ.Bm
r=
p
c
.�; t/\Hm/ if and only if ı D 1. We claim that

L. Q
/ �
dg.ˆ.�; t/; y/

p
Qc

� (42)

Indeed, setting . Q̨ ; Q
m/ WD Q
 , where Q̨ W Œ0; ı�! Œ�3; 3�m�1 and Q
mW Œ0; ı�! Œ0; "�, we
have

d.ˆ.�; t/; y/ D

1Z
0

g
1=2


.w/
. P
.w/; P
.w// dw �

ıZ
0

g
1=2


.w/
. P
.w/; P
.w// dw

D

ıZ
0

.ˆ�g/
1=2

Q
.w/
. PQ
.w/; PQ
.w// dw

D

ıZ
0

. �g Q
m.w/ ˚ d�
2/
1=2

Q
.w/
. PQ
.w/; PQ
.w// dw (by (41))

�

ıZ
0

p
Qcj PQ
.w/j dw (by (36))

D
p
QcL. Q
/:

Now, we claim that
ı < 1 H) dg.ˆ.�; t/; y/ � r: (43)

Indeed, if ı < 1, since Q
.0/ D .�; t/ and Q
.ı/ 2 @Bm
r=
p
Qc
.�; t/ \Hm, then

L. Q
/ �
r
p
Qc
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and we get dg.ˆ.�; t/; y/ � r from (42). Therefore, if dg.ˆ.�; t/; y/ < r , then (43)
implies that ıD 1which means 
.Œ0;1�/ is included inˆ.Bm

r=
p
c
.�; t/ \Hm/, and (42)

yields L. Q
/ < r=
p
Qc as desired.

Claim 3. There exists K > 0 such that for all .�; t/; .�; s/ 2 Œ�2; 2�m�1 � Œ0; "� and
r > 0 such that Bm

r=
p
Qc
.�; t/ \Hm � Œ�3; 3�m�1 � Œ0; "�:

d.ˆ.�; t/; ˆ.�; s// < r H) dt .ˆ.�; t/; ˆ.�; s// < r CKr2; (44)

d.ˆ.�; t/; ˆ.�; s// � r H) dt .ˆ.�; t/; ˆ.�; s// � r �Kr2: (45)

Proof. Suppose that d.ˆ.�; t/; ˆ.�; s// < r . Let 
 W Œ0; 1�! M be a d-minimizing
geodesic between ˆ.�; t/ and ˆ.�; s/. Then by Claim 2, we have that 
.Œ0; 1�/ �
ˆ.Bm

r=
p
Qc
.�; t/\Hm/, and by defining . Q̨ ; Q
m/D Q
 WD ˆ�1 ı 
 , we have that L. Q
/ <

r=
p
Qc. Thus, we obtain

d.ˆ.�; t/; ˆ.�; s// D

1Z
0

g
1=2


.w/
. P
.w/; P
.w// dw

D

1Z
0

g
1=2


.w/
. P
.w/; P
.w// dw �

1Z
0

.�t /
1=2


.w/
. P
.w/; P
.w// dw

C

1Z
0

.�t /
1=2


.w/
. P
.w/; P
.w// dw

D

1Z
0

. �g Q
m.w/ ˚ d�
2/
1=2

. Q̨.w/; Q
m.w//
. PQ
.w/; PQ
.w// dw

�

1Z
0

. �gt ˚ d�
2/
1=2

. Q̨.w/; Q
m.w//
. PQ
.w/; PQ
.w// dw

C

1Z
0

.�t /
1=2


.w/
. P
.w/; P
.w// dw

D

1Z
0

O. Q̨ .w/; Q
m.w/; t; P
.w// dw

C

1Z
0

.�t /
1=2


.w/
. P
.w/; P
.w// dw; (46)
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where we use (39) to get the last equality. By Claim 1, we have thatˇ̌̌̌ 1Z
0

O. Q̨ .w/; Q
m.w/; t; P
.w// dw
ˇ̌̌̌
�

1Z
0

jO. Q̨ .w/; Q
m.w/; t; P
.w//j dw

�

1Z
0

Kj PQ
.w/jjt � Q
m.w/j dw:

By Claim 2, we have that jt � Q
m.s/j < r=
p
Qc and L. Q
/ < r=

p
Qc, hence we getˇ̌̌̌ 1Z

0

O. Q̨ .w/; Q
m.w/; t; P
.w// dw
ˇ̌̌̌
� K

r
p
Qc

1Z
0

j PQ
.w/j dw < K
r2

Qc
� (47)

Thus,

dt .ˆ.�; t/; ˆ.�; s// �

1Z
0

.�t /
1=2


.w/
. P
.w/; P
.w// dw

� d.ˆ.�; t/; ˆ.�; s//C
ˇ̌̌̌ 1Z
0

O. Q̨ .w/; Q
m.w/; t; P
.w// dw
ˇ̌̌̌

� d.ˆ.�; t/; ˆ.�; s//CK
r2

Qc

< r CK
r2

Qc
;

where we use (46) to get the second inequality and (47) to get the third one. This
proves (44).

To prove (45), we may assume d.ˆ.�; t/;ˆ.�;s//� r and dt .ˆ.�; t/;ˆ.�;s// < r .
Let 
 W Œ0; 1� ! M be a geodesic in the metric gt ˚ d�2. By Claim 2, we have

.Œ0; 1�/ � ˆ.Bm

r=
p
Qc
.�; t/ \ Hm/ with . Q̨ ; Q
m/ D Q
 D ˆ�1 ı 
 satisfying L. Q
/ <

r=
p
Qc. The same estimates as before are satisfied, hence we conclude

r < d.ˆ.�; t/; ˆ.�; s// �

1Z
0

g
1=2


.w/
. P
.w/; P
.w// dw

�

1Z
0

.�t /
1=2


.w/
. P
.w/; P
.w// dw C

ˇ̌̌̌ 1Z
0

O. Q̨ .w/; Q
m.w/; t; PQ
.w// dw
ˇ̌̌̌

� dt .ˆ.�; t/; ˆ.�; s//C
K

Qc
r2:
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We omit the proof of the next elementary claim.

Claim 4. Let .x; t/; .y; �/ 2 @M � Œ0; "� and s 2 Œ0; "�. Let 
 W Œ0; 1�! @M be the
geodesic between x and y in the metric gs . Then the curve

w 2 Œ0; 1� 7! .
.w/; .1 � w/t C w�/

is a geodesic in the metric gs ˚ d�2.

Step 3. For every t 2 Œ0;"�, consider the exponential map expgt given by the metric gt .
Since gt varies smoothly with respect to t , and @M � Œ0; "� is compact, we know that
there exists ı > 0 lower than the injectivity radius of each expgt . For any .�; t; �; s/ in

Dı ´ Œ�1; 1�m�1 � Œ0; "� � Bm�1ı .0/ � Œ0; "�

define
‰.�; t; �; s/ WD E.expgt

 .�/
..d /�A

�1=2

.�;t/
�/; s/:

We may write
‰.�;t/.�; s/ D ‰.�; t; �; s/

to see‰ as a function of the two last variables only, the two first being frozen. Observe
that for any .�; t; �/ in Œ�1; 1�m�1 � Œ0; "� � Bm�1

ı
.0/,

.gt /
1=2

 .�/
..d /�A

�1=2

.�;t/
�; .d /�A

�1=2

.�;t/
�/ D . �gt /

1=2

�
.A
�1=2

.�;t/
�; A

�1=2

.�;t/
�/

D j�TA
�1=2

.�;t/
A.�;t/A

�1=2

.�;t/
�j1=2 (by (35))

D j�j < ı:

Since ı is lower than the injectivity radius of the exponentials, the map

� 2 Bm�1ı .0/ 7! expgt
 .�/

..d /�A
�1=2

.�;t/
�/

is injective. Thus, for every .�; t/ 2 Œ�1; 1�m�1 � Œ0; "� the map ‰.�;t/ defined on
Bm�1
ı

.0/ � Œ0; "� is a local parametrization of M . Moreover,

‰.�;t/.0; t/ D E. .�/; t/ D ˆ.�; t/; (48)

and
det.Œ‰�.�;t/g�.0;t// D 1:

Claim 5. Consider .�; t/ 2 Œ�1; 1�m�1 � Œ0; "�, and .�; s/ 2 Bm�1
ı

.0/ � Œ0; "�. Then

dt .‰.�;t/.�; s/; ‰.�;t/.0; t// D
p
j�j2 C .t � s/2:
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Proof. By Claim 4, the geodesic between E�1.‰.�;t/.0; t// and E�1.‰.�;t/.�; s// in
the metric gs ˚ d�2 is


 Ww 2 Œ0; 1� 7! .expgt
 .�/

..d /�A
�1=2

.�;t/
w�/; .1 � w/t C ws/

DW . Q
.w/; 
m.w//:

Then we also know that, for any w 2 Œ0; 1�,

.gt /
1=2

Q
.w/
. PQ
.w/; PQ
.w// D j�j:

Thus,

dt .‰.�;t/.�; s/; ‰.�;t/.0; t// D

1Z
0

q
.gt /

2
Q
.w/

. PQ
.w/; PQ
.w//C .s � t /2 dw

D

p
j�j2 C .s � t /2:

Claim 6. There exist r0; � > 0 such that for all .�; t/ 2 Œ�2; 2�m�1 � Œ0; "=2� and
r 2 .0; r0/ such that Bm

r=
p
Qc
.�; t/ � Œ�3; 3�m�1 � Œ0; "�, we have

Lm.Bmr .0; t/4.‰
�1
.�;t/.Br.‰.�;t/.0; t///// � �r

mC1:

Proof. For any .�; t/ 2 Œ�2; 2�m�1 � Œ0; "=2�, there exists r0.�; t/ > 0 small enough
such that

Br0.‰.�;t/.0; t// D Br0.ˆ.�; t// � ‰.�;t/.B
m�1
ı .0/ � Œ0; "�/: (49)

By compactness of Œ�2;2�m�1 � Œ0; "=2� and continuity of the maps‰�1
.�;t/

, we get that
there exists a common r0>0 such that the previous holds for any .�; t/2 Œ�2;2�m�1 �
Œ0; "=2�. Consider r < r0 and .�; t/ 2 Œ�2; 2�m�1 � Œ0; "=2�, then

Br.‰.�;t/.0; t// � Im.‰.�;t//:

Set A1´ ‰�1
.�;t/

.Br.‰.�;t/.0; t/// and A2´ Bmr .0; t/. We will show that there exists
K > 0 such that

A1nA2 � Bm
rCKr2

.0; t/nBmr .0; t/: (50)

For .�; s/ 2 A1nA2, we know that

d.‰.�;t/.�; s/; ‰.�;t/.0; t// < r:

Therefore, from (48) and Claim 3, we conclude that there exists K > 0 such that

dt .‰.�;t/.�; s/; ‰.�;t/.0; t// < r CKr2:
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Then we get from Claim 5 thatp
j�j2 C .t � s/2 < r CKr2

hence (50) is proved. A similar proof shows that

A2nA1 � Bmr .0; t/nB
m
r�Kr2

.0; t/:

From the latter and (50), we conclude that

A14A2 � Bm
rCKr2

.0; t/nBm
r�Kr2

.0; t/:

Thus,

Lm.A14A2/ � Lm.Bm
rCKr2

.0; t/nBm
r�Kr2

.0; t//

� rmLm.Bm1CKr.0/nB
m
1�Kr.0//

D rm!m..1CKr/
m
� .1 �Kr/m/

� rmC.Kr/ (for some C > 0)

� .CK/rmC1:

Claim 7. There exist C; r0 > 0 such that for all r 2 .0; r0/ and

.�; t; �; s/ 2 Œ�1; 1�m�1 � Œ0; "=4� � Bm�1ı .0/ � Œ0; "�

such that Bm
2r=
p
Qc
.�; t/\Hm � Œ�2; 2�m�1 � Œ0; "=2� and d.‰.�;t/.�; s/;ˆ.�; t// < r ,

then ˇ̌̌ 1

V.‰.�;t/.�; s/; r/
�

1

Lm.Bmr .0; s/ \Hm/

ˇ̌̌
�

C

rm�1
�

Proof. Let us first consider the map GWDı ! R given by

G.�; t; �; s/ WD det.Œ‰�.�;t/g�.�;s//
1=2:

This map is C1, and its value at any .�; t/ � .0; t/ is 1, thus by a Taylor expansion
in the variable .�; s/ centered at .0; t/, and compactness of Dı , we obtain that there
exists k > 0 such that for all .�; t; �; s/ 2 Dı we have

j det.Œ‰�.�;t/g�.�;s//
1=2
� 1j � kj.�; s/ � .0; t/j: (51)

In particular, there exists C > 0 such that for all .�; t; �; s/ 2 Dı ,

j det.Œ‰�.�;t/g�.�;s//
1=2
j � C:



M. Dias and D. Tewodrose 132

Let us now consider r;�; t; �; s as in the statement of the claim. Set y WD‰.�;t/.�; s/.
Since d.y;ˆ.�; t// < r , and Bm

2r=
p
Qc
.�; t/� Œ�2;2�m�1 � Œ0;"=2�, we know by Claim 2

that y 2 ˆ.Bm
r=
p
Qc
.�; t/ \Hm/. Thus, if we set

.�; �/ WD ˆ�1.y/ 2 Œ�2; 2�m�1 � Œ0; "=2�; (52)

we obtain that

Bm
r=
p
Qc
.�; �/ \Hm

� Bm
2r=
p
Qc
.�; t/ \Hm

� Œ�2; 2�m�1 � Œ0; "=2�:

Thus, by Claim 2, we conclude that Br.y/ D Br.ˆ.�; �// � ˆ.Bm
r=
p
Qc
.�; �//.

By (48) and (40), we easily see that

s D �: (53)

Moreover, by (52) and (53), we also have that

‰.�;s/.0; s/ D E. .�/; s/ D ˆ.�; s/ D y:

Choose r0 such that r0=
p
Qc < "=4. Since t � "=4 and .�; s/ 2 Bm

r=
p
Qc
.�; t/, this implies

that s � "=2. Thus, we can use Claim 6 to ensure that

Lm.Bmr .0; s/4.‰.�;s//
�1.Br.‰.�;s/.0; s//// � �r

mC1: (54)

Then

V.y; r/ D

Z
‰�1
.�;z/

.Br .y//

j detŒ‰�.�;s/g�w j
1=2 dLm.w/

D

Z
‰�1
.�;s/

.Br .y//

1 � dLm.w/CO.rmC1/ (by (51))

D Lm.Bmr .0; s/ \Hm/CO.rmC1/ (by (54))

that is, there exists zC > 0 such that

jvolg.Br.y// �Lm.Bmr .0; z/ \Hm/j � zCrmC1

Thus, using the local Ahlfors regularity of .M; g/ and Claim 6, we obtainˇ̌̌ 1

volg.Br. Ny//
�

1

Lm.Bmr .0; z/ \Hm/

ˇ̌̌
D

ˇ̌̌Lm.Bmr .0; z/ \Hm/ � volg.Br. Ny//
volg.Br. Ny//Lm.Bmr .0; z/ \Hm/

ˇ̌̌
�

C zCrmC1

rmLm.Bmr .0; z/ \Hm/

�
C zC

Lm.Bm1 .0/ \Hm/rm�1

concluding the proof.
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Step 4. We start with the following claim.

Claim 8. For all f 2 C1.M/, there exists C > 0 such that for all .�; t; �; s/ 2 Dı
we have

jf ı‰.�;t/.�; s/ � f ı‰.�;t/.0; t/j � Ck.�; s/ � .0; t/k2

and

jf ı‰.�;t/.�; s/ � f ı‰.�;t/.0; t/ � r.f ı‰.�;t//.0;t/ � ..�; s/ � .0; t//j

� Ck.�; s/ � .0; t/k22:

Also if @�f j@M D 0, then there exists C > 0 such that

j@mf ı‰.�;t/.0; t/j � Ct (55)

Proof. The map Qf ..�; t/; .�; s// D f ı ‰.�;t/.�; s/ is C1, thus by a Taylor expan-
sion of order 1 and 2 respectively, and compactness of Dı , we conclude the first two
inequalities. For the last, we notice that

@mf ı‰.�;0/.0; 0/ D .@�f /. .�; 0// D 0:

Thus, by a Taylor expansion and compactness of Dı we conclude (55).

Now, we will fix a function f 2 C1.M/ such that @�f j@M D 0, and show that
for x 2M such that d.x; @M/ < "=4 then �rf .x/ is uniformly bounded. The proof
for points x with d.x; @M/ � "=4, follows from the uniform convergence obtained in
Proposition 5.3. We will study the following term of the AMV:

Gr.x/´
1

r2

Z
Br .x/

1

volg.Br.y//
.f .y/ � f .x// dvolg.y/

since the bound for the remainder follows similarly.
We notice that by equation (33) we have that there exists some i 2 ¹1; : : : ; lº and

.�; t/ 2 Œ�1; 1�m�1 � Œ0; "=4� such that x D ˆi .�; t/. We let ˆ D ˆi . Also by (49),
for 0 < r < r0 in the conditions of the claim, we have that

Br.x/ D Br.‰.�;t/.0; t// � ‰.�;t/.B
m�1
ı .0/ � Œ0; "�/:

Also we can choose r0 small enough so that for all .�; t/ 2 Œ�1; 1�m�1 � Œ0; "=4� we
have B

2r0=
p
Qc
.x; t/ \Hm � Œ�2; 2�m�1 � Œ0; "=2�. With this we can apply Claim 2

to conclude that Br.‰.�;t/.0;t// � ˆ.Bm
r=
p
Qc
.�; t// and we can also apply Claim 7 for

points ‰.�;t/.�; s/ 2 Br.‰.�;t/.0; t//.
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Thus, we can change variables of the integral to obtain

Gr.x/ D
1

r2

Z
‰�1
.�;t/

.Br .‰.�;t/.0;t///

1

volg.Br.‰.�;t/.�; s///

� .f .‰.�;t/.�; s// � f .‰.�;t/.0; t/// det.Œ‰�.�;t/g��;s/
1=2 dLm.�; s/

D
1

r2

Z
‰�1
.�;t/

.Br .‰.�;t/.0;t///

f .‰.�;t/.�; s// � f .‰.�;t/.0; t//

Lm.Bmr .0; s/ \Hm/

� det.Œ‰�.�;t/g��;s/
1=2 dLm.�; s/CO.1/ (by Claims 7 and 8)

D
1

r2

Z
Bmr .0;t/\Hm

f .‰.�;t/.�; s// � f .‰.�;t/.0; t//

Lm.Bmr .0; s/ \Hm/

� det.Œ‰�.�;t/g��;s/
1=2 dLm.�; s/CO.1/ (by Claims 6 and 8)

D
1

r2

Z
Bmr .0;t/\Hm

f .‰.�;t/.�; s// � f .‰.�;t/.0; t//

Lm.Bmr .0; s/ \Hm/

� dLm.�; s/CO.1/ (by (51) and Claim 8)

D
1

r2

Z
Bmr .0;t/\Hm

Pm�1
iD1 @j .f ı‰.�;t//.0; t/�i C @m.f ı‰.�;t//.0; t/.s � t /

Lm.Bmr .0; s/ \Hm/

� dLm.�; s/CO.1/ (by Claim 8)

D
1

r2

Z
Bmr .0;t/\Hm

Pm�1
iD1 @j .f ı‰.�;t//.0; t/�i C @m.f ı‰.�;t//.0; t/.s � t /

Lm.Bmr .0; s/ \Hm/

� dLm�1.�/ dL.s/CO.1/ (by Claim 8)

D
1

r2

Z
Bmr .0;t/\Hm

@m.f ı‰.�;t//.0; t/.s � t /

Lm.Bmr .0; s/ \Hm/

� dLm�1.�/ dL.s/CO.1/: (by symmetry)

Now, we separate further in two cases. First, if d.x; @M/ > 2r , then t > 2r and
so for all .�; s/ 2 Bmr .0; t/ \Hm we have

Lm.Bmr .0; s/ \Hm/ D Lm.Bmr .0//;
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and so we conclude that

1

r2

Z
Bmr .0;t/\Hm

@m.f ı‰.�;t//.0; t/.s � t /

Lm.Bmr .0; s/ \Hm/
dLm�1.�/ dL.s/

D
1

r2Lm.Bmr .0//

Z
Bmr .0;t/\Hm

@m.f ı‰.�;t//.0; t/.s � t / dLm�1.�/ dL.s/ D 0:

This shows that Gr.x/ D O.1/ for x such that 2r < d.x; @M/ < "=4 since there are
only a finite number of parametrizations. On the other hand, if d.x; @M/ � 2r , then
we have by Lemma 8 that for t � 2r then j@m.f ı‰.x;t//.0; t/j � 2Cr , and so

1

r2

Z
Bmr .0;t/\Hm

@m.f ı‰.x;t//.0; t/.s � t /

Lm.Bmr .0; s/ \Hm/
dLm�1.y/ dL.s/ D O.1/;

which shows that Gr.x/ D O.1/ for x such that d.x; @M/ < 2r .

6. Spectral convergence

In this section, we prove Theorem 3. We consider a smooth, compact, connected man-
ifold Mm endowed with a smooth Riemannian metric g. We let dg and volg be the
associated Riemannian distance and volume measure on M , respectively. If @M D ;
(resp. @M ¤ ;), we let ¹�kºk2N be the sequence of Laplace (resp. Neumann) eigen-
values of .M; g/.

6.1. Existence of limit eigenfunctions

Recalling that C1� .M/ is defined in (4), we define the Hilbert space

H WD C1� .M/k�kW2;2 :

We let ….M; volg/ be defined as in (15) and we consider the operator

T W….M; volg/! H�

which maps any f 2 ….M; volg/ to

T .f / WD

�
v 2 H 7! �

Z
M

f�gv dvolg

�
:

Lemma 6.1. The operator T is injective.
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Proof. For f 2 ….M; volg/ such that f ¤ 0, let v 2 H be the solution of´
��gv D f in M;

@�v D 0 in @M:

The solution to this problem exists since
R
M
f D 0 D

R
@M
@�v. In fact, by regularity

theory we can conclude that v 2 H , and so we conclude that

T .f /.v/ D �

Z
M

f�gv dvolg D
Z
M

f 2 dvolg ¤ 0:

Thus, T .f / ¤ 0, concluding that T is injective.

Let us now prove the existence of L2-weak limit eigenfunctions.

Proposition 6.2. Let .rn/ be a sequence of positive numbers such that rn! 0. For any
n, let .�k;rn/ be the eigenvalues of the operator z�rn and let .fk;rn/ be corresponding
eigenfunctions. Then for any k, there exists a Laplace (resp. Neumann) eigenfunction
f of .M; g/ with associated eigenvalue � such that, up to extracting subsequences,
satisfy

fk;rn
L2

* f; (56)

�k;rn ! Cm�;

sup
n
Ern.fk;rn � f / < C1:

Proof. By the proof of Theorem 1, in particular (17), there exists � � 0 and a subse-
quence such that �k.�z�rn/ ! � up to subsequence. Since kfk;rnkL2.M/ D 1 for
any n, there exists f 2 L2.M; volg/ such that the weak convergence (56) holds
up to subsequence. Therefore, by Theorem 2, we get that for any  2 C1.M/

(resp. C1
@�
.M/),Z

M

f�g dvolg D lim
n

1

Cm

Z
M

fk;rn
z�rn dvolg D

1

Cm
lim
n

Z
M

.z�rnfk;rn/ dvolg

D �
1

Cm
lim
n
�k.�z�rn/

Z
M

fk;rn dvolg D �
1

Cm
�

Z
M

f  dvolg :

Moreover, since for any n it holds that �k;rn > 0 and

0 D

Z
M

�z�rnfk;rn dvolg D
Z
M

Q�k;rnfk;rn dvolg ;

we get that
R
M
fk;rn D 0. Thus,

R
M
f dvolg D 0 by weak convergence.
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Now, let v 2 W 2;2.M/ be the solution of´
��gv D

�
Cm
f in M;

@�v D 0 in @M

satisfying
R
M
v D 0. Then we have that for  2 H \ C1.M/,Z

M

v�g dvolg D �
1

Cm
�

Z
M

f  dvolg D
Z
M

f�g dvolg :

Since this is a dense subspace ofH and the functionals are continuous with respect to
W 2;2.M/ in  , the equality holds for all H . Thus, by Lemma 6.1 we conclude that
v D f , and so f satisfies ´

��gf D
�
Cm
f in M;

@�f D 0 in @M;

thus f is a Neumann eigenfunction, and so it must be C1.M/. Also since both
fk;rn ; f 2 ….M; volg/, we know by Proposition 3.14 using triangle inequality of the
inner product,

Ern.fk;rn � f /
1=2
� Ern.fk;rn/

1=2
CErn.f /

1=2:

We know that Ern.fk;rn/D �k;rnkfk;rnkL2.M/ D �k;rn which is uniformly bounded.
Also since f 2 C1.M/, by Lemma 5.1, we know that Ern.f / is also uniformly
bounded, concluding the proof.

6.2. Energy comparison

Let us now compare the energy of a map defined on M with the energy of the image
of the map through a local chart parametrizing a neighborhood of an open subset of
@M . To this aim, up to scaling, we consider a mapˆW .�1; 1/m�1 � Œ0; 1/!M which
is a bi-Lipschitz homeomorphism onto its image. We set

Q WD .�1=2; 1=2/m�1 � Œ0; 1=2/: (57)

Lemma 6.3. There exist constants zC D zC.ˆ/ > 0 and Qc D Qc.ˆ/ > 0 such that for
any f 2 L2.M/, for any r 2 .0; 1=2/,

zEQcr;Q.f ıˆ/ � zCEr;M.f /;

where Q WD .Q; d1;L
m/ and M WD .M; d; �/.
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Proof. We start by pointing out that there exist constants c D c.ˆ/ > 0 and C D
C.ˆ/ > 0 such that for all x 2 Q and r 2 .0; 1=2/,

ˆ.Qcr.x// � Br.ˆ.x// � ˆ.QCr.x//;

V .ˆ.x/; r/ � CLm.Qcr.x/ \Q/;

det.gx/ � 0;

where gx is the metric in the coordinates given by ˆ. Then for any x; y 2 Q,

Qar;M.ˆ.x/;ˆ.y// D 1Br .ˆ.x//.ˆ.y//
� 1

V.ˆ.x/; r/
C

1

V.ˆ.y/; r/

�
� 1Qcr .x/.y/

� 1

CLm.Qcr.x/ \Q/
C

1

CLm.Qcr.y/ \Q/

�
D
Qacr;Q.x; y/

C
�

Thus,

zEr;M.f / �

“
ˆ.Q/2

Qar;M.p; q/
�f .p/ � f .q/

r

�2
dvolg.q/ dvolg.p/

D

“
Q2

Qar;M.ˆ.x/;ˆ.y//
�f .ˆ.x// � f .ˆ.y//

r

�2
�

q
det.gx/ det.gy/ dLm.y/ dLm.x/

�

“
Q2

c

C
Qacr;Q.x; y/

�f .ˆ.x// � f .ˆ.y//
r

�2
dLm.y/ dLm.x/

D
c

C
Ecr;Q.f ıˆ/:

Taking Qc D c and zC D C=c, we obtain the result.

6.3. Proof of Theorem 3

We are now in a position to prove Theorem 3. Recall the context of this result: .rn/ �
.0;C1/ is a sequence such that rn ! 0, .Mm; g/ is a compact, connected, smooth
Riemannian manifold with @M D ; (resp. @M ¤ ; ), k is a positive integer, �k is the
k-th lowest Laplace (resp. Neumann) eigenvalue of�g , and fk;rn is an eigenfunction
of �z�rn associated with the k-th eigenvalue �k.�z�rn/ of this operator.
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Proof. We proceed it two steps.

Step 1. First we show strong L2-convergence of the sequence .fk;rn/. We proceed by
contradiction. By Proposition 6.2, we can assume that there exist ˛ >0, f 2L2.M;�/
which is a Neumann eigenfunction, and .rn/ � .0;C1/ such that rn ! 0 and

fk;rn
L2

* f; kfk;rn � f k
2
L2.M/

� ˛:

SinceM is a compact manifold with boundary, up to scaling there exist finitely many
bi-Lipschitz homeomorphisms ¹ ĵ W .�1; 1/

m�1 � Œ0; 1/!M ºj2¹1;:::;`º such thatS
j ĵ .Q/ DM;

where Q is as in (57), andS
j ĵ ..�1=2; 1=2/

m�1
� ¹0º/ D @M:

Then there exists j 2 ¹1; : : : ; `º such that, up to a subsequence,

inf
n

Z
ĵ .Q/

jfk;rn � f j
2 dvolg �

˛

`
> 0:

From this, we conclude that there exists Q̨ > 0 such that

inf
n

Z
Q

jfk;rn � f j
2
ı ĵ dLm

� Q̨ > 0:

Let us set ˆ´ ĵ . Then there exist C; zC; Qc > 0 such that for any n,

C � zErn.fk;rn � f / (by Proposition 6.2)

� zC�1 zEQcrn;Q..fk;rn � f / ıˆ/: (by Lemma 6.3)

By the weak convergence, we also have

hn WD .fk;rn � f / ıˆ
L2

* 0: (58)

Let us set Nrn D Qcrn. For an integer N to be chosen later, consider a decomposition of
Q into LN disjoint subcubes ¹ zQiº of size 1=N . For any x; y 2 Q, we set

ar.x; y/ WD �Qr .x/\Q.y/
� 1

Lm.Qr.x/ \Q/
C

1

Lm.Qr.y/ \Q/

�
;

ar;i .x; y/ WD �Qr .x/\Qi .y/
� 1

Lm.Qr.x/ \Qi /
C

1

Lm.Qr.y/ \Qi /

�
;
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and we point out that for x; y 2 Qi

ar.x; y/ �
1

2m
ar;i .x; y/:

We also set for any n,

"i;n;N WD

Z
Qi

hn dLm; ın;N WD max
i
j"i;n;N j:

We obtain that for any n,

zE Nrn;Q.hn/ D

Z
Q

�Z
Q

a Nrn.x; y/
.hn.x/ � hn.y//

2

Nr2n
dLm.y/

�
dLm.x/

D

X
i

Z
Qi

�Z
Q

a Nrn.x; y/
.hn.x/ � hn.y//

2

Nr2n
dLm.y/

�
dLm.x/

�
1

2m

X
i

Z
Qi

�Z
Qi

a Nrn;i .x; y/
.hn.x/ � hn.y//

2

Nr2n
dLm.y/

�
dLm.x/

D
1

2m

X
i

zE Nrn;Qi .hn/ D
1

2m

X
i

zE Nrn;Qi .hn � "i;n;N /

�
1

2m

X
i

khn � "i;n;N k
2
L2.Qi /

�1.�z� Nrn;Qi /

�
�1.�z� Nrn;Qm.1=N//

2m

X
i

khn � "i;n;N k
2
L2.Qi /

D
�1.�z� Nrn;Qm.1=N//

2m

�

X
i

�
khnk

2
L2.Qi /

� 2"i;n;N

Z
Qi

hn dLm
CLm.Qi /"

2
i;n;N

�

�
�1.�z� Nrn;Qm.1=N//

2m
.khnk

2
L2.Q/

� 3Lnın;N /

�
�1.�z� Nrn;Qm.1=N//

2m
. Q̨ � 3Lnın;N /:

By Lemma 4.3, we choose N big enough to ensure that for any n,

�1.�z� Nrn;Q.1=N// > C
zC
2mC2

Q̨
�
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By the weak convergence (58), we know that ın;N ! 0, and so we can choose n big
enough to guarantee

ın;N <
Q̨

6LN
�

With these choices we eventually get

zErn.fk;rn � f / > C;

which is a contradiction.

Step 2. Now, we show that Q�k;rn ! �k , where �k is the k-th Neumann eigenvalue.
Let rn ! 0. We know by Proposition 6.2 that there exist eigenfunctions f0; : : : ; fk
with Neumann eigenvalue �0; : : : ; �k such that

fi;rn
L2

! fi ; for all i 2 ¹0; : : : ; kº;
Q�k;rn ! Cm�k;

and
�i � �k for all i 2 ¹0; : : : ; kº: (59)

Since hfi;rn ; fj;rni D ıi;j , we also have by strong convergence that hfi ; fj i D ıi;j .
Thus, we have that

VkC1 WD Span.f0; : : : ; fk/ 2 GkC1.L
2.M; volg//;

and so by equation (59), we conclude

Cm�k � max
f 2VkC1

hrf;rf i

kf kL2
D Cm�k D lim

n

Q�k;rn :

This shows that lim infr!0 Q�k;rn � Cm�k
To prove lim supr!0 Q�k;r � Cm�k , let ¹f0; : : : ; fkº be an h�; �i2-orthonormal

family of Laplace (resp. Neumann) eigenfunctions associated with the eigenvalues
¹�0; : : : ; �kº respectively satisfying �0 � � � � � �k . By elliptic regularity, we know
that these functions belong to C1.M/. Then Proposition 5.1 implies that given " > 0,
there exists r" > 0 such that for r 2 .0; r"/,

jh�z�rfi ; fj i2 � ıi;jCm�j j < ";

where ıi;j is the usual Kronecker delta. Set U WD Span.f0; : : : ; fk/ and

v WD

kX
iD1

ai i
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for some a D .a1; : : : ; ak/ 2 Sk�1. Thenˇ̌̌
h�z�rv; vi �

kX
iD1

a2i Cm�i

ˇ̌̌
D

ˇ̌̌ kX
i;jD1

aiaj h�z�rfi ; fj i �

kX
iD1

a2i Cm�i

ˇ̌̌
� k2":

Since U is a k C 1-dimensional subspace, we conclude that

Q�k;r � max
v2U

h�z�rv; vi

kvk22
� max
a2Sk

kX
iD1

a2i �i C k
2" � �k C k

2":

Take the limit superior as r! 0 and then let "! 0 to obtain lim supr!0 Q�k;r �Cm�k .
Combined with Corollary 3.13, the latter implies the existence of rk > 0 such that
min �ess.�z�r/ � �k C 1 � Q�k;r for any r 2 .0; rk/, so that Q�k;r indeed coincides
with �k.�z�r/.
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