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The Duistermaat index and eigenvalue interlacing
for self-adjoint extensions of a symmetric operator

Gregory Berkolaiko, Graham Cox, Yuri Latushkin, and Selim Sukhtaiev

Abstract. Eigenvalue interlacing is a useful tool in linear algebra and spectral analysis. In
its simplest form, the interlacing inequality states that a rank-one positive perturbation shifts
each eigenvalue up, but not further than the next unperturbed eigenvalue. For different types of
perturbations, this idea is known as Weyl interlacing, Cauchy interlacing, Dirichlet–Neumann
bracketing, and so on.

We prove a sharp version of the interlacing inequalities for “finite-dimensional perturbations
in boundary conditions,” expressed as bounds on the spectral shift between two self-adjoint
extensions of a fixed semibounded symmetric operator with finite and equal defect numbers.
The bounds are given in terms of the Duistermaat index, a topological invariant describing
the relative position of three Lagrangian planes in a symplectic space. Two of the Lagrangian
planes describe the self-adjoint extensions being compared, while the third corresponds to the
Friedrichs extension, which acts as a reference point.

Along the way, numerous auxiliary results are established, including one-sided continu-
ity properties of the Duistermaat index, smoothness of the Cauchy data space without unique
continuation-type assumptions, and a formula for the Morse index of an extension of a non-
negative symmetric operator.

1. Introduction

1.1. Background and motivation

Let H1 and H2 be two N � N Hermitian matrices, with eigenvalues �1.Hj / �
�2.Hj / � � � � � �N .Hj /. The following inequalities [43, Corollary 4.3.3] are often
referred to as “Weyl interlacing”:

�k���.H1/ � �k.H2/ � �kC�C.H1/; (1.1)

where �C and �� are given by the number of positive and negative eigenvalues of
the perturbation H2 �H1. The fact that �� C �C gives the rank of the perturbation
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from H1 to H2 suggests that the bounds in (1.1) are optimal. Cauchy interlacing [43,
Corollary 4.3.17], whereH2 is obtained fromH1 by removing rows and columns, can
also be put in the form (1.1) by adjusting �C to include the number of removed rows
and columns.

The principal aim of this work is to establish inequality (1.1) for any two self-
adjoint extensions of a bounded from below symmetric operator S with finite and
equal defect numbers. The results are directly applicable to differential operators with
finite-dimensional changes in boundary conditions, in settings such as linear Hamilto-
nian systems [45,46], quantum graphs [4,14,15], Šeba billiards [21,48,57,58,68,72],
and manifolds with conical singularities [39]; some concrete examples are discussed
in Section 7. Unlike the matrix case discussed above, the perturbations here are not
additive (since one cannot take the difference of two unbounded operators with dif-
ferent domains), so it is not immediately clear how to define such quantities as the
signature .��; �C/ of the perturbation.

Our results characterize the shifts in the interlacing, �� and �C, in terms of the
relative topological position of three pieces of data: the two Lagrangian planes that
describe the self-adjoint extensions of interest and a third Lagrangian plane describing
the Friedrichs extension. This topological position is expressed via the Duistermaat
triple index [5, 32, 44, 75], an integer-valued symplectic invariant whose definition is
recalled and supplemented with several new computational tools in Section 3; see also
Section 7 for examples of computation.

For illustrative purposes, we present two proofs of our main result: via Maslov-
type index theory [3, 25, 27, 69] and via the Kreı̆n resolvent formula [7, 38, 49, 54,
55, 70], in Sections 5 and 6, correspondingly. Along the way, we sharpen existing
techniques, in particular to avoid relying on unique continuation-type conditions; see
Section 4.

1.2. Main results

Let H be a separable Hilbert space and let S be a closed, bounded from below, densely
defined symmetric operator with finite and equal defect numbers .n; n/. Under these
assumptions, all self-adjoint extensions H of S have the same essential spectrum,1

Specess.H/ D Specess.S/´ ¹z 2 C W S � z is not Fredholmº: (1.2)

1This coincides with �e3.S/ in [33, Chapter IX], so the first equality in (1.2) follows from
[33, Corollary IX.4.2.]
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We will be describing the self-adjoint extensions of S in terms of a boundary triplet
.K; �0; �1/, see [70, Section 14.2]. Here K is an n-dimensional2 complex Hilbert
space and the linear mappings �0; �1W dom.S�/!K are such that the operator

� W dom.S�/!K ˚K; �f ´ .�0f; �1f /

is surjective and the abstract Green’s identity

hf; S�giH � hS�f; giH D h�0f; �1giK � h�1f; �0giK (1.3)

holds for all f; g 2 dom.S�/.
We will view K ˚K as a complex symplectic space with the symplectic form

!.u;v/´hu0;v1iK � hu1;v0iK ; uD .u0;u1/ and vD .v0;v1/2K ˚K; (1.4)

in terms of which the right-hand side of Green’s identity (1.3) is !.�f; �g/. Self-
adjoint extensionsH of S are in one-to-one correspondence with Lagrangian planes3

L in K ˚K via

dom.H/´ ¹f 2 dom.S�/ W .�0f; �1f / 2 Lº: (1.5)

Heuristically, this says that one must impose dim L D n “boundary conditions” on
S� to obtain a self-adjoint operator.

To state an analogue of inequalities (1.1) for two self-adjoint extensions H1 and
H2 of S , in terms of the corresponding Lagrangian planes L1 and L2, we will need
a third Lagrangian plane F , which corresponds to the Friedrichs extension HF of S ,
namely

F ´ ¹.�0f; �1f / W f 2 dom.HF /º:
It is common in applications to choose the triple .K; �0; �1/ so that the domain of
the Friedrichs extension is ker �0 and thus F coincides with the vertical subspace
V ´ 0˚K . Some of the results below take a simplified form under the assumption
that F D V .

Since H is a self-adjoint extension, Spec.H/ n Specess.H/ consists of isolated
eigenvalues of finite multiplicity. For an interval I whose closure is disjoint from
Specess.H/, we define4 the counting function

N.H I I /´
X
�2I

dim ker.H � �/; (1.6)

2A boundary triplet exists if and only if the defect numbers of S are equal, in which case
dim K equals this common value, see [70, Proposition 14.5].

3We refer to Lagrangian subspaces as “planes” regardless of their dimension. For a review
of symplectic linear algebra in complex vector spaces, we refer the reader to [34, 40] or [16,
Appendix D].

4The requirement that NI lies outside the essential spectrum guarantees N.H I I / is finite.
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i.e., the number of eigenvalues ofH in I counted with multiplicity. We will abbreviate

n�.H/´ N.H I .�1; 0//; n0.H/´ dim kerH (1.7)

when these are well defined. The number n�.H/ is called the Morse index of H . If
� 2 R is below the essential spectrum, we also define the spectral shift

�.H1;H2I�/´ N.H1I .�1; ��/ �N.H2I .�1; ��/

between self-adjoint extensionsH1 andH2. Finally, assuming S is semibounded from
below, we will label the eigenvalues of H below the essential spectrum by �1.H/ �
�2.H/ � � � �, i.e., in increasing order, repeated according to their multiplicity.

We are now ready to formulate our main result.

Theorem 1.1. Suppose S is a closed, bounded from below, densely defined symmetric
operator with finite and equal defect numbers and a boundary triplet .K; �0; �1/. Let
L1, L2 and F be Lagrangian planes in .K ˚K; !/ corresponding to self-adjoint
extensions H1, H2 and the Friedrichs extension HF of S . Define

��´ �.L1;L2;F /; �C´ �.L2;L1;F /; (1.8)

where � is the Duistermaat index (see Section 3). Then the bounds

��� � �.H1;H2I�/ � �C (1.9)

hold for all � 2 R below Specess.S/. Equivalently, each of the inequalities

�k���.H1/ � �k.H2/ � �kC�C.H1/ (1.10)

holds for all k such that the eigenvalues in question are below Specess.S/.

It follows from elementary properties of the Duistermaat index that

�� C �C D n � dim.L1 \L2/; (1.11)

where n D dim L1 D dim L2 D dim K is the defect number of the operator S . Rela-
tion (1.11) gives a shortcut for computing one index in (1.8) from the other. The fact
that (1.11) is the rank of the perturbation fromH1 toH2 (in the sense of (1.18) below)
suggests that the bounds in (1.9) are optimal. Proposition 7.5 puts this on a rigorous
footing: for any �� and �C, there are extensions H1 and H2 for which both estimates
in (1.9) are sharp.

The intuition behind needing F is as follows. The (complex) Lagrangian Grass-
mannian ƒ – the set of all Lagrangian planes in K ˚K – is diffeomorphic to the
unitary group U.n/, a compact manifold without boundary. The plane F provides a
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point of reference inƒ, which allows us to establish facts on the ordering of the eigen-
values in R, such as (1.10). Heuristically, HF is the extension of S with the largest
number of “eigenvalues at˙1.”5

One approach to Theorem 1.1 proceeds via the Maslov index of a special path of
Lagrangian planes, the Cauchy data space, defined here with the parameter z 2 C by

M.z/´ ¹.�0f; �1f / W f 2 ker.S� � z/º � K ˚K: (1.12)

Relevant properties of M.z/ are given in Proposition 4.5. Note that M.z/ is the graph
of the Dirichlet-to-Neumann map (Weyl–Titschmarsh function) M.z/ when the latter
is defined.

Theorem 1.2. Under the assumptions of Theorem 1.1, one has

N.H1I .a; b�/ �N.H2I .a; b�/ D �.L1;L2;M.b// � �.L1;L2;M.a// (1.13)

for any Œa; b� � R n Specess.S/. In particular, the spectral shift is given by

�.H1;H2I�/ D �.L1;L2;M.�// � �.L1;L2;F / (1.14)

for any � 2 R below the essential spectrum.

We remark that it is common to express eigenvalue counting functions as Maslov
indices (see, for instance, the survey [6] and references therein), but only under the
assumption of the unique continuation property (UCP) for the symmetric operator S :
the mapping f 7! .�0f; �1f / is injective on ker.S� � z/ for all z 2 C. Without the
UCP, the Maslov index may miss some eigenvalues, as demonstrated in Section 7.5.
A novel feature of Theorem 1.2 is that the UCP is not necessary when evaluating the
spectral shift.

Another remarkable feature of Theorem 1.2 is that using a Maslov-type index (or a
spectral flow, or the Kreı̆n shift function) invariably involves integration or evaluation
over a path (for example, continuously tracking a branch of the logarithm). In contrast,
equation (1.13) involves only the data collected at the endpoints of the interval!

An easy corollary of Theorem 1.2 is the following elegant formula for the Morse
index of an extension HL of a non-negative symmetric operator S :

n�.HL/ D �.M.0/;L;F /:

We refer the reader to Corollary 7.1 for a precise formulation and references to related
results.

5See, for instance, [66, Theorem 1.4], which says a Lagrangian plane L intersects F non-
trivially if and only if every neighborhood of L contains an L0 whose self-adjoint extension
HL0 has eigenvalues close to �1.



G. Berkolaiko, G. Cox, Y. Latushkin, and S. Sukhtaiev 6

Another approach to Theorem 1.1 is via the resolvents ofH1 andH2, which can be
compared using the Kreı̆n resolvent formula. Throughout, we use the notation Nz ´
ker.S� � z/, and denote the number of zero, positive and negative eigenvalues of a
self-adjoint operator (whenever these quantities are finite) by n�.�/with � 2 ¹0;C;�º;
cf. (1.7).

Theorem 1.3. Assume the setting of Theorem 1.1. For � 2 �.H1/ \ �.H2/ \ R, we
define the operator

D.�/´ .H1 � �/�1 � .H2 � �/�1: (1.15)

Then one has

n�.D.�// D �.L1;L2;M.�//;

nC.D.�// D �.L2;L1;M.�//;
(1.16)

n0.D.�/jN�/ D dim L1 \L2: (1.17)

In addition, D.�/ has constant rank given by

rank.D.�// D n � dim L1 \L2; (1.18)

while the functions � 7! n˙.D.�// are locally constant on �.H1/ \ �.H2/ \R.

In Section 6 we will explain how Theorem 1.1 can be obtained from Theorem 1.3.
In particular, we will use the index formulas in (1.16) to derive the interlacing inequal-
ity (1.10).

Remark 1.4. Assume the setting of Theorem 1.3.

(1) SinceH1 andH2 are both extensions of S , we haveD.�/f D 0 provided f 2
N ?
�
D ran.S � �/, thus N ?

�
� kerD.�/. In this context, the identity in (1.17)

provides new information about the part of kerD.�/ contained in N�.

(2) The fact that the rank of D.�/ is constant on �.H1/\ �.H2/\R was shown
in [7, Theorem 2.8.1]; however, the explicit value n � dim L1 \L2 appears
to be new.

(3) The indices n�.D.�// and nC.D.�// may change value when � passes
through Spec.H1/ [ Spec.H2/, but their sum remains constant, as seen from
(1.18), cf. (1.11).

1.3. Related results and possible extensions

The most general prior result on eigenvalue interlacing known to us in the context
of self-adjoint extension is [19, Theorem 10.2.5]. This theorem only applies when the
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operatorH2 is obtained fromH1 by the restriction of its form domain. For instance, no
pair of extensions from the example in Section 7.1 satisfies this condition. In contrast,
our Theorem 1.1 allows one to compare any pair of self-adjoint extensions of S .

Relations between the Morse index of self-adjoint extensions of S and the bound-
ary operators in K ˚K constructed by means of the Weyl function (as in Corollary
7.1, for example) are classical, and known at least since M. G. Kreı̆n [50], Birman
[17], and Derkach and Malamud [31]; see also the recent treatise [7] and the literature
cited therein. However, the geometric approach via the Duistermaat index offered in
the current paper allow us, on the one hand, to drop inessential restrictions (such as the
form domain inclusion condition in [31, Theorems 5 and 6]) and, on the other hand,
to compute the spectral shift using the Duistermaat index calculus that we review and
extend in Section 3.

The inequalities (1.9) and (1.10) give different but equivalent points of view on the
same result; we include both of them for completeness and ease of use in applications.
However, the discrete spectral shift we consider is extended by a more flexible concept
of Krein spectral shift [18, 20, 52, 53, 63, 70], valid also on the continuous spectrum
and in the gaps. With this extension, we conjecture that (1.9) holds for all real �.
The case of a rank-one perturbation has been thoroughly investigated in [8,11], in the
more general setting of self-adjoint operators on a Kreı̆n space. The latter results are
formulated in the gaps of the essential spectrum (see also [10]), which gives further
support to our conjecture about the universal validity of (1.9). Note, additionally, that
(most of) the conclusions in Theorems 1.2 and 1.3 are already valid in the gaps.

Outline of paper

In Section 2 we review the crossing form and the computation of the Maslov index
for monotone paths. In Section 3 we recall the definition of the Duistermaat index,
in addition to obtaining new results on its one-sided limits and explicit formulas
for its calculation via Lagrangian frames. Section 4 derives fundamental properties
of the Cauchy data space, which we use in Section 5 to calculate its Maslov index
and hence prove our main theorems. In Section 6 we give a second proof using the
Kreı̆n resolvent formula, and in Section 7 we present some applications of our results.
Appendix A summarizes basic properties of the Lagrangian Grassmannian that are
used throughout.

Notation and conventions

We use h�; �iH and h�; �iK to denote the scalar products on H on K . These are taken
to be linear in the second argument, as is the symplectic form ! in (1.4). We use ˚
to denote the direct (not necessarily orthogonal) sum, and the set of all Lagrangian
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planes in .K ˚K; !/ is denoted ƒ. The zero subspace will be denoted by 0 when
the ambient space is clear from the context. The space of bounded linear operators
between Hilbert spaces H1;H2 is denoted by B.H1;H2/. We denote by Spec.�/ and
�.�/ the spectrum and the resolvent set.

2. Crossing forms and monotonicity

We first review crossing forms and the computation of the Maslov index for monotone
paths. This suffices for the purposes of this paper; see Appendix A for a general dis-
cussion of the Maslov index and different parameterizations of Lagrangian subspaces.
We work in a finite-dimensional complex symplectic space, K ˚K , with Lagrangian
Grassmannian ƒ.

Let L.�/W Œ0; 1�! ƒ be a differentiable path of Lagrangian planes. For t0 2 Œ0; 1�
and u; v 2 L.t0/, we define the crossing form q by

q.u; v/´ d

dt
!.u; Qv.t//

ˇ̌̌
tDt0

; (2.1)

where Qv.t/ is any differentiable path in K ˚K such that Qv.t0/ D v and Qv.t/ 2 L.t/

for all t near t0. For this to be a valid definition, we must show that it does not depend
on the choice of the path Qv.

Suppose Qu.t/ is a differentiable path in K ˚K with Qu.t0/ D u and Qu.t/ 2 L.t/.
The fact that Qu.t/ and Qv.t/ are both in L.t/ implies !. Qu.t/; Qv.t//D 0. Differentiating
at t0, we get

!.u; Qv0.t0// D �!. Qu0.t0/; v/ D !.v; Qu0.t0//:
Since the left-hand side does not depend on Qu.t/ and the right-hand side does not
depend on Qv.t/, both sides are path independent. This proves that q.u; v/ is well
defined, and is equal to q.v; u/.

We now give some equivalent expressions for the quadratic form qŒv�´ q.v; v/.
The analogous expressions for the sesquilinear form q.u; v/ can be obtained by polar-
ization.

Theorem 2.1. Let L.�/W Œ0; 1�!ƒ be a differentiable path of Lagrangian planes. Fix
v 2 L.t0/ and let yL be a Lagrangian subspace transversal to L.t0/.

(1) If w.t/ is the unique path in yL for which v C w.t/ 2 L.t/, then

qŒv� D d

dt
!.v;w.t//

ˇ̌̌
tDt0

: (2.2)

(2) If L] is transversal to yL, Lt WL] ! yL is a differentiable family of operators
such that L.t/D ¹uCLtuWu 2L]º (i.e., L.t/ is the graph ofLt ) and u 2L]
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is such that v D uC Lt0u, then

qŒv� D d

dt
!.u;Ltu/

ˇ̌̌
tDt0

: (2.3)

(3) If Z.t/ D
�
X.t/
Y.t/

�
is a differentiable frame for L.t/ and � 2 K is such that

v D Z.t0/�, then

qŒv� D h�; .X�.t0/Y 0.t0/ � Y �.t0/X 0.t0//�iCn :

(4) If Gt is a differentiable family of operators on K ˚K such that GtL.t0/ D
L.t/ and Gt0 D IK˚K , then

qŒv� D d

dt
!.v;Gtv/

ˇ̌̌
tDt0

: (2.4)

Note that (2.2) is the definition of q given by Robbin and Salamon in [69, The-
orem 1.1], so this theorem shows that our definition in (2.1) is equivalent to theirs.
Similarly, choosing L] D L.t0/ in (2.3) recovers the definition in [22, eq. (2.1)].

Proof. The given expressions for qŒv� follow from (2.1) with appropriate choices of
the path Qv.t/, namely v C w.t/, uC Ltu, Z.t/� and Gtv.

The crossing form allows us to define a notion of monotonicity for differentiable
paths.

Definition 2.2. A differentiable path L.�/W .0; 1/ ! ƒ is non-decreasing (corresp.
increasing) if the crossing form q D qt0 on L.t0/ is non-negative (corresp. positive)
at every t0.

The Maslov index of an increasing C 1 path M.�/, with reference plane L, is given
by

MasŒa;b�.M.�/;L/ D
X
t2Œa;b/

dim.M.t/ \L/: (2.5)

The fact that q is positive (and hence non-degenerate) guarantees that the crossings
are isolated, therefore the above sum is finite. This is a special case of [25, Proposi-
tion 3.27]; see (A.7) for the general formula. In practice, we will use the equivalent
formula

MasŒa;b�.L;M.�// D �
X
t2.a;b�

dim.M.t/ \L/: (2.6)

which is obtained from (2.5) using the identity (A.6). Note that the sum in (2.5) is
over t 2 Œa; b/, whereas the sum in (2.6) is over t 2 .a; b�.
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Remark 2.3. Our notion of path monotonicity is the standard one for the Lagrangian
Grassmannian [3] and is local in nature. If L.t/ never intersects the vertical subspace
V D 0˚K , then this coincides with the partial ordering defined in [7, Section 5.2]
for families of self-adjoint linear relations. Namely, L.�/ is non-decreasing in the
sense of Definition 2.2 if and only if L.t1/ � L.t2/ for all t1 � t2 in the sense of
[7, Definition 5.2.3].

This is no longer the case if L.t/ intersects V at some time. A simple example
is L.t/ D ¹.z cos t; z sin t / W z 2 Cº, which is Lagrangian in C2 for real values of t .
At an arbitrary point v D .z0 cos t0; z0 sin t0/ 2 L.t0/, we compute qŒv� D jz0j2, and
conclude that L.�/ is increasing in the sense of Definition 2.2. On the other hand, for
small positive ", L.�=2C "/ � L.�=2 � "/ in the sense of [7, Definition 5.2.3].

3. The Duistermaat triple index

Again, assuming that K ˚K is a finite-dimensional complex symplectic space, we
now recall the definition of the Duistermaat index �, which first appeared in [32,
eq. (2.16)]. It is closely related to other symplectically invariant triple indices, such
as Kashiwara–Wall index [27, 64, 73] – also known as the “triple signature” [62,
Appendix 6.2] – and Leray–de Gosson index of inertia defined in [30, Definition 148]
(generalizing [61, Section I.2.4] to remove the assumption of transversality). In fact,
there is only one non-trivial symplectic invariant of a triple of Lagrangian planes
[1, Proposition 4.4], and the above indices are just different incarnations of it.

When describing the Duistermaat index, we follow the original definition [32,
eq. (2.16)], but use the notational conventions of [75], whose results we will use
below. An alternative axiomatic approach to the Duistermaat index is presented in
our follow-up work [13].

3.1. Definition and basic properties

For Lagrangian planes ˛, ˇ, and 
 such that ˛ \ ˇ D 0 D ˇ \ 
 , we can view 
 as
the graph of a linear mapping LW ˛ ! ˇ, i.e., 
 D ¹uC Lu W u 2 ˛º. This gives rise
to a bilinear form Q.˛; ˇI 
/W˛ � ˛ ! C acting by

Q.˛; ˇI 
/W .u1; u2/ 7! !.u1; Lu2/: (3.1)

It is easily shown that
kerQ.˛; ˇI 
/ D ˛ \ 
: (3.2)
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Figure 1. Possible transversal configurations of three Lagrangian planes (illustrated in R2) and
the corresponding values of the Duistermaat index.

For arbitrary L1;L2;L3 2 ƒ, we choose an yL that is transversal to all three and
define the Duistermaat index of .L1;L2;L3/ to be6

�.L1;L2;L3/

´ n�.Q.L2; yLIL3// � n�.Q.L1; yLIL3//C n�.Q.L1; yLIL2//: (3.3)

One can geometrically describe the integer �.L1;L2;L3/ as the maximal dimen-
sion of a subspace yL3 � L3 which lies between L1 and L2, where “between” is
defined in terms of the positive direction of rotation in the Lagrangian Grassmannian,
as introduced in Section 2. This geometric interpretation, which is not immediately
obvious from the definition, is illustrated by the following example (see also Corol-
lary 3.7).

Example 3.1. Consider the Lagrangian planes Lj D¹.z;�j z/Wz 2Cº in the symplec-
tic space C2, with �j 2 R and j D 1; 2; 3. Simple calculations (for example, using
Theorem 3.5 where we can take " D 0) show that

�.L1;L2;L3/ D
´
0; �1 � �2 � �3 or �3 < �1 � �2 or �2 � �3 < �1;
1; �1 � �3 < �2 or �2 < �1 � �3 or �3 < �2 < �1:

These results are illustrated in Figure 1.

6The negative index of a bilinear form is defined as the maximal dimension of a subspace
on which the form is negative definite. Alternatively, one may count the number of negative
eigenvalues of the corresponding Hermitian matrix, as in (1.7).
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We next recall some basic properties of � that will be useful later. The Duistermaat
index � is a symplectic invariant: for any symplectic automorphism g of .K ˚K; !/,
we have

�.L1;L2;L3/ D �.g.L1/; g.L2/; g.L3//: (3.4)

For any Lagrangian L1, L2, L3, and L4, � satisfies the cocycle property:

�.L1;L2;L3/ � �.L1;L2;L4/C �.L1;L3;L4/ � �.L2;L3;L4/ D 0:
This follows from [75, Theorem 1.1], cf. [64, Proposition 1.5.8], [29, eq. (I.2.13)],
[27, Section 8, Proposition VI]. In fact, the definition in (3.3) can be interpreted as
letting

�.L1;L2;L3/D n�.Q.L1;L3IL2//; assuming L1 \L3 D 0DL2 \L3; (3.5)

then using the cocycle property to extend to Lagrangian planes with no transverality
assumptions. Equation (3.5) will be derived from the definition (3.3) of � in Corol-
lary 3.3 below (see also [32, Lemma 2.4] and [75, Lemma 3.13]).

From [32, Lemma 2.4], we immediately get an estimate

0� �.L1;L2;L3/� n� dim..L1 \L2/C .L2 \L3//� n� dim L1 \L2: (3.6)

Under permutation of the first two arguments, we have

�.L1;L2;L3/C �.L2;L1;L3/ D n � dim L1 \L2: (3.7)

This follows, for instance, from Theorem 3.5 below. We also have the cyclic identity

�.L1;L2;L3/ � dim L1 \L3 D �.L3;L1;L2/ � dim L2 \L3; (3.8)

which follows from [75, Lemma 3.2 and Lemma 3.13]. Combining (3.7) and (3.8),
we obtain identities for other permutations,

�.L1;L2;L3/C �.L1;L3;L2/ D n � dim L2 \L3; (3.9)

�.L1;L2;L3/C �.L3;L2;L1/ D n � dim L1 \L2

� dim L2 \L3 C dim L1 \L3;

and the important special cases

�.L;L;L3/ D 0; �.L1;L;L/ D 0; �.L;L2;L/ D n � dim L \L2: (3.10)

We finally recall an identity of Zhou, Wu, and Zhu that relates the difference
of Maslov indices with different reference planes to the difference of Duistermaat
indices:

MasŒa;b�.L2;M.�// �MasŒa;b�.L1;M.�//
D �.L1;L2;M.b// � �.L1;L2;M.a// (3.11)
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for any continuous path M.�/; see [75, Theorem 1.1]. The difference of Maslov indices
is also known as the Hörmander index [42].

3.2. One-sided limits

The notion of monotonicity in Definition 2.2 allows us to compute one-sided limits of
the Duistermaat index.

Theorem 3.2. Suppose LW .�1; 1/ ! ƒ is a continuous path that is differentiable
and increasing on .�1; 0/[ .0; 1/, and set L0´L.0/. For any L1;L2;L3 2ƒ and
0 < jt j � 1, we have

�.L.t/;L2;L3/ D �.L0;L2;L3/C
´
0; t < 0;

dim L2 \L0 � dim L3 \L0; t > 0;

(3.12)

D
´
�.L0;L2;L3/; t < 0;

�.L2;L3;L0/; t > 0;

�.L1;L.t/;L3/ D �.L1;L0;L3/C
´

dim L1 \L0; t < 0;

dim L3 \L0; t > 0;
(3.13)

�.L1;L2;L.t// D �.L1;L2;L0/C
´

dim L2 \L0 � dim L1 \L0; t < 0;

0; t > 0;

(3.14)

D
´
�.L0;L1;L2/; t < 0;

�.L1;L2;L0/; t > 0:
(3.15)

In particular, we see that the index �.L1;L2;L3/ is left-continuous in L1 and
right-continuous in L3, but in general is neither right- nor left-continuous in L2.

Proof. We first prove (3.14), as it follows most directly from the definition of �.
Choose yL that is transversal to L1, L2, and L0 (and hence to L.t/ for small t ).
Recalling the definition in (3.3), we have

�.L1;L2;L.t//

D n�.Q.L2; yLIL.t/// � n�.Q.L1; yLIL.t///C n�.Q.L1; yLIL2//: (3.16)

Starting with the first term on the right-hand side, we abbreviate

Qt ´ Q.L2; yLIL.t//:
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This acts by Qt Œu� D !.u; Ltu/, where Lt WL2 ! yL is such that L.t/ D ¹u C
LtuWu 2 L2º. From Theorem 2.1, namely (2.3) with L] D L2, we see that Q0t Œu� D
qŒu C Ltu� for any u 2 L2, therefore Q0t is positive for t 2 .�1; 0/ [ .0; 1/. It
follows from the mean value theorem that Qt is increasing on .�1; 1/, therefore
n�.Qt / D n�.Q0/ for small t > 0, and

n�.Qt / D n�.Q0/C dim kerQ0 D n�.Q0/C dim L2 \L0

for small t < 0, where we have used (3.2). An analogous formula holds for the term
n�.Q.L1; yLIL.t///. Using this in (3.16) completes the proof of (3.14).

To prove (3.12), we combine (3.14) with the identities

�.L2;L3;L0/ D �.L0;L2;L3/C dim L2 \L0 � dim L3 \L0;

�.L2;L3;L.t// D �.L.t/;L2;L3/; 0 < jt j � 1;

which follow from (3.8) and the observation that L.t/ is transversal to L2 and L3

except at isolated values of t . The proof of (3.13) is analogous.

Corollary 3.3. Under the assumption L1 \L3 D 0 D L2 \L3, we have

�.L1;L2;L3/ D n�.Q.L1;L3IL2//:

Proof. Let L.t/ be an increasing path with L.0/ D L3. Since L3 is transversal to
L1 and L2, Theorem 3.2 implies �.L1;L2;L3/ D �.L1;L2;L.t// for jt j � 1. For
small non-zero t , we can choose yL D L3 in the definition (3.3) of �.L1;L2;L.t// to
get

�.L1;L2;L.t//

D n�.Q.L2;L3IL.t/// � n�.Q.L1;L3IL.t///C n�.Q.L1;L3IL2//:

Using the identity n�.Q.˛;ˇI 
//C n�.Q.ˇ; ˛I 
//D n, valid when ˛, ˇ, and 
 are
pairwise transversal, we can rewrite this as

�.L1;L2;L.t//

D n�.Q.L3;L1IL.t/// � n�.Q.L3;L2IL.t///C n�.Q.L1;L3IL2//:

The quadratic form Q.L3; L1I L.t// is increasing in t and is identically zero
when t D 0, so n�.Q.L3;L1IL.t/// D 0 for small positive t and similarly for
n�.Q.L3;L2IL.t///.
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3.3. Computing with frames

We now give a simple formula for computing the Duistermaat index using linear alge-
bra. First, we recall that any n-dimensional subspace M � K ˚K can be described
by a frame, which is an injective linear operator

Z D
�
X

Y

�
WK !K ˚K;

whose range is M. Moreover, M is Lagrangian if and only if X�Y D Y �X (a review
of this and other parametrizations of Lagrangian planes is given in Appendix A.2).

This description is not unique, but it is easy to see that frames Z and zZ describe
the same subspace if and only if zZ DZC for some invertible C WK!K . Therefore,
the set

E.M/´ ¹" 2 R W X C "Y is not invertibleº
and the operator

R"´ Y.X C "Y /�1; " 2 R nE.M/; (3.17)

are independent of the choice of frame. The set E.M/ is finite, since det.X C "Y /
is a polynomial in " that is not identically zero because Z has rank n. When M is
Lagrangian, the condition X�Y D Y �X implies that

.X C "Y /�R".X C "Y / D X�Y C "Y �Y

is Hermitian, therefore R" is Hermitian.

Remark 3.4. For the Cauchy data space M.z/ defined in (1.12), the corresponding
R".z/ acts by u 7! �1f , where f 2 ker.S� � z/ satisfies �0f C "�1f D u. (The
condition " 2 R n E.M.z// guarantees there is a unique such f for each u 2 K .) In
particular, R0.z/ is the Dirichlet-to-Neumann map, whenever it is defined. We thus
refer to the operatorR" in (3.17) as the "-Robin map, whether or not the corresponding
subspace M is the Cauchy data space.

An intuitive description of R" is the “regularized slope” of M, as drawn in
K ˚K . Referring to Figure 1, it is therefore natural that the Duistermaat index can
be computed by comparing slopes of pairs of planes, in the following sense.

Theorem 3.5. Let R"1, R"2, and R"3 be the "-Robin maps for the Lagrangian planes
L1, L2, and L3. Then the Duistermaat index �.L1;L2;L3/ is given by

�.L1;L2;L3/ D n�.R
"
2 �R"1/C n�.R"3 �R"2/ � n�.R"3 �R"1/ (3.18)

for any " 2 R nE123, where

E123´ E.L1/ [E.L2/ [E.L3/
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is a finite set. In particular, for the vertical plane V D 0˚K we have

�.L1;L2;V/ D n�.R
"
2 �R"1/ (3.19)

for any 0 < "� 1.

Proof. We first assume that L1, L2, and L3 are transversal to V and establish (3.18)
with "D 0, using the definition (3.3) with yLD V . In this case, each Lj is represented
by the frame .I; R0j /. We will use this to compute the index of Q.L2;V IL3/ to be
used in (3.3). To represent L3 as the graph of an operator LWL2 ! V , we write

L3 3
�
�

R03�

�
D
�
�

R02�

�
C
�

0

R03� �R02�
�
D uC Lu 2 L2 C V :

For any u1 D .�1; R02�1/T and u2 D .�2; R02�2/T in L2, we thus obtain

Q.L2;V IL3/W .u1; u2/ 7! !.u1; Lu2/ D h�1; .R03 �R02/�2iK :

Since the index is invariant under isomorphism, the form Q.L2;V IL3/ on L2 has
the same index as the form h�; .R03 �R02/�iK on K , that is

n�.Q.L2;V IL3// D n�.R03 �R02/:

Evaluating the other two terms in (3.3) similarly, we obtain (3.18) with " D 0, i.e.,

�.L1;L2;L3/ D n�.R
0
2 �R01/C n�.R03 �R02/ � n�.R03 �R01/: (3.20)

In the general case, we can use the symplectic transformation

g" D
�
I "I

0 I

�
to make L1, L2, and L3 transversal to V . In other words, we consider Lagrangian
planes

L"
j ´ g".Lj / D ran

�
Xj C "Yj

Yj

�
;

with " chosen so that allXj C "Yj are invertible. From (3.4), we have �.L1;L2;L3/D
�.L"

1; L"
2; L"

3/, so we can compute �.L"
1; L"

2; L"
3/ according to (3.20) and thus

obtain (3.18).
Finally, we consider the case L3 D V and prove (3.19). We have R"3 D "�1I ,

so the result follows once we establish that for any Lagrangian frame .X; Y /T, the
operator "�1I � Y.X C "Y /�1 is non-negative definite. It is equivalent to consider

".X C "Y /�."�1I � Y.X C "Y /�1/.X C "Y / D X�X C "Y �X:
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The right-hand side is a Hermitian perturbation of the non-negative operatorX�X . As
functions of ", zero eigenvalues of the unperturbed problem remain identically zero,
since the perturbation Y �X vanishes on ker.X�X/ D kerX . On the other hand, the
non-zero eigenvalues are positive at " D 0 and thus remain bounded away from zero
for small ".

Using Theorem 3.5, we obtain a formula for the Duistermaat index in the case
when L3 D V D 0 ˚K and L1 \ V D 0. We remark here that any Lagrangian
plane can be described in terms of a frame .X; Y / D .P; P‚P C P � I /, where
P WK !K is an orthogonal projector and‚ is a Hermitian operator acting on ranP ;
see Section A.2.

Proposition 3.6. Suppose the planes L1 and L2 are described by the frames .I;M/

and .P; P‚P C P � I /, respectively. Then

�.L1;L2;V/ D n�.‚ � PMP/:

This result is inspired by a counting formula in [9] for the eigenvalues of the
Laplacian on a metric graph, which we will rederive in Section 7.2.

Proof. Let L.t/ denote the path given by the frames .I; M C tI /. Since L.t/ is
increasing and L.0/ D L1, Theorem 3.2 gives

�.L1;L2;L3/ D lim
t!0�

�.L.t/;L2;L3/:

We now use (3.19) to compute �.L.t/;L2;L3/. Writing R"j D Yj .Xj C "Yj /�1 in
block form corresponding to the decomposition K D kerP ˚ ranP , we obtain

R"2 �R"1 D
�
"�1I �M11 � tI �M12

�M21 ‚ �M22 � tI
�
CO."/;

where M11 D .I � P /M.I � P /, M22 D PMP and so on. The top-left block is
strictly positive (and in particular invertible) for small " > 0, so the Haynsworth for-
mula [41] implies

n�.R
"
2 �R"1/ D n�.‚ �M22 � tI CO."/CM21."

�1I CO.1//�1M12/

D n�.‚ �M22 � tI CO."//

as "! 0. The operator ‚ �M22 � tI2 is invertible for all t in some interval .t�; 0/,
therefore

�.L.t/;L2;L3/ D lim
"!0C

n�.R
"
2 �R"1/

D n�.‚ �M22 � tI2/ D n�.‚ �M22 C jt jI2/:
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On the other hand, since negative eigenvalues cannot be produced by a small positive
perturbation, we have, for sufficiently small t ,

�.L.t/;L2;L3/ D n�.‚ �M22/ D n�.‚ � PMP/;

completing the proof.

Finally, we give a corollary that will be useful in applications, and also clearly
illustrates the idea that the index �.L1;L2;L3/ quantifies how much of L3 lies
“between” L1 and L2 (in the special case that L1 and L2 are horizontal and ver-
tical, respectively).

Corollary 3.7. Let yK � K be a subspace and ‚W yK ! yK a self-adjoint oper-
ator. Denote its number of non-negative eigenvalues by n0C.‚/ and consider the
Lagrangian plane L‚´ ¹.�; �0 C‚�/W � 2 yK; �0 2 yK?º. Then

�.K ˚ 0; 0˚K;L‚/ D n0C.‚/:

Remark 3.8. If we view L‚ as a self-adjoint linear relation from K to K , then ‚ is
the “operator part” of L‚, as in [70, Proposition 14.2].

Proof. Using Proposition 3.6 with L1 DK ˚ 0, L2 D L‚,M D 0 and P being the
orthogonal projector onto yK , we get �.K ˚ 0;L‚; 0˚K/ D n�.‚/. Since

n � dim.L‚ \ .0˚K// D n � dim yK? D dim yK D n�.‚/C n0C.‚/;

the result follows from (3.9).

4. The Cauchy data space

The main object in the proof of Theorems 1.1 and 1.2 is the Cauchy data space

M.z/ D �.ker.S� � z// �K ˚K (4.1)

introduced in (1.12), where � D .�0; �1/. We now establish its fundamental proper-
ties, which will be needed below, in particular in the proofs of Proposition 5.3 and
Theorem 6.2. In this section we allow K to be infinite dimensional, as the results
presented herein are of independent interest.

Recall that the deficiency of a closed operator T WX ! Y is the codimension of
ranT in Y , i.e., defT ´ dim.Y= ranT /, see [33, Section I.3]. We define

ˆ�.T /´ ¹z 2 CW def.T � z/ <1º
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and observe that z 2 ˆ�.T / implies ran.T � z/ is closed, by [33, Theorem I.3.2]. If
S is closed and symmetric, then

C n Specess.H/ � ˆ�.S�/ (4.2)

for any self-adjoint extension H of S , with equality when the defect numbers of S
are finite; see [33, Corollary IX.4.2].

We now show that M.z/ depends on z analytically as long as z 2 ˆ�.S�/.
Theorem 4.1. Let S be a closed, densely defined symmetric operator on a Hilbert
space H with equal (possibly infinite) defect numbers, and let .K;�0;�1/ be a bound-
ary triplet. In a neighborhood of any z0 2 ˆ�.S�/, there exists an analytic family
of invertible operators Gz 2 B.K ˚K/ such that Gz0 D IK˚K and GzM.z0/ D
M.z/.

An equivalent formulation of the theorem is that M.z/ is an analytic Banach bun-
dle over ˆ�.S�/; see [74] for definitions. To compare this to previous results in the
literature, we first recall that S has the unique continuation property (or, equivalently,
has no inner solutions) if ker.S� � z/ \ ker.�0/ \ ker.�1/ D 0 for all z 2 C. Since
S � S�, the identity

ker.�/ D ker.�0/ \ ker.�1/ D dom.S/; (4.3)

see, e.g., [70, Lemma 14.6 (iv)], implies that this is equivalent to

ker.S � z/ D 0: (4.4)

Non-trivial elements of ker.S � z/, if they exist, are called inner solutions.
In general, ker.S� � z/ is not analytic or even continuous on ˆ�.S�/, since the

dimension of ker.S� � z/ will jump at points z which are eigenvalues of S . For this
reason, similar results in the literature have assumed one of the following:

(1) S has no inner solutions (see [22, Theorem 3.8] and [37, Section 6]);

(2) z 2 �.H0/, where H0 is the Dirichlet-type extension of S (see [7, Theo-
rem 5.5.1] and [70, Proposition 14.15]). Note that this is stronger than assum-
ing ker.S � z/ D 0.

Theorem 4.1, on the other hand, requires no such assumptions on S or z. The reason
is that when passing to the Cauchy data M.z/, the jump in the dimension disappears,
leaving only the “analytic component” of ker.S�� z/. To make this intuition rigorous,
we use the observation of M. G. Kreı̆n [51] (see also [7, Remark 2.3.10]) that one
can split off a maximal self-adjoint part of S – which is responsible for the inner
solutions – and hence consider only simple symmetric operators.
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We recall from [7, Section 3.4] that a closed, symmetric operator is simple if 0 is
the largest reducing subspace on which it is self-adjoint. Simple symmetric operators
have no eigenvalues, by [7, Lemma 3.4.7], and hence satisfy (4.4) for all z 2 C. Since
S is closed and symmetric, there is a splitting H DHsim˚Hsa with respect to which
S is diagonal and

Ssim ´ S jHsim ; Ssa ´ S jHsa (4.5)

are simple symmetric and self-adjoint in Hsim and Hsa, respectively; see [7, Sec-
tion 3.4] for details.

Proof of Theorem 4.1. We proceed in six steps.

Step one: Reducing to the simple symmetric case. Decomposing H as in (4.5), we
have S D Ssim ˚ Ssa and hence

S� � z D .S�sim � z/˚ .Ssa � z/ (4.6)

for all z 2 C. Since dom.Ssa/ � dom.S/ D ker� , we have �.ker.Ssa � z// D 0 and
thus

M.z/ D �.ker.S� � z// D �.ker.S�sim � z//:
It therefore suffices to prove the result for Ssim, so we will assume for the rest of the
proof that S is simple.

Step two: S� � z is onto for z 2ˆ�.S�/. By the definition ofˆ�, the range of S� � z
has finite codimension and hence is closed. On the other hand, S being simple implies
ker.S � z/ D 0, therefore ran.S� � z/ is dense.

Step three: ker.S� � z/ is analytic in z when S� � z is onto. Let HC ´ dom.S�/,
equipped with the graph scalar product of S�, so HC is a Hilbert space and S� 2
B.HC;H /. Since S� � z is surjective and its kernel (a closed subspace of a Hilbert
space) is complemented, it has a bounded right inverse [26, Theorem 2.12], i.e., Bz 2
B.H ;HC/ such that .S� � z/Bz D IH . In a neighborhood of any z0 2 ˆ�.S�/,
Bz can be chosen to be analytic using the formula

Bz ´ Bz0..S
� � z/Bz0/�1 D Bz0.IH C .z0 � z/Bz0/�1:

Now,
Pz WHC ! HC; Pz ´ IHC � Bz.S� � z/;

defines an analytic family of projectors (in general not orthogonal) onto

Nz D ker.S� � z/:
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Step four: Transformation functions (see [47, Section II.4.2] and [28, Section IV.1.1])
for Nz . Fixing z0 2 ˆ�.S�/, define the operator family Fz WHC ! HC by

Fz ´ .I � Pz/.I � Pz0/C PzPz0 D I C .2Pz � I /.Pz0 � Pz/:

The latter expression and Fz0 D I show that Fz is invertible for z close to z0; from
the former expression, we immediately get FzPz0 D PzFz and F �1z Pz D Pz0F �1z ,
therefore

FzNz0 D Nz : (4.7)

Step five: A right inverse for the boundary trace. The boundary trace operator � Wu 7!
.�0u; �1u/ is a bounded surjection from HC onto K ˚K with ker� D dom.S/, as
in (4.3), so it has a bounded right inverse �R, which can be chosen to satisfy

�R � jNz0 D INz0
: (4.8)

More explicitly, since Nz0 \ ker� D 0, the operator � W .dom.S/˚Nz0/
? ˚Nz0 !

K ˚K is an isomorphism and �R is the corresponding inverse.

Step six: Transformation functions for M.z/. Finally, the analytic family of operators

Gz WK ˚K !K ˚K; Gz ´ �Fz�
R (4.9)

satisfies

GzM.z0/ D �Fz�RM.z0/ D �Fz�R �Nz0 D �FzNz0 D �Nz DM.z/

and is invertible for z close to z0 because Gz0 D ��R D IK˚K .

Remark 4.2. From Gz , one can define an analytic family of oblique projectors onto
M.z/ by

Pz D
�

I 0

G21z .G
11
z /
�1 0

�
;

where

Gz D
�
G11z G12z
G21z G22z

�
is the block decomposition of Gz in the direct sum decomposition M.z0/˚M.z0/

?.
Using [23, Lemma 12.8], we see that the corresponding family of orthogonal projec-
tions, PzP �z .PzP

�
z C .I � P �z /.I � Pz//�1, is smooth. It is not analytic, however,

since a family of orthogonal projections is analytic only if it is constant.

The existence of the family Gz allows us to define the crossing form as in (2.4)
and thereby extend the notion of monotonicity, Definition 2.2, to our present setting of
possibly infinite-dimensional K . In fact, the crossing form for M.z/ has a beautiful
explicit form.
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Corollary 4.3. Fix z0 2ˆ�.S�/ and letGz be the operator family from Theorem 4.1.
Then, for any v 2M.z0/,

qŒv�´ d

dz
!.v;Gzv/

ˇ̌̌
zDz0

D min¹kgk2H W .S� � z0/g D 0; �g D vº
D kf k2Hsim

; (4.10)

where ! is the symplectic form (1.4), Hsim and Ssim are defined in (4.5) and f is the
unique vector in Hsim with S�simf D z0f and �f D v.

Remark 4.4. Equation (4.10) generalizes known formulas: for the derivative of the
Dirichlet-to-Neumann map in the resolvent set of the “Dirichlet” extension, as in [70,
Proposition 14.15 (iv)]; and for the crossing form when S satisfies the unique contin-
uation condition, for instance [22, Theorem 5.1] or [59, Theorem 5.10]. Under such
conditions, the solution f to S�f D z0f , �f D v is unique and the operator that
maps the first component of the vector v 2M.z/ � K ˚K into f is known as the

 -field.

Proof of Corollary 4.3. In view of the decomposition (4.6) and its properties, the gen-
eral solution of S�g D z0g, �g D v has the form

g D f C ker.Ssa � z0/;
with kgk2 � kf k2, where f 2 ker.S�sim � z0/ � Hsim is unique by (4.4). Therefore,
we can restrict ourselves to the case when S is simple symmetric. In this case, there
exists a unique f 2 ker.S� � z0/ with v D �f . From (4.7), (4.8), and (4.9) we have

Gzv D �Fz�Rv D �Fz�R�f D �Fzf D �fz;
where fz ´ Fzf 2 ker.S� � z/. By Green’s identity (1.3), we get

!.v;Gzv/ D !.�f;�fz/ D hf; .S� � z0/fziH � h.S� � z0/f; fziH
D hf; .z � z0/fziH D hf; .z � z0/Fzf iH :

Equation (4.10) follows from Fz0 D I and the continuity of Fz .

We now state some further properties of the Cauchy data space, recalling F D
�.dom.HF // for the Friedrichs extension HF of S .

Proposition 4.5. Under the assumptions in Theorem 4.1 the Cauchy data space M.�/
has the following properties.

(1) For all z 2 ˆ�.S�/,
M. Nz/ DM.z/! ´ ¹u 2K ˚KW!.u; v/ D 0 for all v 2M.z/º: (4.11)

In particular, M.s/ is Lagrangian and increasing for s 2 ˆ�.S�/ \R.
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(2) If S is bounded from below, with lower bound 
 , then M.s/ has limits (over
real s)

lim
s!�1

M.s/ D F ; lim
s!
�

M.s/µM.
�/;

in the strong graph sense, and the limiting subspace M.
�/ is Lagrangian.

We recall from [7, Definition 1.9.1] that the strong graph limit of M.s/ consists
of all u 2K ˚K for which there exists a sequence us 2M.s/ with us ! u.

Remark 4.6. In general, M.
�/ ¤ M.
/. For the example of S D �d2=dx2 on
the half-line (with the standard Dirichlet and Neumann traces), we have 
 D 0 2
Specess.S/ D C n ˆ�.S�/ and M.0/, when computed from the definition (4.1), is
equal to the zero subspace of C ˚ C (and, in particular, is not Lagrangian). On the
other hand, the limit M.0�/ is the Lagrangian plane C ˚ 0.

Proof of Proposition 4.5. (1) It follows from Green’s identity (1.3) that !.u; v/D0
for all u 2M. Nz/ and v 2M.z/, therefore M. Nz/ �M.z/! . To prove the other inclu-
sion, suppose u 2 M.z/! , so !.u; �f / D 0 for all f 2 ker.S� � z/. Since � is
surjective, there exists g 2 dom.S�/ such that �g D u. Using Green’s identity and
.S��z/f D0, we get

0 D !.�g;�f / D hS�g; f iH � hg; S�f iH
D h.S� � Nz/g; f iH � hg; .S� � z/f iH D h.S� � Nz/g; f iH :

This means .S� � Nz/g 2 ker.S� � z/? D ran.S � Nz/, where the last equality holds
because z 2 ˆ�.S�/ implies ran.S � Nz/ is closed, thus .S� � Nz/g D .S � Nz/h for
some h 2 dom.S/ D ker � . Since S� is an extension of S , this implies g � h 2
ker.S� � Nz/ and so u D �g D �.g � h/ 2M. Nz/, as required.

When s is real, (4.11) gives M.s/! DM.s/, so M.s/ is Lagrangian. It is increas-
ing because the crossing form qŒv� in (4.10) is positive definite (f ¤ 0 for non-zero
v in Corollary 4.3).

(2) Because the lower bounds of S and its Friedrichs extension HF coincide, we
have .�1;
/� �.HF /�ˆ�.S�/ by (4.2), therefore M.s/ is continuous on .�1;
/
by Theorem 4.1. From [7, Corollary 5.2.14], we have that the s # �1 limit of M.s/

exists in the strong resolvent sense, and [7, Theorem 5.5.1] gives M.�1/ D F .
For the limit s " 
 , we first use [7, Corollary 5.5.5] to find a boundary triplet

.K 0; � 00; �
0
1/ such that dom.HF / D ker� 00. It then follows from [7, Corollary 5.2.14]

that the corresponding Cauchy data space M0.z/ has a left-hand limit M0.
�/ in the
strong resolvent sense, and this limit is Lagrangian. By [7, Theorem 2.5.1], the triplets
.K; �0; �1/ and .K 0; � 00; �

0
1/ are related by a bounded symplectic transformation,

thus the Cauchy data spaces M.z/ and M0.z/ are related by a Möbius transform [7,
eq. (2.5.4)], which preserves convergence and the Lagrangian property. To complete
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the proof, we note that for Lagrangian subspaces, strong resolvent convergence is
equivalent to strong graph convergence, by [7, Corollary 1.9.6].

5. First proof of main theorems

We are now ready to prove our main results, namely Theorems 1.1 and 1.2, using the
Maslov index. We are thus back to the assumption that K is finite dimensional. There
are three key ingredients in the proof, two of which have already been established:

(1) a formula for the difference of counting functions in terms of the difference
of Maslov indices (Proposition 5.3),

(2) the identity of Zhou–Wu–Zhu relating the difference of Maslov indices to the
difference of Duistermaat indices (formula (3.11)),

(3) a one-sided continuity result for the Duistermaat index (Theorem 3.2).

Working towards the counting formula in Proposition 5.3, we first relate the eigen-
values of a self-adjoint extension to the intersections of the corresponding Lagrangian
plane with the Cauchy data space M.�/ defined in (1.12).

Lemma 5.1. Under the assumptions of Theorem 1.1, let H1 and H2 be self-adjoint
extensions of S corresponding to Lagrangian planes L1 and L2. If z 2C n Specess.S/,
then

dim ker.Hj � z/ D dim.M.z/ \Lj /C dim ker.S � z/ (5.1)

for j D 1; 2, therefore

dim ker.H1 � z/� dim ker.H2 � z/D dim.M.z/\L1/� dim.M.z/\L2/: (5.2)

Remark 5.2. If S has the unique continuation property, so that (4.4) holds for all z 2
C, then (5.1) implies dim ker.Hj � z/D dim.M.z/\Lj / for all z 2C n Specess.S/.
This is no longer true if S does not have the unique continuation property (see Sec-
tion 7.5 for an elementary example), but (5.2) holds regardless.

Proof. From the definition of the extension Hj , using the Lagrangian plane Lj

in (1.5), and the definition of M.z/ in (4.1), we have

�.ker.Hj � z// DM.z/ \Lj :

By the rank-nullity theorem,

dim ker.Hj � z/ D dim.M.z/ \Lj /C dim ker.� jker.Hj�z//: (5.3)
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In turn,

ker.� jker.Hj�z// D ker.Hj � z/ \ ker.�/ D ker.Hj � z/ \ dom.S/ D ker.S � z/:
Substituting this into (5.3) gives (5.1).

We now relate the eigenvalue counting functions and Maslov indices, recalling the
definition of N.H I I / from (1.6).

Proposition 5.3. With the hypotheses and notation of Theorem 1.1, for any interval
Œa; b� � R n Specess.S/, we have

N.H1I .a; b�/ �N.H2I .a; b�/ D MasŒa;b�.L2;M.�// �MasŒa;b�.L1;M.�//: (5.4)

As mentioned in the introduction, it is only possible to express the counting func-
tionsN.Hj I .a; b�/ in terms of Maslov indices if one assumes the unique continuation
property of S , but formula (5.4) for their difference does not require this assumption;
see Remark 5.2.

Proof. It follows from Proposition 4.5 (1) and Corollary 4.3 that M.s/ is an increasing
path of Lagrangian planes; so we can use (2.6), (5.2), and (1.6) to obtain

MasŒa;b�.L2;M.�// �MasŒa;b�.L1;M.�//
D

X
t2.a;b�

Œdim.M.t/ \L1/ � dim.M.t/ \L2/�

D
X

�2.a;b�

Œdim ker.H1 � �/ � dim ker.H2 � �/�

D N.H1I .a; b�/ �N.H2I .a; b�/
as claimed.

We are now ready to prove our main results.

Proof of Theorem 1.2. For Œa; b� � R n Specess.S/, we combine (5.4) and the Zhou–
Wu–Zhu identity (3.11) to obtain

N.H1I .a; b�/ �N.H2I .a; b�/ D �.L1;L2;M.b// � �.L1;L2;M.a//; (5.5)

which is exactly (1.13).
For � below the essential spectrum, we use (5.5) with b D � and a < b. Corol-

lary 4.3 and Proposition 4.5 (2) say that M.a/ converges to F from above as a !
�1, so we can use (3.14) from Theorem 3.2 to compute

lim
a!�1

�.L1;L2;M.a// D �.L1;L2;F / (5.6)

and hence arrive at (1.14).
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Proof of Theorem 1.1. We start with (1.14) from Theorem 1.2,

�.H1;H2I�/ D �.L1;L2;M.�// � �.L1;L2;F /;

and use the bound (3.6) to estimate �.L1;L2;M.�//, arriving at

��.L1;L2;F / � �.H1;H2I�/ � n � dim L1 \L2 � �.L1;L2;F /: (5.7)

We then use (3.7) to simplify the right-hand side to �.L2;L1;F /.

6. The Duistermaat index of a self-adjoint linear relation

A Lagrangian plane in .K ˚K;!/ can be viewed as a self-adjoint linear relation; see
[25, Section 4.2]. In this context, the difference of two Lagrangian planes, L and M,
is the Lagrangian plane

L �M´
²�

u

v
L
� v

M

�
2K ˚K W

�
u

v
L

�
2 L;

�
u

v
M

�
2M

³
; (6.1)

the inverse of L is

L�1´
²�
v

u

�
2K ˚K W

�
u

v

�
2 L

³
; (6.2)

and the kernel and multivalued part of L are

ker L´
²
u 2K W

�
u

0

�
2 L

³
; mul L´

²
v 2K W

�
0

v

�
2 L

³
:

The dimension of ker L is called the nullity and denoted n0.L/. If mul L D 0, then
L is the graph of a self-adjoint linear operator on K . In this case, we define the index
n�.L/ to be the number of negative eigenvalues of the corresponding operator.

Proposition 6.1. Assume L1, L2, and L3 are Lagrangian planes such that L3 is
transversal to L1, L2, and V D 0˚K . Then the Lagrangian plane

�´ .L1 �L3/
�1 � .L2 �L3/

�1 (6.3)

is a graph of an operator on K , with nullity and index

n0.�/ D dim L1 \L2; n�.�/ D �.L1;L2;L3/:
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k ! u v

positive definite
k ! u v

negative definite

L1
L1

L2

L2
L3

L3

.u; /�

.u; /�

.v; /�

.v; /�

�
�

Figure 2. Examples of the action �W � 7! u.�/ � v.�/ with n�.�/ D 1 (left) and n�.�/ D 0
(right). This should be compared with Figure 1, top row. Dotted and dashed lines illustrate the
action of the projectors P1 and P2, respectively.

Proof. Let P1 and P2 be the projections onto L1 and L2, respectively, parallel to L3.
The transversality conditions on L3 imply that their restrictions P1W V ! L1 and
P2WV ! L2 are isomorphisms. Written explicitly, they are

P1W
�
0

�

�
2 V 7!

�
u

˛

�
2 L1 such that

�
u

˛

�
�
�
0

�

�
2 L3; (6.4)

and

P2W
�
0

�

�
2 V 7!

�
v

ˇ

�
2 L2 such that

�
v

ˇ

�
�
�
0

�

�
2 L3: (6.5)

For future use, we observe that

P1

�
0

�

�
� P2

�
0

�

�
2 L3; (6.6)

and

P1

�
0

�

�
D P2

�
0

�

�
() P1

�
0

�

�
2 L1 \L2: (6.7)

The non-trivial H) direction in (6.7) follows from the observation that if .u; ˛/T

in (6.4) belongs to both L1 and L2, then it satisfies the condition in (6.5) and therefore
coincides with the unique value of .v; ˇ/T.

We now compute the Lagrangian plane � from (6.3). Using definition (6.1), we
write

L1 �L3 D
²�

u

˛ � 

�
2K ˚KW

�
u

˛

�
2 L1;

�
u




�
2 L3

³
D
²�
u

�

�
W 9˛ 2K such that

�
u

˛

�
2 L1;

�
u

˛ � �
�
2 L3

³
;
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where the vector .u; ˛/T is exactly the image of .0; �/T under P1. Defining
� WK ˚K ! K to be the projection onto the first component and using (6.2), we
arrive at

.L1 �L3/
�1 D

²�
�

u.�/

�
2K ˚KW � 2K;

³
; where u.�/´ �P1

�
0

�

�
:

Analogous considerations for L2 result in

� D
²�

�

u.�/ � v.�/
�
2K ˚KW � 2K

³
; where v.�/´ �P2

�
0

�

�
: (6.8)

In other words, � is the graph of an operator mapping �2K to u.�/�v.�/2K ,
see Figure 2 for an example. The kernel of � is the space of � such that the corre-
sponding u.�/ and v.�/ coincide. More precisely,�

�

0

�
2 ker� () �P1

�
0

�

�
� �P2

�
0

�

�
D 0

() P1

�
0

�

�
� P2

�
0

�

�
2 V :

Combining this with (6.6) and the condition V \L3 D 0, we obtain�
�

0

�
2 ker� () P1

�
0

�

�
D P2

�
0

�

�
:

Finally, (6.7) yields that ker� is isomorphic to L1 \L2.
We now calculate the Duistermaat index using Corollary 3.3, namely by evaluat-

ing the Morse index of Q.L1;L3IL2/. The mapping LWL1 ! L3 appearing in the
definition (3.1) of Q.L1;L3IL2/ acts as

L1 3
�
u

˛

�
D P1

�
0

�

�
7! P2

�
0

�

�
� P1

�
0

�

�
2 L3;

cf. (3.1), (6.6), and the fact that P2 acts into L2. Consequently, for any two vectors
from L1, �

u1

˛1

�
D P1

�
0

�1

�
;

�
u2

˛2

�
D P1

�
0

�2

�
;

the form Q acts as��
u1

˛1

�
;

�
u2

˛2

��
7! !

�
P1

�
0

�1

�
; P2

�
0

�2

�
� P1

�
0

�2

��
:
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We now note that for the purpose of computing the index, the form Q can be
viewed as a Hermitian form on V . Observing that

!

�
P1

�
0

�1

�
�
�
0

�1

�
; P2

�
0

�2

�
� P1

�
0

�2

��
D 0;

which holds because both arguments are in the Lagrangian plane L3, we have for the
value of Q,

!

�
P1

�
0

�1

�
; P2

�
0

�2

�
� P1

�
0

�2

��
D !

��
0

�1

�
; P2

�
0

�2

�
� P1

�
0

�2

��
D h�1; u.�2/ � v.�2/iK ;

which is exactly the sesquilinear form corresponding to�W� 7! u.�/� v.�/, see (6.8).
By Corollary 3.3, we conclude that

�.L1;L2;L3/ D n�.�/;

which establishes the desired result.

Next we provide a proof of Theorem 1.3 by virtue of a slightly more general result.

Theorem 6.2. Assume the setting of Theorem 1.1. For � 2 �.H1/ \ �.H2/ \ R, the
operator D.�/, defined in (1.15), is reduced by the decomposition H D N� ˚N ?

�
,

where N�´ ker.S� � �/. The block form ofD.�/ with respect to this decomposition
is

D.�/ D
�
K.�/ 0

0 0

�
; (6.9)

where K.�/WN� ! N� is the restriction of D.�/ to N�. For an arbitrary interval
I � �.H1/\ �.H2/\R, the eigenvalues ofK.�/ depend continuously on � 2 I and
one has

n0.K.�// D dim L1 \L2; (6.10)

n�.K.�// D n�.D.�// D �.L1;L2;M.�//; (6.11)

nC.K.�// D nC.D.�// D �.L2;L1;M.�//: (6.12)

In particular, K.�/ has constant rank

r D n � dim L1 \L2 D �.L1;L2;M.�//C �.L2;L1;M.�// (6.13)

and the functions � 7! n˙.K.�// are constant on I .
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Proof. Since Hj � S�, we have .S� � �/.Hj � �/�1 D IH for j D 1; 2, therefore
.S� � �/D.�/D 0, i.e., ranD.�/�N�. This establishes the second row of (6.9) and,
by self-adjointness, the whole of (6.9).

To prove the continuity of the eigenvalues of K.�/ (acting on the �-dependent
spaces N�), we first note that S� � � is onto in H as an extension of a surjective
operator H1 � � with � 2 �.H1/. Therefore, by steps three and four in the proof of
Theorem 4.1, there exists a continuous family of bijections F� mapping N�0 onto
N�. The family of operators � 7! F �1

�
K.�/F� acting on the �-independent Hilbert

space N�0 is continuous and for each � 2 I the eigenvalues ofK.�/ and F�K.�/F �1�
coincide. These facts yield the desired continuity assertion.

We next show that (6.10) holds for all � 2 �.H1/ \ �.H2/ \ R. For this, we use
the resolvent difference formula from [60, Theorem 2.5],

K.�/ D .�.H1 � �/�1/�P1JP2�.H2 � �/�1jN� ; (6.14)

where Pj denotes the orthogonal projection onto Lj in K ˚K . By Lemma 6.3, the
maps

�.H2 � �/�1WN� ! L2; .�.H1 � �/�1/�WL1 ! N�;

are bijective. Using (6.14) and the identity P1J D J.I � P1/ from (A.1), we get

dim kerK.�/ D dim ker.P1J jL2/ D ker..I � P1/jL2/ D L1 \L2;

proving (6.10).
It follows that n0.K.�// is constant on the interval I , therefore the same is true

of n˙.K.�//, since the eigenvalues are continuous. It thus suffices to prove (6.11)
and (6.12) for a single � 2 I . We will choose � 2 I n Spec.H0/, where H0 is the
extension of S with �.dom.H0// D ker �0. Such a � always exists because I �
�.H1/ \ �.H2/ does not intersect Specess.Hj / D Specess.S/, and therefore I can
only contain isolated eigenvalues of H0.

For � 2 I n Spec.H0/, we may apply the classical Kreı̆n–Naimark formula,

.Hj � �/�1 � .H0 � �/�1 D 
.�/.Lj �M.�//�1
.�/�;

where 
.�/´ .�0jN�/�1 2 B.K;H / is the 
 -field; see, for example, [70, Theo-
rem 14.18]. Applying this to D.�/ D .H1 � �/�1 � .H2 � �/�1 yields

D.�/ D 
.�/..L1 �M.�//�1 � .L2 �M.�//�1/
.�/�:

Employing Proposition 6.1 with L3 D M.�/ (the transversality conditions are sat-
isfied since � is not an eigenvalue of H1, H2 or H0) together with the fact that

.�/WK ! N� is a bijection (see [70, Lemma 14.13 (ii)]), we get

�.L1;L2;M.�// D n�..L1 �M.�//�1 � .L2 �M.�//�1/ D n�.D.�//;
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which is exactly (6.11). To complete the proof, we note that (6.13) follows from (6.10)
and the identity (3.7) for the Duistermaat index. Combining this with (6.11) yields
(6.12).

Lemma 6.3. Assume that H is a self-adjoint extension of S corresponding to the
Lagrangian plane L�K ˚K . For � 2 �.H/, we letR�´ .H � �/�1 and consider
�R�WH !K ˚K . Then

ker.�R�/ D ran.S � �/; ran.�R�/ D L:

In particular, �R� is a bijection between ker.S� � N�/ and L.

Proof. To show the inclusion ker.�R�/� ran.S � �/, suppose that �R�uD 0. Then
by (4.3) one has R�uD v for some v 2 dom.S/, hence uD .S � �/v as required. To
prove ker.�R�/ � ran.S � �/, we note that R�.S � �/v D v and use (4.3). For the
second identity we note that ran.�R�/ D �.dom.H// D L.

Finally, we explain how this implies the interlacing formulas in Theorem 1.1.

Proof of Theorem 1.1 using Theorem 1.3. Using (5.6), we can choose a large negative
number �� that satisfies

�.L1;L2;M.��//D �.L1;L2;F /D ��; �.L2;L1;M.��//D �.L2;L1;F /D �C
and is below the spectra of H1 and H2. For such ��, the eigenvalues of R1 ´
.�� �H1/�1 are negative and bounded; we label them in increasing order as �k.R1/,
and likewise for R2 ´ .�� �H2/�1. Recalling the definition of D.�/ in (1.15), we
write R2 D R1 CD.��/ and note that n�.D.��// D �� and nC.D.��// D �C by
Theorem 1.3. Applying Weyl interlacing for additive finite-rank perturbations, we get

�k���.R1/ � �k.R2/ � �kC�C.R1/:
The corresponding eigenvalues of Hj are computed by the monotone increasing
trasformation �k.Hj / D �� � 1=�k.Rj /, yielding (1.10).

7. Examples and applications

Having proved Theorem 1.1, we now discuss some of its consequences. In particu-
lar, we compare a variety of boundary conditions for a Schrödinger operator on the
interval .0; 1/ and derive a counting formula of Behrndt and Luger for the Laplacian
on quantum graphs. We also demonstrate that the upper and lower bounds in (1.9) are
optimal. Finally, we give an example of an operator not satisfying the UCP, where
we see that the Maslov index undercounts the eigenvalues even though our theorem
remains valid.
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Name Conditions Frame Notation

Periodic
f .0/ D f .1/;
f 0.0/ D f 0.1/ X D

�
1 0

1 0

�
, Y D

�
0 1

0 �1
�

Lper

ı-type
f .0/ D f .1/;
f 0.0/ � f 0.1/ D sf .0/ X D

�
1 0

1 0

�
, Y D

�
s 1

0 �1
�

Lı.s/

Antiperiodic
f .0/ D �f .1/;
f 0.0/ D �f 0.1/ X D

�
1 0

�1 0

�
, Y D

�
0 1

0 1

�
Laper

ı0-type
f .0/C f .1/ D sf 0.0/;
f 0.0/ D �f 0.1/ X D

�
1 s

�1 0

�
, Y D

�
0 1

0 1

�
Lı0.s/

Table 1. Some commonly encountered boundary conditions and the corresponding Lagrangian
frames. Note that periodic conditions are also called Neumann–Kirchhoff or standard conditions
in the context of quantum graphs.

7.1. Examples with n D 2

The prototypical example with n D 2 is an interval .0; 1/ with the Schrödinger oper-
ator S D � d2

dx2
C q.x/. However, the results below apply equally well to a compact

quantum graph [16] with self-adjoint conditions imposed everywhere except for two
vertices of degree one. More sophisticated contexts include manifolds with conical
singularities [39] and Šeba billiards [21, 48, 57, 58, 68, 72] with two or more delta
potentials.

For S D � d2

dx2
C q.x/, with potential q 2 L1.0; 1/, we have H D L2.0; 1/,

dom.S/ D H 2
0 .0; 1/ and dom.S�/ D H 2.0; 1/. Both defect numbers are 2, so the

self-adjoint extensions are parameterized by Lagrangian planes in C4, see [70, Exam-
ples 14.2 and 14.10]. The traditional choice of traces is

�0f D
�
f .0/

f .1/

�
; �1f D

�
f 0.0/

�f 0.1/
�
:

With this choice, the Friedrichs extension corresponds to the vertical plane, F D V .
We now use Theorem 1.1 to compare the boundary conditions listed in Table 1.

7.1.1. Periodic vs ı-type conditions. At s D 0, the ı-type condition reduces to the
periodic condition, Lı.0/DLper, so it suffices to consider s ¤ 0. In this case the rank
of the perturbation is 2 � dim.Lper \Lı.s// D 1. The corresponding "-Robin maps
are

R"per D
1

2"

�
1 �1
�1 1

�
; R"ı D

1

".2C "s/
�
1C "s �1
�1 1C "s

�
I

therefore,

R"ı �R"per D
s

2.2C "s/
�
1 1

1 1

�
:
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Using Theorem 3.5, we conclude that

�.Lper;Lı.s/;F / D
´
0; s > 0;

1; s < 0;
and .��; �C/ D

´
.0; 1/; s > 0;

.1; 0/; s < 0;

recovering a well-known result [14, 15].

7.1.2. Periodic vs antiperiodic. This important case arises in the spectral analysis
of Hill’s operator and certain other Z-periodic quantum graphs [35] (namely, those
with one edge crossing the boundary of the fundamental domain).

For the antiperiodic conditions, we have

R"aper D
1

2"

�
1 1

1 1

�
; R"aper �R"per D

1

"

�
0 1

1 0

�
:

We therefore get
.��; �C/ D .1; 1/;

which agrees, for instance, with the interlacing in Hill’s equation [65, eq. (2.4) in
Theorem 2.1].

7.1.3. Antiperiodic vs ı0-type conditions. The antiperiodic conditions are a special
case of the ı0-type conditions with sD 0. For s¤ 0, we have dim.Laper \Lı0.s//D 1,
so the rank of the perturbation is 1. Computing the "-Robin map, we obtain

R"ı0 D
1

s C 2"
�
1 1

1 1

�
; R"aper �R"ı0 D �

s

2".s C 2"/
�
1 1

1 1

�
:

For s ¤ 0, we see that � s
2".sC2"/

�� 1
2"

is negative for 0 < "� 1, and hence �� D 1.
Taking the rank of the perturbation into account, we get

.��; �C/ D .1; 0/;

or, in terms of the eigenvalues,

�k�1.Haper/ � �k.Hı0.s// � �k.Haper/:

This may be somewhat unexpected, since it implies that �k.Hı0.s// achieves its
maximum at s D 0, while the eigenvalue variation formulas of [60] can be used to
show that

d�

ds
D �jf 0s .0/j2;

where fs is the normalized eigenfunction corresponding to the eigenvalue �.s/
(assuming it is simple). These two facts are reconciled by the observation that �1.s/!
�1 as s! 0�, therefore the ordered eigenvalue curves s 7! �k.Hı0.s// are discon-
tinuous at s D 0, as shown in Figure 3.
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Figure 3. The first five eigenvalues of Hı0.s/, plotted as functions of s. The curves are colored
according to the index of the eigenvalue: �1 is black, �2 is blue, �3 is red etc. In particular, the
blue lines (from bottom to top) are �2.Hı0.s// D �1;2.Haper/ and �4.Hı0.s// D �3;4.Haper/.

7.2. Counting negative eigenvalues: the Behrndt–Luger formula

In [9], Behrndt and Luger derived a convenient formula for the number of negative
eigenvalues of the Laplacian on a metric graph. Here we show how their formula can
be obtained from our results.

We recall that any Lagrangian plane L can be described by a frame of the form
.P; P‚P C P � I /, where P WK ! K is an orthogonal projector and ‚W ranP !
ranP is a self-adjoint operator; see Section A.2. This corresponds to imposing the
Dirichlet-type condition .I � P /�0f D 0 and the Robin-type condition P�1f D
‚P�0f .

Corollary 7.1. Within the setting of Theorem 1.1, assume S is non-negative7 and let
H be an extension of S specified by a Lagrangian plane L. Then the Morse index of
H is

n�.H/ D �.M.0�/;L;F /; (7.1)

where M.0�/ is the left-hand limit of M.s/, as in Proposition 4.5.
Furthermore, if dom.HF / D ker�0 and M.0�/ is a graph of a self-adjoint oper-

ator M0WK !K , then

n�.H/ D nC.PM0P �‚/; (7.2)

where .P; P‚P C P � I / is a Lagrangian frame for L.

7Equivalently, the Friedrichs extension HF is non-negative.
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Remark 7.2. Equation (7.1) generalizes results of Derkach and Malamud [31] in the
setting of finite defect numbers. In particular, [31, eq. (0.4)] equates the Morse indices
of H and the operator � that appears in Proposition 6.1; thus, under more restrictive
assumptions, one can see that [31, eq. (0.4)] and (7.1) give the same expressions for
n�.H/. However, the basis-independent nature of the Duistermaat index (manifested
as symplectic invariance (3.4)) saves one from superfluous restrictions such as the
form domain inclusion condition in [31, Theorems 5 and 6].

Remark 7.3. In the setting of [9], where S� is the Laplacian on a metric graph and �0
and �1 are the standard Dirichlet and Neumann traces, the limit M.0�/ is the graph
of an operatorM0, by [9, Lemma 3], thus (7.2) holds. To relate this to [9, Theorem 1]
we simply take ‚ D �L and observe that the boundary condition in [9] is written
in terms of a co-frame rather than a frame (see Section A.2). In this setting, M0 is
the Dirichlet-to-Neumann map at � D 0, which is explicitly computable; see also
[16, Section 3.5].

Proof. SinceHF is non-negative, we have Specess.HF / � Œ0;1/. Therefore, we can
apply Theorem 1.2 with L2 D F and negative � to obtain

N.H1I .�1; ��/ D �.L1;F ;M.�// � �.L1;F ;F / D �.L1;F ;M.�//; (7.3)

using (3.10) to eliminate �.L;F ;F /. By Proposition 4.5, the path M.�/ converges
to a Lagrangian plane M.0�/ as �! 0�. Since the convergence is monotone, (3.15)
gives �.L1;F ;M.�// D �.M.0�/;L1;F / for sufficiently small �. It follows from
(7.3) that N.H1I .�1; ��/ is constant for small negative � and hence is equal to
n�.H1/, proving equation (7.1).

Combining (7.1) with Proposition 3.6, we obtain

n�.H/ D �.M.0�/;L;F / D n�.‚ � PM0P / D nC.PM0P �‚/;

since M.0�/ is the graph of the operator M0 and L is described by the frame
.P; P‚P C P � I /.

7.3. Comparing Dirichlet and Neumann eigenvalues

Another easy consequence of our results is a version of Friedlander’s well-known
interlacing formula [36], which, in our case of finite defect indices, takes the geomet-
ric form of a Duistermaat index. Defining the Dirichlet and Neumann extensions of S
to be the self-adjoint extensions HD and HN with

dom.HD/D ¹f 2 dom.S�/ W �0f D 0º; dom.HN /D ¹f 2 dom.S�/ W �1f D 0º;

respectively, we get the following.
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Corollary 7.4. Assume, in addition to the hypotheses of Theorem 1.1, thatHF DHD .
For any � 2 R below the essential spectrum, we have

�.HN ;HDI�/ D �.K ˚ 0; 0˚K;M.�//:

If � is not a Dirichlet eigenvalue, then M.�/ is the graph of an operatorM.�/ on K ,
and

�.HN ;HDI�/ D n0C.M.�//: (7.4)

Proof. Since HD and HN correspond to the Lagrangian planes LD D 0 ˚K and
LN DK ˚ 0, the first equation follows from Theorem 1.2, using (3.10) to eliminate
�.LN ;LD;F / D �.LN ;F ;F / D 0, and the second follows from Corollary 3.7 .

When � is also not a Neumann eigenvalue (and hence kerM.�/ D 0), this is
exactly the formula of Friedlander [36, Lemma 1] (see also [2] and references therein)
in the context of finite defect numbers. Note that the Dirichlet-to-Neumann map
in [36] is �M.�/ here, due to the choice of normal derivative – the abstract Green’s
identity (1.3) requires �1 to be the inward normal derivative.

Corollary 3.7 can also be used when � is a Dirichlet eigenvalue, leading to a more
general version of (7.4) in terms of a “reduced” Dirichlet-to-Neumann map, as in [12].

7.4. Sharpness of the bounds

We now prove that the bounds in (1.9) are sharp for any symmetric operator S .

Proposition 7.5. Let S satisfy the assumptions of Theorem 1.1. For any numbers
Q�˙ � 0 with Q�� C Q�C � n, there exist Lagrangian planes L1 and L2 such that

�.L1;L2;F / D Q��; �.L2;L1;F / D Q�C; (7.5)

and the bounds in (1.9) are sharp for the corresponding extensions H1 and H2 of S .
To be precise, there exists �0 2 R such that

�.H1;H2I�0 � 0/ D Q��; �.H1;H2I�0 C 0/ D Q�C:

Proof. Without loss of generality, we assume that our boundary triplet is chosen such
that F D V D 0˚K . Now, choose �0 2 R below the essential spectrum such that
M.�0/ is transversal to V . This is always possible because M is increasing, therefore
its intersections with any Lagrangian plane are isolated. Letting M0WK ! K be the
operator whose graph is M.�0/, we define L1 and L2 via the frames .I; M0/ and
.I; M0 � P� C PC/, respectively, where P�; PCWK ! K are arbitrary mutually
orthogonal projectors of rank Q�� and Q�C. Note that L1 DM.�0/.
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We first show that this choice of L1 and L2 gives the desired Duistermaat indices.
Using Proposition 3.6 with P D I , we get

�.L1;L2;F / D n�..M0 � P� C PC/ �M0/ D rankP� D Q��;
�.L2;L1;F / D n�.P� � PC/ D rankPC D Q�C;

which is exactly (7.5).
Now, we recall from the proof of Theorem 1.1, in particular (5.7), that the lower

bound in (1.9) is attained at some � if �.L1;L2;M.�// D 0, and the upper bound is
attained if �.L1;L2;M.�//D n� dimL1 \L2. We then use (3.10) and Theorem 3.2
to obtain

�.L1;L2;M.�0 � 0// D �.M.�0/;L1;L2/ D �.L1;L1;L2/ D 0

and
�.L1;L2;M.�0 C 0// D �.L1;L2;L1/ D n � dim L1 \L2;

completing the proof.

Example 7.6. It is not true that for any L1 and L2 the bounds of Theorem 1.1 are
achieved at some �. A simple example is the Neumann versus the Dirichlet Laplacian
on the interval .0; �/. The spectra are ¹0; 1; 4; 9; : : :º and ¹1; 4; 9; : : :º, respectively,
so the spectral shift takes the values 0 and 1 while �� D 0 and �C D 2.

7.5. An operator with inner solutions

Defining the space

D ´ ¹f D .f1; f2/ 2 H 2.��; 0/˚H 2.0; �/ W
f1.��/ D f2.�/ D 0; f1.0/ D f2.0/º;

we consider the symmetric operator S acting as� d2

dx2
onL2.��;0/˚L2.0;�/, with

dom.S/´ ¹.f1; f2/ 2 D W f1.0/ D f2.0/ D 0; f 01.0/ D f 02.0/º:

It easily follows that dom.S�/ D D . As a boundary triple, we can take K D C and

�0f D 1

2
.f1.0/C f2.0//; �1f D f 02.0/ � f 01.0/:

For every z 2 C n ¹1; 4; 9; : : :º, the kernel

ker.S� � zI / D span
°� 1p

z
sin
p
z.� C x/; 1p

z
sin
p
z.� � x/

�±
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is one-dimensional (with ker.S�/ D span¹.� C x; � � x/º understood as the z ! 0

limit). However, when z D k2 for some k 2 N, the kernel is two-dimensional,

ker.S� � k2I / D span¹.sin k.� C x/; 0/; .0; sin k.� � x//º: (7.6)

On the other hand, the Cauchy data space from (1.12) is one-dimensional for all z 2C,

M.z/ D span
°� 1p

z
sin�
p
z; � 2 cos�

p
z
�±
;

since the trace � vanishes on the difference of the two basis vectors in (7.6) when
z 2 ¹1; 4; 9; : : :º. In other words, for any k 2 N, the function

gk D .sin k.� C x/;� sin k.� � x//

is an inner solution in the sense of (4.4).
Consider, for example, the Lagrangian planes

F D span
²�
0

1

�³
; L1 D span

²�
1

0

�³
;

and the corresponding extensions of S ,

dom.HF /´ ¹f 2 D W f1.0/ D f2.0/ D 0º;
dom.H1/´ ¹f 2 D W f 01.0/ D f 02.0/º:

As the notation suggests, HF is the Friedrichs extension of S . The corresponding
spectra are easily computed to be

Spec.HF / D ¹k2 with multiplicity 2 W k 2 Nº; Spec.H1/ D ¹.k=2/2W k 2 Nº:

We now see that if one tries to use the intersections M.z/ \ F and M.z/ \ L1 to
search for the eigenvalues of HF and H1, every second eigenvalue will be missed,
because these are the eigenvalues that correspond to inner solutions.

A. Lagrangian preliminaries

A.1. The Lagrangian Grassmannian

Given a complex symplectic space .K ˚K;!/, we say that a subspace L�K ˚K

is Lagrangian if it equals its symplectic complement

L! ´ ¹u 2K ˚KW!.u; v/ D 0 for all v 2 Lº:
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There are several convenient reformulations of this definition. These involve the oper-
ator

J ´
�
0 I

�I 0

�
on K ˚K , defined so that !.u; v/ D hu; J viK˚K . It follows that L! D .JL/?,
thus L is Lagrangian if and only if JL D L?, where .�/? is the usual orthogonal
complement. A useful consequence of this is the identity

.L1 CL2/
? D L?1 \L?2 D JL1 \ JL2 D J.L1 \L2/;

valid for any Lagrangian planes L1 and L2. This implies dimL1\L2D codim.L1C
L2/. In particular, L1 CL2 D K ˚K if and only if L1 \L2 D 0. Another useful
fact is that a subspace L is Lagrangian if and only if

J D JPL C PLJ; (A.1)

where PL is the orthogonal projection onto L; see [37, Proposition 2.11].
The set of all Lagrangian subspaces in .K ˚K; !/ is called the Lagrangian

Grassmannian and is denoted by ƒ.

A.2. Parameterizations of Lagrangian subspaces

A Lagrangian subspace L � K ˚K can be described in many different ways. For
convenience, we summarize the most useful ones here.

A frame is an injective linear map ZWK ! K ˚K whose range is L. A frame
is typically written in block form

Z D
�
X

Y

�
;

withX;Y WK!K . We often abbreviate this as .X;Y /. The range ofZ is Lagrangian
if and only if the conditionX�Y D Y �X holds. This frame is not uniquely determined
by L, since for any C 2 GL.K/, ZC is also a frame for L. Any frame for L is of
this form for a suitable choice of C .

A closely related notion is that of a co-frame, which is a surjective linear map
K ˚K ! K whose kernel is L; see [16, Theorem 1.4.4]. This can be written in
block form as .A B/, with A;BWK !K . The Lagrangian condition is equivalent to
AB� D BA�, and it is easily seen that the frame .X; Y / corresponds to the co-frame
.Y � �X�/.

It was shown in [56, Corollary 5] (see also [9, Lemma 2]) that any Lagrangian
plane L can be represented by a co-frame with A D I � P � P‚P and B D P , or
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equivalently by the frame �
B�

�A�
�
D
�

P

P‚P C P � I
�
;

where P WK ! K is an orthogonal projection and ‚ is a self-adjoint operator on
ranP . This parameterization arises naturally when describing boundary conditions:
for f 2 dom.S�/, we have �f D .�0f; �1f / 2 L precisely when

.I � P /�0f D 0; P�1f D ‚P�0f;

so we interpret P and I � P as projections onto the Robin and the Dirichlet parts of
K , respectively.

Another possibility is to write L as the graph of an operator defined on a reference
Lagrangian subspace. Let L] and yL be transversal Lagrangian subspaces. If L is
transversal to yL, then there exists an operator LWL] ! yL whose graph is L, in the
sense that

L D ¹v C Lv W v 2 L]º:
In particular, if yL D .L]/?, then we can write L D JT for some T 2 B.L]/, and
the Lagrangian condition is equivalent to T � D T . For instance, if L] D K ˚ 0 and
yL D 0˚K , then L is transversal to yL if and only if it has a frame .X; Y / for which
X is invertible, and hence an equivalent frame�

X

Y

�
�
�
IK

YX�1

�
:

It therefore corresponds to the graph of L D JT with T D YX�1 2 B.L]/.
Another possibility is to fix a Lagrangian subspace L0 and write L as the image

of an invertible operator GL 2 B.K ˚K/. Such an operator can be explicitly con-
structed as follows. If .X; Y / is a frame for L, then

GX;Y D
�
X �Y
Y X

�
(A.2)

is invertible and maps the horizontal subspace K ˚ 0 to L; cf. [67, Proposition 1].
Choosing a frame .X0; Y0/ for L0, we see that GX;Y .GX0;Y0/�1 is a valid choice
of GL.

Finally, we recall that L can be written as the graph of a unitary operator from
ker.J � i/ to ker.J C i/. This can be related to the frame description of L by decom-
posing �

Xu

Yu

�
D 1

2

�
.X � iY /u
.Y C iX/u

�
„ ƒ‚ …
2 ker.J�i/

C 1
2

�
.X C iY /u
.Y � iX/u

�
„ ƒ‚ …

2ker.JCi/
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for arbitrary u 2K . The desired unitary map is�
a

ia

�
D 1

2

�
.X � iY /u
.Y C iX/u

�
7! 1

2

�
.X C iY /u
.Y � iX/u

�
D
�
b

�ib
�
; (A.3)

therefore b D .X C iY /.X � iY /�1a. (This agree with the formula in [71, Proposi-
tion 1], since the J used there coincides with �J in this paper.) This parameterization
will be used in Section A.4 to define the Maslov index.

A.3. Smooth structure on the Lagrangian Grassmannian

We now recall the smooth structure on ƒ and give some equivalent formulations for
the differentiability of a path L.�/W .0; 1/! ƒ, in terms of the different parameteriza-
tions given above.

To prove that ƒ is a smooth manifold, one first shows that it is a topological
manifold, and then equips it with a smooth atlas of coordinate charts. The topology
is given by the gap metric, d.L1;L2/´ kPL1 � PL2k, where Lj 2 ƒ and PLj 2
B.K ˚K/ are the corresponding orthogonal projections.

Next, given a Lagrangian subspace L, we let UL? denote the set of Lagrangian
subspaces that are transversal to L? D JL. This is an open neighborhood of L inƒ,
and is homeomorphic to the set Bsa.L/ of self-adjoint operators on L, via the map

A 7! ‰L.A/´ ¹v C JAx W v 2 Lº: (A.4)

See [37, Proposition 2.21] for details. It follows that ƒ is a topological manifold.
Moreover, it can be shown that the “transition functions” are smooth on any intersec-
tion UL?

1
\UL?

2
of coordinate charts. That is, referring to the map‰LWBsa.L/!ƒ

defined in (A.4), we have that the composition

‰�1L2
ı‰L1 W ‰�1L1

.UL?
1
\ UL?

2
/„ ƒ‚ …

�Bsa.L1/

! ‰�1L2
.UL?

1
\ UL?

2
/„ ƒ‚ …

�Bsa.L2/

is C1; see, for instance, [37, Corollary 2.25]. This gives ƒ the structure of a smooth
manifold.

Differentiability of a path L.t/ of Lagrangian subspaces is defined with respect to
this manifold structure. However, it is often easier to work with the following equiva-
lent conditions, which are in fact taken as definitions in some papers.

Theorem A.1. Given a path L.�/W .0; 1/! ƒ, the following are equivalent:

(1) L.t/ is differentiable;

(2) the family of orthogonal projections PL.t/ is differentiable;
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(3) there exists a differentiable family of invertible operators Gt on K ˚K such
that, for some L0, GtL0 D L.t/;

(4) there exists a differentiable frame Z.t/ for L.t/;

(5) there exists a differentiable family of unitary operators Ut W ker.J � i/ !
ker.J C i/ such that L.t/ D ¹v C Utv W v 2 ker.J � i/º.

Proof. .1/ H) .2/. Suppose L.t/ is differentiable. In a neighborhood of an arbitrary
point t0, L.t/ is given by L.t/ D ¹x C JA.t/x W x 2 L.t0/º for some differentiable
family A.t/. Using [37, eq. (2.16)], we see that the orthogonal projection PL.t/ is
differentiable.

.2/ H) .3/. We fix an arbitrary t0 2 .0; 1/ and then, following [28, Theorem
IV.1.1], define Gt as the solution to the differential equation

d

dt
Gt D P 0L.t/.2PL.t/ � I /Gt ; Gt0 D I:

Choosing L0 D L.t0/, we find that Gt has the desired property (and in addition is
unitary).

.3/ H) .4/. Defining GX0;Y0 as in (A.2), we see that GtGX0;Y0 is differentiable
and maps K ˚ 0 onto L.t/. Writing this in block form

GtG
X0;Y0 D

�
X.t/ �
Y.t/ �

�
in the decomposition K ˚K , it follows that .X.t/; Y.t// is a differentiable frame for
L.t/.

.4/ H) .1/. Let t0 2 .0; 1/. Using the frame Z.t/, any point v 2 L.t/ can be
written as

v D Z.t/u D P0Z.t/uC .I � P0/Z.t/u
for some u 2K , where P0DPL.t0/. Since the frameZ.t0/WK!K ˚K is injective
and has range L.t0/, the map C.t/´ P0Z.t/WK!L.t0/ is invertible at t D t0, and
therefore is invertible for t sufficiently close to t0. It follows that any v 2 L.t/ can be
written as

v D w C .I � P0/Z.t/C.t/�1w
for some w 2 L.t0/. This show that L.t/ is the graph of the differentiable family
A.t/ D �J.I � P0/Z.t/C.t/�1WL.t0/! L.t0/, and hence is differentiable at t0.

.4/ () .5/ This is an immediate consequence of (A.3).
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A.4. Maslov indices for Lagrangian paths

For a continuous family M.�/ W Œa; b�! ƒ of Lagrangian planes, we can represent
each M.t/ as the graph of a unitary operator UM.t/Wker.J � i/! ker.J C i/. Doing
the same for L.t/, we obtain a unitary family

W.t/´ UM.t/.UL.t//
�1

on ker.J C i/ such that dim ker.W.t/� 1/D dim.M.t/\L.t//; see [24, Lemma 2].
The Maslov index of M.�/ with respect to L.�/ is defined to be the spectral flow of
W.t/ through the point 1 on the unit circle, in the counterclockwise direction. More
precisely,

MasŒa;b�.M.�/;L.�//´
nX

jD1

�l�j .b/
2�

m
�
l�j .a/
2�

m�
;

where d�e denotes the ceiling and �1; : : : ; �nW Œa; b� ! R are continuous functions
such that ei�1.t/; : : : ; ei�n.t/ are the eigenvalues of W.t/. See [25, Section 2.2] or
[75, Section 2] for details.

Remark A.2. We follow the conventions and notation of [75] so we can directly use
their formula (3.11) relating the Duistermaat and Maslov indices. Compared to the
Maslov index defined by Cappell, Lee, and Miller in [27], we have

MasCLM
Œa;b�.M.�/;L.�// D MasŒa;b�.L.�/;M.�//; (A.5)

see the remark in [5, Definition A.9]. On the other hand, this is related to the Maslov
index defined by Robbin and Salamon in [69] by

MasRS
Œa;b�.M.�/;L.�// D MasŒa;b�.M.�/;L.�//C 1

2
h.b/ � 1

2
h.a/;

where we have abbreviated h.t/´ dim.L.t/ \M.t//; see [5, eq. (A.7)].

Comparing (A.5) with [27, eq. (1.12)], we obtain

MasŒa;b�.L.�/;M.�// D �MasŒa;b�.M.�/;L.�//C h.a/ � h.b/: (A.6)

That is, the Maslov index is antisymmetric up to boundary terms.
We now explain how to compute the Maslov index, assuming for the rest of the

section that L.t/ D L is constant and M.t/ is differentiable. We say t0 is a crossing
if M.t0/ \ L ¤ 0. The associated crossing form is mt0 ´ qjM.t0/\L, where q is
the form on M.t0/ defined by (2.1). A crossing t0 is regular if the form mt0 is non-
degenerate. For a C 1 path M.�/ with only regular crossings on Œa; b�, the Maslov
index with respect to L is then given by

MasŒa;b�.M.�/;L/ D nC.ma/C
X

t02.a;b/

.nC.mt0/ � n�.mt0// � n�.mb/: (A.7)
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Regular crossings of a C 1 path are isolated, so the sum over t0 is finite. For complex
symplectic spaces (A.7), was proved in [25, Proposition 3.27]. For real spaces, this
method of computing the Maslov index first appeared in [69]. In this paper we only
require the special case when M.�/ is an increasing path, hence all crossing forms are
positive definite; see (2.5).
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