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The Duistermaat index and eigenvalue interlacing
for self-adjoint extensions of a symmetric operator

Gregory Berkolaiko, Graham Cox, Yuri Latushkin, and Selim Sukhtaiev

Abstract. Eigenvalue interlacing is a useful tool in linear algebra and spectral analysis. In
its simplest form, the interlacing inequality states that a rank-one positive perturbation shifts
each eigenvalue up, but not further than the next unperturbed eigenvalue. For different types of
perturbations, this idea is known as Weyl interlacing, Cauchy interlacing, Dirichlet-Neumann
bracketing, and so on.

We prove a sharp version of the interlacing inequalities for “finite-dimensional perturbations
in boundary conditions,” expressed as bounds on the spectral shift between two self-adjoint
extensions of a fixed semibounded symmetric operator with finite and equal defect numbers.
The bounds are given in terms of the Duistermaat index, a topological invariant describing
the relative position of three Lagrangian planes in a symplectic space. Two of the Lagrangian
planes describe the self-adjoint extensions being compared, while the third corresponds to the
Friedrichs extension, which acts as a reference point.

Along the way, numerous auxiliary results are established, including one-sided continu-
ity properties of the Duistermaat index, smoothness of the Cauchy data space without unique
continuation-type assumptions, and a formula for the Morse index of an extension of a non-
negative symmetric operator.

1. Introduction

1.1. Background and motivation

Let Hy and H, be two N x N Hermitian matrices, with eigenvalues A;(H;) <
A2(Hj) < --- < An(Hj). The following inequalities [43, Corollary 4.3.3] are often
referred to as “Weyl interlacing”:

Ak—o_(H1) < Ak(H2) = Agtoy (H), (1.1)

where o4 and o_ are given by the number of positive and negative eigenvalues of
the perturbation H, — H;. The fact that o_ 4 o4 gives the rank of the perturbation
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from H; to H, suggests that the bounds in (1.1) are optimal. Cauchy interlacing [43,
Corollary 4.3.17], where H> is obtained from H; by removing rows and columns, can
also be put in the form (1.1) by adjusting o+ to include the number of removed rows
and columns.

The principal aim of this work is to establish inequality (1.1) for any two self-
adjoint extensions of a bounded from below symmetric operator S with finite and
equal defect numbers. The results are directly applicable to differential operators with
finite-dimensional changes in boundary conditions, in settings such as linear Hamilto-
nian systems [45,46], quantum graphs [4, 14,15], Seba billiards [21,48,57,58,68,72],
and manifolds with conical singularities [39]; some concrete examples are discussed
in Section 7. Unlike the matrix case discussed above, the perturbations here are not
additive (since one cannot take the difference of two unbounded operators with dif-
ferent domains), so it is not immediately clear how to define such quantities as the
signature (0_, 04 ) of the perturbation.

Our results characterize the shifts in the interlacing, o_ and o, in terms of the
relative topological position of three pieces of data: the two Lagrangian planes that
describe the self-adjoint extensions of interest and a third Lagrangian plane describing
the Friedrichs extension. This topological position is expressed via the Duistermaat
triple index [5, 32,44, 75], an integer-valued symplectic invariant whose definition is
recalled and supplemented with several new computational tools in Section 3; see also
Section 7 for examples of computation.

For illustrative purposes, we present two proofs of our main result: via Maslov-
type index theory [3,25,27,69] and via the Krein resolvent formula [7, 38, 49, 54,
55,70], in Sections 5 and 6, correspondingly. Along the way, we sharpen existing
techniques, in particular to avoid relying on unique continuation-type conditions; see
Section 4.

1.2. Main results

Let J be a separable Hilbert space and let S be a closed, bounded from below, densely
defined symmetric operator with finite and equal defect numbers (n, ). Under these

assumptions, all self-adjoint extensions H of S have the same essential spectrum,’

Spec..(H) = Spec(S) :={z € C : S — z is not Fredholm}. (1.2)

IThis coincides with 0.3 (S) in [33, Chapter IX], so the first equality in (1.2) follows from
[33, Corollary 1X.4.2.]
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We will be describing the self-adjoint extensions of S in terms of a boundary triplet
(K, Ty, T'1), see [70, Section 14.2]. Here X is an n-dimensional’ complex Hilbert
space and the linear mappings Iy, I'y: dom(S*) — K are such that the operator

I:dom(S*) - K K, Tf:=({TofiT1f)
is surjective and the abstract Green’s identity
(f.S"8)se —(S*f.8)ae = (Lo f. T1g)x — (T1 £ Tog)x (1.3)

holds for all f, g € dom(S™).
We will view K & K as a complex symplectic space with the symplectic form

o, v) = (ug,v1)x — (U1,v0) %, U= (up,uy1)and v=(vg,v1) €K DK, (1.4)

in terms of which the right-hand side of Green’s identity (1.3) is w(I" f, I'g). Self-
adjoint extensions H of S are in one-to-one correspondence with Lagrangian planes’
£Lin X & K via

dom(H) :={f edom(S*): (I /,T1 f) € £}. (1.5)

Heuristically, this says that one must impose dim &£ = n “boundary conditions” on
S* to obtain a self-adjoint operator.

To state an analogue of inequalities (1.1) for two self-adjoint extensions H; and
H; of §, in terms of the corresponding Lagrangian planes £; and £,, we will need
a third Lagrangian plane %, which corresponds to the Friedrichs extension Hr of S,
namely

F:={(Tof.T1f): f € dom(HF)].
It is common in applications to choose the triple (K, g, I'1) so that the domain of
the Friedrichs extension is ker 'y and thus ¥ coincides with the vertical subspace
V := 06 K. Some of the results below take a simplified form under the assumption
that ¥ = V.

Since H is a self-adjoint extension, Spec(H) \ Spec, (H) consists of isolated

€ss
eigenvalues of finite multiplicity. For an interval / whose closure is disjoint from

Spec., (H), we define* the counting function
N(H:I):=)_dimker(H — 1), (1.6)
A€l

2A boundary triplet exists if and only if the defect numbers of S are equal, in which case
dim X equals this common value, see [70, Proposition 14.5].

3We refer to Lagrangian subspaces as “planes” regardless of their dimension. For a review
of symplectic linear algebra in complex vector spaces, we refer the reader to [34,40] or [16,
Appendix D].

“The requirement that / lies outside the essential spectrum guarantees N(H; I) is finite.
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i.e., the number of eigenvalues of H in / counted with multiplicity. We will abbreviate
n_(H):= N(H;(-00,0)), no(H) := dimker H (1.7)

when these are well defined. The number n_(H) is called the Morse index of H. If
A € R is below the essential spectrum, we also define the spectral shift

o0(Hy, Hy;A) := N(Hy; (—o0, A]) — N(Hz; (—o0, A])

between self-adjoint extensions H; and H. Finally, assuming S is semibounded from
below, we will label the eigenvalues of H below the essential spectrum by A (H) <
A2(H) < ---, i.e., in increasing order, repeated according to their multiplicity.

We are now ready to formulate our main result.

Theorem 1.1. Suppose S is a closed, bounded from below, densely defined symmetric
operator with finite and equal defect numbers and a boundary triplet (J, Ty, T'1). Let
£1, £2 and F be Lagrangian planes in (K @ K, w) corresponding to self-adjoint
extensions Hy, H, and the Friedrichs extension Hr of S. Define

o_ =1L, L2, F), o+ :=1(Ly, L1, F), (1.8)
where 1 is the Duistermaat index (see Section 3). Then the bounds
—o0_<0(Hy,HyA) <oy (1.9)
hold for all A € R below Spec.(S). Equivalently, each of the inequalities
Ak—o_(H1) < Ak(H2) < Ao, (H1) (1.10)

holds for all k such that the eigenvalues in question are below Spec.(S).

It follows from elementary properties of the Duistermaat index that
o_ +04 =n—d1m(§€1 ﬂiz), (111)

where n = dim £; = dim £, = dim X is the defect number of the operator S. Rela-
tion (1.11) gives a shortcut for computing one index in (1.8) from the other. The fact
that (1.11) is the rank of the perturbation from H; to H, (in the sense of (1.18) below)
suggests that the bounds in (1.9) are optimal. Proposition 7.5 puts this on a rigorous
footing: for any o_ and o4, there are extensions H; and H; for which both estimates
in (1.9) are sharp.

The intuition behind needing ¥ is as follows. The (complex) Lagrangian Grass-
mannian A — the set of all Lagrangian planes in K & K — is diffeomorphic to the
unitary group U(n), a compact manifold without boundary. The plane & provides a
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point of reference in A, which allows us to establish facts on the ordering of the eigen-
values in R, such as (1.10). Heuristically, HF is the extension of S with the largest
number of “eigenvalues at +00.”

One approach to Theorem 1.1 proceeds via the Maslov index of a special path of

Lagrangian planes, the Cauchy data space, defined here with the parameter z € C by
M(z) :={(Tof,T1f): f €eker(S* —2)} C K& K. (1.12)

Relevant properties of M (z) are given in Proposition 4.5. Note that M(z) is the graph
of the Dirichlet-to-Neumann map (Weyl-Titschmarsh function) M (z) when the latter
is defined.

Theorem 1.2. Under the assumptions of Theorem 1.1, one has
N(Hq; (a,b]) — N(Hz: (a,b]) = «(£1, L2, M (b)) — (L1, £2, M(a))  (1.13)
for any [a,b] C R\ Spec(S). In particular, the spectral shift is given by
o(Hy, Hy; A) = t(L1, Lo, ML) —1(£1, £2, F) (1.14)
for any A € R below the essential spectrum.

We remark that it is common to express eigenvalue counting functions as Maslov
indices (see, for instance, the survey [6] and references therein), but only under the
assumption of the unique continuation property (UCP) for the symmetric operator S':
the mapping f* +— (Tp f, T'1 f) is injective on ker(S™* — z) for all z € C. Without the
UCP, the Maslov index may miss some eigenvalues, as demonstrated in Section 7.5.
A novel feature of Theorem 1.2 is that the UCP is not necessary when evaluating the
spectral shift.

Another remarkable feature of Theorem 1.2 is that using a Maslov-type index (or a
spectral flow, or the Krein shift function) invariably involves integration or evaluation
over a path (for example, continuously tracking a branch of the logarithm). In contrast,
equation (1.13) involves only the data collected at the endpoints of the interval!

An easy corollary of Theorem 1.2 is the following elegant formula for the Morse
index of an extension Hg of a non-negative symmetric operator S':

n_(Hg) = (M(0), 2, F).

We refer the reader to Corollary 7.1 for a precise formulation and references to related
results.

3See, for instance, [66, Theorem 1.4], which says a Lagrangian plane & intersects ¥ non-
trivially if and only if every neighborhood of & contains an &£’ whose self-adjoint extension
H &/ has eigenvalues close to —oo.
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Another approach to Theorem 1.1 is via the resolvents of H; and H», which can be
compared using the Krein resolvent formula. Throughout, we use the notation N :=
ker(S* — z), and denote the number of zero, positive and negative eigenvalues of a
self-adjoint operator (whenever these quantities are finite) by n4(-) with @ € {0, 4, —};
cf. (1.7).

Theorem 1.3. Assume the setting of Theorem 1.1. For A € p(Hy) N p(Hy) N R, we
define the operator

DA :=(H—A) 1= (H,— )7L (1.15)

Then one has

n_(DA)) = (L1, £2, M(L)),

(1.16)
n4 (D)) = u(L, £1, M(R)),
n()(D(X)LN‘)L) = dimiil N iz. (1.17)
In addition, D(A) has constant rank given by
rank(D(A)) =n —dim £, N £, (1.18)

while the functions A + ny(D())) are locally constant on p(Hy) N p(Hy) N R.

In Section 6 we will explain how Theorem 1.1 can be obtained from Theorem 1.3.
In particular, we will use the index formulas in (1.16) to derive the interlacing inequal-
ity (1.10).

Remark 1.4. Assume the setting of Theorem 1.3.

(1) Since H; and H, are both extensions of S, we have D(A) f = 0 provided f €
c/\/AJ' =ran(S — 1), thus NAJ- C ker D(A). In this context, the identity in (1.17)
provides new information about the part of ker D(1) contained in N}.

(2) The fact that the rank of D(A) is constant on p(H1) N p(H3) N R was shown
in [7, Theorem 2.8.1]; however, the explicit value n — dim £, N &£, appears
to be new.

(3) The indices n_(D(A)) and n4(D(A)) may change value when A passes
through Spec(H7) U Spec(H5), but their sum remains constant, as seen from
(1.18), cf. (1.11).

1.3. Related results and possible extensions

The most general prior result on eigenvalue interlacing known to us in the context
of self-adjoint extension is [19, Theorem 10.2.5]. This theorem only applies when the
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operator H is obtained from H by the restriction of its form domain. For instance, no
pair of extensions from the example in Section 7.1 satisfies this condition. In contrast,
our Theorem 1.1 allows one to compare any pair of self-adjoint extensions of S

Relations between the Morse index of self-adjoint extensions of S and the bound-
ary operators in K & K constructed by means of the Weyl function (as in Corollary
7.1, for example) are classical, and known at least since M. G. Krein [50], Birman
[17], and Derkach and Malamud [31]; see also the recent treatise [7] and the literature
cited therein. However, the geometric approach via the Duistermaat index offered in
the current paper allow us, on the one hand, to drop inessential restrictions (such as the
form domain inclusion condition in [31, Theorems 5 and 6]) and, on the other hand,
to compute the spectral shift using the Duistermaat index calculus that we review and
extend in Section 3.

The inequalities (1.9) and (1.10) give different but equivalent points of view on the
same result; we include both of them for completeness and ease of use in applications.
However, the discrete spectral shift we consider is extended by a more flexible concept
of Krein spectral shift [18,20,52,53,63,70], valid also on the continuous spectrum
and in the gaps. With this extension, we conjecture that (1.9) holds for all real A.
The case of a rank-one perturbation has been thoroughly investigated in [8, 11], in the
more general setting of self-adjoint operators on a Krein space. The latter results are
formulated in the gaps of the essential spectrum (see also [10]), which gives further
support to our conjecture about the universal validity of (1.9). Note, additionally, that
(most of) the conclusions in Theorems 1.2 and 1.3 are already valid in the gaps.

QOutline of paper

In Section 2 we review the crossing form and the computation of the Maslov index
for monotone paths. In Section 3 we recall the definition of the Duistermaat index,
in addition to obtaining new results on its one-sided limits and explicit formulas
for its calculation via Lagrangian frames. Section 4 derives fundamental properties
of the Cauchy data space, which we use in Section 5 to calculate its Maslov index
and hence prove our main theorems. In Section 6 we give a second proof using the
Krein resolvent formula, and in Section 7 we present some applications of our results.
Appendix A summarizes basic properties of the Lagrangian Grassmannian that are
used throughout.

Notation and conventions

We use (-, )z and (-, -) x to denote the scalar products on # on K. These are taken
to be linear in the second argument, as is the symplectic form w in (1.4). We use &
to denote the direct (not necessarily orthogonal) sum, and the set of all Lagrangian
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planes in (K & K, ) is denoted A. The zero subspace will be denoted by 0 when
the ambient space is clear from the context. The space of bounded linear operators
between Hilbert spaces #1, 5 is denoted by B (H1, #>). We denote by Spec(-) and
p(-) the spectrum and the resolvent set.

2. Crossing forms and monotonicity

We first review crossing forms and the computation of the Maslov index for monotone
paths. This suffices for the purposes of this paper; see Appendix A for a general dis-
cussion of the Maslov index and different parameterizations of Lagrangian subspaces.
We work in a finite-dimensional complex symplectic space, K @ K, with Lagrangian
Grassmannian A.

Let £(-): [0, 1] — A be a differentiable path of Lagrangian planes. For ¢y € [0, 1]
and u, v € L(), we define the crossing form g by

d -
a(u,v) = Ew(u,v(l)) . 2.1

0

where ¥(¢) is any differentiable path in K & KX such that ¥(¢9) = v and ¥(¢) € L(¢)
for all ¢ near fy. For this to be a valid definition, we must show that it does not depend
on the choice of the path v.

Suppose 1(¢) is a differentiable path in K & K with ti(fg) = u and 1i(¢) € L(¢).
The fact that #(¢) and v(¢) are both in £(¢) implies w (i (¢), v(¢)) = 0. Differentiating
at tg, we get

w(u, ' (to)) = —w(@ (), v) = w(v, @' (to)).

Since the left-hand side does not depend on #(¢) and the right-hand side does not
depend on (¢), both sides are path independent. This proves that q(u, v) is well
defined, and is equal to g (v, u).

We now give some equivalent expressions for the quadratic form g[v] := g (v, v).
The analogous expressions for the sesquilinear form g (u, v) can be obtained by polar-
ization.

Theorem 2.1. Let £(-):[0, 1] = A be a differentiable path of Lagrangian planes. Fix
v € L(to) and let £ be a Lagrangian subspace transversal to L(tp).

(1) If w(t) is the unique path in ffor which v + w(t) € £(t), then

d
ap] = o w@)| _ - 2.2)

=lo

2 If £¥ is transversal to SE, L;: &% > ZLisa differentiable family of operators
such that £(t) = {u + Lyu:u € £%} (i.e., £(¢) is the graph of L;) and u € £*
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is such that v = u + Lyu, then

d
afv] = Ea)(u,Ltu) . 2.3)

to

Y(t)
v = Z(to)k, then

B)IfFZ@) = (X(t)) is a differentiable frame for £(t) and k € K is such that

q[v] = (K, (X*(20)Y'(t0) — Y " (10) X' (t0))x)Cn.

(4) If G is a differentiable family of operators on K & K such that G; £ (ty) =
L(t) and Gy, = I ¥, then

d

qfv] = d—a)(v,Gtv) . 2.4)

t t=tg

Note that (2.2) is the definition of g given by Robbin and Salamon in [69, The-

orem 1.1], so this theorem shows that our definition in (2.1) is equivalent to theirs.
Similarly, choosing L= £(tp) in (2.3) recovers the definition in [22, eq. (2.1)].

Proof. The given expressions for g[v] follow from (2.1) with appropriate choices of
the path v(¢), namely v + w(¢), u + L;u, Z(¢)x and G,v. ]

The crossing form allows us to define a notion of monotonicity for differentiable
paths.

Definition 2.2. A differentiable path £(-): (0, 1) — A is non-decreasing (corresp.
increasing) if the crossing form q = q,, on £(fo) is non-negative (corresp. positive)
at every fo.

The Maslov index of an increasing C ! path M (-), with reference plane &, is given
by
Mas(g p)(M(). £) = Y dim(M () N &L). (2.5)
t€la,b)
The fact that q is positive (and hence non-degenerate) guarantees that the crossings
are isolated, therefore the above sum is finite. This is a special case of [25, Proposi-
tion 3.27]; see (A.7) for the general formula. In practice, we will use the equivalent
formula
Masg 5 (L. M(-) = — Y dim(M(1) N &L). (2.6)
te(a,b]
which is obtained from (2.5) using the identity (A.6). Note that the sum in (2.5) is
overt € [a,b), whereas the sum in (2.6) is over ¢ € (a, b].
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Remark 2.3. Our notion of path monotonicity is the standard one for the Lagrangian
Grassmannian [3] and is local in nature. If £(¢) never intersects the vertical subspace
VYV =0 ® K, then this coincides with the partial ordering defined in [7, Section 5.2]
for families of self-adjoint linear relations. Namely, £(-) is non-decreasing in the
sense of Definition 2.2 if and only if £(¢;) < £(t2) for all #; < ¢, in the sense of
[7, Definition 5.2.3].

This is no longer the case if £(¢) intersects 'V at some time. A simple example
is £(t) = {(z cost, zsint) : z € C}, which is Lagrangian in C? for real values of ¢.
At an arbitrary point v = (zg costg, zg sintg) € £(tp), we compute q[v] = |z¢|?, and
conclude that £(-) is increasing in the sense of Definition 2.2. On the other hand, for
small positive e, £(/2 + ¢) < £(/2 — ¢) in the sense of [7, Definition 5.2.3].

3. The Duistermaat triple index

Again, assuming that X @ X is a finite-dimensional complex symplectic space, we
now recall the definition of the Duistermaat index ¢, which first appeared in [32,
eq. (2.16)]. It is closely related to other symplectically invariant triple indices, such
as Kashiwara—Wall index [27, 64, 73] — also known as the “triple signature” [62,
Appendix 6.2] — and Leray—de Gosson index of inertia defined in [30, Definition 148]
(generalizing [61, Section 1.2.4] to remove the assumption of transversality). In fact,
there is only one non-trivial symplectic invariant of a triple of Lagrangian planes
[1, Proposition 4.4], and the above indices are just different incarnations of it.

When describing the Duistermaat index, we follow the original definition [32,
eq. (2.16)], but use the notational conventions of [75], whose results we will use
below. An alternative axiomatic approach to the Duistermaat index is presented in
our follow-up work [13].

3.1. Definition and basic properties

For Lagrangian planes «, 8, and y suchthatea N = 0 = B N y, we can view y as
the graph of a linear mapping L:o — f,i.e., ¥y = {u + Lu : u € o}. This gives rise
to a bilinear form Q(«, f;y):a x @ — C acting by

Qa, B:y): (ur,uz) = w(uy, Lus). 3.1

It is easily shown that
ker Q(a, B;y) = a Ny. (3.2)
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Figure 1. Possible transversal configurations of three Lagrangian planes (illustrated in R?) and
the corresponding values of the Duistermaat index.

For arbitrary £1, £,, £3 € A, we choose an £ that is transversal to all three and
define the Duistermaat index of (£1, £2, £3) to be®

(L1, L2, L3)
= n_(0(L2, £ £3) —n—(Q(L1, £: £3) +n_(0(L£1, £: £2)).  (3.3)

One can geometrically describe the integer ((£1, £,, £3) as the maximal dimen-
sion of a subspace fg. C £L3 which lies between £1 and £,, where “between” is
defined in terms of the positive direction of rotation in the Lagrangian Grassmannian,
as introduced in Section 2. This geometric interpretation, which is not immediately
obvious from the definition, is illustrated by the following example (see also Corol-
lary 3.7).

Example 3.1. Consider the Lagrangian planes &£; = {(z,6,z):z € C} in the symplec-
tic space C2, with 6, € R and j = 1,2, 3. Simple calculations (for example, using
Theorem 3.5 where we can take ¢ = 0) show that

0, 015925030r93<915920r92§93<01,
ULy, L2, L£3) =
1, 01 <63 <6r0rf, <6; <Os0r63 <6, <0.

These results are illustrated in Figure 1.

®The negative index of a bilinear form is defined as the maximal dimension of a subspace
on which the form is negative definite. Alternatively, one may count the number of negative
eigenvalues of the corresponding Hermitian matrix, as in (1.7).
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We next recall some basic properties of ¢ that will be useful later. The Duistermaat
index ¢ is a symplectic invariant: for any symplectic automorphism g of (KX & K, w),
we have

(L1, L2, £3) = 1(g(£1). g(£2), g(£3)). (3.4)
For any Lagrangian £1, £5, £3, and £4, ¢ satisfies the cocycle property:

l(ch £, oc63) - l(ch £a, $4) + t(il, L3, 564) - t(iz, L3, 134) =0.

This follows from [75, Theorem 1.1], cf. [64, Proposition 1.5.8], [29, eq. (1.2.13)],
[27, Section 8, Proposition VI]. In fact, the definition in (3.3) can be interpreted as
letting

L(:ﬁl,cfz, :63) = n_(Q(ifl, :63; iz)), assuming $1 n $3 =0= :62 N :63, (35)

then using the cocycle property to extend to Lagrangian planes with no transverality
assumptions. Equation (3.5) will be derived from the definition (3.3) of ¢ in Corol-
lary 3.3 below (see also [32, Lemma 2.4] and [75, Lemma 3.13]).

From [32, Lemma 2.4], we immediately get an estimate

0<u(Lr,L2,&L3) <n—dim((£1 N&L2) + (£2NL3)) <n—dim&L NL>. (3.6)
Under permutation of the first two arguments, we have

(L1, L2, L3) + (L2, L1, L3) =n —dimE; N Ls. 3.7

This follows, for instance, from Theorem 3.5 below. We also have the cyclic identity

(L1, L2, L£3) —dimEy N L3 = (L3, £1, L2) —dim £, N £3, (3.8)

which follows from [75, Lemma 3.2 and Lemma 3.13]. Combining (3.7) and (3.8),
we obtain identities for other permutations,
L(I1,$2,$3)+L($1,$3,£€2) =n—dim£, N L3, 3.9
L(éﬁ], :Ez, :63) + L(:ﬁ?,, ;Ez, fl) =n-— dlmil N éﬁz
—dimf,NL3 +dimL; N L3,

and the important special cases
(L, £,L£3)=0, (L£1,L£,£)=0, (£, Ly, L)=n—dimENL,. (3.10)

We finally recall an identity of Zhou, Wu, and Zhu that relates the difference
of Maslov indices with different reference planes to the difference of Duistermaat
indices:

Masig p)(£2, M(-)) — Maspq p1 (L1, M(-))
= (L1, L2, M(b)) — (L1, L2, M(a)) (3.11)
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for any continuous path M (+); see [75, Theorem 1.1]. The difference of Maslov indices
is also known as the Hormander index [42].

3.2. One-sided limits

The notion of monotonicity in Definition 2.2 allows us to compute one-sided limits of
the Duistermaat index.

Theorem 3.2. Suppose £:(—1,1) — A is a continuous path that is differentiable
and increasing on (—1,0) U (0, 1), and set £y := L(0). Forany £1,L>, £3 € A and
0 < |t| < 1, we have

0 t<0

(L), L2, £3) = U(Lo, L2, L3) + 1 ’

(£(1), £2, £3) (Lo, L2, £3) {dimizmggo_dim$3ﬂ$0» t>0,
(3.12)

) Lo, £2,£3), 1 <0,
l($2,$3,$0), t>0,

(£1. (). £3) = (L. Lo, £5) + 4 SMEL N Lo 10, (3.13)
L b 9, :L b b .
! ? P  dim s N &y, 1> 0,

dimf, N&Ly—dimL; NLy, <O,
0, t >0,
(3.14)

U(Lr, L2, £(1)) = (L1, L2, Lo) + {

Lo, L£1,L2), t <0,
:{l( 0, L1, £2) < (3.15)

l(cfl, L, cfo), t>0.

In particular, we see that the index ((&£1, £2, £3) is left-continuous in £, and
right-continuous in £ 3, but in general is neither right- nor left-continuous in &£5.

Proof. We first prove (3.14), as it follows most directly from the definition of ..
Choose £ that is transversal to £, £, and £ (and hence to L(¢) for small ¢).
Recalling the definition in (3.3), we have

WL, L2, (1))
= n_(Q(£2, £; £(1))) —n_(Q(£1, &; L)) + n_(Q(£L1, L; £2)). (3.16)

Starting with the first term on the right-hand side, we abbreviate

Q= 0(£2, £: £(1)).
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This acts by Q[u] = o(u, Lsu), where L;: £, — £ is such that @) = {u +
L,u:u € £5}. From Theorem 2.1, namely (2.3) with £% = £,, we see that Q',[u] =
alu + L,u] for any u € &£, therefore Q) is positive for ¢ € (—1,0) U (0, 1). It
follows from the mean value theorem that Q; is increasing on (—1, 1), therefore
n_(Q:) = n_(Qy) for small ¢ > 0, and

n—(Q:) =n—(Qo) +dimker Q9 = n—(Qo) + dim&L> N Lo

for small # < 0, where we have used (3.2). An analogous formula holds for the term
n_(Q(£1,L£; £(t))). Using this in (3.16) completes the proof of (3.14).
To prove (3.12), we combine (3.14) with the identities

t(£2, £3,L0) = (Lo, L2, L3) +dimLy N Ly —dim L3 N Ly,
UL, £3, £(1) = (L), L2, £3), 0< 1] K1,

which follow from (3.8) and the observation that £(¢) is transversal to £, and £3
except at isolated values of ¢. The proof of (3.13) is analogous. ]

Corollary 3.3. Under the assumption £1 N £3 = 0 = £, N L3, we have
(£, L2, L3) =n_(Q(Ly, L3; L2)).

Proof. Let £(t) be an increasing path with £(0) = £3. Since £3 is transversal to
£1 and £5, Theorem 3.2 implies ((£1, £2, £3) = t(£1, L2, L(t)) for |z| <« 1. For
small non-zero ¢, we can choose £ = L3 in the definition (3.3) of ((£1, £,, £(t)) to
get

t(£y, L2, L(1))
=n_(Q(£2, £3: L£(1))) —n-(Q(L1, L£3; L£(1))) + n—(Q(L1, £3; £2)).

Using the identity n_(Q(«, B8;y)) + n—(Q(B,a;y)) = n, valid when «, 8, and y are
pairwise transversal, we can rewrite this as
U(Ly, L2, L£(1))
=n_(Q(L3, £1: L)) —n-(Q(L3, £2: £L(1))) + n-(Q(L1, £3: £2)).
The quadratic form Q(£3, £1; £(¢)) is increasing in ¢ and is identically zero

when t = 0, so n_(Q(£3, £1; L£(¢))) = 0 for small positive ¢ and similarly for
n_(Q(£3, £2; L£(1))). [
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3.3. Computing with frames

We now give a simple formula for computing the Duistermaat index using linear alge-
bra. First, we recall that any n-dimensional subspace M C K @ K can be described
by a frame, which is an injective linear operator

X
Z = (Y):JC—>JCEBJC,
whose range is M. Moreover, M is Lagrangian if and only if X*Y = Y*X (areview
of this and other parametrizations of Lagrangian planes is given in Appendix A.2).

This description is not unique, but it is easy to see that frames Z and Z describe
the same subspace if and only if Z = ZC for some invertible C: X — K. Therefore,
the set

EWM) :={e€R: X + ¢Y is not invertible}
and the operator
RE:=YX +¢eY)!, geR\EWM), (3.17)

are independent of the choice of frame. The set E (M) is finite, since det(X + ¢Y)
is a polynomial in ¢ that is not identically zero because Z has rank n. When M is
Lagrangian, the condition X*Y = Y *X implies that

(X +eY)*R(X +€Y) = X*Y +&Y*Y
is Hermitian, therefore R is Hermitian.

Remark 3.4. For the Cauchy data space M(z) defined in (1.12), the corresponding
Ré(z) acts by u — I'y f', where f € ker(S™* — z) satisfies I'g f + ¢I'1 f = u. (The
condition ¢ € R \ E(M(z)) guarantees there is a unique such f foreach u € X.) In
particular, R%(z) is the Dirichlet-to-Neumann map, whenever it is defined. We thus
refer to the operator R? in (3.17) as the e-Robin map, whether or not the corresponding
subspace M is the Cauchy data space.

An intuitive description of R® is the “regularized slope” of M, as drawn in
K @ K. Referring to Figure 1, it is therefore natural that the Duistermaat index can
be computed by comparing slopes of pairs of planes, in the following sense.

Theorem 3.5. Let R{, RS, and RS be the e-Robin maps for the Lagrangian planes
£1, Lo, and £3. Then the Duistermaat index 1(£1, £, £3) is given by

WE1, 2, £3) = n (RS — RD) +n_(RS — R —n_(RS— RY)  (3.18)
forany e € R\ E123, where

E123 := E(£1) U E(£2) U E(£3)
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is a finite set. In particular, for the vertical plane V = 0 @ K we have
(L1, £2,V) = n_(R, — R)) (3.19)
forany 0 < e < 1.

Proof. We first assume that £1, £,, and £3 are transversal to 'V and establish (3.18)
with & = 0, using the definition (3.3) with £ = V. In this case, each &£; is represented
by the frame (7, R;)). We will use this to compute the index of Q(&£,,V; £3) to be
used in (3.3). To represent £3 as the graph of an operator L: £, — V, we write

K K 0
= = L V.
‘fﬁ(zegx) (R%)*(R%—R%) utLueds+

For any u; = (k1, R9x1)" and up = (k2, R3k2)" in £, we thus obtain
O(£2.V: £3): (u1.u2) = w(uy, Luz) = (k1. (RS — R9)k2) .

Since the index is invariant under isomorphism, the form Q(&£,, V; £3) on £, has
the same index as the form (-, (R — R9)-) x on X, that is

n_(Q(£2,V: £3)) = n_(R3 — RY).
Evaluating the other two terms in (3.3) similarly, we obtain (3.18) with ¢ = 0, i.e.,
W(&L1, L2, £3) = n—(R) — RY) + n_(RY — RY) —n_(RY — RY). (3.20)

In the general case, we can use the symplectic transformation

1 el
= \o 1
to make £, £,, and £3 transversal to V. In other words, we consider Lagrangian

planes
Xi + €Y
£Li = gLy = ran( I Y. J),
J

with e chosen so that all X; + ¢ are invertible. From (3.4), we have ((£1, £, £3) =
L(£5, £5, £5), so we can compute (L], £5, £5) according to (3.20) and thus
obtain (3.18).

Finally, we consider the case £3 = V and prove (3.19). We have R§ = e,
so the result follows once we establish that for any Lagrangian frame (X, Y)", the
operator e~ '] — Y(X + Y )~ ! is non-negative definite. It is equivalent to consider

eX +eV)* (e T —Y(X +e¥) H(X +6Y) = X*X +eV*X.
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The right-hand side is a Hermitian perturbation of the non-negative operator X *X . As
functions of ¢, zero eigenvalues of the unperturbed problem remain identically zero,
since the perturbation Y * X vanishes on ker(X *X) = ker X. On the other hand, the
non-zero eigenvalues are positive at ¢ = 0 and thus remain bounded away from zero
for small ¢. |

Using Theorem 3.5, we obtain a formula for the Duistermaat index in the case
when £3 =V =06 K and £; NV = 0. We remark here that any Lagrangian
plane can be described in terms of a frame (X,Y) = (P, POP + P — I), where
P: K — XK is an orthogonal projector and ® is a Hermitian operator acting on ran P;
see Section A.2.

Proposition 3.6. Suppose the planes £1 and £ are described by the frames (I, M)
and (P, POP + P — I), respectively. Then

L(il,iz,V) = n_(®— PMP).

This result is inspired by a counting formula in [9] for the eigenvalues of the
Laplacian on a metric graph, which we will rederive in Section 7.2.

Proof. Let £(t) denote the path given by the frames (I, M + tI). Since £(¢) is
increasing and £(0) = &£, Theorem 3.2 gives

(£, L2, L3) = tgfgl_t(i(f),fﬁchﬂ-

We now use (3.19) to compute ¢(£(¢), £2, £3). Writing R; =Y;(X; +¢¥;)lin
block form corresponding to the decomposition K = ker P @ ran P, we obtain

Rg—Ri:(g_ll_Mll_t] —Mq,

0 )
—M> @—Mzz—[]) + (8)

where My = (I — P)M(I — P), My, = PMP and so on. The top-left block is
strictly positive (and in particular invertible) for small ¢ > 0, so the Haynsworth for-
mula [41] implies
n_(R5—R5) =n_(©— My —tl + O(c) + May ("1 4+ O(1)) "' My5)
=n_(® — My —tl + O(g))
as ¢ — 0. The operator ® — M5, — t 1, is invertible for all ¢ in some interval (z«, 0),
therefore

WEW). £3.£5) = lim n_(R; — RY)

=n_(0— My —tl) =n_(0— My +|t|1>).
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On the other hand, since negative eigenvalues cannot be produced by a small positive
perturbation, we have, for sufficiently small 7,

(EL(@), L2, £3) =n_(© — M) =n_(® — PMP),
completing the proof. |

Finally, we give a corollary that will be useful in applications, and also clearly
illustrates the idea that the index (£, £,, £3) quantifies how much of £3 lies
“between” £1 and £, (in the special case that £ and £, are horizontal and ver-
tical, respectively).

Corollary 3.7. Let X C K be a subspace and ©: K — K a self-adjoint oper-
ator. Denote its number of non-negative eigenvalues by ng+(®) and consider the
Lagrangian plane £¢ := {(k, k' + Ok):x € K, k' € X1}. Then

(K D0,00 K, L) =no+(0).

Remark 3.8. If we view £ as a self-adjoint linear relation from X to J, then ® is
the “operator part” of L@, as in [70, Proposition 14.2].

Proof. Using Proposition 3.6 with £1 = KX &0, £, = £, M = 0 and P being the
orthogonal projector onto K, we get t(K @ 0, £o,0 & K) = n_(0®). Since

n—dim(£e N 0@ X)) =n —dim KL = dim KX = n_(©) + no4 (0),

the result follows from (3.9). ]

4. The Cauchy data space

The main object in the proof of Theorems 1.1 and 1.2 is the Cauchy data space
M(z) =T (ker(S* —z) C K @ K 4.1)

introduced in (1.12), where I' = (I'g, I'1). We now establish its fundamental proper-
ties, which will be needed below, in particular in the proofs of Proposition 5.3 and
Theorem 6.2. In this section we allow K to be infinite dimensional, as the results
presented herein are of independent interest.

Recall that the deficiency of a closed operator T: X — Y is the codimension of
ranT in Y, ie., defT := dim(Y/ranT), see [33, Section 1.3]. We define

®_(T) :={z € C:def(T —z) < o0}
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and observe that z € ®_(T') implies ran(7T — z) is closed, by [33, Theorem 1.3.2]. If
S is closed and symmetric, then

C \ Spec, . (H) € ®_(S™) 4.2)

ess

for any self-adjoint extension H of §, with equality when the defect numbers of .S
are finite; see [33, Corollary 1X.4.2].
We now show that M (z) depends on z analytically as long as z € ®_(S*).

Theorem 4.1. Let S be a closed, densely defined symmetric operator on a Hilbert
space J# with equal (possibly infinite) defect numbers, and let (K ,Ty,'1) be a bound-
ary triplet. In a neighborhood of any zo € ®_(S*), there exists an analytic family
of invertible operators G, € B(K & K) such that G,, = Ixgpx and G, M(z) =
M(2).

An equivalent formulation of the theorem is that M (z) is an analytic Banach bun-
dle over ®_(S*); see [74] for definitions. To compare this to previous results in the
literature, we first recall that S has the unique continuation property (or, equivalently,
has no inner solutions) if ker(S* — z) N ker(I'g) N ker(I'y) = 0 for all z € C. Since
S C S*, the identity

ker(I') = ker(I'g) Nker(I'y) = dom(S), 4.3)
see, e.g., [70, Lemma 14.6 (iv)], implies that this is equivalent to
ker(S —z) = 0. 4.4)

Non-trivial elements of ker(S — z), if they exist, are called inner solutions.

In general, ker(S™* — z) is not analytic or even continuous on ®_(S*), since the
dimension of ker(S* — z) will jump at points z which are eigenvalues of S. For this
reason, similar results in the literature have assumed one of the following:

(1) S has no inner solutions (see [22, Theorem 3.8] and [37, Section 6]);

(2) z € p(Hy), where Hj is the Dirichlet-type extension of S (see [7, Theo-
rem 5.5.1] and [70, Proposition 14.15]). Note that this is stronger than assum-
ing ker(S —z) = 0.
Theorem 4.1, on the other hand, requires no such assumptions on S or z. The reason
is that when passing to the Cauchy data M (z), the jump in the dimension disappears,
leaving only the “analytic component” of ker(S* — z). To make this intuition rigorous,
we use the observation of M. G. Krein [51] (see also [7, Remark 2.3.10]) that one
can split off a maximal self-adjoint part of S — which is responsible for the inner
solutions — and hence consider only simple symmetric operators.
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We recall from [7, Section 3.4] that a closed, symmetric operator is simple if 0 is
the largest reducing subspace on which it is self-adjoint. Simple symmetric operators
have no eigenvalues, by [7, Lemma 3.4.7], and hence satisfy (4.4) for all z € C. Since
S is closed and symmetric, there is a splitting H = Hgm B Hs, With respect to which
S is diagonal and

Ssim = Slgg,, S i= S|, 4.5)

are simple symmetric and self-adjoint in Hg, and Hs,, respectively; see [7, Sec-
tion 3.4] for details.

Proof of Theorem 4.1. We proceed in six steps.

Step one: Reducing to the simple symmetric case. Decomposing K as in (4.5), we
have S = Ssim @ Ssa and hence

S*—z=(8S;n—2) ® (Sa—2) (4.6)
for all z € C. Since dom(Ss,) C dom(S) = kerI', we have I (ker(Ss, — z)) = 0 and
thus

M(z) =T (ker(S™ — z)) = I (ker(S,, — 2)).

It therefore suffices to prove the result for Sy, so we will assume for the rest of the
proof that S is simple.

Step two: S* — z is onto for z € ®_(S*). By the definition of ®_, the range of S* — z
has finite codimension and hence is closed. On the other hand, S being simple implies
ker(S — z) = 0, therefore ran(S™* — z) is dense.

Step three: ker(S* — z) is analytic in z when S* — z is onto. Let #4 := dom(S¥),
equipped with the graph scalar product of S*, so .y is a Hilbert space and S* €
B(H4, H). Since S* — z is surjective and its kernel (a closed subspace of a Hilbert
space) is complemented, it has a bounded right inverse [26, Theorem 2.12], i.e., B, €
B(H, Hy) such that (S* — z)B, = I%. In a neighborhood of any zg € ®_(S™),
B, can be chosen to be analytic using the formula

BZ = BZ()((S* - Z)BZ())_1 = BZ()(IJf + (ZO - Z)BZ())_l'

Now,
PZZ%+—>J€+, PZ Z=I%+—BZ(S*—Z),

defines an analytic family of projectors (in general not orthogonal) onto

N; = ker(S* — z2).
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Step four: Transformation functions (see [47, Section 11.4.2] and [28, Section IV.1.1])
for Nz. Fixing zo € ®_(S™), define the operator family F,: #; — H#4 by
Fr = —=P;)(I = Pz)) + PPy =1+ 2P; —I)(Pz, — Pz).

The latter expression and F,, = [ show that F; is invertible for z close to zo; from
the former expression, we immediately get F, P;, = P, F; and F; ' P, = P, F] !,
therefore

F; Nz = N;. 4.7

Step five: A right inverse for the boundary trace. The boundary trace operator I': u —
(Cou, T'yu) is a bounded surjection from J¢4 onto K & K with kerI' = dom(S), as
in (4.3), so it has a bounded right inverse I' R which can be chosen to satisfy

TRT | p, = Ins, - (4.8)

More explicitly, since N, NkerI' = 0, the operator I': (dom(S) & NZO)J- SN, —
X @ X is an isomorphism and T' R is the corresponding inverse.

Step six: Transformation functions for M (z). Finally, the analytic family of operators
G:KeX—>XKeX, G, =TFTI~ (4.9)
satisfies
G M(z0) = T F,TRM(z9) = TF,TRT N,y = TF, Nz = TN, = M(2)
and is invertible for z close to zg because G,, =T’ IR = Ixex. ]

Remark 4.2. From G, one can define an analytic family of oblique projectors onto

M(2) by
1 0
(e )
*~\e2@h o

Gll GIZ)
G — ( V4 z
Fo\GH G

is the block decomposition of G in the direct sum decomposition M (z9) @ M (zo)* .

where

Using [23, Lemma 12.8], we see that the corresponding family of orthogonal projec-
tions, P, P}(P,P} + (I — P})(I — P;))"!, is smooth. It is not analytic, however,
since a family of orthogonal projections is analytic only if it is constant.

The existence of the family G, allows us to define the crossing form as in (2.4)
and thereby extend the notion of monotonicity, Definition 2.2, to our present setting of
possibly infinite-dimensional . In fact, the crossing form for M(z) has a beautiful
explicit form.
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Corollary 4.3. Fixzg € ®_(S*) and let G, be the operator family from Theorem 4.1.
Then, for any v € M(zyp),

min{|lg|Z : (S* —z0)g = 0, Tg = v}

=11/1%

where w is the symplectic form (1.4), Hsm and S, are defined in (4.5) and f is the
unique vector in Hem with S f = zof and T f = v.

alv] = Lo, Gv)
dZ z=

=zo

(4.10)

P
sim

Remark 4.4. Equation (4.10) generalizes known formulas: for the derivative of the
Dirichlet-to-Neumann map in the resolvent set of the “Dirichlet” extension, as in [70,
Proposition 14.15 (iv)]; and for the crossing form when § satisfies the unique contin-
uation condition, for instance [22, Theorem 5.1] or [59, Theorem 5.10]. Under such
conditions, the solution f to S*f = zo f, I f = v is unique and the operator that
maps the first component of the vector v € M(z) C K @ K into f is known as the

y-field.

Proof of Corollary 4.3. In view of the decomposition (4.6) and its properties, the gen-
eral solution of S*g = zpg, I'g = v has the form

g = f + ker(Ssa - ZO),

with [|g||> > || f]|?, where f € ker(S* — z¢) C Hqm is unique by (4.4). Therefore,

sim
we can restrict ourselves to the case when S is simple symmetric. In this case, there
exists a unique f € ker(S* — z¢) with v = T f. From (4.7), (4.8), and (4.9) we have

G,v=TF,TR =TF,ITRT f =TF,. f =T f,
where f; := F, f € ker(S* — z). By Green’s identity (1.3), we get

0. Gzv) = o £.T f2) = (f.(S* = 20) f2)oe — ((S™ — z0) /. f2)
=(fz—z0)f)x = () (z—20)F:f ).

Equation (4.10) follows from F;, = I and the continuity of F. |

We now state some further properties of the Cauchy data space, recalling ¥ =
I' (dom(H r)) for the Friedrichs extension Hr of §.

Proposition 4.5. Under the assumptions in Theorem 4.1 the Cauchy data space M(-)
has the following properties.

(1) Forall z € ®_(S™),
MEZ)=M2)? ={ue KdK:wwu,v)=0forallve M(z)}). 4.11)

In particular, M(s) is Lagrangian and increasing for s € ®_(S*) N R.
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(2) If S is bounded from below, with lower bound y, then M(s) has limits (over
real s)
lim M(s)=F, lim M(s) =: M(y—),
§—>—00 s—>y—

in the strong graph sense, and the limiting subspace M (y—) is Lagrangian.

We recall from [7, Definition 1.9.1] that the strong graph limit of M (s) consists
of allu € K & K for which there exists a sequence ug; € M(s) with uy — u.

Remark 4.6. In general, M(y—) # M(y). For the example of S = —d?/dx? on
the half-line (with the standard Dirichlet and Neumann traces), we have y = 0 €
Spec.(S) = C \ ®_(S*) and M(0), when computed from the definition (4.1), is
equal to the zero subspace of C @ C (and, in particular, is not Lagrangian). On the
other hand, the limit M (0—) is the Lagrangian plane C & 0.

Proof of Proposition 4.5. (1) It follows from Green’s identity (1.3) that w(u, v) =0
forallu € M(Z) and v € M(z), therefore M(zZ) C M(z)®. To prove the other inclu-
sion, suppose u € M(z)®, so w(u, ' f) = 0 for all f € ker(S* — z). Since I is
surjective, there exists g € dom(S*) such that I'¢g = u. Using Green’s identity and
(S*—2z) f =0, we get

=((S*=2)g. flae — (8. (S" —2) flae = ((S* = 2)g, f)x.

This means (S* — Z)g € ker(S* — z)* = ran(S — Z), where the last equality holds
because z € ®_(S*) implies ran(S — Z) is closed, thus (S* —Z)g = (S — 2)h for
some h € dom(S) = kerI'. Since S* is an extension of S, this implies g — & €
ker(S* —Z)andsou =T g =T (g — h) € M(Z), as required.

When s is real, (4.11) gives M(s)® = M(s), so M(s) is Lagrangian. It is increas-
ing because the crossing form g[v] in (4.10) is positive definite ( f # 0 for non-zero
v in Corollary 4.3).

(2) Because the lower bounds of S and its Friedrichs extension H g coincide, we
have (—o0,y) C p(Hp) C ®_(S™) by (4.2), therefore M (s) is continuous on (—o0, y)
by Theorem 4.1. From [7, Corollary 5.2.14], we have that the s | —oo limit of M (s)
exists in the strong resolvent sense, and [7, Theorem 5.5.1] gives M(—o0) = F.

For the limit s 1 y, we first use [7, Corollary 5.5.5] to find a boundary triplet
(K’,T'y,T']) such that dom(H r) = ker I'y. It then follows from [7, Corollary 5.2.14]
that the corresponding Cauchy data space M’(z) has a left-hand limit M’(y—) in the
strong resolvent sense, and this limit is Lagrangian. By [7, Theorem 2.5.1], the triplets
(K,To,I1) and (K', Ty, I'}) are related by a bounded symplectic transformation,
thus the Cauchy data spaces M (z) and M'(z) are related by a Mdbius transform [7,
eq. (2.5.4)], which preserves convergence and the Lagrangian property. To complete
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the proof, we note that for Lagrangian subspaces, strong resolvent convergence is
equivalent to strong graph convergence, by [7, Corollary 1.9.6]. ]

5. First proof of main theorems

We are now ready to prove our main results, namely Theorems 1.1 and 1.2, using the
Maslov index. We are thus back to the assumption that X is finite dimensional. There
are three key ingredients in the proof, two of which have already been established:

(1) a formula for the difference of counting functions in terms of the difference
of Maslov indices (Proposition 5.3),

(2) the identity of Zhou—Wu—Zhu relating the difference of Maslov indices to the
difference of Duistermaat indices (formula (3.11)),

(3) aone-sided continuity result for the Duistermaat index (Theorem 3.2).

Working towards the counting formula in Proposition 5.3, we first relate the eigen-
values of a self-adjoint extension to the intersections of the corresponding Lagrangian
plane with the Cauchy data space M (-) defined in (1.12).

Lemma 5.1. Under the assumptions of Theorem 1.1, let Hy and H, be self-adjoint
extensions of S corresponding to Lagrangian planes £1 and £,. If z € C \ Spec,(S),
then

dimker(H; —z) = dim(M(z) N £;) + dimker(S — z) (5.1)

for j = 1,2, therefore
dimker(H; — z) —dimker(H, — z) = dim(M(z) N £1) —dim(M(z) N £3). (5.2)

Remark 5.2. If S has the unique continuation property, so that (4.4) holds for all z €
C, then (5.1) implies dimker(H; — z) = dim(M(z) N &£;) forall z € C \ Spec (S).
This is no longer true if S does not have the unique continuation property (see Sec-
tion 7.5 for an elementary example), but (5.2) holds regardless.

Proof. From the definition of the extension H;, using the Lagrangian plane £;
in (1.5), and the definition of M (z) in (4.1), we have

I'(ker(Hj —z)) = M(z) N &;.
By the rank-nullity theorem,

dimker(H; — z) = dim(M(z) N £;) + dimker(T |er(ar; —2))- (5.3)



The Duistermaat index and eigenvalue interlacing 25

In turn,
ker(T xer(r, —z)) = ker(H; — z) Nker(I') = ker(H; — z) N dom(S) = ker(S — z).
Substituting this into (5.3) gives (5.1). ]

We now relate the eigenvalue counting functions and Maslov indices, recalling the
definition of N(H; I') from (1.6).

Proposition 5.3. With the hypotheses and notation of Theorem 1.1, for any interval
[a,b] C R\ Spec,(S), we have

ess

N(Hq1; (a,b]) — N(Ha; (a,b]) = Masg p) (L2, M(-)) —Maspg p1(L1, M(-)). (5.4)

As mentioned in the introduction, it is only possible to express the counting func-
tions N(H;: (a, b]) in terms of Maslov indices if one assumes the unique continuation
property of S, but formula (5.4) for their difference does not require this assumption;
see Remark 5.2.

Proof. 1t follows from Proposition 4.5 (1) and Corollary 4.3 that M (s) is an increasing
path of Lagrangian planes; so we can use (2.6), (5.2), and (1.6) to obtain

Masig p1(L2, M(-)) — Maspg p1(L1, M())

= > [dim(M() N &1) — dim(M(1) N £2)]
te(a,b]

= Y [dimker(H; — A) — dimker(H, — 1)]
A€(a,b]
= N(Hu:(a,b]) — N(Hz; (a,b])
as claimed. [

We are now ready to prove our main results.

Proof of Theorem 1.2. For [a,b] C R\ Spec
Wu-Zhu identity (3.11) to obtain

(S), we combine (5.4) and the Zhou—

€ess

N(Hy;(a,b]) = N(Hz: (a,b]) = (€1, L2, M (D)) — (L1, £2, M(a)), (5.5)

which is exactly (1.13).

For A below the essential spectrum, we use (5.5) with & = A and a < b. Corol-
lary 4.3 and Proposition 4.5 (2) say that M (a) converges to ¥ from above as a —
—00, so we can use (3.14) from Theorem 3.2 to compute

lim (£, £2, M(a)) = (L1, L2, F) (5.6)
a—>—0o0

and hence arrive at (1.14). [ ]
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Proof of Theorem 1.1. We start with (1.14) from Theorem 1.2,
o(Hy, Hy; A) = t(L, L2, M(A)) — 1(£4, £2, F),
and use the bound (3.6) to estimate ((£1, £2, M(A)), arriving at
—1(£1, £, F) <o(Hi,HyA) <n—dim&£; N Ly — (L, L2, F). 5.7

We then use (3.7) to simplify the right-hand side to «(£,, £1, F). ]

6. The Duistermaat index of a self-adjoint linear relation

A Lagrangian plane in (KX & K, ®) can be viewed as a self-adjoint linear relation; see
[25, Section 4.2]. In this context, the difference of two Lagrangian planes, £ and M,
is the Lagrangian plane

:E—Mzz{( U )eJ(@J(:(“)e;ﬁ,(”)eM}, 6.1)
Ve = Uy Ve Uy

the inverse of £ is
£li= {(Z) GK@J{:(Z) e:fi}, (6.2)

and the kernel and multivalued part of £ are

= fueas () ezl mizim foews(*) ezl

The dimension of ker &£ is called the nullity and denoted n¢(£). If mul £ = 0, then
£ is the graph of a self-adjoint linear operator on K. In this case, we define the index
n_(&£) to be the number of negative eigenvalues of the corresponding operator.

Proposition 6.1. Assume £, £5, and £3 are Lagrangian planes such that £3 is
transversal to £1, £, and 'V = 0 & K. Then the Lagrangian plane

A= (L1 —£3)7 = (L2 — £3)7! (6.3)
is a graph of an operator on K, with nullity and index

n()(A) = dlm:ﬁl N cfz, n_(A) = L(il, ;62, :ﬁ3)
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A £
.
A ey
0,67y
, 2,
= >
()"
k—>u—v k—>u—v
negative definite positive definite

Figure 2. Examples of the action A:k +— u(k) — v(x) withn_(A) = 1 (left) and n_(A) =0
(right). This should be compared with Figure 1, top row. Dotted and dashed lines illustrate the
action of the projectors P1 and P, respectively.

Proof. Let Py and P, be the projections onto £ and £, respectively, parallel to £3.
The transversality conditions on £3 imply that their restrictions P;: V — £; and
P5:V — £, are isomorphisms. Written explicitly, they are

Py (O) €V > (”) € £, suchthat (“) - (0) € L3, (6.4)
K (07 (07 K
0 v v 0
Ps: eV — € £, such that — e £3. (6.5)
(K) (/3) (ﬂ) (K)

For future use, we observe that

P1 (2) — Pz(g) € cf:;, (66)
P; (I(:) = Pz(’(:) — P (1(3) e L1 NLsy. 6.7)

The non-trivial => direction in (6.7) follows from the observation that if (u, )"
in (6.4) belongs to both &£ and £, then it satisfies the condition in (6.5) and therefore
coincides with the unique value of (v, B)'.

We now compute the Lagrangian plane A from (6.3). Using definition (6.1), we

i1—$3={(a3y)eK®J<:(Z)e$1, (Z)E:£3}
:{(u):HaEJC such that (u)eil,( U )eé&},
K o o —K

and

and

write
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where the vector (u, «)" is exactly the image of (0, k)" under P;. Defining
w: K @& K — K to be the projection onto the first component and using (6.2), we
arrive at

(£1 —:63)_1 = {( « ) e KDK: ke J{} where u(x) 1= JrPl(O).
u(k) K

Analogous considerations for &£, result in

A:{( * )GJCGBJC:KGJC}, where v(k) := an(O). (6.8)
u(k) — v(k) K

In other words, A is the graph of an operator mapping k € K to u(k)—v(x) € X,
see Figure 2 for an example. The kernel of A is the space of x such that the corre-
sponding u(x) and v(k) coincide. More precisely,

(K) ekerA < nP; (0) —an(O) =0
0 K K
<~ PI(O)—Pz(O)E'V
K K

Combining this with (6.6) and the condition V N £3 = 0, we obtain

(o) cxeras = n(() = ()

Finally, (6.7) yields that ker A is isomorphic to £1 N &£5.

We now calculate the Duistermaat index using Corollary 3.3, namely by evaluat-
ing the Morse index of Q(£;, £3; £2). The mapping L: £; — L3 appearing in the
definition (3.1) of Q(£1, £3; £2) acts as

1 ()= n(0) () ()

cf. (3.1), (6.6), and the fact that P, acts into £,. Consequently, for any two vectors

from £1,
75} —p 0 Uy —p 0
(051)_ I(Kl)’ (az)_ I(Kz)’
the form Q acts as
(@)} (@) = ol (0)-r(2) -7 (2)
o1 oo K1 K2 K2
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We now note that for the purpose of computing the index, the form Q can be
viewed as a Hermitian form on V. Observing that

o(n(a)=(2) =(2)-n(2) =

which holds because both arguments are in the Lagrangian plane £3, we have for the
value of Q,

o(na) 2 ) P (2) =e((C) =(2) -7 ()

= (k1. u(k2) — v(K2)) x

which is exactly the sesquilinear form corresponding to A: k +— u (k) — v(k), see (6.8).
By Corollary 3.3, we conclude that

(L1, L2, L£3) =n_(A),
which establishes the desired result. [

Next we provide a proof of Theorem 1.3 by virtue of a slightly more general result.

Theorem 6.2. Assume the setting of Theorem 1.1. For A € p(H1) N p(Hy) N R, the
operator D(A), defined in (1.15), is reduced by the decomposition H = N, & NAJ‘,
where Ny :=ker(S™ — A). The block form of D()) with respect to this decomposition
is

6.9)

DUy = (K(k) 0)7

0 0
where K(L): Ny — N, is the restriction of D(A) to N). For an arbitrary interval

I C p(H1) N p(Hz) NR, the eigenvalues of K(A) depend continuously on A € I and
one has

no(K(A)) = dim£1 N £2, (6.10)
n—(K()) =n_(DR)) = (L1, L2, M(R)), (6.11)
ni(K(A)) = np (D)) = (L2, L1, M(1)). (6.12)

In particular, K(A) has constant rank
r=n—dim¥, NLy = 1(Ly, L2, ML) + (L2, L1, M(R)) (6.13)

and the functions A — ny1(K (L)) are constant on 1.



G. Berkolaiko, G. Cox, Y. Latushkin, and S. Sukhtaiev 30

Proof. Since H; C S*, we have (S* —A)(H; —A)~! = Iy for j = 1,2, therefore
(S*—=A)D(A) =0,1i.e.,ran D(A) C Ny. This establishes the second row of (6.9) and,
by self-adjointness, the whole of (6.9).

To prove the continuity of the eigenvalues of K(A) (acting on the A-dependent
spaces N), we first note that S* — A is onto in J as an extension of a surjective
operator Hy — A with A € p(H1). Therefore, by steps three and four in the proof of
Theorem 4.1, there exists a continuous family of bijections F mapping N, onto
N The family of operators A +— F,~ 1K (1) Fj acting on the A-independent Hilbert
space N, is continuous and for each A € I the eigenvalues of K(4) and F K(A) F;~ !
coincide. These facts yield the desired continuity assertion.

We next show that (6.10) holds for all A € p(H1) N p(H) N R. For this, we use
the resolvent difference formula from [60, Theorem 2.5],

KA) = (T(Hy — A)"Y*PiJPT (Hy — 2) Yy, (6.14)

where P; denotes the orthogonal projection onto £; in K @ K. By Lemma 6.3, the
maps
T(Hy— A" Ny = £, T(H -V H* L1 > M,

are bijective. Using (6.14) and the identity P;J = J(I — P;) from (A.1), we get
dimker K(A) = dimker(PJ|g,) = ker((I — P1)|g,) = £1 N L.

proving (6.10).

It follows that no(K(A)) is constant on the interval /, therefore the same is true
of n1 (K (L)), since the eigenvalues are continuous. It thus suffices to prove (6.11)
and (6.12) for a single A € I. We will choose A € I \ Spec(Hy), where Hy is the
extension of S with I' (dom(Hy)) = ker I'g. Such a A always exists because I C
p(H1) N p(H>) does not intersect Spec,(H;) = Spec,(S), and therefore / can
only contain isolated eigenvalues of Hy.

For A € I \ Spec(Hy), we may apply the classical Krein-Naimark formula,

(H; =)™ = (Ho = 1)7! = y(M)(L; = M)~y (W)*,

where y(A) := (To|w;) "' € B(K, K) is the y-field; see, for example, [70, Theo-
rem 14.18]. Applying this to D(A) = (H; — A)~! — (H, — A)~! yields

DR) = yM)(£1 = MAN ™ = (L2 = MA)Hy (W)™

Employing Proposition 6.1 with £3 = M(A) (the transversality conditions are sat-
isfied since A is not an eigenvalue of Hy, H, or Hy) together with the fact that
y(A): KX — N, is a bijection (see [70, Lemma 14.13 (ii)]), we get

(L1, L2, M) = n_((£1 = MA) " = (L2 = MA) ™) = n(DQ)),
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which is exactly (6.11). To complete the proof, we note that (6.13) follows from (6.10)
and the identity (3.7) for the Duistermaat index. Combining this with (6.11) yields
(6.12). [

Lemma 6.3. Assume that H is a self-adjoint extension of S corresponding to the
Lagrangian plane £ C X @ K. For A € p(H), we let R := (H — 1)~ and consider
IF'Ry:H#H — K @ K. Then

ker(T Ry) =ran(S — A1), ran(T'Ry) = L.
In particular, T R}, is a bijection between ker(S* — 1) and &.

Proof. To show the inclusion ker(I' Ry ) C ran(S — A), suppose that I' Ryu = 0. Then
by (4.3) one has Ryu = v for some v € dom(S), hence u = (S — A)v as required. To
prove ker(I' Ry) D ran(S — 1), we note that Ry (S — A)v = v and use (4.3). For the
second identity we note that ran(T' Ry) = I' (dom(H)) = £. ]

Finally, we explain how this implies the interlacing formulas in Theorem 1.1.

Proof of Theorem 1.1 using Theorem 1.3. Using (5.6), we can choose a large negative
number A, that satisfies

L(:ﬁl7 $27 M(A’*)) = L($17£27 ‘?’) =0-, L(iz’ il? <A/((A’*)) = L(£27 $17$) = O+

and is below the spectra of H; and H,. For such A, the eigenvalues of R; :=
(A« — Hy)™! are negative and bounded; we label them in increasing order as 1% (R1),
and likewise for R, := (A« — H)~!. Recalling the definition of D(A) in (1.15), we
write R, = R; + D(A«) and note that n_(D(A14)) = o_ and n4(D(A«)) = o4 by
Theorem 1.3. Applying Weyl interlacing for additive finite-rank perturbations, we get

Prk—o_(R1) = uk(R2) < pk+o, (R1).

The corresponding eigenvalues of H; are computed by the monotone increasing
trasformation Ax (H;) = A« — 1/uk (R;), yielding (1.10). [

7. Examples and applications

Having proved Theorem 1.1, we now discuss some of its consequences. In particu-
lar, we compare a variety of boundary conditions for a Schrodinger operator on the
interval (0, 1) and derive a counting formula of Behrndt and Luger for the Laplacian
on quantum graphs. We also demonstrate that the upper and lower bounds in (1.9) are
optimal. Finally, we give an example of an operator not satisfying the UCP, where
we see that the Maslov index undercounts the eigenvalues even though our theorem
remains valid.
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Name Conditions Frame Notation
e w=( ) 1) =
Stype ?E(()S)Z—J;‘(/l()l’)=sf(0) x= G 8) r= (3 —D L0
Antiperiodic ;f?é)::__f;}zi) X = (_i 8),1/ = (8 i) Laper
L e i S B

Table 1. Some commonly encountered boundary conditions and the corresponding Lagrangian
frames. Note that periodic conditions are also called Neumann—Kirchhoff or standard conditions
in the context of quantum graphs.

7.1. Examples withn = 2

The prototypical example with n = 2 is an interval (0, 1) with the Schrodinger oper-
ator § = —% + ¢(x). However, the results below apply equally well to a compact
quantum graph [16] with self-adjoint conditions imposed everywhere except for two
vertices of degree one. More sophisticated contexts include manifolds with conical
singularities [39] and Seba billiards [21,48, 57,58, 68, 72] with two or more delta
potentials.

For § = —j—xzz + g(x), with potential ¢ € L*°(0, 1), we have # = L2(0, 1),
dom(S) = HZ(0, 1) and dom(S*) = H?(0, 1). Both defect numbers are 2, so the
self-adjoint extensions are parameterized by Lagrangian planes in C*, see [70, Exam-
ples 14.2 and 14.10]. The traditional choice of traces is

f (0)) 1)
1—‘Of = ( s Fl f = .
S /')
With this choice, the Friedrichs extension corresponds to the vertical plane, ¥ = V.

We now use Theorem 1.1 to compare the boundary conditions listed in Table 1.

7.1.1. Periodic vs §-type conditions. Ats = 0, the §-type condition reduces to the
periodic condition, &£5(0) = &, s0 it suffices to consider s # 0. In this case the rank
of the perturbation is 2 — dim(&£per N £5(s)) = 1. The corresponding e-Robin maps

are
11 -1 1 14 es -1
R8 = — s Rs = — 7
pet 28(—1 1) § 8(2+8S)( -1 l—l-ss)

S 1 1
RE—RS, = ———— .
8 TP T (2 + gs) (1 1)

therefore,
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Using Theorem 3.5, we conclude that

0, s>0,
1, s<O,

0,1), s>0,

ULper, Ls(s5), F) = { (1,0), s<0

and (0_,04) = {

recovering a well-known result [14, 15].

7.1.2. Periodic vs antiperiodic. This important case arises in the spectral analysis
of Hill’s operator and certain other Z-periodic quantum graphs [35] (namely, those
with one edge crossing the boundary of the fundamental domain).

For the antiperiodic conditions, we have

/1 1 1/0 1
e _ e _ pE _— _
Raper - e (1 1) ’ Raper Rper < (1 O) .

We therefore get
(0—76+) = (1’ 1)7

which agrees, for instance, with the interlacing in Hill’s equation [65, eq. (2.4) in
Theorem 2.1].

7.1.3. Antiperiodic vs §’-type conditions. The antiperiodic conditions are a special
case of the §'-type conditions with s = 0. For s # 0, we have dim (&L per N £57(5)) =1,
so the rank of the perturbation is 1. Computing the ¢-Robin map, we obtain

1 1 1 s 1 1
Re/ = [} Rs - Ra/ - - .
s 4 2 (1 1) aper § 2e(s + 2¢) (1 1)

For s # 0, we see that —m ~ —2% is negative for 0 < ¢ < 1, and hence o_ = 1.

Taking the rank of the perturbation into account, we get
(0-,04) = (1,0),
or, in terms of the eigenvalues,
Ak—1 (Haper) < Ap(Hgr(s)) < Ag (Haper).

This may be somewhat unexpected, since it implies that Ax (Hg/(s)) achieves its
maximum at s = 0, while the eigenvalue variation formulas of [60] can be used to

show that i

- / 0 2’

— =[O
where f; is the normalized eigenfunction corresponding to the eigenvalue A(s)
(assuming it is simple). These two facts are reconciled by the observation that 11 (s) —
—o00 as s — 0—, therefore the ordered eigenvalue curves s — Ag (Hg (s)) are discon-

tinuous at s = 0, as shown in Figure 3.
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1501
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50

f)(

—50+

—100+

—150

Figure 3. The first five eigenvalues of Hg(s), plotted as functions of s. The curves are colored
according to the index of the eigenvalue: A is black, A is blue, A3 is red etc. In particular, the
blue lines (from bottom to top) are A2 (Hg (s)) = A1,2(Haper) and Ag(Hs/ (s)) = A3 4 (Haper)-

7.2. Counting negative eigenvalues: the Behrndt-Luger formula

In [9], Behrndt and Luger derived a convenient formula for the number of negative
eigenvalues of the Laplacian on a metric graph. Here we show how their formula can
be obtained from our results.

We recall that any Lagrangian plane &£ can be described by a frame of the form
(P, POP + P —I), where P: KX — XK is an orthogonal projector and ®:ran P —
ran P is a self-adjoint operator; see Section A.2. This corresponds to imposing the
Dirichlet-type condition (I — P)I'g f = 0 and the Robin-type condition PI'; f =
OPILyf.

Corollary 7.1. Within the setting of Theorem 1.1, assume S is non-negative’ and let
H be an extension of S specified by a Lagrangian plane £. Then the Morse index of
H is
n_(H) =1t(M0-),L,5F), (7.1)
where M(0—) is the left-hand limit of M(s), as in Proposition 4.5.
Furthermore, if dom(H ) = ker 'y and M(0—) is a graph of a self-adjoint oper-
ator My: X — K, then

n_(H) = ny(PMyP — ©), (7.2)

where (P, POP + P — I) is a Lagrangian frame for £.

"Equivalently, the Friedrichs extension H f is non-negative.
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Remark 7.2. Equation (7.1) generalizes results of Derkach and Malamud [31] in the
setting of finite defect numbers. In particular, [31, eq. (0.4)] equates the Morse indices
of H and the operator A that appears in Proposition 6.1; thus, under more restrictive
assumptions, one can see that [31, eq. (0.4)] and (7.1) give the same expressions for
n_(H). However, the basis-independent nature of the Duistermaat index (manifested
as symplectic invariance (3.4)) saves one from superfluous restrictions such as the
form domain inclusion condition in [31, Theorems 5 and 6].

Remark 7.3. In the setting of [9], where S* is the Laplacian on a metric graph and 'y
and I'; are the standard Dirichlet and Neumann traces, the limit M (0—) is the graph
of an operator My, by [9, Lemma 3], thus (7.2) holds. To relate this to [9, Theorem 1]
we simply take ® = —L and observe that the boundary condition in [9] is written
in terms of a co-frame rather than a frame (see Section A.2). In this setting, My is
the Dirichlet-to-Neumann map at A = 0, which is explicitly computable; see also
[16, Section 3.5].

Proof. Since HF is non-negative, we have Spec. . (HFr) C [0, 00). Therefore, we can
apply Theorem 1.2 with £, = ¥ and negative A to obtain

N(Hy: (=00, A]) = (L1, F. MQA) =Ly, 7. F) = (L1, F. MQA),  (7.3)

using (3.10) to eliminate ((£, ¥, ¥). By Proposition 4.5, the path M(A) converges
to a Lagrangian plane M (0—) as A — 0—. Since the convergence is monotone, (3.15)
gives (L1, F, M(A)) = t(M(0-), £1, F) for sufficiently small A. It follows from
(7.3) that N(Hy; (—o0, A]) is constant for small negative A and hence is equal to
n_(Hy), proving equation (7.1).

Combining (7.1) with Proposition 3.6, we obtain

n_(H) = (M(©O0-), £, F) =n_(® — PMoP) = n(PMyP — ©),

since M(0—) is the graph of the operator M, and £ is described by the frame
(P,POP + P —1). [

7.3. Comparing Dirichlet and Neumann eigenvalues

Another easy consequence of our results is a version of Friedlander’s well-known
interlacing formula [36], which, in our case of finite defect indices, takes the geomet-
ric form of a Duistermaat index. Defining the Dirichlet and Neumann extensions of S
to be the self-adjoint extensions Hp and Hy with

dom(Hp) ={f €dom(S*): Ty f =0}, dom(Hy)={f €dom(S*):T;f =0},

respectively, we get the following.
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Corollary 7.4. Assume, in addition to the hypotheses of Theorem 1.1, that Hr = Hp.
For any A € R below the essential spectrum, we have

o(Hy,Hp:A) = (X @ 0,0 ® X, M(L)).

If A is not a Dirichlet eigenvalue, then M(A) is the graph of an operator M(L) on K,
and
o(HN, Hp;A) = no+(M(R)). (7.4)

Proof. Since Hp and Hpy correspond to the Lagrangian planes £p = 0 @ KX and
£n = K & 0, the first equation follows from Theorem 1.2, using (3.10) to eliminate
(EN, LD, F)=1(LyN,F,F) =0, and the second follows from Corollary 3.7. =

When A is also not a Neumann eigenvalue (and hence ker M (1) = 0), this is
exactly the formula of Friedlander [36, Lemma 1] (see also [2] and references therein)
in the context of finite defect numbers. Note that the Dirichlet-to-Neumann map
in [36] is —M (A) here, due to the choice of normal derivative — the abstract Green’s
identity (1.3) requires I'; to be the inward normal derivative.

Corollary 3.7 can also be used when A is a Dirichlet eigenvalue, leading to a more
general version of (7.4) in terms of a “reduced” Dirichlet-to-Neumann map, as in [12].

7.4. Sharpness of the bounds
We now prove that the bounds in (1.9) are sharp for any symmetric operator S.

Proposition 7.5. Let S satisfy the assumptions of Theorem 1.1. For any numbers
0+ > 0 with6_- 4+ 64+ < n, there exist Lagrangian planes £1 and £, such that

(L1, L2, F)=0-, (L2, L1, F) =04, (7.5)

and the bounds in (1.9) are sharp for the corresponding extensions Hi and H, of S.
To be precise, there exists Ay € R such that

o(Hy,Hy; g —0)=0-, o(Hy,Hy;Ao+0) =0y4.

Proof. Without loss of generality, we assume that our boundary triplet is chosen such
that ¥ =V = 0 @ K. Now, choose Ay € R below the essential spectrum such that
M (Ao) is transversal to V. This is always possible because M is increasing, therefore
its intersections with any Lagrangian plane are isolated. Letting My: X — K be the
operator whose graph is M(Ag), we define &£; and £, via the frames (I, M) and
(I, My — P_ + P.), respectively, where P_, Py: K — K are arbitrary mutually
orthogonal projectors of rank 6_ and 6+. Note that £; = M(Ag).
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We first show that this choice of £ and £, gives the desired Duistermaat indices.
Using Proposition 3.6 with P = I, we get
L(:ﬁ], :Ez, ?) = I’l_((M() —P_ + P+) — Mo) =rank P_ = (~)'_,
L(iz,xl, 37) = l’l_(P_ — P+) = rankP+ = 5’+,
which is exactly (7.5).
Now, we recall from the proof of Theorem 1.1, in particular (5.7), that the lower
bound in (1.9) is attained at some A if ((£1, £2, M(A)) = 0, and the upper bound is

attained if ((£1, £, M(A)) =n —dim £, N £,. We then use (3.10) and Theorem 3.2
to obtain

(L1, L2, M(Ao —0)) = t(M(Xo), L1, L2) = (L1, Ly, L2) =0

and
(L1, Lo, M(Ao +0)) = 1(£1, L2, L) =n—dim£L; N Ly,

completing the proof. ]

Example 7.6. It is not true that for any &£; and &£, the bounds of Theorem 1.1 are
achieved at some A. A simple example is the Neumann versus the Dirichlet Laplacian
on the interval (0, 7). The spectra are {0, 1,4,9,...} and {1,4,9,...}, respectively,
so the spectral shift takes the values O and 1 while o = 0 and o4 = 2.

7.5. An operator with inner solutions
Defining the space

D:={f=(fi.f) € H(-n,0)® H*(0,7) :
Si(=m) = fa(w) =0, f1(0) = f2(0)},

. . . 2 .
we consider the symmetric operator S acting as —% on L?(—m,0) @ L?(0, ), with

dom(S) := {(f1. f2) € D : f1(0) = f2(0) =0, f{(0) = f5(0)}.

It easily follows that dom(S*) = . As a boundary triple, we can take X = C and

Tof = 30+ £O). Tif = £0) - {0,

Forevery z € C \ {1,4,9,...}, the kernel
1 1

7 sin /z (7 4 x), —= sin /z(7 — x))}

ker(S* —zI) = span{( 7
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is one-dimensional (with ker(S*) = span{(7 4+ x, # — x)} understood as the z — 0
limit). However, when z = k2 for some k € N, the kernel is two-dimensional,

ker(S* — k21) = span{(sin k(7 + x),0), (0, sink (7w — x))}. (7.6)

On the other hand, the Cauchy data space from (1.12) is one-dimensional for all z € C,
1

Jz

since the trace I' vanishes on the difference of the two basis vectors in (7.6) when
z €{1,4,9,...}. In other words, for any k € N, the function

M(z) = span{( sin 7w /z, —ZCosnﬁ)},

gr = (sink(w + x), —sink(wr — x))

is an inner solution in the sense of (4.4).
Consider, for example, the Lagrangian planes

A ]

and the corresponding extensions of .S,
dom(Hp) :={f € D: f1(0) = f2(0) = 0},
dom(Hy) :={f € D: f{(0) = f5(0)}.

As the notation suggests, Hr is the Friedrichs extension of S. The corresponding
spectra are easily computed to be

Spec(Hr) = {k* with multiplicity 2 : k € N}, Spec(H;) = {(k/2)*:k € N}.

We now see that if one tries to use the intersections M(z) N F and M(z) N £; to
search for the eigenvalues of Hr and H;, every second eigenvalue will be missed,
because these are the eigenvalues that correspond to inner solutions.

A. Lagrangian preliminaries

A.1. The Lagrangian Grassmannian

Given a complex symplectic space (K @ K, ), we say that a subspace £ C K & K
is Lagrangian if it equals its symplectic complement

£ :={ue K® K:wu,v)y=0forallv e £}.
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There are several convenient reformulations of this definition. These involve the oper-

ator
0 I
Ji= (—1 0)

on X @ K, defined so that w(u, v) = (u, Jv) xgx. It follows that £° = (J£)*,
thus &£ is Lagrangian if and only if J£ = £1, where (-)* is the usual orthogonal
complement. A useful consequence of this is the identity

(L1 + L)t =L NnEr=TJE1NTLr =J(£1 N L),

valid for any Lagrangian planes &£; and &£,. This implies dim&£; N £, = codim(£1 +
&£7). In particular, £, + £, = K @ K if and only if £, N £, = 0. Another useful
fact is that a subspace £ is Lagrangian if and only if

J =JPg¢ + PgJ, (A.1)

where Pg is the orthogonal projection onto &£; see [37, Proposition 2.11].
The set of all Lagrangian subspaces in (K @& K, w) is called the Lagrangian
Grassmannian and is denoted by A.

A.2. Parameterizations of Lagrangian subspaces

A Lagrangian subspace £ C K @ K can be described in many different ways. For
convenience, we summarize the most useful ones here.
A frame is an injective linear map Z: K — K @ K whose range is £. A frame

~(2)

with X, Y: K — K. We often abbreviate this as (X, Y). The range of Z is Lagrangian
if and only if the condition X*Y = Y * X holds. This frame is not uniquely determined
by £, since for any C € GL(X), ZC is also a frame for £. Any frame for £ is of
this form for a suitable choice of C.

is typically written in block form

A closely related notion is that of a co-frame, which is a surjective linear map
K @& K — K whose kernel is £; see [16, Theorem 1.4.4]. This can be written in
block form as (A4 B), with A, B: X — K. The Lagrangian condition is equivalent to
AB* = BA*, and it is easily seen that the frame (X, Y) corresponds to the co-frame
Y* —X%).

It was shown in [56, Corollary 5] (see also [9, Lemma 2]) that any Lagrangian
plane £ can be represented by a co-frame with A =1 — P — POP and B = P, or
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equivalently by the frame

B*\ P
—A*) \peoP+P-1)

where P: K — K is an orthogonal projection and ® is a self-adjoint operator on
ran P. This parameterization arises naturally when describing boundary conditions:
for f € dom(S*),wehave I' f = (I'g f, "1 ) € £ precisely when

(I—-P)Tyf =0, PI''f =0PIyf,

so we interpret P and I — P as projections onto the Robin and the Dirichlet parts of
K, respectively.

Another possibility is to write &£ as the graph of an operator defined on a reference
Lagrangian subspace Let £* and £ be transversal Lagranglan subspaces. If &£ is
transversal to éﬁ then there exists an operator L: £¥ — £ whose graph is £, in the
sense that

={v+Lv:vedh.

In particular, if £ = (£%)L, then we can write L = JT for some T € B(£¥), and
the Lagrangian condition is equivalent to 7* = T'. For instance, if £* = X @ 0 and
£ = 0@ X, then £ is transversal to £ if and only if it has a frame (X, Y') for which
X is invertible, and hence an equivalent frame

X Ix
Y Yx-t)
It therefore corresponds to the graph of L = JT with T = YX ™' € B(&£).
Another possibility is to fix a Lagrangian subspace £, and write &£ as the image

of an invertible operator G¢ € B(K @ K). Such an operator can be explicitly con-
structed as follows. If (X, Y') is a frame for &£, then

xy (X —Y
G _(Y X) (A.2)

is invertible and maps the horizontal subspace K @ 0 to £; cf. [67, Proposition 1].
Choosing a frame (Xo, Yp) for £, we see that GX¥ (GX0-Y0)~1 5 a valid choice
of Gg.

Finally, we recall that £ can be written as the graph of a unitary operator from
ker(J —1i) to ker(J + i). This can be related to the frame description of &£ by decom-

posing
Xu\ 1((X—iV)u\ 1((X+i¥V)u
(Yu) - 5((Y + iX)u) + 5((1/ - iX)u)

eker(J—i) eker(J +i)
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for arbitrary u € K. The desired unitary map is

a 1 /(X —-iY)u 1((X+iY)u b
S — = A.
(ia) 2((Y n iX)u) ~ 2((Y —iX)u —ib)’ (A-3)
therefore b = (X +iY)(X —iY) 'a. (This agree with the formula in [71, Proposi-

tion 1], since the g used there coincides with —J in this paper.) This parameterization
will be used in Section A.4 to define the Maslov index.

A.3. Smooth structure on the Lagrangian Grassmannian

We now recall the smooth structure on A and give some equivalent formulations for
the differentiability of a path £(-): (0, 1) — A, in terms of the different parameteriza-
tions given above.

To prove that A is a smooth manifold, one first shows that it is a topological
manifold, and then equips it with a smooth atlas of coordinate charts. The topology
is given by the gap metric, d(£1, £2) = || Pg, — Pg,||, where £; € A and Pg; €
B(K & K) are the corresponding orthogonal projections.

Next, given a Lagrangian subspace £, we let Uy denote the set of Lagrangian
subspaces that are transversal to £ = J &£. This is an open neighborhood of £ in A,
and is homeomorphic to the set B, (£) of self-adjoint operators on £, via the map

A Vge(A) :={v+ JAx :v e L}. (A4)

See [37, Proposition 2.21] for details. It follows that A is a topological manifold.
Moreover, it can be shown that the “transition functions” are smooth on any intersec-
tion U 2t nU 2t of coordinate charts. That is, referring to the map We: Bs(£) — A
defined in (A.4), we have that the composition

—1 . -1 —1
\D;Cz oWg,: \Ijéﬁl(Uili N szl) — \Ifxz(Ux]L N U;C%)

C Bsa(L£1) C Bs(L£2)

is C®°; see, for instance, [37, Corollary 2.25]. This gives A the structure of a smooth
manifold.

Differentiability of a path £ (¢) of Lagrangian subspaces is defined with respect to
this manifold structure. However, it is often easier to work with the following equiva-
lent conditions, which are in fact taken as definitions in some papers.

Theorem A.1. Given a path £(-):(0,1) — A, the following are equivalent:
(1) £(2) is differentiable;
(2) the family of orthogonal projections Pg ;) is differentiable;
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(3) there exists a differentiable family of invertible operators G; on K @ K such
that, for some £9, G; Lo = L(1);

(4) there exists a differentiable frame Z(t) for £(t);

(5) there exists a differentiable family of unitary operators U;: ker(J —i) —
ker(J + i) such that £(t) = {v + U;v : v € ker(J —1i)}.

Proof. (1) = (2). Suppose £(¢) is differentiable. In a neighborhood of an arbitrary
point ¢y, £(¢) is given by £(¢) = {x + JA(t)x : x € L(tp)} for some differentiable
family A(r). Using [37, eq. (2.16)], we see that the orthogonal projection Pg(;) is
differentiable.

(2) = (3). We fix an arbitrary ¢y € (0, 1) and then, following [28, Theorem
IV.1.1], define G as the solution to the differential equation

d
EG; = P‘/f(t)(sz(l) - I)Gt, Gt(} =1.

Choosing £¢ = £(), we find that G; has the desired property (and in addition is
unitary).

(3) = (4). Defining GX0-Y0 a5 in (A.2), we see that G, GX0-Y0 is differentiable
and maps K @ 0 onto L(¢). Writing this in block form

XoYo _ [X(©) *
@6 —(m) *)

in the decomposition KX @ K, it follows that (X(¢), Y (¢)) is a differentiable frame for
£(1).
(4) = (1). Let tp € (0, 1). Using the frame Z(¢), any point v € £(¢) can be
written as
v=Z@{)u = PyZ(t)u+ (I — Py)Z(t)u

for some u € K, where Py = Pg ). Since the frame Z(1p): K — K & K is injective
and has range £(2p), the map C(¢) := Py Z(t): K — £(tp) is invertible at ¢ = ¢, and
therefore is invertible for ¢ sufficiently close to #g. It follows that any v € £(¢) can be
written as

v=w+ (I — P)Z(t)C(t) 'w

for some w € £(#y). This show that £(¢) is the graph of the differentiable family
Aty = =J(I — Po)Z(t)C(t)~': £(tg) — £(to), and hence is differentiable at #,.

(4) < (5) This is an immediate consequence of (A.3). [
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A.4. Maslov indices for Lagrangian paths

For a continuous family M(-) : [a, b] — A of Lagrangian planes, we can represent
each M () as the graph of a unitary operator Uy (¢):ker(J —i) — ker(J + i). Doing
the same for £(¢), we obtain a unitary family

W(t) := Up(1)(Ug (1))~

on ker(J + i) such that dimker(W () — 1) = dim(M(¢) N £(¢)); see [24, Lemma 2].
The Maslov index of M(-) with respect to £(-) is defined to be the spectral flow of
W(t) through the point 1 on the unit circle, in the counterclockwise direction. More

precisely,
n
0, (b) 0;(a)
s 200 = 3[40 -T2,
j=1
where [-] denotes the ceiling and 6y, ..., 6,: [a, b] — R are continuous functions
such that /1@ ¢ ® are the eigenvalues of W(t). See [25, Section 2.2] or

[75, Section 2] for details.

Remark A.2. We follow the conventions and notation of [75] so we can directly use
their formula (3.11) relating the Duistermaat and Maslov indices. Compared to the
Maslov index defined by Cappell, Lee, and Miller in [27], we have

Masp 31 (M), £(-)) = Masgg,p)(L£(), M()), (A.5)

see the remark in [5, Definition A.9]. On the other hand, this is related to the Maslov
index defined by Robbin and Salamon in [69] by

Masly (M), 2)) = Maste g (M), 20) + 3(8) — 3 (@)
where we have abbreviated A (¢) := dim(£(¢) N M(t)); see [3, eq. (A.7)].
Comparing (A.5) with [27, eq. (1.12)], we obtain
Masia,p) (£(), M()) = —Masga ) (M(), £0)) +h(@) =h(b). (A.6)

That is, the Maslov index is antisymmetric up to boundary terms.

We now explain how to compute the Maslov index, assuming for the rest of the
section that £(¢) = £ is constant and M (¢) is differentiable. We say g is a crossing
if M(t9) N &£ # 0. The associated crossing form is 1w, ‘= q|m@o)ng, Where q is
the form on JM(to) defined by (2.1). A crossing ty is regular if the form m,, is non-
degenerate. For a C! path M(-) with only regular crossings on [a, b], the Maslov
index with respect to &£ is then given by

Masga ) (M(). £) = na(ma) + Y (14 (my,) —n_(my)) —n_(mp). (A7)

to<€(a,b)
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Regular crossings of a C'! path are isolated, so the sum over ¢ is finite. For complex
symplectic spaces (A.7), was proved in [25, Proposition 3.27]. For real spaces, this
method of computing the Maslov index first appeared in [69]. In this paper we only
require the special case when M (+) is an increasing path, hence all crossing forms are
positive definite; see (2.5).
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