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On the spectra of periodic elastic beam lattices:
Single-layer graph

Mahmood Ettehad and Burak Hatinoglu

Abstract. We consider planar elastic beam Hamiltonians defined on hexagonal lattices. These
quantum graphs are constructed from Euler—Bernoulli beams, each governed by the fourth-
order Schrodinger operator with a real periodic symmetric potential function. In contrast to
the second-order Schrodinger operator commonly studied in the quantum graph literature, here
vertex matching conditions encode the geometry of the underlying graph by their dependence
on angles at which the edges meet.

We show that on the hexagonal lattice, the dispersion relation has a structure similar to that
reported for the periodic second-order Schrodinger operator, known as the “graphene Hamilto-
nian.” This property is then utilized to prove the existence of Dirac points (conical singularities).
We further discuss the (ir)reducibility of Fermi surfaces. Moreover, we obtain the point spec-
trum, the absolutely continuous spectrum, and the singular continuous spectrum.

Applying perturbation analysis, we derive the dispersion relation for the planar elastic beam
Hamiltonians on angle-perturbed irregular hexagonal lattices, defined in a geometric neighbor-
hood of the hexagonal lattice. On these graphs, we find that, unlike the hexagonal lattice, the
dispersion relation is not split into purely energy- and quasimomentum-dependent terms; how-
ever, Dirac points exist similar to the hexagonal-lattice case.

1. Introduction

Lattice materials are cellular structures obtained by tessellating a unit cell comprising
a few beams. Such lattice materials exhibit the characteristics of pass and stop bands,
determining frequency intervals over which wave motion can or cannot occur, respec-
tively [21, 28, 35]. This unique directional behavior complements the stop—pass band
pattern and makes the application of 2D periodic structures as directional mechanical
filters possible [35]. For models on special lattices, for example, the hexagonal lattice,
interesting physical and spectral properties have been observed, such as the presence
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of special conical points in the dispersion relation, where its different sheets touch to
form a two-sided conical singularity [5,25,36,37,39].

The analysis of wave motion in periodic systems, such as lattice materials and
vibrations in harmonic atomic lattices, goes back to the early studies of string vibra-
tion and later to Brillouin [10]. Under certain assumptions, the modeling of natural
and engineered tessellated lattices is studied under beam theories.! Under the Euler—
Bernoulli beam model, each beam is described by an energy functional which involves
four degrees of freedom for every infinitesimal element along the beam: axial, lateral
(2 degrees of freedom) and angular displacements. At a joint (vertex), these four func-
tions, supported on adjacent beams (edges), are related through matching conditions
that take into account the physics of a joint; see [7,9,16] for more details. In the special
case of planar frames, the operator is decomposed into a direct sum of two operators,
one coupling out-of-plane displacement to angular (torsional) displacement and the
other coupling in-plane displacement to axial displacement [7].

From a more theoretical point of view, the analysis of Hamiltonians correspond-
ing to these symplectic structures has recently gained the interest of mathematicians
working on differential operators on metric graphs (also known as “quantum graphs”) [7,
14,19]. Elastic beam Hamiltonians of the corresponding wave equations are given by
fourth-order operators; see [7, 19] and references therein. This makes understanding
the spectral properties of fourth-order quantum graphs important in the study of elas-
ticity models.

Early studies on the derivation of the dispersion relation (or variety) of second-
order Schrodinger operators defined on a periodic graph split the Hamiltonian into two
essentially unrelated parts: the analysis on a single edge and the spectral analysis on
the combinatorial graph; the former being independent of the graph structure and the
latter independent of the potential function [25]. However, contrary to second-order
Schrodinger-type operators on graphs, vertex conditions for elastic beam Hamiltoni-
ans encode geometry by their dependence on the angles at which the edges meet. As
a result, an extension of the existing theory to the latter operator on periodic lattices
is not trivially accessible.

Studying elastic beams through quantum graph models, Kiik, Kurasov, and Usman
provided the vertex conditions that make the operator d*/dx* self-adjoint on the
Y -graph (also known as the 3-edge star graph or the claw graph) [19]. Berkolaiko
and the first named author constructed three-dimensional elastic frames from Euler—
Bernoulli beams as quantum graphs and described vertex conditions from the geomet-
ric description of the frame (or the combinatorial graph) [7]. The vertex conditions

"'Most inclusive classical beam models are the Euler—Bernoulli and Timoshenko beam the-
ories.
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have physical meaning (continuity of displacement, continuity of rotation, equilib-
rium of forces, and equilibrium of moments) and make the corresponding differential
operator self-adjoint [7]. These results open the way for studying the spectral proper-
ties of elastic beam Hamiltonians.

In this paper, we study the spectral properties of planar elastic beam Hamiltonians
on the hexagonal lattice and its geometric perturbations defined in (3.1)—(3.4). We
note that the fundamental domains of these Hamiltonians are 3-edge star graphs; see
Figure 1. To keep the Hamiltonians we study more general as quantum graph mod-
els, we consider the operator d*/dx* + q(x). Therefore, the current work focuses
on extensions of second-order results obtained by Kuchment and Post [25] to the
fourth-order operator # = d*/dx* + g(x) with self-adjoint vertex conditions and
a real periodic symmetric potential on the hexagonal lattice and the lattices in the
geometric neighborhood of it; see Figures 1 and 4. Compared to the Kuchment—
Post theory of the second-order model (graphene Hamiltonian), the description of
the spectrum (Theorem 4.11) follows their results. However, our study on the dis-
persion relation (Proposition 3.3 and Theorem 4.5), Dirac points (Theorem 4.12),
and (ir)reducibility of Fermi surfaces (Theorem 4.14) includes important differences.
Moreover, we extend our discussions to irregular hexagonal lattices in the geometric
neighborhood of the hexagonal lattice in Section 5.

We study hexagonal elastic lattice Hamiltonians by considering the analysis of the
operator # on a single edge, and then the spectral analysis of # on the combinatorial
graph. The spectrum of the self-adjoint operator #P" = d*/dx* + go(x) on the real
line with a real periodic potential (known as the Hill operator for the second-order
operator) has a band gap structure and is bounded below. In contrast to the Hill opera-
tor, the edges of the spectral bands may belong to not only the periodic or antiperiodic
spectra of # on (0, 1), but also the set of resonances [3]. However, the latter case
occurs at most for finitely many bands [3]. Resonances are the branch points of the
Lyapunov function, which is an analytic function on a two-sheeted Riemann surface
and depends on the monodromy matrix of . The Lyapunov function characterizes
the spectrum o () and the multiplicities of its points. We refer the interested reader
to Section 2.2 of this work and [1-3, 31] for detailed discussions.

Before stating the structure of this paper, we briefly summarize our main results.

* Floquet-Bloch theory allows us to study spectral properties of a periodic oper-
ator through spectral properties of the same operator defined on a compact set
(fundamental domain) with additional vertex conditions (cyclic or Floquet-Bloch
conditions) depending on quasimomentum parameters 61, 8, [23,24]; see Figure 1
and Section 3. The graph of the multivalued function mapping quasimomenta
® := {61, 65} to the spectrum of the corresponding Bloch Hamiltonian #© is
called the dispersion relation, or the Bloch variety of J; see Section 3 for a
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detailed discussion of #© and its connection with J¢. In Theorem 4.5, we obtain
the dispersion relation of the Hamiltonian J¢ on the hexagonal lattice.

» The hexagonal elastic lattice Hamiltonian # is a self-adjoint operator, so its spec-
trum consists of the absolutely continuous spectrum, the pure point spectrum, and
the singular continuous spectrum. Theorem 4.11 describes the absolutely contin-
uous, pure point, and the singular continuous spectra of # .

» If two sheets of the dispersion relation (surface) of an operator touch at a point and
form a conical singularity, such a point is called a Dirac point, see Figure 5 and
Figure 6. In Theorem 4.12, we prove a representation of the set of Dirac points of
H in terms of the two branches of the Lyapunov function.

* The level surfaces of the dispersion relation for fixed energy values are called
Fermi surfaces at the corresponding energy. At any energy level, the Fermi surface
for # is a Laurent polynomial in z; := €91 and z, := ¢?%2 for the quasimomenta
0; and 60,. A Fermi surface is called (ir)reducible if the corresponding Laurent
polynomial is (ir)reducible. Theorem 4.14 characterizes reducible and irreducible
Fermi surfaces for J.

* In Corollary 5.4 and Theorem 5.6, we investigate the role of angle-dependent ver-
tex conditions. Under perturbed angles, see Figure 4, we show the existence of
Dirac points and describe the spectrum, which becomes purely absolutely contin-
uous.

Figure 1. The hexagonal lattice I" and a fundamental domain W together with its set of vertices
V(W) = {v1,v2} and set of edges E(W) = {e1, e2,e3}.
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The paper is structured as follows.

* In Section 2, we summarize background material starting with a discussion of the
parameterization of the beam deformation, energy functional, quadratic form, and
Hamiltonian on planar frames. This discussion is continued with a brief review of
the spectral properties of the fourth-order periodic operator P on the real line.

* In Section 3, we give a characterization of the spectrum of elastic lattice Hamilto-
nians on the hexagonal lattice and its perturbations.

* Section 4 is devoted to the derivation of the dispersion relation, Dirac points, and
the spectral structure of the hexagonal lattice.

» Section 5 discusses extensions of our results for perturbed angles.

* Section 6 contains additional remarks and potential future extensions.

2. Preliminaries

In this section we briefly review the literature to build the necessary background
for understanding the forthcoming material. Elastic beams are modeled by quantum
graphs [7]. A quantum graph is a metric graph equipped with a differential operator
and vertex conditions [8].

In the first part of this section, the self-adjoint beam operator J is defined on the
graph I" along with the corresponding vertex conditions. Next, we briefly discuss the
spectral properties of the second-order periodic operator defined on the real line, FP,
known as the Hill operator. We summarize these results from [1,3,9] in Theorem 2.4,
which will be referred to in the following sections.

2.1. Elastic planar graphs

Under the Euler-Bernoulli beam model, each beam is described by an energy func-
tional which involves four degrees of freedom for every infinitesimal element along
the beam: axial, lateral (2 degrees of freedom) and angular displacements [7]. A criti-
cal step here is how to derive vertex matching conditions that are both mathematically
general and physically sound for application purposes.

By restricting to one degree of freedom, that is, lateral displacement, vertex con-
ditions for planar graphs have been derived by assuming that the deformed lattice
will remain locally planar at a vertex, that is, the tangent plane exists at that ver-
tex [19]. The resulting scalar-valued operator is shown to be self-adjoint [19]. The
extension of these results to general three-dimensional graphs is developed in [7].
This has been done by introducing the notion of rigidity at the vertex, so that the
corresponding matching conditions are derived. Interestingly, the remaining vertex
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conditions, which make the vector-valued operator self-adjoint, have a connection to
the engineering world, namely satisfying equilibrium of forces and moments at the
vertices. Further extensions of these results to semi-rigid joints have recently been
proposed in [4] where the discontinuity of the displacement and rotation fields is
admissible at a vertex.

In the special case of planar frames, the operator decomposes into a direct sum of
two operators, one coupling out-of-plane displacement to angular (torsional) displace-
ment and the other coupling in-plane with axial displacements. However, achieving
this level of physically sound models means that the operator is no longer scalar-
valued and contains at least two degrees of freedom (for planar graphs) coupled at the
joints [7].

In this work, we follow the results of the scalar-valued operator from [19] with
the benefit of revealing some solid theoretical results regarding the spectra of the
corresponding Hamiltonian on the hexagonal lattice and its geometric perturbations.

2.1.1. Energy functional on planar lattice. A beam frame is a collection of beams
connected at joints. We describe a beam frame as a combinatorial graph I' = (V, E),
where V' denotes the set of vertices and E the set of edges. Let us note that in this
paper we consider the hexagonal lattice and its geometric perturbations (see Figure 4),
so in this general planar lattice framework, we assume I" to be an equilateral planar
graph with countably many vertices of finite degree (identical for each vertex) and
without loops. Now, letting the distance between two points, not necessarily vertices,
on I' be the minimal length of the path connecting them over I', we can introduce a
metric. This makes I" a metric graph.

The vertices v € V' correspond to joints and the edges e € E are the beams. Each
edge e is a collection of the following information:

 origin and terminus vertices v, vé eV,
* length £, and
 the local basis {I¢, Je, ke ).

For special planar graphs, which we focus on in this paper, the local basis Ee =k
is constant for all edges e € E, so the graph I" can be embedded in R?, see Figure 2.
Describing the vertices V' as points in R? also fixes the axial direction 7, (from origin
to terminus) and the length £,, which without loss of generality will be assumed to
be 1. However, the choice of J, in the plane orthogonal to 7, still needs to be specified
externally. The distinction between origin and terminus, and thus the direction of 7,
is not important in analysis.
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Figure 2. Planar local and global coordinate bases.

In the context of the kinematic Bernoulli assumptions for beam frames without
prestress and external force, the total strain energy of the beam frame is expressed as

Ui 3 ¥ [ @l + gl e

ecE

where the parameter a, is positive and fixed on the edge e representing the bending
stiffness about the local axis J, and ¢ € L?(e) is real-valued.

Assumption 1. The potential function g € L?(e) satisfies the evenness (symmetry)
property, i.e.,
q(x) =¢(1—x) 2.2

after parameterizing the corresponding edge e as [0, 1]. The evenness assumption (2.2)
is made not just for mathematical convenience, but this condition is required if one
considers operators invariant with respect to all symmetries of the periodic lattice.

2.1.2. Quadratic and operator forms. We now give a formal mathematical descrip-
tion of the Euler—Bernoulli strain energy form.

Theorem 2.1 (Sesquilinear form [7,19]). Energy functional (2.1) of the planar beam
lattice with free rigid joints is the quadratic form corresponding to the positive closed
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sesquilinear form

Q) = Y [ @l T + e 23)

ecE

densely defined on the Hilbert space
L*(T) := P L?(e)

ecE

with the domain of @ consisting of the vectors from

DH e

ecE

that satisfy at every vertex v € V rigid joint conditions, namely for any vertex v and
edges e and e’ adjacent to v

Ue (V) = Uer (V) (2.4a)
and
(J2 - T)u’ (0) + (Je - TS (0) + (J1 - 12)uy(v) =0 (2.4b)

for fixed edges 1,2 adjacent to v and any edge e adjacent to v, where the local basis
functions T, J. are defined above.

In Theorem 2.1, all functions are evaluated at the vertex v and all derivatives
are taken in the direction 7,. One may notice that condition (2.4a) guarantees the
continuity of u at a vertex v while (2.4b) preserves the local tangent plane in which
the edges e € v reside initially; see [9, 19] for details.

Obviously, for the cases e = 1,2 in (2.4b), trivial conditions appear, for example,
for e = 1, equation (2.4b) has the form

(J2 - 1)U (0) + (J1 - T1)uy(0) + (1 - 12)uy (v) = 0.

But here j; -7; = 0 since the two vectors are orthonormal and, moreover, (75 - 71) =
—(J1+12), so we get 0 = 0. Then, for the non-trivial cases, i.e.,e = 3,4,...,ny, we get
non-trivial conditions, one for each e. Therefore, for the case of the hexagonal peri-
odic graph, see Figure 1, we get only one non-trivial identity from condition (2.4b).
The following theorem characterizes the Hamiltonian of the frame as a self-adjoint
differential operator on the metric graph. We state it for vertices of degree 3, since in
this paper we focus on hexagonal lattices.
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Theorem 2.2 (Operator form [19]). The energy form (2.3) on a hexagonal beam
frame with free rigid joints corresponds to the self-adjoint operator #: L*(I") —
L*(T") acting as

Ue H> aeuy’ + quie (2.5)

on every edge e € E of the graph. The domain of the operator # consists of the

functions from
P H*(e)

ecE
that satisfy at each vertex v € V with degree ny the following
(i)  primary conditions
u1(v) = uz2(v) = uz(v),
(J2 - T3)u'y (0) + (J3 - TD)u5 (0) + (i - 12)u3(v) = 0;
(i1) conjugate conditions
3
Z shapul (v) =0

n=1

and

3
> span(y - oy (v) =0,

n=1

3
> span(@a - )y (v) =0,
n=1

3
> span(s - Ju)up(v) = 0.
n=1

The defined operator J is unbounded and self-adjoint in the Hilbert space L?(T").
Due to the condition (2.2) on the potential, the Hamiltonian # is invariant with respect
to all symmetries of the hexagonal lattice T, in particular, with respect to the Z2-shifts,
which will play a crucial role in our consideration; see [25] for a detailed discussion
on the role of symmetry of the potential.

2.2. Periodic fourth-order operator on the real line

Next, we summarize existing results on the spectral theory of the periodic fourth-
order operator on the real line. There are key differences compared to the second-
order (Hill) operator, which are essential for us to develop our results. The reader
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familiar with the aforementioned discussions can skip this subsection and jump to
Theorem 2.4.
Consider the self-adjoint operator

HP = d*/dx* + go(x)

acting on LZ(R), where the real 1-periodic potential go(x) belongs to the real space
1
L3(T) := {qo e LX(T): /qo(x)dx = 0},
0

where T = R/Z.
We introduce the fundamental solutions {gx (x)},‘i:1 of the eigenvalue problem

HPu(x) = Au(x), (x,A)eRxC (2.8)
satisfying for j, k € {1,2, 3, 4}, the conditions
g V) = 8.

where §; is the Kronecker delta function and g% = d¥*g/dx*. The monodromy
matrix is defined as

M) = M(1, 1)

for
g1(x)  g2(x) g3(x) ga(x)
| &) g gix)  gix)
M=) g0 g gi)
gi'(x) g'(x) gy(x) gy (x)

and it shifts by the period along the solutions of (2.8). It is well known that the mon-

2.9)

odromy matrix M(A) is entire as a complex function of A. Its eigenvalue 7 € C, i.e.,
the root of the algebraic polynomial

D(t, 1) = det(M(}) — 14,

is called a multiplier.

According to the Lyapunov theorem, if for some A € C, t(A) is a multiplier,
then 1/7(A) is another multiplier of the same multiplicity. Moreover, each M (1) has
exactly four multipliers 71 (1), 72(A), 1 /71 (1) and 1/75 (1), see [1].

If we let

Di(A):=D(,A)/4 and  D_(A):= D(—1,1)/4,
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then the zeros of D4 (1) and D_(A) are the eigenvalues of the periodic and antiperi-
odic problem, respectively, for (2.8). Denote by AT, )L;En, and )Lécn_l with n € N, the
sequence of zeros of D4 and D_ (counted with multiplicity) respectively such that

Af <Ay <A =ay<Af <
and
AT <A <A3 <A <A5 <.,

It is well known that the spectrum of JP*" is purely absolutely continuous and consists
of non-degenerate intervals [1, 3]. These intervals are separated by the gaps G, =
(A, ,AF),n eN.

We introduce the functions

1 1
Ti () = Ztr(M(A)), Tx(A) == E[tr(Mz(/\)) + 1] — [tr(M(L)].
The complex functions 77 and 75 are entire, real on R, and determine the discrim-
inant as

D(z,) = (2 = 2Ty = T,*)t + 1) (z? = 2Ty + T,*)7 + 1).

For the special case of the free operator, that is, go = 0, the corresponding functions
have the form

TP(A) = %(Cosh(kl/“) + cos(A1/*)),
T\ = %(cosh(z\l/“) — cos(A1/4))?
with arg(A'/*) € (= /4, 7/4].

Let {ry, rE1nen be the sequence of zeros of T, in C (counted with multiplicity)
such that r; is the maximal real zero, and

---§Rer,;'rJrl §Rer,;"§---§Rerl+.
+
If r,; € C4, then o
- +
r, =r, €C_,
and if r,F € R, then
—_ + —
r, <r, <Rer,

form=1,...,n—1.
Under extra mild conditions, it was shown that

rE = —4mm)* + O(n?)
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asn — oo. Let

Srn_J Sr;}; S...<r_ <r+ <
be the subsequence of the real zeros of T,. Then T>(A) < O for any A € R;) =
(r,f; . rn_j) for j € N. A zero of the function T,(A) is called a resonance of the
operator #P°" and the interval R}) C R is called a resonance gap.

Let us introduce R® := |J R]Q and 1° which joins the points rh, r7 and does
not cross R°. To deal with the roots of the function 75(1), the Riemann surface R
is constructed by taking two replicas of the A-plane cut along R® and | J n,. They
are called sheets R and R,, respectively. As a result, there exists a unique analytic
continuation of the function T21 / %(A). We denote the Lyapunov function by

AE) = Ti() + 1,72 @)

with £ € R. Letting A(§) = A;(A) on R; and A(¢) = A,(A) on the second sheet
Ro, we get

A1(D) = Ti() + T, (M), (2.102)
Ar(A) = Ty (V) — T2 (). (2.10b)

For go € L3(T), the function A(X) = Ty (4) + Tzl/ 2 (1) is analytic on the two sheeted
Riemann surface R and the branches Aj of A have the forms

M) = S @) + 7 ()

for A € Ry with k = 1, 2. For the special case go = 0, the corresponding functions
are given by
A%(X) = cosh(A/2) and AY(X) = cos(1'/?).

For the operator JP°, the Lyapunov function A; is increasing and A, is bounded
on the real line at high energy levels (large A values). The Lyapunov function for the
operator JP° defines the band structure of the spectrum and is an analytic function
on a 2-sheeted Riemann surface. The qualitative behavior of the Lyapunov function
for identically vanishing and small potentials is shown in Figure 3.

Remark 2.3. In the case of the Hill operator, the monodromy matrix has exactly 2
eigenvalues t and t~!. The Lyapunov function %(f + 1) is an entire function of
the spectral parameter. It defines the band structure of the spectrum; see [24] for a
detailed discussion.

Theorem 2.4 (Spectral properties of #P [1,3,9]). Let A1(A) and Ax(X) be as
defined in (2.10). Then, for the eigenvalue problem (2.8), the following results hold.
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A(R)
Ar(d) .
+1y
Azx(A)
A\ v /A Ay
o \A? Ay A3 |
—1
AV
/’/./Al (A) Az(k)
+1] 7
+ 4+ +
"y it A Ay
N AT Ay A
—1

Figure 3. The function A for the zero potential and a small potential gg.

The spectrum of JHP, o (HP), is purely absolutely continuous.
A € o (HP) ifand only if Ax (L) € [—1,1] for some k = 1,2. If A € o (HP*),
then Tr(A) = 0.

There exists an integer ny € Nq such that for all n > ny,
- + - + - +
An EAn E/\n—i-l E)‘n-l—l 5An+2§kn+2§”"

where the intervals [A;, A, 1] are spectral bands of multiplicity 2 and the
intervals (A, , A;}) are gaps.

Each gap G, = (A, A)) for n € N is a bounded interval and A are
either periodic (anti-periodic) eigenvalues or resonance point, namely, real
branch point of Ay for some k = 1,2 which is a zero of T>.

Any A € o (HP") on an interval S C R has multiplicity 4 if and only if
—1 < Ax(A) <1 forallk = 1,2 and A € S, except for finite number of
points.

Any A € o (HP") on an interval S C R has multiplicity 2 if and only if —1 <
A1(Q) <1, Ay(A) e R\ [-1,1]or =1 < A(A) <1, A1(A) e R\ [-1, 1]
forall A € S, except for finite number of points.

Let Ay be real analytic on some interval I C R and —1 < Ap(L) < 1 for
any A € I for some k = 1,2. Then A} (L) # 0 for A € I (monotonicity).
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(viii) The dispersion relation for JP"

is given by Aj (L) = cos(0) or equiva-
lently

Ti(A) + T,/ (1) = cos(6).

where 0 is the one-dimensional quasimomentum.

3. Spectra of the perturbed hexagonal elastic lattice Hamiltonians

In this section, our aim is to adapt and characterize the spectrum o (#) of the oper-
ator # defined in Theorem 2.2 on the hexagonal lattice and its perturbations. We
construct such lattices by considering a 3-edge star graph as the fundamental domain
and extending it to the plane, see Figure 1. Our focus will be on the hexagonal lattice
(Section 4) and its perturbations (Section 5). In order to cover both cases in Proposi-
tion 3.3, we define angles §y := 27/3 and

82 =80 + ce. 3.1

Then by letting the three angles between the edges of the fundamental domain be
87, 6% and 62 ,_, for c € [-1,1] and 0 < & < 1, we construct e-perturbations of the
hexagonal lattice. The hexagonal lattice corresponds to the case ¢ = 0, see Figure 4.

Figure 4. Fundamental domains for angle perturbed hexagonal lattices, see (3.1). The middle
picture shows the hexagonal lattice in which the edges meet with equal angles at each vertex.
Recall that §g := 27/3 and . := 8¢ + ce. In the left picture, the angles are 277 /3 + &,27/3 + ¢
and 27t/3 — 2¢. In the right picture, the angles are 277/3, 271/3 + ¢ and 27/3 — &.

Due to the positivity and self-adjointness of the operator #, its spectrum is real
and positive. Let A € o (H) with A > 0 be an eigenvalue of 4 with the associated
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eigenfunction (ue)ecg € D(H). Then u,.(x) satisfies on each edge e € E
Hue(x) == ul" (x) + g(xX)ue(x) = Aue(x). (3.2)

Remark 3.1. Note that since a, — the bending stiffness about the local axis J in (2.5)
— is a positive constant and identical on the hexagonal lattice (because of the period-
icity), we assume that it is identically one.

Recalling the definition (3.1) and letting ¢; € [—1, 1] be an arbitrary parame-

ter and ¢, := —(1 + ¢1), the eigenfunction (¥¢)ecg € D(H) corresponding to the

e-perturbed lattice at each vertex v satisfies (see Theorem 2.2) the primary vertex
conditions

u1(v) = uz(v) = usz(v), (3.3a)

sin(87)u (v) + sin(8; Juy () + sin(8;, )us(v) = 0, (3.3b)

along with their conjugate vertex conditions

W (0)/ sin(85) = w(v)/ sin(5E,) = wl(v)/ sin(5e,), (3.42)
uy’(v) + uy (v) + uj' (v) = 0. (3.4b)

We note that the result in (3.4a) is obtained using the fact that 13 - J, = —15 - J3.
Moreover, for the hexagonal lattice and its e-perturbed angles, the conditions above
are well defined; we refer the reader to [19] for a discussion of special cases, e.g.,
when 6§ = 7.

Using Floquet-Bloch theory with respect to the ZZ-action, we can reduce the
study of the Hamiltonian J to the study of the Bloch Hamiltonians #© acting in
L?(W) for the values of the quasimomentum ® in the (first) Brillouin zone [—7, 7]?
(see, e.g., [24]). The Bloch Hamiltonian #© and Hamiltonian # correspond to the
same differential operator, but act on different spaces of functions. Any function

=P

in the domain of #© belongs to the Sobolev space H*(e) on each edge e and sat-
isfies the vertex conditions (3.3)—(3.4). Additionally, it satisfies the cyclic conditions
(Floquet—Bloch conditions)

u(x + niby + nzgz) = eiﬁ'®u(x) = o (MOi+m202)y () (3.5)

for any x in the fundamental domain W, vector in=(n1,ny) € 72, and quasimomen-
tum ® = (01, 6,) € [, 7]?, see Figure 1. Cyclic conditions (3.5) provide unique
determination of the function u from its restriction to the fundamental domain W.
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Here, without loss of generality in the fundamental domain, we assume the edge e; is
[0, 1], so the vertices v; and v, are 0 and 1. Then conditions (3.3)—(3.4) at the central
vertex, i.e., x = 0, become

u1(0) = uz(0) = u3(0) =: A, (3.62)

sin(87)u’ (0) + sin(8Z, )u5(0) + sin(8¢, )u3(0) = 0, (3.6b)
uy(0)/sin(87) = u3(0)/sin(8,) = u3(0)/sin(8;,) =: B, (3.6¢)
' (0) + 12 (0) + 2 (0) = 0. (3.6d)

Similarly, at the other endpoint of edge ey, i.e., x = 1, we have

ui(l) = uz(l)ew‘ = ug(l)eie2 =:C (3.7a)

sin(8§)u (1) + sin(85 Jus (1)e'® + sin(8g us (1)e'®2 = 0 (3.7b)
u’/(0)/ sin(5%) = ul3(0)e'®1/ sin(85,) = u(0)e’%/ sin(8g,) =: D (3.7¢)
u (1) +uy (e’ +uf (1)e'® = 0. (3.7d)

It is well known that #© has a purely discrete spectrum o(#®) = {11 (©)}ren,
see [24]. The graph of the multi-valued function

O = {A(©)}

is called the dispersion relation, or the Bloch variety of the operator # . The range of
the dispersion relation is the spectrum of H# (see [24]):

o) = | Jo(x®). (3.8)

O¢[-r,n]?

Taking into account (3.8), the dispersion relation of # can be determined from
the spectrum of # ©. Therefore, we need to solve the eigenvalue problem

HOu(x) = Au(x) (3.9)

for A € R and u,(x) € L2(W) with the boundary conditions (3.6) and (3.7). Let »D
denote the spectrum of the operator

Hu(x) = u""(x) + g(x)u(x) (3.10)
on the interval (0, 1) with boundary conditions

u(©0)=0, u"0)=0, u(l)=0, u"(1)=0. (3.11)
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If A ¢ P, then there exist four linearly independent solutions ¢y, ¢, ¢3, and ¢4
(depending on A) of (3.10) on (0, 1) such that

$1(0) =1, ¢7(0)=0, ¢:1(1)=0, ¢7(1)=0,

$2(0) =0, #,(0) =1, ¢2(1) =0, ¢5(1) =0,

$3(0) =0, #5000 =0, ¢3(1) =1, ¢3(1) =0,

$2(0) =0, ¢7(0) =0, ¢4(1) =0, ¢;(1)=1.

For example, if ¢ = 0 and A > 0, then we have A & X2 if and only if AY/* & nZ. If
A & 2P then

(3.12)

1
¢1(x) = E(cos(kl/4x) + cosh()&l/“x) — cot(kl/4) sin(ll/4x)
— coth(A1/%) sinh(kl/“x)),
1
Pa(x) = 5(— cos(A/4x) — cosh(A'/4x) + cot(A1/*) sin(A'/*x)
— coth(A1/#) sinh(kl/“x)),

¢3(x) = %(sin()tl/“x)/ sin(A1/#) + sinh(1/4x)/ sinh(A1/%)),
Palx) = %(— sin(A1/4x)/ sin(AY/4) + sinh(1/4x)/ sinh(11/4)).

Next, we assume that the functions ¢, defined on [0, 1] with the conditions (3.12), are
lifted to each edge in the fundamental domain W. Moreover, with abuse of notation,
¢r denotes the lifted functions.

For A ¢ P, we use (3.12) to represent any solution 1 of (3.9) from the domain
of #© on each edge in W as follows:

u1(x) = Ad1(x) + B sin(§5)da(x) + Cpa(x)e % (3.13a)
+ D sin(85)pa(x)e %,
Uz(x) = Agi(x) + B sin(85,)g2(x) + Cps(x)e %" (3.13b)
+ D sin(8, )pa(x)e 1,
uz(x) = Agy(x) + B sin(85,)¢a(x) + Cop(x)e ™'
+ D sin(8E,)ga(x)e ™2, (3.13¢)
with 6y = 0. Next, let us introduce the (Wronskian) operator
W: L2[0,1] x L?[0,1] — C,
defined as

We 1, uz) 1= (D (x) = wf (0)uh(x) + ()5 (x) — ur (s ()
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for x € [0, 1]. Then for the fourth-order Hamiltonian #, we get
Uy (X)) Hup(x) —uy(x)Huz(x) = (Wi(uy,uz) — Wouy, uz))'. (3.14)

If uy and u, solve Hu = Au, then Wy (uy,uz) — Wo(uy,uy) is a constant. In the next
lemma, we use W to show some identities of ¢y at the endpoints.

Lemma 3.2. Applying the symmetry property (2.2) of the operator H acting on the
interval (0, 1), we get

p3(1) = —¢1(0).  $5(0) = —¢;(1),
¢35’ (1) = —¢1"(0).  ¢3'(0) = —¢{"(1), ¢5'(0) = ¢1(0),
¢i(1) = —¢5(0).  $4(0) = —¢5(1),
oy (1) = —¢5'(0).  ¢4'(0) =—¢5'(1), ¢5'(1) = ¢1(1).

Proof of Lemma 3.2. The proof of this lemma is based on (3.14). In fact, for n,m €
{1,2,3,4} and n # m, let ¢, (x) and ¢, (x) be two independent solutions of eigen-
value problem

Hu(x) = u""(x) + g(x)u(x) = Au(x)

on (0, 1) satisfying the boundary conditions (3.12). Now, observe that
Gm () HPn(x) — Gn (X)) H m (%) = P (X)APn (X) — P (X)APm(x) = 0. (3.15)
However, by (3.14),

¢m(x)<%¢n(x) - ¢n(x)=%¢m(x) = (Wl (¢na ¢m) - W0(¢n7 ¢m))/ (3-16)

For a constant ¢, (3.15) and (3.16) then imply that Wy (¢, ¢m) — Wo(¢n, dm) = c. For
any choice of n # m, observe that the boundary conditions in (3.12) implies ¢ = 0,
i.e.,

Wy (¢n’ ¢m) = W0(¢n7 ¢m)

Finally, applying the properties of ¢, from (3.12), we get the result we look for.
As an example, setting (7, m) = (1, 3) and using the property that the only non-
zero terms are ¢ (0) and ¢3(1), one gets

¢5'(0) = —¢1"(0).

Similar conclusions can be made to derive the desired relations stated in the lemma.
]
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Next, for k € Ng = N U {0} and an arbitrary ¢ > 0, let

SE(©) :=

e (sin® (85) + sin® (82 )e %1 + sin* (5¢,)e™7%2),
where © € [—m, 7]?, 8o = 2m/3, ¢1 € [-1,1] and ¢, = —(1 + ¢1). We introduce
the scaled versions of B and D from (3.6¢) and (3.7¢c) as B = sin(8p) B and D=
sin(89) D, respectively. Using the functions u; defined in (3.13) with the vertex con-
Eiitions (3.6b), (3.6d), (3.7b), and (3.7d) reduces the problem to finding the vector

£:= (A B C D)T that satisfies

= Aole) —Ai(e)\z _
Mt = (—;fl (e) A0(8))E =0 G40

The block components of the matrix M, are written in terms of the quasimomentum
® and the solutions ¢y as

SE(0)¢1(0) S;(ow;((») Al(g):z(Sf(®)¢i(1) S;(@)@(l)),

A =
" (55("”’3"(0) SH(0)95'(0) S5@)9)'(1)  Si(O)8y(1)

and

S{(®)¢(1) S§(®)¢£(1))
S5(®)¢1"(1)  S;(©)¢5" (1))

Clearly, a non-trivial solution exists, if the matrix M (A4) is singular. This is formally

/Tl(é‘) = —(

stated in the following proposition.

Proposition 3.3. If A & X2, then A is in spectrum of the hexagonal elastic lattice
Hamiltonian J if and only if there exists © € [—m, 7]? such that

det(M, (1)) = 0. (3.18)

The result in Proposition 3.3 can be directly (numerically) investigated, but we
will split the discussion into two parts. In the following section, we state the theoret-
ical results for case ¢ = 0, namely, the hexagonal lattice. In Section 5, extensions of
these results are presented for the perturbed angles, applying tools from perturbation
analysis.

4. Spectral properties of the hexagonal elastic lattice Hamiltonian

In this section, we discuss the outcome of the results from the previous section for the
special case of ¢ = 0, i.e., the hexagonal lattice, and obtain the spectral properties of
the hexagonal elastic lattice Hamiltonian. In this case, for any £k € Ny, we let

50(0) := SP(O) = 1 + 701 4 7102, .1
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From (4.1), the components of the block matrix defined in (3.17) split into
Ao(A) = 50(0)Po(0).  A1(h) = —50(@)Po(1). A1(A) = —s50(©)Po(1).

where the matrices ®¢(0) and @y (1) are of the form

:¢M)%®) (0 B0
o) (¢;”(0) pr@) M PO = gy gray) @

Lemma 4.1. The matrix ®o(1) defined in (4.2) is non-singular.

Proof of Lemma 4.1. By contradiction, let us assume ®(1) is singular, which by the
identities in Lemma 3.2 reduces to the condition

det(Po(1)) = ¢1(1)¢3" (1) — g5 (D" (1) = ¢53(0)¢5"(0) — $4(0)95'(0) = 0. (4.3)
Using the fact that ¢}’ (0) = ¢5(0), equation (4.3) implies (at least) one of the follow-
ing conditions is true:

(i) ¢5(0) = 0and ¢5'(0) = 0;
(i)  ¢5(0) = 0and ¢,(0) = 0;
(i) $5(0) # 0. $4'(0) # 0, and §}(0) # 0.

Recalling the fundamental solutions g from Section 2.2, we can represent ¢3 as a
linear combination of them in the form

$3(x) = b181(x) + b2g2(x) + b3g3(x) + baga(x). (4.4)

Then, using (4.4) along with the conditions ¢3(0) = 0, ¢5(0) = 0, item (i) implies
that ¢3 = 0, which is a contradiction.
A similar discussion holds to show that item (ii) above implies ¢4 = 0.
Considering the last case above, let us introduce

_ #O) _ 8,0
T80 T 950

Then, obviously, by our assumption, r # 0. Utilizing the representation (4.4) and a

similar representation for ¢4, we get

#3500 = 950220+ P gi) and ga() = gL 020) + $30)g400).

Comparing these two representations implies that ¢4 = r¢3, which is a contradiction,
since by our assumption ¢3 and ¢4 are linearly independent solutions. This proves the
non-singularity of the matrix ®¢(1). |
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Applying the fact that 59(0) = 3 along with Lemma 4.1 reduces condition (3.18)
in Proposition 3.3 to

2
det(A%(/\) _ @Hz) —0, (4.5)

where Ag(1) := @5 (1)®o(0). This means that for the hexagonal lattice we proved
the following result.

Proposition 4.2. If A & X0, then A is in the spectrum of the hexagonal elastic lattice
Hamiltonian J if and only if there is ® € [—m, r|?* such that

150(®)]
3

G
det(/\()()t) — Hz) det(/\()()L) + Mﬂz) =0.

3
In other words, |so(®)|/3 is a root of the characteristic polynomial for Ay(X) or
—Ao(A) matrices, i.e., a root of

P(z: 1) = (22 — tr(Ao(M))z + det(Ao (X)) (22 + tr(Ao(1))z + det(Ao(L))). (4.6)

Proposition 4.2, in particular, says that in order to find the spectrum of J#, we
need to calculate the range of |so(®)| on [—m, 7]?. This function is identical to the
one reported for the second-order Schrodinger operator on the hexagonal lattice (the
graphene Hamiltonian), see [25].

In summary, |so(®)| has range [0, 3], its maximum is at (0, 0), and minimum at
(27 /3,—2n/3) and (—2m/3, 27 /3). These properties are based on the simple obser-
vation that

|50(®)> = |1 4 &' + €%

with range [0, 9]. See Figure 8 (left) for a plot of the level curves of this function.

4.1. The dispersion relation via fundamental solutions

Our next goal is to obtain the dispersion relation by representing the functions ¢, and
hence the matrix A, in terms of the potential g¢ on [0, 1]. To this end, let us recall the
operator #P°" on R, defined in Section 2 as

FPu(x) = u”"(x) + go(x)u(x) 4.7

with the periodic potential extended from go. Note that we maintain the notation gg
for the extended potential. The fundamental solutions {gx (x)}iz1 of JP satisfy for
J.k €{1,2,3,4}, the conditions

g7 7(0) = 8.
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Therefore, the monodromy matrix M (A1) defined through (2.9), shifts by the period
along the solutions of (4.7), that is,

uM) (2 ) g g ()
ZON B FAORFAORPAGEFANE | YO
ON I FHORFAORFAORE AN | RO

u///(l) ///(1) ///(1) ///(1) ///(1) u///(o)

The 4 x 4 matrix-valued function A — M(A) is entire, see Section 2 and the refer-
ences therein for more detailed discussions. Since our goal is to obtain the dispersion
relation of the operator J, next we derive relations among g and ¢ . For simplicity,
let us introduce the following notation:

D(f.g):= f(0)g"(1)—g'(1) f"(0). (4.8)

Lemma 4.3. The fundamental solutions {gy, (x)}i=1 of HP" can be represented in
terms of the functions ¢ and ¢, introduced in (3.12) as

g1(x) = ¢1(x) + m( (¢1, $2)P3(x) — D(P1, P1)Pa(x)),
g23(x) = ¢a(x) + m(o@(% s $2)$3(x) + D(P1, P2)Pa(x)),
and
g2(x) = m(%(l)d’s(ﬁc) ¢ (1) pa(x)),
ga(x) = (P2 (D3 (x) — 1 (1)a(x)).

de t(<1> (1)

Proof of Lemma 4.3. Starting with the observation that {¢k}£=1 and {gx }izl solve
the eigenvalue problem

u™'(x) + q()u(x) = du(x)

and the fact that these are linearly independent sets of solutions, we represent each g
as

gk (x) = agd1(x) + br2(x) + ckd3(x) + dipda(x).

Applying the properties of ¢y given in (3.12), we observe that coefficients correspond-
ing to g satisfy

2100=0 = a; =1, g/(0)=0 = b =0.
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Moreover, the remaining conditions result in

£100) =0 = g1(0) = ¢1(0) + c1¢5(0) + d1¢;(0)
= ¢1(0) —c1¢1(1) —digy(1) = 0
and
g/(0) =0 = g{"(0) = ¢7"(0) + c1¢3'(0) + d1¢}’(0)
= $1(0) — 197’ (1) — d1¢5'(1) = 0.

Solving for c¢; and d, we get

_ D(¢1,92) di = D(¢1,$1)

T det(@o(1)” T det(®@o(1))

Similar discussions can be followed to obtain the coefficients corresponding to re-
maining gg. ]

The symmetry of the potential g brings additional properties on the fundamental
solutions which are summarized in the following lemma.

Lemma 4.4. Under the symmetry property of the potential qq, the fundamental solu-
tions satisfy

gi() =g'(M). &) =g5'1). gi(1) =gy
g (1) =gy (1), &) =gi(1). gs(1) =gy

Proof of Lemma 4.4. Establishing this result is similar to the proof of Lemma 3.2
along with an application of the symmetry of the potential. |

Next, let us introduce the matrix Go(1) as

g1(1) gs(l))
gl g5/

This matrix can be interpreted as an extension of the (scalar-valued) discriminant

Go(d) = ( 9)

function D(A) = g1(1) + g5(1) = 2g1(1) for the eigenvalue problem correspond-
ing to the second-order Schrodinger operator [25]. Putting all the observations above
together allows us to derive the dispersion relation of #, stated formally in the fol-
lowing theorem.

Theorem 4.5 (Dispersion relation). The dispersion relation of the hexagonal elastic
lattice Hamiltonian # consists of the variety

2
det(Gg(/\) - @Hz) -0 (4.10)

and the collection of flat branches A € %P,
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Proof of Theorem 4.5. Recalling the notation (4.8), and then applying Lemma 4.3
and (3.12), we get the following identities:

" _ °©(¢1 . $2) / _ D(p2, $2)

g1(1) + g4 (1) = +2m, g3(l) + g4(1) = +2m,
o D(1.91) D2, ¢1)
gi() +gy (1) = d det(@o (1)’ gs(1) + g5(1) = d det(@o (1)’

Since ¢5'(0) = ¢1(0) and ¢5'(1) = ¢;(1), observe that the right-hand sides of the
above equations are the entries of 2A¢(A) introduced in (4.5). Therefore, using
Lemma 4.4, one gets

g1(D) +g4'(1)  ga(1) +g2(1)) 2(gl(l) g3(1)
(D) +g7'(1) g5(1) + g5(1) gi() g3 (1)

Then, combining the results from Proposition 4.2 and Lemma 4.7 establishes the

2Ao() = ( ) = 2Go ().
claimed result. n

For specific purposes, e.g., the reducibility of the Fermi surface, it may be desir-
able to rephrase (4.10) in terms of the characteristic polynomials.

Remark 4.6. The eigen-parameter A is in the spectrum of the hexagonal elastic lattice
Hamiltonian # if and only if A € X2, or |so(®)|/3 is a root of the characteristic
polynomial for Go(1) or —Go(A), i.e., A € P oris a root of

P(z; 1) = (22 —tr(Go(A))z + det(Go(1)))(z? + tr(Go(1))z + det(Go(A)))

by equation (4.6).

Noting that ¢5’(1) = ¢/ (1), we can also write the dispersion relation as follows:
the eigen-parameter A is in the spectrum of # if and only if

(Al(k) " |s02®)|>(A2(A) " |Sog®)|) _o

or A € 2P, where A; () were defined in (2.10) and

2
tr((;}o)’ T, — tr (fo) — det(Gy). 4.11)

| =
We have not yet discussed the points in the Dirichlet spectrum I2 of a single edge.
In order to deal with them, we will explicitly construct their corresponding eigenfunc-
tions. We refer the reader to [25] for a similar type of construction for the second-order
operator case.
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Lemma4.7. Each point A € P is an infinite multiplicity eigenvalue of the hexagonal
elastic lattice Hamiltonian #. The corresponding eigen-space is generated by simple
loop states, i.e., by eigen-functions which are supported on a single hexagon and
vanish at the vertices.

Proof of Lemma 4.7. Let us first show that each A € X2 is an eigenvalue. Let u be an
eigenfunction of the operator d*/dx* + ¢o(x) with the eigenvalue A and (Dirichlet-
type) boundary conditions on [0, 1] as stated in (3.11). Note that (1 — x) is also an
eigenfunction with the same eigenvalue, since go(x) is even. If u(x) is neither even
nor odd, then u(x) — u(1 — x) is an odd eigenfunction. For an odd eigenfunction,
repeating it on each of the six edges of a hexagon and letting the eigenfunction be
zero on any other hexagon, we get an eigenfunction of the operator . If u is an
even eigenfunction, then repeating it around the hexagon with an alternating sign and
letting the eigenfunction be zero on any other hexagon, we get an eigenfunction of
the operator . Therefore, A € op,,(H). We get the rest of the proof following the
arguments of [25, Lemma 3.5]. ]

Remark 4.8. Compared to Schrodinger, the Dirichlet-type boundary conditions for
the fourth-order operator may be a place to be cautious. Naturally, one may select
vanishing boundary conditions in quadratic form as Dirichlet ones (this choice holds
for the second-order operator). However, here we defined >D as (3.11) to accommo-
date Floquet vertex conditions in (3.6a), (3.6¢c), etc. We refer the interested reader to
Section 6 for a further discussion along this line.

Example 1. Consider the free operator, i.e., ¢ = 0. Setting u := VA and using the
convention

+ . + o :
C, (x) 1= cosh(ux) & cos(ux) and S, (x) := sinh(ux) = sin(ux),
the fundamental solutions take the forms

1 1
g1(x) = ECJ(X), g2(x) = ZSJ(X),

1 1
g3(x) = 2_MZCM (x), galx) = Z_;HS“ (x),
and hence

2

GOW:(&(D g3<1>) 1( i /ﬂc,;(l))

gl gsmy) " 2\p2c; 1y

This then implies

det(Go()t) + @Hz) - (|s0(3®)|)2 + tr(Go)(|s°(3®)|) + det(Go).
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Therefore, the dispersion relation is equivalent to
C
(cos(kl/“) + 150(® )|)( osh(A1/4) + 50 )l) =0.

Since cosh(x) > 1, and taking into account |so(®)| < 3, the only root of the second
factor is at ® = (0,0) and A = 0 which also solve the first phrase. Therefore, the
dispersion relation for go = 0 reduces to

cos()&l/“) =+

@. (4.12)

)L—l/2

92 9]

Figure 5. Dispersion relation for the zero potential case, see (4.12).

Remark 4.9. The dispersion relation of the second-order Schrédinger operator with
the vanishing potential, that is, #*u(x) = —u”(x) on graphene has the form
s50(©)|
3 b
which is interestingly very similar to (4.12). Therefore, Example 1 shows that the dis-

cos(kl/z) =+

persion relation of the hexagonal elastic lattice Hamiltonian J coincides with that for
the second-order Schrodinger operator (graphene Hamiltonian) #%, if the eigenvalue
problems #*u = Au and Hu = A'/2y are considered. Figure 5 shows the plot of the
first two spectral sheets of the dispersion relation.
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4.2. The spectrum of the hexagonal elastic lattice Hamiltonian

This section is devoted to the full description of the spectra, conical singularities, and
Fermi surfaces corresponding to # defined on the hexagonal lattice.

Lemma 4.10. As a set, 2P belongs to the union of the periodic and the antiperiodic
spectra of HP.

Proof of Lemma 4.10. Let A € 2. Since the potential gq is even, if u(x) is an eigen-
function, then u(1 — x) is also an eigenfunction. Therefore, we consider the two cases:
u even or u odd. If u is odd, it satisfies the periodic boundary conditions, i.e.,

u(0) =u(l), u'(0)=1u'(1), u”"©0)=u"1), u”0)=u"(Q1). (4.13)

On the other-hand, if u is even, it satisfies the anti-periodic boundary conditions
u(0) = —u(1), u'(0)=-u'(1), u"0)=-u"(1), u"©0)=-u"1). (4.14)
]

We can now fully describe the spectral structure of the hexagonal elastic lattice
operator .

Theorem 4.11 (Spectral description). (i) The singular continuous spectrum o (H)
is empty.

(i) The absolutely continuous spectrum o,.(H#) has a band-gap structure and
coincides as a set with the spectrum o (HP") of the fourth-order operator P with
potential qq periodically extended from [0, 1]. Moreover, the absolutely continuous
spectrum 0, (H) has the representation

Oac(H) ={A € R | Ax(A) = [-1, 1] for some k = 1,2}, (4.15)

where :
A12(A) 1= E(tr(Go(/\)) £ (2 (Go(1) — 4det(Go (1)) /),

and Gy is defined in (4.9).
(iii) The pure point spectrum opp(H) coincides with 2P as a set, and for large
energy values, it belongs to the union of the edges of the spectral bands of G, (H).

Proof of Theorem 4.11. The proof is based on the tools developed in this paper, along
with the results already established in the relevant references.

For (i), observe that the singular continuous spectrum is empty, since # is a self-
adjoint elliptic operator (see e.g., [24, Corollary 6.11]).
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The proof of (ii) is based on Theorem 4.5, as we know that any A ¢ X belongs
to o (#) if and only if |so(®)|/3 is a root of the characteristic polynomial for D ()
or —D(A), i.e., a root of

P(z: 1) 1= (22 — r(Go(A))z + det(Go(1))) (22 + tr(Go D(A))z + det(Go(R))).

Since the range of |so(®)] is [0, 3], then £ (|so(®)|/3;A) = 0 if and only if A; €
[-1,1] or Ay € [—1, 1]. This observation along with Proposition 4.2 provide the
desired representation (4.15). According to Thomas’ analytic continuation argument,
eigenvalues correspond to the constant branches of the dispersion relation [25,34,38].
Since the dispersion surfaces

{(®,1) e R? | Ar(A) = %|s0(®)|/3 for some k = 1,2}
have no constant branches outside X2, we get 0,,,(#) € X2 and hence
Ouc(H) ={L € R | Ax(X) € [-1,1] for some k = 1,2}.

Note that (4.15) also represents o (HP") = 0, (HP) by Theorem 2.4 (ii). So, the
absolutely continuous spectrum o,.(#) has band-gap structure and coincides as a
set with the spectrum o (#P%") of the operator P with potential gy periodically
extended from [0, 1].

Finally, for (iii), we observed that op,(#) € P and in Lemma 4.7 we showed
that 22 C 0y, (H#). Then Lemma 4.10 implies that o,y (#) C P U £, where %P
and X% denote the periodic and anti-periodic spectra of (3.10), i.e., with the bound-
ary conditions (4.13) and (4.14) respectively. However, from Theorem 2.4 (iii), there
exists ng € N such that for all n > ng, the edges of the n-th spectral band are the n-th
periodic and anti-periodic eigenvalues. This concludes the proof. |

The next theorem proves the existence of Dirac points, also called diabilical
points, in the dispersion relation of #, where its different sheets touch to form a
conical singularity.

Theorem 4.12 (Dirac points). The set of Dirac points of # in the (first) Brillouin
zone is

{(®,1) e R | © = £(27/3,—27/3), To(A —&, A + ¢€) C [0, 00) and
Ar(A) = 0 forsome e > 0,k € {1,2}}.

Proof of Theorem 4.12. If To(A — &, A + &) ¢ [0, 00), then A cannot belong to the
interior of a spectral band. If it is a band edge, it cannot be a Dirac point, since the
dispersion relation may exhibit only a one-sided conical singularity. Observe that
the function |so(®)| on [—7, 7] has vanishing conical singularities at the points
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+(27/3,—27/3). From Theorem 2.4 (vii), we know for k = 1,2 and A that Ax (1) €
[—1, 1], Ag is analytic, and has non-zero derivative in the neighborhood of A restricted
to the interior of the corresponding band. Therefore, Ax is monotonic in any spectral
band around any A satisfying A (L) = 0; so using the dispersion relation of J#, we
get the set of Dirac points. |

Remark 4.13. One can classify the Dirac points (£0®*, A*) with ®* := (2r/3,
—27/3) of the dispersion relation as follows.

 If A* is not a resonance point (i.e., T, (A*) # 0) and Ag(A*) = 0 for some k € {1,2},
then the dispersion relation around each of the singularities (0%, A*) consists
of two cones located in opposite directions in A*-axis with the common vertex
singularity (£®*, A*). See Figure 6 (left). This is the case for large A*, i.e., a high
energy level scheme.

o If A;(A*) = Az(A*) = 0 and there exists § > 0 such that |T,(1)| < 1 forall A €
[A* —68,A" + 6], and T1 (A" — &) # T1(A* 4+ A) for A € (0, §), then the dispersion
relation around each of the singularities (+®*, A*) consists of four cones, two of
them located in directions opposite to the other two on the A-axis with the common
vertex singularity at (0%, A*). See Figure 6 (right). Note that if T3 (A* — 1) =
Ty(A* + A) for A € (0,6), then the pairs of cones that are in the same direction
coincide, so we get the first item above.

A(}) A(}) o
A 2 A A
+1 e +1] 0"
A* A A A
—1 —1
As(N)

Figure 6. Behavior of functions A and A5 near Dirac point A*. The circular windows schemat-
ically show the dispersion relation in a neighborhood of (£®*, 1*), see Remark 4.13 for details.

The next result of this section is on the irreducibility of the Fermi surfaces cor-
responding to the Hamiltonian J# at high-energy levels. Depending on the poten-
tial, the reducibility of this surface may occur for uncountably many (low) energies.
Reducibility is required for the existence of embedded eigenvalues engendered by
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local defects, except for anomalous situations, where an eigenvalue has compact sup-
port [26]. In summary, the Fermi surface of a 2-periodic operator at an energy A is the
set of wave vectors (61, 6,) admissible by the operator at that energy.

For the periodic graph Hamiltonian, the dispersion function is a Laurent polyno-
mial in the Floquet variables (z;, z5) = (e!?1, /92). When the dispersion function is
factored, for each fixed energy, into a product of two or more Laurent polynomials in
(61, 62), each irreducible component contributes to a sequence of special bands and
gaps. We refer the reader to [12] and references there for a detailed discussion.

From Theorem 4.5, the dispersion relation of J¢ is equivalent to the fact that
|s0(©)]?/9 is an eigenvalue of GZ (1), that is, it is a root of the polynomial

22 —tr(G2(L))z + det(GZ(L)).

The roots of this quadratic polynomial have the following forms:

|50(©)]? tr(Gz(/\))
9 2
Now, observe that
50(®)]>  tr*(Go(R))
9 2
£ 2 (@G (I (Go(h)) — 4deGo))?)

(t 2(G2(L)) — 4det(G2(L)) /2.

—det(Go(4))

= —det(Go(1)) + %tr(Go(k))(tr(Go(l))
+ (1 (Go(R)) — 4det(Go(1)'?).
Then, using 77(A) and T>(A) from (4.11) in Ay implies that

|50(®)?
9

So we proved the following result on the reducibility of the Fermi surface of # .

= T2(A) + To(A) £ 2T, (W T2 (1) = A?,(2).

Theorem 4.14 (Fermi surfaces). The relation (4.10) has representation
(P(z1.22) P(z7 . 25") = 9AT (V) (P(z1. 22) P(z7 1. 25 1) — 9A3 (D)) =

where P(z1,23) :=14+z1 + 2z and z; = ¢! and z, = €'%2. Moreover, if

={AeR|AIA) e[-1,1]} and S, :={AeR|Ax(A) €[-1,1]},

then the Fermi surface with the energy level A & %P is

* reducible if A € (51N 8,),

e irreducible if A € (1 \ $2) U (S22 \ $1),

o absentif A € R\ (81 US$»).
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A remark on choices of the Brillouin zone. There is some room for the choice of the
fundamental domain W for the hexagonal lattice. For the one selected in Figure 1, the
space and the quasimomentum (conjugate) basis with respect to the global coordinate

system are of the form
- 1(3 > 0 -, 2(1 s (=1
h=a() B () w=50) 5=()
b by = Spm (4.16)

The dual basis then satisfies

and vectors an;i“ and 271133‘ also span the hexagonal lattice, denoted by I'*. Now, the
orthonormality condition (4.16) implies

n101 + ny0, = (9151k + 925;) - (n1by + nabs).

The two choices of the Brillouin zone using coordinates ® = (6y, 6,) with respect
to the dual basis vectors l;i" , l;; are shown in Figure 7. In the literature, it is common
to represent these Brillouin zones in the corresponding Cartesian coordinates K =
(k1,k2)T given by K = B*®, where B* is the transformation matrix with columns
formed by the dual basis vectors, i.e.,

" S T 12 -1
B =(b1 bz)zg(o \/3)

As shown in Figure 7 (right), the resulting Brillouin zones will be symmetric in
the new coordinate system k. We arrive at the first picture using 6; and 6, as parame-
ters for the dispersion relation ranging within [—7, 7]2, and then plot the result using
k1 and k, as Cartesian coordinates. Although these two representations are equiva-
lent, for the symmetry discussion, it may be preferable to work with the ¥ coordinate
system, while for our case we followed the Brillouin zone in the ® coordinates due
to simpler presentation of the vertex conditions; see (3.7a)—(3.7d). Interested readers
are encouraged to look at the work [6] for detailed discussions.

S. Spectral properties of the perturbed hexagonal elastic lattice
Hamiltonian

In this section we will apply tools from perturbation theory to characterize the disper-
sion relation for the case in which edges meet at generally different angles; see Fig-
ure 4 for schematic fundamental domains. Restricted to the fundamental domain W,
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Figure 7. Choices of Brillouin zone, contour plot of second sheet of the dispersion surface in
Left: coordinates 61, 6> (drawn as if they were Cartesian) and Right: coordinates k1, k> (which
are Cartesian).

this is equivalent to finding (1, ®) € R x [—, 7]? so that det(Mz(1)) = O as stated

in Proposition 3.3.

(&)
C

First, observe that for the angle §., see (3.1), an expansion of sine function has

the form
sin(8%) = sin(8o) + ec cos(8o) + O(£2)

as € goes to zero. A similar result holds as
sin2(8££)) = sin?(8p) + 2ec cos?(8g) + O(£?).
Let us introduce
51(0) 1= cot(8) (1 + c1e % + cpe71%2). (5.1)
Then, up to order @ (£?) accuracy, M (1) has an expansion of the form
M, := Mg + eM; + O(¢?),

in which the two 4 x 4 matrices have block structures as

o ( 50(0) P (0) —So(@)q)o(l))
T\ =50(©)®o(1)  50(0)Po(0) J°

My = ( 51(0)®1(0) —S1(®)‘D1(1))
TS @)@0(1) 510024 (0)
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with 2 x 2 blocks

- (40 %o) - (40 B0
200 = () gro) ®0= (e o)

#1(0) 2¢§(0)) _ (¢1(1) 2¢§(1))
o gro) TO=000 s/

Using the fact that ®q(1) is non-singular, see Lemma 4.1, we introduce

@1(0) = (

Ao(0) := &5 (DPo(0).  Ar(1) := @5 (N1 (D).
Then up to @ (&?) error, the perturbed matrix M, can be explicitly written as

3A0(0) —sO(®))+g( 0 _S1(®)A1(1)). (5.2)

M (A) = (_m 3A0(0) —s51(®)A (1) 0

As stated in Theorem 4.5, the equality Go(A) = A(0) is maintained with the com-
ponents of Gg(A) in terms of fundamental solutions

() @)
G"“)‘(ga’(l) gg’u))'

Introducing D(f, g) := f(1)g" (1) — g(1) f”(1), we represent the functions ¢; and
¢ in terms of fundamental solutions.

Lemma 5.1. The functions ¢1 and ¢, have representations

P1(x) = g1(x) + D (g2 84) (D (g4. £1)g2(x) + D(g1. £2)ga(x)).
$2(x) = g3(x) + D' (g2, 84) (D (g4, £3)82(x) + D(g3, £2)g4(x)),

where D (gk, gn) 1= gx(1)gl(1) — ga(1)g}(1).

Using Lemma 5.1 along with the identity ¢5’(1) = ¢/ (1) yields the representa-
tion of A1(1) in (5.2) in terms of fundamental solutions. From now on, we call this
representation G1(A) matrix. One way to calculate the determinant of M (A) is to
apply results on the analysis of perturbed matrices, e.g., see [20] and references there.
However, we calculate this quantity directly up to the ©(g?) order, which under heavy
simplification of the terms turns out to be

det(M,) = do + di& + O(&?). (5.3)
The quantity dj is equal to the determinant of the matrix Mg and

50(@)*  Iso(®)
81 9

do = det(My) = tr(G3) + det(G3).



M. Ettehad and B. Hatinoglu 84

Moreover, the ¢ term is

|50(®)?

dy = —4=

Re(s0(©)s1(©))G(A)

with the purely A-dependent function

GO = —5H(1~ €2 G + (1= G Gz
+(G3)21(G1z + (G 12(G1)ar ).

Therefore, up to 2 accuracy, the zeros of the perturbed determinant (5.3) are equiva-
lent to the fact that |so(©)|?/9 is a root of the polynomial

P(z) = z* — (tr(G2) + 4eRe(s0(0)s1(0))E(X)) 22 + det(G2). (5.4)

4 _ az? + b can be factorized as

Notice that a fourth-order polynomial of form z
a2 +b=(*+az+b)(z2—az+b),

where @ = (a + 2b'/2)'/2 and b = b'/2. This realization along with the form (5.4)
implies that &|s9(®)|/3 are roots of (z) = P1(z)P>(z), where

Pro(z) = 22 £ (r(G2) + 2det'/2(G2) + 4eRe(s0(®)51(0)G(1)) "z
+ (tr(G2) + 4eRe(s50(0)51(©)G(1)) '/
Without loss of generality, assume that |so(®)|/3 is a root of %, that is,
§|s0(®)| = (tr(G2) + 2det'/*(G2) + 4 Re(s0(©)51(©)G (1))
+ (tr(G2) — 2det/?(G2) + 4& Re(s50(0)51(©)G (1)) /.
Now, applying the fact that
tr(G) = t*(Gy) — 2det(Gyo)
along with the equality det'/? (G3) = det(Gp) implies that

[50(®)] _

O (3G + eRe(s0 @5 @)GM)

1 - 1/2
+ (Ztrz (Go) — det(Go) + sRe(so(®)s1(®))G(/\)) .

Now, using the definitions of 77 and T, from (4.11), we introduce the e-extensions of
these functions as

T := (T2(A) + £ Re(50(©)51(0)G(2)) /2
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and
737 := To(A) + £ Re(50(©)51(®) G(A).

Finding the roots of the quadratic polynomials #; > then reduces to the condition that
the equations

_Iso(®)]

3 T(S) (T(e))l/z (5.5)

50(O
_ 7O 4 (112 i|o(3)|

are satisfied. Thus, we proved an ¢-extended dispersion relation for perturbed Hamil-
tonian as stated below.

Theorem 5.2 (Perturbed dispersion). The dispersion relation for the perturbed elastic
lattice Hamiltonian satisfies

(A(s)(k )+ |SO(®)|)(A§9)(/\,®):I: |SO(3®)|

)+0E) =0, (6

as € goes to zero, where A(le)z = Tl(s) + (Tz(e))l/ 2,

We note here that for the case ¢ = 0, the above results are consistent with those
stated for the hexagonal elastic lattice Hamiltonian. One of the interesting aspects of
Theorem 5.2 is to answer whether singular Dirac points will be preserved under e-per-
turbed geometry. To answer this, we first characterize the behavior of the ®-dependent
function Re(s(©)s (0)) in the perturbed part.

Lemma 5.3. The function Re(so(©)s(0)) is 2 Z? periodic, its magnitude is bound-
ed by 2(1 + |c1|) and the zeros are at (0,0) and (27 /3, —27/3).

Proof of Lemma 5.3. Recalling the definitions of s5¢(®) and s,(®) from (4.1) and
(5.1), respectively, we get

50(0)51(©) = —cot(8o)(1 + e 710 + e7192)(1 4 ¢1e'% + c,e'%).
Next, by representing the exponential terms using Euler’s formula, we get

Re(s0(0)s1(0)) = — cot(80)((1 + c1)cos(01) + (1 + ¢2) cos(6s)
+ (c1 + ¢2) cos( — 91)),

which, after further simplification and application of the identity 1 4+ ¢; + ¢ = 0,
reduces to

Re(so(©)s1(©)) = — cot(So)(cos(Gz —01) + c1cos(6r) + c2 cos(91)).
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Applying the identity cos(§p) = cos(28p), we find that (0,0) and £(27/3, —27/3)
are zeros of these functions. Finally, setting ¢c; = —1 — ¢ above, we get

| Re(s50(©)s1(0))| < | cos(6 — 01) — cos(61) + c1(cos(62) — cos(61))
<2(1 + [e1])

as desired. [

Figure 8 (right) shows the level curves of the function Re(s¢(®)s1 (®)) for a fixed
value of the parameter c.

Zﬂ%@ % @% .
A 5--77—«.-»* = *:@ ) 2

) @‘ @ 1
e % |, 0
o1 g

Figure 8. Level curves of |so(®)| and Re(sg(®)s1(®)). The highlighted rectangle shows the
first Brillouin zone.

The observations we made in Lemma 5.3 allow us to show the existence of Dirac
points.

Corollary 5.4 (Dirac points). The Dirac points persist under the angle-perturbed
hexagonal elastic lattice Hamiltonian.

Proof of Corollary 5.4. Let (©*, A*) with ®* := £(27/3, —27/3) be a Dirac point
for the hexagonal elastic lattice Hamiltonian. Then, Lemma 5.3 implies that the func-
tion Re(so(®)s1(0©)) vanishes at the quasimomentum ©*. Therefore, there is no
spectral gap at the energy A* for the perturbed Hamiltonian too. Regarding the singu-
larity at this point, let us define the e-dependent function

|So(®)|

Ds(A,0) 1= £ — T — (1 )1/2

and similarly for Aga). By the continuity of D(A, ®) with respect to ©, there exists an
e-dependent neighborhood N }f% = Npr(L) ¥ e/\féi) (®) containing (1*, ®*) so that
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D¢(A, ©) is well defined for all (A, ®) € E/V)f,%. For A € N)E‘f)@ \ {A*} and the case
T>(A) > 0, the inverse function theorem implies that the solution set for D (4, ®) =
0 is a simple closed loop (distorted ellipse) in the quasimomentum neighborhood
Né)i) (®). Moreover, observe that the singularity of the function D, (A, ®) only occurs
at ®* due to |so(®)|. For the case T>(A) = 0, the function D,(A, ®) is only well
defined for :Ng*) (®)N{O : Re(so(O)s1(®))G(A) > 0}. A similar discussion implies
that the solution set for D.(A, ®) = 0 is a simply-connected curve (not closed) in
quasimomentum Néi) (®). In this case, the dispersion relation is lost locally for ®
such that Re(so(©)s1(0©))G(A) < 0. In both cases, the gap remains closed at Dirac
point, however only one-sided differentiability exists for the latter case. |

Remark 5.5. Here we note that for the case 7,(A) = 0 explained in the proof of
Corollary 5.4, the issue only concerns A # A* since at ®* the e-term vanishes. More-
over, Corollary 5.4 guarantees that Dirac points appear at the quasimomenta ®* =
+(2m/3,—2m/3), but possibly with a shift in the energy.

Investigation of the presence of a pure point spectrum has been an active research
area. Changing the geometry of medium (e.g., working with 2D periodic graph instead
of a real line), imposing perturbation through potential, and applying a different
Hamiltonian model are among few ways to guarantee the presence of a pure point
spectrum; e.g., see [18,22,25,29]. As stated in Theorem 4.11 the pure point spectrum
for the hexagonal elastic lattice Hamiltonian is non-empty. This has been proved by
explicit construction of even (or odd) eigenfunctions supported on a single hexagon.
However, the existence of a pure point spectrum fails for the perturbed Hamiltonian.

Theorem 5.6 (Spectral description). The spectrum of the perturbed Hamiltonian is
purely absolutely continuous.

Proof of Theorem 5.6. The singular continuous spectrum is empty, since the Hamil-
tonian is a self-adjoint elliptic operator, as in the unperturbed case (see the proof
of Theorem 4.11). Next, let us show the absence of the pure point spectrum, unlike
the hexagonal lattice case. Using the dispersion relation, we obtain o, (#) C X2 as
we did in the unperturbed case. Now, let us assume op,(H) # @. Then, the corre-
sponding eigenfunction u restricted to any edge must be identically zero or solve
d*u(x)/dx* 4+ q(x)u(x) = Au(x) with the boundary conditions u(0) = u(l) =
u”(0) = u”(1) = 0 on that edge. Therefore, the restriction of an eigenfunction to
any edge on its support must be an eigenfunction of the operator d*/dx* + ¢(x)
for the same eigenvalue A on the interval [0, 1] with the boundary conditions u(0) =
u(1) = u”(0) = u”(1) = 0. Note that u must also satisfy the vertex conditions.

If u is compactly supported, then the vertex conditions at the vertices of the bound-
ary of the support of ¥ imply ¢ = ¢1&¢ = cpe. Recall that 1 +¢; + ¢, = 0,50 =0
is the only solution, which is the unperturbed case. For a non-compactly supported
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u € H*(T"), the same argument shows that the vertex conditions cannot be satisfied
at any vertex. Therefore, the pure point spectrum is also empty, and we obtain the
desired conclusion that the spectrum is purely absolutely continuous. |

Remark 5.7. Applying the result in Lemma 5.3 and the proof of Corollary 5.4, one
can make arguments to quantify the shift of the dispersion relation (5.6) for the per-
turbed Hamiltonian compared to the hexagonal lattice case at any A. More precisely,
for T, > 0, the expansions of Tl(g) and Tz(s) in (5.5) imply that

[s0(©)]

3 = A+ £Re(50(0)51(©) G T WT; 2 (W)} + 0 (5.7)

+

and similarly for A, with sign changes. Now, for a fixed value of A, the shift with
respect to the hexagonal lattice, i.e., the case & = 0, in quasimomentum can be found
by solving (5.7).

Finally, in the next section we give a partial list of topics that may be interesting
for future extensions of the present work.

6. Outlook

The viability of the frame model as a structure composed of one-dimensional seg-
ments needs to be verified mathematically, as a limit of a three-dimensional structure
when beam widths go to zero. There is a significant mathematical literature on this
question for second-order operators (see, for example, [15,33,40]), with a variety of
operators arising in the limit. This variety will increase in the case of fourth-order
equations, and may be expected to incorporate masses concentrating at joints and
other cases of applied interest. Moreover, the validity of Euler—Bernoulli beam theory,
especially at the high-energy level, is questionable. In contrast, the richer Timoshenko
model no longer assumes that the cross-sections remain orthogonal to the deformed
axis and therefore incorporates more degrees of freedom [13, 30, 32]. It would be of
applied interest to extend the current results to the latter model.

In this work, we focus on Euler-Bernoulli beam theory and its restriction to the
scalar-valued lateral displacement u(x). In the work [7], it is shown that for planar
graphs, a more accurate presentation of the operator is to include the angular dis-
placement field 7(x) as well. This shifts our problem to a vector-valued operator and
more complicated vertex conditions. We refer to the recent work [4] for an analy-
sis in this direction and potential future developments for three-dimensional periodic
graphs.

An interesting problem is to employ two-scale analysis to understand the homog-
enized behavior and spectra of Hamiltonians on periodic lattices with more complex
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fundamental domains; see, e.g., [11,17,24,27,41] and references therein. Of sim-
ilar interest is the generalization of our result to multi-layer quantum graph mod-
els equipped with a beam Hamiltonian. In [12], it is shown that for the multi-layer
Schrodinger operator, the dispersion relation between wave vector and energy is a
polynomial in the dispersion relation of the single layer. This leads to the reducibility
of the algebraic Fermi surface, at any energy, into several components. For the beam
Hamiltonian, it has been shown that, in the special case of planar frames, the operator
decomposes into a direct sum of two operators: one coupling out-of-plane displace-
ment to angular displacement, and the other coupling in-plane displacement to axial
displacement [7]. Understanding the interaction between these decoupled systems on
multilayer graphs may be of interest from both theoretical and applied perspectives.
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