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On multiplicity bounds for eigenvalues
of the clamped round plate

Dan Mangoubi and Daniel Rosenblatt

Abstract. We ask whether the only multiplicities in the spectrum of the clamped round plate
are trivial, i.e., whether all existing multiplicities are due to the isometries of the sphere, or,
equivalently, whether any eigenfunction is separated. We prove that any eigenfunction can be
expressed as a sum of at most two separated ones, by showing that otherwise the corresponding
eigenvalue is algebraic, contradicting the Siegel-Shidlovskii theory. In two dimensions, it fol-
lows that no eigenvalue is of multiplicity greater than four. The proof exploits a linear recursion
of order two for cross-product Bessel functions with coefficients which are not even algebraic
functions, though they do satisfy a non-linear algebraic recursion.

1. Introduction and background

1.1. The vibrating clamped round plate

In this paper we are concerned with the vibrating clamped round plate ([2, Chapter V,
Section 6] and [9, Chapter X]), that is, the following fourth order eigenvalue problem
in the unit ball B C R¢:
A’u = Au inB,
u=20 on 9B, (VP)
o,u =0 on 0B,
where A = div o grad is the Laplacian. A standard separation of variables argument [9,

Section 218] shows that an orthogonal basis of eigenfunctions is given in spherical
coordinates by the family

urk,j(r,¢) = (Ilsp(wlsf)k)Jlsp(wlsf)kr) - Jlsp(wlsf)k)Ilsp(wlsf)kr))Yl,j (#), (1.1
where

JP(p) = Pl_d/2J1+d/2—1(P), IP(p) = Pl_d/211+d/2—1(0)
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denote the spherical Bessel function of the first kind and the modified spherical Bessel

. . . N . _
function of the first kind respectively, and where (Y7 ;) ; !, with N; = (Hgl‘ill) —
(H‘ﬁf) form an orthonormal basis for spherical harmonics of degree [ on the sphere

S~ The value w;p « 1s the k-th positive root of the Wronskian

SP.__ (7SP\/ 7P ySP,ySPY/ _ ySP P | ySP pSp
Wt =N ) =L = LT+ L)

= Ilsgl‘llsp - IZSPJISEr

The eigenvalue corresponding to an eigenfunction of the form (1.1)is A = (w‘;f’k)“.
The multiplicities in the spectrum which we call “trivial” are those due to the mul-
tiplicities appearing in the spectrum of the sphere S?~!. We are interested to know
whether non-trivial multiplicities occur in the spectrum, i.e., whether an eigenvalue
A = w;" can have multiplicity bigger than Ny, or, equivalently, whether any eigen-
function u is of the separated form

u(r,¢) = R(r)Y(9). (1.2)

where Y is a spherical harmonic. The results in this paper continue the study initiated
in [7]. In the next section we describe our main result.

The analogous problem for the vibrating round membrane with Dirichlet bound-
ary conditions was solved by Siegel in 1929 [12], proving that any eigenfunction is
separated. To that end, he proved the deep fact that all non-zero roots of Bessel func-
tions J,,, where m € N are transcendental; the case of odd dimension d, corresponding
tom € % + N follows from the Hermite—Lindemann—Weierstrass theorem [4, 6, 14]
as shown by Porter in [8] (see also [13, Section 15.28], [11], and [10, p. 217]). On
the other hand, any eigenvalue of non-trivial multiplicity must be algebraic due to
the algebraic recursion formula satisfied by Bessel functions. Ruling out non-trivial
multiplicities in the case of the free vibrating round membrane problem was achieved
in [1,3].

1.2. Common roots of cross-product of Bessel functions

One can write
WP(0) = p* " Wita2—1(p)

where
Wm = Ir/n‘]m - ImJ,;1 = m+1Jm + Im-]m—H = Im—IJm - ]m-]m—l (13)

In particular, wlsf’k = Wj4d/2—1,k» Where w,, ;. denotes the k-th positive root of Wp,.
Hence, the problem treated in this paper amounts to the question whether there exist
xo > 0 and mq, m, € %No differing by a non-zero integer such that W, (xo) =
Wi, (x0) = 0, as it would imply that A = x; is an eigenvalue of non-trivial multiplic-
ity (at least N;, + Nj, where m; = [; + d /2 — 1). This seems to be a difficult open
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problem. In [7] it was shown that there do not exist xo > 0 and m,my, m3,my € Ny
pairwise distinct for which Wy, (xo) = Wi, (x0) = Wiy (x0) = Win,(x0) = 0. In
two dimensions, this implied a uniform bound, namely, six, on the multiplicity. The
proof was based on a fourth order recursion formula for the sequence W, with ratio-
nal functions as coefficients. One of the main goals of this paper is to eliminate the
possibility that three functions W, vanish simultaneously. More precisely, we prove
the following result.

Theorem 1.1. There do not exist xo > 0 and my,ma,m3 € Qx> with |m; —m;| € N
forall1 <i < j < 3suchthat Wy, (x0) = Win,(x0) = Wp;(x0) = 0. Equivalently,
any eigenfunction of the clamped round plate is a sum of at most two ones of the
separated form (1.2).

One corollary is the following.

Corollary 1.2. Any eigenvalue of the two-dimensional clamped round plate is of mul-
tiplicity at most four. In particular, the multiplicities are uniformly bounded.

1.3. Schanuel’s conjecture and the trivial multiplicity conjecture
A natural conjecture, due to Rayleigh [9], is the following one.

Conjecture 1.3 (Trivial multiplicity). There do not exist xo > 0 and my, my € %No
with |my — ma| € N such that Wy, (xo) = Wi, (xo) = 0. Equivalently, there are no
non-trivial multiplicities in the spectrum of the clamped round plate, or, alternatively,
any eigenfunction of the clamped round plate is separated.

In a similar vein to the work of Porter [8], we explain in Section 6 that in odd
dimensions a special case of the classical Schanuel conjecture of transcendental num-
ber theory implies Conjecture 1.3. For even dimensions, a Schanuel-type conjecture
for Bessel functions which would imply Conjecture 1.3 is formulated.

1.4. Idea of proof of main Theorem 1.1

To prove Theorem 1.1, we show that if there exist xo > 0 and m,m», m3 € Qs pair-
wise differing by a non-zero integer, with Wy, (xo) = Win, (x0) = Wiu5(x0) = 0, then
X must be algebraic. However, an immediate application of the Siegel-Shidlovskii
theory shows that any positive root of the equation W, (x¢) = 0 is transcendental. The
main new idea in our proof with respect to [7] is that it is possible to exploit a second
order linear recursion formula for the sequence W, which has non-algebraic coeffi-
cients. We make use of the fact that these coefficients satisfy an algebraic non-linear
recursion formula of degree two. At a first step, we show that each joint root xo of
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W, and W,,,s leads to an equation of the form
Py (x0, Fin(x0)) = 0, (1.4

where Py, ,/(x, y) is a polynomial of degree two with respect to y, and F, is a
quotient of successive modified Bessel functions (see Def. 2.4). At a second step, we
prove that it is possible to eliminate F;, from a system of any two such equations,
leading to a non-trivial polynomial equation for x.

2. Bessel functions and their quotients

Let m € Q. The Bessel function J,, is defined by the series
0 k
x\m (-1 X\ 2k
wo= () S s )
m(x) (2 kg;)k!l“(m Tk+D\2

For the purpose of this paper, we consider the above series as a holomorphic func-
tion in the domain C \ (—o0, 0] which is real on the positive real axis. Similarly, the
modified Bessel function 7, is given by

m X 1 2k
I’”(x):(g) ];k!f‘(m-l—k-i-l)(;) '

Observe that [,,(ix) = i J,,(x). If m is a negative integer, we ignore the terms for
which m + k + 1 is a pole of the I'-function. In view of this, /_,, = I,,, whenm € Z.

Lemma 2.1. Ifm € Z orm € Qs¢ and x > 0, then I,,(x) > 0.

Proof. For m > 0, all the terms of the power series are positive for x > 0. If m < 0 is
an integer, we have I_,, = I,. [ ]

We record the following formulae for a few special cases which follow directly
from the definitions.

Lemma 2.2. We have

[ 2 [ 2 .
J_12(x) = — 08X, Ji2(x) = — Sinx,

[ 2 [ 2 .
I_1/2(x) = Ecosh(x), I_y/2(x) = - sinh(x).
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Proposition 2.3 ([13, Sections 12 and 3.71]). Let m € Q. The following recursions
are satisfied:

I (8) = 22 () = T (),

1) = =22 1y () I ).

We will consider quotients of successive modified Bessel functions.

Definition 2.4. For m € Q, let F,, be the following meromorphic function on C \
(—00,0]:

_ In()
Fm(x) := XIm—1(x)

The following identity, which can be viewed as a discrete Riccati equation will be
important in the sequel.

Key identity 2.5. For m € Q, we have
szm-I—l(x)Fm(x) =1-=2mFp(x).

Proof. From the definition of F,, and Proposition 2.3, we have

I I 1 2
X2Fpiy Fpp = x2. 2030 _m (1,,,_1 — —mlm) —1-2mF,. =
xlm XIm—l ]m—l X

3. Second order recursion for cross products of Bessel functions

Fix m € Q. The sequence (W, 1,)52, satisfies a fourth order linear recurrence with
non-constant coefficients in Q(x) (see [7]). However, it also satisfies a second order
linear recurrence whose coefficients, while not even algebraic, satisfy themselves a
quadratic recursion. We prove the following result.

Theorem 3.1. Let m € Q. The following recursions formulae hold:
Wint1 =2mE, Wy, — (1 = 2m Fypy) Wiy

and
Win—1 =2mGu Wy — (1 + 2mGp) W41,

where Gy = 1/(x?>Fpa1) = Im/(XIms1).
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Proof. On the one hand, we have by (1.3) and Proposition 2.3,
Win—1 + Wim+1 = UmIm—-1 + Im-1Im) + UmJIm+1 — Im+1Jm)

2m 2m dm
=Ipy—In+—Lwtn=—ILnln.
X X X

On the other hand,
1
2mFy (Wi + Wp—1) = 2mxlm Um-1Im = ImIm—1 + ImIm—1 + Im—1Jm)
m—1
4
= T
X

Comparing the preceding expressions gives the forward recursion formula. The
backward recursion formula follows immediately from the forward one once we take
into account Key identity 2.5. |

4. Rolling out the recursion

In this section we use the recursion formula for W,,, (Theorem 3.1) in order to express
any element in the sequence in terms of two initial consecutive terms.

Proposition 4.1. Let m € Q, and n € Ny. There exist polynomials Am n, Bm.n, Bmn
and Cy, 5 € Q[x] such that
x2n Wm+n+1 = (Am,n Fn + szm,n + Cm,n Fyzl)Wm
+ (Am,nFm + Bm,n - Cm,nF,;I)Wm—l-
Remark. Note that the coefficients in the preceding formula are of degree one in F,,

and F, 1.
Proof. We prove the claim by induction on n. The case n = 0 follows from Theo-
rem 3.1. Forn > 1,
X Wingns1 = X232 2 Wont 1) 4 (n—1)+1
= (*Amt1.1-1Fmt1 + X Bpgin—1 + x2Cm+1,n—1Fr;-1l-1)Wm+1
+ (P Amt10—1 Fns1 + X Bsi 1 — X2 Cmt1.0-1F 1) Wi
We substitute W, 41 using Theorem 3.1 and Key identity 2.5:

X" Wi tn+1
= (2mx® A1 n1 Fon Fgt +2mx* Byt n1 Fin +2mx* Conpt s Fu Fpliy) Win
— (X At it Fop1 +X* Bott 1 + X2 Cont F,;ﬂrl)xz Fon Frn Wi

2 2D 2 1
+ (X Am+1,n—1 Frp+x Bm+1,n—1 —X Cm—H,n—l F;.H) W
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Applying Key identity 2.5 and collecting terms gives

X2 Woimin
= (2m A1, (1=2m F ) +2mx* Byt 1 Fin — x> Cont p1 (1—2m Fy ) F L
+ Amt1,n1 (Fpt =2m) + X% Byt 1) Won
— (%% Ayt 1 Fnp1 (1=2m Fp) + X* By g (1—2m Fyy)
+ x* Crnt 11 Fon ) Wont -

Applying once more Key identity 2.5 and collecting terms gives

X" Wingng1 = ((_4m2Am+1,n—1 +2mx*But1n—1 — X*Cmt1.0-1) Fin
+ X2 Bt 1 -1 + Am-‘rl,n—lFr;l)Wm
+ 2mAmt1p-1(1 —2mFy) — Amt1a—1(Fy' —2m)

+ 2mx*But1n—1 — X*Cop1.0-1) Fm — x4Bm+1,n—1)Wm—1
and finally,

X2 Winint1 = ((=4m* Amsin—1 + 2mx* By 1n—1 — x*Cig1,0-1) Fm
+ X% Bm+1n—1 + Am-‘rl,n—le;l)Wm
+ ((_4m2Am+l,n—1 + 2mx4Bm+1,n—1 - x4cm+l,n—1)Fm

+ 4mAmi1n—1 — X*Bms1n—1 — Am-i—l,n—le;l)Wm—l»
which is of the desired form. n

As an immediate consequence of the above computation, we obtain the following
lemma.

Lemma 4.2. Let Ay, Biujp, Bman, and Cy,, be as in Proposition 4.1. Then, the
following recurrence relations hold:

Q) Amo =2m; App = —4m?Amy1p—1 + 2mx*Bimi1 -1 — x*Cr1n-1;
(ii) Bm,O =0 Bm,n = Bm+1,n—1;
(iii) Bm,O =—1; Bm,n = 4mAm+l,n—1 - x4Bm+1,n—1;

(iv) Cm,O =0y Cm,n = Am+1,n—1-
As a corollary, we have the following result.

Lemma 4.3. Letm € Q andn € N. Then,

n—1

Am,n = 2(_4)n(m + n) l_[ (m + k)2 mod x4.
k=0
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In particular, if m ¢ Z orm > 0 or m < —n, then A,,, # 0 mod x.
Proof. The proof follows immediately from Lemma 4.2 (i). ]

The next proposition rolls the recursion backward and shows the connection to the
forward recursion.

Proposition 4.4. Let m € Q, and n € Ny. With the same notations as in Proposi-
tion 4.1,

(_1)n+1x2nWm—n—l = (A—m,nGm + XZB—m,n + C—m,nGy;I)Wm
- (A—m,nGm + B—m,n - C—m,nGrzl)Wm—H-

Sketch of Proof. In case m € Z, the proposition follows immediately from Proposi-
tion 4.1, since W_,, = (—=1)"W,, and F_,, = Gy,. For any m € Q, one follows the
same pattern of proof of Proposition 4.1. The Key identity 2.5 is replaced by the iden-
tity

x2GuGm—y = 14 2mGy,.

We need also to use the recursion relations for the coefficients, given in Lemma 4.2.
n

5. Proof of Theorem 1.1

We recall the following fact.

Proposition 5.1 ([7]). Let m € Q¢ or m € Z. The functions Wy, and Wy, 1 have no
joint positive roots.

Proof. Assume W, (x9) = Wy,+1(x0) = 0 for some xo > 0. Observe that
Wint1 + Wi = InJms1 — Imi1Im + Ins1Im + InIms1 = 2L It
and
Wint1 — Wi = ImIm+1 — Im+1Im — Im+1Im — ImIm+1 = —2Lms1Im.

Ifm € Z orm > 0, then I,,(x0) > 0 (see Lemma 2.1). In view of this observation and

the above formulae, the assumption implies that J,,(x9) = Jm+1(x0) = 0. However,
this is impossible since it would imply that J,, (xo) = (m/x0)Jm(x0) — Jm+1(x0) is
also zero, while J,,, satisfies a second order linear ODE. [

A direct consequence of the preceding proposition and Propositions 4.1 and 4.4 is
the following.



On multiplicity bounds for eigenvalues of the clamped round plate 191

Corollary 5.2. Letn € Ny and xo > 0.

(@) If xo is a joint root of Wy, and Wiy 4n 42 where m € Qxg, then
Am+1,1(x0) Fng1(x0) + X3 Bmt1,0(x0) Frut1(x0) + Cima1,n(x0) = 0.
(b) If xo is a joint root of Wy, and Wy_p_o where m — 1 € Qx, then

At 1.0(x0) (X5 Frm+1(x0) + 2m)?

+ Xg Bom41,0 (%0) (x3 Fint1(x0) + 2m) + x5 C—pm1,4(x0) = O.

Proof. Part (a) follows from Proposition 4.1 with m replaced by m + 1, taking into
account Proposition 5.1. To prove part (b) observe first that from Proposition 4.4 with
m replaced by m — 1 and Proposition 5.1 we get

At 1,0(x0)Gm—1(x0) + X5 B—m+1,1(x0) + C—mt1,2(x0) Gyl | (x0) = 0.

Multiply this equation by x§ Gp—1, while noting that x*Gp—1 = X% Fypq1 + 2m.
"

Proof of Theorem 1.1. Assume xo > 0 and 0 < m; < my < mj are such that one
has Wy, (x0) = Win,(x0) = Win,y(x0) = 0. By Proposition 5.1, we can write m; =
my—1—2,my =mand mz = myp +n + 2 with[,m,n € Ny. By Corollary 5.2,
setting x = x¢ solves a system

A 1,0 (X) Fnp1(X)? + X2 B 1,0(X) Fg 1 (x) + Crg1,0(x) = 0,
A1) (X2 Fpp1 (x) + 2m)> G.D
FX* By 1,1 () (X Fipge1(x) 4+ 2m) + x*C_ppy1,1(x) = 0.

Eliminating Frfl 41 from the preceding system, we obtain that xg is a root of an equa-
tion of the form

(4m A1 0 (X)Apyy1,0(X) + x* P1(x))x% Fppip1 (x)
+ 4m At 1n () A my11(x) + x*Py(x) =0

for some polynomials Py, P, € Q[x], depending on [, m, n.

By Lemma 4.3 and the fact that m > [ + 1, the polynomial 4m A, 1,0 A—m+1,1 +
x* Py is not zero. Hence, if it vanishes at the point xo we get that xq is algebraic.
Otherwise, using the preceding equation to eliminate Fy,t; from the first equation
in (5.1) leads to an equation of the form

16m* Apt1,0(x0)> A—mi1.1(x0)? + xg P3(x0) =0
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with P3 € Q[x] depending on [/, m, n. From Lemma 4.3, it follows that xg is also
algebraic in this case. We have shown that x, is algebraic. However, this contradicts
Proposition 5.3. u

Proposition 5.3 ([7, Corollary 6.4]). Let xo > 0 be algebraic, and let m € Qx>¢. Then,
Wi (XO) 7é 0.

Proof. In case 2m is not an odd integer, it was proved in [12] that J,,, J,,, Iy, I,,

are algebraically independent functions over C (x). Observe that the following ODE
is satisfied:

Im 0 1 0 0 J

m
2
In| _|-1+% - 0 o\l |
L 0 0o 0 1 Im
2
L, 0 0 1+% -3/ \In

Hence, if xg is algebraic, it follows from the Siegel-Shidlovskii theory, that J, (xg),
I (x0), Im(x0), I,,(x0) are algebraically independent and in particular W, (xo) # O.

In case 2m is odd, the statement in the proposition is simpler, since it is essen-
tially a special case of the Lindemann—Weierstrass Theorem 5.6. Indeed, suppose that
W (xo) = 0. Then, ’"+1 (x0) = m+1 -4 (xo). Hence, combining this with Lemma 5.5
iterated we get (see Deﬁmtlon 5.4)

I I
1 >tr. deg( ';H (x0)> =tr. deg(xo, ';H (x0), ';H( 0))
m m m

1 J
=tr. deg(xo, 7 1/2 ( 0) 12 ( 0)) hemme 22 ¢ deg(tanh(xo), tan(xo))
—1/

= tr.deg(e™°, elxo) bW,
which is absurd. u

For the lemma below recall the following.

Definition 5.4. The transcendental degree over Q of aset ACC, denoted by tr.deg A4,
is the cardinality of a maximal subset A’ C A such that the numbers in A’ are alge-
braically independent over Q.

Lemma 5.5. Let m € Qs and x > 0. Then,

tr. deg(x, fin (x), i1 (x)) =tr. deg( (x)

- i (x))

Here, if a denominator vanishes we regard the corresponding quotient as algebraic.
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Proof. The lemma follows immediately from the identities

Im+1 2m  Iy— Jm+1 2m Jm—1

X)=— + X), X)=—— X). ]
T =T T, T = T T )
Theorem 5.6 (Lindemann—Weierstrass [6, 14]). Let aq,...,a, € C be algebraic
numbers that are linearly independent over Q. Then, the numbers e“1, ..., e%" are

algebraically independent over Q.

6. Schanuel’s conjecture and the trivial multiplicities conjecture

We observe that a special case of the classical Schanuel’s conjecture from transcen-
dental number theory implies that in odd dimensions non-trivial multiplicities in the
spectrum of the clamped round plate do not exist. This leads us to a formulation of
a Schanuel-type conjecture which would eliminate non-trivial multiplicities in even
dimensions. First, let us record the following special case of Schanuel’s conjecture
(see [5, Chapter 111, Historical note, p. 30])

Conjecture 6.1 (Schanuel’s conjecture — special case). Let x € R be non-zero. Then,
tr. deg(x, e*, e™) > 2.
Proposition 6.2. Conjecture 6.1 implies Conjecture 1.3 in odd dimensions.

Proof. It Wy, (x0) = Wingn(xo) = 0 for some m € Q¢ and n € N, then the first
equation in (5.1) shows that xo and I,,+1(x0)/Im(x0) are algebraically dependent.
Moreover, I’;’nfl (x0) + J’j;” (x0) = 0. It follows that

I J,
tr. deg(xo, ';H(xo), m+l(XO)) <L

m Jm
From Lemma 5.5, we conclude that

1 J
tr. deg(xo, i 11//22 (x0), Jl

12 (Xo)) <L
1/2
Hence, by Lemma 2.2, we obtain that
tr. deg (x, tanh(x), tan(x)) < 1.
On the other hand, Conjecture 6.1 shows that
tr. deg (x, tanh(x), tan(x)) >2,

and we get a contradiction. |
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The argument in the preceding proof shows that the following conjecture implies
the non-trivial multiplicity conjecture in even dimensions.

Conjecture 6.3 (Bessel-Schanuel-type conjecture). Let x > 0. Then,
I 1
tr. deg(x, Ly, —l(ix)) > 2.
Io Iy

Remark. Here, as in Lemma 5.5, if Io(ix) = 0 we interpret the quotient (/1 /7o) (ix)
as an algebraic number.
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