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Delocalized eigenvectors of transitive graphs and beyond
Nicolas Burq and Cyril Letrouit

Abstract. We prove delocalization properties for eigenvectors of vertex-transitive graphs via
elementary estimates of the spectral projector. We recover in this way known results which were
formerly proved using representation theory. Similar techniques show that for general symmet-
ric matrices, most approximate eigenvectors spectrally localized in a given window containing
sufficiently many eigenvalues are delocalized in L4 norms. Building upon this observation,
we prove a delocalization result for approximate eigenvectors of large graphs containing few
short loops, under an assumption on the resolvent which is verified in some standard cases, for
instance, random lifts of a fixed base graph.

1. Introduction

1.1. Overview

Let A be the adjacency matrix of a graph with vertex set [n] = {1,...,n}. The subject
of this paper is the spatial delocalization of the eigenvectors and approximate eigen-
vectors of A in the limit of large n. To measure the delocalization of a vector u € C”,
we use the commonly considered quantities

[l za
l[ullL2

O‘q(u) =

for g € (2, +0o¢] (see [10,21,25,39]). Informally, a sequence (U, )neN, Uy € C", is
localized in the LY sense as n — 400 if o4 (u,) < 1 and completely delocalized if
a, (Un) = nl/a—=1/2+0(1)

The literature on localization/delocalization of eigenvectors of graphs and matri-
ces is huge. Our purpose in this paper is to show that estimates on spectral projectors
of A coupled with concentration of measure arguments allow to prove delocalization
for

(1) eigenvectors of adjacency matrices of vertex-transitive graphs (e.g., Cayley
graphs) and generalizations thereof,
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(2) most approximate eigenvectors of general symmetric matrices; here approx-
imate means that instead of satisfying A,u, = A,u,, approximate eigen-
vectors satisfy A,u, = A u, + 072(A,uy). In this context, delocalization
holds with high probability when the approximate eigenvectors are chosen
randomly in a fixed spectral window.

Concerning (1), we recover known results ([31,35]) in a more direct way, avoiding in
particular, any use of representation theory. Concerning (2), our arguments show for
instance, that for adjacency matrices of large graphs satisfying two assumptions (on
the number of small cycles and on the Green function of their local weak limits), linear
combinations of o(n) eigenvectors are completely delocalized with high probability.

We underline that our results on delocalization of (exact) eigenvectors are
restricted to vertex-transitive graphs. Very strong tools have been developed in the
past 15 years for other classes of graphs and matrices, e.g., regular graphs, Erd6s—
Rényi graphs, expander graphs with few cycles, Wigner matrices and generaliza-
tions thereof, Lévy matrices, etc. (see Section 1.6). Our results of (2) are reminis-
cent of [38], in which the authors exhibit a similar phenomenon of delocalization
of approximate eigenvectors in sparse Gaussian random matrices with quite general
sparsity patterns.

1.2. Delocalized random eigenbases of vertex-transitive graphs

Our first results are concerned with vertex-transitive graphs, i.e., graphs for which the
automorphism group' acts transitively on their vertices (e.g., Cayley graphs).

Given a graph G, we denote by B(G) the set of orthonormal bases of the adja-
cency matrix of G. We explain in Section 3 how to define a uniform probability
measure v on B(G).

Theorem 1.1 (L9-delocalized eigenbases). There exists C > 0 such that the following
holds. Let n € N* and let G be a vertex-transitive graph with n vertices. Then for any
A > 0, with probability > 1 —n>7°¢(™) on the choice of an element B € B(G) picked
following v, any u € B verifies

Jullzee < oa (1)

(1.1)
Also, there exists C > 0 such that for any q € [2,+00) and any A > 0, with probability
> 1 —nA"? on the choice of an element B € B(G) picked following v, any u € B

verifies
lullLa < CAJgn'/a71/2, (12)

! An automorphism of a graph G = (V, E) is a permutation o of the vertex set V, such that
ifu,v € V,then (u,v) € E if and only if (6(u),0(v)) € E.
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The first part (1.1) has already been proved in [35, Theorem 1.4], but we give a
much shorter proof avoiding representation theory. We also provide in Theorem 3.5
an extension of Theorem 1.1 to the case of products of two graphs, when one of the
two graphs is vertex-transitive.

It is proved in [35, Theorem 1.2] that there exist infinitely many Cayley graphs G
whose adjacency matrix has an eigenspace all of whose eigenvectors u: G — C satisfy
lullzos > ||lull 2(loglogn)~'/logn/n, where n is the number of vertices and ¢ > 0
is some absolute constant. This shows that Theorem 1.1 is almost sharp: for instance,

—1/2 which would be

we cannot replace the right-hand side in (1.1) by |Ju|ze S n
the best bound we could hope for.

Our second result shows that in sufficiently large eigenspaces of vertex-transitive
graphs, the statistics of the entries of random eigenvectors are Gaussian. Our result is

stated in terms of the bounded Lipschitz distance dgi between probability measures

W, v on R, defined as
dpL(p,v) = sup /de—/fdﬂ
R

El

I fllBL=<1 R
where 1f() — £
I/l = max{] £ oo, sup =LY,
xX#y |X y|

This distance metrizes the weak convergence of probability measures.

Theorem 1.2 (Gaussian statistics). Let G be a vertex-transitive graph whose set V
of vertices has n elements, and let E be an eigenspace of the adjacency matrix of
G with dimension m. Let u € R" be an eigenvector chosen according to the uniform
probability measure P on the unit sphere of E. Set

1
= ;Z(gﬁ”i'

ieV

1927 )2/5 4

Then for any ¢ such that max(( N —) <eg<l,

> m—1

487

Pldpr (1, N (0, 1)) > ¢] < £3/2

exp(—c(m — D)),

where ¢ = 3722716 and N (0, 1) denotes the standard Gaussian.

Notice that if m is small, the statistics of the entries of random eigenvectors are not
necessarily Gaussian: a good example is provided by cycle graphs where multiplicities
are equal to 1 or 2, and statistics are not Gaussian. Results similar to Theorem 1.2 exist
for other models, see for instance, [37, Theorem 2.4].
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Our third result has already been proved in [31, Theorems 1.1 and 1.8] for Cayley
graphs, which are particular vertex-transitive graphs, but again we provide a much
shorter proof avoiding representation theory. This result says that typical eigenbases
of vertex-transitive graphs are delocalized (in a “quantum ergodic” sense) when most
multiplicities are large.

Theorem 1.3. Let G be a vertex-transitive connected graph, with vertex set V. We
denote by my, 1 < k < K, the multiplicities of the distinct non-trivial eigenvalues of
the adjacency matrix of G. Let M € N and let fi, ..., fy € L*>(V) be a collection
of real-valued functions.

Then, for any t > 0, with probability at least

K
1= M) my(3e™'Vme/8 4 ommi/12) (1.3)
k=1

with respect to the choice of an orthonormal basis B € B(G) according to v, the
following property holds: for anyu € B andanyi =1,..., M,

‘X:fi(X)u(x)2 |V| Zfz( )‘ ”fl”LZ

xevV

The multiplicities appearing in the statements of Theorems 1.2 and 1.3 are often
large; for instance, they are large for Cayley graphs built on quasi-random groups,
as emphasized in the introductions of [31] and [34]. Recall that a group H is called
D-quasi-random if all its non-trivial unitary representations have dimension at least
D this condition implies that the Cayley graphs built on these groups have non-trivial
eigenvalues multiplicities > D.

Finite simple groups of Lie type with rank < r are | H |*-quasi-random for some
s > 0 depending only on r. Hence, in this case, my > n® for some s > 0 and any k
for which the eigenvalue is non-trivial. As shown in [31, Corollary 1.6], Theorem 1.3,
applied to any Cayley graph built with a symmetric set of generators of H, says that
if A; C H is a collection of subsets partitioning H with sizes satisfying c|H|!™7 <
|A;| < C|H|'™" where 0 < 5 < s, then with high v-probability on the choice of an
orthonormal eigenbasis B of the adjacency operator, for every i and every u € B,

‘Z ()2 — 14il| _ Klog|H] [Ai
(s—m)/2

= (a1 = THe7 [H|

where K > 0 only depends upon c.

The conclusion of Theorem 1.3 is reminiscent of the ‘“probabilistic quantum

unique ergodicity” statement of [8, Corollary 1.3], which is a result about the simul-

taneous delocalization of all bulk eigenvectors of random regular graphs (without any
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averaging over eigenvectors). In [8, Corollary 1.3] as in Theorem 1.3, delocalization
is only tested against a certain number of observables, and this number appears in
the bound. In our Theorem 1.3, since we assume high multiplicities through assump-
tion (1.3), our result holds only for most eigenbases: delocalization cannot hold for
all eigenvectors if multiplicities become too large.

The interested reader will find many other applications of Theorem 1.3 in [31].

Remark 1.4. Let G ={g1,.. ., gn} be a group with cardinality #, and ¢: G — R, and
consider the n x n matrix whose (i, j) coefficient is a(g; g;” 1). This is the adjacency
matrix of a complete graph with edges weighted by «. If « is the characteristic func-
tion of a symmetric set of generators of G, we recover adjacency matrices of usual
Cayley graphs. Theorems 1.1 and 1.3 also work for matrices associated to general
functions a: G — R.

Remark 1.5. Theorems 1.1 and 1.3 may be adapted to the setting of quantum Cay-
ley graphs, with all edges of same length, in fixed spectral windows (but not over
the whole spectrum, which is infinite for quantum graphs), when the number of ver-
tices tends to +00. One should first prove equidistribution of the quantities ||u| 74 )
where e runs over the edges of the graph, and then invoke the fact that on each edge,
eigenfunctions are well spread due to their simple form.

1.3. Delocalized approximate eigenvectors of general symmetric matrices

It turns out that the technique used to prove Theorem 1.1 also provides information for
delocalization properties of approximate eigenvectors of general symmetric matrices.
But these results, instead of working for (exact) eigenvectors, only give information
for most approximate eigenvectors; in particular, there is no way to deduce from these
results any precise information on true eigenvectors, except in sufficiently degenerate
eigenspaces.

This section is devoted to giving a precise statement for this basic but very useful
observation. Given a symmetric # x n matrix H and a subset / C R (both H and /
depend on 7, but we omit dependence in 7 in the notation of this section), we denote
by N(I) the number of eigenvalues of H in /. We consider an orthonormal basis
(Y2, Jke[n) of eigenvectors (in R™) of H with associated eigenvalues A;. We set’

Ep={u= Y zvs.2 € R}, (1.4)

Axel

The subscript Ax € I in the sum means that we are summing over all k € [1] such that
A €l.
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which is isometric via u > (zx) to RVY) endowed with the scalar product coming
from R”. We denote by S; the unit sphere of £y, and by Py the uniform probability
on Sy. We pick

u € Sy according to Py. (1.5)

If sup(/) — inf([/) is not too large, then elements of E are approximate eigenvectors.
Indeed,if A € I andu =}, o/ zxYa, € Er, we have

ICH = 2ullza = | Y0 = Mzev,

Axel

= (sup(1) = inf(1)ull .

As soon as [ is a small interval (for instance, sup(/) — inf(/) < 1), Hu = Au +
or2(Au) asn — +oo.

The next result is relevant when N(/) — +00 as n — +o0. It shows that in this
case, u drawn according to (1.5) is delocalized in the sense of L4 norms (g € (2, 4+00])
with high Py -probability. The larger N(7) is, the better the estimates are.

Theorem 1.6. There exists C > 0 universal (not depending on I ) such that ifu € Sy
is a random vector with law Py, then

(1) foranyq € [2,+00) and any A > 1,
1
Pr(ullLo = CAVGN()71%) < dexp(—5 C2AGN(1)*/9)):
(i) forany A > 1,

IE”I(IIMIILoo > C’A(%)m) < AN(I)"C7A%/8,

where C' = Ce.

Theorem 1.6 follows from elementary concentration of measure estimates.” The
idea of using linear combinations to obtain delocalized approximate eigenvectors is
not new (see Section 1.6 for references), nevertheless, to the best of our knowledge,
it has never been stated in the general and sharp form of Theorem 1.6. This result
provides motivation for Section 1.4, which strengthens the above bounds under some
assumptions on H.

3Theorem 1.6 does not actually rely on the fact that u is a linear combination of eigenvec-
tors, but only on the fact that u is a random linear combination of elements of an orthonormal
basis (¥, )ke[n) of R”. However, as explained above, in the framework of random linear
combinations of eigenvectors, ¥ is automatically an approximate eigenvector — which is a nice

property.
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Remark 1.7. Results similar to Theorem 1.6 also hold for linear combinations of
eigenvectors of normal matrices. In this case, I is a region of C, eigenvectors are
complex-valued, and S; is the unit sphere of CN().

1.4. Stronger delocalization of approximate eigenvectors under two
assumptions

For fixed ¢ € [2, +00), to obtain the optimal delocalization
lullLe < Cnt/a=12 (1.6)

with high probability on ¥ ~ Py, Theorem 1.6 requires N(/) Z n.

In this section, we push further the ideas of Section 1.3 and state two assumptions
on families of large (deterministic) graphs for which it is possible to take smaller 7,
with N(I) < n(loglogn)/logn, while keeping the optimal delocalization (1.6) of
approximate eigenvectors with high probability.

These two assumptions have already been considered several times in the litera-
ture: the first assumption concerns the number of small cycles in the graphs, which is
assumed to be small; under this assumption, the graphs converge locally weakly (i.e.,
in the sense of Benjamini—Schramm) toward a probability measure on rooted trees.
The second assumption is a bound on the expectation of the Green function of the
limiting rooted trees under this probability measure.

These assumptions are close to those of the paper [5] where, under an additional
assumption of expansion of the graphs which we do not need here, Anantharaman
and Sabri prove a quantum ergodicity result. Their result is not strong enough to give
information about L4 norms of eigenvectors; our result gives information about L4
norms, but only for most approximate eigenvectors, which again is much easier to
obtain than for exact eigenvectors.

1.4.1. Assumption of few short loops. We consider a sequence of graphs (Gp,),eN
with vertex set V,, and degree bounded by D. Our first assumption says that the
graphs have few short loops.

(BST) Forall r > 0,
{x € Vit po, @) <)l _
n—00 [Val ’

where pg,, (x) is the injectivity radius of G, at x, i.e., the maximal radius p
for which the ball Bg,, (x, p) is a tree.

Up to passing to a subsequence (which we omit in the notation), assumption (BST) is
equivalent to the following condition.
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(BSCT) The sequence G, has a local weak limit P supported on the set of (isomor-
phism classes of) rooted trees.

We refer to Appendix C for reminders on local weak limits, which are also called
Benjamini—Schramm limits. Here we simply recall that (BSCT) means that for any
h € N and any rooted graph (H ; 0) with depth £, there holds

i X € Va2 (Gnix)p = (H:0)]]
im

=P{(G,x): (G;x), =~ (H;0)}),

where (G,; x);, denotes the graph obtained by cutting G,, at distance /& from x, and
~ is the symbol of graph isomorphy.

Let us reformulate (BSCT). We introduce for any n € N and /i € N the probability
measure on the finite set of (isomorphism classes of) rooted graphs with depth < &

given by*
=(h
én) Z (Gn;xX)p+ (17)

| nler

Similarly for any rooted graph (H ; 0) with depth < &, we set
P (H;0) = PR(G; %) : (G;x)n =~ (H;0)})

(note that P® is supported on rooted trees). Then (BSCT) is equivalent to

drv(BP,PM) "% 0 forall h € N, (1.8)
where dry denotes the total variation distance.

In Theorem 1.9, concerning L4 norms for some fixed ¢ € [2, +00), we replace
(1.8) by the quantitative assumption that there exist L > 0 and 7 = h(n) € N such
that forany n € N,

dry(PP, P®) < L=/, (1.9)

The larger we can choose /, the stronger our conclusion will be. We explain in Sec-
tion 5.4 that (1.9) is satisfied with high probability for random lifts of a fixed base
graph, with 4 = ¢ logn for some ¢ > 0 (and L depending on ¢).

1.4.2. Assumption on the Green functions. Our second condition concerns Green
functions of the limiting rooted trees, in the spirit of the assumption also called
(Green) in [5] (the assumption in [5] is stronger, in the sense that if it holds then
our assumption holds, see Remark 1.8). Given a rooted graph (T’; 0), we denote by
RT its Green function evaluated at the root:

R (2) = (8o, (A(T) — z1d)7'5,),

“There is a slight abuse of notation here. The Dirac masses should actually be put on the
isomorphism classes of (G; X)z.
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where A(T) is the adjacency matrix of 7. Let /; C R and g € [2, +00). We assume
the following condition.

(Green) We have

sup E 7:0y-p (SR, A +in)?? + [RL, (A + in)|?) < +00. (1.10)
el
7e©.1)

As explained in Section 5 and Appendix C, the assumption (BSCT) implies that
the spectral measures ;1% converge as n — oo toward a measure /i, while (Green)
implies that i is absolutely continuous in /; (but we actually need the full strength
of (1.10), and not only this consequence).

We show in Section 5.4 that (Green) is satisfied when PP is obtained as the local

weak limit of random lifts of a base graph. In this case, P is supported on trees of
finite cone type, see Section 5.4 for a definition.

Remark 1.8. Our condition (Green) is weaker than the condition (Green) considered
in [5]. Indeed, it is mentioned in [5, Remark A.4] that the condition (Green) in [5]
implies that for any s > 0,

sup E 7, -p(|RL, (A +in)[*) < +oc.
)LGI]
n€(0,1)

In particular, for s = 2 and s = ¢/2, this implies our condition (Green).

1.4.3. Statement of the result. In the setting introduced in Section 1.4.1, our main
result reads as follows.

Theorem 1.9. Let g € [2, +00) and (Gy)nen be a sequence of graphs with local
weak limit P supported on the set of rooted trees. Assume that there exist L, hg > 0
such that for any n € N, (1.9) holds for some h = h(n) > hg. Let I, be a bounded
open set where (Green) is satisfied for this q, and let co > 0 such that i1 has density
> co > 0in I,. Then there exist C,C’ > 0 (depending on L, hg, ¢o) such that for any
A > 0, any n € N and any interval I C 1y of length at least C(log h)/ h there holds

Pr(ule > AC'nY47Y2) < A4,

where u ~ Py, i.e., u is a random approximate eigenvector of the adjacency matrix of

Gp.

In other words, most approximate eigenvectors spectrally localized in [ are opti-
mally delocalized in L4 norm. Note that compared to [5], we do not need the condition
that the graph is an expander. In some applications, for instance, for random lifts of a
fixed base graph, /(n) may be taken as large as c logn for some fixed ¢ > 0, and N(/)
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in this case is of order n(loglogn)/logn = o(n). Therefore, Theorem 1.9 improves
over Theorem 1.6 when (Green) and (1.9) hold.

In Section 5.4 we show that Theorem 1.9 applies to random lifts of a fixed base
graph. In this setting we even obtain optimal L°° bounds on approximate eigenvectors
(see Theorem 5.7).

Matrices of size n x n with d > logn standard Gaussian entries per row and
column (other entries being set to 0) are another example where optimal L4 delocal-
ization can be proved for most approximate eigenvectors, obtained as linear combi-
nations of eigenvectors corresponding to the top N(/) = o(n) eigenvalues, see [38,
Section 4].

1.5. Proof techniques and a measure of delocalization

We use the same methodology for proving Theorems 1.1, 1.6, and 1.9. Consider H a
symmetric n X n matrix, which is the adjacency matrix of a graph for Theorems 1.1
and 1.9. We fix a subset / C R and consider E; given by (1.4). We denote by I1; the
orthogonal projector onto £y, which has a kernel I1; (-, ) given by

TG, j) = Y Va (v, (), (1.11)

Axel

where (Y3, ) 1<k<n i any orthonormal basis of R" composed of eigenvectors ¥, of
H with associated eigenvalues A, and i, j denote the coordinates in the canonical
basis of R”. It is important to notice that Iy (i, j) does not depend on the choice of
the orthonormal basis. Our proofs are based on a detailed study of the quantity

YoM = | v,
Ax€el

i€[n]

q/2

Las (1.12)

for g € (2, +00]. We use multiple times the fact, already used for instance, in [38,
Proposition 3.1], that if good upper bounds on (1.12) are known, then most linear
combinations of the v/, , Ax € I, are delocalized in the L? sense. Several versions of
this fact are proved in Sections 3.1 and 4.

If H is the adjacency matrix of a vertex-transitive graph, then (1.12) is explicit
and small, even when [/ is reduced to a singleton. In this case, linear combinations
of the v, , Ax € I, are also true eigenvectors and we are able to prove that most
eigenvectors are delocalized, see Theorem 1.1. If we are dealing with a general sym-
metric matrix H, then (1.12) is small as soon as / contains sufficiently many (not
necessarily distinct) eigenvalues, which implies Theorem 1.6. Finally, when H is the
adjacency matrix of a graph G with few short loops, we estimate (1.12) by comparing
the resolvent of H with that of trees arising in the universal cover of G.
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The quantity (1.12) is an interesting measure of delocalization. Compared to the
averaged participation ratio (considered for instance, in [10, Section 5])

1 .
APR,(]) = WA,(ZH iezmmk (i)

the quantity (1.12) does not depend on the choice of the eigenbasis (¥, )xe[s]- Notice
that (1.12) controls the averaged participation ratio:

1 . 1 L N\4/2
1 q/2
- N(I) ”AkXe:wak a2

1.6. Related results

In this section we provide a very brief (and thus necessarily very incomplete) overview
of the literature on delocalization of eigenvectors of graphs and matrices, mostly
focusing on papers related to ours.

1.6.1. Erdés—Rényi and regular graphs. Very strong delocalization results in terms
of L°° norms have been proved for the eigenvectors of the adjacency matrix of Erdés—
Rényi graphs and for random regular graphs, see for instance, [7,8,23]. In a different
direction, [16] proves that in a regular graph with few short cycles, any subset of
vertices supporting & of the L2 mass of an eigenvector must be large, and [3] proves a
quantum ergodicity result for expander regular graphs of fixed degree with few short
cycles.

1.6.2. Wigner and Lévy matrices. Eigenvectors of Wigner matrices have been stud-
ied extensively: we only mention [24] for sharp bounds on the L* norms of eigen-
vectors, and [15], which proves asymptotic normality of eigenvectors for generalized
Wigner matrices and a probabilistic version of quantum unique ergodicity.

Very interestingly for us, the papers [12, 13] and [1, Appendix 17], devoted to the
study of eigenvectors of Lévy matrices, provide many insights about the role of the
spectral projector in the study of localization/delocalization.

1.6.3. Cayley graphs. The papers [31, 34, 35] are concerned with delocalization
properties of eigenvectors of Cayley graphs, which are particular vertex-transitive
(hence, highly symmetric) graphs constructed via generators of groups. We provide a
detailed account on these three papers at the beginning of Section 3, and revisit some
of their results with a different proof technique well suited for generalizations. Let us



N. Burq and C. Letrouit 156

also mention that eigenvalues of Cayley graphs are also an active research subject,
see [30] for a recent survey.

1.6.4. “Non-homogeneous” graphs and matrices. Relatively fewer papers are con-
cerned with properties of eigenvectors on “non-homogeneous” graphs and matrices.
In the paper [5] (see also [4, 6]), it is proved that for a sequence of finite graphs
endowed with discrete Schrodinger operators, assumed to have few short loops and
to be an expander, absolutely continuous spectrum for the weak limit of the sequence
(under the form of a control of the Green function) implies quantum ergodicity: spec-
tral delocalization implies spatial delocalization. Under the same assumptions, we
prove in Section 5 a strong estimate on the L9-norms (which [5] does not give), but
only for most approximate eigenvectors, and not for exact eigenvectors as in [5]. The
largest part of the literature in the field is devoted to the study of exact eigenvectors,
for which the tools of the present paper are too rough (except for the vertex-transitive
case and its generalizations).

The paper [29] provides L2-bounds for eigenvectors of Schrodinger operators on
large, possibly irregular, finite graphs. These bounds are somehow orthogonal to ours:
they are far from being sharp but again, they work for exact eigenvectors, whereas our
bounds are much sharper but work only for most approximate eigenvectors.

Let us also mention the recent paper [38], where the authors consider n x n self-
adjoint Gaussian random matrices with d non-zero entries per row. When d > logn,
they construct a delocalized approximate top eigenvector by taking a random super-
position of many exact eigenvectors near the edge of the spectrum, and they highlight
the fact that delocalization properties of approximate eigenvectors are more universal
than those of exact eigenvectors. Section 5 in the present paper develops this idea in
another direction, for graphs with few short loops with a control on the resolvent.

We finally mention [9] concerning delocalization of eigenvectors in percolation
graphs and the survey [10] from which we took inspiration for our Section 5.

1.6.5. Compact Riemannian manifolds. Our paper borrows several techniques
from papers concerned with delocalization of eigenfunctions of the Laplacian on com-
pact Riemannian manifolds. Zelditch was the first to notice in [40] that although there
exist localized bases of eigenfunctions of the Laplacian on the sphere, almost any’
eigenbasis on the sphere is quantum ergodic, i.e., high frequency eigenfunctions are
totally delocalized. In the same spirit, the first author and Lebeau proved in [17] that
almost every Hilbert base of L?(S¢) made of L2(S?)-normalized spherical harmon-
ics has all its elements uniformly bounded in any L7(S?) space (¢ < 4+00). In [17],
this result has been extended to arbitrary manifolds, to the price of considering only

>For natural probability measures on the space of orthonormal eigenbases.
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approximate eigenfunctions (see also [18,41], and [19, 20, 26, 27] for more recent
developments).

1.7. Organization of the paper

In Section 2 we prove basic results regarding random functions on Sy picked accord-
ing to the probability PP;. Building upon this, we prove in Section 3 Theorems 1.1
and 1.3 about vertex-transitive graphs, and extend Theorem 1.1 in Section 3.2 to the
case of products of graphs, one of which is vertex-transitive. The proofs are not based
on representation theory and are all particularly elementary. In Section 4 we use the
same arguments, sketched in Section 1.5, to prove Theorem 1.6. Finally, Section 5
is devoted to the proof of Theorem 1.9. In the appendix, we have gathered several
useful results concerning concentration of measure, bounds on spectral measures, and
Benjamini—Schramm convergence.

2. Preliminary computations

This section is devoted to proving basic results regarding random functions on Sy
picked according to the probability IP; introduced in Section 1.3. We keep the frame-
work of the introduction: we fix a symmetric n X n real-valued matrix H and a subset
I C R, and we denote by N (/) the number of eigenvalues of H in /. We recall that
the spectral projector Iy (-, -) has been introduced in (1.11). It does not depend on the
choice of an eigenbasis, but in the sequel it will nevertheless be convenient to fix an
orthonormal basis of eigenvectors (Y3, )xe[n) of H.
Finally, we set I (x) = Oy (x, x).

Lemma 2.1. Assume N(I) > 2. Let u be the random function given by (1.5). Then
foranyt > 0and x € [n],

NI
Pr(u(x)| >t) = 105t<ﬁ1(x)‘/221-‘(1v(1()—§) /(sm(p)N(” 2a’g{) 2.1)

> )T

where 0, € [0, /2] is the unique solution to cos 0; = tT1;(x)~'/2, and T denotes the
Euler Gamma function.

Proof. We set

vr(x) = e )l/z(wllk( Nigel
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which is an element of S;. There holds

u(x) = Y za ¥, (0) = T2z vr (0),

Ax€el

where z is a random vector whose law is uniform over Sy. In particular, |u(x)| <
I1; (x)'/2, which establishes (2.1) for ¢ > II;(x)/2. If 0 < ¢ < II;(x)/2, using
Proposition A.1 we get

Pr(lu()| > 1) = Pr(lz - vy (x)[ > tﬁI(X)_l/z)

ZZ—F(N(” e /(sm<p)N(1) 2dg,
2

-1/2.

where 6, € [0, 77/2] is the unique solution to cos §; = ¢T1;(x) ]

Proposition 2.2. There exists C > 0 such that for any 2 < p < q < +00 and any
I CR, 5
[yl p2\1/2
E q \1/q <C (” L )
(Il = € V(=™
Moreover, for any K > 0 there exists Cx > 0 such that forany 2 < p < q < 400 and
any I with N(I) < K, there holds

(2.2)

E(lulld,)" < CxlI T 117, 2.3)

Proof. For N(I) = 1, the result is straighforward. In the sequel, we assume N (/) > 2.
Fix x € V. We have

E(Ju()[?)

= /tq_l]P’I(|u(x)|>t)dt
r(4) I
—qH (x)?2 | (cos8)? ' sin @ [ (sing)¥N D2 dyp db
()T / /
g

()N

N|—=

I (x)?/2, (2.4)

~— [ ~~—

where from first to second line we made the change of variables ¢ = I (x)/2 cos(0)
and used Lemma 2.1, and from second to third line we used Fubini’s theorem and
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identities involving the beta function to compute the integrals. Then, using Stirling’s
approximation, we notice that

I(4E)\1/q (M) \1/q C
ay) =V GGaom) <vam @Y
2

r'(3) ~ N(I)'/?

for some universal constant C (independent of ¢ > 2 and N(/) > 1). We conclude,
using Minkowski inequality (recall p < g), that

Bl 1 < NEWOI 1o < C Vs 6 s

which is exactly (2.2). And (2.3) is deduced directly from (2.4) and Minkowski’s
inequality without using (2.5). ]

3. Delocalized eigenbases for transitive graphs and their
generalizations

Our goal in this section is to give short proofs of Theorems 1.1 and 1.3. Our arguments
extend to products of graphs, when one of the two graphs in the product is vertex-
transitive.

Given a graph G, we first explain how to pick an L?-orthonormal basis of eigen-
vectors of its adjacency matrix Ag uniformly at random. We denote by E1, ..., Ex
the distinct eigenspaces of Ag, where Ej has dimension mj . We identify the space of
L?-orthonormal bases of Ej with the orthogonal group O(my) and endow this space
with its Haar measure denoted by vg. There holds

L*(V)= P Ex. (3.1
]

ke[K

where V is the set of vertices of G. The set of orthonormal eigenbases of LZ(V)
compatible with the decomposition (3.1) is

B =0(my)x--x O(mg)

and it is endowed with the product probability measure v = ® vg.

3.1. Proof of Theorem 1.1
Fix an arbitrary set / C R. Forany x € V,

M;x) 1
N(I) n (3.2)
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since T1; (x) does not depend on x and the sum over x is equal to 1. We plug (3.2)
into (2.2) (with p = ¢g): for the random function u given by (1.5) we obtain

E(ul?,) < (C Jqn'/171/2)a (3.3)

To prove (1.1), we observe that forany f:V — C, || f e < || .f|lLe. We setg =logn
and we apply the Markov inequality to get for any A > 0

< Pr(Julll, > AC? log(n)¥/*n=1/?)

(C ﬂnl/q—l/Z)q _ nl—log(A)
~ A41C9log(n)4/2n—4/2

Pr(Juf|ze > AC log(n)/2n3) = Pr(Ju[%e = A9CY log(n)?/?n~4/2)

(3.4)

Fix k € [K] and set I to be the singleton containing the eigenvalue corresponding
to the eigenspace Ey. In particular, N(/) = my. For any £y € [my], the map

O(my) 3 (be)eemi] > by € Siy
sends the measure vy to the measure P(3, y and consequently, according to (3.4),
vk ({(be)etmer € O(mi) : gy llLoe = AC Tog(n)!/>n™1/2}) < p!~1ox®)
We deduce by the union bound,

Vi ({(be)tepm, ] € O(my) : there exists £o € [my]

such that [|bg, || Lo > AC log(n)'/2n1/2})
< mknl—log(A)
and finally

V({(br,0) k(K Lelmy) € B :for all k € [K], L& [my], by ¢l oo < AC log(n)'/2n~1/2})
> 1— n2—10g(A)

follows by union bound over k € [K], which proves (1.1). The proof of (1.2) follows
exactly the same lines, except that in (3.3) and (3.4) we need to use an arbitrary g
independent of 7, and not ¢ = log(n).

Remark 3.1. One can also prove a deterministic bound in terms of the maximal mul-
tiplicity M,, of the adjacency matrix Ag: any L?-normalized eigenvector u of Ag
verifies

lullLe < MY2n1/9712 forall g € [2, +o0], (3.5)
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(with ¢ = 400 allowed). Indeed, setting / = {A} where A is the eigenvalue associated
to u, we have forany x € V

M)l/z - (Mn)l/z

n n

)] = | a0 = o2 = (

A=A

since 17 (x) does not depend on x, which implies (3.5). In particular, if M, < log(n)
this improves (1.1). This is for instance, the case for cycle graphs, since M,, = 2.

3.2. Generalization to products of graphs

Theorem 1.1 may be generalized at no cost to products of graphs of all kinds, as
soon as one of the two graphs in the product is vertex-transitive; the results below are
meaningful when this vertex-transitive graph has a large number of vertices.

Definition 3.2. A graph product of two graphs G and H with sets of vertices denoted
by V(G) and V(H) is a new graph whose vertex set is V(G) x V(H) and where, for
any two vertices (g, k) and (g’, #’) in the product, the adjacency of those two vertices
is determined entirely by the adjacency (or equality, or non-adjacency) of g and g,
and that of 4 and /'.

Remark 3.3. To define a graph product, there are 3 - 3 — 1 = 8 different choices
to make® and thus there are 28 = 256 different types of graph products that can be
defined. The most commonly used are the Cartesian product, the lexicographic prod-
uct, the strong product and the tensor product.

In this section, the symbol x denotes one of the 256 possible notions of products
of graphs.

Definition 3.4. We say that a graph is a product of type (£, m) if itis equal to G x H
where G is a vertex-transitive graph with £ vertices, and H is an arbitrary graph with
m vertices.

The following result extends Theorem 1.1 to products of graphs, with bounds
which depend on £ instead of n.

Theorem 3.5. There exists C > 0 such that the following holds. Let G x H be a
product graph of type (£, m), with n = £m vertices. Then for any A > 0, with prob-
ability > 1 — nf'71°¢) on the choice of an orthonormal eigenbasis B of Ag, any

®For instance, one of them is to decide if we put an edge between (g, ) and (g’, ') when
g ~ g’ and h = h’. The case where g = g’ and i = I’ is not considered.
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u € B verifies

log({)

L
Also, there exists C > 0 such that for any q € [2,+00) and any A > 0, with probability
> 1—nA"9 on the choice of an element B € B(G) picked following v, any u € B
verifies

lullLe < AC (3.6)

lulle < AC Jge'/a=1/2, 3.7)

Remark 3.6. If instead of choosing an eigenbasis randomly we choose only one
eigenvector randomly, we get (3.6) with probability > 1 — £'712(A) "and (3.7) with
probability > 1 — A™7 (i.e., we save a factor n in the proof since we avoid one union
bound compared to the case where a whole eigenbasis is picked at random).

Proof. We set

v(x) = N(I) I (x). (3-8)

We notice that ),y Gxp) v(x) = 1 and that if x = (g, h) and x" = (g', h) with
g.&g' €V(G)andh € V(H), then v(x) = v(x’) since G is vertex-transitive. Therefore,
v(x) < 1/ for any x € V(G) x V(H). We denote by c(h) the value of v(x) for
x = (g, h) (independent of g € G). We have

ITL 197, = €3 c(y??

N(])q/Z heH
q/2 1—q/2 q/2 1—q/2
<€(Zc(k)) —¢ (ch(h)) — -2,
heH heH
We deduce from (2.2),

E(llullf,) < (C Jgqe"/a=1/2)1,

The proof is now exactly the same as in Theorem 1.1, with n replaced by £, and
q =logt. n

3.3. Proof of Theorem 1.2

The proof of Theorem 1.2 relies on the general principle that for large collections
of high-dimensional data, most one-dimensional projections of the data are approxi-
mately Gaussian. This fact has first been proved by Diaconis and Freedman in [22],
and then quantitative bounds have been derived by Meckes [33]. Her result reads as
follows.
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Theorem 3.7 ([33, Theorem 3]). Let {x;}7_, be deterministic vectors in R™, let o2
be defined by (1/n) >_{_ |xi|* = 0>m, and assume that

1 n
=Y o x? —m| < A
n

i=1

and

1 n
=3 (0.x;)* < B forallf e ™",
n

i=1

for some A, B > 0. Consider the random measure ug on R which puts mass 1/n at
each of the points (x1,0), ..., {(xy, 0). If 0 is chosen uniformly from S™~1 and

3.27B 72/5 2(A +2
BZeZmax([ 7 ] s (4+ )),
m—1 m—1

then

p(— cz(mB—2 1)e® )

with ¢y = 487, c; = 3722718, and dy; denoting the bounded Lipschitz distance.

B
P[dsL (1), N (0,07)) > ¢] < c;;{; ex

Let us explain how to deduce Theorem 1.2 from Theorem 3.7. We denote by
Y1, ..., ¥m an orthonormal basis of E and by 6 an element of the unit sphere of £
chosen uniformly at random. We also label the vertices as V = {1,...,n}. For any
i €V,wehave x; = /n(Y¥1(i),..., ¥m(i)), and |x;|> = m due to (3.2). Moreover,
u=7)"_,0;y; €S""!, therefore \/nu; = (6, x;). Then we apply Theorem 3.7. We
observe that 0 = 1. Also, we may take A = 0 and B = 1 since

ED RIS B SR RO
i=1

i=1 k=1

= > 00 ) Vi (@DYe() = D Obir=g = 1.

k,t=1 i=1 kt=1

All in all, Theorem 3.7 gives exactly Theorem 1.2.

3.4. Proof of Theorem 1.3

We consider an eigenspace Ey of dimension my, and we denote by V1, ..., Y,
an orthonormal basis of Ej. As before, IP(3,, is the uniform probability measure on
the unit sphere of E, and u = Z:"z"l z;¥; is a random vector following Py, (in
particular, Z = (z;);e[m,] is on the unit sphere of Ey).
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Notice that we may assume that each f; has mean 0: (1/n) )",y fi(x) = 0.In
the sequel, we fix f € L?(V) with mean 0. We have

> fou(x)* = 2T BZ,
xeV

where

B = Bijhzijzme: Bij =Y LV ()Y (x).

xeV

‘We notice that
Z Bii =Y f(x) Z vio? = ZE 3 (0 =0 (3.9)
xeV xeV

and

> B = Zf(x>f(y>(2wl Vi)

i,j=1 x,yeVv
2 2
< ZM(Zw,(xwl(y))

x,yeV

- f(x)z(mzkwi ()i (y))z

x,yeV i=1

=D 2 @MY@ Y v0Y ()

xeV i,j=1 yev
mp

= 2 D S0 = ZE I (3.10)
xeV i=1

where we used Zer Vi (), () = §;;. Since B is symmetric, we write B = PT DP
where P is orthogonal and D = (d;)1<i<m, is diagonal, and we deduce from (3.9)
and (3.10) that

my mg

Y di=tw(D)=u(B) =0, Y d?=u(D?=u(B) < X|f]3. (1

, , n
i=1 i=1

Finally, setting Y = PZ, which is also uniform on the unit sphere of Ej, we have

3 fu)?=2zTBZ=YTDY. (3.12)

xeV



Delocalized eigenvectors of transitive graphs and beyond 165

We may write ¥; = 6;/+/© with 6; independent standard real normal random

mpg
©=> 16

i=1

variables and

‘We notice that :
P(@ > 5mk) > 1 — e mk/12 (3.13)

(see [31, Lemma 5.1]). Also, applying [31, Lemma 5.2 (i)] with C = (mk/n)||f||i2
(due to (3.11)) and A = /C, we get that for any 7' > 0,

1 s 1 Tm 1/2 Tm
T - = 92> — 1Mk _ 1Mk
P(o D@zszk)_]P’(;d,el zszk)§2(2ﬁ+1) exp( ; )
(3.14)
where 6 = (01, ...,0m, ). We choose T' = t|| f || 2/ +/n. Combining (3.13) and (3.14),

we get

IED(YTDY > %) < 2(1\/2171_;( + 1)1/2 exp(—t mk) + exp(—ﬂ).

- 4 12

Recalling (3.12) and using a union bound over the random choice of the m elements
forming an orthonormal basis of Ey, this concludes the proof.

4. L9-delocalization of approximate eigenvectors of symmetric
matrices

This section is devoted to the proof of Theorem 1.6. We work in the setting of Sec-
tion 1.3. Our proof is based on the following lemma.
Lemma 4.1. Let u € S; be a random vector with law Py.
(1) There exists C; > 0 universal (not depending on 1) such that for any q €
(2, +00),
Mg,1 < CLygN ()12,
where Mgy, 1 denotes the median of the random variable ||u| 4.

(2) Let g € (2, 4+00]. Then, for any r > 0,

Pr(|[[ullpe — Mgz > r) < 4 ND?/2, (4.1)

Proof. We first prove that for any ¢ € [2, +o¢]

Tl a2 < N(I)?4. (4.2)
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For j € [n], we denote by §; the vector of R” whose only non-zero coordinate is the
J -th one, whose value is 1. We fix an orthonormal basis (3, )xe[s] of eigenvectors
of H,. Denoting by v/, (i) the i-th coordinate of 5, fori € [n], we have

ITT;]| Lo = max E Y (G)?
J€ln] A
k€l

n
< maxy oy, (/) = max Z (8. 2,07 = max 1§ ]1* =

J€ln] =1
‘We also notice that

T =" Y va () = NU).

JE€[nlArel

Using the interpolation inequality || f |- < ||f||1 1/'||f||1/’

inequality (4.2).
Point (1) follows from

with r = ¢ /2, we obtain

1 _
sMa1 = E(Jullze) < E(ullfo) " < CygNI)YITY2,

where the first inequality comes from the fact that ||u| s is a non-negative random
variable, and the last one from (4.2) plugged into (2.2).
We turn to Point (2). Let F(u) = [lu|L«. We notice that || F'||;, < 1 since

|F@) = F(v)| < [lu—=vlze < [lu—=v] .
Applying Theorem A.2, we get (4.1). |
The proof of Theorem 1.6 is now straightforward.

Proof of Theorem 1.6. Point (i) follows by combining Point (1) and Point (2) of
Lemma 4.1, with r = AC; «/c_‘{N(I)l/q_l/2 and taking C = 2C. For Point (ii), we
apply Point (i) with ¢ = log(N(/)) and we use the elementary inequality ||u| o <
l[ullza. u

Remark 4.2. When N(/) remains bounded as n — +o00, Theorem 1.6 becomes
almost empty. But the method of proof of Theorem 1.6 can be straightforwardly
adapted to prove smallness of the L9-norm of u with high P;-probability, under the
additional assumption that ||I1;]|;2_,;4 = 0(1) as n — +00. We do not detail this
here.
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5. Stronger L?-delocalization for general graphs under Green
function bounds

The goal of this section is to prove Theorem 1.9 and apply it to random lifts of a fixed
base graph. The general structure of the proof of Theorem 1.9 is borrowed from [10,
Theorem 5.8], which shows a spectral projector estimate for graphs close to regular
graphs. Our proof is an adaptation of this proof to the case of general local weak limits
supported on rooted trees (not necessarily regular).

5.1. Absolute continuity of i

Denote by ;1% the spectral measure of the adjacency matrix A(G,), i.e.,

o I\an
n = _ 8., 5.1
n n,;” (5.1)

where the A, denote the eigenvalues of A(Gy,). Two rooted graphs (G, 0) and (G, 0")
are called equivalent if there is a graph isomorphism ¢: G — G’ such that ¢ (0) = 0’. If
(G;0) is arooted graph, we denote by [G; 0] its equivalence class, and G, denotes the
set of equivalence classes of connected rooted graphs. Let M[G;o] denote the spectral
measure of a rooted graph (G; 0), defined as the unique probability measure on R
such that

1 .
(80, (A(G) — zId)7168,) = / rdu[6=ol(x) for all z such that J(z) > 0. (5.2)
—Z
R

According to Proposition C.1, £%” converges to the mean of the empirical measures
under P, i.e.,

i= / WG9AaB (G o).
Gx

We recall that P is supported on (equivalence classes of) rooted trees.
Proposition 5.1. The measure i is absolutely continuous in 11, with bounded density.

Proof. Using (Green), we obtain that for P-almost every rooted tree [T; 0],
limiinf/ IRT (A +in)|2dA < +o0.
ni0
I
In the sequel, we work under this P-almost sure event. According to [28, Theo-

rem 4.1], the spectral measure ,u[T;”] is absolutely continuous in /;, with density
plTsol(}) = I(RI, (A +i0))/7 with respect to the Lebesgue measure £ on R.
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Denoting by C > 0 the supremum in the right-hand side of (Green), we get that
for any borelian B C I,

] ol s 1 .
(B) = / ATNBAP(T:0]) < 4(B) sup E 7105 (=S R3, (h + 1)
Gx nefo,ll)

2/q

=

¢(B)

according to (Green). Hence, i is absolutely continuous, with density bounded by
C?x. ]

5.2. Preliminary lemmas

Recall the notation Iﬁgg introduced in (1.7). The goal of this subsection is to prove
the following proposition.

Proposition 5.2 (Spectral projector estimate). Let (G,) be a family of graphs. We
assume that there exist hg, L such that for some h = h(n) > ho, (1.9) holds for any
n € N. Let I be an open set where (Green) is satisfied, and let co > 0 such that [
has density > co > 0 in I,. Then there exist C,C' > 0 (depending on cg, L, hg) such
that for any interval I of length at least C(log h)/ h such that I C Iy,

||HI||L4/2 < C/nz/q—l.
N(I) —

In the sequel, we set { = e?m. For any (finite or infinite) graph H whose adja-
cency operator A(H) is essentially self-adjoint, and for any z € C, we set R (z) =
(A(H) — zId)~!. We start by recalling the following result, which states that if two
rooted graphs are isomorphic up to distance 4 of their root, then their resolvents are
h~!-close.

Lemma 5.3. Fori = 1,2, let (G;, 0) be a rooted graph, and assume that the adja-
cency operator A(G;) is essentially self-adjoint. Assume further that (Gy;0)y, and
(G2; 0)p, are isomorphic for some h € N and that || A(G;)|| < b for || - || the operator
norm. Then for any z € C such that 3(z) > ¢b[log(2h)]/2h,

1
IRG (2) = Reg ()] = -

For a proof, see e.g., [10, Corollary 5.5]. The next proposition tells us that the
spectral measure ug, of G, is close to fi for large n, at least over not too small
intervals / C R. Recall that D denotes a uniform upper bound on the degree of the
graphs G, see Section 1.4.1.
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Lemma 5.4 (Local Kesten—-McKay law). Let 0 < § < 1 and assume that there exists
h > 1 such that

_ =, 1
§ = max (hdry (B B®), ).

Then for any interval I C R of length || > (20D log(2h)/ h)((1/6) log(1/§)), we

have G .
(> () = p(Dl _
1] B

where the constant C only depends on D.

Cs,

Proof of Lemma 5.4. Lett = {D[log2h]/(2h) < 20D log(2h)/ h. We denote by R},
the set of rooted graphs (H ;o) with depth < h. Let (H:;0') € Rj. For simplicity,
of notation we simply write H instead of (H;0’) to denote this rooted graph. We
introduce

Vn(H) = {X € Gy | (Gn;x)h x~ H} (5.3)

and

Ju(z:H) =

> RE(2).

[V (H)] XeVy(H)

We also introduce the conditional expectation
[z H) =E . 5(RE,(2) | (T:0)y ~ H),

where (T'; 0);, is the rooted tree T cut at distance . We have from Lemma 5.3 if
J(z) =t

1
|fn(Z§H)_f(Z;H)| =< m

We also have, if J(z) = ¢, since Iﬁgz)(H) = |Vu(H)|/nand | f,(z; H)| < 1/1t,

1
‘; Z RJ?}? (Z) - E(T;O)N]F (Rzo(z))‘

xeVy

= | SSBL ) fue: ) = BO (@) £z )|

HeRy

2 = _
< Zdiy(®GBD) + 3 | fulzi H) = Sz H)IP® (H)
HeRy

For any finite non-negative measure u on R, we set g,,(z) = [ 1/(A — z)d (1) for
z € C such that J(z) > 0. Therefore, for J(z) = ¢,

1
8000 (2) = 82D = |= 3 RE(@) = Eqp) p (R, (2))|

xeVy
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2 _ _
~dry(Bg) BO) + o

<

= tDh
4h pY) B0 1
= dry(BY —.

< 7pdn '+ i

By assumption, this is bounded above by C4§ for some explicit C > 0 depending only
on D. We can apply Lemma B.1 with K = R and A the adjacency matrix of G,,
since the density E 7., p( S(RL (A +i0))/7) of it is bounded above (according to
(Green) together with Jensen’s inequality). This concludes the proof. |

Proof of Proposition 5.2. By assumption on /;, the density of 1 is bounded below on
I; by some positive constant ¢g. Let C be the constant from Lemma 5.4. Set §o =
co/2C . Without loss of generality, we assume L > 1 (where L is defined in (1.9)). It
follows from (1.9) that

hdr(BG). P®) < Lh'™912 <,
for h > hy where h is sufficiently large. Applying Lemma 5.4, we get that

ua, (1)

Z Co — C809
]

for all intervals / of length |/| > ¢y 1log(2h)/ h such that I C Iy, where

In particular, g, (1)/|1] = co/2 for all these intervals /, which implies
1
N() > —c0n|1| (5.4)

Let 4 > hy and ¢ > 20D log(2h)/ h. In analogy with the notation of the proof of
Lemma 5.4, we introduce the function g,(,q) defined for any rooted graph (H;0’) € Ry,
(simply denoted by H in the sequel) by

(q)( H) =

> (S(RG (2972,

[Va (H)I eV )

where V;,(H ) has been introduced in (5.3). We also consider the conditional expecta-
tion
8@ H) = By p (SR, (2)Y? | (T:0)p = H).
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We have, if J(z) = ¢,

1
|; Z ;S(Rf;' (z))q/2 _ ]E(T;o)rvp‘\‘g(RZg(Z))q/z)
x€Vy
w5 (h —
_ ‘ N PP (H)gW (z: H) _pw)(H)g(q)(Z;H)‘
HE:Rh
2 P P —
=< WdTV(P((;}L),P(h)) + Z |g,€l‘1)(z; H) - g(CI)(Z; H)|]P(h)(H), (5.5)
HeRy

Let H € Ry.Forany x € V,,(H) and (T';0) such that (T';0);, >~ H, we have according

to Lemma 5.3,
N 1
I3(RE7 (2)) = S(RL,(2)] < i

and in particular, S(Rf}} (2)) < I(RI (2)) + 1. Therefore,

SRS )2 = SRLED2) < 21+ SR ).

We deduce

1
18D (z; H) — gDz H)| < —

< DR o1+ 3(Rop () | (Ti0)p = H).

5.6)
Combining (5.5), (5.6), and (Green), we deduce

1 — — C
Y SRea () ~ E ) p Y (R, (2)7] = dry B P2 4 2 (57
n ’ n

xeVy

Using (1.9) and again (Green), we deduce that ), oy, (J(Rxx (2)))4/2/n is bounded
by C’ for some C’ > 0 dependingonlyon L, D.If = [A —t,A +t]and z = A + it,
then S((A —2)™Y) =t/((A' — 1)% +t2) > (1/2t)1,/¢1. Therefore,

D W () < 23(Rex(2));

Ax€el

hence,
1T 197, < 11192 37 (3(Rax (2)))7? < C'n| 11772
xeV

Putting this together, with (5.4) we get the result. |
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5.3. Proof of Theorem 1.9

Using 2.2 together with Proposition 5.2, we obtain
E(lulf,) < (C'n"a71/2)d.

Then, we apply the Markov inequality to get for any A > 0

C’ 1/g—1/2 q
" ) < A9, (5.8)

1 1/g—1/2 s
Pr(fullee = AC'n ) = (Aclnl/q—l/Z

5.4. An application: Approximate eigenvectors of random lifts

In this section we provide examples of families of graphs where Theorem 1.9 applies,
namely random lifts of a fixed base graph G. Our main result of this section is Theo-
rem 5.7. Recall the following definition [2].

Definition 5.5. Given a graph G with vertex set V, a random labeled n-lift of G is
obtained by arbitrarily orienting the edges of G, choosing a permutation o, € &,
for each edge e uniformly and independently at random, and constructing the graph
G, with n vertices (u, 1), ..., (u,n) for each u € V and edges ((u, i), (v,0.(7)))
whenever ¢ = (u, v) is an oriented edge of G.

In the sequel, a finite graph G = (V, E) is fixed. We prove in Lemma 5.6 that
n-lifts of G converge almost surely in the local weak sense as n — 400 toward a
probability P which we now describe. Recall that the universal cover G of G is a
tree of finite cone type, meaning that if one denotes by €(v) the forward subtree
emanating from a vertex v of G, the number of non-isomorphic cones € (v) as v runs
over the vertices of G is finite. Then,

— 1
= DB
x€V
is a well-defined probability measure.

Lemma 5.6. Let 0 < ¢ < 1/(8log(d — 1)). There exists C > 0 such that for any
n € N the probability that a random labeled n-lift G, of G satisfies

— — 2
dry(Bg,) . PP) < —= (5.9)

1

forh =clognis>1—C|V|n™ 4.

Proof. Let G, be drawn according to the probability measure Q, on random labeled
n-lifts introduced in Definition 5.5. Fix 0 < ¢ < 1/(81log(d — 1)). Then there exists
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C > O such that for any x € V,, = V X [n] (the vertex set on which all n-lifts are built),

__1)\2clogn
Qn(A6M) < C(d+, (5.10)

where ASCG") denotes the event that there exists at least one cycle in G, of length
< clogn containing x. The proof of (5.10) is almost contained in the proof of [11,
Lemma 27]. For the sake of completeness, it is detailed in Appendix D.

We denote by X the random variable counting the number of points in G, which
belong to a cycle of length < ¢ logn. There holds

1 1
(X > V) = —=Eq,(X) = WXEZV Qn(AL)

(d _ 1)2clogn
NG

We observe that for any G,, € G, such that such that X < /i, (5.9) is satisfied. Indeed,

<C| <C|VIn~'*,

_ 1
" _ .
PO = o > 85, (5.11)

x€Vy,

since G is also the universal cover of G,,. Then we see that the two summands in (5.11)
and (1.7) coincide except when A;G") holds, which is the case for a proportion at most
/n/|Vy| of the vertices x € V,, from which we deduce that (5.9) holds. ]

Let us denote by A(G) the adjacency operator of G, and by sp(A(@)) its spec-
trum. If G is a finite graph with minimal degree > 2 which is not a cycle, it follows
from [14, Theorem 1.5] that sp(A(é)) has a continuous part. The following statement
is concerned with approximate eigenvectors spectrally localized in this continuous
part.

Theorem 5.7. Assume that G is a finite graph with minimal degree > 2 which is
not a cycle. Denote the universal cover of G by G. There exists a family of sets
(I¢y c5)0<ci <cr<+00 having the following properties:

o forany0 <cy <cy <400, there exist C,C’ > 0 such that foranyn € N, any A >
0 and any interval I C sp(A(G)) \ I¢, ¢, of length at least C(loglogn)/logn,
there holds

Py (||ullLoe = AC’(logn)>n™"/2) < A~ loen/@loglozn) (5.12)

for any n-lift G,, of G satisfying (5.9), where u ~ Py, i.e., u is a random approxi-
mate eigenvector of the adjacency matrix of Gy ;
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* forany 0 <cy < cp < +00, I¢ ¢, is a finite union of open intervals, and 1., ¢,
shrinks to a finite set when ¢y — 0 and c; — +o00. In particular, sp(A(G)) \ I¢, ¢,
is non-empty when c is sufficiently close to 0 and c; is sufficiently large.

Notice that thanks to Lemma 5.6, we know that Theorem 5.7 applies to random
n-lifts with probability > 1 — C |V |n~'/4. We also mention that there is an analo-
gous statement to Theorem 5.7 for L4 norms, g € [2, +00). Finally, it is possible by
optimizing slightly the proof of Lemma 5.6 and the choice of ¢ in (5.13) to replace
(logn)? in (5.12) by (logn)® for any a > 1/2.

Proof of Theorem 5.7. The main idea is that thanks to the strong bound (5.9),

our proof of Theorem 1.9 still works when g depends on n, as long as we have

q < Clogn/(loglogn) with C < 1 (uniform in n). We take & = c logn where

¢ = 1/(8log(d — 1)) is the constant appearing in Lemma 5.6, and
g= 08" (5.13)

2loglogn

Then according to Lemma 5.6, inequality (1.9) is satisfied for some L > 0 (uniformly

inn).

We now define I, ¢, for any 0 < ¢; < ¢z < +o0. For this, we need to rely on
the results of [6] as a black-box: a family of “resolvent-type” functions {;: C — C
is introduced (whose dependence in z € C is denoted by ¢7), for which the set of
S sp(A(G)) such that ¢; < |S§f+i0| < ¢, for any j is of the form sp(A(G)) \eien-
Here 1., ¢, is a finite union of open intervals, that shrinks to a finite set when ¢y — 0
and ¢, — +o00. We refer the reader to [6, Proposition 4.2 (2)], and to the comments
below this proposition. From this, it follows that

sup  E g, p(SRL(A+in)?? + |RL (A +in)|?) < C72, (5.14)

Ael,ne(0,1)
where C’ does not depend on n (see also [5, Remark A.4]). This replaces (Green).

We claim that Proposition 5.2 holds (without any change in the statement) if g is
taken as (5.13). Indeed, with this n-dependent ¢, the proof carries over without any
modification until (5.6) (included). Instead of (5.7), we get thanks to (5.14),

‘1 > 3(Rux(2))1? ~E SS(RE (2))42] < dpy (P, PWpal2 4 car
n ~fxx (T;0)~P~ oo = urvitg, »

xeVy,

Using (1.9) and the fact that 1 = c logn, we conclude that ) . (S(Rxx )% /n
is bounded above by C”4/2 for some C” > 0 depending only on L, D. Therefore,
Proposition 5.2 holds with g given by (5.13). Then, as in Section 5.3, we deduce
that (5.8) holds for ¢ given by (5.13). Finally, using that |u| L < |u|/Le, we get
Theorem 5.7. |
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A. Probability calculus on spheres

Let us denote by wg—1 the uniform probability measure on the unit sphere se-1
of R4, Recall the following formula (see [18, Proposition 5.1], which corrects [17,
Appendix A]).

Proposition A.1. Letd > 2. Forany 0 € [0, /2],

0
pa- (bl > 0s(9)) = Ca [ sin Zp)dp. Co=2; P) (A1)

r(EHri)

Proof. On S?~1 we use the coordinates (cos(¢), sin(p)u) where u € S¢~2. Then
ditg—1(¢, u) = sin(@)?2dpg_»(u)de. This yields the integral formula in (A.1),
and there remains to determine C;. We have

0

/2
Cq d—11
1=C in?2(¢p)dp = -2 B =),
dfsm (p)dg = = (2 2)
0

where B(:, ) is the beta function. Using B(x, y) = I'(x)I'(y)/ ' (x + y), this gives
the value of Cy. ]

There exist different statements of measure concentration of Lipschitz functions
on the sphere in the literature. The one we use in the present paper is the following.

Theorem A.2. Let f:S?~! — R be a Lipschitz function and define its median value
M(f) by | |
pai(f 2 M) 2 50 ptaa(f < M) = 5.

Then for any r > 0,
pa—1(lf = M(f)>r) < 4e=dr* /ISR,

For a proof, see [32, Theorem 14.3.2], written for 1-Lipschitz functions. The case
of general Lipschitz functions is obtained by considering f/|| f [|1ip-

B. Bound on spectral measures using the resolvent

The following result is proved in [10, Lemma 5.3], using [12, Lemma 3.7].

Lemma B.1. Let A € #,(C) be a Hermitian matrix with resolvent R(z) = (A —
zI,) V. Let L > 1,0 <8 < 1/2, K be an interval of R and v a probability measure
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on R. Recall that g,(z) = [g 1/(A — 2)du(}) for z € C such that I(z) > 0. We
assume that for some t > 0 and all A € K, either

Seu@+in <L or p([a- %,x + %]) < L.

We also assume that for all A € K,
1
RO+ it) — g (A + it)‘ <.
n

Then, for any interval I C K of length |I| > t((1/6)log(1/§)) such that dist(I, K€) >
1/L, we have
lpad) — p()|

< CLg,
7]

where C is a universal constant and [14(1) is the number of eigenvalues of A belong-
ing to 1.

C. Local weak convergence and spectral measure

In this appendix we collect known facts on the local weak (also called Benjamini—
Schramm) convergence, and we refer the reader to [5, Appendix A] for details. We
define a distance between rooted graphs by

1
rNYy
dloc((Ga 0), (G , 0 )) - 1 n Ol’

a = sup{r > 0 : there exists a graph isomorphism ¢: Bg (0, |r|) = Bg/(0, |r])
such that ¢(0) = 0'}.

Recall that G, denotes the set of equivalence classes of connected rooted graphs
under the isomorphism relation. Then d),. turns G, into a separable complete metric
space. We may thus consider the set of probability measures on G, denoted by P (G«).
If (G,) is a sequence of finite graphs, we say that P € $(G,) is the local weak limit

of (Gn) if
1

S -
|Vn| Z [Gn;x]

xeVy

converges weakly-* to Pin P(G+) as n — +o0, where Vj, is the set of vertices of G,
and we recall that [G,,; x] denotes the equivalence class of the rooted graph (G, ; x).
The subset 2 C G, of equivalence classes [G; 0] such that G is of degree bounded
by D is compact. It follows that £ (G2) is compact in the weak-* topology. Hence,
if €2 denotes the set of finite graphs G of degree bounded by D, then any sequence
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(G ) C €P has a subsequence which converges in the local weak sense to some
P(SD). 1f (G,) satisfies (BST) and if a subsequence of (G,) has a local weak
11m1t PP, then P must be concentrated on the set of rooted trees with degree bounded
by D.
Recall the notation 67 and M[G;"] introduced respectively in (5.1) and (5.2). We
recall [36, Theorem 2.1].

Proposition C.1. Suppose a sequence (G,) € E’ﬁDn has a local weak limit P. Then
uCn converges weakly to fg*p ul@eldP ([G: o).

D. Proof of (5.10)

The proof of (5.10) is contained in the proof of [11, Lemma 27] except for the last
line. But reading the proof of [11, Lemma 27] requires one to be familiar with the
notation of [11]. To keep the present paper self-contained, we repeat here this proof,
very mildly modified to show (5.10).

In the sequel, a graph is seen as a quadruple G = (V, E.L 0), where V' and E are
countable sets (respectively the set of vertices and half-edges), o: E—Visa map,
andi: E — E is a map satisfying ?(e) =eandi(e) #eforanye € E.Thus,  defines
an equivalence classes on E e ~ f if and only if e = (( f) with two elements in each
equivalence class. An equivalence class is called an edge. The edge set is denoted
by E. We interpret o(e) as the origin vertex of the directed edge e and (e) = o(t(e))
as the end vertex of e.

Let us reformulate the defintion of n-lifts provided in Definition 5.5. For an integer
n > 1,let S, (G) be the family of permutations (o), z such that o,¢) =0, LA n-lift
of G is a graph G,, = (V,, E,, tn, On) such that

Vo=V x[n], E,=E x|n]
and, for some o € S,(G), for any (e,i) € Ey,
tnle,i) = (u(e),0(i)) and on(e.i) = (o(e),i).
Forv = (v,i) € Vy, we set
En(v) = {e € Ey : 04(€) = v} = {(e.i) : 0(¢) = v}.

We fix v € V,, and we explore its neighborhood step by step. We start with A9 =
E,(v). At stage t > 0, if A; is not empty, we pick €;41 = (e;+1,i;+1) in A; with
on(e;41) at minimal graph distance from v (we break ties with lexicographic order).
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We set 11 = tp(€r+1) = (t(er+1), e, (ir+1)). If f41 € A, then we set Ay =
Ag \ {€r+1.f,4+1}, and, otherwise,

Ars1 = (Ar U En(0n(fr41)) \ {ers1, Frar )

At stage T < n| E |, A; is empty, and we have explored the connected component of v.
Before stage

h—1
T=) DD-1""=0(D-1",
s=1
we have discovered the subgraph spanned by the vertices at distance at most 4 from v.
Also, if v has a cycle in its 4-neighborhood, then S(v) = S;A7 > 1 where

t
Si=Y & and & =1(f € A,y)

s=1

fort > 1. Atstaget > 0, forany e € E , at most ¢ values of o, have been revealed and
|Ail =D+ (D -1 —1).

Let F; be the o-algebra generated by (Ao, ..., A;) and Pg, be its conditional
probability distribution. Then, t is a stopping time. Also, if t < T AT, let B; =
{(t(et+1),i) € Ay : i € [n]} and n; <t be the number of s < ¢ such that f; or ey is of
the form (¢t(es+1),i),i € [n]. We find

Pz (141 =1) =

| B:| r
n

n—n;g
Hence, from the union bound, taking 4 = |c logn |, we obtain
D — 1)
QuAG) < B(S() = 1) = q7 = o L=,
n

which concludes the proof of (5.10).
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