
J. Spectr. Theory 16 (2026), 271–297
DOI 10.4171/JST/593

© 2026 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

A generalized winding number formula
for the Witten index of a Toeplitz operator

Masaki Izumi

Abstract. We generalize the winding number formula for the Fredholm index of a Toeplitz
operator to the Witten index. We also show trace formulae involving Toeplitz operators and
operator monotone functions.

1. Introduction

It is well known that the Toeplitz operator Tf with a continuous symbol f 2 C.T /
is a Fredholm operator if and only if f has no zeros on the unit circle T . For such
Tf , its Fredholm index ind Tf is given by �1 times the winding number of f (see,
for example, [2, Theorem 4.4.3]). For f 2 C 1.T /, this can be paraphrased as the
following formula:

indTf D �
1

2�i

2�Z
0

f 0.t/

f .t/
dt: (1.1)

A bounded operator T 2B.H/ on a Hilbert spaceH is said to be almost normal if
the self-commutator ŒT �; T � D T �T � T T � is trace class. The Witten index indW T

of such T is defined by the limit

indW T D lim
s!C1

Tr.e�sT
�T
� e�sT T

�

/;

if it exists. If moreover T is Fredholm, it is known to coincide with the Fredholm
index (see [8, Theorem 2.5]). One of the purposes of this paper is to generalize (1.1)
to the Witten index by replacing the integral on the right-hand side with the principal
value integral (see Theorem 3.2 for the precise statement). It is worth showing such
a result in view of the recent interests in the Witten index of Toeplitz operators in the
literature (see [18, 19, 24] for example, and see also [5, 6] for related results).
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In the celebrated work in 1953, Krein [16] showed that for self-adjoint operatorsA
and B with a trace class difference, there exists a unique integrable function �A;B.x/
on R, called the spectral shift function, such that the Krein formula

Tr.'.A/ � '.B// D
Z
R

'0.x/�A;B.x/dx

holds for ' in a certain class of functions. It is natural to discuss the Witten index of T
in relation to the Krein formula for the pair .T �T;T T �/ (see, for example, [6,8]). On
the other hand, it is known (see [17, p. 244]) that the spectral shift function �T �T;T T �
for an almost normal T can be computed from the Pincus principal function gT as

�T �T;T T �.x/ D
1

2�

2�Z
0

gT .
p
xei� /d�; for all x > 0:

The Toeplitz operator Tf with a sufficiently regular symbol f is almost normal
and its principal function is determined by

gTf .z/ D � ind.Tf � zI / D
1

2�i

2�Z
0

f 0.t/

f .t/ � z
dt for all z 2 C n f .T /;

thanks to the Helton–Howe thoery (see [17, p. 244] and [13, Proposition 5.2]). This
means that in principle, the Witten index of Tf should be expressed by an integral in
terms of the symbol f . Yet, we do not pursuit this strategy to accomplish our task (cf.
Remark 2.9). In fact, we do not need any general results in either the Krein theory
or the Helton–Howe theory for our purpose. Instead, we directly deduce the trace
formula

Tr.'.T �f Tf / � '.Tf T
�
f // D

1

2�i

Z
T

.'.jf .t/2j/ � '.0//
f 0.t/

f .t/
dt

(see Theorem 2.7 for the precise statement) from the Helton–Howe formula

Tr.ŒTf ; Tg �/ D
1

2�i

2�Z
0

f .t/dg.t/;

which follows from an elementary argument and does not require the Helton–Howe
theory. Since the argument in [17, p. 244] to describe the spectral shift function goes
through the Helton–Howe formula, it is more natural and efficient to deduce necessary
trace formulae directly from the Helton–Howe formula than appeal to the Krein the-
ory. One advantage of our approach is that we can treat symbols with low regularity
(see Theorem 2.11).
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In Section 2, we give a proof of the Helton–Howe formula for the Toeplitz oper-
ators under a considerably mild regularity assumption, and deduce the above men-
tioned trace formula out of it. The contents of this section may be folklore among
specialists, and our point is to present explicit formulae and also to treat symbols with
considerably low regularity (see [7, p. 209] and [9, 11] for related topics on index
formulae for non-smooth symbols).

As an application of the trace formula, we show in Section 3 the generalized wind-
ing number formula for the Witten index and discuss some examples. In particular,
we show in Example 3.4 that every real value can be realized as the Witten index of a
Toeplitz operator.

In Section 4, we extend the trace formulae shown in Section 2 to the operator
monotone functions (Theorems 4.8 and 4.11). Despite the fact that the Krein theory
does not apply to the operator monotone functions usually, we can still do it for suf-
ficiently regular symbols thanks to Peller’s famous criterion [20, Chapter 6] for the
Schatten–von Neumann class Hankel operators.

2. Preliminaries

2.1. Notation

We first fix the basic notation used in this paper. Let H , H1, and H2 be Hilbert
spaces. We denote by B.H1:H2/ (respectively K.H1; H2/) the set of bounded
(respectively compact) operators from H1 to H2. We write B.H/ D B.H;H/ and
K.H/DK.H;H/. For T 2K.H1;H2/, we denote by ¹sn.T /º1nD1 the singular value
sequence of T , that is, the eigenvalues of .T �T /1=2, counting multiplicity, in decreas-
ing order. For p > 0, we set

kT kp D
� 1X
nD1

sn.T /
p
�1=p

;

and denote by Sp.H1;H2/ the Schatten–von Neumann p-class

¹T 2 K.H1;H2/ W kT kp <1º:

Our basic references for the Schatten–von Neumann classes are [12, 23].
For a measurable function f on a measure space and 0 < p � 1, we denote

kf kLp by kf kp for simplicity.
We denote by D the unit disk ¹z 2C W jzj< 1º. We denote by dA the area measure

of C. Let T D R=2�Z, which we often identify with the unit circle @D. To define
function spaces on T , we always use the normalized Lebesgue measure dt

2�
, e.g.,

Lp.T / D Lp
�
T ; dt

2�

�
.
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2.2. The Helton–Howe formula for Toeplitz operators

While the Helton–Howe formula is customarily discussed for C1 symbols, we dis-
cuss it for symbols with least possible regularity. For this purpose, we first set up
relevant function spaces. The contents of this subsection are mostly expository.

For f 2 L1.T / and n 2 Z, we denote by Og.n/ the Fourier coefficient

Of .n/ D
1

2�

Z
T

f .t/e�intdt:

Let H 2 be the Hardy space

¹f 2 L2.T / W for all n < 0; Of .n/ D 0º:

We set H1 D H 2 \ L1.T /. Let PC be the projection from L2.T / onto H 2, called
the Riesz projection, and let P� D 1 � PC. For f 2 L1.T /, we denote by Mf 2
B.L2.T // the multiplication operatorMf hD f h for h 2 L2.T /. The Toeplitz oper-
ator Tf 2 B.H 2/ and the Hankel operator Hf 2 B.H 2; H 2?/ are defined by Tf D
PCMf PC and Hf D P�Mf PC respectively.

For s > 0, we denote by W s
2 .T / the Sobolev space

W s
2 .T / D

°
f 2 L2.T / W

X
n2Z

.1C jnj2s/j Of .n/j2 <1
±
;

and define the Sobolev norm by

kf kW s
2
D

sX
n2Z

.1C jnj2s/j Of .n/j2:

The space W 1=2
2 .T / is particularly important for us.

It is straightforward to compute the Hilbert–Schmidt norm of Hf as

kHf k
2
2 D

1X
nD0

kHf enk
2
2 D

1X
nD1

nj Of .�n/j2;

where en.t/ D eint . Thus, Hf 2 S2.H 2; H 2?/ if and only if P�f 2 W
1=2
2 .T /. We

have

kHf k
2
2 C kH Nf k

2
2 D

X
n2Z

jnjj Of .n/j2 D
1

.2�/2

Z
T2

jf .s/ � f .t/j2

jeis � eit j2
dsdt;

where the second equality can be shown by the Fourier expansion. In particular,

kf k2
W
1=2
2

D kf k22 C
1

.2�/2

Z
T2

jf .s/ � f .t/j2

jeis � eit j2
dsdt:
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For f; g 2 W 1=2
2 .T /, we have

Tfg � Tf Tg D H
�
Nf
Hg 2 S1.H

2/;

and
kŒTf ; Tg �k1 � kf kW 1=2

2

kgk
W
1=2
2

:

Indeed,

kŒTf ; Tg �k1 D k �H
�
Nf
Hg CH

�
NgHf k1

� kH Nf k2kHgk2 C kH Ngk2kHf k2

�

q
.kHf k

2
2 C kH Nf k

2
2/.kHgk

2
2 C kH Ngk

2
2/

� kf k
W
1=2
2

kgk
W
1=2
2

:

For f; g 2 W 1=2
2 .T /, we define a skew-symmetric form ! by

!.f; g/ D
X
n2Z

n Of .�n/ Og.n/;

which satisfies j!.f; g/j � kf k
W
1=2
2

kgk
W
1=2
2

. Then the Helton–Howe formula takes
the following form:

Tr.ŒTf ; Tg �/ D !.f; g/:

Indeed, the formula can be directly verified for trigonometric polynomials, and it
extends to W 1=2

2 .T / by continuity.
Let W 1

1 .T / be the set of absolutely continuous functions on T . Throughout the
paper, we mainly work on the Toeplitz operators with symbols inW 1=2

2 .T /\W 1
1 .T /

and sometimes in W
1=2
2 .T / \ L1.T / or W 1=2

2 .T / \ H1. For the former, the
Helton–Howe formula takes the following form.

Lemma 2.1. For f; g 2 W 1=2
2 .T / \W 1

1 .T /, we have

Tr.ŒTf ; Tg �/ D
1

2�i

Z
T

f .t/g0.t/dt D
�1

2�i

Z
T

f 0.t/g.t/dt: (2.1)

Proof. Let Fn.t/ be the Fejér kernel. Since g0 2 L1.T /, the sequence ¹Fn � g0ºn
converges to g0 in L1.T /, and

1

2�i

Z
T

f .t/g0.t/dt D lim
n!1

1

2�i

Z
T

f .t/.Fn � g
0/.t/dt;
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as f 2 L1.T /. Since g is absolutely continuous, we have Og0.n/ D in Og.n/, and

1

2�i

Z
T

f .t/g0.t/dt D lim
n!1

nX
kD�n

Of .�k/
�
1 �
jkj

n

�
k Og.k/ D !.f; g/:

Example 2.2. Note that we have the inclusion relations

C 1.T / � W 1
2 .T / � W

1=2
2 .T / \W 1

1 .T /:

The family of functions f˛.t/ D .eit C 1/˛ , ˛ > 0, illustrates the hierarchy of these
functions spaces well. Note that jf 0˛.t/j D ˛

ˇ̌
2 sin t��

2

ˇ̌˛�1 is integrable if and only
if ˛ > 0, and is square integrable if and only if ˛ > 1=2. We have f˛ 2 W

1=2
2 .T / \

W 1
1 .T / for all ˛ > 0 (see Example 4.3). We have f˛ 2W 1

2 .T / if and only if ˛ > 1=2,
and f 2 C 1.T / if and only if ˛ � 1.

As (2.1) does not make sense for symbols in W 1=2
2 .T / \ L1.T /, we use har-

monic extension to get an integral expression. For f 2W 1=2
2 .T /\L1.T /, we denote

by Qf the harmonic extension of f to D, that is, Qf .reit / D Pr � f .t/, where Pr is
the Poisson kernel. For later use, we present a more general trace formula than the
Helton–Howe formula, which is of interest in its own right.

Lemma 2.3. Let f; g 2 W 1=2
2 .T / \ L1.T /, and let h 2 L1.T /. Then we have

Tr.ThŒTf ; Tg �/ D
1

2�i

Z
D

Qhd Qf ^ d Qg:

Proof. Note that we have

jTr.ThŒTf ; Tg �/j � kThkkŒTf ; Tg �k1 � khk1kf kW 1=2
2

kgk
W
1=2
2

:

For z 2 D, we set

FC.z/ D

1X
nD0

Of .n/zn; F�.z/ D

1X
nD1

Of .�n/zn:

GC.z/ D

1X
nD0

Og.n/zn; G�.z/ D

1X
nD1

Og.�n/zn:

Then Qf .z/ D FC.z/C F�.z/, Qg.z/ D GC.z/CG�.z/, and

d Qf ^ d Qg D dFC ^ dG� C dF� ^ dG� D .F
0
CG
0
� � F

0
�G
0
C/dz ^ d Nz:
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Note that we have

1

�

Z
D

jF 0C.z/j
2dA.z/ D

1X
nD0

jnjj Of .n/j2 <1;

and a similar statement holds for F�, GC, and G�. Thus, we getˇ̌̌̌
1

2�i

Z
D

Qhd Qf ^ d Qg

ˇ̌̌̌
D

ˇ̌̌̌
1

�

Z
D

Qh.z/.F 0�.z/G
0
C.z/ � F

0
C.z/G

0
�.z//dA.z/

ˇ̌̌̌
� khk1kf kW 1=2

2

kgk
W
1=2
2

:

The above two estimates show that it suffices to prove the statement for trigono-
metric polynomials f and g, and furthermore it suffices to show

Tr.ThŒTe�m ; Ten �/ D
mn

�

Z
D

Qh.z/zn�1 Nzm�1dA.z/;

for m; n > 0. The left-hand side is

n�1X
jDmax¹0;m�nº

hhejCn�m; ej i D min¹m; nº Oh.m � n/:

The right-hand side is

mn

�

1Z
0

2�Z
0

Qh.rei� /rmCn�1ei.n�m/�d�dr D 2mn Oh.m � n/

1Z
0

r jn�mjCmCn�1dr

D
mn

max¹m; nº
Oh.m � n/;

which finishes the proof.

Remark 2.4. When f and g have sufficient regularity (and h D 1), the two forms
of the Helton–Howe formula above are, of course, directly connected by the Stokes
theorem as suggested in [13].

The space W 1=2
2 .T /\L1.T / is known as the Krein algebra (see [15, Chapter I,

Section 8.11]). As our argument heavily relies on the fact that it is an algebra, we
include an elementary proof of it here.

Lemma 2.5. For f; g 2 W 1=2
2 .T / \ L1.T /, we have

kfgk2
W
1=2
2

� 2kf k2
W
1=2
2

kgk21 C 2kf k
2
1kgk

2

W
1=2
2

:

In particular, the spaces W 1=2
2 .T / \ L1.T / and W 1=2

2 .T / \W 1
1 .T / are algebras.
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Proof. Let f; g 2 W 1=2
2 .T / \ L1.T /. Since

jf .s/g.s/ � f .t/g.t/j � jf .s/ � f .t/jkgk1 C kf k1jg.s/ � g.t/j;

we have

kfgk2
W
1=2
2

D kfgk22 C
1

.2�/2

Z
T2

jf .s/g.s/ � f .t/g.t/j2

jeis � eit j2
dsdt

� kf k22kgk
2
1 C

1

.2�/2

Z
T2

2jf .s/ � f .t/j2kgk21 C 2kf k
2
1jg.s/ � g.t/j

2

jeis � eit j2
dsdt

D kf k22kgk
2
1 C 2

X
n2Z

jnjj Of .n/j2kgk21 C 2kf k
2
1

X
n2Z

jnjj Og.n/j2

� 2kf k2
W
1=2
2

kgk21 C 2kf k
2
1kgk

2

W
1=2
2

:

Since W 1
1 .T / and W 1=2

2 .T / \ L1.T / are algebras, so is W 1=2
2 .T / \W 1

1 .T /.

2.3. Trace formulae for Tr.'.T �
f

Tf / � '.Tf T �
f

//

Although we do not use any general results in the Krein theory of spectral shift func-
tions in this paper, it is convenient for us to use its setup. For the Krein theory, the
reader is referred to [22, Chapter 9].

We denote by W1.R/ the set of functions f 2 C 1.R/ such that f 0 is the Fourier
transform of a (finite) complex Borel measure on R. Let A and B be self-adjoint
operators acting on a Hilbert space H . For simplicity, we assume that A and B are
bounded. IfA�B 2S1.H/, the Krein theory shows that there exists a unique function
�A;B 2 L

1.R/, called the spectral shift function, such that

'.A/ � '.B/ 2 S1.H/; (2.2)

for all ' 2 W1.R/, and the following Krein formula holds:

Tr.'.A/ � '.B// D
Z
R

'0.x/�A;B.x/dx: (2.3)

For a finite closed interval Œa; b�, we denote by W1Œa; b� the set of f 2 C 1Œa; b�
that extends to a function in W1.R/. Note that if f 2 C 1Œa; b� and f 0 extends to a
periodic function with an absolutely convergent Fourier series, then f 2W1Œa; b�. In
particular, if f 0 satisfies either of the following conditions,
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(1) f 0 is absolutely continuous and f 00 2 L2Œa; b�, i.e., f 2 W 2
2 Œa; b�,

(2) f 0 is ˛-Hölder continuous with some exponent ˛ > 1=2,

(3) f 0 is of bounded variation and ˛-Hölder continuous with some exponent
˛ > 0,

then f 2 W1Œa; b� (see [15, Chapter I, Section 6]). For example, the function xq

belongs to W1Œ0; a� if and only if q � 1.
It is known that (2.2) and (2.3) hold for a broader class of functions than W1.R/

(see [4, Section 4.2]), but the function space W1.R/ is enough for our purpose.
Let f 2W 1=2

2 .T /\W 1
1 .T /. Then since Tf is almost normal, the Krein theory is

applicable to the pair .T �
f
Tf ; Tf T

�
f
/. Our task now is to give an integral expression

in terms of f and ' of the trace Tr.'.T �
f
Tf / � '.Tf T

�
f
// without using the Krein

theory.

Lemma 2.6. Let f 2 W 1=2
2 .T / \ W 1

1 .T /, and let ' be a holomorphic function
defined on ¹z 2 C W jzj < rº with kf k21 < r . Then we have '.T �

f
Tf / � '.Tf T

�
f
/ 2

S1.H
2/, and

Tr.'.T �f Tf / � '.Tf T
�
f // D

1

2�i

Z
T

ˆ.jf .t/2j/f .t/f 0.t/dt;

where

ˆ.x/ D

8<:
'.x/ � '.0/

x
; x ¤ 0;

'0.0/; x D 0:

Proof. With an D '.n/.0/=n!, we have

'.T �f Tf / � '.Tf T
�
f / D

1X
nD0

an..T
�
f Tf /

n
� .Tf T

�
f /

n/;

where the convergence is in the operator norm. We first claim that it actually converges
in the trace norm too. Indeed, since

.T �f Tf /
n
� .Tf T

�
f /

n
D Œ.T �f Tf /

n�1T �f ; Tf �;

we get

k.T �f Tf /
n
� .Tf Tf /

n
k1 � nkŒT

�
f ; Tf �k1kTf k

2n�2
� nkf k2

W
1=2
2

kf k2n�21 ;

which shows the claim as the radius of convergence of the Taylor series for ' is strictly
larger than kf k21. Thus, '.T �

f
Tf / � '.Tf T

�
f
/ 2 S1.H

2/.
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Since .T �
f
Tf /

n�1T �
f
� T
jf jn�1 Nf 2 S1.H

2/, the Helton–Howe formula implies

Tr.Œ.T �f Tf /
n�1T �f ; Tf �/ D Tr.ŒT

jf j2.n�1/ Nf ; Tf �/ D
1

2�i

Z
T

jf .t/j2.n�1/f .t/f 0.t/dt;

and so

Tr.'.T �f Tf / � '.Tf T
�
f // D

1

2�i

1X
nD1

an

Z
T

jf .t/j2.n�1/f .t/f 0.t/dt:

Since
1X
nD1

anjf .t/j
2n�2

D ˆ.jf .t/j2/

converges uniformly on T , we get the statement.

In what follows, for simplicity, we often write

ˆ.jf .t/j2/f .t/f 0.t/ D .'.jf .t/j2/ � '.0//
f 0.t/

f .t/
;

with convention that the right-hand side is 0 whenever f .t/ D 0.

Theorem 2.7. Let f 2 W 1=2
2 .T / \W 1

1 .T /. Then the following holds for every ' 2
W1Œ0; kf k

2
1�:

Tr.'.T �f Tf / � '.Tf T
�
f // D

1

2�i

Z
T

.'.jf .t/2j/ � '.0//
f 0.t/

f .t/
dt: (2.4)

Proof. From the definition of W1Œ0; kf k1�, there exists a complex measure � on R

such that

'.x/ D '.0/C

Z
R

eixy � 1

iy
d�.y/;

and
'.T �f Tf / � '.Tf T

�
f / D

Z
R

1

iy
.e
iyT �

f
Tf � e

iyTf T
�
f /d�.y/:

Note that the right-hand side converges in the trace norm (see [22, Lemma 9.26]).
Thus,

Tr.'.T �f Tf / � '.Tf T
�
f // D

Z
R

1

iy
Tr.eiyT

�
f
Tf � e

iyTf T
�
f /d�.y/:

Now, the statement follows from the previous lemma and the Fubini theorem.
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Corollary 2.8. Let f 2 W 1=2
2 .T / \W 1

1 .T /. Then the following holds for every ' 2
W1Œ0; kf k

2
1�:

Tr.'.T �f Tf / � '.Tf T
�
f // D

1

2�i

Z
D

'0.j Qf j2/d
NQf ^ d Qf: (2.5)

Proof. If f is smooth, the statement follows from the previous theorem together with
the Stokes theorem. For general f and 0 < r < 1, let fr.t/ D Qf .reit /. Since f is
absolutely continuous, we have .fr/0 D .f 0/r , and

lim
r!1�0

k.fr/
0
� f 0k1 D 0; lim

r!1�0
kfr � f k1 D 0:

Thus,

T r.'.T �f Tf / � '.Tf T
�
f // D lim

r!1�0

1

2�i

Z
T

ˆ.jfr.t/j
2/fr.t/.fr/

0.t/dt

D lim
r!1�0

1

2�i

Z
D

'0.jefr j2/d Nefr ^ d efr
D lim
r!1�0

1

2�i

Z
jzj�r

'0.j Qf j2/d
NQf ^ d Qf:

Since '0.j Qf .z/j2/ is bounded and the form d
NQf ^ d Qf is integrable on D, we get the

statement.

Remark 2.9. We can describe the spectral shift function �f ´ �T �
f
Tf ;Tf T

�
f

for f 2

W
1=2
2 .T / \W 1

1 .T / as

�f .x/ D
1

2�i

Z
T

1.0;jf .t/j2�.x/
f 0.t/

f .t/
dt; (2.6)

where 1X is the indicator function of X � R. This can be shown by comparing the
Fourier transform of the right-hand side with Lemma 2.6. Alternatively, the method
explained in the introduction shows

�f .x/ D
1

2�

Z
T

1

2�i

Z
T

f 0.t/

f .t/ �
p
xei�

dtd�:

If the Fubini theorem is applicable to this iterated integral, we get the same formula.

Now, we relax the regularity of the symbol f while imposing analyticity. We say
that a symbol f 2 W 1=2

2 .T / \ L1.T / is analytic if f 2 H1. For analytic f , we
have ŒT �

f
; Tf � D H

�
Nf
H Nf � 0.



M. Izumi 282

Lemma 2.10. Let f 2 W 1=2
2 .T / \H1, and let F.z/ D Qf .z/ be the holomorphic

extension of f to D. Let ' be a holomorphic function defined on ¹z 2 C W jzj < rº

with kf k21 < r . Then we have

Tr.'.T �f Tf / � '.Tf T
�
f // D

1

�

Z
D

'0.jF.z/j2/jF 0.z/j2dA.z/:

Proof. We use the notation in the proof of Lemma 2.6. Lemma 2.3 implies

Tr.ŒT
jf j2n�2 Nf ; Tf �/ D Tr.ŒT Nf nf n�1 ; Tf �/ D Tr.ŒT Nf n ; Tf �Tf n�1/

D
1

2�i

Z
D

F n�1dF n ^ dF D
1

�

Z
D

njF.z/2jn�1jF 0.z/j2dA.z/;

and

Tr.'.T �f Tf / � '.Tf T
�
f // D

1

�

1X
nD1

an

Z
D

njF.z/2jn�1jF 0.z/j2dA.z/

D
1

�

Z
D

'0.jF.z/j2/jF 0.z/j2dA.z/:

The above lemma together an argument similar to the one used in the proof of
Theorem 2.7 implies the following theorem.

Theorem 2.11. Let f 2 W 1=2
2 .T / \ H1, and let F.z/ D Qf .z/ be the holomor-

phic extension of f to D. Then for every ' 2 W1Œ0; kf k
2
1�, we have '.T �

f
Tf / �

'.Tf T
�
f
/ 2 S1.H

2/ and

Tr.'.T �f Tf / � '.Tf T
�
f // D

1

�

Z
D

'0.jF.z/j2/jF 0.z/j2dA.z/: (2.7)

Remark 2.12. Equation (2.7) gives a geometric interpretation of the spectral shift
function �f for analytic f . Note that jF 0.z/j2 is the Jacobian of the map F WD ! C.
The Sard theorem shows that the critical values

C.F / D F.¹z 2 D W F 0.z/ D 0º/;

has Lebesgue measure 0. We define the multiplicity function m.w/ D #F �1.w/ for
w 2 F.D/ n C.F /. Then (2.7) shows

kf k21Z
0

'0.x/�f .x/dx D
1

�

Z
F.D/

'0.jwj2/m.w/dA.w/:
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As '0 can be any function in C 1Œ0; kf k21�, this means that �f is the density func-
tion, with respect to the Lebesgue measure on Œ0; kf k21�, of the variable jwj2 whose
distribution is given by the measure

m.w/dA.w/

�

on F.D/.

Remark 2.13. It is shown in [25, Theorem 1.2] that the Helton–Howe formula holds
for Toeplitz operators T .t/

f
on the weighted Bergman spaces L2a;t .D/ with symbols in

C 2.xD/. The condition T .t/
fg
�T

.t/

f
T
.t/
g 2S1.L

2
a;t .D// holds too ([25, Theorem 6.3 (1)]

and [26, Theorem 8.36]). As the Helton–Howe formula itself remains the same,

Tr.ŒT .t/
f
; T .t/g �/ D

1

2�i

Z
D

df ^ dg D
1

2�i

Z
@D

fdg;

formulae (2.4)–(2.7) still hold in the case of the weighted Bergman spaces too.

3. The Witten index formula

Assume that f 2C 1.T / has no zeros. Since T1=f is the inverse of Tf modulo S1.H 2/,
the Fredholm index of Tf is given by Tr.ŒTf ; T1=f �/, and the Helton–Howe formula
shows

indTf D Tr.ŒTf ; T1=f �/ D
�1

2�i

Z
T

f 0.t/

f .t/
dt:

The purpose of this section is to generalize this formula to the Witten index as an
application of Lemma 2.6.

Lemma 3.1. Let a > 0, and let f be an absolutely continuous function on Œ�a; a�
having the only zero at x D 0. We assume the following.

(1) f 0.x/ exists for every x 2 Œ�a; a� n ¹0º.

(2) There exists g 2 C 1Œ�a; a� satisfying

f 0.x/

f .x/
D
g.x/

x
for all x 2 Œ�a; a� n ¹0º:

(3) There exist ˇ > 0 and h 2 C 1Œ�a; a� such that jf .x/j2 D jxjˇh.x/ and
h.x/ > 0 for all x 2 Œ�a; a�.
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Then for every " 2 .0; a�, the limit

lim
s!C1

"Z
�"

.1 � e�sjf .x/j
2

/
f 0.x/

f .x/
dx

exists and it is the order of O."/ as " tends toC0.

Proof. We have

"Z
�"

.1 � e�sjf .x/j
2

/
f 0.x/

f .x/
dx

D g.0/

"Z
�"

.1 � e�sjxj
ˇh.x//

1

x
dx C

"Z
�"

.1 � e�sjxj
ˇh.x//

g.x/ � g.0/

x
dx:

For the first term, we have

"Z
�"

.1 � e�sjxj
ˇh.x//

1

x
dx D

"Z
0

.e�sx
ˇh.�x/

� e�sx
ˇh.x//

1

x
dx

D �

"Z
0

1Z
�1

@

@r
e�x

ˇh.rx/dr
1

x
dx

D s

"Z
0

1Z
�1

xˇh0.rx/e�sx
ˇh.rx/drdx

D s�1=ˇ
"s1=ˇZ
0

1Z
�1

yˇh0.rs�1=ˇy/e�y
ˇh.rs�1=ˇy/drdy:

Let M D kh0k1 and m D min¹h.x/ W x 2 Œa;�a�º. Then,ˇ̌̌̌ "Z
�"

.1 � e�sjxj
ˇh.x//

1

x
dx

ˇ̌̌̌
� s�1=ˇ2M

1Z
0

yˇe�my
ˇ

dy:

Thus,

lim
s!C1

"Z
�"

.1 � e�sjf .x/j
2

/
f 0.x/

f .x/
dx D

"Z
�"

g.x/ � g.0/

x
dx D O."/

as "!C0.
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Now, we show a generalized winding number formula for the Witten index of a
Toeplitz operator.

Theorem 3.2. Let f 2W 1=2
2 .T /\W 1

1 .T /, and assume that f has only finitely many
zeros t1; t2; : : : ; tm. We further assume that there exists ı > 0 satisfying the following
for each 1 � j � m.

(1) f 0.t/ exists for every t 2 Œtj � ı; tj C ı� n ¹tj º.

(2) There exists gj 2 C 1Œtj � ı; tj C ı� satisfying

f 0.t/

f .t/
D
gj .t/

t � tj
for all t 2 Œtj � ı; tj C ı� n ¹tj º:

(3) There exist ǰ > 0 and hj 2 C 1Œtj � ı; tj C ı� such that

jf .t/j2 D jt � tj j ǰ hj .t/;

and hj .t/ > 0 for all t 2 Œtj � ı; tj C ı�.

Then the Witten index for Tf exists and it is given by the following principal value
integral:

indW Tf D
�1

2�i
p:v:

Z
T

f 0.t/

f .t/
dt:

Proof. Lemma 2.6 implies

Tr.e�sT
�
f
Tf � e

�sTf T
�
f / D

�1

2�i

Z
T

.1 � e�sjf .t/j
2

/
f 0.t/

f .t/
dt:

For 0 < " � ı, we set

I" D

m[
jD1

.tj � "; tj C "/:

Then since f 0.t/=f .t/ is integrable on T n I", the Lebesgue theorem implies

lim
s!C1

Z
TnI"

.1 � e�sjf .t/j
2

/
f 0.t/

f .t/
dt D

Z
TnI"

f 0.t/

f .t/
dt:

The above lemma implies that the following double limit exists:

lim
"!C0

lim
s!C1

Z
I"

.1 � e�sjf .t/j
2

/
f 0.t/

f .t/
dt D 0:

Thus, we get

lim
s!C1

Z
T

.1 � e�sjf .t/j
2

/
f 0.t/

f .t/
dt D lim

"!C0

Z
TnI"

f 0.t/

f .t/
dt D p:v:

Z
T

f 0.t/

f .t/
dt:
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Example 3.3. LetQ.z/ be a rational function without poles on the unit circle, and let
f .t/ D Q.eit /. We can express Q.z/ as

Q.z/ D c

QN
kD1.z � ak/

nkQM
jD1.z � bj /

mj
:

Then we have

indW Tf D
1

2�i
p:v:

Z
jzjD1

� MX
jD1

mj

z � bj
�

NX
kD1

nk

z � ak

�
dz

D

X
jbj j<1

mj �
X
jak j<1

nk �
1

2

X
jak jD1

nk :

This is the reason why a half-integer appears as indW Tf in [19].

Example 3.4. Let f .t/ D eint .1C eit /˛ with ˛ > 0 and n 2 Z. Then

indW Tf D
�1

2�i
p:v:

Z
jzjD1

�n
z
C

˛

z C 1

�
dz D �n �

˛

2
:

This shows that the Witten index can take any real numbers.

Problem 3.5. Is it possible to realize a value other than the half-integers as indW Tf
with f 2 C1.T /?

4. Extension of the trace formulae to operator monotone functions

Let f 2W 1=2
2 .T /\W 1

1 .T /. As the function xp=2 belongs to W1Œ0;kf k
2
1� for p� 2,

Theorem 2.7 implies
jTf j

p
� jT �f j

p
2 S1.H

2/; (4.1)

Tr.jTf jp � jT �f j
p/ D

1

2�i

Z
T

jf .t/jp
f 0.t/

f .t/
dt; (4.2)

for p � 2. Although the Krein theory does not apply to the case of 0 < p < 2, we
still have a chance to get the same result if the symbol f has better regularity. In fact,
if the Hankel operators Hf and H Nf belong to Sp.H 2; H 2?/, we will see that (4.1)
holds, and so does (4.2) as far as the right-hand side makes sense. Moreover, when the
symbol f is analytic, we will show a much stronger result due to the hyponormality
of Tf , i.e., T �

f
Tf � Tf T

�
f
� 0.

We first recall Peller’s famous criterion for the Hankel operators to belong to
Sp.H

2; H 2?/ (see [20, Chapter 6], [26, Theorem 10.21] for the proof). Note that
Hf D HP�f , and P�f is analytic.
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Theorem 4.1. Let 0 < p, and let f be an analytic symbol. ThenH Nf 2 Sp.H
2;H 2?/

if and only if f belongs to the Besov space B1=pp .T /.

The reader is referred to [20, Appendix 2] and [21] for the basic properties of the
Besov spaces. The space B1=pp .T / is closed under the Riesz projection PC for every
p > 0. It is known that we have B1=22 .T /DW 1=2

2 .T / and B11 .T / �W
1
1 .T / (see, for

example, [10, Section 1,(P9)]). As we have B11 .T / � B
1=2
2 .T / (corresponding to the

inclusion S1.H 2;H 2?/ � S2.H
2;H 2?/ through Peller’s theorem), every symbol in

B11 .T / belongs to our working space W 1=2
2 .T / \W 1

1 .T /.
We denote by Bp the set of holomorphic functions on D whose boundary value

functions belong to B1=pp .T /, and call it the analytic Besov space. By slightly abusing
notation, we write f 2 Bp if Qf 2 Bp . Since Peller’s theorem only requires Bp , we
recall the following useful criterion forBp instead of giving the definition ofB1=pp .T /

(see [21, Section 2.1], and for the equivalence of (2) and (3), see [26, Theorem 4.28
and Lemma 5.16], which is adopted as the definition of Bp in Zhu’s book).

Lemma 4.2. For a holomorphic function F.z/ on D and p > 0, the following condi-
tions are equivalent:

(1) F 2 Bp;

(2) there exists n 2 N satisfying pn > 1 andZ
D

j.1 � jzj2/nF .n/.z/jp
1

.1 � jzj2/2
dA.z/ <1I

(3) for every n 2 N satisfying pn > 1,Z
D

j.1 � jzj2/nF .n/.z/jp
1

.1 � jzj2/2
dA.z/ <1:

In particular, a holomorphic function F on D belongs to B1 if and only ifZ
D

jF 00.z/jdA.z/ <1;

and it belongs to B2 if and only ifZ
D

jF 0.z/j2dA.z/ <1:

Example 4.3. Let ˛ > 0 and let  .z/ D z
log.1Cz/ . Note that  has no zero in D, and

extends to a continuous function on xD with the only zero at z D �1. Thus, log .z/
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is well defined as a continuous function on xD n ¹�1º, where we take the branch sat-
isfying log .1/ > 0. As limz!�1 log .z/ D �1, we can choose sufficiently large
C > 0 so that 1

C�log .z/ continuously extends to xD. We fix such C . Direct computa-
tion using Lemma 4.2 shows:

(1) .1C z/˛ belongs to Bp for all p > 0;

(2)  .z/˛ belongs to Bp if and only if p > 1
1C˛

;

(3) 1
C�log .z/ belongs to Bp if and only if p � 1.

For instance, in (2) the leading term of d
n ˛

dzn
near z D �1 behaves like

1

.1C z/n log˛C1.1C z/
;

and we should figure out when the integralZ
jzj<1

jzC1j<1=2

ˇ̌̌ .1 � jzj2/n

.1C z/n log˛C1.1C z/

ˇ̌̌p dA.z/

.1 � jzj2/2

converges for sufficiently large n. By the change of variables z D �1 C rei� , this
integral can be expressed as

�=2Z
��=2

min¹2 cos �;1=2ºZ
0

.2 cos � � r/np�2

r j log r C i� j.˛C1/p
drd�;

which shows (2). (1) and (3) follow from similar calculations.

We fix p > 0 for now and set q D p=2 to avoid possible confusion. Since the
function xp=2 D xq in the region 0 < p < 2 is operator monotone, we can make use
of the sophisticated theory of operator monotone functions on Œ0;1/ to extend (4.1)
and (4.2). Recall that a function 'W Œ0;1/! R is said to be operator monotone if
A�B � 0 implies '.A/� '.B/ for any positive operatorsA;B 2B.H/ on a Hilbert
space H . For � > 0, we set '�.x/ D x

�Cx
, which is a typical example of operator

monotone functions. It is well known (see for example [3, V53]) that for an operator
monotone function ' on Œ0;1/, there exist a unique constant a' � 0 and a positive
Borel measure �' on Œ0;1/ satisfying

1Z
0

�

1C �
d�'.�/ <1;
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such that

'.x/ D '.0/C a'x C

1Z
0

'�.x/�d�'.�/:

For '.x/ D xq , we have a' D 0, and �'.d�/ D sinq�
�
�q�2d�.

IfA�B is a compact operator, we can see that '.A/� '.B/ is a compact operator
too. Indeed, the integral expression shows

'.A/ � '.B/ D a'.A � B/C

1Z
0

.'�.A/ � '�.B//�d�'.�/;

where the convergence is, a priori, in the strong operator topology. As the integral is
equal to

lim
n!1

nZ
1
n

� 1

�C B
�

1

�C A

�
�2d�'.�/ D lim

n!1

nZ
1
n

1

�C B
.A � B/

1

�C A
�2d�'.�/;

the convergence is in the norm topology, and we see that '.A/ � '.B/ is a compact
operator.

If moreover A � B 2 S1.H/, the map

.0;1/ 3 � 7!
1

�C B
�

1

�C A
D

1

�C B
.A � B/

1

�C A

is continuous in the trace norm. Note that if moreover A � B , the quantity

Tr.'.A/ � '.B// 2 Œ0;1�

makes sense regardless of whether '.A/ � '.B/ belongs to S1.H/ or not. Thus, the
lower semicontinuity of the trace implies

Tr.'.A/ � '.B// D a' Tr.A � B/C

1Z
0

Tr
� 1

�C B
�

1

�C A

�
�2d�'.�/: (4.3)

We recall a majorization result involving an operator monotone function due to
Ando [1] and Kosaki [14, Appendix].

Theorem 4.4. Let A; B 2 B.H/ be positive operators on a Hilbert space H , and
assume that A � B is a positive compact operator. Let ' be an operator mono-
tone function on Œ0;1/ satisfying '.0/ D 0. Then for every n 2 N, the majorization
inequality

nX
jD1

sk.'.A/ � '.B// �

nX
kD1

sk.'.A � B//:
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holds. In particular, if '.A � B/ belongs to S1.H/, so does '.A/ � '.B/, and

Tr.'.A/ � '.B// � Tr.'.A � B//:

As we use only the following special case, we state it separately and give an
elementary proof.

Corollary 4.5. Let 0 < q < 1, and let A;B 2 B.H/ be positive operators. We further
assume A � B and A � B 2 Sq.H/. Then Aq � Bq 2 S1.H/ and

Tr.Aq � Bq/ � Tr..A � B/q/:

Proof. Let D D A � B . Thanks to (4.3), it suffices to show

sin.q�/
�

1Z
0

Tr
� 1

�C B
�

1

�C B CD

�
�qd� � Tr.Dq/:

The resolvent identity shows

1

�C B
�

1

�C B CD
D .�C B/�1D.�C B CD/�1

D .�C B/�1D.1C .�C B/�1D/�1.�C B/�1

D .�C B/�1D1=2.1CD1=2.�C B/�1D1=2/�1D1=2.�C B/�1;

and

Tr
� 1

�C B
�

1

�C B CD

�
D Tr..�C B/�1D1=2.1CD1=2.�C B/�1D1=2/�1D1=2.�C B/�1/

D Tr..1CD1=2.�C B/�1D1=2/�1D1=2.�C B/�2D1=2/

D �
d

d�
Tr.log.1CD1=2.�C B/�1D1=2//;

where we used [22, Lemma 9.16]. Thus, letting

h.�/ D Tr.log.1CD1=2.�C B/�1D1=2//;

we get

sin.q�/
�

1Z
0

Tr
� 1

�C B
�

1

�C B CD

�
�qd� D �

sin.q�/
�

1Z
0

h0.�/�qd�:
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We claim that integration by part implies

�
sin.q�/
�

1Z
0

h0.�/�qd� D
q sin.q�/

�

1Z
0

h.�/�q�1dq:

To verify the claim, it suffices to show the convergence of the right-hand side, and

lim
�!C0

h.�/�q D 0;

as we have h.�/DO
�
1
�

�
for large �. In fact, since h.�/ is non-negative and monotone

decreasing, the latter follows from the former. Since

0 � h.�/ � Tr
�

log
�
1C

1

�
D
��
D

1X
nD1

log
�
1C

sn.D/

�

�
;

and

1X
nD1

1Z
0

log
�
1C

sn.D/

�

�
�q�1d� D

1X
nD1

sn.D/
q

1Z
0

log
�
1C

1

t

�
tq�1dt;

we get

q sin.q�/
�

1Z
0

h.�/�q�1dq � Tr.Dq/
q sin.q�/

�

1Z
0

log
�
1C

1

t

�
tq�1dt <1;

and the claim is shown.
Integration by part again implies

q sin.q�/
�

1Z
0

log
�
1C

1

t

�
tq�1dt D

sin.q�/
�

1Z
0

tq�1

1C t
dt D 1;

and the proof is finished.

Remark 4.6. The function h.�/ in the above proof is nothing butZ
R

�A;B.x/

�C x
dx:

Lemma 4.7. Let 0 < q < 1, and let A; B 2 B.H/ be positive operators satisfying
A � B 2 Sq.H/. Then Aq � Bq 2 S1.H/ and

Tr.Aq � Bq/ D
sin.q�/
�

1Z
0

Tr
� 1

�C B
�

1

�C A

�
�qd�;

where the integral in the right-hand side converges absolutely.
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Proof. Let D D A � B , and let DC and D� be the positive part and negative part of
D respectively. ThenDC;D� 2 Sq.H/, andACD�DB CDC. Now, the statement
follows from Corollary 4.5 and

Aq � Bq D .B CDC/
q
� Bq � ..ACD�/

q
� Aq/:

Theorem 4.8. Let f 2 W 1=2
2 .T / \ W 1

1 .T /, and let 0 < p < 2. If f 2 B1=pp .T /,
then (4.1) holds. If moreover,Z

T

jf .t/jp�1jf 0.t/jdt <1;

with convention that the integrand is 0 whenever f .t/ D 0, then (4.2) holds.

Proof. Let A D T �
f
Tf , B D Tf T �f , and q D 1

2
p. Then

A � B D �H�f Hf CH
�
Nf
H Nf 2 Sq.H

2/

thanks to the Peller theorem. Thus, we get Aq � Bq 2 Sq.H 2/, and

Tr.Aq � Bq/ D
sin.q�/
�

1Z
0

Tr
� 1

�C B
�

1

�C A

�
�qd�:

Theorem 2.7 implies

Tr.Aq � Bq/ D
sin.q�/
�

1Z
0

1

2�i

Z
T

� 1
�
�

1

�C jf .t/2j

�f 0.t/
f .t/

dt�qd�

D
sin.q�/
�

1

2�i

1Z
0

Z
T

'�.jf .t/j
2/�q�1

f 0.t/

f .t/
dtd�:

Now, the second statement follows from the Fubini theorem.

Corollary 4.9. Equation (4.1) holds for every f 2 C1.T / and every p > 0. If more-
over, Z

T

jf .t/jp�1jf 0.t/jdt <1;

with convention that the integrand is 0 whenever f .t/ D 0, equation (4.2) holds.

Proof. The statement follows from

C1.T / �
\
p>0

B1=pp .T /:
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Corollary 4.10. Assume f 2 B1=pp .T / for all p > 0. Then under the assumption of
Theorem 3.2, the following limit exists:

lim
p!C0

Tr.jTf jp � jT �f j
p/ D � indW Tf :

Proof. In a similar way as in the proof of Theorem 3.2, we can show

lim
p!C0

Tr.jTf jp � jT �f j
p/ D lim

p!C0

1

2�i

Z
T

jf .t/jp
f 0.t/

f .t/
dt D

1

2�i
p:v:

Z
T

f 0.t/

f .t/
dt;

and the statement follows from Theorem 3.2.

Recall that if a symbol f is analytic, we have T �
f
Tf � Tf T

�
f
D H�

Nf
H Nf � 0.

Theorem 4.11. Let f 2 B2 \H1, and let F.z/ D Qf .z/ be the holomorphic exten-
sion of f to D. Then for every operator monotone function ' on Œ0;1/, we have

Tr.'.T �f Tf / � '.Tf T
�
f // D

1

�

Z
D

'0.jF.z/j2/jF 0.z/j2dA.z/:

In particular, for every p > 0,

Tr.jTf jp � jT �f j
p/ D

p

2�

Z
D

jF.z/jp�2jF 0.z/j2dA.z/

D lim
r!1�0

1

2�i

Z
jzjDr

jF.z/jp
dF.z/

F.z/
: (4.4)

Proof. From (4.3), we have

Tr.'.T �f Tf / � '.T
�
f Tf //

D a' Tr.ŒT �f ; Tf �/C

1Z
0

Tr
� 1

�C Tf T
�
f

�
1

�C T �
f
Tf

�
�2d�'.�/;

and Theorem 2.7 implies that it is equal to

1

�

Z
D

a' jF
0.z/j2dA.z/C

1Z
0

1

�

Z
D

1

.�C jF.z/j2/2
jF 0.z/j2dA.z/�2d�'.�/:

Since

'0.x/ D a' C

1Z
0

1

.�C x/2
�2d�'.x/;

the first statement follows from the Fubini theorem.
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Let a 2 D be a zero of F of order n. Since F.z/ is of the form .z � a/nG.z/ with
a holomorphic function G.z/ satisfying G.a/ ¤ 0, we get

lim
"!C0

Z
jz�aj�"

jF.z/jp�2jF 0.z/j2dA.z/ D 0;

lim
"!C0

Z
jz�ajD"

jF.z/jp
dF.z/

F.z/
D 0:

Thus, for 0 < r < 1, the Stokes theorem implies

p

2�

Z
jzj�r

jF.z/jp�2jF 0.z/j2dA.z/ D
1

2�i

Z
jzjDr

jF.z/jp
dF.z/

F.z/
;

and the second statement follows.

Remark 4.12. For all functions in Example 4.3, and for all p > 0, the integral in (4.4)
converges. Thus, for such a symbol, (4.1) holds for all p > 0. This means that The-
orem 4.8 is not at all sharp: there are plenty of examples of analytic symbols f such
that (4.1) holds for all p > 0 while f … Bp for some p > 0.

Problem 4.13. It is an interesting problem to characterize the class of holomorphic
functions F , for which the integral in (4.4) converges. Does it converge for all F 2B1
and all p > 0?

We finish this paper with examples of explicit computations for fun.

Example 4.14. Let S be the unilateral shift, and let a;p > 0. Since S C a D TeitCa,
we have jS C ajp � jS� C ajp 2 S1.H 2/, and

Tr.jS C ajp � jS� C ajp/ D
1

2�i

Z
jzjD1

jz C ajp

z C a
dz:

For a D 1, this can be evaluated as

Tr.jS C 1jp � jS� C 1jp/ D
2p

�

�=2Z
0

cosp �d� D
�.1C p/

2�.1C p
2
/2
:

For p D 1 and a < 1, we can compute it by the parametrization z D �a C r.�/ei�

with r.�/ D a cos � C
p

1 � a2 sin2 � , and it turns out to be the elliptic integral

Tr.jS C aj � jS� C aj/ D
2

�

�=2Z
0

p
1 � a2 sin2 �d� D

1

�

1Z
0

s
1 � a2x

x.1 � x/
dx:
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For p D 1 and a > 1,

Tr.jS C aj � jS� C aj/ D
2

�

sin�1.1=a/Z
0

p
1 � a2 sin2 �d� D

1

�

1Z
0

s
1 � x

x.a2 � x/
dx:

The above computation with a D 1 can be generalized as follows. Note that if
F is a polynomial of degree n whose zeros are on the unit circle, the real part of
eitF 0.eit /=F.eit / is n

2
. This implies that for f .t/ D F.eit /, we have

Tr.jTf jp � jT �f j
p/ D

1

2�

2�Z
0

jF.eit /jp
n

2
dt:

In particular,

Tr
�ˇ̌̌ n�1X
kD0

Sk
ˇ̌̌
�

ˇ̌̌ n�1X
kD0

S�
k
ˇ̌̌�
D
n � 1

4�

2�Z
0

ˇ̌̌ n�1X
kD0

eikt
ˇ̌̌
dt D

n � 1

4�

2�Z
0

ˇ̌̌sin nt
2

sin t
2

ˇ̌̌
dt

D
n � 1

4�

n�1X
kD0

.�1/k

2�.kC1/=nZ
2�k=n

sin nt
2

sin t
2

dt

D
n � 1

4�

n�1X
kD0

.�1/k

2�.kC1/=nZ
2�k=n

n�1X
lD0

ei.l�
n�1
2 /tdt:

For even n, this is

n � 1

�

.n�2/=2X
jD0

tan .jC 12 /�

n

j C 1
2

:

For odd n, it is
n � 1

2n
C
n � 1

�

.n�1/=2X
jD1

tan j�
n

j
:
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