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A generalized winding number formula
for the Witten index of a Toeplitz operator

Masaki Izumi

Abstract. We generalize the winding number formula for the Fredholm index of a Toeplitz
operator to the Witten index. We also show trace formulae involving Toeplitz operators and
operator monotone functions.

1. Introduction

It is well known that the Toeplitz operator Ty with a continuous symbol f € C(T)
is a Fredholm operator if and only if f has no zeros on the unit circle T. For such
Ty, its Fredholm index ind T is given by —1 times the winding number of f (see,
for example, [2, Theorem 4.4.3]). For f € C!(T), this can be paraphrased as the
following formula:

27

. _ L

1nde——2ﬂi/f(t)dt. (1.1)
0

A bounded operator T € B(H ) on a Hilbert space H is said to be almost normal if
the self-commutator [T*,T] = T*T — T T* is trace class. The Witten index indy T
of such T is defined by the limit

indp T = lim Tr(e_ST*T — e_STT*),
s—>+00

if it exists. If moreover T is Fredholm, it is known to coincide with the Fredholm
index (see [8, Theorem 2.5]). One of the purposes of this paper is to generalize (1.1)
to the Witten index by replacing the integral on the right-hand side with the principal
value integral (see Theorem 3.2 for the precise statement). It is worth showing such
a result in view of the recent interests in the Witten index of Toeplitz operators in the
literature (see [18, 19, 24] for example, and see also [5, 6] for related results).
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In the celebrated work in 1953, Krein [16] showed that for self-adjoint operators A
and B with a trace class difference, there exists a unique integrable function &4, g (x)
on R, called the spectral shift function, such that the Krein formula

Tr(p(A) — ¢(B)) = / ¢ ()5 (x)dx

R

holds for ¢ in a certain class of functions. It is natural to discuss the Witten index of T
in relation to the Krein formula for the pair (T*T, T T*) (see, for example, [6,8]). On
the other hand, it is known (see [17, p. 244]) that the spectral shift function &+, 77+
for an almost normal 7" can be computed from the Pincus principal function g7 as

2r

1 .
Er~rrT*(X) = Z—/gr(ﬁele)dQ, for all x > 0.
T
0

The Toeplitz operator T with a sufficiently regular symbol f is almost normal
and its principal function is determined by

2T
1 S

ng (Z) — lnd(Tf - ZI) 27‘[1 m

dt forallz e C\ f(T),

thanks to the Helton—Howe thoery (see [17, p. 244] and [13, Proposition 5.2]). This
means that in principle, the Witten index of 7 should be expressed by an integral in
terms of the symbol f. Yet, we do not pursuit this strategy to accomplish our task (cf.
Remark 2.9). In fact, we do not need any general results in either the Krein theory
or the Helton—Howe theory for our purpose. Instead, we directly deduce the trace
formula

o,

Te(p(T} Ty) — <p(Tfo))—— / (L1 W7]) = 90D 7

(see Theorem 2.7 for the precise statement) from the Helton—-Howe formula

2w
(7, 1) = 5 [ FOds )
0

which follows from an elementary argument and does not require the Helton—-Howe
theory. Since the argument in [17, p. 244] to describe the spectral shift function goes
through the Helton—Howe formula, it is more natural and efficient to deduce necessary
trace formulae directly from the Helton—Howe formula than appeal to the Krein the-
ory. One advantage of our approach is that we can treat symbols with low regularity
(see Theorem 2.11).



A generalized winding number formula for the Witten index of a Toeplitz operator 273

In Section 2, we give a proof of the Helton—Howe formula for the Toeplitz oper-
ators under a considerably mild regularity assumption, and deduce the above men-
tioned trace formula out of it. The contents of this section may be folklore among
specialists, and our point is to present explicit formulae and also to treat symbols with
considerably low regularity (see [7, p. 209] and [9, 11] for related topics on index
formulae for non-smooth symbols).

As an application of the trace formula, we show in Section 3 the generalized wind-
ing number formula for the Witten index and discuss some examples. In particular,
we show in Example 3.4 that every real value can be realized as the Witten index of a
Toeplitz operator.

In Section 4, we extend the trace formulae shown in Section 2 to the operator
monotone functions (Theorems 4.8 and 4.11). Despite the fact that the Krein theory
does not apply to the operator monotone functions usually, we can still do it for suf-
ficiently regular symbols thanks to Peller’s famous criterion [20, Chapter 6] for the
Schatten—von Neumann class Hankel operators.

2. Preliminaries

2.1. Notation

We first fix the basic notation used in this paper. Let H, H;, and H, be Hilbert
spaces. We denote by B(H;.H,) (respectively K(H;, H;)) the set of bounded
(respectively compact) operators from H; to H,. We write B(H) = B(H, H) and
K(H)=K(H,H).ForT € K(Hy, H>), we denote by {s,(T)}5>, the singular value
sequence of T, that is, the eigenvalues of (T*7')!/2, counting multiplicity, in decreas-
ing order. For p > 0, we set

171, = (S snrr?) .
n=1

and denote by S, (H1, H>) the Schatten—von Neumann p-class
{T € K(H1, H2) : |T||p < oo}.

Our basic references for the Schatten—von Neumann classes are [12,23].

For a measurable function f on a measure space and 0 < p < co, we denote
| £llz» by Il f Il for simplicity.

We denote by D the unit disk {z € C : |z| < 1}. We denote by d A the area measure
of C. Let T = R/2nZ, which we often identify with the unit circle dD. To define
function spaces on T, we always use the normalized Lebesgue measure g—fr, e.g.,

L?(T) = LP(T,4).
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2.2. The Helton—Howe formula for Toeplitz operators

While the Helton—-Howe formula is customarily discussed for C*° symbols, we dis-
cuss it for symbols with least possible regularity. For this purpose, we first set up
relevant function spaces. The contents of this subsection are mostly expository.

For f € L'(T) and n € Z, we denote by g(n) the Fourier coefficient

fo = o / F(te " dr.
T

Let H? be the Hardy space
{f € LA(T) : foralln <0, f(n) = 0.

We set H® = H? N L>®(T). Let Py be the projection from L?(T) onto H?2, called
the Riesz projection, and let P~ = 1 — Py. For f € L*(T), we denote by My €
B(L?(T)) the multiplication operator Myh = fh for h € L?(T). The Toeplitz oper-
ator Ty € B(H?) and the Hankel operator Hy € B(H*, H 21) are defined by Ty =
Py My Py and Hy = P_Mj P, respectively.

For s > 0, we denote by W, (T) the Sobolev space

WD) = {f € La(T) 1 3 (1 + [nP)] fn) P < o),

nez

and define the Sobolev norm by

1 fllws = 3+ 1Pl F ).

nez

The space Wzl/ 2(?1“) is particularly important for us.
It is straightforward to compute the Hilbert—Schmidt norm of Hy as

oo

o0
IHf 13 =) " I Hyeal3 =Y nlf(-n).
n=0 n=1
where e, (1) = ¢'". Thus, Hy € S»(H?, H2YYifand only if P_f € WZI/Z(T). We
have

; 1 |f(s) = fOI
2 112 2 _
113+ UH 715 = Y il fol? = s [ S,
nez T2

where the second equality can be shown by the Fourier expansion. In particular,

() — fOI?

. . dsdt.
(27t)2 |els __ezt|2
T2

2 2
= /15 +
1102 = 17112
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For f, g € WZI/Z(T), we have

Tre = TyTe = H;Hg € S1(H?),

and
Ty Tl < 1 2 gy 2.

Indeed,
I[Tr, Telllh = || — H}Hg + Hg Hrlls
=< |Hzl2llHgll2 + | Hg 21| Hr |2
< \/(IIHfH% + I1H 7 15) (1 Hg 5 + | Hg lI3)

= 1Sy N8y e

For f, g € Wzl/ Z(T), we define a skew-symmetric form w by

o(f.8) =Y nf(-n)gn).
nez
which satisfies |w(f, g)| < I|.f l;1/2/8ll};,1/2. Then the Helton-Howe formula takes
2 2
the following form:

Tr([Ty. Te]) = (/. 8).

Indeed, the formula can be directly verified for trigonometric polynomials, and it
extends to Wzl/ 2 (T) by continuity.

Let W11 (T) be the set of absolutely continuous functions on T. Throughout the
paper, we mainly work on the Toeplitz operators with symbols in Wzl/ 2(T) N WH(T)
and sometimes in Wzl/ 2(T) N L%(T) or Wzl/ 2(71“) N H®. For the former, the

Helton—Howe formula takes the following form.

Lemma 2.1. For f,g € Wzl/z(T) N WA(T), we have

1 -1
(1, 1) = 5 [ S0 0d = o [ rogwar. e
T T

Proof. Let Fy(t) be the Fejér kernel. Since g’ € L!(T), the sequence {F;, * g'}n
converges to g’ in L!(T), and

or [ FOg i = tim [ p0E s g0,
T T
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as f e L°(T). Since g is absolutely continuous, we have é’(n) =ing(n), and

LN k
— / SO 0t = Tim. k_Z fer(1- %)kgr(k) —w(fg. =
T =—n

Example 2.2. Note that we have the inclusion relations
C(T) c WX(T) c W,/2(T) n w(T).

The family of functions fy(¢) = (e’’ + 1)%, a > 0, illustrates the hierarchy of these
functions spaces well. Note that | £, ()| = 042 sin 5% *1is integrable if and only

if &« > 0, and is square integrable if and only if @ > 1/2. We have f, € Wzl/ 2(T)n
W(T) for all & > 0 (see Example 4.3). We have f, € W,'(T) if and only if & > 1/2,
and f € CY(T) if and only if & > 1.

As (2.1) does not make sense for symbols in Wzl/z(T) N L%°(T), we use har-
monic extension to get an integral expression. For f € Wzl/ 2(T) N L%°(T), we denote
by f the harmonic extension of f to DD, that is, f (re’’) = P, x f(t), where P, is
the Poisson kernel. For later use, we present a more general trace formula than the
Helton—Howe formula, which is of interest in its own right.

Lemma 2.3. Let f,g € WZI/Z(T) N L°°(T), and let h € L°°(T). Then we have
1 L
Te(Ty([Tr, Te)) = — | hd f Adg.
(T3T7. Te) = 5. [ haf A
D
Proof. Note that we have

| Te(TolTy . TeDI = NTwllI[Tr . Tellle < Inllooll £ lly 12118 Wy 12

For z € D, we set

Fi@) =) f:". F-()=) f(=m)z".
n=0 n=1

Gi(2) =) gmz". G-()=) &(-m)z".
n=0 n=1

Then f(z) = F(z) + F_(2), §(z) = G4+(z) + G_(z), and

df Nndg=dFy NdG_ +dF_ NdG_ = (F .G — F.G',)dz A dZ.
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Note that we have
1 ° o
= [1F@Paae = Y ol < o,
T D n=0
and a similar statement holds for F_, G4, and G_. Thus, we get
1 ~ 1 ~ - _
T/hdf /\dg' = ‘—/h(z)(FL(z)Gﬁr(z) - Fjr(z)G’_(z))dA(z)
i b4
D D

= 2llooll £l 218 Ny 72

The above two estimates show that it suffices to prove the statement for trigono-
metric polynomials f and g, and furthermore it suffices to show

Te(Tp[Te_, . T, ]) = 0 / h(z)z" 12 dA(z),
T
D

for m,n > 0. The left-hand side is

n—1
> (hejn-m.e;) = min{m.n}h(m —n).

j=max{0,m—n}

The right-hand side is

1 27 1
@[/ﬁ(reie)rm+n_1ei(n—m)ededr = 2mnh(m _,,)/r|n—m|+m+,,_1dr
" 0 0 J
= %h(m —n),
which finishes the proof. .

Remark 2.4. When f and g have sufficient regularity (and # = 1), the two forms
of the Helton—Howe formula above are, of course, directly connected by the Stokes
theorem as suggested in [13].

The space Wzl/ 2(T) N L% (T) is known as the Krein algebra (see [15, Chapter I,
Section 8.11]). As our argument heavily relies on the fact that it is an algebra, we
include an elementary proof of it here.

Lemma 2.5. For f,g € Wzl/z(T) N L°(T), we have

2 2 2 2 2
17203172 < 205 130/ 82 + 207 112

In particular, the spaces Wzl/2 (T)N L°(T) and Wzl/2 (Tyn Wl1 (T) are algebras.
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Proof. Let f,g € Wzl/z(']I‘) N L°(T). Since
|/ ()g(s) = fO)gM] = |/ (s) = fDIlglloo + 1| flloclg (s) — & (D)1,

we have

1502,
1/ $)g6) = OO

(2”)2 |eis _eil‘|2
T2
1 21 () = FOPlIgl3e + 211 1518 (s) — g
2 2 oo 00
<1 Bl + s [ s dsds
T2

— 1/ B3gl% +2 3 Inll f ) PllglZ + 21 /12 S nllg ()

nez nez

< 2||f||§V21/z||g||§o + 2||f||§o||g||§[,21/z-

dsdt

= | fgl3 +

Since W' (T) and WZI/Z(T) N L>®(T) are algebras, so is Wzl/z('l[‘) NWHT). =

2.3. Trace formulae for Tr(q)(T; Tr) — o(Ty Tf*))

Although we do not use any general results in the Krein theory of spectral shift func-
tions in this paper, it is convenient for us to use its setup. For the Krein theory, the
reader is referred to [22, Chapter 9].

We denote by Wy (R) the set of functions f € C!(R) such that f” is the Fourier
transform of a (finite) complex Borel measure on R. Let A and B be self-adjoint
operators acting on a Hilbert space H. For simplicity, we assume that A and B are
bounded. If A — B € S;1(H ), the Krein theory shows that there exists a unique function
£4.5 € L1(R), called the spectral shift function, such that

¢(A) —p(B) € S1(H), (2.2)
for all ¢ € ‘W1 (R), and the following Krein formula holds:
Telp() — 9(B)) = [ ¢ (0800 @3)
R

For a finite closed interval [a, b], we denote by W;[a, b] the set of f € Cl[a, b]
that extends to a function in 'W;(R). Note that if f € C![a,b] and f’ extends to a
periodic function with an absolutely convergent Fourier series, then f € W[a, b]. In
particular, if f” satisfies either of the following conditions,
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(1) f1is absolutely continuous and f” € L?[a,b], i.e., f € WSa,b],
(2) f’is a-Holder continuous with some exponent @ > 1/2,

(3) f’ is of bounded variation and «-Holder continuous with some exponent
a >0,
then f € Wila, b] (see [15, Chapter I, Section 6]). For example, the function x4
belongs to W, [0, a] if and only if ¢ > 1.

It is known that (2.2) and (2.3) hold for a broader class of functions than 'W; (R)
(see [4, Section 4.2]), but the function space ‘W (R) is enough for our purpose.

Let f € Wzl/ 2 (T) N W} (T). Then since T is almost normal, the Krein theory is
applicable to the pair (T; Ty, Ty T; ). Our task now is to give an integral expression
in terms of f and ¢ of the trace Tr(go(T; Tr) —o(Ty T; )) without using the Krein
theory.

Lemma 2.6. Let [ € Wzl/ 2(T) N W(T), and let ¢ be a holomorphic function
defined on {z € C : |z| < r} with || f|*, < r. Then we have (p(T;Tf) — (p(TfT;) €
S1(H?), and

Tl 1) — o1y 7)) = 5 [ @700 S Wt
T

where
p(x) — w(O)’ X £0.
d(x) = X
¢'(0), x =0.

Proof. With a, = ¢™(0)/n!, we have
[e.e]
o(TFTy) — (T T = Y an(TFTy)" = (TrT))").
n=0

where the convergence is in the operator norm. We first claim that it actually converges
in the trace norm too. Indeed, since

(TFTy)" = (Ty T = [(TF Ty 77, Ty,
we get
ITF )" = (T Ty I < nl(TF TR P2 < nll 1,120 12872

which shows the claim as the radius of convergence of the Taylor series for ¢ is strictly
larger than || f'||2,. Thus, (T Ty) —o(TyT7) € S1(H?).
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Since (TJZ" Tr) ! Tf* —Tifn—17 €51 (H?), the Helton—-Howe formula implies

T (T T T 1) = T o . T7D = 5 [ LFOPO 0 7@ 5 0,

and so
* * 1 — —1) 7/
TH@(T7 1) — (T T70) = 5= > an [ LFOP"D 70 1 0.
mi = J

Since

o

D anl fOP" = @ f(O)P)

n=1
converges uniformly on T, we get the statement. |

In what follows, for simplicity, we often write

/'@
0N

with convention that the right-hand side is O whenever f(¢) = 0.

(L fOP) f@O) f' @) = (e f D)) —

Theorem 2.7. Let [ € WI/Z(T) N W(T). Then the following holds for every ¢ €
W10, | £ 113]):
S @ 4
Tep(TF T7) — p(Ty 7)) = 5~ / w0 —po) a4

Proof. From the definition of Wy [0, || f ||co], there exists a complex measure y on R

such that
lxy _ 1

@(x) =¢>(0)+/ ‘

R

dpu(y),

and
| -
w(Tfo)—w(Tfo)—/zy( T — Ty dpy).
R

Note that the right-hand side converges in the trace norm (see [22, Lemma 9.26]).
Thus,

U e g
Tr(p(T7 Ty) — (T T7)) = / o Tr(e?Tr 77 — 2 Tr T du(y).
R

Now, the statement follows from the previous lemma and the Fubini theorem. [
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Corollary 2.8. Let f € Wzl/ 2(']1“) N W(T). Then the following holds for every ¢ €
W10, | £ 11%):

1 ~ = ~
TT7T) o0y = 5 [P ndf @)
D
Proof. If f is smooth, the statement follows from the previous theorem together with

the Stokes theorem. For general f and 0 < r < 1, let f,(¢) = f (re'?). Since f is
absolutely continuous, we have ( f) = (f”),, and

lim (I(f)' =11 =0, Tim [f; = fllec = 0.
r—>1-0 r—>1-0

Thus,

1
Tre(T;Tp) —e(TyT) = lim —— [ @(f 0P L0 (0)di

T

| - =~

= lim — [ ¢'(1f[P)d fr nd [,
r—1-0 2771
D

. 1 11 £12 7 a
Jim o [ (fPaf nd ]
|z|<r

Since (p’(|f(z)|2) is bounded and the form df: A df is integrable on D, we get the
statement. n
Remark 2.9. We can describe the spectral shift function £ := ST; T, T T} for f €
W,2(T) N W (T) as

1 /
Er(x) = %/ 1(0,|f(t)|2](x)%dtv (2.6)
T

where 1y is the indicator function of X C R. This can be shown by comparing the
Fourier transform of the right-hand side with Lemma 2.6. Alternatively, the method
explained in the introduction shows

1 0
Sf(x) = E/%/Wdlde.
T T

If the Fubini theorem is applicable to this iterated integral, we get the same formula.

Now, we relax the regularity of the symbol f while imposing analyticity. We say
that a symbol f € WZI/Z(T) N L°°(T) is analytic if f € H*. For analytic f, we
have [T;, Ty] = H}";Hf > 0.
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Lemma 2.10. Let f € Wzl/z(']I‘) N H®, and let F(z) = f(z) be the holomorphic
extension of [ to D. Let ¢ be a holomorphic function defined on {z € C : |z| < r}
with || f |2, < r. Then we have

(T 1)~ o177 = - [ ¢ UFEPIF @PAA)
D

Proof. We use the notation in the proof of Lemma 2.6. Lemma 2.3 implies

Tr([]]flz,i_zf, Tf]) = Tr([Tf,,fn_l s Tf]) = TI'([T]Fn, Tf]Tfn—l)
1 — 1
— | F"YdFn" AdF = —/n|F(z)2|"—1|F’(z)|2dA(z),
27 T
D D

and

3

1
Tep(T7T)) = oy T7) = = 3 an [ nlFCPIIF ) PdAC)
n=1 D

= l/<ﬂ'(|F(Z)|2)|F'(Z)|2a’z‘1(2)- L
T
D

The above lemma together an argument similar to the one used in the proof of
Theorem 2.7 implies the following theorem.

Theorem 2.11. Let f € W, '*(T) N H*, and let F(z) = f(z) be the holomor-
phic extension of f to D. Then for every ¢ € W10, || f112.], we have (p(Tf*Tf) —
(p(TfT;) € S1(H?) and

(17 1)~ 177 = - [ GIFQPIFERAG. @D
D

Remark 2.12. Equation (2.7) gives a geometric interpretation of the spectral shift
function &¢ for analytic f. Note that | F’(z)|? is the Jacobian of the map F:D — C.
The Sard theorem shows that the critical values

C(F)=F({zeD:F'(z) =0}),

has Lebesgue measure 0. We define the multiplicity function m(w) = #F~1(w) for
w € F(D)\ C(F). Then (2.7) shows

I£12
/ ¢ (O (W)dx = / o ([wP)m(w)dAw).
T

0 F (D)
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As ¢’ can be any function in C'[0, || f||Z,], this means that & is the density func-
tion, with respect to the Lebesgue measure on [0, || f||%,], of the variable |w|? whose
distribution is given by the measure
m(w)dA(w)
T

on F(D).

Remark 2.13. It is shown in [25, Theorem 1.2] that the Helton—-Howe formula holds
for Toeplitz operators ijt) on the weighted Bergman spaces Lg,t (D) with symbols in

C%(D). The condition 75 — T T € §1 (L2 (D)) holds too ([25, Theorem 6.3 (1)]
and [26, Theorem 8.36]). As the Helton—-Howe formula itself remains the same,

O 7@ 1 1 /
([T, Tg"]) o /df/\dg =5 fdg,
D D

formulae (2.4)—(2.7) still hold in the case of the weighted Bergman spaces too.

3. The Witten index formula

Assume that f/ € C1(T) has no zeros. Since T s is the inverse of Ty modulo S1(H?),
the Fredholm index of T is given by Tr([T¢, T1/¢]), and the Helton—-Howe formula

ind Tf = TI'([Tf, Tl/f]) = _—1 S0 dt

27i ) f(r)
T

shows

The purpose of this section is to generalize this formula to the Witten index as an
application of Lemma 2.6.

Lemma 3.1. Let a > 0, and let f be an absolutely continuous function on [—a, a|
having the only zero at x = 0. We assume the following.

(1) f’(x) exists for every x € [—a,a] \ {0}.

(2) There exists g € C'[—a, a] satisfying
f10) _ )
f(x) x

(3) There exist B > 0 and h € C'[—a, a] such that | f(x)|> = |x|Ph(x) and
h(x) > 0 forall x € [—a,al.

forall x € [—a,a]\ {0}.
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Then for every ¢ € (0, a], the limit

0 sy LX)
S_l)lgrnoo_/a(l e )f(x) dx

exists and it is the order of O(e) as ¢ tends to +0.

Proof. We have

[ _ sy LX)
_/6.(1 e )f(x) dx

_ g(O)/(l B e—slxIBh(x))ldx n /(1 _e—slx\Bh(x))g(x) —80)
X X
—& —&

For the first term, we have

€ &
X X
—&

0

£
0 —1
e 1

s//xﬂh’(rx)e_sxﬁh(”)drdx

0 —1
est/B 1

1

/ 0 xﬁh(rx)drldx
X

58

=5 /P / /yﬂh/(rs_l/ﬂy)e_yﬁh(”_l/ﬂy)drdy.

0 -1

Let M = |I/||oo and m = min{h(x) : x € [a, —a]}. Then,

& oo
1
‘/(1 —e_slxlﬁh(x));dx §s_1/ﬂ2M/yﬁe_mdey.
—g 0

Thus,

&€

o sy S @) [e(x0)—g0)
si”l‘oo_/(l e )f(x) dx —/—x dx = 0(¢)

—&

as ¢ — +0.

284
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Now, we show a generalized winding number formula for the Witten index of a
Toeplitz operator.

Theorem 3.2. Let f € Wzl/ 2(T) N W(T), and assume that f has only finitely many
zeros ty,ta, . . ., tm. We further assume that there exists § > 0 satisfying the following
foreach1 < j <m.

(1) f'(t) exists foreveryt € [tj —8,t; + 8]\ {tj}.
(2) There exists gj € C[t; —§,t; + 8] satisfying

S0 _ &)
f@y -y
(3) There exist B; > 0and hj € C1[t; —8,t; + 8] such that
[fOF =1t = ;171 ().
and hj(t) > Oforallt € [t; —§,t; + ).

Then the Witten index for Ty exists and it is given by the following principal value
integral:

forallt € [t; —§,1; + 8]\ {¢;}.

-1 [ro,
iV T

1ndW Tf

Proof. Lemma 2.6 implies

Te(e T T — o=Tr Ty = % /(1 _ e—SIf(t)Iz)J;((tt))

T

For0 < ¢ < §, we set

m
I, = U(lj — &1 + ¢).

j=1
Then since f'(¢)/f(¢) is integrable on T \ /, the Lebesgue theorem implies
lim /(1 — S0P S'@) (f) S (z)
§—>+00 f(l) f([)
T\I, .

The above lemma implies that the following double limit exists:

lim i | —esIFOP f(t)dz_o.
8—1>I-ri-10s—>lgloo/( ¢ f(l)

Thus, we get

. —s|f(t)|2 f (l) . f/(t) f/(t)
s_l)lgloo/(l f( ) —2dt = El—l’r‘r*l% 70 dt = p.V.T/ dt. ]




M. Izumi 286

Example 3.3. Let Q(z) be a rational function without poles on the unit circle, and let
f(t) = O(e'"). We can express Q(z) as
Hk 1(z —ap)"k

0) = .
T L G by

Then we have

1 M N
indWszﬁp.v.[(Z Zz—ak)

z]=1 j=1 k=1
= Y- Ymey Y
1bjl<1 laxl<1 lag|=1

This is the reason why a half-integer appears as indy T¢ in [19].

Example 3.4. Let f(1) = /" (1 4 ¢'")* witha > O and n € Z. Then

ndw T -1 /(n+ o )d o

in = —— p.V. - Z=-n——.

Wi = om? z T Z11 2
lz|=1

This shows that the Witten index can take any real numbers.

Problem 3.5. Is it possible to realize a value other than the half-integers as indwy T
with € C*(T)?

4. Extension of the trace formulae to operator monotone functions

Let f € WZI/Z(T) N W, (T). As the function x?/2 belongs to ‘W, [0, || ||2,] for p > 2,
Theorem 2.7 implies

Ty 1P — IT;IP € Sy(H?), (4.1)
S (f)
A )

for p > 2. Although the Krein theory does not apply to the case of 0 < p < 2, we

(T 17 — |THP) = — / oL D “2)

still have a chance to get the same result if the symbol f has better regularity. In fact,
if the Hankel operators Hy and H 7 belong to S,(H?, H 2J'), we will see that (4.1)
holds, and so does (4.2) as far as the right-hand side makes sense. Moreover, when the
symbol f is analytic, we will show a much stronger result due to the hyponormality
of Tf, i.e., T*Tf — TfT];‘< > 0.

We first recall Peller’s famous criterion for the Hankel operators to belong to
Sy(H?, HzL) (see [20, Chapter 6], [26, Theorem 10.21] for the proof). Note that
Hy = Hp_y,and }?f is analytic.
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Theorem 4.1. Let 0 < p, and let f be an analytic symbol. Then H ; € S,(H?, H2h)
if and only if [ belongs to the Besov space BI}/ P(T).

The reader is referred to [20, Appendix 2] and [21] for the basic properties of the
Besov spaces. The space B;/ P(T) is closed under the Riesz projection P, for every
p > 0. Itis known that we have BA/?(T) = W,"/*(T) and B}(T) c W(T) (see, for
example, [10, Section 1,(P9)]). As we have B} (T) C le / 2(T) (corresponding to the
inclusion Sy (H?, H 2J') C S,(H?* H 2J') through Peller’s theorem), every symbol in
B[ (T) belongs to our working space Wzl/ 2(T) N W (T).

We denote by B, the set of holomorphic functions on I whose boundary value
functions belong to B;/ P(T), and call it the analytic Besov space. By slightly abusing
notation, we write f € B, if f € B,. Since Peller’s theorem only requires B, we
recall the following useful criterion for B, instead of giving the definition of B;/ P(T)
(see [21, Section 2.1], and for the equivalence of (2) and (3), see [26, Theorem 4.28
and Lemma 5.16], which is adopted as the definition of B, in Zhu’s book).

Lemma 4.2. For a holomorphic function F(z) onD and p > 0, the following condi-
tions are equivalent:
(1) F € By;

(2) there exists n € N satisfying pn > 1 and

1
s 12yn (n) )4 .
[ 101y PO da) < oo
D
(3) foreveryn € N satisfying pn > 1,
1
2\n 17 (n)
/|(1 — |z F" (Z)|pmd14(2) < 00.
D

In particular, a holomorphic function F' on D belongs to B; if and only if

/|F”(z)|dA(z) < 00,
D

and it belongs to B, if and only if

/ |F'(2)2dA(z) < .
D

Example 4.3. Let o > 0 and let ¥ (z) = log(l;_l_z). Note that ¥ has no zero in D, and

extends to a continuous function on D with the only zero at z = —1. Thus, log ()
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is well defined as a continuous function on D \ {—1}, where we take the branch sat-
isfying log ¥ (1) > 0. As lim,_,_; log ¥ (z) = —o0, we can choose sufficiently large
1
C > 0 so that T oz v (2)
tion using Lemma 4.2 shows:
(1) (14 z)* belongs to B, for all p > 0;
(2) ¥(2)* belongs to B, if and only if p > ﬁ;
(3) c=wgye belongs to By if and only if p > 1.

continuously extends to ID. We fix such C. Direct computa-

dnyo

—n— near z = —1 behaves like

For instance, in (2) the leading term of

1
1+ z)"log®™ (1 +2)’

and we should figure out when the integral

/‘ (1—|z?)" P dA(z)
(1+z2)7log* ™ (1 +2)1 (1—1z]?)?
|z+|ﬂzi/2

converges for sufficiently large n. By the change of variables z = —1 + re'?, this
integral can be expressed as
/2 min{2cosf,1/2}

/‘ (2cos — )2

drd?,
rllogr +if|@+Dp g

—/2 0
which shows (2). (1) and (3) follow from similar calculations.

We fix p > 0 for now and set ¢ = p/2 to avoid possible confusion. Since the
function x?/% = x4 in the region 0 < p < 2 is operator monotone, we can make use
of the sophisticated theory of operator monotone functions on [0, c0) to extend (4.1)
and (4.2). Recall that a function ¢: [0, c0) — R is said to be operator monotone if
A > B > 0implies p(A) > ¢(B) for any positive operators A, B € B(H ) on a Hilbert
space H. For A > 0, we set ¢, (x) = ﬁ, which is a typical example of operator
monotone functions. It is well known (see for example [3, V53]) that for an operator
monotone function ¢ on [0, 00), there exist a unique constant a, > 0 and a positive
Borel measure ji, on [0, 00) satisfying

o0

A
/mdﬂw(k) < o0,
0
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such that

o0

o) = 90) + agx + [ DAy ).
0
For ¢(x) = x7, we have a, = 0, and py(d 1) = 292024,
If A — B is a compact operator, we can see that ¢(A) — ¢(B) is a compact operator
too. Indeed, the integral expression shows

9(A) —9(B) = ay(A - B) + /((/’A(A) —9a(B)Adpiy(A),
0

where the convergence is, a priori, in the strong operator topology. As the integral is
equal to

n

, 1 1 ) . [ Y
nlggo/(H—B _/\—i-—A)A due(d) = nll)ngo/ g B(A 13))L +A)L dpe(A),
1

3=

n

the convergence is in the norm topology, and we see that ¢(A) — ¢(B) is a compact

operator.
If moreover A — B € S1(H), the map
(0,00) 2 2 ! ! (A—B) !
, 00 — - = - B)———
A+B A+A A+B A+ A

is continuous in the trace norm. Note that if moreover A > B, the quantity
Tr(p(A4) — ¢(B)) € [0, 00]

makes sense regardless of whether ¢(A4) — ¢(B) belongs to S;(H) or not. Thus, the
lower semicontinuity of the trace implies

T 1 1
Tr(p(A) — ¢(B)) = a, Te(A — B) + / Tr(“_—B - H—A)Azduw(/\). 4.3)
0

We recall a majorization result involving an operator monotone function due to
Ando [1] and Kosaki [14, Appendix].

Theorem 4.4. Let A, B € B(H) be positive operators on a Hilbert space H, and
assume that A — B is a positive compact operator. Let ¢ be an operator mono-
tone function on [0, 00) satisfying ¢(0) = 0. Then for every n € N, the majorization
inequality

n

> se(p(A) — @(B)) < Y si(p(A— B)).
k=1

Jj=1
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holds. In particular, if (A — B) belongs to S1(H), so does ¢(A) — ¢(B), and
Tr(p(A4) — ¢(B)) < Tr(p(4 — B)).

As we use only the following special case, we state it separately and give an
elementary proof.

Corollary 4.5. Let0 < g < 1, and let A, B € B(H) be positive operators. We further
assume A > Band A — B € S;(H). Then A — B9 € S1(H) and

Tr(A? — BY) < Tr((A — B)Y).

Proof. Let D = A — B. Thanks to (4.3), it suffices to show

sin(g) T 1 1 4 4
= /E(A+B—A+B+lﬂxdxgﬁw).
0

The resolvent identity shows

1 1
A+B A+B+D
=A+B)'DA+A+B)'D)'A+B)!

=@+ B)'D2(1+ D2+ B)'DYAHT' DV 4+ B)!,

=A+B)'DA+B+D)!

and

Tr(l— 1 )

A+B A+B+D
=Tr((A + B)"'DV2(1 + DV2(A + B)"'DV%)'DV2(1 + B)™Y)
=Tr((1+ DV?(x + B)"'DY*)7ID'2(A + B)™2D/?)

d
= —— Tr(log(1 + D'/2(A + B)™' D'/?)),
where we used [22, Lemma 9.16]. Thus, letting
h(A) = Tr(log(1 + DI/Z(A + B)_IDI/Z)),

we get

sin(g ) 7 1 1 sin(g) 70 ,
T - a4y = 47 a4,
r(k +B A+ )A A T (HAdA
0 0

T B+ D
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We claim that integration by part implies
. o0 . 00
sin sin
_(—qn) / W MAdA = q—(qn) / h(k))&q_ldq.
b4 b4
To verify the claim, it suffices to show the convergence of the right-hand side, and
lim A(M)A? =0,
A—>+0

as we have h(1) = O (%) for large A. In fact, since /(1) is non-negative and monotone
decreasing, the latter follows from the former. Since

0 < h(2) < Te(tog(1 + 1.D)) = 21 o1+ 220,

and

n=1

o 7 sw) T !
Z/log n )Aq Ly = le,,(D)q/mg@ n ;)zq—ldz,
0 - 0

we get
Clsm(qﬂ) /h(/\)/\q_ldq < Tr(DQ)M/]Qg(I + ;)tq_ldl < 00,
T T

and the claim is shown.
Integration by part again implies

1
qsm(qn)/ - ) a1, — sm(qn)/ tq- _1
1 +Z

and the proof is finished. ]

Remark 4.6. The function /(A) in the above proof is nothing but

EA,B(X)d
X
A+x

R

Lemma 4.7. Let 0 < g < 1, and let A, B € B(H) be positive operators satisfying
A—B € S;(H). Then A1 — BY € S{(H) and

sm(qyr) / 1
Tr(A? — B AdA
i )= A TE AN

where the integral in the right-hand side converges absolutely.
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Proof. Let D = A — B, and let D and D_ be the positive part and negative part of
D respectively. Then D, D_ € S;(H),and A+ D_ = B + D . Now, the statement
follows from Corollary 4.5 and

A9 — B1 = (B + D) — B — ((A+ D_)7 — A9). n

Theorem 4.8. Let f € W)/*(T) N W (T), and let 0 < p < 2. If f € By/”(T),
then (4.1) holds. If moreover,

[ SO 0l < oo,
T

with convention that the integrand is O whenever f(t) = 0, then (4.2) holds.

Proof. Let A = Tf, B = TfT and g = 2p Then
A—B=-HfHf + H;Hj € S, (H?)

thanks to the Peller theorem. Thus, we get A9 — B € S,(H?), and

s1n(qJT) / 1
Tr(A? — B4 AdA.
" )= A 5o )

Theorem 2.7 implies

o0

__sin(gm) 1 1 1 1)
Tr(4? - BY) = =1 /% (I - If(t)zl) o A
T

0

. sin(qn)i T 2  f1(@)
-2 Of T/ oSO LD did.

Now, the second statement follows from the Fubini theorem. [

Corollary 4.9. Equation (4.1) holds for every f € C*°(T) and every p > 0. If more-
over,

/ SO 0l < oo,
T

with convention that the integrand is 0 whenever f(t) = 0, equation (4.2) holds.
Proof. The statement follows from

C>(T) c () B,/*(T). n
p>0
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Corollary 4.10. Assume f € B;/ P(T) for all p > 0. Then under the assumption of
Theorem 3.2, the following limit exists:

lim Tr(|T¢|? — |TF|?) = —indw Tr.
lim Te(Ty |7~ |T717) = —ind Ty

Proof. In a similar way as in the proof of Theorem 3.2, we can show

r ., lpv fo,
o ™) o

dt,

lim Tr(|T¢|? —|T7|P) = lim — »
Jim T Tyl = |77 1) = i /If()l

and the statement follows from Theorem 3.2. [

Recall that if a symbol f is analytic, we have T; Ty — Ty TJZ‘ = H;; Hz=0.

Theorem 4.11. Let f € B, N H*®, and let F(z) = f(z) be the holomorphic exten-
sion of f to D. Then for every operator monotone function ¢ on [0, 00), we have

T 1)~ o177 = - [ ¢ AFEPIF @PAA)
D

In particular, for every p > 0,

Te( 1|7 = |T717) = 2 / [F()IP2|F'(2)PdA(z)
D

lim [ F ()|PdF @) @.4)

r—>1— 02 )

|z| r
Proof. From (4.3), we have
Tr(p(T} T7) — p(TF T7))

o0

1 1
—a, (7. 17D + [ 1o P e )
f
0

and Theorem 2.7 implies that it is equal to

1 1
= [adr@raie + [ - [ oo PO 0.
D 0 D

Since -
1 2
@' (x) =a, + / m/\ dpg(x),
0

the first statement follows from the Fubini theorem.
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Leta € D be a zero of F of order n. Since F(z) is of the form (z — a)" G(z) with
a holomorphic function G(z) satisfying G(a) # 0, we get

tim [ IF@P2IF GPaAG =0,

|z—al<e
dF
hm / |F(z)|? ((Z)
\z al=¢
Thus, for 0 < r < 1, the Stokes theorem implies
dF(Z)
L [1rarireriae = o= [1rer s
lz|<r |z|=r

and the second statement follows. [

Remark 4.12. For all functions in Example 4.3, and for all p > 0, the integral in (4.4)
converges. Thus, for such a symbol, (4.1) holds for all p > 0. This means that The-
orem 4.8 is not at all sharp: there are plenty of examples of analytic symbols f such
that (4.1) holds for all p > 0 while f ¢ B, for some p > 0.

Problem 4.13. It is an interesting problem to characterize the class of holomorphic
functions F, for which the integral in (4.4) converges. Does it converge for all F' € B;
and all p > 0?

We finish this paper with examples of explicit computations for fun.

Example 4.14. Let S be the unilateral shift, and leta, p > 0. Since § +a = T,i:,,,
we have |S + a|? — |S* +a|? € S (H?), and

1 |z + al?

2711 zZ+a
lz|=1

Tr(|S +al? —|S* +al?) = dz.

For a = 1, this can be evaluated as

/2
27 ra+p)
Te(|S + 1|17 — |S* + 1|P) = — P0d0 = ————.
1S + 17 =157+ 117) = - [ eos” 000 = 5t
0
For p = 1 and a < 1, we can compute it by the parametrization z = —a + r(6)e'?

with 7(8) = acosf + /1 — a2 sin? @, and it turns out to be the elliptic integral

/2

1 —a2
Tr(|S +a|l —|S* +al|) = — /vl—a2sm 0do = — / X

x(l —x)
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For p =1anda > 1,

sin~!(1/a)

2 1—
Tr(|S +a|—|S* +a|) = — / V1—a?sin?0do = — / T ux
/g x(a? —x)
0

The above computation with a = 1 can be generalized as follows. Note that if
F is a polynomial of degree n whose zeros are on the unit circle, the real part of
e F'(e'")/ F(e'") is Z. This implies that for (1) = F(e'"), we have

1 i
(7,17~ 17717) = 5 [ 1P ar

In particular,

2w

= = ok n—1 1< ; n— 1 sin 2
(| st = | o s) = 5 [ | o efar = |
Z Z 4 Z Sln 5
k=0 k=0 0 k=
2 (k+1)/n
/ sin %tdt
T Ax sin £
=0 2rk/n
2n(k+1)/n -1
- AR
2rk/n =0
For even n, this is
il
n—1 (n_zzll/z tan Y27 +n2)ﬂ
— -1 -
For odd n, it is
n—1 l(n 1)/Ztaan”
2n b4 = J
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