

Spectral and dynamical results related to certain non-integer base expansions on the unit interval

Horia D. Cornean, Ira W. Herbst, and Giovanna Marcelli

Abstract. We consider certain non-integer base β -expansions of Parry’s type and we study various properties of the transfer (Perron–Frobenius) operator $\mathcal{P}: L^p([0, 1]) \rightarrow L^p([0, 1])$ with $p \geq 1$ and its associated composition (Koopman) operator, which are induced by a discrete dynamical system on the unit interval related to these β -expansions.

We show that if f is Lipschitz, then the iterated sequence $\{\mathcal{P}^N f\}_{N \geq 1}$ converges exponentially fast (in the L^1 norm) to an invariant state corresponding to the eigenvalue 1 of \mathcal{P} . This “attracting” eigenvalue is not isolated: for $1 \leq p \leq 2$ we show that the point spectrum of \mathcal{P} also contains the whole open complex unit disk and we explicitly construct an eigenfunction for every z with $|z| < 1$.

1. Introduction and main results

Let us fix two integers $n \geq 2$ and $q \geq 1$. There exists a unique positive number (see Lemma B.1)

$$\beta_{n,q} \equiv \beta \in (q, q + 1) \quad (1.1)$$

which obeys the following equation:

$$1 = \frac{q}{\beta} + \frac{q}{\beta^2} + \cdots + \frac{q}{\beta^n}. \quad (1.2)$$

We consider representations of real numbers in non-integer base β of the type (1.2), which are called β -expansions. Expansions in non-integer bases were firstly introduced by the seminal work of Rényi [16], as a generalization of the standard integer base expansions. The original method to determine the “digits” is the greedy algorithm [14–16], which is tightly connected to the study of the map

$$T_\beta: [0, 1) \mapsto [0, 1), \quad T_\beta(x) = \beta x - \lfloor \beta x \rfloor, \quad (1.3)$$

Mathematics Subject Classification 2020: 37A30 (primary); 37A50 (secondary).

Keywords: Perron–Frobenius operator, Koopman operator, non-integer β -expansions, spectral theory, dynamical systems.

see Appendix A for some of its basic properties. Without putting certain restrictions on the coefficients, such expansions are far from being unique (see [11] and references therein). Such expansions are also related to symbolic dynamics [3, 14, 16], which is not the main focus of the current paper.

We are mostly interested in the investigation of certain spectral and dynamical properties of the transfer (or Perron–Frobenius) operator $\mathcal{P}: L^p([0, 1]) \mapsto L^p([0, 1])$ with $p \geq 1$, and its associated composition (or Koopman) operator \mathcal{K} , which are induced by the above map T_β , see [12, 17, 18].

In general, the transfer operator \mathcal{P} describes the discrete time evolution of certain probability densities associated to some stochastic variables, evolution related to the iteration of a certain map, in our case T_β , see [4, 6, 8]. More specific details about these objects will be given in the subsequent part of the introduction, where we will also formulate our main results: Theorems 1.2 and 1.4. There, it is stated that if f is Lipschitz, then the iterates $\mathcal{P}^N f$ converge exponentially fast (in the L^1 norm and $N \rightarrow \infty$) to an invariant state corresponding to the eigenvalue 1 of \mathcal{P} . On the other hand, the eigenvalue 1 is far from being isolated: if $1 \leq p \leq 2$ we show that the point spectrum of \mathcal{P} also contains the open complex unit disk; namely, for every $|z| < 1$ and we explicitly construct a corresponding ψ_z such that $\mathcal{P}\psi_z = z\psi_z$.

1.1. The transfer operator

Let us assume that $X: \Omega \mapsto [0, 1]$ is an absolutely continuous stochastic variable with a probability density function (PDF) denoted by $f \in L^1([0, 1])$. More precisely: for every $x \geq 0$,

$$\text{Prob}(X \leq x) := \int_0^x f(t) dt.$$

Any number $X(\omega) \in (0, 1)$ has a well-defined “*greedy*” decomposition of the type (see Lemma A.1)

$$X(\omega) = \sum_{k \geq 1} X_k(\omega) \beta^{-k}, \quad X_k(\omega) \in \{0, 1, \dots, q\}.$$

The first coefficient X_1 defines a discrete stochastic variable $X_1: \Omega \mapsto \{0, \dots, q\}$, where (remember that $q < \beta < q + 1$)

$$X_1(\omega) := j \in \{0, \dots, q\} \quad \text{whenever } j/\beta \leq X(\omega) < (j + 1)/\beta$$

which implies

$$\text{Prob}(X_1 = j) = \text{Prob}\left(\frac{j}{\beta} \leq X < \frac{j + 1}{\beta}\right), \quad 0 \leq j \leq q.$$

Assuming that $f(x) = 0$ if $x \notin [0, 1]$, then the new stochastic variable $\tilde{X} = \beta(X - X_1/\beta)$ is also absolutely continuous and has a PDF (denoted by $\mathcal{P}f$) which equals

$$(\mathcal{P}f)(x) = \beta^{-1} \sum_{j=0}^q f\left(\frac{j+x}{\beta}\right). \quad (1.4)$$

Formula (1.4) is due to the fact that for $x \geq 0$ we have

$$\text{Prob}\left(\beta\left(\frac{X - X_1}{\beta}\right) \leq x\right) = \text{Prob}\left(X \leq \frac{X_1 + x}{\beta}\right) = \sum_{j=0}^q \text{Prob}\left(\frac{j}{\beta} \leq X \leq \frac{j+x}{\beta}\right),$$

which we then differentiate with respect to x .

In order to formulate our first theorem, we need to state the following result, which goes back to [14].

Proposition 1.1. *There exists a piecewise constant function u_1 which is positive a.e. with $\int_0^1 u_1(x) dx = 1$ such that $\mathcal{P}u_1 = u_1$.*

Our first main theorem is as follows.

Theorem 1.2. *Let $n \geq 2$ and $q \geq 1$ be two integers. Let $\mathcal{P} \equiv \mathcal{P}_\beta: L^1([0, 1]) \rightarrow L^1([0, 1])$ be defined as in (1.4), where $\beta \equiv \beta_{n,q}$ is introduced in (1.1). Then there exist two constants $K_1(n, q) \geq 0$ and $K_2(n, q) \geq 1/2$ such that for every Lipschitz function f with $|f(x) - f(y)| \leq L_f |x - y|$ we have*

$$\left\| \mathcal{P}^N f - u_1 \int_0^1 f(t) dt \right\|_{L^1} \leq K_1(L_f + \|f\|_{L^\infty}) \beta^{-K_2 N} \quad \text{for all } N \geq 1.$$

If $n = 2$, we have

$$\beta = \frac{q + \sqrt{q^2 + 4q}}{2}, \quad K_2 = \frac{2 - \ln(q)/\ln(\beta)}{3 - \ln(q)/\ln(\beta)}. \quad (1.5)$$

Remark 1.3. We have a few extra comments.

(i) By using that the map \mathcal{P} is non-expansive on L^1 (see (2.2)), a density argument implies that if $f \in L^1([0, 1])$, then

$$\lim_{N \rightarrow \infty} \left\| \mathcal{P}^N f - u_1 \int_0^1 f(t) dt \right\|_{L^1} = 0.$$

(ii) Point (i) implies that the function u_1 constructed in Proposition 1.1 is, up to a constant factor, the unique L^1 eigenfunction of \mathcal{P} corresponding to the eigenvalue 1. We note that Parry [14] also obtained an explicit formula for u_1 in an even more

general case. For $q = 1$ (see (1.2)), an exponential decay in sup norm with the same exponent as ours has been previously obtained in [9, 10], but using a slightly different approach (we will explain it in a moment) and with a very different method concerning the convergence. Namely, let

$$X = \sum_{k=1}^{\infty} X_k \beta^{-k}$$

be the β -expansion (with $q = 1$) of an absolutely continuous random variable X on the unit interval. Then [10] analyzes the convergence rate of the PDF of the scaled remainder $\sum_{k=1}^{\infty} X_{m+k} \beta^{-k}$ when m tends to infinity to the asymptotic distribution u_1 . If the density of X is f , then $\mathcal{P}^m f$ is nothing but the density associated with the above scaled remainder.

(iii) In [12] it is shown the existence of a Césaro limit $\frac{1}{N} \sum_{k=1}^N \mathcal{P}^k f$ in the L^1 -norm for the more general case of piecewise monotonic and expanding maps.

(iv) We now briefly outline some consequences for the ergodicity properties [7] of the map T_β in (1.3). It is measure preserving on $[0, 1]$ equipped with the measure density u_1 . We consider stochastic variables of the type $F: [0, 1] \mapsto \mathbb{R}$ with

$$\text{Prob}(F \in (c, d)) := \int_{F^{-1}((c, d))} u_1(x) dx, \quad \text{for all } c < d.$$

For every integer $k \geq 0$, we define $\mathcal{X}_k: [0, 1] \mapsto \mathbb{R}$ given by

$$\mathcal{X}_k(x) := g(T_\beta^k(x)),$$

for some $g \in L^p([0, 1])$ with $1 \leq p \leq \infty$. If g is Lipschitz, by using Theorem 1.2 one can prove that these random variables have the same mean value and exponentially decaying correlations, which in turn implies [1, Theorem 1] the strong law of large numbers.

The proof of Theorem 1.2 is given in Section 2.

1.2. The composition (Koopman) operator

Let us recall the definition of $T_\beta: [0, 1] \mapsto [0, 1]$ given by

$$T_\beta(x) = \beta x - \lfloor \beta x \rfloor = \beta x - j, \quad j/\beta \leq x < (j+1)/\beta, \quad x \in [0, 1], \quad j \in \{0, 1, \dots, q\}.$$

We define the operator

$$\mathfrak{R}: L^p([0, 1]) \mapsto L^p([0, 1]), \quad (\mathfrak{R}g)(x) := g(T_\beta(x)), \quad 1 \leq p \leq \infty. \quad (1.6)$$

We may also consider the operator \mathcal{P} from (1.4) acting on $L^{p'}([0, 1])$ to itself with $1/p + 1/p' = 1$ and $1 \leq p' \leq \infty$. Then if $f \in L^{p'}([0, 1])$ and $g \in L^p([0, 1])$, we have

$$\begin{aligned} \int_0^1 \overline{f(t)}(\mathfrak{K}g)(t) dt &= \sum_{j=0}^{q-1} \int_{j/\beta}^{(j+1)/\beta} \overline{f(t)}g(\beta t - j) dt + \int_{q/\beta}^1 \overline{f(t)}g(\beta t - q) dt \\ &= \int_0^1 \overline{[\mathcal{P}f](x)}g(x) dx, \end{aligned} \tag{1.7}$$

where in the last equality we used that $f(x) = 0$ when $x > 1$.

The main spectral results of this paper are contained in the next theorem.

Theorem 1.4. *The following properties hold.*

(i) *Define the numbers*

$$x_j := q\beta^{-2} + \cdots + q\beta^{-n} + j/\beta, \quad 0 \leq j \leq q.$$

They obey $j/\beta < x_j < (j + 1)/\beta$ when $0 \leq j \leq q - 1$, and $x_q = 1$.

If $q = 1$, we define

$$\psi_0(t) = \begin{cases} e^{\pi i \beta t} & \text{if } j/\beta \leq t < x_j, 0 \leq j \leq 1, \\ 0 & \text{if } x_0 \leq t < 1/\beta. \end{cases}$$

If $q > 1$, we define

$$\psi_0(t) = \begin{cases} e^{2\pi i \beta t/(q+1)} & \text{if } j/\beta \leq t < x_j, 0 \leq j \leq q, \\ e^{2\pi i \beta t/q} & \text{if } x_j \leq t < (j + 1)/\beta, 0 \leq j \leq q - 1. \end{cases}$$

Then $\psi_0 \in L^\infty$ and $\mathcal{P}\psi_0 = 0$ almost everywhere. Note that when $n \equiv \infty$, then $\beta \equiv q + 1$ and $\psi_0(t) \equiv e^{2\pi i t}$. See Figure 1 for an illustration of the function ψ_0 for the cases $q = 1$ and $q = 3$.

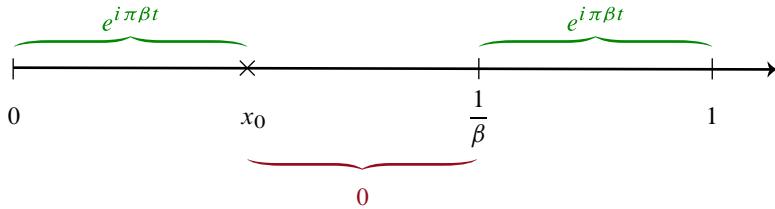
- (ii) *The operator $\tilde{\mathfrak{K}} := u_1^{1/p} \mathfrak{K} u_1^{-1/p}$ is a non-surjective isometry on $L^p([0, 1])$ for $1 \leq p \leq \infty$.*
- (iii) *The spectrum of $\tilde{\mathfrak{K}}$ and \mathfrak{K} equals $\overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leq 1\}$ for $1 \leq p \leq \infty$.*
- (iv) *Let $|z| < 1$. Then the function*

$$\psi_z = u_1^{1/2} (\text{Id} - z u_1^{1/2} \mathfrak{K} u_1^{-1/2})^{-1} u_1^{-1/2} \psi_0 \in L^2([0, 1]) \subset L^{p'}([0, 1]),$$

$1 \leq p' \leq 2$, is an eigenfunction of \mathcal{P} which obeys $\mathcal{P}\psi_z = z\psi_z$.

The proof of this theorem is given in Section 3. We note that when \mathcal{P} is restricted to functions of bounded variations, its spectrum is quite different [17].

$q = 1$



$q = 3$

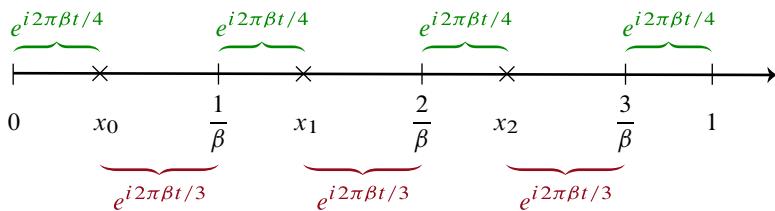


Figure 1. Illustration of the map ψ_0 .

2. Proof of Theorem 1.2

2.1. Preliminaries

Notice that \mathcal{P} maps non-negative functions into non-negative functions and for any function $f \in L^1([0, 1])$ we have

$$\int_0^1 (\mathcal{P}f)(x) dx = \int_0^1 f(x) dx. \quad (2.1)$$

Indeed, if $0 \leq j \leq q - 1$, we have

$$[0, 1] \ni x \mapsto \frac{j+x}{\beta} \in \left[\frac{j}{\beta}, \frac{j+1}{\beta} \right],$$

hence these intervals cover the interval $[0, q/\beta]$. Also, due to (1.2) we have

$$\left[0, \frac{q}{\beta} + \dots + \frac{q}{\beta^{n-1}} \right] \ni x \mapsto \frac{q+x}{\beta} \in \left[\frac{q}{\beta}, 1 \right].$$

Equality 2.1 follows after a change of variable on each interval. Moreover, this together with $|\mathcal{P}f| \leq \mathcal{P}|f|$ imply that the linear map \mathcal{P} is non-expansive on L^1 , i.e.,

$$\|\mathcal{P}f\|_{L^1} \leq \|f\|_{L^1} \quad \text{for all } f \in L^1([0, 1]). \quad (2.2)$$

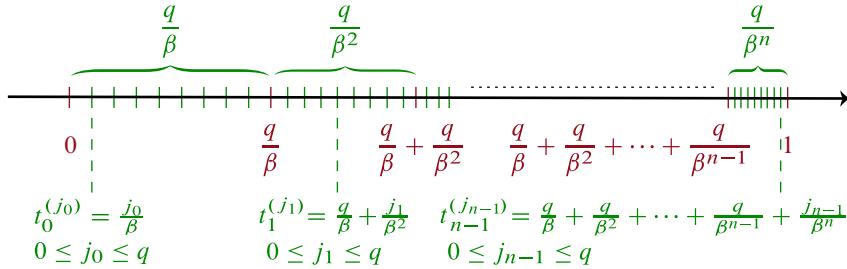


Figure 2. The first layer.

2.2. Subdividing the interval $[0, 1]$

In Figure 2 we introduce a decomposition of the interval $[0, 1]$, which we will explain in what follows. The characteristic functions of the intervals between two consecutive red points will form a generating system, and it is important to know how \mathcal{P} acts on them. This will be done in Lemma 2.1.

First, we have the numbers in red given by $0, q/\beta, q/\beta + q/\beta^2, \dots$, and $q/\beta + q/\beta^2 + \dots + q/\beta^{n-1}, 1$.

Second, we want to define the green numbers, which include the red ones, see Figure 2. Let us start with those between 0 and q/β . For $j_0 \in \{0, \dots, q\}$, we define the first set of green numbers: $t_0^{(j_0)} = j_0/\beta$, with $t_0^{(q)} = q/\beta$. The distance between two consecutive such numbers is $1/\beta$.

The green numbers between q/β and $q/\beta + q/\beta^2$ are indexed by $t_1^{(j_1)} = q/\beta + j_1/\beta^2$ where $j_1 \in \{0, \dots, q\}$. The distance between two such consecutive numbers is $1/\beta^2$.

For the interval between $q/\beta + \dots + q/\beta^{n-1}$ and 1, we let $j_{n-1} \in \{0, \dots, q\}$ and define $t_{n-1}^{(j_{n-1})} := q/\beta + \dots + q/\beta^{n-1} + j_{n-1}/\beta^n$. We also have the identities $t_k^{(q)} = t_{k+1}^{(0)}$ when $0 \leq k \leq n-1$, and $t_{n-1}^{(q)} = 1$.

The distance between two consecutive points depends on which “red” interval they are situated and is given by

$$t_{k_1}^{(j_{k_1}+1)} - t_{k_1}^{(j_{k_1})} = \beta^{-(k_1+1)}, \quad 0 \leq k_1 \leq n-1.$$

By definition, the *first layer* means the set of all numbers $t_{k_1}^{(j_{k_1})}$ where $k_1 \in \{0, \dots, n-1\}$ and $j_{k_1} \in \{0, \dots, q\}$.

At this point, we are able to further refine any interval between two consecutive elements of the first layer, where the endpoints 0 and 1 are replaced by $t_{k_1}^{(j_{k_1})}$ and $t_{k_1}^{(j_{k_1}+1)}$, and the width 1 is replaced by β^{-k_1-1} . More precisely, the points of the

second layer are defined for $0 \leq k_1, k_2 \leq n - 1$:

$$t_{k_1, k_2}^{(j_{k_1}, j_{k_2})} = t_{k_1}^{(j_{k_1})} + \beta^{-(k_1+1)} t_{k_2}^{(j_{k_2})}.$$

Thus, in particular, we have that

$$t_{k_1}^{(j_{k_1})} \leq t_{k_1, k_2}^{(j_{k_1}, j_{k_2})} \leq t_{k_1}^{(j_{k_1}+1)}, \quad t_{k_1, q}^{(j_{k_1}, n-1)} = t_{k_1}^{(j_{k_1}+1)}.$$

In general, the m -th layer consists of the points for $0 \leq k_1, k_2, \dots, k_m \leq n - 1$:

$$t_{k_1, k_2, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})} = t_{k_1}^{(j_{k_1})} + \beta^{-(k_1+1)} t_{k_2}^{(j_{k_2})} + \dots + \beta^{-(k_1+1)} \dots \beta^{-(k_{m-1}+1)} t_{k_m}^{(j_{k_m})}.$$

We now introduce the L^1 normalized indicator functions of intervals between two “consecutive points” of layer m denoted by

$$F_{k_1, k_2, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})}(x) = \beta^{k_1+1} \dots \beta^{k_m+1} \chi_{[t_{k_1, k_2, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})}, t_{k_1, k_2, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m}+1)}]}(x). \quad (2.3)$$

Finally, let us introduce a special notation for the red numbers including the end-points 0 and 1. They are

$$\begin{aligned} t_0 &:= t_0^{(0)} = 0, \\ t_1 &:= t_0^{(q)} = t_1^{(0)} = \frac{q}{\beta}, \\ t_2 &:= t_1^{(q)} = t_2^{(0)} = \frac{q}{\beta} + \frac{q}{\beta^2}, \\ &\vdots \\ t_{n-1} &:= t_{n-2}^{(q)} = t_{n-1}^{(0)} = \frac{q}{\beta} + \dots + \frac{q}{\beta^{n-1}}, \\ t_n &:= t_{n-1}^{(q)} = 1. \end{aligned}$$

The two very last notations give the L^1 normalized indicator functions of the intervals between two such consecutive points:

$$F_r(x) := q^{-1} \sum_{j=0}^{q-1} F_r^{(j)}(x) = q^{-1} \beta^{r+1} \chi_{[t_r, t_{r+1}]}(x), \quad 0 \leq r \leq n - 1. \quad (2.4)$$

Lemma 2.1. *We have*

$$\mathcal{P} F_0 = \chi_{[0,1]} = q \sum_{j=0}^{n-1} \beta^{-(j+1)} F_j, \quad \text{and} \quad \mathcal{P} F_r = F_{r-1}, \quad \text{where } 1 \leq r \leq n - 1.$$

In particular, the subspace generated by these functions is invariant under the action of \mathcal{P} , namely $\mathcal{P}(\text{span}\{F_0, \dots, F_{n-1}\}) \subseteq \text{span}\{F_0, \dots, F_{n-1}\}$.

Moreover, for all $m \geq 2$ and all possible tuples $(j_{k_1}, j_{k_2}, \dots, j_{k_m}) \in \{0, \dots, q\}^m$ we have

$$\mathcal{P}F_{k_1, k_2, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})} = F_{k_2, \dots, k_m}^{(j_{k_2}, \dots, j_{k_m})} \quad \text{if } k_1 = 0, \quad (2.5)$$

$$\mathcal{P}F_{k_1, k_2, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})} = F_{k_1-1, k_2, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})} \quad \text{if } k_1 \geq 1, \quad (2.6)$$

and

$$\mathcal{P}^{m-1+k_1+k_2+\dots+k_{m-1}} F_{k_1, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})} \in \text{span}\{F_0, F_1, \dots, F_{n-1}\}. \quad (2.7)$$

Proof. For $x \in [0, 1]$, we have

$$\begin{aligned} & \chi_{[t_{k_1, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})}, t_{k_1, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m}+1)}]} \left(\frac{x+j}{\beta} \right) \\ &= \chi_{[0,1]}(x) \chi_{[\beta t_{k_1, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})} - j, \beta t_{k_1, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m}+1)} - j]}(x), \end{aligned}$$

which introduced in (1.4) gives for the functions $F_{k_1, k_2, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})}$ defined in (2.3):

$$\begin{aligned} & (\mathcal{P}F_{k_1, k_2, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})})(x) \\ &= \beta^{-1} \beta^{k_1+1} \dots \beta^{k_m+1} \chi_{[0,1]}(x) \sum_{j=0}^q \chi_{[\beta t_{k_1, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})} - j, \beta t_{k_1, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m}+1)} - j]}(x). \end{aligned} \quad (2.8)$$

First, let us consider $m = 1$. We start by computing $\mathcal{P}F_0^{(j_0)}$, thus we put $m = 1$ and $k_1 = 0$. Then $\beta t_0^{(j_0)} = j_0 \in \{0, \dots, q-1\}$ and

$$\chi_{[\beta t_0^{(j_0)} - j, \beta t_0^{(j_0+1)} - j]}(x) = \chi_{[j_0 - j, j_0 - j + 1]}(x).$$

By summing over j in (2.8), we get

$$\mathcal{P}F_0^{(j_0)} = \chi_{[0,1]}, \quad 0 \leq j_0 \leq q-1.$$

Since the above formula is independent of j_0 , it also implies that $\mathcal{P}F_0 = \chi_{[0,1]}$, see (2.4) for the definition of F_0 .

We now want to compute $\mathcal{P}F_{k_1}^{(j_{k_1})}$ with $0 < k_1 \leq n-1$. Since $k_1 \geq 1$, then $\beta t_{k_1}^{(j_{k_1})} \geq q$, and so the interval $[\beta t_{k_1}^{(j_{k_1})} - j, \beta t_{k_1}^{(j_{k_1}+1)} - j]$ is disjoint from $[0, 1]$ if $j \leq q-1$. On the other hand, since

$$t_{k_1}^{(j_{k_1})} = q/\beta + \dots + q/\beta^{k_1} + j_{k_1}/\beta^{k_1+1}$$

we have

$$0 \leq \beta t_{k_1}^{(j_{k_1})} - q = t_{k_1-1}^{(j_{k_1})} < t_{k_1-1}^{(j_{k_1}+1)} = \beta t_{k_1}^{(j_{k_1}+1)} - q \leq 1.$$

This implies that

$$\mathcal{P} F_{k_1}^{(j_{k_1})} = F_{k_1-1}^{(j_{k_1})}, \quad 1 \leq k_1 \leq n-1, 0 \leq j_{k_1} \leq q-1.$$

This shows that $\mathcal{P}^{1+k_1} F_{k_1}^{(j_{k_1})} = \mathcal{P} F_0^{(j_{k_1})} = \chi_{[0,1]}$ belongs to the subspace spanned by F_0, \dots, F_{n-1} (see (2.4)). Applying \mathcal{P} to (2.4) we obtain

$$\mathcal{P} F_r = F_{r-1}, \quad 1 \leq r \leq n-1.$$

This ends the proof of the first part of the lemma.

Now, let us consider $m > 1$, i.e., more than just one layer. We have the following cases.

- If $k_1 = 0$, then

$$\begin{aligned} \beta t_{0, \dots, k_m}^{(j_0, j_{k_2}, \dots, j_{k_m})} - j \\ = \beta(j_0/\beta + \beta^{-1} t_{k_2}^{(j_{k_2})} + \dots + \beta^{-1} \dots \beta^{-(k_{m-1}+1)} t_{k_m}^{(j_{k_m})}) - j \\ = j_0 - j + t_{k_2, \dots, k_m}^{(j_{k_2}, \dots, j_{k_m})} \end{aligned}$$

which introduced in (2.8) gives

$$\mathcal{P} F_{0, k_2, \dots, k_m}^{(j_0, j_{k_2}, \dots, j_{k_m})} = F_{k_2, \dots, k_m}^{(j_{k_2}, \dots, j_{k_m})}.$$

This shows that if we apply \mathcal{P} on a function with $k_1 = 0$, then we go down to a lower layer where m is replaced by $m-1$ and j_0 is “erased.” This proves (2.5).

- If $1 \leq k_1 \leq n-1$, then $\beta t_{k_1, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})} \geq q$ and so the sum over $j \leq q-1$ in (2.8) equals zero. On the other hand,

$$\begin{aligned} 0 \leq \beta t_{k_1, k_2, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})} - q = t_{k_1-1, k_2, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})} < t_{k_1-1, k_2, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m}+1)} \\ = \beta t_{k_1, k_2, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m}+1)} - q \leq 1, \end{aligned}$$

hence

$$\mathcal{P} F_{k_1, k_2, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})} = F_{k_1-1, k_2, \dots, k_m}^{(j_{k_1}, j_{k_2}, \dots, j_{k_m})}.$$

This shows that when we apply \mathcal{P} on a function of the type (2.3) with $k_1 > 0$, then k_1 is reduced with one unit. This proves (2.6).

Conclusion: it takes $k_1 + 1$ applications of \mathcal{P} in order to go down from layer m to layer $m-1$, then $k_2 + 1$ applications in order to get from layer $m-1$ to layer $m-2$, so $\mathcal{P}^{k_1+k_2+\dots+k_{m-1}+m-1}$ gets us to the lowest layer with $m = 1$. ■

2.2.1. Proof of Proposition 1.1

Lemma 2.2. Denote by \mathcal{T} the $n \times n$ matrix obtained by restricting \mathcal{P} to the subspace generated by $\{F_0, \dots, F_{n-1}\}$. Then \mathcal{T} is a left-stochastic matrix. If λ is an eigenvalue, then it obeys the equation $P_{n,q}(\lambda\beta) = 0$ with $P_{n,q}$ from Lemma B.1. For $\lambda_1 = 1$, we can construct a positive eigenvector. If λ_2 is the second largest eigenvalue in absolute value, then

$$q^{1/(n-1)}\beta^{-n/(n-1)} \leq |\lambda_2| < \beta^{-1}. \quad (2.9)$$

There exists an explicitly computable piecewise constant function u_1 which is positive a.e. such that

$$\mathcal{P}u_1 = u_1, \quad u_1 \in \text{span}\{F_0, \dots, F_{n-1}\}, \quad \int_0^1 u_1(x) dx = 1. \quad (2.10)$$

Moreover, there exists $C < \infty$ such that for every $r \in \mathbb{N}$ and any $g \in \text{span}\{F_0, \dots, F_{n-1}\}$ we have

$$\left\| (\mathcal{P}^r g)(\cdot) - u_1(\cdot) \int_0^1 g(t) dt \right\|_{L^\infty} \leq C |\lambda_2|^r \|g\|_{L^1}. \quad (2.11)$$

Proof. We have

$$\mathcal{P}F_{j-1} = \sum_{i=1}^n \mathcal{T}_{ij} F_{i-1}, \quad 1 \leq j \leq n, \quad \mathcal{T} = \begin{bmatrix} q\beta^{-1} & 1 & 0 & \dots & 0 & 0 \\ q\beta^{-2} & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ q\beta^{-(n-1)} & 0 & 0 & \dots & 0 & 1 \\ q\beta^{-n} & 0 & 0 & \dots & 0 & 0 \end{bmatrix},$$

then \mathcal{T} is left-stochastic by (1.2). Observe that

$$z \text{Id}_n - \mathcal{T} = \begin{bmatrix} z - q\beta^{-1} & -1 & 0 & \dots & 0 & 0 \\ -q\beta^{-2} & z & -1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -q\beta^{-(n-1)} & 0 & 0 & \dots & z & -1 \\ -q\beta^{-n} & 0 & 0 & \dots & 0 & z \end{bmatrix}.$$

Expanding the determinant with respect to the first row, we get

$$\det(z \text{Id}_n - \mathcal{T}) = (z - q\beta^{-1})z^{n-1} + \det(\mathcal{T}_{n-1})$$

where

$$\mathcal{T}_{n-1} = \begin{bmatrix} -q\beta^{-2} & -1 & \dots & 0 & 0 \\ -q\beta^{-3} & z & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -q\beta^{-(n-1)} & 0 & \dots & z & -1 \\ -q\beta^{-n} & 0 & \dots & 0 & z \end{bmatrix}.$$

By recursion, we get

$$\begin{aligned} \det(z \operatorname{Id}_n - \mathcal{T}) &= (z - q\beta^{-1})z^{n-1} - q\beta^{-2}z^{n-2} - \dots - q\beta^{-(n-1)}z - q\beta^{-n} \\ &= \beta^{-n} P_{n,q}(z\beta). \end{aligned}$$

Thus, λ is an eigenvalue if and only if $\lambda\beta$ is a zero of $P_{n,q}$, hence all eigenvalues are simple due to Lemma B.1 (i) and (iii). While $\lambda_1 = 1$ (notice that $\lambda_1 = 1$ is an eigenvalue due to (1.2)), all other eigenvalues are in absolute value less than $\beta^{-1} < 1$ due to Lemma B.1(iii). Since the product of all roots of $P_{n,q}$ must equal $(-1)^{n-1}q$, we have

$$\beta|\beta\lambda_2| \cdots |\beta\lambda_n| = q.$$

If λ_2 has the second largest modulus, we have $q \leq \beta^n|\lambda_2|^{n-1}$, which proves the lower bound in (2.9).

Now, let us compute an eigenfunction corresponding to the eigenvalue 1. We solve the system

$$\begin{bmatrix} 1 - q\beta^{-1} & -1 & 0 & \dots & 0 & 0 \\ -q\beta^{-2} & 1 & -1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -q\beta^{-(n-1)} & 0 & 0 & \dots & 1 & -1 \\ -q\beta^{-n} & 0 & 0 & \dots & 0 & 1 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_{n-1} \\ s_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}.$$

We may choose s_1 as a free variable. In that case, we may choose

$$\begin{aligned} s_1 &= 1, \\ s_2 &= 1 - q\beta^{-1}, \\ s_3 &= 1 - q\beta^{-1} - q\beta^{-2}, \\ &\vdots \\ s_n &= 1 - q\beta^{-1} - \dots - q\beta^{n-1} = q\beta^{-n}. \end{aligned}$$

Now, let us define (see (2.4)) $\tilde{F}_k(x) = \sqrt{q}\beta^{-(k+1)/2} F_k(x)$ for $0 \leq k \leq n-1$. They form an L^2 -orthonormal basis in the span of $\{F_0, \dots, F_{n-1}\}$. The restriction of \mathcal{P} to

this subspace, in the new basis, will have a matrix (here $1 \leq i, j \leq n$)

$$\begin{aligned}\tilde{\mathcal{T}}_{ij} &:= \langle \tilde{F}_{i-1}, \mathcal{P} \tilde{F}_{j-1} \rangle = \sqrt{q} \beta^{-j/2} \langle \tilde{F}_{i-1}, F_{j-1} \rangle = \sqrt{q} \beta^{-j/2} \sum_{r=1}^n \mathcal{T}_{rj} \langle \tilde{F}_{i-1}, F_{r-1} \rangle \\ &= \beta^{i/2} \mathcal{T}_{ij} \beta^{-j/2}.\end{aligned}$$

Since \mathcal{T} and $\tilde{\mathcal{T}}$ are similar, $\tilde{\mathcal{T}}$ has the same spectrum as \mathcal{T} . Moreover, the vector \tilde{s} with coordinates $\tilde{s}_j = \beta^{j/2} s_j$, where $1 \leq j \leq n$, is a not-normalized eigenvector of $\tilde{\mathcal{T}}$ corresponding to the eigenvalue 1. The adjoint matrix $\tilde{\mathcal{T}}^*$ has the matrix elements

$$(\tilde{\mathcal{T}}^*)_{ij} = \tilde{\mathcal{T}}_{ji} = \beta^{j/2} \mathcal{T}_{ji} \beta^{-i/2}.$$

By direct computation, using that $\sum_{j=1}^n \tilde{\mathcal{T}}_{ji} = 1$ for all i , we can check that the vector \tilde{t} with entries $\tilde{t}_j = \beta^{-j/2}$ is an eigenvector of $\tilde{\mathcal{T}}^*$ corresponding to the same eigenvalue 1.

Getting back to functions, the operator \mathcal{P} has an eigenfunction $u(x)$ corresponding to eigenvalue 1 given a.e. by

$$u(x) = \sum_{j=1}^n \tilde{s}_j \tilde{F}_{j-1}(x) = \sqrt{q} \sum_{j=1}^n s_j F_{j-1}(x) > 0,$$

and we denote by

$$u_1(x) := \frac{u(x)}{\int_0^1 u(t) dt}, \quad \int_0^1 u_1(x) dx = 1,$$

which satisfies (2.10).

Using the information we have about the eigenvector \tilde{t} of $\tilde{\mathcal{T}}^*$, the adjoint \mathcal{P}^* of \mathcal{P} seen as an operator on the span of $\{F_0, \dots, F_{n-1}\}$ has an eigenfunction

$$w(x) = \sum_{j=1}^n \tilde{t}_j \tilde{F}_{j-1}(x) = \sqrt{q} \sum_{j=1}^n \beta^{-j} F_{j-1}(x) = q^{-1/2} \chi_{[0,1]}(x), \quad \mathcal{P}^* \chi_{[0,1]} = \chi_{[0,1]}.$$

Then the rank-one Riesz projection corresponding to the eigenvalue 1 can be written as

$$\Pi_1 = |u_1\rangle\langle\chi_{[0,1]}|, \quad \Pi_1^2 = \Pi_1.$$

Moreover, we may write

$$\mathcal{P}|_{\text{span}\{F_0, \dots, F_{n-1}\}} = \Pi_1 + \sum_{j=2}^n \lambda_j \Pi_j$$

where each projection has rank one and $\Pi_j \Pi_k = \delta_{jk} \Pi_k$. Now, if g is in the span of $\{F_0, \dots, F_{n-1}\}$, we have

$$\mathcal{P}^r g = u_1 \int_0^1 g(t) dt + \sum_{j=2}^n \lambda_j^r \Pi_j g.$$

Since each Π_j is a rank one operator of the form

$$\left(\frac{1}{\langle v_j, u_j \rangle_{L^2}} \right) |u_j \rangle \langle v_j|$$

with u_j and v_j bounded functions in the span of $\{F_0, \dots, F_{n-1}\}$, we have

$$\|\Pi_j g\|_{L^\infty} \leq C \|g\|_{L^1}, \quad 2 \leq j \leq n. \quad \blacksquare$$

2.2.2. Finalizing the proof of Theorem 1.2. The first step is to approximate f with piecewise constant functions using its Lipschitz property. For example, using the first layer in Figure 2 we have (in the sup-norm)

$$f - \sum_{k_1=0}^{n-1} \sum_{j_{k_1}=0}^{q-1} f(t_{k_1}^{(j_{k_1})}) \beta^{-1-k_1} F_{k_1}^{(j_{k_1})} = \mathcal{O}(L_f \beta^{-1}),$$

where $F_{k_1}^{(j_{k_1})}$ is defined in (2.3). The error is largest on the interval between 0 and q/β , because the distance between two consecutive points is only β^{-1} . On the other intervals, where $k_1 \geq 1$, the distance between two consecutive points is at least β^{-2} and the error is of order β^{-2} or better.

It is possible to improve the above estimate and get a global error of order β^{-2} . To achieve this, we have to refine the interval $[0, q/\beta]$ by going to the second layer, while keeping unchanged the other intervals where $k_1 \geq 1$. This leads to

$$\begin{aligned} f - & \sum_{j_0=0}^{q-1} \sum_{k_2=0}^{n-1} \sum_{j_{k_2}=0}^{q-1} f(t_{0,k_2}^{(j_0, j_{k_2})}) \beta^{-2-k_2} F_{0,k_2}^{(j_0, j_{k_2})} \\ & - \sum_{k_1=1}^{n-1} \sum_{j_{k_1}=0}^{q-1} f(t_{k_1}^{(j_{k_1})}) \beta^{-1-k_1} F_{k_1}^{(j_{k_1})} = \mathcal{O}(L_f \beta^{-2}). \end{aligned}$$

If we want a global error of order β^{-3} , we need to go up to the third layer on the subintervals where $k_2 = 0$ in the triple sum, and to the second layer on the subintervals where $k_1 = 1$ in the double sum.

If we want a global error of order β^{-n-1} , even the old subinterval $[1 - q/\beta^n, 1]$ corresponding to $k_1 = n - 1$ in the first layer has now to be refined with a second layer.

In the general case, let us fix some integer $M \geq n + 1$ and let us investigate in which way we should split the interval $[0, 1]$ so that the error we make is not bigger than β^{-M+n} . From the above discussion, this amounts to adjust the length of the subintervals obtained by picking points from different layers.

For a given layer of order $m \geq 1$, the support of $F_{k_1, \dots, k_m}^{(j_{k_1}, \dots, j_{k_m})}$ has a width of $\beta^{-m-k_1-\dots-k_m}$. We have the following double inequality:

$$\begin{aligned} k_1 + k_2 + \dots + k_m + m &< k_1 + k_2 + \dots + k_m + k_{m+1} + (m+1) \\ &\leq k_1 + k_2 + \dots + k_m + m + n, \end{aligned} \quad (2.12)$$

where the first one is trivial while the second one is due to $k_{m+1} \leq n - 1$.

Remember that $M \geq n + 1$. The first layer has $m = 1$ with $k_1 + 1 < M$ because $k_1 \leq n - 1$. By refining each subinterval of layer 1 by adding points of higher layers, we have two alternatives:

- either

$$k_1 + k_2 + \dots + k_m + k_{m+1} + (m+1) < M$$

- or

$$k_1 + k_2 + \dots + k_m + m < M \leq k_1 + k_2 + \dots + k_m + k_{m+1} + (m+1).$$

If the first alternative is realized, then we perform another refinement. If the second alternative is realized (this must happen at some point), then by coupling it with (2.12), we obtain

$$k_1 + k_2 + \dots + k_m + m < M \leq n + k_1 + k_2 + \dots + k_m + m. \quad (2.13)$$

No further refinement is performed on a subinterval where (2.13) holds. Also, when (2.13) is satisfied, we write

$$m + k_1 + \dots + k_m \approx M.$$

Replacing f on the support of $\chi_{[t_{k_1, \dots, k_m}^{(j_{k_1}, \dots, j_{k_m})}, t_{k_1, \dots, k_m}^{(j_{k_1}, \dots, j_{k_m}+1)}]}^{(j_{k_1}, \dots, j_{k_m})}$ with $f(t_{k_1, \dots, k_m}^{(j_{k_1}, \dots, j_{k_m})})$ and using the Lipschitz property of f , the error is of order $\beta^{-m-k_1-\dots-k_m}$. Thus, we have (even in the sup-norm)

$$\sum_{\substack{m+k_1+\dots+k_m \approx M \\ j_{k_1}, \dots, j_{k_m}}} f(t_{k_1, \dots, k_m}^{(j_{k_1}, \dots, j_{k_m})}) \beta^{-m-k_1-\dots-k_m} F_{k_1, \dots, k_m}^{(j_{k_1}, \dots, j_{k_m})} = \mathcal{O}(L_f \beta^{-M}).$$

According to (2.2), \mathcal{P} is a non-expansive map on L^1 , hence there exists a constant $C < \infty$ such that for all $N \geq 1$ we have

$$\left\| \mathcal{P}^N f - \sum_{\substack{m+k_1+\dots+k_m \approx M \\ j_{k_1}, \dots, j_{k_m}}} f(t_{k_1, \dots, k_m}^{(j_{k_1}, \dots, j_{k_m})}) \beta^{-m-k_1-\dots-k_m} \mathcal{P}^N F_{k_1, \dots, k_m}^{(j_{k_1}, \dots, j_{k_m})} \right\|_{L^1} \leq C L_f \beta^{-M}.$$

If N is larger than M , which is already larger than $m + k_1 + \dots + k_m$ (due to (2.13)), then according to (2.7) in Lemma 2.1, we have that both $\mathcal{P}^N F_{k_1, \dots, k_m}^{(j_{k_1}, \dots, j_{k_m})}$ and $\mathcal{P}^M F_{k_1, \dots, k_m}^{(j_{k_1}, \dots, j_{k_m})}$ belong to the invariant subspace, are non-negative, and their L^1 norm is constant equal to 1 due to (2.1). Using (2.11) with $r = N - M$, we have that in the L^1 sense,

$$\begin{aligned} (\mathcal{P}^N f)(\cdot) - \sum_{\substack{m+k_1+\dots+k_m \approx M \\ j_{k_1}, \dots, j_{k_m}}} f(t_{k_1, \dots, k_m}^{(j_{k_1}, \dots, j_{k_m})}) \beta^{-m-k_1-\dots-k_m} (u_1(\cdot) + \mathcal{O}(|\lambda_2|^{N-M})) \\ = \mathcal{O}(L_f \beta^{-M}), \end{aligned}$$

where the bounding constants appearing in the two errors are independent of N and M . Up to another error of order $\mathcal{O}(\beta^{-M})$, we may replace the Riemann sum with $\int_0^1 f(t) dt$. Hence, we have

$$\mathcal{P}^N f - u_1 \int_0^1 f(t) dt = \mathcal{O}(\|f\|_{L^\infty} |\lambda_2|^{N-M}) + \mathcal{O}(L_f \beta^{-M}), \quad N > M.$$

Given $N \gg 1$, we may choose an ‘‘optimal’’ M as a function of N such that

$$|\lambda_2|^{N-M} \sim \beta^{-M},$$

where \sim means that they may differ by a numerical factor which is independent on N . If $n = 2$, then $|\lambda_2| = q\beta^{-2}$, hence we may choose M to be the integer part of x where x solves the equation

$$x \ln(\beta) = (N - x) \ln(\beta^2/q),$$

which gives $x = K_2 N$ with K_2 in (1.5).

Also, since $|\lambda_2| < 1/\beta$ for all n (see (2.9)), by choosing M to be the integer part of $N/2$, we see that the decay is always faster than $\beta^{-N/2}$.

3. Proof of Theorem 1.4

3.1. Proof of (i)

We only prove the result for $q > 1$. Let us first show that $j/\beta < x_j < (j + 1)/\beta$ for all $0 \leq j \leq q - 1$. The first inequality follows directly from the definition of x_j , while the second one is equivalent with

$$q\beta^{-2} + \dots + q\beta^{-n} < \beta^{-1} \quad \text{or} \quad q\beta^{-1} + \dots + q\beta^{-(n-1)} < 1,$$

the latter holds true by (1.2). This shows that ψ_0 is well defined on $[0, 1]$ and by convention, it equals zero outside this interval.

In view of (1.4), if $q\beta^{-1} + \dots + q\beta^{-(n-1)} < x < 1$, we have

$$(\mathcal{P}\psi_0)(x) = \beta^{-1} \sum_{j=0}^{q-1} \psi_0\left(\frac{x+j}{\beta}\right).$$

For x in that interval, we also have

$$q\beta^{-2} + \dots + q\beta^{-n} + \frac{j}{\beta} = x_j < \frac{x+j}{\beta} < \frac{j+1}{\beta}, \quad 0 \leq j \leq q-1,$$

which from the definition of ψ_0 it implies

$$(\mathcal{P}\psi_0)(x) = \beta^{-1} \sum_{j=0}^{q-1} e^{2\pi i(x+j)/q} = \beta^{-1} e^{2\pi i x/q} \sum_{j=0}^{q-1} (e^{2\pi i/q})^j = 0.$$

If $0 < x < q\beta^{-1} + \dots + q\beta^{-(n-1)}$, we have

$$(\mathcal{P}\psi_0)(x) = \beta^{-1} \sum_{k=0}^q \psi_0\left(\frac{x+k}{\beta}\right).$$

For x in the above interval, we also have

$$\frac{k}{\beta} < \frac{x+k}{\beta} < \frac{q}{\beta^2} + \dots + \frac{q}{\beta^n} + \frac{k}{\beta} = x_k, \quad 0 \leq k \leq q,$$

which from the definition of ψ_0 it implies

$$(\mathcal{P}\psi_0)(x) = \beta^{-1} \sum_{k=0}^q e^{2\pi i(x+k)/(q+1)} = \beta^{-1} e^{2\pi i x/(q+1)} \sum_{k=0}^q (e^{2\pi i/(q+1)})^k = 0.$$

3.2. Proof of (ii) and (iii)

Let us show that $\tilde{\mathfrak{K}} = u_1^{1/p} \mathfrak{K}(1/u_1^{1/p})$ is an isometry on $L^p([0, 1])$. If $p = \infty$ then this follows directly from the definition in (1.6). If $1 \leq p < \infty$, we have (using (1.7) in the third equality)

$$\begin{aligned} \|\tilde{\mathfrak{K}}(f)\|_{L^p}^p &= \int_0^1 |\tilde{\mathfrak{K}}(f)|^p dx = \int_0^1 u_1 \mathfrak{K}\left(\frac{|f|^p}{u_1}\right) dx \\ &= \int_0^1 (\mathcal{P}u_1) \frac{|f|^p}{u_1} dx = \|f\|_{L^p}^p. \end{aligned}$$

The operator $\tilde{\mathfrak{K}} - z \text{Id} = u_1^{1/p}(\mathfrak{K} - z \text{Id})u_1^{-1/p}$ is invertible if and only if $\mathfrak{K} - z \text{Id}$ is invertible, hence $\tilde{\mathfrak{K}}$ and \mathfrak{K} have the same spectrum. Since $\tilde{\mathfrak{K}}$ is an isometry, it is also injective, hence \mathfrak{K} is injective, too.

Now, let us show that \mathfrak{K} (thus also $\tilde{\mathfrak{K}}$) is not surjective. Using (1.7) and the eigenvector ψ_0 of \mathcal{P} constructed at point (i) (ψ_0 belongs to any $L^{p'}$ with $1 \leq p' \leq \infty$), we have

$$\int_0^1 \overline{\psi_0(x)}(\mathfrak{K}g)(x) dx = 0 \quad \text{for all } g \in L^p, 1 \leq p \leq \infty,$$

which implies that ψ_0 does not belong to the range of \mathfrak{K} . This also implies that $u_1^{1/p}\psi_0$ does not belong to the range of $\tilde{\mathfrak{K}}$.

Thus, $\tilde{\mathfrak{K}}$ is a non-surjective isometry and its spectrum must equal the closed unit disk due to the following result which may be found in [2, Proposition 5.2], but we also prove it here (in a more self-contained way) for the convenience of the reader.

Lemma 3.1. *Assume that U defined on some Banach space is a linear isometry. If U is surjective, then $\sigma(U) \subset \mathbb{S}^1$. If U is not surjective, then $\sigma(U) = \overline{\mathbb{D}}$.*

Proof. An isometry is always injective. Let us first consider the case when U is surjective (thus invertible). Using that $\|Uf\| = \|f\|$ for all f and also $\|U^{-1}g\| = \|U(U^{-1}g)\| = \|g\|$, we conclude that both U and U^{-1} have norm one. Let $z \in \mathbb{C}$ be with $|z| < 1$. Then $U - z \text{Id} = (\text{Id} - zU^{-1})U$ is invertible because $\|zU^{-1}\| < 1$. If $|z| > 1$, we have $U - z \text{Id} = -(\text{Id} - z^{-1}U)z$ which is also invertible. Thus, $\sigma(U)$ is included in the unit circle.

Now, let us consider the case when U is not surjective. Because $\|U\| = 1$, we know that $\sigma(U) \subset \overline{\mathbb{D}}$. Because U is not invertible, then $0 \in \sigma(U)$, hence $\sigma(U)$ has elements which are not on the unit circle. Thus, if the inclusion $\sigma(U) \subset \overline{\mathbb{D}}$ is strict, there must exist a point λ with $|\lambda| < 1$ which belongs to the boundary of $\sigma(U)$. We will now show that λ must be in the resolvent set of U , which would lead to a contradiction.

Since $\lambda \in \partial(\sigma(U))$, there must exist a sequence of points λ_n in the resolvent set of U such that $\lambda_n \rightarrow \lambda$ when $n \rightarrow \infty$. Since $|\lambda| < 1$, there exists $N > 1$ such that $|\lambda_n| \leq (1 + |\lambda|)/2 < 1$ if $n > N$. Using the triangle inequality, we get

$$\|(U - \lambda_n \text{Id})f\| \geq \|Uf\| - |\lambda_n|\|f\| \geq \frac{1 - |\lambda|}{2} \|f\|, \quad n > N.$$

Since $U - \lambda_n \text{Id}$ is invertible, using this inequality with $f = (U - \lambda_n \text{Id})^{-1}g$, we obtain

$$\|(U - \lambda_n \text{Id})^{-1}\| \leq \frac{2}{1 - |\lambda|}, \quad n > N.$$

This uniform bound and the identity

$$U - \lambda \text{Id} = (\text{Id} + (\lambda_n - \lambda)(U - \lambda_n \text{Id})^{-1})(U - \lambda_n \text{Id})$$

show that the right-hand side must be invertible if n is large enough, hence λ is in the resolvent set of U and cannot belong to the boundary of $\sigma(U)$. \blacksquare

3.3. Proof of (iv).

We know from (ii) that $u_1^{1/2} \mathfrak{R} u_1^{-1/2}$ is an isometry on the Hilbert space $L^2([0, 1])$. Then (1.7) implies that $\mathcal{P} = \mathfrak{R}^*$ and

$$(u^{-1/2} \mathcal{P} u_1^{1/2})(u_1^{1/2} \mathfrak{R} u_1^{-1/2}) = (u^{1/2} \mathfrak{R} u_1^{-1/2})^* (u_1^{1/2} \mathfrak{R} u_1^{-1/2}) = \text{Id}. \quad (3.1)$$

The isometry $u_1^{1/2} \mathfrak{R} u_1^{-1/2}$ has norm one. If $|z| < 1$, then ψ_z is different from zero and can be written with the help of a Neumann series. Finally,

$$\begin{aligned} \mathcal{P} \psi_z &= \mathcal{P} \psi_0 + \sum_{m \geq 1} z^m u_1^{1/2} (u_1^{-1/2} \mathcal{P} u_1^{1/2}) (u_1^{1/2} \mathfrak{R} u_1^{-1/2})^m u_1^{-1/2} \psi_0 \\ &= \sum_{m \geq 1} z^m u_1^{1/2} (u_1^{1/2} \mathfrak{R} u_1^{-1/2})^m u_1^{-1/2} \psi_0 = z \psi_z, \end{aligned}$$

where in the second equality we used $\mathcal{P} \psi_0 = 0$ and (3.1).

A. The greedy algorithm

Let $x \in [0, 1)$. Applying the map T_β , we get that

$$T_\beta(x) = \beta x - \lfloor \beta x \rfloor \in [0, 1),$$

where $\lfloor \cdot \rfloor$ is the floor function and $q < \beta = \beta_{n,q} < q + 1$ in view of Lemma B.1 (i). By iterating the map T_β , we define the j -th greedy coefficient as

$$x_j := \lfloor \beta T_\beta^{(j-1)}(x) \rfloor \quad \text{for all } j \geq 1 \text{ with } T_\beta^0(x) := x. \quad (\text{A.1})$$

The following lemma describes the greedy algorithm.

Lemma A.1. *With the definitions above, and with β as in (1.2), if $x \in [0, 1)$ we have*

$$x = \sum_{j=1}^{\infty} x_j \beta^{-j}. \quad (\text{A.2})$$

The scaled remainder $\beta^k(x - \sum_{j=1}^k x_j \beta^{-j})$ obeys

$$\beta^k \left(x - \sum_{j=1}^k x_j \beta^{-j} \right) = T_\beta^k(x). \quad (\text{A.3})$$

Moreover, the greedy coefficients satisfy three restrictions:

- (1) $x_j \in \{0, 1, \dots, q\}$ for all $j \geq 1$;
- (2) $x_j = q$ for n successive j 's cannot occur;
- (3) it cannot happen that the sequence of x_j 's ends in the infinite sequence (c_1, c_2, \dots) where $c_m = q - 1$ for all $m \geq 1$, and all the other c_j 's, with j not dividing n , are equal to q .

Proof. (A.3) is true by definition for $k = 1$. Assuming this equation for some $k \geq 1$, we have

$$\begin{aligned} T_\beta^{(k+1)}(x) &= T_\beta(T_\beta^k(x)) = \beta T_\beta^k(x) - \lfloor \beta T_\beta^k \rfloor \\ &= \beta^{k+1} \left(x - \sum_{j=1}^k x_j \beta^{-j} \right) - x_{k+1} \\ &= \beta^{k+1} \left(x - \sum_{j=1}^{k+1} x_j \beta^{-j} \right). \end{aligned}$$

Since $T_\beta: [0, 1) \rightarrow [0, 1)$ and $\beta > 1$, the series in (A.2) converges.

The first restriction on the x_j 's follows from their definition:

$$0 \leq x_j = \lfloor \beta T_\beta^{(j-1)}(x) \rfloor \leq \lfloor \beta \rfloor = q,$$

because of Lemma B.1 (i).

To prove the second restriction on the coefficients, suppose that there exists some $k \geq 0$ such that $x_{k+j} = q$, where $j \in \{1, \dots, n\}$. Using (1.2), we have

$$\sum_{j=1}^n q \beta^{-(k+j)} = \beta^{-k}.$$

If $k = 0$, then $x \geq 1$, which is a contradiction. If $k \geq 1$, then using (A.3) and (A.2) we have

$$T_\beta^k(x) = \beta^k \left(x - \sum_{j=1}^k x_j \beta^{-j} \right) = \beta^k \left(\sum_{j=k+1}^{\infty} x_j \beta^{-j} \right) \geq \beta^k \left(\sum_{j=k+1}^{n+k} q \beta^{-j} \right) = 1$$

contradicting $T_\beta: [0, 1) \rightarrow [0, 1)$.

In order to prove the third restriction, let us assume that there exists $x \in [0, 1)$ whose greedy expansion ends with $\beta^{-k} \sum_{j \geq 1} c_j \beta^{-j}$ for some $k \geq 0$, i.e. $x_{k+j} = c_j$ for $j \geq 1$. By repeatedly using (1.2) (see also Figure 2), we have

$$\begin{aligned} 1 &= \sum_{j=1}^{n-1} q\beta^{-j} + (q-1)\beta^{-n} + \beta^{-n} \\ &= \sum_{j=1}^{n-1} q\beta^{-j} + (q-1)\beta^{-n} + \beta^{-n} \left(\sum_{j=1}^{n-1} q\beta^{-j} + (q-1)\beta^{-n} \right) + \beta^{-2n} \\ &= \dots = \sum_{j \geq 1} c_j \beta^{-j}, \end{aligned}$$

hence $x = \sum_{j=1}^k x_j \beta^{-j} + \beta^{-k}$ and thus by (A.3) $T_\beta^k(x) = 1$, contradiction. ■

Lemma A.1 has shown that the greedy algorithm gives a unique output for the coefficients x_j defined in (A.1) for any number $x \in [0, 1)$, and these coefficients obey three necessary conditions. In the next lemma we will show, in particular, that any expansion for $x \in [0, 1)$ satisfying all these three conditions must be the greedy one.

Lemma A.2. *Suppose*

$$x = \sum_{j=1}^{\infty} \tilde{x}_j \beta^{-j} \tag{A.4}$$

where the coefficients $\tilde{x}_j \in \{0, 1, \dots, q\}$ also satisfy the condition that no n consecutive coefficients equal q . Let $c_j = q-1$ if n divides j , and $c_j = q$ otherwise. Let x_j be defined as in (A.1). Then one of the following possibilities occurs:

- (1) $\tilde{x}_j = c_j$ for all j in which case $x = 1$;
- (2) $x < 1$ with $\tilde{x}_j = x_j$ for all j , i.e., x is written in the greedy representation;
- (3) $x < 1$ and there exists some $k \geq 1$ such that $\tilde{x}_j = x_j$ for $j < k$ (if $k \geq 2$), $\tilde{x}_k = x_k - 1$, and $\tilde{x}_{k+j} = c_j$ for $j \geq 1$. In this case, the finite sum $x = \sum_{j=1}^k x_j \beta^{-j}$ is the greedy representation of x which is different from (A.4).

Proof. The largest possible value of $\sum_{j=1}^{\infty} \tilde{x}_j \beta^{-j}$, which can be achieved with the \tilde{x}_j obeying the two restrictions of the current lemma, equals 1. This is the case if and only if $\tilde{x}_j = c_j$, for all j .

Assuming $x < 1$, suppose that the sequence $(\tilde{x}_1, \tilde{x}_2, \dots)$ does not end in the infinite sequence (c_1, c_2, \dots) so that the scaled remainder, $\beta^k \sum_{j=k+1}^{\infty} \tilde{x}_j \beta^{-j} < 1$ for all $k \geq 1$ (we have already assumed this for $k = 0$). Then $\tilde{x}_j = x_j$ for all j : to see this, we have $x_1 = \lfloor \beta x \rfloor$ and $\beta x = \tilde{x}_1 + \beta \sum_{j=2}^{\infty} \tilde{x}_j \beta^{-j} = \tilde{x}_1 + t$ with $t \in [0, 1)$. Thus, $x_1 = \tilde{x}_1$. A simple induction gives $x_j = \tilde{x}_j$ for all j .

On the other hand, suppose k is the first integer such that $\beta^k \sum_{j=k+1}^{\infty} \tilde{x}_j \beta^{-j} = 1$. Then $\tilde{x}_{k+j} = c_j$, $j \geq 1$ and $\tilde{x}_j = x_j$, $j < k$, $\tilde{x}_k + 1 = x_k \leq q$. Thus, $\tilde{x}_k \leq q - 1$. If $\tilde{x}_k = q - 1$, the previous (if there are that many) $n - 1$ \tilde{x}_j 's cannot equal q because that would violate the definition of k . Thus, $x = \sum_{j=1}^k x_j \beta^{-j}$, the greedy representation, is a different representation of x . \blacksquare

B. Properties of $\beta_{n,q}$

The following lemma is given for the sake of the reader and collects in one place a number of known results [5, 13].

Lemma B.1. *Let $n, q \in \mathbb{N}$ with $n \geq 2$ and $1 \leq q$. Let*

$$P_{n,q}(z) = z^n - q(z^{n-1} + z^{n-2} + \cdots + z + 1)$$

with $z \in \mathbb{C}$.

- (i) *$P_{n,q}$ has only one positive root $\beta_{n,q}$, which also obeys $q < \beta_{n,q} < q + 1$.*
- (ii) *All roots have algebraic multiplicity one.*
- (iii) *The other roots of $P_{n,q}$ satisfy $(q/(q+2))^{1/n} < |z| < 1$. In particular, $\beta_{n,q}$ is a Pisot number.*
- (iv) *Fix $\alpha \in (q, q+1)$. Then there exists $n_0 \geq 2$ such that $(q+1) - q\alpha^{-n} \leq \beta_{n,q} < q+1$ for all $n \geq n_0$.*

Proof. (i) If $x > 0$, we define $f(x) := x^{-n} P_{n,q}(x) = 1 - q(x^{-1} + \cdots + x^{-n})$. We have that $f' > 0$, which means that it can have at most one positive root.

If $q = 1$, we have

$$f(1) = 1 - n < 0, \quad f(2) = 2^{-n} > 0$$

hence there exists a unique, simple root between 1 and 2.

For $q > 1$, we have

$$\begin{aligned} f(q) &= 1 - \frac{1 - q^{-n}}{1 - q^{-1}} = \frac{q^{-n} - q^{-1}}{1 - q^{-1}} < 0, \\ f(q+1) &= 1 - \frac{q}{q+1} \frac{1 - (q+1)^{-n}}{1 - (q+1)^{-1}} = (q+1)^{-n} > 0; \end{aligned}$$

thus, there always exists a unique positive root $\beta_{n,q} \in (q, q+1)$.

(ii) Now, let us prove that all the other roots are also simple. If $z \neq 1$, we have

$$P_{n,q}(z) = z^n - q \frac{z^n - 1}{z - 1} = \frac{z^{n+1} - (q+1)z^n + q}{z - 1} =: \frac{Q_{n,q}(z)}{z - 1}.$$

Since $z = 1$ is not a root, $P_{n,q}(z)$ has the same roots (those different from 1) as $Q_{n,q}(z)$. If $z_1 \neq 1$ is a degenerate root of $P_{n,q}$, i.e., $P_{n,q}(z_1) = P'_{n,q}(z_1) = 0$, then we also have $Q_{n,q}(z_1) = Q'_{n,q}(z_1) = 0$. But

$$Q'_{n,q}(z) = (n+1)z^n - (q+1)nz^{n-1} = (n+1)z^{n-1}\left(z - \frac{(q+1)n}{n+1}\right)$$

and since 0 is not a root, we must have $z_1 = (q+1)n/(n+1)$, which is positive. But we know that $P_{n,q}$ only has a non-degenerate positive root, which is a contradiction.

(iii) We want to show that $Q_{n,q}$ has exactly n roots inside the closed unit complex disk. Let $F(z) = z^{n+1} + q$ and $G(z) = -(q+1)z^n$. If $|z| = 1 + \varepsilon$ with $\varepsilon > 0$ small, we have

$$|F(z)| \leq q + 1 + (n+1)\varepsilon + \mathcal{O}(\varepsilon^2), \quad |G(z)| = (q+1)(1 + n\varepsilon) + \mathcal{O}(\varepsilon^2),$$

and since $nq > 1$, we have that $|G(z)| > |F(z)|$ on $|z| = 1 + \varepsilon$ if ε is small enough. This implies that the function

$$H_t(z) := tF(z) + G(z), \quad H_0(z) = G(z), \quad H_1(z) = Q_{n,q}(z)$$

obeys $|H_t(z)| \geq |G(z)| - |F(z)| > 0$ on the circle $|z| = 1 + \varepsilon$ for all $t \in [0, 1]$. Thus, the number of zeros of H_t inside the disk $|z| \leq 1 + \varepsilon$ is constant in t and equals n . Taking the limit $\varepsilon \downarrow 0$, we conclude that $Q_{n,q}$ has exactly n zeros inside the complex closed unit disk. Now, if z is a zero with $|z| = 1$, we have

$$|z^{n+1} + q| = (q+1)|z^n| = q+1$$

which is possible only for $z^{n+1} = 1$. But then $(q+1)z^n = q+1$, hence $z^n = 1$. This implies that $z = 1$. Hence, $P_{n,q}$ has exactly $n-1$ complex roots inside the open unit disk.

Now, let z_1 be such a root with $|z_1| < 1$ and $Q_{n,q}(z_1) = 0$. Then

$$(q+1)|z_1|^n = |(q+1)z_1^n| \geq q - |z_1|^{n+1} > q - |z_1|^n$$

which leads to

$$|z_1|^n > \frac{q}{q+2}.$$

(iv) Fix any $n_0 \geq 2$ and let $n \geq n_0$. We have

$$\frac{1}{\beta_{n,q}} + \cdots + \frac{1}{\beta_{n,q}^{n_0}} \leq \frac{1}{\beta_{n,q}} + \cdots + \frac{1}{\beta_{n,q}^n} = \frac{1}{q},$$

hence $\beta_{n,q} \geq \beta_{n_0,q}$. Also, $Q_{n,q}(\beta_{n,q}) = 0$, hence $\beta_{n,q}$ solves $\beta_{n,q} = q + 1 - q/\beta_{n,q}^n$. Thus,

$$q + 1 - \frac{q}{\beta_{n_0,q}^n} \leq \beta_{n,q} < q + 1, \quad 2 \leq n_0 \leq n.$$

Now, we can choose n_0 large enough such that $\beta_{n_0,q} > \alpha$ and we are done. ■

Funding. This work was funded by the Independent Research Fund Denmark–Natural Sciences, grant DFF–10.46540/2032-00005B. G. Marcelli gratefully acknowledges financial support from the European Research Council through the ERC CoG UniCoSM, grant agreement n.724939.

References

- [1] A. Abdesselam, The weakly dependent strong law of large numbers revisited. *Grad. J. Math.* **3** (2018), no. 2, 94–97 Zbl 1497.60030 MR 3903054
- [2] R. F. Allen and F. Colonna, Isometries and spectra of multiplication operators on the Bloch space. *Bull. Aust. Math. Soc.* **79** (2009), no. 1, 147–160 Zbl 1163.47027 MR 2486890
- [3] F. Blanchard, β -expansions and symbolic dynamics. *Theoret. Comput. Sci.* **65** (1989), no. 2, 131–141 Zbl 0682.68081 MR 1020481
- [4] A. Boyarsky and P. Góra, *Laws of chaos*. Invariant measures and dynamical systems in one dimension. Probab. Appl., Birkhäuser, Boston, MA, 1997 Zbl 0893.28013 MR 1461536
- [5] A. Brauer, On algebraic equations with all but one root in the interior of the unit circle. *Math. Nachr.* **4** (1951), 250–257 Zbl 0042.01501 MR 0041975
- [6] É. Charlier, C. Cisternino, and K. Dajani, Dynamical behavior of alternate base expansions. *Ergodic Theory Dynam. Systems* **43** (2023), no. 3, 827–860 Zbl 1525.11009 MR 4544145
- [7] K. Dajani and C. Kalle, *A first course in ergodic theory*. Chapman & Hall/CRC, Boca Raton, FL, 2021 Zbl 1494.37001 MR 4701087
- [8] P. Góra, Invariant densities for generalized β -maps. *Ergodic Theory Dynam. Systems* **27** (2007), no. 5, 1583–1598 Zbl 1123.37015 MR 2358979
- [9] I. W. Herbst, J. Møller, and A. M. Svane, How many digits are needed? *Methodol. Comput. Appl. Probab.* **26** (2024), no. 1, article no. 5 Zbl 1539.60035 MR 4702653
- [10] I. W. Herbst, J. Møller, and A. M. Svane, The asymptotic distribution of the scaled remainder for pseudo golden ratio expansions of a continuous random variable. *Methodol. Comput. Appl. Probab.* **27** (2025), no. 1, article no. 10 Zbl 08009211 MR 4858127
- [11] V. Komornik, P. Loreti, and M. Pedicini, A quasi-ergodic approach to non-integer base expansions. *J. Number Theory* **254** (2024), 146–168 Zbl 1530.11010 MR 4636755
- [12] A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations. *Trans. Amer. Math. Soc.* **186** (1973), 481–488 (1974) Zbl 0298.28015 MR 0335758
- [13] E. P. Miles, Jr., Generalized Fibonacci numbers and associated matrices. *Amer. Math. Monthly* **67** (1960), 745–752 Zbl 0103.27203 MR 0123521
- [14] W. Parry, On the β -expansions of real numbers. *Acta Math. Acad. Sci. Hungar.* **11** (1960), 401–416 Zbl 0099.28103 MR 0142719
- [15] M. Pedicini, Greedy expansions and sets with deleted digits. *Theoret. Comput. Sci.* **332** (2005), no. 1-3, 313–336 Zbl 1080.11009 MR 2122508

- [16] A. Rényi, [Representations for real numbers and their ergodic properties](#). *Acta Math. Acad. Sci. Hungar.* **8** (1957), 477–493 Zbl 0079.08901 MR 0097374
- [17] S. Suzuki, [Eigenfunctions of the Perron–Frobenius operators for generalized beta-maps](#). *Dyn. Syst.* **37** (2022), no. 1, 9–28 Zbl 1505.37038 MR 4408074
- [18] P. Walters, [Equilibrium states for \$\beta\$ -transformations and related transformations](#). *Math. Z.* **159** (1978), no. 1, 65–88 Zbl 0357.28014 MR 0466492

Received 14 February 2025; revised 22 April 2025.

Horia D. Cornean

Department of Mathematical Sciences, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, Denmark; cornean@math.aau.dk

Ira W. Herbst

Department of Mathematics, University of Virginia, 141 Cabell Drive, Kerchof Hall, Charlottesville, VA 22904, USA; iwh@virginia.edu

Giovanna Marcelli

Dipartimento di Matematica e Fisica, Università di Roma Tre, L.go S. L. Murialdo 1, 00146 Roma, Italy; giovanna.marcelli@uniroma3.it