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Spectral and dynamical results related
to certain non-integer base expansions on the unit interval

Horia D. Cornean, Ira W. Herbst, and Giovanna Marcelli

Abstract. We consider certain non-integer base ˇ-expansions of Parry’s type and we study
various properties of the transfer (Perron–Frobenius) operator P WLp.Œ0; 1�/! Lp.Œ0; 1�/ with
p � 1 and its associated composition (Koopman) operator, which are induced by a discrete
dynamical system on the unit interval related to these ˇ-expansions.

We show that if f is Lipschitz, then the iterated sequence ¹P Nf ºN�1 converges expo-
nentially fast (in the L1 norm) to an invariant state corresponding to the eigenvalue 1 of P .
This “attracting” eigenvalue is not isolated: for 1 � p � 2 we show that the point spectrum of
P also contains the whole open complex unit disk and we explicitly construct an eigenfunction
for every z with jzj < 1.

1. Introduction and main results

Let us fix two integers n � 2 and q � 1. There exists a unique positive number (see
Lemma B.1)

ˇn;q � ˇ 2 .q; q C 1/ (1.1)

which obeys the following equation:

1 D
q

ˇ
C

q

ˇ2
C � � � C

q

ˇn
: (1.2)

We consider representations of real numbers in non-integer base ˇ of the type (1.2),
which are called ˇ-expansions. Expansions in non-integer bases were firstly intro-
duced by the seminal work of Rényi [16], as a generalization of the standard integer
base expansions. The original method to determine the “digits” is the greedy algo-
rithm [14–16], which is tightly connected to the study of the map

Tˇ W Œ0; 1/ 7! Œ0; 1/; Tˇ .x/ D ˇx � bˇxc; (1.3)
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see Appendix A for some of its basic properties. Without putting certain restrictions
on the coefficients, such expansions are far from being unique (see [11] and references
therein). Such expansions are also related to symbolic dynamics [3, 14, 16], which is
not the main focus of the current paper.

We are mostly interested in the investigation of certain spectral and dynamical
properties of the transfer (or Perron–Frobenius) operator P WLp.Œ0; 1�/ 7! Lp.Œ0; 1�/

with p � 1, and its associated composition (or Koopman) operator K, which are
induced by the above map Tˇ , see [12, 17, 18].

In general, the transfer operator P describes the discrete time evolution of certain
probability densities associated to some stochastic variables, evolution related to the
iteration of a certain map, in our case Tˇ , see [4, 6, 8]. More specific details about
these objects will be given in the subsequent part of the introduction, where we will
also formulate our main results: Theorems 1.2 and 1.4. There, it is stated that if f
is Lipschitz, then the iterates PNf converge exponentially fast (in the L1 norm and
N !1) to an invariant state corresponding to the eigenvalue 1 of P . On the other
hand, the eigenvalue 1 is far from being isolated: if 1 � p � 2 we show that the point
spectrum of P also contains the open complex unit disk; namely, for every jzj < 1

and we explicitly construct a corresponding  z such that P z D z z .

1.1. The transfer operator

Let us assume that X W� 7! Œ0; 1� is an absolutely continuous stochastic variable with
a probability density function (PDF) denoted by f 2 L1.Œ0; 1�/. More precisely: for
every x � 0,

Prob.X � x/´

xZ
0

f .t/ dt:

Any number X.!/ 2 .0; 1/ has a well-defined “greedy” decomposition of the type
(see Lemma A.1)

X.!/ D
X
k�1

Xk.!/ˇ
�k; Xk.!/ 2 ¹0; 1; : : : ; qº:

The first coefficient X1 defines a discrete stochastic variable X1W� 7! ¹0; : : : ; qº,
where (remember that q < ˇ < q C 1)

X1.!/´ j 2 ¹0; : : : ; qº whenever j=ˇ � X.!/ < .j C 1/=ˇ

which implies

Prob.X1 D j / D Prob
�j
ˇ
� X <

j C 1

ˇ

�
; 0 � j � q:
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Assuming that f .x/D 0 if x 62 Œ0; 1�, then the new stochastic variable zX D ˇ.X �
X1=ˇ/ is also absolutely continuous and has a PDF (denoted by Pf ) which equals

.Pf /.x/ D ˇ�1
qX

jD0

f
�j C x

ˇ

�
: (1.4)

Formula (1.4) is due to the fact that for x � 0 we have

Prob
�
ˇ
�X �X1

ˇ

�
� x

�
D Prob

�
X �

X1 C x

ˇ

�
D

qX
jD0

Prob
�j
ˇ
� X �

j C x

ˇ

�
;

which we then differentiate with respect to x.
In order to formulate our first theorem, we need to state the following result, which

goes back to [14].

Proposition 1.1. There exists a piecewise constant function u1 which is positive a.e.
with

R 1
0
u1.x/ dx D 1 such that Pu1 D u1.

Our first main theorem is as follows.

Theorem 1.2. Let n � 2 and q � 1 be two integers. Let P � Pˇ W L
1.Œ0; 1�/ !

L1.Œ0; 1�/ be defined as in (1.4), where ˇ � ˇn;q is introduced in (1.1). Then there
exist two constants K1.n; q/ � 0 and K2.n; q/ � 1=2 such that for every Lipschitz
function f with jf .x/ � f .y/j � Lf jx � yj we have



PNf � u1

1Z
0

f .t/ dt






L1

� K1.Lf C kf kL1/ˇ
�K2N for all N � 1:

If n D 2, we have

ˇ D
q C

p
q2 C 4q

2
; K2 D

2 � ln.q/= ln.ˇ/
3 � ln.q/= ln.ˇ/

: (1.5)

Remark 1.3. We have a few extra comments.

(i) By using that the map P is non-expansive onL1 (see (2.2)), a density argument
implies that if f 2 L1.Œ0; 1�/, then

lim
N!1





PNf � u1

1Z
0

f .t/ dt






L1

D 0:

(ii) Point (i) implies that the function u1 constructed in Proposition 1.1 is, up to a
constant factor, the unique L1 eigenfunction of P corresponding to the eigenvalue 1.
We note that Parry [14] also obtained an explicit formula for u1 in an even more
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general case. For q D 1 (see (1.2)), an exponential decay in sup norm with the same
exponent as ours has been previously obtained in [9,10], but using a slightly different
approach (we will explain it in a moment) and with a very different method concerning
the convergence. Namely, let

X D

1X
kD1

Xkˇ
�k

be the ˇ-expansion (with q D 1) of an absolutely continuous random variable X on
the unit interval. Then [10] analyzes the convergence rate of the PDF of the scaled
remainder

P1
kD1 XmCkˇ

�k when m tends to infinity to the asymptotic distribution
u1. If the density of X is f , then Pmf is nothing but the density associated with the
above scaled remainder.

(iii) In [12] it is shown the existence of a Césaro limit 1
N

PN
kD1 P kf in the

L1-norm for the more general case of piecewise monotonic and expanding maps.

(iv) We now briefly outline some consequences for the ergodicity properties [7]
of the map Tˇ in (1.3). It is measure preserving on Œ0; 1� equipped with the measure
density u1. We consider stochastic variables of the type F W Œ0; 1� 7! R with

Prob.F 2 .c; d//´
Z

F�1..c;d//

u1.x/ dx; for all c < d:

For every integer k � 0, we define Xk W Œ0; 1� 7! R given by

Xk.x/´ g.T kˇ .x//;

for some g 2 Lp.Œ0; 1�/ with 1 � p �1. If g is Lipschitz, by using Theorem 1.2 one
can prove that these random variables have the same mean value and exponentially
decaying correlations, which in turn implies [1, Theorem 1] the strong law of large
numbers.

The proof of Theorem 1.2 is given in Section 2.

1.2. The composition (Koopman) operator

Let us recall the definition of Tˇ W Œ0; 1/ 7! Œ0; 1/ given by

Tˇ .x/D ˇx � bˇxc D ˇx � j; j=ˇ � x < .j C 1/=ˇ; x 2 Œ0; 1/; j 2 ¹0;1; : : : ; qº:

We define the operator

KWLp.Œ0; 1�/ 7! Lp.Œ0; 1�/; .Kg/.x/´ g.Tˇ .x//; 1 � p � 1: (1.6)
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We may also consider the operator P from (1.4) acting on Lp
0

.Œ0; 1�/ to itself with
1=p C 1=p0 D 1 and 1 � p0 � 1. Then if f 2 Lp

0

.Œ0; 1�/ and g 2 Lp.Œ0; 1�/, we
have

1Z
0

f .t/.Kg/.t/ dt D

q�1X
jD0

.jC1/=ˇZ
j=ˇ

f .t/g.ˇt � j / dt C

1Z
q=ˇ

f .t/g.ˇt � q/ dt

D

1Z
0

ŒPf �.x/g.x/ dx;

(1.7)

where in the last equality we used that f .x/ D 0 when x > 1.
The main spectral results of this paper are contained in the next theorem.

Theorem 1.4. The following properties hold.

(i) Define the numbers

xj ´ qˇ�2 C � � � C qˇ�n C j=ˇ; 0 � j � q:

They obey j=ˇ < xj < .j C 1/=ˇ when 0 � j � q � 1, and xq D 1.
If q D 1, we define

 0.t/ D

´
e�iˇ t if j=ˇ � t < xj ; 0 � j � 1;

0 if x0 � t < 1=ˇ:

If q > 1, we define

 0.t/ D

´
e2�iˇ t=.qC1/ if j=ˇ � t < xj ; 0 � j � q;

e2�iˇ t=q if xj � t < .j C 1/=ˇ; 0 � j � q � 1:

Then  0 2 L1 and P 0 D 0 almost everywhere. Note that when n � 1,
then ˇ � q C 1 and  0.t/ � e2�it . See Figure 1 for an illustration of the
function  0 for the cases q D 1 and q D 3.

(ii) The operator zK´ u
1=p
1 Ku

�1=p
1 is a non-surjective isometry on Lp.Œ0; 1�/

for 1 � p � 1.

(iii) The spectrum of zK and K equals SD D ¹z 2 C W jzj � 1º for 1 � p � 1.

(iv) Let jzj < 1. Then the function

 z D u
1=2
1 .Id�zu1=21 Ku

�1=2
1 /�1u

�1=2
1  0 2 L

2.Œ0; 1�/ � Lp
0

.Œ0; 1�/;

1 � p0 � 2, is an eigenfunction of P which obeys P z D z z .

The proof of this theorem is given in Section 3. We note that when P is restricted
to functions of bounded variations, its spectrum is quite different [17].
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0 x0

1
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x1

2

ˇ
x2

3

ˇ
1
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0 x0

1

ˇ
1

e

0

Figure 1. Illustration of the map  0.

2. Proof of Theorem 1.2

2.1. Preliminaries

Notice that P maps non-negative functions into non-negative functions and for any
function f 2 L1.Œ0; 1�/ we have

1Z
0

.Pf /.x/dx D

1Z
0

f .x/ dx: (2.1)

Indeed, if 0 � j � q � 1, we have

Œ0; 1� 3 x 7!
j C x

ˇ
2

hj
ˇ
;
j C 1

ˇ

i
;

hence these intervals cover the interval Œ0; q=ˇ�. Also, due to (1.2) we haveh
0;
q

ˇ
C � � � C

q

ˇn�1

i
3 x 7!

q C x

ˇ
2

h q
ˇ
; 1
i
:

Equality 2.1 follows after a change of variable on each interval. Moreover, this
together with jPf j � P jf j imply that the linear map P is non-expansive on L1,
i.e.,

kPf kL1 � kf kL1 for all f 2 L1.Œ0; 1�/: (2.2)
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10

Figure 2. The first layer.

2.2. Subdividing the interval Œ0; 1�

In Figure 2 we introduce a decomposition of the interval Œ0; 1�, which we will explain
in what follows. The characteristic functions of the intervals between two consecutive
red points will form a generating system, and it is important to know how P acts on
them. This will be done in Lemma 2.1.

First, we have the numbers in red given by 0; q=ˇ, q=ˇ C q=ˇ2, . . . , and q=ˇ C
q=ˇ2 C � � � q=ˇn�1; 1.

Second, we want to define the green numbers, which include the red ones, see
Figure 2. Let us start with those between 0 and q=ˇ. For j0 2 ¹0; : : : ; qº, we define
the first set of green numbers: t .j0/

0 D j0=ˇ, with t .q/0 D q=ˇ. The distance between
two consecutive such numbers is 1=ˇ.

The green numbers between q=ˇ and q=ˇ C q=ˇ2 are indexed by t .j1/
1 D q=ˇ C

j1=ˇ
2 where j1 2 ¹0; : : : ; qº. The distance between two such consecutive numbers

is 1=ˇ2.
For the interval between q=ˇ C � � � C q=ˇn�1 and 1, we let jn�1 2 ¹0; : : : ; qº

and define t .jn�1/
n�1 ´ q=ˇ C � � � C q=ˇn�1 C jn�1=ˇ

n. We also have the identities
t
.q/

k
D t

.0/

kC1
when 0 � k � n � 1, and t .q/n�1 D 1.

The distance between two consecutive points depends on which “red” interval
they are situated and is given by

t
.jk1
C1/

k1
� t

.jk1
/

k1
D ˇ�.k1C1/; 0 � k1 � n � 1:

By definition, the first layer means the set of all numbers t
.jk1

/

k1
where k1 2

¹0; : : : ; n � 1º and jk1
2 ¹0; : : : ; qº.

At this point, we are able to further refine any interval between two consecutive

elements of the first layer, where the endpoints 0 and 1 are replaced by t
.jk1

/

k1
and

t
.jk1
C1/

k1
, and the width 1 is replaced by ˇ�k1�1. More precisely, the points of the
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second layer are defined for 0 � k1; k2 � n � 1:

t
.jk1

;jk2
/

k1;k2
D t

.jk1
/

k1
C ˇ�.k1C1/t

.jk2
/

k2
:

Thus, in particular, we have that

t
.jk1

/

k1
� t

.jk1
;jk2

/

k1;k2
� t

.jk1
C1/

k1
; t

.jk1
;n�1/

k1;q
D t

.jk1
C1/

k1
:

In general, the m-th layer consists of the points for 0 � k1; k2; : : : ; km � n � 1:

t
.jk1

;jk2
;:::;jkm /

k1;k2;:::;km
D t

.jk1
/

k1
C ˇ�.k1C1/t

.jk2
/

k2
C � � � C ˇ�.k1C1/ � � �ˇ�.km�1C1/t

.jkm /

km
:

We now introduce the L1 normalized indicator functions of intervals between two
“consecutive points” of layer m denoted by

F
.jk1

;jk2
;:::;jkm /

k1;k2;:::;km
.x/ D ˇk1C1 : : : ˇkmC1�

Œt
.jk1

;jk2
;:::;jkm

/

k1;k2;:::;km
;t

.jk1
;jk2

;:::;jkm
C1/

k1;k2;:::;km
�
.x/:

(2.3)
Finally, let us introduce a special notation for the red numbers including the end-

points 0 and 1. They are

t0´ t
.0/
0 D 0;

t1´ t
.q/
0 D t

.0/
1 D

q

ˇ
;

t2´ t
.q/
1 D t

.0/
2 D

q

ˇ
C

q

ˇ2
;

:::

tn�1´ t
.q/
n�2 D t

.0/
n�1 D

q

ˇ
C � � � C

q

ˇn�1
;

tn´ t
.q/
n�1 D 1:

The two very last notations give theL1 normalized indicator functions of the intervals
between two such consecutive points:

Fr.x/´ q�1
q�1X
jD0

F .j /r .x/ D q�1ˇrC1�Œtr ;trC1�.x/; 0 � r � n � 1: (2.4)

Lemma 2.1. We have

PF0 D �Œ0;1� D q

n�1X
jD0

ˇ�.jC1/Fj ; and PFr D Fr�1; where 1 � r � n � 1:

In particular, the subspace generated by these functions is invariant under the action
of P , namely P .span¹F0; : : : ; Fn�1º/ � span¹F0; : : : ; Fn�1º.
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Moreover, for all m � 2 and all possible tuples .jk1
; jk2

; : : : ; jkm
/ 2 ¹0; : : : ; qºm

we have

PF
.jk1

;jk2
;:::;jkm /

k1;k2;:::;km
D F

.jk2
;:::;jkm /

k2;:::;km
if k1 D 0; (2.5)

PF
.jk1

;jk2
;:::;jkm /

k1;k2;:::;km
D F

.jk1
;jk2

;:::;jkm /

k1�1;k2;:::;km
if k1 � 1; (2.6)

and

Pm�1Ck1Ck2C���Ckm�1F
.jk1

;jk2
;:::;jkm /

k1;:::;km
2 span¹F0; F1; : : : ; Fn�1º: (2.7)

Proof. For x 2 Œ0; 1�, we have

�
Œt

.jk1
;jk2

;:::;jkm
/

k1;:::;km
;t

.jk1
;jk2

;:::;jkm
C1/

k1;:::;km
�

�x C j
ˇ

�
D �Œ0;1�.x/�

Œˇt
.jk1

;jk2
;:::;jkm

/

k1;:::;km
�j ;ˇt

.jk1
;jk2

;:::;jkm
C1/

k1;:::;km
�j �
.x/;

which introduced in (1.4) gives for the functions F
.jk1

;jk2
;:::;jkm /

k1;k2;:::;km
defined in (2.3):

.PF
.jk1

;jk2
;:::;jkm /

k1;k2;:::;km
/.x/

D ˇ�1ˇk1C1: : : ˇkmC1�Œ0;1�.x/

qX
jD0

�
Œˇt

.jk1
;jk2

;:::;jkm
/

k1;:::;km
�j ;ˇt

.jk1
;jk2

;:::;jkm
C1/

k1;:::;km
�j �
.x/:

(2.8)

First, let us consider m D 1. We start by computing PF
.j0/
0 , thus we put m D 1 and

k1 D 0. Then ˇt .j0/
0 D j0 2 ¹0; : : : ; q � 1º and

�
Œˇ t

.j0/

0
�j;ˇ t

.j0C1/

0
�j �
.x/ D �Œj0�j;j0�jC1�.x/:

By summing over j in (2.8), we get

PF
.j0/
0 D �Œ0;1�; 0 � j0 � q � 1:

Since the above formula is independent of j0, it also implies that PF0 D �Œ0;1�,
see (2.4) for the definition of F0.

We now want to compute PF
.jk1

/

k1
with 0 < k1 � n � 1. Since k1 � 1, then

ˇt
.jk1

/

k1
� q, and so the interval Œˇt

.jk1
/

k1
� j; ˇt

.jk1
C1/

k1
� j � is disjoint from Œ0; 1� if

j � q � 1. On the other hand, since

t
.jk1

/

k1
D q=ˇ C � � � C q=ˇk1 C jk1

=ˇk1C1
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we have

0 � ˇt
.jk1

/

k1
� q D t

.jk1
/

k1�1
< t

.jk1
C1/

k1�1
D ˇt

.jk1
C1/

k1
� q � 1:

This implies that

PF
.jk1

/

k1
D F

.jk1
/

k1�1
; 1 � k1 � n � 1; 0 � jk1

� q � 1:

This shows that P 1Ck1F
.jk1

/

k1
D PF

.jk1
/

0 D �Œ0;1� belongs to the subspace spanned
by F0; : : : ; Fn�1 (see (2.4)). Applying P to (2.4) we obtain

PFr D Fr�1; 1 � r � n � 1:

This ends the proof of the first part of the lemma.

Now, let us consider m > 1, i.e., more than just one layer. We have the following
cases.

• If k1 D 0, then

ˇt
.j0;jk2

;:::;jkm /

0;:::;km
� j

D ˇ.j0=ˇ C ˇ
�1t

.jk2
/

k2
C � � � C ˇ�1 � � �ˇ�.km�1C1/t

.jkm /

km
/ � j

D j0 � j C t
.jk2

;:::;jkm /

k2;:::;km

which introduced in (2.8) gives

PF
.j0;jk2

;:::;jkm /

0;k2;:::;km
D F

.jk2
;:::;jkm /

k2;:::;km
:

This shows that if we apply P on a function with k1 D 0, then we go down to a
lower layer where m is replaced by m � 1 and j0 is “erased.” This proves (2.5).

• If 1 � k1 � n � 1, then ˇt
.jk1

;jk2
;:::;jkm /

k1;:::;km
� q and so the sum over j � q � 1

in (2.8) equals zero. On the other hand,

0 � ˇt
.jk1

;jk2
;:::;jkm /

k1;k2;:::;km
� q D t

.jk1
;jk2

;:::;jkm /

k1�1;k2;:::;km
< t

.jk1
;jk2

;:::;jkmC1/

k1�1;k2;:::;km

D ˇt
.jk1

;jk2
;:::;jkmC1/

k1;k2;:::;km
� q � 1;

hence
PF

.jk1
;jk2

;:::;jkm /

k1;k2;:::;km
D F

.jk1
;jk2

;:::;jkm /

k1�1;k2;:::;km
:

This shows that when we apply P on a function of the type (2.3) with k1 > 0,
then k1 is reduced with one unit. This proves (2.6).

Conclusion: it takes k1 C 1 applications of P in order to go down from layer m to
layerm� 1, then k2 C 1 applications in order to get from layerm� 1 to layerm� 2,
so P k1Ck2C���km�1Cm�1 gets us to the lowest layer with m D 1.



Non-integer base expansions on the unit interval 339

2.2.1. Proof of Proposition 1.1

Lemma 2.2. Denote by T the n� n matrix obtained by restricting P to the subspace
generated by ¹F0; : : : ;Fn�1º. Then T is a left-stochastic matrix. If � is an eigenvalue,
then it obeys the equation Pn;q.�ˇ/ D 0 with Pn;q from Lemma B.1. For �1 D 1, we
can construct a positive eigenvector. If �2 is the second largest eigenvalue in absolute
value, then

q1=.n�1/ˇ�n=.n�1/ � j�2j < ˇ
�1: (2.9)

There exists an explicitly computable piecewise constant function u1 which is positive
a.e. such that

Pu1 D u1; u1 2 span¹F0; : : : ; Fn�1º;

1Z
0

u1.x/ dx D 1: (2.10)

Moreover, there exists C <1 such that for every r 2 N and any g 2 span¹F0; : : : ;
Fn�1º we have 



.P rg/.�/ � u1.�/

1Z
0

g.t/ dt






L1
� C j�2j

r
kgkL1 : (2.11)

Proof. We have

PFj�1 D

nX
iD1

TijFi�1; 1 � j � n; T D

26666664
qˇ�1 1 0 : : : 0 0

qˇ�2 0 1 : : : 0 0
:::

:::
:::

:::
:::

:::

qˇ�.n�1/ 0 0 : : : 0 1

qˇ�n 0 0 : : : 0 0

37777775 ;

then T is left-stochastic by (1.2). Observe that

z Idn�T D

26666664
z � qˇ�1 �1 0 : : : 0 0

�qˇ�2 z �1 : : : 0 0
:::

:::
:::

:::
:::

:::

�qˇ�.n�1/ 0 0 : : : z �1

�qˇ�n 0 0 : : : 0 z

37777775 :

Expanding the determinant with respect to the first row, we get

det.z Idn�T / D .z � qˇ�1/zn�1 C det.Tn�1/
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where

Tn�1 D

26666664
�qˇ�2 �1 : : : 0 0

�qˇ�3 z �1 : : : 0
:::

:::
:::

:::
:::

�qˇ�.n�1/ 0 : : : z �1

�qˇ�n 0 : : : 0 z

37777775 :

By recursion, we get

det.z Idn�T / D .z � qˇ�1/zn�1 � qˇ�2zn�2 � � � � � qˇ�.n�1/z � qˇ�n

D ˇ�nPn;q.zˇ/:

Thus, � is an eigenvalue if and only if �ˇ is a zero of Pn;q , hence all eigenvalues
are simple due to Lemma B.1 (i) and (iii). While �1 D 1 (notice that �1 D 1 is an
eigenvalue due to (1.2)), all other eigenvalues are in absolute value less than ˇ�1 < 1
due to Lemma B.1(iii). Since the product of all roots of Pn;q must equal .�1/n�1q,
we have

ˇjˇ�2j � � � jˇ�nj D q:

If �2 has the second largest modulus, we have q � ˇnj�2jn�1, which proves the lower
bound in (2.9).

Now, let us compute an eigenfunction corresponding to the eigenvalue 1. We solve
the system 26666664

1 � qˇ�1 �1 0 : : : 0 0

�qˇ�2 1 �1 : : : 0 0
:::

:::
:::

:::
:::

:::

�qˇ�.n�1/ 0 0 : : : 1 �1

�qˇ�n 0 0 : : : 0 1

37777775

26666664
s1

s2
:::

sn�1

sn

37777775 D
26666664
0

0
:::

0

0

37777775 :

We may choose s1 as a free variable. In that case, we may choose

s1 D 1;

s2 D 1 � qˇ
�1;

s3 D 1 � qˇ
�1
� qˇ�2;

:::

sn D 1 � qˇ
�1
� � � � � qˇn�1 D qˇ�n:

Now, let us define (see (2.4)) zFk.x/ D
p
qˇ�.kC1/=2Fk.x/ for 0 � k � n � 1. They

form an L2-orthonormal basis in the span of ¹F0; : : : ; Fn�1º. The restriction of P to
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this subspace, in the new basis, will have a matrix (here 1 � i; j � n)

zTij ´ h zFi�1;P zFj�1i D
p
qˇ�j=2h zFi�1;PFj�1i D

p
qˇ�j=2

nX
rD1

Trj h zFi�1; Fr�1i

D ˇi=2Tijˇ
�j=2:

Since T and zT are similar, zT has the same spectrum as T . Moreover, the vector Qs
with coordinates Qsj D ˇj=2sj , where 1 � j � n, is a not-normalized eigenvector of
zT corresponding to the eigenvalue 1. The adjoint matrix zT � has the matrix elements

. zT �/ij D zTj i D ˇ
j=2Tj iˇ

�i=2:

By direct computation, using that
Pn
jD1 Tj i D 1 for all i , we can check that the vector

Qt with entries Qtj D ˇ�j=2 is an eigenvector of zT � corresponding to the same eigen-
value 1.

Getting back to functions, the operator P has an eigenfunction u.x/ correspond-
ing to eigenvalue 1 given a.e. by

u.x/ D

nX
jD1

Qsj zFj�1.x/ D
p
q

nX
jD1

sjFj�1.x/ > 0;

and we denote by

u1.x/´
u.x/R 1

0
u.t/ dt

;

1Z
0

u1.x/ dx D 1;

which satisfies (2.10).
Using the information we have about the eigenvector Qt of zT �, the adjoint P � of

P seen as an operator on the span of ¹F0; : : : ; Fn�1º has an eigenfunction

w.x/D

nX
jD1

Qtj zFj�1.x/D
p
q

nX
jD1

ˇ�jFj�1.x/D q
�1=2�Œ0;1�.x/; P ��Œ0;1�D�Œ0;1�:

Then the rank-one Riesz projection corresponding to the eigenvalue 1 can be written
as

…1 D ju1ih�Œ0;1�j; …2
1 D …1:

Moreover, we may write

P jspan¹F0;:::;Fn�1º
D …1 C

nX
jD2

�j…j
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where each projection has rank one and …j…k D ıjk…k . Now, if g is in the span of
¹F0; : : : ; Fn�1º, we have

P rg D u1

1Z
0

g.t/dt C

nX
jD2

�rj…jg:

Since each …j is a rank one operator of the form� 1

hvj ; uj iL2

�
juj ihvj j

with uj and vj bounded functions in the span of ¹F0; : : : ; Fn�1º, we have

k…jgkL1 � CkgkL1 ; 2 � j � n:

2.2.2. Finalizing the proof of Theorem 1.2. The first step is to approximate f with
piecewise constant functions using its Lipschitz property. For example, using the first
layer in Figure 2 we have (in the sup-norm)

f �

n�1X
k1D0

q�1X
jk1
D0

f .t
.jk1

/

k1
/ˇ�1�k1F

.jk1
/

k1
D O.Lf ˇ

�1/;

where F
.jk1

/

k1
is defined in (2.3). The error is largest on the interval between 0 and

q=ˇ, because the distance between two consecutive points is only ˇ�1. On the other
intervals, where k1 � 1, the distance between two consecutive points is at least ˇ�2

and the error is of order ˇ�2 or better.
It is possible to improve the above estimate and get a global error of order ˇ�2.

To achieve this, we have to refine the interval Œ0; q=ˇ� by going to the second layer,
while keeping unchanged the other intervals where k1 � 1. This leads to

f �

q�1X
j0D0

n�1X
k2D0

q�1X
jk2
D0

f .t
.j0;jk2

/

0;k2
/ˇ�2�k2F

.j0;jk2
/

0;k2

�

n�1X
k1D1

q�1X
jk1
D0

f .t
.jk1

/

k1
/ˇ�1�k1F

.jk1
/

k1
D O.Lf ˇ

�2/:

If we want a global error of order ˇ�3, we need to go up to the third layer on the
subintervals where k2D 0 in the triple sum, and to the second layer on the subintervals
where k1 D 1 in the double sum.

If we want a global error of order ˇ�n�1, even the old subinterval Œ1 � q=ˇn; 1�
corresponding to k1 D n � 1 in the first layer has now to be refined with a second
layer.
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In the general case, let us fix some integer M � nC 1 and let us investigate in
which way we should split the interval Œ0; 1� so that the error we make is not bigger
than ˇ�MCn. From the above discussion, this amounts to adjust the length of the
subintervals obtained by picking points from different layers.

For a given layer of order m � 1, the support of F
.jk1

;:::;jkm /

k1;:::;km
has a width of

ˇ�m�k1�����km . We have the following double inequality:

k1 C k2 C � � � C km Cm < k1 C k2 C � � � C km C kmC1 C .mC 1/

� k1 C k2 C � � � C km CmC n; (2.12)

where the first one is trivial while the second one is due to kmC1 � n � 1.
Remember that M � nC 1. The first layer has m D 1 with k1 C 1 < M because

k1 � n � 1. By refining each subinterval of layer 1 by adding points of higher layers,
we have two alternatives:

• either
k1 C k2 C � � � C km C kmC1 C .mC 1/ < M

• or

k1 C k2 C � � � C km Cm < M � k1 C k2 C � � � C km C kmC1 C .mC 1/:

If the first alternative is realized, then we perform another refinement. If the second
alternative is realized (this must happen at some point), then by coupling it with (2.12),
we obtain

k1 C k2 C � � � C km Cm < M � nC k1 C k2 C � � � C km Cm: (2.13)

No further refinement is performed on a subinterval where (2.13) holds. Also, when
(2.13) is satisfied, we write

mC k1 C � � � C km �M:

Replacing f on the support of �
Œt

.jk1
;:::;jkm

/

k1;:::;km
;t

.jk1
;:::;jkm

C1/

k1;:::;km
�

with f .t
.jk1

;:::;jkm /

k1;:::;km
/ and

using the Lipschitz property of f , the error is of order ˇ�m�k1�����km . Thus, we have
(even in the sup-norm)

f �
X

mCk1C���Ckm�M
jk1

;:::;jkm

f .t
.jk1

;:::;jkm /

k1;:::;km
/ˇ�m�k1�����kmF

.jk1
;:::;jkm /

k1;:::;km
D O.Lf ˇ

�M /:

According to (2.2), P is a non-expansive map on L1, hence there exists a constant
C <1 such that for all N � 1 we have


PNf �

X
mCk1C���Ckm�M

jk1
;:::;jkm

f .t
.jk1

;:::;jkm /

k1;:::;km
/ˇ�m�k1�����kmPNF

.jk1
;:::;jkm /

k1;:::;km





L1
� CLf ˇ

�M :
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IfN is larger thanM , which is already larger thanmC k1C � � � C km (due to (2.13)),

then according to (2.7) in Lemma 2.1, we have that both PNF
.jk1

;:::;jkm /

k1;:::;km
and

PMF
.jk1

;:::;jkm /

k1;:::;km
belong to the invariant subspace, are non-negative, and their L1

norm is constant equal to 1 due to (2.1). Using (2.11) with r D N �M , we have that
in the L1 sense,

.PNf /.�/ �
X

mCk1C���Ckm�M
jk1

;:::;jkm

f .t
.jk1

;:::;jkm /

k1;:::;km
/ˇ�m�k1�����km.u1.�/CO.j�2j

N�M //

D O.Lf ˇ
�M /;

where the bounding constants appearing in the two errors are independent of N
and M . Up to another error of order O.ˇ�M /, we may replace the Riemann sum
with

R 1
0
f .t/dt . Hence, we have

PNf � u1

1Z
0

f .t/dt D O.kf kL1 j�2j
N�M /CO.Lf ˇ

�M /; N > M:

Given N � 1, we may choose an “optimal” M as a function of N such that

j�2j
N�M

� ˇ�M ;

where�means that they may differ by a numerical factor which is independent onN .
If nD 2, then j�2j D qˇ�2, hence we may chooseM to be the integer part of x where
x solves the equation

x ln.ˇ/ D .N � x/ ln.ˇ2=q/;

which gives x D K2N with K2 in (1.5).
Also, since j�2j < 1=ˇ for all n (see (2.9)), by choosing M to be the integer part

of N=2, we see that the decay is always faster than ˇ�N=2.

3. Proof of Theorem 1.4

3.1. Proof of (i)

We only prove the result for q > 1. Let us first show that j=ˇ < xj < .j C 1/=ˇ for
all 0� j � q � 1. The first inequality follows directly from the definition of xj , while
the second one is equivalent with

qˇ�2 C � � � C qˇ�n < ˇ�1 or qˇ�1 C � � � C qˇ�.n�1/ < 1;
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the latter holds true by (1.2). This shows that  0 is well defined on Œ0; 1� and by
convention, it equals zero outside this interval.

In view of (1.4), if qˇ�1 C � � � C qˇ�.n�1/ < x < 1, we have

.P 0/.x/ D ˇ
�1

q�1X
jD0

 0

�x C j
ˇ

�
:

For x in that interval, we also have

qˇ�2 C � � � C qˇ�n C
j

ˇ
D xj <

x C j

ˇ
<
j C 1

ˇ
; 0 � j � q � 1;

which from the definition of  0 it implies

.P 0/.x/ D ˇ
�1

q�1X
jD0

e2�i.xCj /=q D ˇ�1e2�ix=q
q�1X
jD0

.e2�i=q/j D 0:

If 0 < x < qˇ�1 C � � � C qˇ�.n�1/, we have

.P 0/.x/ D ˇ
�1

qX
kD0

 0

�x C k
ˇ

�
:

For x in the above interval, we also have

k

ˇ
<
x C k

ˇ
<

q

ˇ2
C � � � C

q

ˇn
C
k

ˇ
D xk; 0 � k � q;

which from the definition of  0 it implies

.P 0/.x/ D ˇ
�1

qX
kD0

e2�i.xCk/=.qC1/ D ˇ�1e2�ix=.qC1/
qX
kD0

.e2�i=.qC1//k D 0:

3.2. Proof of (ii) and (iii)

Let us show that zK D u1=p1 K.1=u
1=p
1 / is an isometry on Lp.Œ0; 1�/. If p D 1 then

this follows directly from the definition in (1.6). If 1 � p <1, we have (using (1.7)
in the third equality)

kzK.f /k
p
Lp D

1Z
0

j zK.f /jpdx D

1Z
0

u1K
�
jf jp

u1

�
dx

D

1Z
0

.Pu1/
jf jp

u1
dx D kf k

p
Lp :
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The operator zK� z IdD u1=p1 .K� z Id/u�1=p1 is invertible if and only if K� z Id
is invertible, hence zK and K have the same spectrum. Since zK is an isometry, it is also
injective, hence K is injective, too.

Now, let us show that K (thus also zK) is not surjective. Using (1.7) and the eigen-
vector  0 of P constructed at point (i) ( 0 belongs to any Lp

0

with 1 � p0 �1), we
have

1Z
0

 0.x/.Kg/.x/ dx D 0 for all g 2 Lp; 1 � p � 1;

which implies that 0 does not belong to the range of K. This also implies that u1=p1  0

does not belong to the range of zK.
Thus, zK is a non-surjective isometry and its spectrum must equal the closed unit

disk due to the following result which may be found in [2, Proposition 5.2], but we
also prove it here (in a more self-contained way) for the convenience of the reader.

Lemma 3.1. Assume that U defined on some Banach space is a linear isometry. If U
is surjective, then �.U / � S1. If U is not surjective, then �.U / D SD.

Proof. An isometry is always injective. Let us first consider the case when U is
surjective (thus invertible). Using that kUf k D kf k for all f and also kU�1gk D
kU.U�1g/k D kgk, we conclude that both U and U�1 have norm one. Let z 2 C be
with jzj < 1. Then U � z Id D .Id�zU�1/U is invertible because kzU�1k < 1. If
jzj > 1, we have U � z Id D �.Id�z�1U/z which is also invertible. Thus, �.U / is
included in the unit circle.

Now, let us consider the case when U is not surjective. Because kU k D 1, we
know that �.U / � SD. Because U is not invertible, then 0 2 �.U /, hence �.U / has
elements which are not on the unit circle. Thus, if the inclusion �.U / � SD is strict,
there must exist a point � with j�j < 1 which belongs to the boundary of �.U /.
We will now show that � must be in the resolvent set of U , which would lead to a
contradiction.

Since � 2 @.�.U //, there must exist a sequence of points �n in the resolvent set
of U such that �n ! � when n!1. Since j�j < 1, there exists N > 1 such that
j�nj � .1C j�j/=2 < 1 if n > N . Using the triangle inequality, we get

k.U � �n Id/f k � kUf k � j�njkf k �
1 � j�j

2
kf k; n > N:

Since U � �n Id is invertible, using this inequality with f D .U � �n Id/�1g, we
obtain

k.U � �n Id/�1k �
2

1 � j�j
; n > N:
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This uniform bound and the identity

U � � Id D .IdC.�n � �/.U � �n Id/�1/.U � �n Id/

show that the right-hand side must be invertible if n is large enough, hence � is in the
resolvent set of U and cannot belong to the boundary of �.U /.

3.3. Proof of (iv).

We know from (ii) that u1=21 Ku
�1=2
1 is an isometry on the Hilbert space L2.Œ0; 1�/.

Then (1.7) implies that P D K� and

.u�1=2Pu
1=2
1 /.u

1=2
1 Ku

�1=2
1 / D .u1=2Ku

�1=2
1 /�.u

1=2
1 Ku

�1=2
1 / D Id : (3.1)

The isometry u1=21 Ku
�1=2
1 has norm one. If jzj < 1, then  z is different from zero

and can be written with the help of a Neumann series. Finally,

P z D P 0 C
X
m�1

zmu
1=2
1 .u

�1=2
1 Pu

1=2
1 /.u

1=2
1 Ku

�1=2
1 /mu

�1=2
1  0

D

X
m�1

zmu
1=2
1 .u

1=2
1 Ku

�1=2
1 /m�1u

�1=2
1  0 D z z;

where in the second equality we used P 0 D 0 and (3.1).

A. The greedy algorithm

Let x 2 Œ0; 1/. Applying the map Tˇ , we get that

Tˇ .x/ D ˇx � bˇxc 2 Œ0; 1/;

where b � c is the floor function and q < ˇ D ˇn;q < q C 1 in view of Lemma B.1 (i).
By iterating the map Tˇ , we define the j -th greedy coefficient as

xj ´ bˇT
.j�1/

ˇ
.x/c for all j � 1 with T 0ˇ .x/´ x: (A.1)

The following lemma describes the greedy algorithm.

Lemma A.1. With the definitions above, and with ˇ as in (1.2), if x 2 Œ0; 1/ we have

x D

1X
jD1

xjˇ
�j : (A.2)
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The scaled remainder ˇk
�
x �

Pk
jD1 xjˇ

�j
�

obeys

ˇk
�
x �

kX
jD1

xjˇ
�j
�
D T kˇ .x/: (A.3)

Moreover, the greedy coefficients satisfy three restrictions:

(1) xj 2 ¹0; 1; : : : ; qº for all j � 1;

(2) xj D q for n successive j ’s cannot occur;

(3) it cannot happen that the sequence of xj ’s ends in the infinite sequence .c1;
c2; : : :/ where cmn D q � 1 for all m � 1, and all the other cj ’s, with j not
dividing n, are equal to q.

Proof. (A.3) is true by definition for k D 1. Assuming this equation for some k � 1,
we have

T
.kC1/

ˇ
.x/ D Tˇ .T

k
ˇ .x// D ˇT

k
ˇ .x/ � bˇT

k
ˇ c

D ˇkC1
�
x �

kX
jD1

xjˇ
�j
�
� xkC1

D ˇkC1
�
x �

kC1X
jD1

xjˇ
�j
�
:

Since Tˇ W Œ0; 1/! Œ0; 1/ and ˇ > 1, the series in (A.2) converges.
The first restriction on the xj ’s follows from their definition:

0 � xj D bˇT
.j�1/

ˇ
.x/c � bˇc D q;

because of Lemma B.1 (i).
To prove the second restriction on the coefficients, suppose that there exists some

k � 0 such that xkCj D q, where j 2 ¹1; : : : ; nº. Using (1.2), we have

nX
jD1

qˇ�.kCj / D ˇ�k :

If k D 0, then x � 1, which is a contradiction. If k � 1, then using (A.3) and (A.2)
we have

T kˇ .x/ D ˇ
k
�
x �

kX
jD1

xjˇ
�j
�
D ˇk

� 1X
jDkC1

xjˇ
�j
�
� ˇk

� nCkX
jDkC1

qˇ�j
�
D 1

contradicting Tˇ W Œ0; 1/! Œ0; 1/.
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In order to prove the third restriction, let us assume that there exists x 2 Œ0; 1/
whose greedy expansion ends with ˇ�k

P
j�1 cjˇ

�j for some k � 0, i.e. xkCj D cj
for j � 1. By repeatedly using (1.2) (see also Figure 2), we have

1 D

n�1X
jD1

qˇ�j C .q � 1/ˇ�n C ˇ�n

D

n�1X
jD1

qˇ�j C .q � 1/ˇ�n C ˇ�n
� n�1X
jD1

qˇ�j C .q � 1/ˇ�n
�
C ˇ�2n

D � � � D

X
j�1

cjˇ
�j ;

hence x D
Pk
jD1 xjˇ

�j C ˇ�k and thus by (A.3) T k
ˇ
.x/ D 1, contradiction.

Lemma A.1 has shown that the greedy algorithm gives a unique output for the
coefficients xj defined in (A.1) for any number x 2 Œ0; 1/, and these coefficients obey
three necessary conditions. In the next lemma we will show, in particular, that any
expansion for x 2 Œ0; 1/ satisfying all these three conditions must be the greedy one.

Lemma A.2. Suppose

x D

1X
jD1

Qxjˇ
�j (A.4)

where the coefficients Qxj 2 ¹0;1; : : : ;qº also satisfy the condition that no n consecutive
coefficients equal q. Let cj D q � 1 if n divides j , and cj D q otherwise. Let xj be
defined as in (A.1). Then one of the following possibilities occurs:

(1) Qxj D cj for all j in which case x D 1;

(2) x < 1 with Qxj D xj for all j , i.e., x is written in the greedy representation;

(3) x < 1 and there exists some k � 1 such that Qxj D xj for j < k (if k � 2), Qxk D
xk � 1, and QxkCj D cj for j � 1. In this case, the finite sum xD

Pk
jD1 xjˇ

�j

is the greedy representation of x which is different from (A.4).

Proof. The largest possible value of
P1
jD1 Qxjˇ

�j , which can be achieved with the
Qxj obeying the two restrictions of the current lemma, equals 1. This is the case if and
only if Qxj D cj , for all j .

Assuming x <1, suppose that the sequence . Qx1; Qx2; : : :/ does not end in the infinite
sequence .c1; c2; : : :/ so that the scaled remainder, ˇk

P1
jDkC1 Qxjˇ

�j < 1 for all
k � 1 (we have already assumed this for k D 0). Then Qxj D xj for all j : to see this,
we have x1 D bˇxc and ˇx D Qx1 C ˇ

P1
jD2 Qxjˇ

�j D Qx1 C t with t 2 Œ0; 1/. Thus,
x1 D Qx1. A simple induction gives xj D Qxj for all j .
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On the other hand, suppose k is the first integer such that ˇk
P1
jDkC1 Qxjˇ

�j D 1.
Then QxkCj D cj , j � 1 and Qxj D xj , j < k, Qxk C 1 D xk � q. Thus, Qxk � q � 1. If
Qxk D q � 1, the previous (if there are that many) n� 1 Qxj ’s cannot equal q because that
would violate the definition of k. Thus, x D

Pk
jD1 xjˇ

�j , the greedy representation,
is a different representation of x.

B. Properties of ˇn;q

The following lemma is given for the sake of the reader and collects in one place a
number of known results [5, 13].

Lemma B.1. Let n; q 2 N with n � 2 and 1 � q. Let

Pn;q.z/ D z
n
� q.zn�1 C zn�2 C � � � C z C 1/

with z 2 C.

(i) Pn;q has only one positive root ˇn;q , which also obeys q < ˇn;q < q C 1.

(ii) All roots have algebraic multiplicity one.

(iii) The other roots of Pn;q satisfy .q=.qC 2//1=n < jzj < 1. In particular, ˇn;q
is a Pisot number.

(iv) Fix ˛ 2 .q; q C 1/. Then there exists n0 � 2 such that .q C 1/ � q˛�n �
ˇn;q < q C 1 for all n � n0.

Proof. (i) If x > 0, we define f .x/´ x�nPn;q.x/ D 1 � q.x
�1 C � � � C x�n/. We

have that f 0 > 0, which means that it can have at most one positive root.
If q D 1, we have

f .1/ D 1 � n < 0; f .2/ D 2�n > 0

hence there exists a unique, simple root between 1 and 2.
For q > 1, we have

f .q/ D 1 �
1 � q�n

1 � q�1
D
q�n � q�1

1 � q�1
< 0;

f .q C 1/ D 1 �
q

q C 1

1 � .q C 1/�n

1 � .q C 1/�1
D .q C 1/�n > 0I

thus, there always exists a unique positive root ˇn;q 2 .q; q C 1/.

(ii) Now, let us prove that all the other roots are also simple. If z ¤ 1, we have

Pn;q.z/ D z
n
� q

zn � 1

z � 1
D
znC1 � .q C 1/zn C q

z � 1
µ

Qn;q.z/

z � 1
:
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Since z D 1 is not a root, Pn;q.z/ has the same roots (those different from 1) as
Qn;q.z/. If z1 ¤ 1 is a degenerate root of Pn;q , i.e., Pn;q.z1/ D P 0n;q.z1/ D 0, then
we also have Qn;q.z1/ D Q0n;q.z1/ D 0. But

Q0n;q.z/ D .nC 1/z
n
� .q C 1/nzn�1 D .nC 1/zn�1

�
z �

.q C 1/n

nC 1

�
and since 0 is not a root, we must have z1 D .q C 1/n=.nC 1/, which is positive. But
we know that Pn;q only has a non-degenerate positive root, which is a contradiction.

(iii) We want to show thatQn;q has exactly n roots inside the closed unit complex
disk. Let F.z/D znC1 C q and G.z/D �.q C 1/zn. If jzj D 1C " with " > 0 small,
we have

jF.z/j � q C 1C .nC 1/"CO."2/; jG.z/j D .q C 1/.1C n"/CO."2/;

and since nq > 1, we have that jG.z/j > jF.z/j on jzj D 1C " if " is small enough.
This implies that the function

Ht .z/´ tF .z/CG.z/; H0.z/ D G.z/; H1.z/ D Qn;q.z/

obeys jHt .z/j � jG.z/j � jF.z/j > 0 on the circle jzj D 1C " for all t 2 Œ0; 1�. Thus,
the number of zeros of Ht inside the disk jzj � 1C " is constant in t and equals n.
Taking the limit " # 0, we conclude that Qn;q has exactly n zeros inside the complex
closed unit disk. Now, if z is a zero with jzj D 1, we have

jznC1 C qj D .q C 1/jznj D q C 1

which is possible only for znC1 D 1. But then .qC 1/zn D qC 1, hence zn D 1. This
implies that z D 1. Hence, Pn;q has exactly n � 1 complex roots inside the open unit
disk.

Now, let z1 be such a root with jz1j < 1 and Qn;q.z1/ D 0. Then

.q C 1/jz1j
n
D j.q C 1/zn1 j � q � jz1j

nC1 > q � jz1j
n

which leads to
jz1j

n >
q

q C 2
:

(iv) Fix any n0 � 2 and let n � n0. We have

1

ˇn;q
C � � � C

1

ˇ
n0
n;q

�
1

ˇn;q
C � � � C

1

ˇnn;q
D
1

q
;

hence ˇn;q � ˇn0;q . Also,Qn;q.ˇn;q/D 0, hence ˇn;q solves ˇn;q D qC 1� q=ˇnn;q .
Thus,

q C 1 �
q

ˇnn0;q

� ˇn;q < q C 1; 2 � n0 � n:

Now, we can choose n0 large enough such that ˇn0;q > ˛ and we are done.
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