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Spectral and dynamical results related
to certain non-integer base expansions on the unit interval

Horia D. Cornean, Ira W. Herbst, and Giovanna Marcelli

Abstract. We consider certain non-integer base S-expansions of Parry’s type and we study
various properties of the transfer (Perron—Frobenius) operator #: L ([0, 1]) — L? ([0, 1]) with
p > 1 and its associated composition (Koopman) operator, which are induced by a discrete
dynamical system on the unit interval related to these S-expansions.

We show that if f is Lipschitz, then the iterated sequence {P* f} x> converges expo-
nentially fast (in the L' norm) to an invariant state corresponding to the eigenvalue 1 of .
This “attracting” eigenvalue is not isolated: for 1 < p < 2 we show that the point spectrum of
& also contains the whole open complex unit disk and we explicitly construct an eigenfunction
for every z with |z] < 1.

1. Introduction and main results

Let us fix two integers n > 2 and g > 1. There exists a unique positive number (see
Lemma B.1)

Bng=Be<(g.q+1) (1.1
which obeys the following equation:
q q q
1=2+ Ly 4L (1.2)
B B B"

We consider representations of real numbers in non-integer base 8 of the type (1.2),
which are called B-expansions. Expansions in non-integer bases were firstly intro-
duced by the seminal work of Rényi [16], as a generalization of the standard integer
base expansions. The original method to determine the “digits” is the greedy algo-
rithm [14—16], which is tightly connected to the study of the map

Tp:[0,1) = [0,1), Tg(x)=pBx—|Bx], (1.3)
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see Appendix A for some of its basic properties. Without putting certain restrictions
on the coefficients, such expansions are far from being unique (see [11] and references
therein). Such expansions are also related to symbolic dynamics [3, 14, 16], which is
not the main focus of the current paper.

We are mostly interested in the investigation of certain spectral and dynamical
properties of the transfer (or Perron—Frobenius) operator #: L? ([0, 1]) — L?(]0, 1])
with p > 1, and its associated composition (or Koopman) operator &, which are
induced by the above map Tp, see [12,17,18].

In general, the transfer operator J> describes the discrete time evolution of certain
probability densities associated to some stochastic variables, evolution related to the
iteration of a certain map, in our case Tg, see [4, 6, 8]. More specific details about
these objects will be given in the subsequent part of the introduction, where we will
also formulate our main results: Theorems 1.2 and 1.4. There, it is stated that if f
is Lipschitz, then the iterates 2 f converge exponentially fast (in the L' norm and
N — 00) to an invariant state corresponding to the eigenvalue 1 of #. On the other
hand, the eigenvalue 1 is far from being isolated: if 1 < p < 2 we show that the point
spectrum of & also contains the open complex unit disk; namely, for every |z| < 1
and we explicitly construct a corresponding v, such that Py, = z;.

1.1. The transfer operator

Let us assume that X: Q + [0, 1] is an absolutely continuous stochastic variable with
a probability density function (PDF) denoted by f € L'([0, 1]). More precisely: for
every x > 0,

Prob(X <x):= | f(t)dt.
/

Any number X(w) € (0, 1) has a well-defined “greedy” decomposition of the type
(see Lemma A.1)

X() =) Xp(@)B™* Xi(w) e{0.1.....q}

k>1

The first coefficient X; defines a discrete stochastic variable X1: Q2 — {0, ..., ¢},
where (remember thatg < 8 < g + 1)

Xi1(w):=j €{0,...,q} whenever j/B < X(w) < (j +1)/8

which implies

Prob(X; = j) = Prob( <X <

é_ 5 ) 0<j=gqg
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Assuming that f(x) = 0if x &[0, 1], then the new stochastic variable X = (X —
X1/p) is also absolutely continuous and has a PDF (denoted by & f) which equals

> e J+x
(P 1)) = B ljgof(T). (1.4)

Formula (1.4) is due to the fact that for x > 0 we have

Prob(,B(X ,_3X1) < x) = Prob(X X1 —|—x) ZProb(% . ;x)

which we then differentiate with respect to x.

In order to formulate our first theorem, we need to state the following result, which
goes back to [14].

Proposition 1.1. There exists a piecewise constant function uy which is positive a.e.
with fo u1(x)dx = 1 such that Puy = uy.

Our first main theorem is as follows.

Theorem 1.2. Let n > 2 and q > 1 be two integers. Let P = Pg: L'([0, 1]) —
L'([0, 1]) be defined as in (1.4), where B = By 4 is introduced in (1.1). Then there
exist two constants K1(n,q) > 0 and K>(n,q) > 1/2 such that for every Lipschitz
function f with | f(x) — f(y)| < Lyg|x — y| we have

1
H?Nf —uy | f@t)dt
/

<Ki(Ly +If L)%Y forall N > 1.
Ll

Ifn =2, we have

g+ Vq*+4q _ 2—1In(q)/In(B)
B = - 5 K> = m (1.5)

Remark 1.3. We have a few extra comments.

(i) By using that the map & is non-expansive on L' (see (2.2)), a density argument
implies that if ¥ € L'([0, 1]), then

1
lim H?Nf—ulff(z) dt| =0.
N—o0 L1
0

(i1) Point (i) implies that the function #; constructed in Proposition 1.1 is, up to a
constant factor, the unique L' eigenfunction of & corresponding to the eigenvalue 1.
We note that Parry [14] also obtained an explicit formula for ©#; in an even more
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general case. For ¢ = 1 (see (1.2)), an exponential decay in sup norm with the same
exponent as ours has been previously obtained in [9, 10], but using a slightly different
approach (we will explain it in a moment) and with a very different method concerning
the convergence. Namely, let

o0
X =Y xp*
k=1

be the B-expansion (with ¢ = 1) of an absolutely continuous random variable X on
the unit interval. Then [10] analyzes the convergence rate of the PDF of the scaled
remainder ZZO=1 Xm+k B~* when m tends to infinity to the asymptotic distribution
uy. If the density of X is f, then ™ f is nothing but the density associated with the
above scaled remainder.

(iii) In [12] it is shown the existence of a Césaro limit % lecv=1 Pk f in the
L'-norm for the more general case of piecewise monotonic and expanding maps.

(iv) We now briefly outline some consequences for the ergodicity properties [7]
of the map T in (1.3). It is measure preserving on [0, 1] equipped with the measure
density u1. We consider stochastic variables of the type F': [0, 1] — R with

Prob(F € (c,d)) := /ul(x) dx, forallc <d.
F~((c,d))

For every integer k > 0, we define X: [0, 1] — R given by
X (x) == g(T§ (x)),

for some g € L?([0,1]) with 1 < p < oo. If g is Lipschitz, by using Theorem 1.2 one
can prove that these random variables have the same mean value and exponentially
decaying correlations, which in turn implies [1, Theorem 1] the strong law of large
numbers.

The proof of Theorem 1.2 is given in Section 2.

1.2. The composition (Koopman) operator

Let us recall the definition of Tg: [0, 1) > [0, 1) given by
Tg(x)=px— x| =px—j, j/B=x<(+1D/B.xel0.1),je{0.1,....q}
We define the operator

KLP([0.1]) = LP([0.1]).  (Rg)(x) :=g(Tp(x)). 1=p=oo.  (L6)



Non-integer base expansions on the unit interval 333

We may also consider the operator # from (1.4) acting on L2 ([0, 1]) to itself with
1/p+1/p'=1and 1< p’ < oo. Thenif f € L?'([0,1]) and g € L?(]0, 1]), we
have

g—1 GHD/B 1
/ FORe)(0) di = Z | TOe-par+ [ FOe-aar
jlB q/B (1.7)

1
/ 7 ATmg(x) dx.
0

where in the last equality we used that f(x) = 0 when x > 1.
The main spectral results of this paper are contained in the next theorem.

Theorem 1.4. The following properties hold.
(i)  Define the numbers

X =B+ gpT 4 /B 0= <q.

They obey j/B < xj < (j +1)/Bwhen0 < j <q—1,and x; = 1.
If g = 1, we define

Bt ifj/B<t<x;,0<j <1,
0 ifxo <t <1/B.

If g > 1, we define

Vol(t) = {

") e2miBt/a+) yf /B <t < x;,0<j <q,
0 = i

e27iBt/q ifx; <t<(G+1)/B.0<j=<qg-1
Then g € L* and P g = 0 almost everywhere. Note that when n = oo,

then B = q + 1 and Yo(t) = e, See Figure 1 for an illustration of the
function g for the cases q = 1 and g = 3.

(ii)  The operator R = ui/pﬁul_l/p is a non-surjective isometry on LP ([0, 1])
forl < p < oo.
(iii) The spectrum 0f§ and & equals D ={z € C : |z| < 1} for1 < p < .
(iv) Let |z| < 1. Then the function
vz =2 (d—zuyPRuy )7 Py € L2([0.1]) € L7 ([0.1)),
1 < p’ <2, is an eigenfunction of P which obeys Py, = z Y.

The proof of this theorem is given in Section 3. We note that when P is restricted
to functions of bounded variations, its spectrum is quite different [17].
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Figure 1. Illustration of the map vo.

2. Proof of Theorem 1.2

2.1. Preliminaries

Notice that # maps non-negative functions into non-negative functions and for any

function f € L1([0, 1]) we have
1 1
/(JPf)(x)dx = / f(x)dx. 2.1)
0 0

Indeed, if 0 < j < g — 1, we have

5w IET (2 I

B BB
hence these intervals cover the interval [0, g/B]. Also, due to (1.2) we have

q q qgtx q
0.L4.. 4 ]9xr—> e[—,l].
[ B gt B B

Equality 2.1 follows after a change of variable on each interval. Moreover, this

together with | f| < #| f| imply that the linear map & is non-expansive on L!,

i.e.,
1P fllgr < I f gy forall e LY([0,1)). (22
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Figure 2. The first layer.

2.2. Subdividing the interval [0, 1]

In Figure 2 we introduce a decomposition of the interval [0, 1], which we will explain
in what follows. The characteristic functions of the intervals between two consecutive
red points will form a generating system, and it is important to know how J acts on
them. This will be done in Lemma 2.1.

First, we have the numbers in red given by 0,¢/8, ¢/B + q/B>....,and q¢/B +
q/B*+---q/B""" 1.

Second, we want to define the green numbers, which include the red ones, see
Figure 2. Let us start with those between 0 and ¢ /8. For jy € {0,...,q}, we define
the first set of green numbers: téj 0 — jo/B, with téq) = ¢/B. The distance between
two consecutive such numbers is 1/8.

The green numbers between ¢/8 and g /B + ¢/B? are indexed by tl(j D= q/B +
j1/B? where j; € {0, ..., q}. The distance between two such consecutive numbers
is 1/B2.

For the interval between ¢/8 + --- + q/B" ! and 1, we let j,—1 € {0,...,q}
and define I,E]j’l_l) =q/B+ -4+ q/B" ' + j._1/B". We also have the identities
tlgq) = tlg(-):l when0 <k <n-—1,and [,5‘1_)1 =1.

The distance between two consecutive points depends on which “red” interval
they are situated and is given by

U +D Gk _ o
B =g =g o<k <1

By definition, the first layer means the set of all numbers t,gk') where k; €
{0,...,n—1}and ji, €1{0,...,q}.

At this point, we are able to further refine any interval between two consecutive
elements of the first layer, where the endpoints 0 and 1 are replaced by t,gkl) and
iy +1 . . . .
t,ijkl ), and the width 1 is replaced by ~%1~1. More precisely, the points of the
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second layer are defined for 0 < ki,k; <n—1:

(jklsjkz) _ (jkl) —(k14+1) (jkz)
k1.k2 - tkl +A tkz )

Thus, in particular, we have that

Ukp) _ Ukyodks) _ Uk 4D Gkgn=D Gy +D)
< < =
tkl — tkl,kz — tkl ’ ki1.q tkl ’

In general, the m-th layer consists of the points for 0 < k1, k3, ...,k <n—1:

Uky sJky sesdkm) Uky) —(k Uky) _(k (k. Giens)
kl,/lz,...z,km :tkl 1 +B ( 1-|—1)tk2 2 +--+B ( 1+1),_,13 ( 1+1)tkW1: ‘

We now introduce the L1 normalized indicator functions of intervals between two

“consecutive points” of layer m denoted by

Uk >Jkg s Jkm) k
— 1+1 km+1 . . . . . .
k1.k2 e kom ()C) == /3 ce e ,3 mn X[l(.lkl ) SRR Jkm) t(A/kl Ty e Ikm+1)](x)-

kq.ko..ons km k1Ko km
(2.3)

Finally, let us introduce a special notation for the red numbers including the end-
points 0 and 1. They are

o =1 =0,
ni=10 =1 = %,
q q
f=1D =0 = TR
q q
Zn—l = t’,(lq_)z = tr(lo_)l = + - + ﬂn—l s

Iy = t,§‘1_)1 =1

The two very last notations give the L! normalized indicator functions of the intervals
between two such consecutive points:
g—1
F(x)=q"Y FP0) =¢"8  ypu,0x). 0<r<n—1. (24
Jj=0
Lemma 2.1. We have
n—1
PFo = x0,1] =9 Zﬂ_(1+l)Fi, and PF, = F,_y, wherel <r <n-—1.
j=0
In particular, the subspace generated by these functions is invariant under the action
of P, namely P (span{Fy, ..., F,_1}) C span{Fy, ..., Fy_1}.
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Moreover, for all m > 2 and all possible tuples (ji, . jiys-- - Jkpm) €10,...,q}"

we have
OF(JAI,sz, sJkm) F(sz, s Jkm) Sl = 0 2.5)
P S S ifkr =0 @.
Ukysdkn sesJkm) Uky ik ssdkm) .
PFkoedon = Fa-thoden F1Z 1L (2.6)
and
Atk kot 1 Uk Tk seeosTkm)
protrhitlettlnoy g 2 e span{Fo, Fi, .. Faot ) (2.7)
Proof. For x € [0, 1], we have
x+j
X (jkl /k2 ...... Jkm) (.ik].jk2 ..... Jkm D
(%,..... iy km ] B

= X[O,l](x))( Uky Tk seeesdhem)
km

1y, JBty

which introduced in (1.4) gives for the functions F, k(ljl‘klzjkzkm]km) defined in (2.3):

(Jkl,jkz,-n,jkm)
(PF, ki1k2eikm )(x)

a
:ﬂ_lﬁkIH---ﬂk’”HX[o,l](x)Zx[ﬂlukl.jkz ...... T ﬂ(’kl iy /km+1)_j](X)-
=0

2.8)
First, let us consider m = 1. We start by computing J’Fo(j ) thus we putm = 1 and
ki = 0. Then 1 = jo €{0.....qg — 1} and

Xyl g1 _ ;) (X = Aljio=s.do—j+11(X)-

By summing over j in (2.8), we get

?Fo("’) =01, 0=<jo<g-—1

Since the above formula is independent of jo, it also implies that & Fo = x[o,1],
see (2.4) for the definition of Fj.

We now want to compute J)Flgk‘) with 0 < k1 < n — 1. Since k1 > 1, then

ﬂt]gkl > ¢, and so the interval [ﬂt(]k1 ,Bz(]kl D
J < g — 1. On the other hand, since

— j] is disjoint from [0, 1] if

(]kl

b0 = /B /B + /BT
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we have
This implies that
?Flgkl —F(Jkl 1<ki<n—1,0<ji, <q-1

This shows that L1151 F, (Jkl) = PF, Uk _ X[0.1] belongs to the subspace spanned

by Fo, ..., Fr—1 (see (2. 4)) Applying & to (2.4) we obtain
PF =F_1, 1<r<n-1.
This ends the proof of the first part of the lemma.

Now, let us consider m > 1, i.e., more than just one layer. We have the following
cases.

e Ifky =0, then

Bi (Jo,sz, Jkm)
0,.

—J
; (k) _ _ i)
= B(jo/B+ B~ ltk2k2 +. 4B 1,3 (km_1+1)[k’]: -
; ko seeesJlm)
=Jjo—J +tk22k

which introduced in (2.8) gives

(]01]/( s s.]km) (]k s :]/\m)
FO kz, 2,km Fk212ak
This shows that if we apply & on a function with k1 = 0, then we go down to a
lower layer where m is replaced by m — 1 and j is “erased.” This proves (2.5).

. If 1 < kl S n— 1 the ﬂt(]kliszs ’ka)

in (2.8) equals zero. On the other hand,

> g and so the sum over j < g — 1

ﬁ[(Jkl,sz, wJkm) t(}kl,sz, sJkm) < Ukysdkg sesJlom +1)
i k2, 4= ey —tka,dem k1 —1,k2,.orkim
Uk g sJky seesJlm +1)
= Blis ki —¢=1
hence o ) o ]
j)F(Jkl,sza---aka) _ F(Jkl,sz,...,ka)

ki,k2,....km — Tki—1ka,....km
This shows that when we apply & on a function of the type (2.3) with k; > 0,
then k; is reduced with one unit. This proves (2.6).

Conclusion: it takes k; + 1 applications of & in order to go down from layer m to

layer m — 1, then k, + 1 applications in order to get from layer m — 1 to layer m — 2,

so Pkitkatkm_1+m=1 gets ys to the lowest layer with m = 1. ]
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2.2.1. Proof of Proposition 1.1

Lemma 2.2. Denote by T the n x n matrix obtained by restricting &P to the subspace
generated by {Fy, . .., Fy_1}. Then T is a left-stochastic matrix. If A is an eigenvalue,
then it obeys the equation Py 4(AB) = 0 with P, 4 from Lemma B.1. For Ay = 1, we
can construct a positive eigenvector. If A, is the second largest eigenvalue in absolute

value, then
ql/(n—l)ﬁ—n/(n—l) <|As| < ﬂ—l. 2.9)

There exists an explicitly computable piecewise constant function uy which is positive
a.e. such that
1
Puy =uy, upespan{Fo,..., Fy_1}, /ul(x) dx = 1. (2.10)

0

Moreover, there exists C < oo such that for every r € N and any g € span{Fy, ...,
Fn—1} we have

1
(@00 -m6 [e0dr] < Charisly. @11)
0 Le
Proof. We have
[ gt 1 0 0 0]
., B2 0 1 0 0
PF =) TjFia., 1<j<n 7= ; oo,
i=1 g~ 0 0 ... 0 1
g™ 0 0 ... 0 0]
then T is left-stochastic by (1.2). Observe that
[ z—gp' -1 0 0 0]
—qB 2 z -1 0 0
zId, =T = :
—gp~"Y 0 0 z -1
—qp" 0 o0 0 =z |

Expanding the determinant with respect to the first row, we get

det(z1d, =) = (z —gB~Hz" ! + det(Tp—1)
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where
[ —gp2 -1 ... 0 0]
—qBp3 z —1 ... 0
Tn-1 = : oo
g~V o0 ... z -1
| —qB™" 0 ... 0 <z |
By recursion, we get
det(z1d, —T) = (z — g™ )z" ' —gB 22" 2 — - —gp "z —gp"
= IB_nPn,q(Z,B)‘

Thus, A is an eigenvalue if and only if A8 is a zero of P, 4, hence all eigenvalues
are simple due to Lemma B.1 (i) and (iii). While A; = 1 (notice that A; = 1 is an
eigenvalue due to (1.2)), all other eigenvalues are in absolute value less than 8~! < 1
due to Lemma B.1(iii). Since the product of all roots of P, , must equal (—1)""!q,
we have

BlBAz|---1BAn| = q.

If A, has the second largest modulus, we have ¢ < 8”|A,|"~!, which proves the lower
bound in (2.9).
Now, let us compute an eigenfunction corresponding to the eigenvalue 1. We solve

the system
[ 1—¢8! -1 0 0 o[ si | [o]
—qp2 1 -1 0 0 52 0
Y 0 0 ... 1 —1]||sp: 0
| —9B™" 0 0 ... 0 1 || sn 1 0

We may choose s as a free variable. In that case, we may choose

8121,
Sy = 1—qﬂ_1,

_ -1 -2
s3=1—gB~ —qp™~,

sn=1—gp ' —--—gp" =qp™".

Now, let us define (see (2.4)) Fy(x) = Jgp~*+V/2F(x) for 0 < k <n — 1. They
form an L2-orthonormal basis in the span of {Fy, ..., F,_1}. The restriction of £ to
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this subspace, in the new basis, will have a matrix (here 1 < i, j < n)

SN

n

= (Fi . PFi1) = a2 (Fio . PFi) = JaB 7> Tj{Ficy. Fra)
r=1

= 77,

Since 7 and T are similar, 7 has the same spectrum as 7. Moreover, the vector §
with coordinates §; = 2 i, where 1 < j < n, is a not-normalized eigenvector of

T corresponding to the eigenvalue 1. The adjoint matrix 7* has the matrix elements
(T*)ij = T = p1*7;: 8772,

By direct computation, using that Z;l:l Tji = 1forall i, we can check that the vector

f with entries 7; = B7//2 is an eigenvector of T corresponding to the same eigen-
value 1.

Getting back to functions, the operator & has an eigenfunction u(x) correspond-
ing to eigenvalue 1 given a.e. by

u(x) =Y 5 F1(x) =g ) siFi1(x) >0,
=1

Jj=1

and we denote by

u(x)

[Lu@)yde’

up(x) :=

1
/ul(x) dx =1,
0

which satisfies (2.10).
Using the information we have about the eigenvector 7 of 7*, the adjoint #* of
& seen as an operator on the span of {Fy, ..., F,—1} has an eigenfunction

n n
w(x) = ijFj—l(X) = \/52/3_]}7}'—1(96) =q 0,00, P* X011 = Xi0.1]-
ji=1 7=1

Then the rank-one Riesz projection corresponding to the eigenvalue 1 can be written
as
M = ha){xonl. 17 =M.

Moreover, we may write

n
c{P|span{F0,...,Fn,1} = I-Il + ZAJ Hj
j=2
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where each projection has rank one and I1;IT; = §;;ITx. Now, if g is in the span of
{Fo,..., F,_1}, we have

1

n
Prg =u; /g(l)dl + Z)L;ng.
j=2

0

Since each IT; is a rank one operator of the form

1
 Vu Mo
(<Uj’uj>L2)| i
with ¥; and v; bounded functions in the span of {Fy, ..., F,,_1}, we have
[TjgllLee < Cliglpr, 2=<j <n. n

2.2.2. Finalizing the proof of Theorem 1.2. The first step is to approximate f with
piecewise constant functions using its Lipschitz property. For example, using the first
layer in Figure 2 we have (in the sup-norm)

n—1 —
U 11— Uky) _
=y §:f<z gtk g — oL g,
kl—Ojkl—O

where F k(fkl) is defined in (2.3). The error is largest on the interval between 0 and
q/ B, because the distance between two consecutive points is only ~1. On the other
intervals, where k1 > 1, the distance between two consecutive points is at least B2
and the error is of order 872 or better.

It is possible to improve the above estimate and get a global error of order f~2.
To achieve this, we have to refine the interval [0, ¢/8] by going to the second layer,
while keeping unchanged the other intervals where k; > 1. This leads to

> %f(zéff;’kz))ﬂ T
Jo=0 k=0 jx,=0
n—1
_ Z Zf(t(]kl VB~ 1—ky (jkl)=(9(Lf,3_2).

ki=1 Jjg, =0

If we want a global error of order 873, we need to go up to the third layer on the
subintervals where k, = 0 in the triple sum, and to the second layer on the subintervals
where k1 = 1 in the double sum.

If we want a global error of order 87"~!, even the old subinterval [1 — ¢/B", 1]
corresponding to k; = n — 1 in the first layer has now to be refined with a second
layer.
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In the general case, let us fix some integer M > n + 1 and let us investigate in
which way we should split the interval [0, 1] so that the error we make is not bigger
than B~M*"_ From the above discussion, this amounts to adjust the length of the
subintervals obtained by picking points from different layers.

For a given layer of order m > 1, the support of Fj (]kl | k,:km has a width of

g ~k1=—km We have the following double inequality:

ki+ko+-+kpm+m<ki+ky+--+kp+kppr +(m+1)
<ki+ky+---+kpn+m-+n, (2.12)

where the first one is trivial while the second one is due to k;;,+1 < n — 1.

Remember that M > n + 1. The first layer has m = 1 with k; + 1 < M because
k1 < n — 1. By refining each subinterval of layer 1 by adding points of higher layers,
we have two alternatives:

» either
ki+ky+-+kmt+kp+m+1)<M

* or
kit+ky+tkmt+m<M=ky+ky+-+km+knt1+(m+1).

If the first alternative is realized, then we perform another refinement. If the second
alternative is realized (this must happen at some point), then by coupling it with (2.12),
we obtain

ki +ky+--+kp+m<M<n+ki+ky+- -+ kyu+m. (2.13)

No further refinement is performed on a subinterval where (2.13) holds. Also, when
(2.13) is satisfied, we write

Mkt etk M.

Uky s ka )
' )

Replacing f on the support of)( (jkl ..... Jkm) Uy jkm+1)] with f(t and
t

Kqsees km Ky km
using the Lipschitz property of f , the error is of order B~ k1 _“'_k’". Thus, we have
(even in the sup-norm)

Uky ,Jk ) NPT S S Sy ) -M
=Y S gtk gt — (L M),
m+ky+- +]c,n~M
Jky e dkm
According to (2.2), & is a non-expansive map on L!, hence there exists a constant
C < oo such that for all N > 1 we have

H ONf Zf(t(n\l, o Jkm) Y k1 ——km oNF(/kl’ > Jkm

la a
m+k1 +- +km~M
JkyseeerJkm

< CLf,B_M.
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If N is larger than M, which is already larger than m + k1 + - -+ + kj (due to (2.13)),
then according to (2.7) in Lemma 2.1, we have that both PN Fk(fklkm]k’") and
PMFE k(l]klkm]k’") belong to the invariant subspace, are non-negative, and their L!
norm is constant equal to 1 due to (2.1). Using (2.11) with r = N — M, we have that

in the L1 sense,

Uk seeosdkm)\ p—m—ly —eo— _
PN = D S BT Ry () + O (142N M)
+ky 4 tkm~M
" j/l(l:"'sjkrn,

=O(Lep™).

where the bounding constants appearing in the two errors are independent of N
and M. Up to another error of order @(8~™), we may replace the Riemann sum
with fol f(t)dt. Hence, we have

1
?Nf—m/f(t)dt = Ot V™M) + OLs ™), N > M.
0

Given N > 1, we may choose an “optimal” M as a function of N such that

A VM~ M

where ~ means that they may differ by a numerical factor which is independent on N.
If n = 2, then |A;| = gB72, hence we may choose M to be the integer part of x where
x solves the equation

xIn(B) = (N —x)In(8%/q).

which gives x = K, N with K> in (1.5).

Also, since |A,| < 1/p for all n (see (2.9)), by choosing M to be the integer part

of N/2, we see that the decay is always faster than S/,

3. Proof of Theorem 1.4

3.1. Proof of (i)

We only prove the result for ¢ > 1. Let us first show that j/8 < x; < (j +1)/8 for
all 0 < j < g — 1. The first inequality follows directly from the definition of x;, while
the second one is equivalent with

GB+ -+ gfT < BT or BTN+ gpD <,
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the latter holds true by (1.2). This shows that i is well defined on [0, 1] and by
convention, it equals zero outside this interval.
In view of (1.4),if g7 +--- + g~V < x < 1, we have

o _ X+
(Po)(x) = B 1;%( ; ).

For x in that interval, we also have

- _ ' X+ + 1 .
ap™ + - +qp ”+é=xj' < ﬂj <Jﬂ , 0=Jj=q-1
which from the definition of ¢ it implies
g—1 q—1
(J)KDO)(X) — 13—1 ZeZJn(x-i-j)/q — ﬁ—leZJrzx/q Z(eZHt/q)J = 0.
=0 =0
IfO<x<gB ' +---+¢gB~ "V, wehave
2 x+k
(Pvo)x) = B Y vo( ; )
k=0
For x in the above interval, we also have
k x+k ¢ q k
E<T<ﬁ+"'+ﬂ—n+g=)€k, 0<k=gq,

which from the definition of ¢ it implies

q q
(J)wo)(x) — ﬂ_l Z eZni(x-i—k)/(q-l—l) — ﬁ—1e27tix/(q+l) Z(eZTL'i/(q-l-l))k =0.
k=0 k=0

3.2. Proof of (ii) and (iii)

Let us show that & = ui/pR(l/u}/p) is an isometry on L? ([0, 1]). If p = oo then
this follows directly from the definition in (1.6). If 1 < p < oo, we have (using (1.7)
in the third equality)

1

1
IRCHIE, = / RO)IPdx = / WICLaPH
0

Ui
0

Ui

1
V4
- /(a’ul)'f' dx = |£12,.
0
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The operator & — z1d = u1/?(R — zId)u] /7 is invertible if and only if K — z1d
is invertible, hence R and K have the same spectrum. Since K is an isometry, it is also
injective, hence K is injective, too.

Now, let us show that K (thus also ﬁ) is not surjective. Using (1.7) and the eigen-
vector Yo of J constructed at point (i) (Yo belongs to any L? with1 < p < 00), we
have

1
/wo(x)(ﬁg)(x) dx =0 forallgeL?, 1<p=<oo,
0

which implies that ¥ does not belong to the range of K. This also implies that u i/ Py
does not belong to the range of R.

Thus, Risa non-surjective isometry and its spectrum must equal the closed unit
disk due to the following result which may be found in [2, Proposition 5.2], but we
also prove it here (in a more self-contained way) for the convenience of the reader.

Lemma 3.1. Assume that U defined on some Banach space is a linear isometry. If U
is surjective, then o(U) C SY. If U is not surjective, then o(U) = D.

Proof. An isometry is always injective. Let us first consider the case when U is
surjective (thus invertible). Using that |[Uf || = || f|| for all f and also |Ug| =
IUWUg)|l = |lgll, we conclude that both U and U ~! have norm one. Let z € C be
with |z| < 1. Then U — z1d = (Id —zU 1Y) U is invertible because ||zU | < 1. If
|z] > 1, we have U — z1d = —(Id —z~'U)z which is also invertible. Thus, o (U) is
included in the unit circle.

Now, let us consider the case when U is not surjective. Because |U| = 1, we
know that ¢(U) C D. Because U is not invertible, then 0 € o(U), hence o(U) has
elements which are not on the unit circle. Thus, if the inclusion o (U) C D is strict,
there must exist a point A with |[A| < 1 which belongs to the boundary of o (U).
We will now show that A must be in the resolvent set of U, which would lead to a
contradiction.

Since A € d(0(U)), there must exist a sequence of points A, in the resolvent set
of U such that A, — A when n — oo. Since |A| < 1, there exists N > 1 such that
[An] < (1 +|A])/2 < lifn > N. Using the triangle inequality, we get
1—|A|
I =2 IS = NUS | = 12l SN2 —5— ]l 7> N
Since U — A, Id is invertible, using this inequality with f = (U — 1, Id)"!g, we
obtain

(U =2, 1d)7"| < n> N.

2
L=]Al°
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This uniform bound and the identity
U—A1d=Id+A, —A)(U — A, 1d)" (U — A, Id)

show that the right-hand side must be invertible if # is large enough, hence A is in the
resolvent set of U and cannot belong to the boundary of o (U). |

3.3. Proof of (iv).

We know from (ii) that ul/ 2S?ul is an isometry on the Hilbert space L2([0, 1]).
Then (1.7) implies that = K&* and

@ 2Py ?Rur?) = @ PR @ PR = @

The isometry ui/ 2Ru1_1/ 2 has norm one. If |z| < 1, then ¥, is different from zero
and can be written with the help of a Neumann series. Finally,

Py, = Po + sz 1/2(u 12 p 1/2)(141/2@“ 1/2)m 1/2\/f0

m>1

_ Z oMy, 1/2(u1/2 u1—1/2)m—1u1—1/2w0 =2y,

m=>1

where in the second equality we used ¢ = 0 and (3.1).

A. The greedy algorithm

Let x € [0, 1). Applying the map Tg, we get that
Tg(x) = px — [Bx] €[0. 1),

where | - | is the floor function and ¢ < 8 = B,,4 < ¢ + 1 in view of Lemma B.1 (i).
By iterating the map T, we define the j-th greedy coefficient as

xj = [BTYV(x)] forall j > 1 with T§(x) := x. (A.1)
The following lemma describes the greedy algorithm.

Lemma A.1. With the definitions above, and with 8 as in (1.2), if x € [0, 1) we have

x=Y xp. (A.2)
j=1
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The scaled remainder B* (x— Z?:l x;j B/ ) obeys
k .
,Bk(x—ij,B_J) = TF(x). (A3)
j=1

Moreover, the greedy coefficients satisfy three restrictions:
(1) xj €{0,1,....q} forall j > 1;
(2) x; = q for n successive j’s cannot occur;

(3) it cannot happen that the sequence of x;’s ends in the infinite sequence (c1,
C2,...) where ¢y = q — 1 for all m > 1, and all the other c;’s, with j not
dividing n, are equal to q.

Proof. (A.3) is true by definition for £ = 1. Assuming this equation for some k > 1,
we have

Tﬂ(k+1)(x) =Ty (Té‘(x)) = ,BTé‘(X) - LBT;J

= pF (v - Xk:x,ﬂ‘j) — Xkt
j=1

k+1

= IBk‘H(x — ijﬂ_j).

Jj=1
Since Tg:[0,1) — [0, 1) and B > 1, the series in (A.2) converges.
The first restriction on the x;’s follows from their definition:

0<x =BT V(0] < 1B =4.

because of Lemma B.1 (i).
To prove the second restriction on the coefficients, suppose that there exists some
k > O such that x;; = ¢, where j € {1,...,n}. Using (1.2), we have

n

3 gpkt) = gk,

Jj=1

If kK = 0, then x > 1, which is a contradiction. If k¥ > 1, then using (A.3) and (A.2)
we have

Té‘(x) = ﬂk<x—2k:xj,3_j> = ﬁk( ixjﬂ_j) = ﬂk< %q,ﬁ_j) =1
j=1 j=k+1 J=k+1

contradicting 7:[0,1) — [0, 1).
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In order to prove the third restriction, let us assume that there exists x € [0, 1)
whose greedy expansion ends with 875 3 i>1Cj B~/ for some k > 0, i.e. Xpq; = ¢j
for j > 1. By repeatedly using (1.2) (see also Figure 2), we have

n—1
1= g/ +@- D" +p"
j=1
n—1 ' n—1 -
=Y aB + - DB+ BT (DB + (g DET) + p
j=1 j=1
R ZC/'B_]’

Jj=1
hence x = Zle x; B~/ + B~ and thus by (A.3) Té‘ (x) = 1, contradiction. [

Lemma A.l has shown that the greedy algorithm gives a unique output for the
coefficients x; defined in (A.1) for any number x € [0, 1), and these coefficients obey
three necessary conditions. In the next lemma we will show, in particular, that any
expansion for x € [0, 1) satisfying all these three conditions must be the greedy one.

Lemma A.2. Suppose

o0
x=y %p (A4)
j=1
where the coefficients Xj € {0, 1,. . .,q} also satisfy the condition that no n consecutive

coefficients equal q. Let c; = q — 1 if n divides j, and c; = q otherwise. Let x; be
defined as in (A.1). Then one of the following possibilities occurs:

(1) X; = cj forall j in which case x = 1;
(2) x < 1withXj = xj forall j, i.e., x is written in the greedy representation;

(3) x < 1 and there exists some k > 1 such that X; = x;j for j <k (ifk >2), X =
Xk — 1, and Xg 1 j = cj for j > 1. Inthis case, the finite sum x = Zle xj,B_j
is the greedy representation of x which is different from (A.4).

Proof. The largest possible value of Zf’;l X;B —J, which can be achieved with the
Xj obeying the two restrictions of the current lemma, equals 1. This is the case if and
only if X; = ¢j, forall j.

Assuming x < 1, suppose that the sequence (X1, X2, . . .) does not end in the infinite
sequence (c1, 2, ...) so that the scaled remainder, ¥ Z;’;k 11 %) B~/ <1 for all
k > 1 (we have already assumed this for k = 0). Then X; = x; for all j: to see this,
we have x; = [Bx] and Bx = X1 + B Z]oiz %jp~/ = X1 +1t witht € [0, 1). Thus,
X1 = X1. A simple induction gives x; = X; forall j.
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On the other hand, suppose & is the first integer such that % Z;’i k1 5B =1
Then Xgy; =cj, j > land X; = xj, j <k, Xx +1 =xx <q.Thus, X <g—1.1f
Xk = q — 1, the previous (if there are that many) n — 1 X; ’s cannot equal ¢ because that
would violate the definition of k. Thus, x = Z’;l Xj B/, the greedy representation,

J
is a different representation of x. |

B. Properties of 8, 4

The following lemma is given for the sake of the reader and collects in one place a
number of known results [5, 13].

Lemma B.1. Letn,qg € Nwithn >2and 1 < q. Let
Pugz)=2"—q@" ' +z2" 2+ 24+ 1)

with z € C.
(i)  Pu,q has only one positive root B, 4, which also obeys g < Bn 4 < q + 1.
(i)  All roots have algebraic multiplicity one.
(iii) The other roots of Py 4 satisfy (q/(q + 2NV < |z| < 1. In particular, Bn.g
is a Pisot number.

(iv) Fix a € (¢,q + 1). Then there exists ng > 2 such that (g + 1) —qa™" <
Bng <q -+ 1foralln > ny.

Proof. (i) If x > 0, we define f(x) == x " Py q(x) =1 —g(x71 4 -+ + x7"). We
have that f’ > 0, which means that it can have at most one positive root.
If g = 1, we have

f)=1-n<0, f(2)=2">0

hence there exists a unique, simple root between 1 and 2.
For g > 1, we have

—n 1

l-q" _q"—q~
1—g! 1—g~1

g 1-(@+D™
g+11—(g+1!

flg) =1~

<0,

fg+H=1- =@+ >0

thus, there always exists a unique positive root B, 4 € (¢,q + 1).

(i1) Now, let us prove that all the other roots are also simple. If z # 1, we have

" —1 2" _(g+1D)zZ" +¢q 04.4(2)
P =z"— = =: A7
n,q(Z) z qz—l z—1 z—1
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Since z = 1 is not a root, P, 4(z) has the same roots (those different from 1) as
On,q(2). If z1 # 1 is a degenerate root of Py g, i.e., Png(z1) = P, 4(z1) = 0, then
we also have 0y 4(21) = 0, ,(z1) = 0. But

_(q+1)n)
n+1

and since 0 is not a root, we must have z; = (g + 1)n/(n + 1), which is positive. But

Qnq(2) =+ 12" = (g + Dnz""" = (n + 1)2"—1(2

we know that P, , only has a non-degenerate positive root, which is a contradiction.

(iii) We want to show that O, , has exactly n roots inside the closed unit complex
disk. Let F(z) = z" ™! + g and G(z) = —(¢ + 1)z".If |z| = 1 + & with & > 0 small,
we have

[Fz)|<g+1+ @+ De+ 0%, |G| =(q+ 1A+ ne) + 0O(2),

and since nq > 1, we have that |G(z)| > |F(z)| on |z] = 1 + ¢ if ¢ is small enough.
This implies that the function

Hi(z) :=1F(2) + G(2). Ho(z) = G(2). Hi(z) = Qnq(2)

obeys |H;(z)| > |G(z)| — | F(z)| > O on the circle |z| = 1 + e forall ¢ € [0, 1]. Thus,
the number of zeros of H,; inside the disk |z| < 1 + ¢ is constant in ¢ and equals 7.
Taking the limit ¢ | 0, we conclude that O, 4 has exactly n zeros inside the complex
closed unit disk. Now, if z is a zero with |z| = 1, we have

2" +gl=(g+ D" =g +1

which is possible only for z”*! = 1. But then (¢ + 1)z" = g + 1, hence z" = 1. This
implies that z = 1. Hence, P, 4 has exactly n — 1 complex roots inside the open unit
disk.
Now, let z; be such a root with |z;| < 1 and O, 4(z1) = 0. Then
(@ +Dlz" =g+ D2z g—|z1["" > g — |z )"

which leads to

|z1]" > 4
q+2
(iv) Fix any ng > 2 and let n > no. We have
! + et ! < ! + et Lo
Bn.q ﬁ?q ~ Bug ;’Lq 61’

hence By.g > Bro.q- Als0, On.g(Bn,q) = 0, hence By 4 solves B g =q +1—q/By .-
Thus,

q+1_ E,Bn,q<(]+1, 2<ng<n.

Broa

Now, we can choose n¢ large enough such that 8,, ;, > « and we are done. |
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