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Spectral instability of random Fredholm operators

Simon Becker, Izak Oltman, and Martin Vogel

Abstract. If AWD.A/ � H ! H is an unbounded Fredholm operator of index 0 on a Hilbert
space H with a dense domain D.A/, then its spectrum is either discrete or the entire complex
plane. This spectral dichotomy plays a central role in the study of magic angles in twisted bilayer
graphene. This paper proves that if such operators (with certain additional assumptions) are per-
turbed by certain random trace-class operators, their spectrum is discrete with high probability.

1. Introduction

This article describes the spectrum of random perturbations of Fredholm operators of
index 0. If AWD.A/ � H ! H is an unbounded Fredholm operator of index 0 on a
separable Hilbert space H with dense domain D.A/, then Spec.A/ is either discrete
or the entire complex plane (see Proposition 2.1). Here we denote Spec.A/ as the
spectrum of a linear operator on a Hilbert space, defined as the complement of the set
of points z 2 C such that A � z is bijective.

A striking example of this dichotomy was presented in [23], where Seeley intro-
duced a particularly simple family of operators with this property, defined as

ASeeleyWH
1.R=2�Z/ 3 f 7! a.x/@xf .x/C b.x/f .x/ 2 L

2.R=2�Z/ (1.1)

for a;b 2C1.R=2�Z/ and jaj>0. The spectrum ofASeeley is either a discrete lattice,
empty, or C depending on a and b.

While the case where Spec.A/D C was considered pathological, the recent study
of physical models in twisted bilayer graphene (TBG) have shown this case to be
physically highly relevant. Indeed, this spectral dichotomy appears in the mathemati-
cal study of TBG in the so-called chiral limit, see [3,29] for details (which is the main
motivation for this article). In this model, a Fredholm operator of index 0 is defined
with a parameter ˇ 2 C. The theory of TBG in the chiral limit defines magic twisting
angles as the ˛ such that the spectrum of the operator is C (this is further described in
Section 1.1).
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For any Fredholm operator of index 0, it is easy to construct an arbitrarily small
perturbation to make the spectrum of such an operator discrete (by mapping the kernel
to the cokernel). The question that this paper aims to address is the following.

When is the spectrum of a random perturbation of Fredholm operators of index
zero on a Hilbert space discrete?

The perturbations considered in this article are random trace-class perturbations.
These types of random perturbations appear when numerically analyzing such oper-
ators. For example, if we restrict an operator A to an N -dimensional vector space1

and project the image onto this same vector space, then we can easily compute the
spectrum numerically. As we increase N , rounding errors in mathematical software
can be modeled by finite-rank random perturbations (see also [6]).

In this paper (under certain conditions on the random perturbation), we provide
a quantitative lower bound for the smallest singular value of the randomly perturbed
operator (with certain probability). As a by-product, we see that these randomly per-
turbed operators have a discrete spectrum with high probability. We then apply our
findings to the TBG model (see Theorem 1). A heuristic version of our main theorem
is stated below; for a more precise version, see Theorem 2.

Theorem (Heuristic main result). Suppose A � z is a Fredholm operator of index 0
for all z 2��C (an open set) andQ! is a suitable random trace class perturbation
(see (2.1)), then for sufficiently small ı > 0, the set Spec.AC ıQ!/ \� is discrete
with high probability.

The general framework of our proof follows the works of Hager, Sjöstrand, and
the authors [13, 15, 17, 30]. However, in all of those cases, the proofs rely on the
semiclassical ellipticity of the symbol of the operator being studied. In this paper, we
will work under more general assumptions of the operator to randomly perturb. In the
case the operator is a pseudo-differential operator, we allow the principal symbol to
be not semiclassicaly elliptic.

The spectral stability of our main result can be characterized more abstractly in
the following way. Recall that � 2 C is a normal eigenvalue of A if � 2 Spec.A/ is
isolated and the kernel of A � � is finite dimensional. We then define the discrete
spectrum of A as

Specdisc.A/´ ¹� 2 C W � is a normal eigenvalue of Aº

and its essential spectrum

Specess.A/´ Spec.A/ n Specdisc.A/:

1For example, we could approximate H1.R=2�Z/ by the first N Fourier modes.
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If A is a self-adjoint operator, and S is a relatively A-compact operator, then it is a
classical theorem due to Weyl [31] that

Specess.A/ D Specess.AC S/:

It is well known that this does not hold in general for non-self-adjoint operatorsA.
In fact, for non-self-adjoint operatorsA, there exists a maximal set [12] Specess,stab.A/

contained in Specess.A/ that is invariant under compact perturbations

Specess,stab.A/ D
\

S compact on H

Spec.AC S/:

One can verify that

Specess,stab.A/ D ¹� W A � � is not a Fredholm operator of index 0º: (1.2)

We recall that a Fredholm operator on a Hilbert space H is a closed linear operator
AWD.A/ � H ! H such that ran.A/ is closed and both its kernel and its cokernel
are finite dimensional. Here, D.A/ is a dense linear subspace of H that is complete
with respect to the norm kxkD.A/´

p
kxk2 C kAxk2.

In the case of self-adjoint operators A, Weyl’s theorem gives

Specess,stab.A/ D Specess.A/:

Equation (1.2) raises the question about the stability of Specess.A/ n Specess,stab.A/

under generic perturbations. By definition, this part of the spectrum is not stable under
all compact perturbations, but is it stable under suitable random perturbations of A?

This article considers random perturbations of Fredholm operators of index 0. As
we shall see in the following, the spectrum of such operators satisfies a dichotomy on
the set of z such that A � z is Fredholm of index 0. We aim to provide quantitative
estimates on the stability of the essential spectrum by estimating the probability the
smallest singular value of A � z is not too small.

Question 1.1. How stable is the essential spectrum of non-self-adjoint Fredholm
operators of index 0 under random trace-class perturbations?

More specifically, for a fixed separable Hilbert space H with a dense subsetD.A/,
we consider unbounded Fredholm operators AWD.A/ � H ! H with index 0. For
such operators, let

�F .A/ WD ¹z 2 C W A � z is a Fredholm operatorº

denote the Fredholm domain of A. Because the Fredholm index is constant with
respect to small perturbations (see for instance [9, Theorem C.5]), the Fredholm index



S. Becker, I. Oltman, and M. Vogel 358

is constant ind.A � z0/ D ind.A � z/ for z; z0 in the same connected component of
�F .A/ and �F .A/ is an open set. We then define the open set

�
.0/
F .A/ WD ¹z 2 C W A � z is a Fredholm operator of index 0º: (1.3)

Note that if A is Fredholm of index zero, then trivially 0 2 �.0/F .A/.
Analytic Fredholm theory, see Proposition 2.1, shows that for each connected

component D � �.0/F .A/, either D � Spec.A/ or Spec.A/ \D is discrete. We can
always add an arbitrarily small (ad hoc) finite rank perturbation toA so that the second
case holds.2 The main result of this paper proves that the second case is generic (in a
certain sense, but unlike the ad hoc perturbation), so that the stability in Question 1.1
fails dramatically.

As a random perturbation, we consider quasi-finite-rank random perturbations of
the matrix elements of the operator. Although often not indicative of a physical noise
profile, it is motivated by numerical algorithms, where one often considers finite-rank
approximations of the full operator. Thus, a take on Question 1.1 from the perspective
of a numerical analyst could be whether a noisy finite-rank implementation of a Fred-
holm operator of index 0 can still be expected to show traces of non-discrete spectra?
As our main theorem and the illustration in Figure 2 show, the answer is negative.

1.1. The motivating example: Twisted bilayer graphene

A representative of the family of operators that motivated this paper appears in the
mathematical study of twisted bilayer graphene (TBG) in the so-called chiral limit,
see [3] for details. The operator is defined as

Dh.ˇ/ WD

�
2hD Nz ˇU.z/

ˇU.�z/ 2hD Nz

�
WH 1.C=�IC2/! L2.C=�IC2/ (1.4)

where ˇ 2 C, jˇj D 1 is the coupling parameter, D Nz ´ .2i/�1.@Re z C i@Im z/,

U.z/ WD

2X
kD0

!ke.z N!
k�Nz!k/=2;

! WD e2�i=3, � ´ 4�.i!Z ˚ i!2Z/, and h 2 R>0 is proportional to the twisting
angle between two stacked layers of graphene. It is proven in [3] that there exists a

2Indeed, without loss of generality, suppose that 0 2 D. Then if the kernel of A has an
orthonormal basis ¹ui ºNiD1, and the cokernel of A has an orthonormal basis ¹vi ºNiD1, then
AC ı

PN
1 vi ˝ ui is invertible for every ı > 0, so that 0 … Spec.AC ı

PN
1 vi ˝ ui / and thus

spectrum of the perturbation of A is discrete in D.
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discrete set M � C such that

SpecL2.C=�/Dh.ˇ/ D

´
C; ˇ=h 2M;

��; ˇ=h …M;

where ��, the dual lattice of � , is a discrete set.3 In the theory of twisted bilayer
graphene, for fixed ˇ, the twisting angle h is called magic if Spec.Dh.ˇ// D C. The
set M has no explicit description, however it can be described as the set of eigenvalues
of a certain auxiliary compact operator (see [3, Theorem 2] for details).

A consequence of our main result (Theorem 2) is that Dh.ˇ/ does not exhibit
any magic angles (with overwhelming probability) if perturbed by a suitable small
random perturbation, as described below.

Theorem 1 (Application to TBG). Suppose �.z; �/ 2 C10 .T
�.C=�/I Œ0; 1�/ is iden-

tically 1 for j�j < C , for some sufficiently large C , and

Q! ´

�
Oph.�/ 0

0 Oph.�/

�
ı

�X
j;k

j̨;kej ˝ ek

�
ı

�
Oph.�/ 0

0 Oph.�/

�
where ¹ej ºj2N is an orthonormal basis of L2.C=�I C2/, j̨;k are i.i.d. complex
Gaussian random variables with mean 0 and variance 1, and Oph.�/ is the Weyl
quantization of � (see Definition A.4). Then for fixed ˇ, if 0 < ı < h� , with � > 2,
Dh.ˇ/C ıQ! has discrete spectrum with probability at least

1 � C1e
�C2=h

2�

for positive constants C1 and C2 (i.e., with overwhelming probability).

In Figures 1 and 2 we provide numerical evidence supporting Theorem 1. In Fig-
ure 1, we compute the spectrum of a finite matrix truncation ofDh.ˇ/ at a fixed magic
angle (top left plot). The accumulation of eigenvalues near the origin should be inter-
preted as a finite-rank analogue of having the entire complex plane as spectrum. We
then compute the spectrum at the same h and ˇ, but with a small random perturbation.
We observe that there is no accumulation of eigenvalues near the origin, suggesting
that the magic angles have been washed out by randomness.

In Figure 2, we attempt to quantify this finite-rank analogue of having the entire
complex plane as spectrum. We fix ˇ D 1, vary h between 0 and 2:5, and measure
the density of eigenvalues near the origin. Any spikes in the eigenvalues should cor-
respond to magic angles. We then notice two spikes (corresponding to the first two

3The dual lattice of � is by definition all k 2 C such that .
 Nk C N
k/ 2 4�Z for all 
 2 � ,
which can be explicitly computed as �� D 3�1=2.!Z˚ !2Z/.
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Figure 1. Spectrum of smallest 600 eigenvalues of finite matrix truncation of Dh.ˇ/, with
matrix size 13122, for largest magic h and ˇ D 1 (top left). The accumulation of eigenvalues
since Spec.Dh.ˇ// D C in the center is clearly visible. Spectrum of finite matrix truncation
of Dh.ˇ/, with same h; ˇ and random ı D 0; 0:01; 10�4; 10�7 perturbation (clockwise). The
accumulation of eigenvalues in the center gets resolved immediately.

magic angles) as shown in the first plot. We then do the same computation, but with a
random perturbation added, and observe no spikes in eigenvalues.

Spectral analysis of random perturbations of non-self-adjoint operators is a rich
field within the random matrix theory community. Indeed, Davies and Hager described
the spectrum of randomly perturbed Jordan matrices [7]. Similarly, Guionnet, Wood,
and Zeitouni described the empirical measure of eigenvalues of certain randomly
perturbed non-self-adjoint operators [11]. Basak, Paquette, and Zeitouni considered
random perturbations of banded and twisted Toeplitz matrices [1,2]. Sjöstrand and the
author further described similar spectral properties for Toeplitz matrices and Toeplitz
matrices [25, 26]. In various settings, the limiting spectral measure of randomly per-
turbed non-self-adjoint operators have been described. See [14] who considered per-
turbations of hDx C g.x/, [30] who considered perturbations of quantizations of tori,
and [17] who considered perturbations of quantizations of Kähler manifolds.
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Figure 2. Counting the number of eigenvalues of a finite rank approximation ofDh.1/ (defined
in (1.4)) for different h in a ball of radius 2with random perturbations of size ıD 0;10�5; 10�1

from left to right. Magic angles at 1=h� 0:586; 2:221 are clearly visible as spikes in the unper-
turbed figure (left) but washed out in the perturbed ones (center and right).
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Outline of the paper. In Section 2 we provide the relevant background to state the
general result of this paper (Theorem 2) as well as a more quantitative result (Theo-
rem 3). In Section 3 we provide a proof of these results. Then in Section 4, we discuss
the application of Theorem 2 to an operator appearing in the study of magic angles
for twisted bilayer graphene, proving Theorem 1. This analysis requires the already
known quantization procedure for matrix-valued functions on C=� , which we felt
worthwhile to outline separately in Appendix A.

Notation. For u;v elements of a Hilbert space, the operator u˝ v operates onw 2H

by

.u˝ v/w D uhw; vi:

For a function f depending on a positive parameter h > 0 andM 2N, we write f D
O.hM / if there exist h0 > 0 and CM > 0 such that jf j � CMhM for all 0 < h < h0.
We write f D O.h1/ if f D O.hM / for all M 2 N.

2. Setup of problem and main result

For the remainder of this paper, we let H denote a fixed separable Hilbert space. We
start with a simple observation about the operators we consider.

Proposition 2.1. Let A be a closed densely defined linear operator AWD.A/ �H !

H and D � �.0/F .A/ (defined in (1.3)) be a connected component. Then either D �
Spec.A/ or D \ Spec.A/ is discrete.

Proof. Consider a connected component D � �.0/F .A/. By assumption, the Fredholm
index of A � z is zero for all z 2 D. By analytic Fredholm theory, the proposition
follows. Indeed, one can follow [9, Theorem C.8] which constructs a holomorphic
function f .z/ with the property f .z/ D 0 () z 2 Spec.A/. We note that in [9,
Theorem C.8], A is assumed to be bounded, however the proof follows without mod-
ification for an unbounded A.

We note that for j ¤ 0, �.j /F .A/ � Spec.A/. This trivially follows by observing
that if z 2 �.j /F .A/ (for j ¤ 0), then the kernel or cokernel of A� z is non-trivial and
thus A � z is not bijective.
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2.1. Random perturbation

Here we discuss the random perturbations considered in this work. Let ¹e1j W j 2 Nº

and ¹e2j W j 2 Nº be two orthonormal bases of H , and define

Q! WD S1 ı
� 1X
j;kD1

j̨;ke
1
j ˝ e

2
k

�
ı S2 (2.1)

where S1 and S2 are fixed Hilbert–Schmidt operators and j̨;k are independent iden-
tically distributed complex Gaussian random variables with mean 0 and variance 1.
To make sense of the sum in (2.1), we decompose S1 and S2 using a singular value
decomposition and use that the law of . j̨;k/ is invariant under unitary transforma-
tions, to rewrite Q! as

Q! D
X
j;k

s1j s
2
k j̨;ke

1
j ˝ e

2
j

where s1;2j are the singular values4 of S1 and S2 respectively and e1;2j are two poten-
tially different (from the ones above) orthonormal bases of H . Each term in this sum is
an independent complex Gaussian random variable of mean zero and variance s1j s

2
k

.
It can be shown that with probability 1, the Hilbert–Schmidt norm of Q! is finite
(this follows from Lemma 3.1 and continuity of measures). And under the additional
assumption that S1 or S2 is trace-class (we will assume in our main result that S1 is
trace-class), then Q! is almost surely trace-class (see (3.1)).

To analyze A C ıQ! , we require certain elliptic-type properties of S1 and S2.
Because A is closed and densely defined, the adjoint of A � z (for any fixed z 2 C),
denoted by .A � z/� has dense domain

D..A � z/�/´ ¹u 2 H W there existsv 2 H such that
h.A � z/w; ui D hw; vi for all w 2 D..A � z//º;

see for instance [19, Theorem VIII.1]. We may then define the operator

.A � z/.A � z/�

with domain

D..A � z/.A � z/�/ D ¹u 2 D..A � z/�/ W .A � z/u 2 D..A � z//º: (2.2)

4If S is a Hilbert–Schmidt operator, we say ¹sj ºj2N are the singular values of S if sj are
the eigenvalues of

p
S�S . Although not necessarily here, we assume sj are decreasing to zero

as j !1.
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A result of von Neumann (see for instance [16, Theorem 3.24]) states that the operator
.A � z/.A � z/� with this domain is self-adjoint. For the following hypothesis to
make sense, we assume that

there exists Qz 2 C such that Spec..A � Qz/.A � Qz/�/ is discrete: (2.3)

This assumption can be relaxed to Spec..A � Qz/.A � Qz/�/ being discrete near 0. We
stress here that (2.3) is much weaker than A � Qz having discrete spectrum (which we
aim to prove for a perturbation of A). See Section 4 where we prove (2.3) for the
operator Dh.ˇ/ coming from TBG.

Our proof relies on constructing an auxiliary operator which has components
projecting onto the singular vectors of .A � z/, which uses that the spectrum of
.A � z/.A � z/� is discrete. If we only have that the spectrum of .A � z/.A � z/�

is discrete near zero, we can still build an auxiliary operator by using spectral pro-
jectors, at the cost of requiring finer analysis. We will leave this added generality to
future work.

Hypothesis 1. For ˛ > 0 and Qz 2 C satisfying (2.3), we denote by ¹e1; : : : ; eN º and
¹f1; : : : ; fN º the eigenvectors of .A � Qz/.A � Qz/� and .A � Qz/�.A � Qz/ (equipped
with an analogously defined domain to (2.2)) with eigenvalues less than ˛, respec-
tively. Let

H1;˛ ´ span.¹ei W i D 1; : : : ; N º/ and H2;˛ ´ span.¹fi W i D 1; : : : ; N º/:

Because our main motivation is to apply our result to semiclassical operators,
we allow S1 and S2 to depend on a positive parameter h. We assume that for S1 D
S1.h; ˛/ and S2 D S2.h; ˛/ there exists a CS D CS .h; ˛/ > 0 such that

kS1vk � CSkvk for all v 2 H1;˛;

kS2wk � CSkwk for all w 2 H2;˛:
(2.4)

The set of pairs of operators .S1; S2/ that satisfy these properties will be denoted by
S. Qz; ˛/.

We note that for a choice of ˛, the number of eigenvalues of .A � Qz/.A � Qz/�

may be zero. In this case, H1;˛ and H2;˛ are empty, so we do not require addi-
tional assumptions for S1 and S2. Note that in this case, Qz … Spec.A/, so before
being randomly perturbed, Spec.A/ is discrete within the connected component of
�
.0/
F .A/ containing Qz. For such an A, Theorem 2 stated below still holds, i.e., that the

perturbed operator has discrete spectrum with high probability.
We implicitly assumed in Hypothesis 1 that N is finite. This will always be true

for A strictly unbounded (that is, when A is not bounded).
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2.2. Main result

We now state the main result of our paper showing that random perturbations (of the
form (2.1)) of closed linear operators AWD.A/ � H ! H immediately yield a dis-
crete spectrum with high probability. Because we want to apply this to semiclassical
operators that depend on a parameter h > 0, we state this result for such operators.

Theorem 2 (General result). Suppose that the following statements are satisfied.

(1) LetADA.h/ be a family of closed (possibly) unbounded operatorsAWD.A/�
H ! H indexed by a parameter h 2 R>0.

(2) Setting Dj as disjoint, open, connected sets such that
S
j2J Dj � �

.0/
F .A/

(with J an at most countable index set), then for all j 2J, there exists zj 2Dj
such that .A � zj /�.A � zj / has discrete spectrum.

(3) There are two families of Hilbert–Schmidt operators

.S1.h; ˛/; S2.h; ˛// 2
\
j2J

S.zj ; ˛/

(defined in (2.1) and satisfying Hypothesis 1) with constant CSDCS .h;˛/>0
(as in (2.4)).

(4) For each ˛ and h, S1.h; ˛/ is a trace-class operator.

Then there exists C0 > 0 such that Spec.AC ıQ!/\
�S

j2J Dj
�

(for ı > 0 and Q!
defined in (2.1)) is discrete with probability at least

max
�
1 � C0 exp

�C0kS1kkS1kTrkS2k
2
HS � ˛ı

�2

2kS1k3=2kS2k

�
; 0
�

(2.5)

where k � kTr denotes the trace norm.

We have a few remarks about Theorem 2.
Assumption (4) can be replaced with S2.h; ˛/ being trace-class, in which case

in (2.5) all norms of S1 are replaced by the same norms of S2 and vice versa.
The probabilistic bound (2.5) is close to 1 if

C0kS1kkS1kTrkS2k
2
HS � ˛ı

�2

2kS1k3=2kS2k

is a large negative number. This can be done by increasing ˛ and/or decreasing ı.
However, if ˛ is large, the operators S1 and S2 may need to be modified to satisfy
Hypothesis 1, which may increase kS1kTr and kS2kHS.

Alternatively, we can fix ˛ and construct S1 and S2 to have norm 1, but at the cost
of having large Hilbert–Schmidt and trace norms. This forces us to select a small ı.
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One could artificially satisfy Hypothesis 1 by setting S1 and S2 to be the orthog-
onal projections onto span.¹e1; : : : ; eN º/ and span.¹f1; : : : ; fN º/ respectively. In
this case, kS1k D kS2k D 1 and kS1kTr D kS2k

2
HS D N . We would then find that

AC ıQ! has a discrete spectrum with probability close to 1 as long as ı� N�1
p
˛.

Understanding how N depends on ˛ on a case-by-case basis would further refine this
estimate.

We furthermore note that Theorem 2 applies to unbounded closed operators such
that �.0/F .A/ is non-empty (i.e., operatorsA such that there is a z0 2C such thatA� z0
is Fredholm of index 0) – not just Fredholm operators of index 0.

We also remark that for the previous discussed operators (Seeley’s operator (1.1)
and Dh.ˇ/ (1.4)), �.0/F .A/ D �

.0/
F .Dh.ˇ// D C. Operators with several connected

components of �.0/F .A/ do exist. For example, Toeplitz operators on the classical
Hardy spaceH 2.T / have Fredholm index related to the winding number of the image
of the circle under the symbol [8, Theorem 7.26].

Assumption (2) in Theorem 2 will be satisfied for Dh.ˇ/ by using the ellipticity
at infinity of the operator and the compact embedding theorems of Sobolev spaces.

We next state a more quantitative version of Theorem 2. Instead of proving AC
ıQ! � z0 is invertible with certain probability (which would imply a discrete spec-
trum), we show that the smallest singular value cannot be too small (which implies
invertibility).

Theorem 3. Given the same assumptions as Theorem 2, for all ı > 0 and z0 2 Dj
(for some j 2 J), in the event that kQ!kHS <1 (which occurs with probability 1)
let 0� t1;ı � t2;ı � � � � denote the singular values5 ofAC ıQ! � z0, and fix ˛max > 0.
Then there exist constants C0; C1; C2 > 0 such that for a > 0 satisfying

a � NNC2ıN˛�.N�2/=2 (2.6)

we have that

P .t1;ı � a/ � C0 exp
�C0kS1kkS1kTrkS2k

2
HS � ˛ı

�2

2kS1k3=2kS2k

�
C

C0˛
2C.N�1/=2

NC1N ıN�2C 2NS kS1k
3=2
a (2.7)

for ˛ < ˛max where CS and N.˛/ are defined in Hypothesis 1.

Discreteness of the singular values of A C ıQ! � z0 follows from the fact that
the essential spectrum is invariant under compact perturbations. Indeed, let

A´ .A � z0/
�.A � z0/ and B ´ .A � z0 C ıQ!/

�.A � z0 C ıQ!/:

5The fact that the singular values are discrete is not immediate and is discussed after the
statement of the theorem.
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If we can show that

.AC i/�1 � .B C i/�1

D .B C i/�1.ı.Q�!.A � z0/C .A � z0/
�Q! C ıQ

�
!Q!//.AC i/

�1 (2.8)

is compact, then because A has only discrete spectrum, then B has discrete spectrum
(see [18, Section XIII.4, Corollary 1]). Compactness of (2.8) follows because the
operators .A � z0/.A C i/�1 and .B C i/�1.A � z0/� are bounded (the first can
be shown by taking the polar decomposition of A and using functional calculus, the
second by the Kato–Rellich theorem) and Q! is compact.

We note that applications of Theorem 3 should be for a close to zero, and the
required upper bound on a (2.6) is a technicality needed to apply a random matrix
theory result. Heuristically, Theorem 3 states that as a goes to zero, the probability
the smallest singular value of AC ıQ! � z0 is less than a goes to zero. Indeed, the
first term on the right-hand side of (2.7) is the same term appearing in (2.5), which
is independent of a. In the case of TBG, this term is exponentially small in h (see
Theorem 4).

The second term must also be treated on a case-by-case basis, in particular because
it depends on N (which depends on ˛ and h). In the case of TBG, if we fix ˛, let
ı D h4, and construct S1 and S2 as in Theorem 4, we can apply [4, Proposition 4.2]
which gives us that N � h�2. In this case, there exist positive constants C3 and C4
such that the second term on the right-hand side of (2.7) is bounded above by

ah8

.C3h2/h
�2C4

which rapidly goes to zero if either a or h goes to zero.
Estimating the size of the smallest singular value of a randomly perturbed operator

has been well studied in the context of random matrix theory. Sankar, Spielmann, and
Teng in [22] estimate the probability that the smallest singular value of X C ıQ is
small for X a deterministic matrixN �N ,Q a random matrixN �N with Gaussian
i.i.d. entries, and ı > 0. There have been various extensions or related work, see for
instance Rudelson and Vershynin [21] who estimate the size of the smallest singular
value of a matrix whose entries are i.i.d. subgaussians, Tao and Vu [27, 28] where Q
has i.i.d. entries of bounded second moment, and Cook [5] where Q has independent
but not identically distributed entries under additional assumptions. See also Basak,
Paquette, and Zeitouni [2, Remark 1.3] who describe random perturbations Q such
that the smallest singular value of X C ıQ is small.
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3. Proof of the main result

We begin by stating a lemma that provides a probabilistic norm bound of Q! as
defined in (2.1), proven in [15, Remark 6.2] and [15, Equation 8.5].

Lemma 3.1. There exists a C0 > 0 such that for all a > 0,

P .kQ!k
2
HS � a/ � C0 exp

�C0kS1k2HSkS2k
2
HS � a

2kS1kkS2k

�
:

Under the assumption that S1 is trace-class, we can write it as a product of Hilbert–
Schmidt operators whose Hilbert–Schmidt norms are both the square root of the trace
norm of S1 (this is further expanded in the proof of Theorem 2). We can therefore
deduce from Lemma 3.1 a bound on the trace norm of Q! :

P .kQ!k
2
Tr � a/ � C0 exp

�C0kS1kTrkS2k
2
HS � akS1k

�1
Tr

2kS1k1=2kS2k

�
: (3.1)

By continuity of measures, we get that almost surely Q! has finite trace norm.
Equation (3.1) follows by decomposing S1 as S1 D S1;1S1;2 (for appropriately

chosen S1;1; S1;2 as discussed in the proof of Theorem 2), and using that

kQ!kTr � kS1;1kHS




S1;2 ı � 1X
j;kD1

j̨;ke
1
j ˝ e

2
k

�
ı S2





HS
:

We now prove Theorem 2. This proof follows the method of proof of [15]. How-
ever, the main difference is that our operators do not necessarily have semiclassically
elliptic symbols.

Proof of Theorem 2. We begin by selecting one j 2 J, settingD WDDj and z0 WD zj
given in the hypothesis. Next set Aı ´ AC ıQ! . BecauseQ! is compact, and com-
pact perturbations of Fredholm operators are Fredholm operators with the same index,
Aı � z is Fredholm of index zero for all z 2 D. Therefore, by Proposition 2.1, the
spectrum of Aı either contains a connected componentD � �.0/F .A/ orD \ Spec.A/
is discrete.

Our overall goal is to show (with appropriate probability) that z0 is not in the
spectrum of Aı , thus provingD \ Spec.Aı/ is discrete. To achieve this, we will build
an auxiliary operator called a Grushin problem.

Step 1. Build a Grushin problem for the unperturbed operator. Equip

‚´ .A � z0/
�.A � z0/

with the analogously defined domain to (2.2) and

z‚´ .A � z0/.A � z0/
�
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with domain (2.2) such that both operators are self-adjoint. Let 0 � t21 � t
2
2 � � � �

be the eigenvalues of ‚ with an orthonormal basis of eigenvectors ¹eiºi2N such that
ti 2 Œ0;1/. Suppose t1 D t2 D � � � D tn D 0 and tnC1 > 0. Then because .A � z0/
is Fredholm of index 0, and Ker.‚/ D Ker.A � z0/, the dimension of the kernel of
.A � z0/

� has dimension n. Let f1; : : : ; fn be an orthonormal basis for this space, so
that z‚fi D 0 D t2i fi . If ti ¤ 0, then define

fi ´
1

ti
.A � z0/ei :

Therefore,

z‚fi D .A � z0/.A � z0/
�fi D

1

ti
.A � z0/.A � z0/

�.A � z0/ei

D ti .A � z0/ei D t
2
i fi :

We then get that ¹fiºi2N is an orthonormal system of eigenvectors of z‚ corre-
sponding to the same eigenvalues of ‚ such that

.A � z0/ei D tifi and .A � z0/
�fi D tiei

for all i 2 N. We moreover claim that ¹fiºi2N is an orthonormal basis of eigen-
vectors of z‚ (which implies ‚ and z‚ have the same eigenvalues). Indeed, suppose
f 2D..A� z0/

�/ is such that hf;fi i D 0 for all i 2N; it suffices to show that f D 0.
We have that h.A� z0/�f; ei i D hf; .A� z0/ei i. If i � n, then .A� z0/ei D 0 and if
i > n, then hf; .A � z0/ei i D ti hf; fi i D 0. Therefore, h.A � z0/�f; ei i D 0, so that
f 2 Ker..A � z0/�/ D Ker z‚. This implies f D 0 because f1; : : : ; fn span Ker z‚.
BecauseD..A� z0/�/ is dense in H , we get by approximation that if hf; fi i D 0 for
all i 2 N, then f D 0.

Let ˛ > 0, and define

N D min¹j 2 Z W t2j > ˛º � 1: (3.2)

For now, we will assume that N > 0; the case when N D 0 will be treated at the end
of this proof. Now, define R� D

PN
1 fi ˝ ıi and RC D

PN
1 ıi ˝ ei (where ıi is the

standard basis of CN ), so that

P WD

�
A � z0 R�

RC 0

�
WD.A/ �CN

! H �CN

is invertible with inverse

E WD

�P1
NC1

1
ti
ei ˝ fi

PN
1 ei ˝ ıiPN

1 ıi ˝ fi �
PN
1 tiıi ˝ ıi

�
´

�
E0 E0C
E0� E0�C

�
(3.3)
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as in [24, Section 4]. Using (3.2), we can bound (or explicitly compute) the norms of
the block entries of E as

kE0k �
1
p
˛
; kE0Ck D 1;

kE0�k D 1; kE0�Ck �
p
˛:

(3.4)

Step 2. Build a Grushin problem for the perturbed operator. We now define

P ı
WD

�
Aı � z0 R�

RC 0

�
WD.A/ �CN

! H �CN

so that

P ıE D 1C

�
ıQ!E

0 ıQ!E
0
C

0 0

�
´ 1CK:

The term 1CK can be inverted via a Neumann series provided that kKk < 1, which
is satisfied if

ı˛�1=2kQ!k< .1 � "0/ < 1 (3.5)

for some fixed "0 2 .0; 1/. When this is the case, P ı is bijective with inverse

Eı WD .P ı/�1 D

�
Eı EıC
Eı� Eı�C

�
:

By the Schur complement formula, z0 … SpecAı if and only if Eı�C is invertible. By
construction, Eı�C is an N � N matrix. It now suffices to estimate the probability
detEı�C is non-zero.

By the Neumann series construction, the terms in Eı can be computed by writing
Eı D E.1CK/�1 D E

P1
0 .�K/

j . In this case, we get that

Eı�C D E
0
�C C ıE

0
�Q!E

0
C C

1X
jD2

E0�.ıQ!E
0/j�1ıQ!E

0
C: (3.6)

Define

T WD ı�1
� 1X
jD2

E0�.ıQ!E
0/j�1ıQ!E

0
C

�
; yQ! WD E

0
�Q!E

0
C C T; (3.7)

so that

Eı�C D E
0
�C C ı

yQ! : (3.8)
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Note that there exists a C > 0 such that

kT kHS � C
ı
p
˛
kQ!k

2
HS

by (3.4), (3.5), and (3.7), and the fact that the Hilbert–Schmidt norm of T is bounded
by a constant times the norm of the first term in its summation expansion in (3.7).

Step 3. Describe the law of yQ! . We reiterate that z0 … SpecAı if and only if Eı�C
is invertible. The remainder of the proof will show that Eı�C is invertible with high
probability. By (3.8), Eı�C can be written as a sum of a deterministic N � N matrix
and ı times a randomN �N matrix yQ! . By (3.7), yQ! has a leading order term (in ı)
which we will describe in the following proposition.

Proposition 3.2. There exist orthonormal bases ¹f 1j º
N
jD1 and ¹f 2j º

N
jD1 of CN such

that

E0�Q!E
0
C D

X
1�j
k�N

s1;j s2;k j̨;kf
1
j ˝ f

2
k

where s1;j ; s2;k are such that 0 <CS � s1;j ; s2;k � max.kS1k; kS2k/.

Proof. For a trace-class Fredholm operator B of index 0, its singular values are
denoted by s1.B/ � s2.B/ � � � �. These are the eigenvalues of .B�B/1=2 ordered
in decreasing values and counting their multiplicities.

With this notation, let s1;j denote the singular values of E0� ı S1 and let s2;j
denote the singular values of S2 ı E0C. Note that E0� ı S1 and S2 ı E0C are both rank
N operators, so that s2;j D 0 for j � N C 1 and E0� ı S1 has onlyN singular values.
Both operators are bounded, so s1;j ; s2;j � max.kS1k; kS2k/.

By Hypothesis 1, we get a lower bound for the first N singular values. Indeed, if
.S2E

0
C/
�.S2E

0
C/u D .s2;N /

2u with kuk D 1, then

.s2;N /
2
D h.s2;N /

2u; ui D kS2E
0
Cuk

2
� C 2SkE

0
Cuk

2
D C 2S :

The last equality uses that E0C D
PN
1 ei ˝ ıi (recall (3.3)) so that E0C is an isometry,

and so kE0Cuk D kuk D 1. Because s2;j are decreasing in j , we get that CS � s2;j �
max.kS1k; kS2k/ for j D 1; : : : ; N . A similar argument can be used to establish the
same bound for each s1;j .

Because the law of Gaussian ensembles is invariant under unitary conjugations
(see for instance [15, Section 13]), we are free to choose any two orthonormal bases
of H when defining Q! (in (2.1)). We will choose these bases in the following
way. Let both f 1j and f 2j be orthonormal bases of CN which are eigenfunctions of
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.E0�S1/.E

0
�S1/

� and
p
.S2E

0
C/
�.S2E

0
C/, respectively, corresponding to eigenval-

ues s1;j and s2;j . Then, let e1j and e2j (for j 2 N) be orthonormal bases of H such
that

e1j D
1

s1;j
.E0�S1/

�f 1j and e2j D
1

s2;j
.S2E

0
C/f

2
j

for j D 1; : : : ; N . By this construction, we see that

E0�Q!E
0
C D E

0
�S1

� 1X
j;kD1

j̨;ke
1
j ˝ e

2
k

�
S2E

0
C D

X
1�j
k�N

s1;j s2;k j̨;kf
1
j ˝ f

2
k :

Let T1 D diag.¹s1;j º1�j�N / and T2 D diag.¹s2;j º1�j�N /where s1;j and s2;j are
defined in Proposition 3.2. With this, we can rewrite the second term in (3.8) (with
respect to the bases f 1j and f 2

k
) as

ı yQ! D ıT1 ı .. j̨;k/1�j;k�N C zT / ı T2 (3.9)

where

zT D T �11 ı T ı T
�1
2 : (3.10)

Here, we recall T was defined in (3.7) as the lower order terms in the expansion
of Eı�C.

Let O� be the law of . j̨;k/1�j;k�N C zT . The following lemma, proven in [15,
eq. 9.18], bounds the measure O�.

Recall from assumption (4) that S1 is a trace-class operator, so it can be written
as a product of Hilbert–Schmidt operators S1;1 and S1;2 (see for instance [20, Chap-
ter 10]). Moreover, we can choose these Hilbert–Schmidt operators6 such that

kS1;1kHS D kS1;2kHS D
p
kS1kTr

and kS1;1k D kS1;2k D
p
kS1k.

Lemma 3.3. For M > 0, define

QM ´
°
. j̨;k/j;k2N W




S1;2 ı � 1X
j;kD1

j̨;ke
1
j ˝ e

2
k

�
ı S2





HS
< M

±
: (3.11)

6Indeed, by polar decomposition, S1 D
P
j �j ej ˝ fj for ej and fj orthonormal bases

of H and �j the singular values of S1; then we can define S1;1 ´
P
j

p
�j ej ˝ fj and

S1;2´
P
j

p
�jfj ˝ fj .
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Let �N denote the probability measure on complex N �N matrices given by

�N D

NY
j;kD1

�
e�j j̨;k j

2 dm. j̨;k/
�

�
where m is the Lebesgue measure on C.

Then for .˛/j;k2N in QM , the law of . j̨;k/1�j;k�N C zT (as in (3.10)), denoted
by O�, satisfies the following bound:

O� �
�
1CO.1/

ıM 3

p
˛

�
�N :

Concretely, if A � QM is measurable, then O�.A/ � .1CO.1/ıM 3˛�1=2/�N .A/.

Step 4. Estimate the probability Eı�C is invertible. Observe by (3.8),

det.Eı�C/ D ı
N det.ı�1E0�C C yQ!/: (3.12)

Therefore, on QM , the event that the right-hand side of (3.12) is zero will have
probability zero. This is because the entries of the random matrix have probability
densities that are absolutely continuous with respect to the Lebesgue measure (using
Lemma 3.3), and the zero set of the characteristic polynomial has codimension 1.

Therefore, Spec.D \ Aı/ is discrete as long as we can build a Grushin problem
(which requires a norm bound on Q! , (3.5)) and . j̨;k/j;k2N in the random perturba-
tion belongs to QM . Concretely,

P .Spec.D \ Aı/ is discrete/ � P .¹kQ!k < ı
�1˛1=2º \QM /: (3.13)

If M < ı�1˛1=2kS1;1k
�1, then

kQ!kHS � kS1;1k



S1;2 ı �X

j̨;k

e1j ˝ e
2
k

�
ı S2





HS
< ı�1˛1=2

so that QM � ¹kQ!k < ı
�1˛1=2º. Therefore, (3.13) becomes

P .Spec.D \ Aı/ is discrete/ � P .QM /

> 1 � C0 exp
�C0kS1;2k2HSkS2k

2
HS �M

2

2kS1;2kkS2k

�
: (3.14)

Here the second inequality follows from Lemma 3.1. We can select " 2 .0; 1/ and set
M D "ı�1˛1=2kS1;1k

�1. In this case, we have

C0kS1;2k
2
HSkS2k

2
HS �M

2

2kS1;2kkS2k
D
C0kS1;1k

2kS1;2k
2
HSkS2k

2
HS � "

2˛ı�2

2kS1;1k2kS1;2kkS2k
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D
C0kS1kkS1;2k

2
HSkS2k

2
HS � "

2˛ı�2

2kS1k3=2kS2k

D
C0kS1kkS1kTrkS2k

2
HS � "

2˛ı�2

2kS1k3=2kS2k

where in the second equality, we use that kS1;1k D kS1;2k D kS1k1=2, and in the
third equality, we use that kS1;2k2HS D kS1kTr. We can then take the limit as "! 1,
so that (3.14) becomes

P .Spec.D \ Aı/ is discrete/ � 1 � C0 exp
�C0kS1kkS1kTrkS2k

2
HS � ˛ı

�2

2kS1k3=2kS2k

�
:

Step 5. Consider the case where N.˛/D 0 and extend the result to allDj . We recall,
when building the Grushin problem, we assumed that N > 0 (where N was defined
in (3.2) as the number of small singular values depending on ˛). If N D 0, then this
implies that 0 is not a singular value, so A � z0 is invertible. In this case, we can
build the Grushin problem by setting P D A � z0 and E D

P1
1 t�1i ei ˝ fi . This

allows us to build the inverse for AC ıQ! � z0 as E.1C ıQ!E/�1 with a Neumann
series, provided that ı˛�1=2kQk! < 1. We then get P .Spec.D \ Aı/ is discrete/ �
P .¹kQ!k<ı�1˛1=2º/, which is bounded below by (3.14), and we get the same result.

For each j 2 J, let Ej be the event Spec.Aı/\Dj has discrete spectrum. But by
the above discussion, if M < ı�1˛1=2kS1;1k

�1, then Ej � QM . Therefore,

P
�\
j2J

Ej

�
� P .QM /

which is estimated in (3.14).

We now prove Theorem 3, the more quantitative version of Theorem 2, by esti-
mating the size of the smallest singular value.

Proof of Theorem 3. We proceed in three steps.

Step 1. Relate singular value to Eı�C. We begin by relating the smallest singular
value ofAı � z0 to the absolute value of the determinant ofEı�C (as long as a Grushin
problem can be constructed). We define 0� t1;ı � t2;ı � � � � as the increasing sequence
of singular values of Aı � z0. We can write

P .t1;ı � a/ � P .¹t1;ı � aº \QM /C P .¹t1;ı � aº \Qc
M / (3.15)

recalling the definition of QM given in (3.11). The second term of the right-hand side
of (3.15) is bounded using Lemma 3.1:

P .¹t1;ı � aº \Qc
M / � P .Qc

M / � C0 exp
�C0kS1;2k2HSkS2k

2
HS �M

2

2kS1;2kkS2k

�
: (3.16)
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As long as M < ı�1˛1=2kS1;1k
�1, we can set up the same Grushin problem as

in the proof of Theorem 2 (recalling (3.5)). We now use a general fact about Grushin
problems. Applying the Schur complement formula and properties of singular values
(see for instance [30, Lemma 18]), we get that

t1.E
ı
�C/

t1.E
ı
�C/kE

ık C kEı�kkE
ı
Ck
� t1;ı (3.17)

where 0 � t1.Eı�C/ � t2.E
ı
�C/ � � � � � tN .E

ı
�C/ are the singular values of Eı�C. By

expanding the Neumann series expansion for the Grushin problem (similarly to (3.6)),
we see that, in the event QM , we have the following bounds:

t1.E
ı
�C/ D O.1/; kEık D O.˛�1=2/;

kEı�k D O.1/; kEıCk D O.1/;

which combined with (3.17), gives us

˛1=2t1.E
ı
�C/ � Ct1;ı (3.18)

for some constant C > 0 where we use that ˛ < ˛max.
Next, observe that

j detEı�Cj D
NY
jD1

tj .E
ı
�C/ � t1.E

ı
�C/.tN .E

ı
�C//

N�1

D t1.E
ı
�C/kE

ı
�Ck

N�1: (3.19)

Within the event QM , with M < ı�1˛1=2kS1;1k
�1, we can use (3.6) to get that

kEı�Ck D O.˛1=2/. Using this, (3.19) can be rearranged as

t1.E
ı
�C/ �

j det.Eı�C/j
.C
p
˛/N�1

(3.20)

for some (possibly new) constant C > 0. Therefore, combining (3.20) with (3.18), we
get that

¹.t1;ı � a/ \QM º � ¹.j det.Eı�C/j < aC
N�1
p
˛
N�2

/ \QM º (3.21)

for some (possibly new) constant C > 0.

Step 2. Estimate the probability that j det.Eı�C/j is small. Recall, by (3.9),

Eı�C D E�C C ıT1 ı .. j̨;k/1�j;k�N C
zT / ı T2;
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where the definition of T is given in (3.7), T1;2 are defined in the discussion preced-
ing (3.9), and zT ´ T �11 ı T ı T

�1
2 . This gives us

¹j detEı�Cj > aC
N�1
p
˛
N�2
º

D ¹j det.. j̨;k/1�j;k�N C T C ı�1T �11 E0�CT
�1
2 /j

> aCN�1
p
˛
N�2

ı�N det.T1T2/�1º:

We also recall that Lemma 3.3 estimates the law of . j̨;k/1�j;k�N C T by the law of
an N �N Gaussian ensemble.

We next use the following Lemma from [15, Proposition 7.3] estimating the size
of the determinant of a Gaussian ensemble added to a deterministic matrix.

Lemma 3.4. If V! D .˛i;j /1�i;j�N with ˛i;j �NC.0; 1/ i.i.d., andD 2CN�N , then
there exist C1; C2 > 0 (independent of D) such that for c > 0:

P .j det.D C V!/j � c/ � C1c exp
�
�
1

2

�
C2 C

�
N �

1

2

�
logN � 2N

��
(3.22)

as long as

c � exp
�C2 C �N C 1

2

�
log.N / � 2N
2

�
(3.23)

for C2 the same constant as in (3.22).

We now apply Lemmas 3.3 and 3.4 (setting D D ı�1T �11 E0�CT
�1
2 and assum-

ing (3.23) holds for now) to get that

P .¹j detEı�Cj � aC
N�1
p
˛
N�2
º \QM /

�

�
1CO.1/

ıM 3

p
˛

�
P .j det.V! CD/j � aCN�1

p
˛
N�2

ı�N det.T1T2/�1/

�

�
1CO.1/

ıM 3

p
˛

�
.aCN�1

p
˛
N�2

ı�N det.T1T2/�1/

� exp
�
�
1

2

�
C2 C

�
N �

1

2

�
log.N / � 2N

��
:

Letting M < ı�1˛1=2kS1;1k
�1, we get that

ıM 3

p
˛
<

˛2ı2

kS1;1k3
D

˛2ı2

kS1k3=2

where we recall that kS1;1k D kS1k1=2. By Proposition 3.2, the determinants of T1
and T2 are bounded below, so that

det.T1T2/�1 � C�2NS : (3.24)
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There exist positive constants C3 and C4 such that

�1

2

��
N �

1

2

�
log.N / � 2N

�
� �C3N log.N /C C4: (3.25)

Step 3. Estimate the probability the smallest singular value is small. We therefore get
(by (3.21))

P .¹t1;ı � aº \QM / � C
˛2C.N�1/=2

ıN�2C 2NS kS1k
3=2
N�C3Na: (3.26)

For (3.23) to hold, we require that

aCN�1
p
˛
N�2

ı�N det.T1T2/�1 � exp
�C2 C �N C 1

2

�
log.N / � 2N
2

�
: (3.27)

Using (3.24) and a similar bound as in (3.25), (3.27) holds if

a � exp
�
C5N log.N /CN log.ı/ �

�N � 2
2

�
log.˛/

�
for some C5 > 0. Combining (3.26) with (3.16) (settingM D "ı�1

p
˛kS1k

�1=2) and
taking the limit as "! 1 gives us the Theorem.

4. Applications to twisted bilayer graphene

In this section we build Hilbert–Schmidt operators to satisfy Hypothesis 1 for the
operator

Dh.ˇ/ D

�
2hD Nz U.z/

U.�z/ 2hD Nz

�
(4.1)

first defined in (1.4) recalling that 2D Nz ´ �i.@Re z C i@Im z/. Here we absorb ˇ into
the definition of U , so that U.z/ WD ˇ

P2
kD0 !

k exp..z N!k � Nz!k/=2/.
By [3, Proposition 2.3],Dh.ˇ/ is an unbounded Fredholm operator on the domain

H 1.C=�IC2/ with �.0/F .Dh.ˇ// D C (recall �.0/F is defined in equation (1.3)).
We will ultimately apply Theorem 2 to Dh.ˇ/ which requires showing that

the spectrum of Dh.ˇ/�Dh.ˇ/ on its natural domain is discrete. This follows by
the Sobolev embedding. In fact,Dh.ˇ/�Dh.ˇ/ is a self-adjoint operator onH 2.C=�I

C2/, so that .Dh.ˇ/�Dh.ˇ/ � i/�1 is a bounded operator from L2.C=�/ to
H 2.C=�/. According to the Rellich–Kondrachov Theorem, H 2.C=�/ is compactly
embedded in L2.C=�/ so that

.Dh.ˇ/
�Dh.ˇ/ � i/

�1
WL2.C=�/! L2.C=�/
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is a compact operator. Therefore, .Dh.ˇ/�Dh.ˇ/� i/�1 has discrete spectrum, which
implies that Dh.ˇ/�Dh.ˇ/ has discrete spectrum.

We want to construct operators S1 and S2 that satisfy Hypothesis 1 for the random
perturbation Q! defined in (2.1).

Claim 4.1. There exist constants C1; C2 > 0 such that if �.z; �/ 2 C10 .T
�.C=�/I

Œ0; 1�/ is identically 1 when j�j2 < C1C2, then

S1 D S2 D Oph

�
� 0

0 �

�
(4.2)

satisfy Hypothesis 1 for ˛ < C2, where Oph is the quantization of functions on
T �.C=�/ defined in Definition A.4.

Proof. To show that S1 and S2 satisfy Hypothesis 1 for an ˛, we must show there
exists a CS > 0 such that kS1uk;kS2uk � kuk for every u 2H 2.C=�IC2/ satisfying
Dh.ˇ/

�Dh.ˇ/u D t
2
i u for t2i < ˛. Let us now fix such a ti and u.

To establish the lower bound, we will use the symbolic calculus of matrix-valued
symbols (which is reviewed in Appendix A).

To apply this calculus, we use the following notation. We write elements of
T �.C=�/ as .x C iy; � C i�/ where �; �; x; y 2 R are such that x C iy 2 C=� .
We will also write � D � C i� and z D x C iy.

The operator Dh.ˇ/ (defined in (4.1)) has principal symbol�
� U.z/

U.�z/ �

�
:

Define ‚ WD .Dh.ˇ//
�.Dh.ˇ// with domain H 2.C=�IC2/. From this, we see

that ‚u D t2i u and

q0 WD �0.‚/ D

�
j�j2 C jU.�z/j2 N�U.z/C �U.�z/

U.z/� C N�U.�z/ j�j2 C jU.z/j2

�
where �0.P / denotes the principal symbol of an operator P (see Definition A.5). We
would like to build a � 2 C10 .T

�M I Œ0; 1�/ such that a parametrix can be constructed
for ‚ � t2i C i Oph.�I2/, where

I2 WD

�
1 0

0 1

�
:

Such a parametrix will then be used to show that S1u D S2u D uC O.h1/, which
will provide the desired lower bound of kS1uk and kS2uk. To construct such a
parametrix, we must show that the determinant of the principal symbol of ‚ � t2i C
i Oph.�I2/ is uniformly bounded from below.
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Let �˙ D �˙.ti / denote the eigenvalues of q0 � t2i I2. Fix " 2 .0; 1/, C2 > 0

sufficiently large (which we will specify later), and define

K WD ¹.z; �/ 2 T �.C=�/ W j�j2 � .1 � "/�1C2º; (4.3)

and let Q� 2 C10 .T
�.C=�/I Œ0; 1�/ be identically 1 on K (which is a compact set) and

zero on the set

¹.z; �/ 2 T �.C=�/ W j�j2 > C1C2º

where C1 D c.1 � "/�1 and c > 1. We can then compute that

j det.�0.‚ � t2i C i Oph.�I2///j
2
D j�C�� C i�.�C C ��/ � �

2
j
2

D .�C��/
2
C �4 C �2.�2C C �

2
�/; (4.4)

which is bounded below by �4 so that for .z; �/ 2 K, (4.4) is bounded below by 1.
We now aim to provide a lower bound of �C�� for .z; �/ 2 Kc . Note that

�C�� D det.q0 � t2i / D f1.z; �/f2.z; �/ � f3.z; �/ (4.5)

where

f1.z; �/ WD j�j
2
C jU.�z/j2 � t2i ;

f2.z; �/ WD j�j
2
C jU.z/j2 � t2i ;

f3.z; �/ WD j N�U.z/C �U.�z/j
2:

Recalling that jU.z/j is bounded, we see that jf3j � C j�j2 where C depends on the
maximum of jU.z/j. Furthermore, for j D 1; 2,

fj .z; �/� j�j
2
� t2i � j�j

2
� ˛ � j�j2 � C2 � "j�j

2 (4.6)

using (4.3). Therefore, using (4.3), (4.5), and (4.6), we get that

�C�� � "
2
j�j4 � C j�j2 D j�j2."2j�j2 � C/ � .1 � "/�1C2."

2.1 � "/C2 � C/ > 0

as long as

C 22 >
C

"2.1 � "/
: (4.7)

For a sharper lower bound on C2, we may minimize the right-hand side of (4.7) by
letting "D 2=3, in which case we have ."2.1� "//�1 D 27=4. In this case, we require
C2 >

p
27C=2, and C1 in the statement of the Claim is 3.

Having shown a lower bound on the determinant of the principal symbol of ‚ �
t2i C i Oph. Q�I2/, we can invert‚� t2i C i Oph. Q�I2/ using Proposition A.7. Let P be
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a parametrix of ‚ � t2i C i Oph. Q�I2/. Now, let � 2 C10 .T
�.C=�/I Œ0; 1�/ be identi-

cally 1 on the support of Q�. Recalling that ‚u D t2i u, we get that

Oph.I2 � �I2/u D Oph.I2 � �I2/P.‚ � t
2
i C i Oph. Q�I2//uCOL2!L2.h

1/

D Oph.I2 � �I2/P.i Oph. Q�I2//uCO.h1/ D OL2!L2.h
1/:

Here we use the fact that that the composition of symbols with disjoint support yields
OL2!L2.h

1/ errors. We then see that

Oph.�I2/u D uCO.h1/

so we get that

kOph.�I2/uk � .1CO.h1//kuk

so that Oph.�I2/ satisfies Hypothesis 1.

Theorem 4 (Perturbation of Dh.ˇ/). Suppose Dh.ˇ/ is defined by (1.4), S1 and S2
are defined by (4.2), 0 < ı < h� with � > 2, andQ! is defined by (2.1). ThenDh.ˇ/C
ıQ! has discrete spectrum with probability at least

1 � C1 exp
�
�
C2

h2�

�
for positive constants C1 and C2 (i.e., with overwhelming probability).

Proof. In Claim 4.1, we constructed S1 and S2 satisfying the hypotheses of Theo-
rem 2. Moreover, because the symbols of S1 and S2 have compact support, they are
both trace-class.

We therefore can apply Theorem 2 to get that there exists a C0 > 0 such that
D.h/C ıQ! has discrete spectrum with probability at least

max
�
1 � C0 exp

�C0kS1kkS1kTrkS2k
2
HS � ˛ı

�2

2kS1k3=2kS2k

�
; 0
�
:

By construction, kS1kTr; kS2k
2
HS D O.h�2/, and kS1k; kS2k � 1. Therefore, if 0 <

ı < h� with � > 2, we get that D.h/C ıQ! has discrete spectrum with probability
at least

1 � C1 exp
�
�
C2

h2�

�
for positive constants C1 and C2.
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A. Quantization of matrix valued functions on C=�

In this appendix, we provide the background and pseudo-differential calculus to con-
struct operators S1 and S2 for our application to twisted bilayer graphene and, in
particular, to Dh.ˇ/ as defined in (1.4).

The ultimate goal is to prove a composition result for certain quantized operators
(Proposition A.6) and a parametrix construction (Proposition A.7). We will prove this
by using well-established results on the Weyl quantization of scalar-valued functions
on Rd .

The results of this section follow via mild modifications of standard results for
pseudo-differential operators with scalar-valued symbols. The main difference in the
matrix-valued symbol case is that when constructing a parametrix, the inverse of
the symbol must be used. A careful verification of the usual parametrix construction
(which relies on a well-defined symbol class with a calculus) is required.

A summary of this appendix is as follows.

(1) Define the class of functions (Sk.T �.C=�/IC2/) we want to quantize (Def-
inition A.2).

(2) Show that the usual h-Weyl quantization of these functions induces bounded
linear maps between appropriate Sobolev spaces on C=� (Proposition A.3).

(3) Define the quantization of A 2 Sk.T �.C=�/IC2/ as the restriction of the
h-Weyl quantization to a Sobolev space on C=� (Definition A.4).

(4) Use standard results about the h-Weyl quantization of scalar-valued functions
on Rd to get a composition and parametrix result (Propositions A.6 and A.7).

We aim to quantize matrix-valued symbols on the cotangent space of C=� . We
recall that the lattice � is given by 4�.i!Z˚ i!2Z/ where ! D e2�i=3. The discus-
sion in this section will work for any lattice of Rd spanned by d linearly independent
vectors, however, we only consider � � C to keep the discussion as explicit as possi-
ble.

We first recall the h-Weyl quantization of symbols on R2d . For

a.x; �/ 2 S0.R2d /´ ¹a.x; �/ 2 C1.R2d / W for all ˛ 2 N2d there exists C˛ > 0
such that j@˛x;�a.x; �/j � C˛º;

we define Opwh .a/ acting on u 2 �.Rd / (Schwartz) by

Opwh .a/u.x/´
1

2�h

“
R2d

e
i
h
.x�y/��a

�x C y
2

; �
�
u.y/ dy d� 2 �.Rd /:

By duality, Opwh .a/ extends to an operator from � 0.Rd / to itself. If a has certain decay
properties, Opwh .a/ can be shown to map boundedly between Sobolev spaces.
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Identifying C with R2d , this allows us to quantize functions on C. We can also
consider matrix-valued symbols by quantizing each component individually. What
requires some discussion is how to construct a quantization of symbols on C=� that
map from some set of functions on C=� to some other set of functions on C=� .

Let us begin by defining the space of symbols we wish to quantize. These symbols
will be functions on the cotangent bundle T �.C=�/. The cotangent bundle T �.C=�/
can be identified with .C=�/�R2. Elements of T �.C=�/ can be written as .z; .�;�//
with this identification, where z 2 C=� and .�; �/ 2 R2. We also identify R2 with C

by writing � D � C i�, so that elements of T �.C=�/ can also be written .z; �/.

Definition A.1 (Sk.T �.C=�//). For k 2 R, we define Sk.T �.C=�// as the set of
functions f in C1.T �.C=�// such that for all ˛;ˇ 2N2, there exists C˛;ˇ > 0 such
that

j@˛z; Nz@
ˇ

�; N�
f .z; �/j � C˛;ˇ .1C j�j/

k�jˇ j:

The symbols we are interested in quantizing to buildDh.ˇ/ are defined as follows.

Definition A.2 (Sk.T �.C=�/IC2�2/). For k 2 R, we say a matrix-valued function
A 2 C1.T �.C=�/IC2�2/ is in Sk.T �.C=�/IC2�2/ if

A.z; �/ D

�
A11.z; �/ A12.z; �/

A21.z; �/ A22.z; �/

�
and Aij 2 Sk.T �.C=�// for each i; j .

We define the Weyl quantization of matrix-valued symbols by quantizing element-
wise

Opwh .A/ WD
�

Opwh .A11/ Opwh .A12/
Opwh .A21/ Opwh .A22/

�
;

where Opwh .Aij / is defined as

Opwh .Aij /u.x1 C ix2/

WD
1

.2�h/2

Z
R2

Z
R2

e
i
h
h.x�y/;�i zAij

�x1 C y1
2
Ci

x2 C y2

2
; �1Ci�2

�
u.y1Ciy2/ dy d�

for x 2 R2, u 2 �.C/, and zAij is the �-periodization of Aij in the z variable. This
integral is well defined for u 2 �.C/. By duality, it extends to a linear operator from
� 0.C/ to itself. Note that because each zAij is periodic on � , Opwh .Aij / maps the
�-periodic elements of � 0.C/ to the �-periodic elements of � 0.C/.
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We next want to show that quantizations of elements of Sk.T �.C=�/IC2�2/

are bounded maps between certain Sobolev spaces on C=� . This requires a brief
digression into defining such Sobolev spaces.

Because � ' Z2, any element u 2 L2.C=�/ has a Fourier series representation

u.z/ D
X
k2��

ckek.z/ (A.1)

where for each k 2 ��

ek.z/ WD .Vol.C=�//�1=2e
i
2 .z
NkCNzk/:

These ek form an orthonormal basis so that

kuk2
L2.C=�/ D

X
k2��

jckj
2:

For s 2 R, define the h-dependent Sobolev space H s
h
.C=�/ as the vector space

of elements u 2 L2.C=�/ such that

k�C=� ı Opwh .h�i
s/ ı �C=�ukL2.C=�/ <1;

where
h�i ´ .1C j�j2/1=2;

�C=� WL
2
loc.C/! L2.C=�/ is the restriction to the fundamental domain of � cen-

tered at the origin (which we abuse and call C=�), �C=� WL
2.C=�/! L2loc.C/ is the

�-periodization of an element of L2.C=�/ to L2loc.C/, and Opwh denotes the usual
Weyl quantization on R2 which is identified with C.

If u is written in the form (A.1) and s 2 R�0, then u 2 H s
h
.C=�/ if and only ifX

k2��

jhkj2sjckj
2 <1: (A.2)

We define the H s
h
.C=�/ norm as the square root of the left-hand side of (A.2).

Proposition A.3. Suppose k; s 2 R and A 2 Sk.T �.C=�/IC2�2/. Then �C=� ı

Opwh .A/ ı �C=� is a bounded map from H s
h
.C=�IC2/ to H s�k

h
.C=�IC2/.

Proof. Here we adapt the argument from [32, Theorem 5.5].

Step 1. Conjugate the symbol to reduce to k D s D 0. It suffices to work component-
wise. Let a 2 Sk.T �.C=�//. It suffices to show that

�C=� Opwh .h�i
k/Opwh .a/Opwh .h�i

�s/�C=� WL
2.C=�/! L2.C=�/ (A.3)
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is bounded. By the composition of Weyl quantizations (see for instance [32, Theo-
rem 4.18]), there exists Qb 2 S0.C/ such that

Opwh . Qb/ D Opwh .h�i
k/Opwh .�C=�a/Opwh .h�i

�s/:

Because �C=�a is �-periodic in C and is conjugated by symbols which are also
�-periodic in C, Qb is �-periodic in C. Let b D �C=�

Qb 2 S0.T �.C=�//.

Step 2. Decompose Opwh . Qb/. Let u 2 L2.C=�/ and define Qu WD �C=�u 2 L
2
loc.C/.

We now have, for x 2 C=� , that Opwh . Qb/ Qu.x/ equals

1

.2�h/2

Z
R2

Z
R2

e.i=h/h.x�y/;�i Qb
�x1 C y1

2
C i

x2 C y2

2
; �1 C i�2

�
Qu.y1 C iy2/ dy d�

D

X
k2�

Bk Qu.x/

where Bk Qu.x/ is defined as

1

.2�h/2

Z
R2

Z
C=�

e.i=h/h.x�yCk/;�ib
�x1 C y1 � k1

2
C i

x2 C y2 � k2

2
; �1 C i�2

�
� Qu.y1 C iy2/ dy d�

where k D k1 C ik2.
By periodicity of Qb, we see for each k 2 � ,

Bk D 1C=�T�k Opwh . Qb/1C=� (A.4)

where T�kv.x/ WD v.xC k/ and 1C=� is the characteristic function on the fundamen-
tal domain of � .

Step 3. Bound each component Bk for k away from zero. For eachN 2N, x and y in
the fundamental domain of � , and jkj > 8� (so that jx � y C kj ¤ 0), we can write

e.i=h/hx�yCk;�i D h2N jx � y C kj�2N jD� j
2N e.i=h/hx�yCk;�i

so that by integration by parts (using that the Fourier transform of compactly sup-
ported functions will be Schwartz in �)

Bk D 1C=�T�k zBk1C=�

with zBku.x/ defined as

1

.2�h/2

Z
R2

Z
R2

e
i
h
hx�y;�i�.x � k/�.y/h2N jx � yj�2N .jD� j

2N Qb/
�x C y

2
; �
�

� Qu.y/ dy d�
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with � 2 C10 .R
2/ identically 1 near the fundamental domain of � (identified with

R2). We can then apply the Schur test to get that there exists a C > 0 independent of
k such that

k zBkkL2.R2/!L2.R2/ � Ch
2N
jkj�2N

so that kBkkL2.C=�/!L2.C=�/ D O.h1jkj�1/.
From (A.4), Bk is bounded from L2.C=�/ to L2.C=�/ for jkj � 8� . This, com-

bined with the L2 estimate for Bk away from zero gives (A.3).

We therefore have the following quantization.

Definition A.4 (Quantization of Sk.T �.C=�/IC2�2/). For k 2 R and

A 2 Sk.T �.C=�/IC2�2/;

we define

Oph.A/ WD �C=� ı Opwh .A/ ı �C=�

We note that for A 2 Sk.T �.C=�/IC2�2/, we get by Proposition A.3, that

Oph.A/WH
k.C=�IC2/! L2.C=�IC2/:

For k 2 R, matrix-valued symbols A;Aj 2 Sk.T �.C=�/IC2�2/ (with j 2 Z�0)
depending on h, we write

A �

1X
0

hjAj (A.5)

in Sk.T �.C=�/IC2�2/ if for all J 2 N,

A �

JX
jD0

hjAj 2 h
JC1Sk.T �.C=�/IC2�2/:

Definition A.5 (Principal symbol). If A 2 Sk.T �.C=�/IC2�2/ has an asymptotic
expansion as in (A.5), then its principal symbol is the equivalence class of matrix-
valued functions A0 with the equivalence relation

A � B () A � B 2 hSk.T �.C=�/IC2�2/:

Proposition A.6 (Composition). Suppose k; ` 2 R,

A 2 Sk.T �.C=�/IC2�2/ and B 2 S`.T �.C=�/IC2�2/:
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Then there exists a C 2 SkC`.T �.C=�/IC2�2/ such that

Oph.A/ ı Oph.B/ D Oph.C /

and

C � AB C

1X
1

hj
�
.C11/j .C12/j

.C21/j .C22/j

�
:

Proof. By standard results about the composition of Weyl operators (see for instance
[32, Section 4.3]), we have that

Opwh . zA/ ı Opwh . zB/ D Opwh . zC/

where zC D zA# zB D zA zB C O.h/ 2 SkC`.T �.C/IC2�2/, and zA and zB denotes the
periodization in the z variable of all matrix components. It is easy to verify from the
formula for a # b (see, for instance, [32, Theorem 4.12]) that if a and b are � periodic
in z, then a # b is � periodic in z. Therefore, we can restrict zC to the fundamental
domain of � in the variable z, which we denote by C 2 SkC`.T �.C=�/IC2�2/.

If u 2 H kC`.C=�IC2/ and Qu WD ��1C=�u, then

Oph.A/ ı Oph.B/u D .Opwh .A/Opwh .B/ Qu/jC=�
D .Opwh .C / Qu/jC=� D Oph.C /u:

Proposition A.7 (Parametrix construction). If k 2 R and F 2 Sk.T �.C=�/IC2�2/

with principal symbol �
A.z; �/ B.z; �/

C.z; �/ D.z; �/

�
such there exists a c0 > 0 with A.z; �/D.z; �/�B.z; �/C.z; �/ > c0, then there exists
G 2 S�k.T �.C=�/IC2�2/ such that

Oph.G/ ı Oph.F / D Oph.F / ı Oph.G/ D O.h
1/

and the principal symbol of G is�
A.z; �/ B.z; �/

C.z; �/ D.z; �/

��1
:

Proof. Because we have a composition rule for this symbol class (Proposition A.6),
the claim follows by an identical argument as the usual parametrix construction; see,
for instance, [10, Theorem 4.1].
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