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Elliptic operators
with non-local Wentzell–Robin boundary conditions

Markus Kunze, Jonathan Mui, and David Ploß

Abstract. This article is concerned with strictly elliptic, second-order differential operators on
a bounded Lipschitz domain in Rd subject to certain non-local Wentzell–Robin boundary con-
ditions. We prove that such operators generate strongly continuous semigroups on L2-spaces
and on spaces of continuous functions. We also provide a characterization of positivity and
(sub-)Markovianity of these semigroups. Moreover, based on spectral analysis of these operat-
ors, we discuss further properties of the semigroup such as asymptotic behavior and, in the case
of a non-positive semigroup, the weaker notion of eventual positivity of the semigroup.

1. Introduction

Let � � Rd be a bounded domain with Lipschitz boundary � D @�. In this article,
we study strictly elliptic second-order differential operators, such as the Laplacian
� (which we will consider for the rest of this introduction), subject to the non-local
Wentzell–Robin boundary condition

@�u.z/ D �u.z/C

Z
�

b21.z; x/u.x/ d�.x/C
Z
�

b22.z; w/u.w/ d�.w/ (1.1)

for z 2 � . Here � denotes Lebesgue measure on �, � denotes .d � 1/-dimensional
Hausdorff measure on � , and b21 2 L1.� ��/ and b22 2 L1.� � �/ are suitable
integral kernels that account for the non-locality of the boundary condition. If b21 D 0
and b22 D 0, we obtain local Wentzell–Robin boundary conditions.

In contrast to the classical Dirichlet, Neumann, and Robin boundary conditions,
the boundary trace of the differential operator occurs in the local Wentzell–Robin
boundary condition. The presence of this term accounts for the fact that there might
be some energy concentrated on the boundary � . We refer to [36] for a derivation
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and physical interpretation of these boundary conditions. Second-order differential
operators with local boundary conditions of Wentzell–Robin type have been widely
studied in the literature, see for example [9, 14, 25, 26, 28, 29, 43, 52].

The motivation to consider non-local terms in boundary conditions stems from
probability theory and goes back to the pioneering work of Feller [30, 31], who stud-
ied one-dimensional diffusion processes. A probabilistic interpretation of boundary
conditions may be found in [38], see also the recent article [15]. Roughly speaking,
the kernels b21 and b22 are responsible for restarting the associated stochastic process
when it reaches the point z 2 � .

However, in addition to this probabilistic motivation, there are also real-world
models in which differential operators subject to non-local boundary conditions nat-
urally appear. Some examples include thermoelasticity [23], a model of Bose con-
densation [47], or a model of a thermostat [37].

An important question is whether the differential operator subject to the boundary
condition (1.1) generates a strongly continuous semigroup, i.e., whether the associ-
ated Cauchy problem is well posed. Additional properties of the semigroup such as
positivity, (sub-)Markovianity, and asymptotic behavior are also of interest. For the
semigroup to be the transition semigroup of a stochastic process, it is of course essen-
tial that it is Markovian. However, in some real-world applications the semigroup fails
to be Markovian or even positive. In this case, it is rather natural to ask whether the
semigroup is eventually positive in some sense. A theory of eventually positive semi-
groups has been established in [19, 21, 22]. As it turns out, the question of whether
a given semigroup is eventually positive can be deduced from spectral information
about its generator. In [35], the authors investigated the question of whether a sym-
metric, strictly elliptic second-order differential operator subject to non-local Robin
boundary conditions (i.e., (1.1) without the Laplacian term and with b21 D 0) gener-
ates an eventually positive semigroup.

In this article, we carry out a systematic investigation of strictly elliptic operators
of second order, subject to general non-local Wentzell–Robin boundary conditions –
see Hypothesis 3.1 for our standing assumptions on the coefficients of the differential
operator and the boundary conditions. There are two primary objectives.

Firstly, we want to establish that our operator generates a strongly continuous
semigroup and characterise when this semigroup is positive and/or (sub-)Markovian.
Our main results in this direction are Theorems 3.4, 4.4, and 5.3. These results com-
plement results in the literature concerning non-local Dirichlet boundary conditions
(see [7, 12, 13, 32]) and non-local Robin boundary conditions (see [8, 48, 49]). In the
case of positive semigroups, we also obtain a complete characterization of the asymp-
totic behavior of the semigroup in Theorem 6.3.

Secondly, we want to identify situations in which the associated semigroup is
eventually positive but not positive. As we remarked above, this requires us to study
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certain spectral properties of the generator. Unsurprisingly, it is very hard to discuss
these questions in full generality, as spectral properties may depend intricately on the
coefficients. Therefore, we focus more on examples for this second point. In The-
orem 7.5, we identify a concrete subclass of operators for which the semigroup is
eventually positive. However, it may happen that even eventual positivity fails. In
Section 8, we discuss a specific one-dimensional example depending on a real para-
meter � , where eventual positivity fails for certain choices of � . As a matter of fact,
Theorem 8.2 shows that different spectral phenomena may be responsible for the fail-
ure of eventual positivity.

2. Second order elliptic operators

Throughout this article, � � Rd denotes a bounded domain with Lipschitz bound-
ary � . We denote Lebesgue measure on � by � and surface measure on � (i.e.,
.d � 1/-dimensional Hausdorff measure) by � . For p 2 Œ1;1�, the corresponding
complex Lp-spaces are denoted by Lp.�/ and Lp.�/ respectively and the corres-
ponding norms are k � k�;p and k � k�;p . To simplify notation, in the case p D 2, we
merely write k � k� and k � k� instead of k � k�;2 and k � k�;2. Similarly, the scalar
products on L2.�/ and L2.�/ are denoted by h�; �i� and h�; �i� respectively. The
classical Sobolev space of square-integrable functions on � with weak derivatives in
L2.�/ is denoted by H 1.�/.

In this section, we define a uniformly elliptic second-order differential operator
on L2.�/ that will play a central role throughout. The following are our standing
assumptions on the coefficients.

Hypothesis 2.1. � � Rd is a bounded domain with Lipschitz boundary � . We are
given functionsAD .aij /2L1.�IRd�d / and bD .bj /; cD .cj /2L1.�IRd /. The
matrix A D .aij / is assumed to be symmetric (i.e., aij D aj i for all i; j D 1; : : : ; d )
and uniformly elliptic in the sense that there exists a constant � > 0 such that

dX
i;jD1

aij .x/�i�j � �j�j
2

for all � 2 Cd and almost all x 2 �.

We now define the distributional operator LWH 1.�/! D.�/0 by setting

hLu; 'i WD

dX
i;jD1

Z
�

aijDiuDj' d�C
dX
jD1

Z
�

bj .Dju/ N' C cjuDj' d�
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for all ' 2 C1c .�/. Here, D.�/0 is the space of all anti-linear distributions. The
maximal L2-realization of L is denoted by L, i.e.,

Dmax.L/ WD

²
u 2 H 1.�/

ˇ̌̌̌
there existsf 2 L2.�/ with

hLu; 'i D

Z
�

f N' d� for all ' 2 C1c .�/
³
;

Lu D f:

We also consider the sesquilinear form qWH 1.�/ �H 1.�/! C, defined by

qŒu; v� WD

dX
i;jD1

Z
�

aijDiuDj v d�C
dX
jD1

Z
�

bj .Dju/ Nv C cjuDj v d�:

As qŒu; '�D hLu;'i� for all u 2Dmax.L/ and ' 2 C1c .�/, we see that the operator
associated to this form is a suitable realization of L on L2.�/. We use a larger class
of test functions to define the weak conormal derivative.

Definition 2.2. Let u 2 Dmax.L/. We say that u has a weak conormal derivative in
L2.�/ if there exists a function g 2 L2.�/ such that

qŒu; v� � hLu; vi� D

Z
�

gtr v d� (2.1)

for all v 2 H 1.�/. In this case, we set @L� u WD g. Occasionally, we abbreviate the
statement that u has a weak conormal derivative in L2.�/ by merely writing @L� u 2
L2.�/.

Under our assumptions on the coefficients, given u 2H 1.�/, there is at most one
function g satisfying (2.1). Thus, the conormal derivative is unique whenever it exists.
Moreover, it depends on the operator L only through the coefficients A and c. If these
coefficients are smooth enough to have a trace on the boundary, it can be shown that

@L� u D

dX
jD1

� dX
iD1

tr aijDiuC tr cju
�
�j ;

where � D .�1; : : : ; �d / denotes the unit outer normal of �, which exists � -almost
everywhere on � . For a proof of these facts and further information, we refer to [1,
Section 8.1].

It is immediate from the definition of the conormal that the domain of the operator
associated to the form q is given by ¹u 2 Dmax.L/ j @

L
� u D 0º. More generally, we

have the following.
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Lemma 2.3. Let f 2 L2.�/ and g 2 L2.�/. If u 2 H 1.�/ satisfies

qŒu; v� D

Z
�

f Nv d�C
Z
�

gtr v d�;

for all v 2 H 1.�/, then u 2 Dmax.L/, Lu D f and @L� u D g. In this case, we say
that u is a weak solution of the Neumann boundary value problem´

Lu D f in �;

@L� u D g on �:
(2.2)

Proof. That u 2Dmax.L/withLuD f follows by considering v 2 C1c .�/. But then

qŒu; v� � hLu; vi� D

Z
�

gtr v d�

for all v 2 H 1.�/ and @L� u D g follows from the definition of the weak conormal
derivative.

Similarly, we may also consider q�Œu;v�´ qŒu;v�C �hu;vi� for � 2R to define
a weak solution u 2 H 1.�/ of the shifted Neumann problem´

.�C L/u D f in �;

@L� u D g on �;
(2.3)

which is uniquely solvable for large enough � by [43, Proposition 3.7]. We next recall
a regularity result from [43].

Lemma 2.4. Let d � 2 and " > 0 be given. Then there exist constants ˛ 2 .0; 1/ and
C > 0 such that the following holds.

(i) Let � large enough, f 2 Ld�1C".�/ and g 2 Ld�1C".�/. Then the Neu-
mann problem (2.3) has a unique weak solution u. This solution u belongs
to C ˛.�/ and

kukC˛ � C.kf k�;d�1C" C kgk�;d�1C"/:

(ii) If u 2 H 1.�/ is a weak solution of (2.2) which additionally satisfies u 2
Ld�1C".�/, then

kukC˛ � C.kuk�;d�1C" C kf k�;d�1C" C kgk�;d�1C"/:

Proof. For (i), see [43, Lemma 3.10]. For (ii), note that if u solves (2.2), then u also
solves ´

.�C L/u D f C �u in �;

@L� u D g on �
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for every �. If � is large enough, part (i) yields

kukC˛ � C.kf C �uk�;d�1C" C kgk�;d�1C"/:

Corollary 2.5. Let d � 3, " > 0 be given and define  W Œ2;1/! Œ2;1� by

 .p/ WD

8̂<̂
:

d � 3C "

d � 1C " � p
p for 2 � p < d � 1C ";

1 for p � d � 1C ":

If f 2 Lp.�/, g 2 Lp.�/, and u is a weak solution of (2.2), then u 2 L .p/.�/ and
tru 2 L .p/.�/. Moreover, there is a constant C independent of f and g such that

kuk�; .p/ C k truk�; .p/ � C.kuk�;p C kf k�;p C kgk�;p/:

Proof. We fix � 2 R large enough so that (2.3) is uniquely solvable. Note that for
u 2 C ˛.�/, we have u 2 L1.�/ and tr u 2 L1.�/. Thus, Lemma 2.4 (i) implies
that there exists a constant C such that

k Quk�;1 C k tr Quk�;1 � C.k Qf k�;d�1C" C k Qgk�;d�1C"/ (2.4)

whenever Qf 2 Ld�1C".�/, Qg 2 Ld�1C".�/, and Qu is the unique weak solution of the
Neumann problem (2.3) with right-hand sides Qf and Qg.

On the other hand, [43, Lemma 3.7 and 3.8] yield that there is a constant C such
that for Qf 2 L2.�/ and Qg 2 L2.�/ and the weak solution Qu of (2.3) it holds that

k Quk�;2 C k tr Quk�;2 � C.k Qf k�;2 C k Qgk�;2/: (2.5)

We may now use an interpolation argument similar to [43, Lemma 3.11]. We put
X0 WDL

2.�/�L2.�/,X1 WDLd�1C".�/�Ld�1C".�/, Y0 WDL2.�/�L2.�/, and
Y1 WD L

1.�/ � L1.�/. Consider the unique solution operator to problem (2.3)

R0WX0 ! Y0; . Qf; Qg/ 7! . Qu; tr Qu/

which is continuous by (2.5). By (2.4), its restriction R1 WD R0jX1 is also continuous
from X1 to Y1. Using complex interpolation, it follows that R� WD R0jŒX0WX1�� is
continuous from the interpolation space ŒX0 W X1�� to ŒY0 W Y1�� . Using that complex
interpolation is compatible with Cartesian products (see [50, Section 1.9]) and the
standard identification of interpolation of Lp-spaces, it follows that

k Quk�; .p/ C k tr Quk�; .p/ � C.k Qf k�;p C k Qgk�;p/

where 1
 .p/

D
.1��/
2

for the unique solution � of 1
p
D

1��
2
C

�
d�1C"

.
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Now, let u be a (not necessarily unique) weak solution of (2.2). As in the proof of
Lemma 2.4, u will also satisfy

q�Œu; v� D

Z
�

.f C �u/ Nv d�C
Z
�

gtr v d�

and thus coincides with the unique solution of´
.�C L/ Qu D f C �u in �;

@L� Qu D g on �;

whence kuk�;p Ck truk�;p D k Quk�;p Ck tr Quk�;p � kf C �uk�;p Ckgk�;p , from
which the claim follows.

3. The sectorial form

We are now ready to introduce the Wentzell–Robin boundary conditions. We will
work on the Hilbert space H D L2.�/ � L2.�/ and write u D .u1; u2/ 2 H . The
scalar product on H is defined by

hu;viH WD hu1; v1i� C hu2; v2i� :

Occasionally, we identify H with L2.� t �/, where we endow the disjoint union
� t � with the product measure �˝ � .

We point out that H consists of complex-valued functions. The real part of H is
the space

HR WD ¹u 2 H j u1 2 L
2.�IR/; u2 2 L

2.�IR/º

consisting of real-valued functions. We recall that a linear operator � on H is called
real if �.HR/ � HR.

The following are our standing assumptions.

Hypothesis 3.1. Assume Hypothesis 2.1 and let the operators B11 2 L.L2.�//,
B22 2 L.L2.�//, B12 2 L.L2.�/; L2.�//, and B21 2 L.L2.�/; L2.�// be real
in the sense that they map real-valued functions to real-valued functions. We define
the bounded linear operator B 2 L.H / by setting

B D

�
B11 B12

B21 B22

�
:

Remark 3.2. Given an operator B 2 L.L2.�/ � L2.�//, observe that we can actu-
ally find operatorsB11 2L.L2.�//,B22 2L.L2.�//,B12 2L.L2.�/;L2.�//, and
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B21 2 L.L2.�/; L2.�// such that

B D

�
B11 B12

B21 B22

�
:

This also generalises, mutatis mutandis, to any p 2 Œ1;1�. Thus, the statement
B 2 L.Lp.�/ � Lp.�// should be understood as saying that the operators Bkl are
bounded on the relevant Lp-spaces for k; l D 1; 2.

Example 3.3. Motivated by the probabilistic interpretation from the introduction,
an important example for the operators Bkl is given by integral operators. Let
us briefly recall the definition and some important properties of integral operators.
Let .Sj ; †j ; �j / be finite measure spaces for j D 1; 2. An operator K 2 L.L2.S1/;

L2.S2// is called an integral operator if there exists a product measurable map
kWS1 � S2 ! C – the kernel of the integral operator – such that

ŒKf �.x/ D

Z
S1

k.x; y/f .y/ d�1.y/ for �2-almost every x 2 S2:

Buhvalov [16] has characterised integral operators by the property that they map dom-
inated, norm-convergent sequences to almost everywhere convergent sequences.

Interesting additional mapping properties can be characterised through integrabil-
ity assumptions on the kernel. For example, a kernel operator K maps L2.S1/ to
L1.S2/ if and only if k 2L1.S2IL2.S1// in the sense that supx2S2 kk.x; �/kL2.S1/<
1, see [5, Theorem 1.3]. In the case where .S1; †1; �1/ D .S2; †2; �2/, it is well
known that K is a Hilbert–Schmidt operator if and only if k 2 L2.S1 � S1/, see
[46, Theorem VI.6].

To define the realization of our operator subject to non-local boundary conditions,
we employ the theory of sectorial forms, which provides useful tools to establish well-
posedness of certain Cauchy problems on a Hilbert space H . Indeed, if the operator
A is associated to a closed, densely-defined and sectorial form, then �A generates an
analytic, strongly continuous semigroup on H , see [45, Section 1.4].

Unfortunately, the terminology concerning forms is not consistent in the literature.
Therefore, let us briefly recall the relevant notions, where we closely follow Kato [39,
Chapter 6]. If H is a complex Hilbert space, then a form is a sesquilinear mapping
hWD.h/�D.h/!C; here the domainD.h/ is a subspace ofH . The form h is called
densely defined if D.h/ is dense in H . It is called sectorial, if its numerical range
‚.h/ WD ¹hŒx; x� W x 2 D.h/; kxk D 1º is contained in some sector

†
 .�/ WD ¹z 2 C W j arg.z � 
/j � �º;

where 
 2 R is the vertex of the sector and � 2 Œ0; �
2
/ is its semiangle. We note

that ‚.h/ � †
 .�/ is equivalent to Re hŒx; x� � 
kxk2 (we write Re h � 
 and
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say that Re 
 is semibounded by 
 ) and jIm hŒx; x�j � tan �.Re h � 
/Œx; x� for
all x 2 D.h/. Here, we write Re h � 
 shorthand for the symmetric form .x; y/ 7!
1
2
.hŒx; y� C hŒy; x�/ � 
hx; yiH . If h is sectorial (with vertex 
 and semiangle � ),

then hx; yih WD hx; yiH C .Re h � 
/Œx; y� defines an inner product on the domain
D.h/. If .D.h/; h�; �ih/ is complete, then h is called closed.

In our case, the relevant form aWD.a/ �D.a/! C is defined by setting

D.a/ D ¹u 2 H j u1 2 H
1.�/; u2 D tru1º

and then

aŒu;v� WD qŒu1; v1� � hBu;viH

D qŒu1; v1� �

Z
�

ŒB11u1 C B12u2�v1 d� �
Z
�

ŒB21u1 C B22u2�v2 d�

for u;v 2 D.a/.

Theorem 3.4. Under Hypothesis 3.1, the form a is densely defined, closed and sec-
torial. The associated operator A has compact resolvent, and �A generates an ana-
lytic, strongly continuous semigroup .T .t//t�0 on H . This semigroup is real in the
sense that T .t/HR � HR for all t � 0.

Proof. We start by proving that D.a/ is dense in H . First note that .'; 0/ 2 D.a/
whenever ' 2 C1c .�/. It follows that L2.�/ � ¹0º � D.a/. Recall that the trace
operator defines a bounded map from H 1.�/ to H 1=2.�/ and the latter is dense in
L2.�/, see [42, Theorem 3.38]. Thus, given f2 2 L2.�/, we find u1 2 H 1.�/ with
kf2� tru1k2� � ". Now, pick ' 2C1c .�/with ku1� 'k2�� " and define v D .v1;v2/

by setting v1 D u1 � ' and v2 D tru1 D tr v1. Then v 2 D.a/ and

k.0; f2/ � vk2H D kv1k
2
� C k tru1 � f2k2� � 2":

As " > 0 was arbitrary, we obtain that ¹0º � L2.�/ � D.a/. As D.a/ is a vector
space, it follows that D.a/ D H .

To prove closedness, first observe that there exists Q! � 0, such that

Re qŒu1�C Q!ku1k
2
� � �ku1k

2
H1
;

see [45, equation (4.3)]. In view of the boundedness of B, it follows that

Re aŒu�C !kuk2H � �ku1k
2
H1

with ! D Q! C kBk. On the other hand, we clearly have

jaŒu;v�j � Cku1kH1kv1kH1
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for a constant C that depends upon the L1-bounds of the coefficients aij ; bj , and cj
for i; j D 1; : : : ; d , and the operator norms kBklk for k; l D 1; 2. This yields that the
form a is sectorial and that the associated norm

kuk2a ´ Re aŒu�C .! C 1/kuk2H

is equivalent to ku1k2H1 C ku2k
2
� . Now, let un D .u1;n; u2;n/ be a Cauchy sequence

in .D.a/; k � ka/. By what was done so far, .u1;n/ is a Cauchy sequence in H 1.�/,
hence convergent to some u1 2 H 1.�/, and .u2;n/ is a Cauchy sequence in L2.�/
and thus has a limit, say u2 2L2.�/. As the trace operator is continuous fromH 1.�/

to L2.�/, it follows that u2 D tru1, whence u D .u1; u2/ 2 D.a/. Thus, a is closed.
Since � is a bounded Lipschitz domain, the embedding of H 1.�/ into L2.�/ is

compact. As trWH 1.�/! L2.�/ is a continuous map, it follows that tr.H 1.�// is a
compact subset of L2.�/. These observations imply that the embedding of D.a/ into
H is compact, and thus A has compact resolvent.

That the operator �A generates an analytic, strongly continuous semigroup fol-
lows from general results concerning densely defined, closed, sectorial forms, see [45,
Section 1.4]. To prove that the semigroup is real, we use [45, Proposition 2.5]. We thus
have to prove that for u 2 D.a/, it holds that Re u 2 D.a/ and aŒRe u; Im u� 2 R.
If u D .u1; u2/ 2 D.a/, then Re u D .Re u1; Re u2/. Since the trace operator is
real, it follows that Reu2 D Re tru1 D tr Reu1, proving Re u 2 D.a/. As all coeffi-
cients aij ; bj ; cj are real-valued and the operators Bkl are real, it easily follows that
aŒRe u; Im u� 2 R.

We next identify the operator A associated to the form a.

Proposition 3.5. It holds that

D.A/ D ¹u D .u1; u2/ j u1 2 Dmax.L/; @
L
� u1 2 L

2.�/; u2 D tru1º

and

Au D

�
Lu1 � B11u1 � B12u2

@L� u1 � B21u1 � B22u2

�
D

�
Lu1

@L� u1

�
�Bu:

Proof. For the time being, let A be the operator from the statement of the proposition
and C be the operator associated to the form a, i.e., u 2 D.C/ with Cu D f if and
only if u 2 D.a/ and hf ;viH D aŒu;v� for all v 2 D.a/. We prove that A D C .

We start by proving A � C . It obviously holds that D.A/ � D.a/. Moreover, if
u 2 D.A/, then

hAu;viH D hLu1; v1i� C h@
L
� u1; v2i� � hBu;viH

D hLu1; v1i� C h@
L
� u1; tr v1i� � hBu;viH

D qŒu1; v1� � hBu;viH D aŒu;v�

for all v 2 D.a/. This proves that u 2 D.C/ and Cu D Au.
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Conversely, assume that u 2 D.C/ with Cu D f . In this case,

qŒu1; v1� � hBu;viH D hf1; v1i� C hf2; v2i�

D hf1; v1i� C hf2; tr v1i�

for all v 2 D.a/. It follows from Lemma 2.3 that u1 2 Dmax.L/ and Lu1 D f1 C
B11u1 C B12u2 and @L� u1 D f2 C B21u1 C B22u2 2 L

2.�/. Consequently, f2 D
@L� u1 �B21u1 �B22u2. Altogether, we have proved that u 2 D.A/ and Cu D Au.
This finishes the proof.

Remark 3.6. Note that every u 2D.A2/ satisfies the generalised Wentzell boundary
condition

tr.Lu1 � B11u1 � B12u2/ D @L� u1 � B21u1 � B22u2:

Proposition 3.5 shows that tr.Lu1 � B11u1 � B12u2/ exists in L2.�/. However, the
individual traces of the summands need not exist in general. We also point out that
since T is analytic, we have T .t/u0 2 D.A

k/ for all t > 0, k 2 N, and u0 2 H .

Following the ideas of [43, Sections 3 and 4], we also obtain Hölder continuity of
elements of D.Ak/ for large enough k.

Lemma 3.7. For d�3, "> 0, assume that B is bounded onLd�1C".�/�Ld�1C".�/.
Moreover, let 2 � p < d � 1C " and let the function  be as in Corollary 2.5. Then,
if u 2 D.A/ \ .Lp.�/ � Lp.�// with Au 2 Lp.�/ � Lp.�/, it follows that u 2

L .p/.�/ � L .p/.�/.

Proof. It follows by interpolation that B maps Lp.�/ � Lp.�/ to itself for every
p 2 Œ2; d � 1C "/. We note that for u 2D.A/, it holds that u1 2Dmax.L/�H

1.�/

and Lu1 D .Au/1 � B11u1 � B12u2 and @L� u1 D .Au/2 � B21u1 � B22u2. Thus,
if u 2 Lp.�/�Lp.�/ and Au 2 Lp.�/�Lp.�/, it follows that Lu1 2 Lp.�/ and
@L� u1 2 L

p.�/. The claim now follows from Corollary 2.5.

Theorem 3.8. Assume Hypothesis 3.1 and let " > 0. If d � 3, assume that B is
bounded on Ld�1C".�/ �Ld�1C".�/. Then there are k D k.d/ 2 N and ˛ 2 .0; 1/
such that u 2 D.Ak/ implies u1 2 C ˛.�/, and hence u 2 L1.�/ � L1.�/.

Proof. If u 2 D.A/, then u1 2 Dmax.L/ � H
1.�/ and

Lu1 D .Au/1 � B11u1 � B12u2 and @L� u1 D .Au/2 � B21u1 � B22u2:

If d D 1, then H 1.�/ is continuously embedded into C ˛.�/ and the result fol-
lows. In the case d D 2, Lemma 2.4 (ii), applied with " D 1, implies that u 2 C ˛.�/
without additional regularity assumptions on B as d � 1C " D 2.
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In the remaining case d � 3, it follows from Sobolev embedding that we have
u1 2 L

2d
d�2 .�/ and tru1 2 L

2d
d�1 .�/. It follows that u 2Lp1.�/�Lp1.�/ for p1 D

2d
d�1

> 2. At this point, Lemma 3.7 and induction yield that u 2 D.Ak/ implies u 2

Lpk .�/ � Lpk .�/, where pk WD  .pk�1/, i.e., pk D  k�1.p1/. It is clear from the
structure of the function  that  k.p/!1 as k !1 for every p 2 .2;1/. We
thus find a smallest index k� such that pk� � d � 1C ". Then for u 2D.Ak�C1/, we
have u;Au 2 Lpk� .�/ �Lpk� .�/ � Ld�1C".�/ �Ld�1C".�/. It follows that also
Bu 2 Ld�1C".�/ � Ld�1C".�/. At this point, Lemma 2.4 (ii) yields u1 2 C ˛.�/
for u 2 D.Ak�C1/.

4. Positivity and Markov properties

Positivity is another key feature in this article, and therefore we recall some concepts
regarding the order structure on H . The positive cone in H is

HC WD ¹u 2 HR j u1 � 0; u2 � 0º:

Here and in what follows, u1 � 0 means u1.x/ � 0 for �-almost every x 2 � and
u2 � 0 means u2.x/ � 0 for � -almost every x 2 � . We write u � 0 if u 2 HC. The
notation u > 0 indicates u � 0 and u ¤ 0. We say that u is strictly positive, and
write u � 0, if u1.x/ > 0 for �-almost every x 2 � and u2.x/ > 0 for � -almost
every x 2 � .

The lattice operations of supremum and infimum in HR are denoted respectively
by

u _ v WD sup.u;v/; u ^ v WD inf.u;v/;

for all u;v 2 HR, and should be interpreted component-wise; for instance,

u _ v D .u1 _ v1; u2 _ v2/:

Moreover, we define the positive and negative parts of an element u 2 HR by

uC WD u _ 0; u� WD .�u/ _ 0;

and the modulus is given by

juj WD u _ .�u/ D .ju1j; ju2j/:

An operator � on H is called positive if �.HC/ � HC. Observe that a positive
operator is automatically real. We denote the constant function on H with value 1
by 1 D .1�; 1�/. A positive operator � on H is called Markovian, if �1 D 1; it is
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called (sub-)Markovian if �1 � 1. We call a semigroup � D .�.t//t�0 positive/(sub-)
Markovian if every operator �.t/ is positive/(sub-)Markovian.

Before characterizing positivity and (sub-)Markovianity of the semigroup T asso-
ciated to the form a, we recall the following notion.

Definition 4.1. If .M; �/ is a measure space and H D L2.M; �/, then a bounded,
real linear operator S WH ! H is said to satisfy the positive minimum principle if
hSf; gi � 0 whenever f; g 2 HC satisfy hf; gi D 0.

The importance of operators that satisfy the positive minimum principle stems
from the following result, which is taken from [6, Theorem C-II.1.11], where it is
stated in the general setting of Banach lattices.

Lemma 4.2. Let A be a real, bounded linear operator on L2.M; �/. The following
are equivalent:

(i) etA D
P1
kD0

.tA/k

kŠ
is positive for all t � 0;

(ii) A satisfies the positive minimum principle;

(iii) AC kAkI is positive.

We point out that it is equivalent to ask in (iii) that there is some ˛ 2 R such that
AC ˛I is positive, as the semigroup generated by AC ˛I is given by .e˛tetA/t�0
and this is positive if and only if the semigroup .etA/t�0 is positive. It follows that a
bounded linear operator A on an L2-space satisfies the positive minimum principle if
and only if it can be written asAD P �M , where P is a positive operator andM is a
multiplication operator, i.e., ŒMf �.x/ D m.x/f .x/ for some function m 2 L1.M/.
This representation is the appropriate generalization of a matrix with positive off-
diagonal entries to the L2-setting. An important special case is when P is a positive
integral operator and M is chosen in such a way that A1 D 0.

Example 4.3. Let 0 � k 2 L1.�IL2.�// and put �.x/ D
R
�
k.x; y/ d�.y/. Then

the operator A 2 L.L2.�//, defined by

ŒAf �.x/ D

Z
�

k.x; y/Œf .y/ � f .x/� d�.y/ D
Z
�

k.x; y/f .y/ d�.y/ � �.x/f .x/;

satisfies the positive minimum principle.

We can now characterise positivity and (sub-)Markovianity of the semigroup T .

Theorem 4.4. Assume Hypothesis 3.1. For parts (b) and (c), additionally assume that
c 2 W 1;1.�IRd /. We denote the unit outer normal of � by �.

(a) The semigroup T is positive if and only if

(i) B12 and B21 are positive operators;
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(ii) B11 and B22 satisfy the positive minimum principle.

(b) The semigroup T is sub-Markovian if and only if

(i) T is positive, i.e., conditions (i) and (ii) of part (a) are satisfied,

(ii) div c C B111� C B121� � 0 and

(iii) B211� C B221� � c � �.

(c) The semigroup T is Markovian if and only if conditions (i)–(iii) from (b) are
satisfied with equality in (ii) and (iii).

Proof. (a) As T is real, it follows from [45, Theorem 2.6] that T is positive if and
only if for every real-valued u 2 D.a/, it holds that uC 2 D.a/ and aŒuC;u�� � 0.
An easy calculation shows that (i) and (ii) are sufficient for the positivity of T .

To prove that they are necessary, assume that T is positive and let uD .u1; u2/ 2

D.a/ be real. Note that uC1 2 H
1.�/ whenever u1 2 H 1.�/ is real. In this case,

we also have .tr u1/C D tr.uC1 /, so that uC D .uC1 ; u
C
2 / belongs to D.a/ whenever

u 2 D.a/.
Next, we recall Stampacchia’s lemma [33, Lemma 7.6], which states thatDjuC1 D

1¹u1>0ºDju1 and Dju�1 D 1¹u1<0ºDju1. It follows that qŒuC1 ; u
�
1 � D 0 for all u 2

H 1.�/. Thus, [45, Theorem 2.6] implies that

0 � hBuC;u�iH : (4.1)

It follows from Theorem 3.4 that, given f1 2 L2.�/C and f2 2 L2.�/C, we find
a sequence .un/ � D.a/ with un ! .f1;�f2/ in H . By continuity of the lattice
operations, .u1;n/C! f1 and .u1;n/�! 0 inL2.�/ and .u2;n/C! 0, .u2;n/�! f2

in L2.�/. Thus, using (4.1) with u D un, it follows upon letting n!1 that

0 �

Z
�

.B21f1/f2 d�:

As f1 and f2 are arbitrary, the positivity of B21 follows. The positivity of B12 is
proved similarly, approximating .�f1; f2/ instead. This proves condition (i).

Approximating .f1; 0/ for arbitrary f1 2 L2.�/, it follows from inequality (4.1)
that hB11f C1 ; f

�
1 i� � 0. Given f; g 2 L2.�/C with hf; gi� D 0, we may consider

f1 D f � g, so that f C1 D f and f �1 D g, to infer hB11f; gi� � 0. This proves that
B11 satisfies the positive minimum principle. To establish the positive minimum prin-
ciple for B22, we approximate .0; f2/ for arbitrary f2 2 L2.�/ and argue similarly.

(c) Let us consider the case where T is positive. In this case, T is Markovian
if and only if for 1 D .1�; 1�/ we have T .t/1 D 1 for all t � 0, which, in turn, is
equivalent to 1 2 ker.�A/.



Elliptic operators with non-local Wentzell–Robin boundary conditions 211

We note that 1� 2Dmax.L/ with L1� D�div c and @L� 1� D c � �. It thus follows
from Proposition 3.5 that 1 2 ker.�A/ if and only if div c C B111� C B121� D 0

and B211� C B221� D c � �.
(b) To prove the necessity of (i)–(iii), assume that T is sub-Markovian. Then T

is positive and (i) follows from part (a). By [45, Corollary 2.17], T is sub-Markovian
if and only if for every u that belongs to D.a/ \HC, it holds that u ^ 1 belongs
to D.a/ and aŒu ^ 1; .u � 1/C� � 0. Noting that Dj .u1 ^ 1�/ D 1¹u1<1ºDju and
Dj .u1 � 1�/C D 1¹u1>1ºDju, it follows that

0 � aŒu ^ 1; .u � 1/C�

D

dX
jD1

Z
�

cjDj .u1�1�/
C d��

Z
�

ŒB11.u1 ^ 1�/CB12.u2 ^ 1�/�.u1�1�/
C d�

�

Z
�

ŒB21.u1 ^ 1�/C B22.u2 ^ 1�/�.u2 � 1�/
C d�:

Integrating by parts in the first integral and inserting u D v C 1 for 0 � v 2 D.a/, it
follows thatZ

�

.B111� C B121� C div c/v1 d�C
Z
�

.B221� C B211� � c � �/v2 d� � 0:

By density, this inequality extends to arbitrary v 2 HC and this proves the necessity
of conditions (ii) and (iii).

It remains to prove the sufficiency of conditions (i)–(iii). We observe that, in view
of part (a), (i) immediately implies that T is positive. We now employ a technical
construction. Note that the orthogonal projection onto the linear span of 1� is given
by P�u WD �.�/�1hu; 1�i�1� . We define a new operator zB12 2 L.L2.�/; L2.�//

by
zB12u WD B12.I � P�/u �

1

�.�/
hu; 1�i�.B111� C div c/:

Setting uD 1� yields divcCB111�C zB121� D 0. If 0� u2L2.�/, then hu;1�i � 0
and condition (ii) yields

zB12u � B12.I � P�/uC
1

�.�/
hu; 1�i�B121� D B12u:

This proves that B12 � zB12. In particular, as B12 is positive, so is zB12. Similarly, for
every u 2 L2.�/, we consider the orthogonal projection P�u WD �.�/�1hu;1�i�1�
and define

zB21u WD B21.I � P�/u �
1

�.�/
hu; 1�i�.B221� � c � �/
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for all u 2 L2.�/. One checks as above that zB21 2 L.L2.�/; L2.�// is a positive
operator such that zB211� C B221� D c � � and B21 � zB21.

Now, consider the operator

zB D

�
B11 zB12
zB21 B22

�
and define QaŒu;v� WD qŒu;v�� h zBu;viH for u;v 2D. Qa/ WDD.a/. It follows from
part (c) that the semigroup zT associated with Qa is Markovian. It is straightforward to
check that QaŒu;v� � aŒu;v� for all 0 � u;v 2D.a/. Thus, by the Ouhabaz domina-
tion criterion for positive semigroups (see [44, Theorem 3.7] or [45, Theorem 2.2.4]),
it follows that

0 � T .t/f � zT .t/f for all t � 0; f 2 HC:

As zT is Markovian, this clearly implies that T is sub-Markovian.

Remark 4.5. (i) The assumption that c 2 W 1;1.�IRd / in Theorem 4.4 is neces-
sary for parts (b) and (c). Indeed, [43, Example 4.4] provides an example that without
this assumption the semigroup T (even after possible rescaling) is not contractive
on L1.�/ � L1.�/ and thus, in particular, not sub-Markovian. (ii) The conditions
of Theorem 4.4 (a) are equivalent to the positivity of the semigroup .etB/t�0 on
L2.�/ � L2.�/ and thus to the operator B satisfying the positive minimum prin-
ciple.

We end this section by discussing irreducibility of the semigroup T . If E is a
Banach lattice, then a subspace J of E is called an ideal if

(i) u 2 J implies juj 2 J ; and

(ii) if 0 � v � u and u 2 J , then also v 2 J .

A strongly continuous semigroup on E is called irreducible if the only closed ideals
that are invariant under the semigroup are ¹0º and E. Often, an irreducible semigroup
is tacitly assumed to be positive. This is the case, for example, in [6, Section C-III.3],
where one can find a characterization of irreducibility for strongly continuous positive
semigroups on Banach lattices. However, if the semigroup is positive and analytic, as
is the case when the semigroup arises from a form, then irreducibility is equivalent to
the formally stronger notion of positivity improving in the sense that f > 0 implies
S.t/f � 0 for all t > 0; cf. [45, Definition 2.8 and Theorem 2.9] or [6, Theorem
C-III.3.2 (b)]. This type of result has recently been shown to hold for eventually posit-
ive semigroups in [10] (see Proposition 3.12 in particular), where the reader will find
a more thorough investigation of irreducibility under eventual positivity assumptions.
We stress, however, that in our terminology, an irreducible semigroup is not assumed
to be positive (or even eventually positive), in general.
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If E D Lp.M/ (1 � p <1), then J � E is a closed ideal if and only if there is
a measurable subset S �M such that

J D ¹f 2 Lp.M/ j f jS D 0 a.e.ºI

see for instance [11, Proposition 10.15]. In order to make use of this characterization
in our setting, we will identify L2.�/ � L2.�/ with L2.� t �; �˝ �/ as before.

Proposition 4.6. If � is connected, then the semigroup T is irreducible.

Proof. Given a measurable subset S of � t � , we identify L2.S/ with the closed
subspace

¹f 2 L2.� t �/ j f jSc D 0 a.e.º:

To establish irreducibility, we have to prove that T .t/L2.S/ � L2.S/ for all t > 0

implies .�˝ �/.S/ D 0 or .�˝ �/..� t �/ n S/ D 0. To that end, we can use [45,
Theorem 2.10 and Corollary 2.11]. We point out that the assumption of accretivity
in that Theorem is not needed, as we may rescale the semigroup appropriately. It
thus suffices to prove that if S � � t � satisfies 1Su 2 D.a/ for all u 2 D.a/,
then we either have .� ˝ �/.S/ D 0 or .� ˝ �/..� t �/ n S/ D 0. Assume that
.� ˝ �/.S/ > 0. Note that if u 2 D.a/ satisfies u1 D 0 almost everywhere then
u D 0. This implies that S1 WD S \ � has positive Lebesgue measure. It follows
that for every u1 2 C1c .�/, we have 1S1u1 2 H

1.�/. Arguing as in the proof of
[45, Theorem 4.5], we see that this is only possible if �.� n S1/ D 0. It now follows
that also .�˝ �/..� t �/ n S/ D 0.

5. The semigroup on the space of continuous functions

Under the assumptions of Theorem 3.8, the semigroup T maps L2.�/ � L2.�/ into
L1.�/�L1.�/. In particular, we may consider the restriction T1 of T toL1.�/�
L1.�/. We prove that, under appropriate assumptions, this restriction is a strong
Feller semigroup in the sense of Definition A.5. Our setting is as follows.

As a compact space, we choose M D x� � � , endowed with the product topology
and let �D �˝ � . Then �.B.x; "// > 0 for all x 2M and " > 0. Moreover, we may
then identify L2.�/�L2.�/ with L2.M;�/ and L1.�/�L1.�/ with L1.M;�/.
Likewise, the space C.M/ can be identified with C.x�/ � C.�/. We will consider the
space

C WD ¹u j u1 2 C.x�/ with u2 D tru1º � C.x�/ � C.�/;

which is obviously closed inC.x�/�C.�/. We start by addressing the situation where
B D 0. We denote the form a with B D 0 by h and the associated operator by L. The
semigroup generated by �L is denoted by � .
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Proposition 5.1. Assume Hypothesis 2.1 and additionally c 2 W 1;1.�IRd /. Then,
the semigroup � restricts to a weak�-semigroup �1 in the sense of Definition A.2
on the space L1.�/ � L1.�/. The semigroup �1 is a strong Feller semigroup with
respect to C . In particular, it restricts to a strongly continuous semigroup �C on C .

Proof. We write �1.t/ WD �.t/jL1.�/�L1.�/, which is well defined by Theorem 3.8.
To prove that �1.t/ is an adjoint operator, we use Lemma A.1. If .fn/n2N is a
bounded sequence in L1.�/ � L1.�/ that converges pointwise to f , then fn !

f in L2.�/ � L2.�/ by dominated convergence. It follows that �.t/fn ! �.t/f

in L2.�/ � L2.�/. Passing to a subsequence, we may (and shall) assume that
�1.t/fn! �1.t/f pointwise almost everywhere. As �1.t/ is a bounded operator on
L1.�/�L1.�/, the sequence �1.t/fn is uniformly bounded. Thus, if g2L1.�/�

L1.�/, it follows by dominated convergence that hg; �1.t/fni ! hg; �1.t/f i. As
this is true for every subsequence, it follows that �1.t/fn*

� �1.t/f as n!1. By
Lemma A.1, �1.t/ is an adjoint operator.

In order to prove that �1 is a weak�-semigroup, it remains to show that for every
f 2 L1.�/�L1.�/, one has �1.t/f *

� f as t & 0. To that end, we first note that
since c 2 W 1;1.�IRd /, it follows from [43, Proposition 4.5], that there exists ˛ � 0
such that k�1.t/k � e˛t for all t � 0. By strong continuity on L2.�/ � L2.�/, for
every f 2 L1.�/ � L1.�/, we have �1.t/f ! f in L2.�/ � L2.�/. Thus, given
a sequence tn & 0, we may assume, passing to a subsequence, that �1.tn/f ! f

pointwise almost everywhere. Using dominated convergence, it follows that

hg; �1.tn/f i ! hg; f i

for every g 2 L1.�/ � L1.�/. As this is true for every subsequence, it follows that
�1.t/f *

� f as t & 0. This proves that �1 is a weak�-semigroup. Clearly, the
generator of �1 is �L1, the part of �L in L1.�/ � L1.�/.

It remains to prove that �1 is a strong Feller semigroup with respect to C . To
that end, we first note that Theorem 3.8 and the analyticity of � imply that �1 maps
L1.�/ � L1.�/ to C . It follows from [43, Lemma 4.6] that the domain of �L1

is dense in C , whence [4, Corollary 3.3.11] implies that �1 restricts to a strongly
continuous semigroup �C on C . This finishes the proof.

We now turn to the semigroup T . In order to establish that also T restricts to
a strong Feller semigroup with respect to C , we employ Theorem A.7 and make an
additional assumption on B.

Hypothesis 5.2. Assume that c 2 W 1;1.�IRd / and that B maps L1.�/ �L1.�/
to itself.
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Theorem 5.3. Assume in addition to Hypothesis 3.1 also Hypothesis 5.2. Then T1 WD

T jL1.�/�L1.�/ is a strong Feller semigroup with respect to C . In particular, it
restricts to a strongly continuous semigroup TC on C . The generator of TC is �AC ,
the part of �A in C .

Proof. Once again, let L denote the operator associated to the form h and let � be the
semigroup generated by �L. By Proposition 5.1, �1 WD � jL1.�/�L1.�/ is a strong
Feller semigroup with respect to C . We denote its weak�-generator by�L1 as above.

Arguments along the lines of those in the proof of Proposition 5.1 show that
BjL1.�/�L1.�/ is an adjoint operator. Thus, Theorem A.7 yields that �L1 C

BjL1.�/�L1.�/ is the weak�-generator of a strong Feller semigroup with respect
to C . Noting that �L1 C BjL1.�/�L1.�/ is merely the part of �A in L1.�/ �
L1.�/, it follows from the uniqueness theorem for Laplace transforms, that the
semigroup generated by �L1 C BjL1.�/�L1.�/ must be the restriction of T to
L1.�/ � L1.�/.

Remark 5.4. Define V W C.x�/ ! C by V u D .u; tr u/. Then V is bijective with
inverse V �1W .u; tr u/ 7! u. Instead of the semigroup TC , it is often preferable to
consider the similar semigroup TC WD V �1TCV on C.x�/. It is again a strongly con-
tinuous semigroup and its generator is �AC , where

D.AC / D ¹u 2 Dmax.L/ \ C.x�/ j

@L� u 2 L
2.�/; Lu � B11u � B12 tru 2 C.x�/;

and tr.Lu � B11u � B12 tru/ D @L� u � B21u � B22 truº

and ACu D Lu � B11u � B12 tr u. Thus, elements of D.AC / satisfy the Wentzell–
Robin boundary condition. We note that if B maps C.x�/ � C.�/ to itself, then it
follows that for u 2 D.AC / we have Lu 2 C.x�/ and @L� u 2 C.�/, cf. [9, The-
orem 3.3], and the boundary condition also holds in a pointwise sense.

6. Spectral theory and asymptotic behavior

In this section, we study the spectrum of �A, the generator of the semigroup T on
H D L2.�/ � L2.�/. If Hypothesis 5.2 is satisfied, we may also consider the semi-
group TC (with generator �AC ) on the space C , or the semigroup TC (with generator
�AC ) on the space C.x�/. We note that �AC and �AC are similar, see Remark 5.4,
so that �.�AC / D �.�AC /.

We start with a general result. Recall that the spectral bound s.A/ is defined by

s.A/ D sup¹Re� j � 2 �.A/º:
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Given a semigroup T D .T .t//t�0 the growth bound !0.T / is defined by

!0.T / D inf¹! 2 R j there exists M � 0 with kT .t/k �Me!t for all t � 0º:

Proposition 6.1. Assume Hypothesis 3.1.

(a) �.�A/ consists of only isolated eigenvalues which are poles of the resolvent
and whose eigenspaces are finite dimensional.

(b) Assume additionally Hypothesis 5.2. Then �.�A/ D �.�AC / D �.�AC /

and all spectra only consist of isolated eigenvalues with finite-dimensional
eigenspaces.

(c) It holds that s.�A/ D !0.T /. Furthermore, assuming additionally Hypo-
thesis 5.2, we also have s.�AC / D !0.TC / and s.�AC / D !0.TC /.

Proof. As �A has compact resolvent by Theorem 3.4, part (a) follows immediately
from [39, Theorem III.6.29]. Now, additionally assume Hypothesis 5.2 is satisfied.
We note that the semigroup TC is also compact, as it maps (by analyticity of T and
Theorem 3.8) into the space C˛ WD ¹.u; tr u/ j u 2 C ˛.x�/º, which is easily seen to
be a compact subset of C . Compactness of TC now follows from similarity. It also
follows that �.�AC / and �.�AC / consist of isolated eigenvalues only with finite-
dimensional eigenspaces.

As the semigroups T and TC are consistent and compact, [2, Proposition 2.6]
yields �.�A/ D �.�AC /. That �.�AC / D �.�AC / follows by similarity. At this
point, (b) is proved.

As for part (c), we note that since all the semigroups are compact, they are imme-
diately norm continuous and hence the equality of growth and spectral bounds follows
from [27, Corollary IV.3.11].

In the rest of this section, we take a closer look at the spectral bound s.�A/. We
are particularly interested in the question whether s.�A/ 2 �.�A/ and, if this is the
case, in additional information about this spectral value. We briefly recall the relevant
terminology. Given a closed operator A, we say that s.A/ is a dominant eigenvalue if
s.A/ is an eigenvalue of A (thus, in particular, s.A/ 2 �.A/) and Re� < s.A/ for all
� 2 �.A/ n ¹�º. Note that if s.A/ is an eigenvalue of A, then s.A/ is dominant if and
only if �.A/ \ .s.A/C iR/ D ¹s.A/º � R.

We call an eigenvalue �0 of an operator A algebraically simple if it is an isolated
point of the spectrum and the associated spectral projection P , defined by

P WD
1

2�i

Z
@B.�0;"/

R.z;A/ dz;
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where " > 0 is chosen small enough so that NB.�0; "/ \ �.A/ D ¹�0º, has rank 1. We
note that if �0 is algebraically simple, then �0 is a first order pole of the resolvent
and the eigenspace ker.A� �0/ is one-dimensional. Moreover, the generalised eigen-
space

S
n2N ker.A � �0/n is also one-dimensional. It is well known that if �0 is a

pole of the resolvent (of any order), then �0 is algebraically simple if and only if the
generalised eigenspace is one-dimensional. Moreover, if �0 is an algebraically simple
eigenvalue, it is a geometrically simple eigenvalue, i.e., ker.A � �0/ is one-dimen-
sional. Conversely, if �0 is geometrically simple, then �0 is algebraically simple if
and only if �0 is a first-order pole of the resolvent, which in turn is equivalent to the
property ker.A � �0/ D ker..A � �0/2/. For more information, we refer to [39, Sec-
tion III.6], or [17].

6.1. The case of positive semigroups

Throughout this section, we assume that Hypothesis 5.2 is satisfied and, moreover,
that the semigroup T (and thus, by consistency, also TC and TC ) are positive. The lat-
ter is characterised by Theorem 4.4 (a). Our primary goal is to describe the asymptotic
behavior of these semigroups.

Before we state and prove the main theorem of this section, we recall a result
about the strict monotonicity of the spectral bound, that we will use in the proof.

Theorem 6.2. Assume that �1; �2 are strongly continuous semigroups on a Banach
lattice E with generators �A1 and �A2, respectively. Assume that

(i) 0 � �1.t/ � �2.t/ for all t � 0,

(ii) A2 has compact resolvent,

(iii) �2 is irreducible.

Then, if A1 ¤ A2, we have s.�A1/ < s.�A2/.

Proof. This is a version of [3, Theorem 1.3].

We can now characterise the asymptotic behavior of the semigroup TC on C.x�/.
Using the results of Proposition 6.1, it is straightforward to see that similar results
also apply to the semigroups T and TC .

Theorem 6.3. Assume Hypotheses 3.1 and 5.2, that � is connected, and that the
conditions of Theorem 4.4 (a) are satisfied so that the semigroups T , TC , and TC are
positive.

(a) If the conditions of Theorem 4.4 (c) are satisfied, then s.�AC /D 0 and there
exists a strictly positive measure � on x� and constants M;! > 0 such that

kTC .t/ � h�; �i1kL.C.x�// �Me
�!t .t � 0/:
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(b) If the conditions of Theorem 4.4 (b) are satisfied but those of Theorem 4.4 (c)
are not, then s.�AC / < 0 and there exist constants M;! > 0 such that

kTC .t/kL.C.x�// �Me
�!t .t � 0/:

(c) If either div c C B111� C B121� 6� 0 or B211� C B221� 6� c � �, then
s.�AC / > 0 and there exist constants M;! > 0 such that

kTC .t/kL.C.x�// �Me
!t .t � 0/:

Proof. (a) Since TC is Markovian, we have !0.TC /D 0, and thus we have s.�AC /D
s.�A/ D 0 by Proposition 6.1. Since T is irreducible by Proposition 4.6, it follows
from [6, Proposition C-III.3.5] that 0 is a first order pole of the resolvent of A and
the corresponding eigenspace is one-dimensional, hence spanned by 1. By [8, Pro-
position A.5], also TC is irreducible and the same results follow for AC . The result
about asymptotic behavior now follows from [6, Theorem C-IV.2.1], see also [8, The-
orem A.2].

(b) Under the assumptions of the theorem, the proof of Theorem 4.4 yields a
Markovian semigroup zT such that 0 � T .t/ � zT .t/ for all t � 0. By part (a), for the
generator � zAC of zTC , we have s.� zAC / D 0. As the conditions of Theorem 4.4 (c)
are not satisfied, the generator �AC of TC is different from � zAC and Theorem 6.2
yields s.�AC / < 0. Since the growth bound and spectral bound of TC coincide, the
claim follows.

(c) Again, denote by h the form a with B � 0 and by L and � the associated oper-
ator and semigroup. It follows from Theorem 4.4 with B � 0 that � is Markovian,
whence s.�L/ D 0 by part (a) and Proposition 6.1. Using that B11 and B22 sat-
isfy the positive minimum principle and that B12; B21 are positive, it follows that
hŒu;v�� aŒu;v� for all 0� u;v 2D.a/DD.h/. Thus, using the Ouhabaz criterion
for domination [45, Theorem 2.2.4], it follows that 0 � � � T . By Proposition 4.6,
T is irreducible and by Theorem 3.4 it is compact. However, by our assumption,
A1 ¤ 0, so that L ¤ A. Thus, Theorem 6.2 implies 0 D s.�L/ < s.�A/ DW!. As
T is irreducible, we find a strictly positive function u such that T .t/uD e!tu for all
t � 0, see [6, Proposition C-III.3.5]. The claim follows.

6.2. Perturbations of dissipative, self-adjoint operators

In this section, we make additional assumptions on the coefficients b and c appearing
in the form q.

Hypothesis 6.4. Assume that b D c 2 W 1;1.�IRd / satisfy div b D div c D 0 and
b � � D c � � D 0.
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As before, L denotes the operator associated to the form h (i.e., a with B D 0),
and � the semigroup generated by �L.

Lemma 6.5. Assume that Hypothesis 3.1 is satisfied and b; c 2 W 1;1.�IRd /. Then
the following are equivalent:

(i) �L is self-adjoint and � is Markovian;

(ii) Hypothesis 6.4 is satisfied.

In that case, �L is dissipative with s.�L/ D 0.

Proof. L is self-adjoint if and only if h is symmetric, which in turn is equivalent to
b D c. It follows from Theorem 4.4 (c), that � is Markovian if and only if div c D 0
and c � � D 0. This shows the equivalence of (i) and (ii).

Moreover, for u 2 D.a/, Hypothesis 6.4 enforces

hŒu;u� D qŒu1; u1�

D

Z
�

dX
i;jD1

aijDiu1Dju1 C

dX
jD1

bj .Dju1/u1 C

dX
jD1

bju1Dju1 d�

D

Z
�

dX
i;jD1

aijDiu1Dju1 d�C
Z
�

dX
jD1

bjDj ju1j
2 d�

D

Z
�

dX
i;jD1

aijDiu1Dju1 d� �
Z
�

.div b/ju1j2 d�C
Z
�

.� � b/ju1j
2 d�

D

Z
�

dX
i;jD1

aijDiu1Dju1 d� � �
Z
�

jru1j
2 d� � 0:

Thus, h is accretive, or equivalently �L is dissipative. In particular, s.�L/ � 0.
Equality is ensured by L1 D 0.

Theorem 6.6. Assume that � is connected and both Hypotheses 3.1 and 6.4 are sat-
isfied, and that the operator B is dissipative. Then we have s.�A/ � 0 and �.�A/\

iR� ¹0º. Moreover, if 0 2 �.�A/, then ker.�A/D span.1/. In this case, s.�A/D 0,
and 0 is a dominant and algebraically simple eigenvalue.

Proof. For all u 2 D.a/, we have

Re aŒu;u� D qŒu1; u1� � RehBu;uiH � 0

by Lemma 6.5 and the assumption that B is dissipative. It follows that �A is dis-
sipative and hence T is contractive. This implies that s.�A/ D !0.T / � 0 (recall
Proposition 6.1 (c) for the equality of spectral and growth bounds).
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Now, assume that i! 2 �.�A/\ iR for some! 2R. As A has compact resolvent,
i! is an eigenvalue and hence we find v 2 H with kvkH D 1 and �Av D i!v . It
follows that aŒv;v� D h�Av;viH D i! and hence

qŒv1; v1� D i! C hBv;viH :

Taking real parts and using that Hypothesis 6.4 also yields the accretivity of q itself,
the dissipativity of B shows

0 � �

Z
�

jrv1j
2 d� � qŒv1; v1� D RehBv;viH � 0:

Therefore, rv1 D 0, which shows that v1 (and also v , as v 2 D.a/) is necessarily
constant, as� is connected. It follows from Hypothesis 6.4 that Lv D ˛ �L1D 0 for
some ˛ 2C and we thus find i! D�hBv;viH D�j˛j

2hB1;1iH 2R. This implies
that ! D 0. Moreover, we see that 0 is dominant and geometrically simple.

To prove the last assertion of the theorem, we require some facts about the adjoint
semigroup. Recall that the adjoint generator �A� and dual semigroup T � arise from
the adjoint form

a�Œu;v� WD aŒv;u�; u;v 2 D.a/:

Since B is dissipative if and only if B� is dissipative, Lemma 6.5 again shows that

Re a�Œu;u� D qŒu1; u1� � RehB�u;uiH � 0

for all u 2 D.a/. As above, we deduce that s.�A�/ � 0 and �.�A�/ \ iR � ¹0º.
Due to the relation

�.�A�/ D �.�A/� WD ¹ N� j � 2 �.�A/º;

see e.g., [39, Theorem III.6.22], it follows that 0 2 �.�A�/ if and only if 0 2 �.�A/.
Thus, if the latter holds, then 0 is also an eigenvalue of �A�, and the previous com-
putations can be applied to �A� to show that the 0-eigenspace of �A� is one-dimen-
sional and spanned by 1.

Finally, to show that 0 is an algebraically simple eigenvalue of �A, it suffices
to show that ker..�A/2/ � ker.�A/, since 0 is a pole of R. � ; �A/ by Proposi-
tion 6.1 (a). Hence, let 0 ¤ u 2 ker..�A/2/, so that �Au 2 ker.�A/. Since
ker.�A/D span.1/, there exists ˛ 2 C n ¹0º such that ˛Au � 0. Now, observe that

h1; ˛AuiH D hA
�1; ˛uiH D 0;

because A�1 D 0. This implies ˛Au D 0, and hence u 2 ker.�A/ as required.
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Corollary 6.7. In the situation of Theorem 6.6, one has s.�A/ D 0 if and only if
B1 D 0. Thus, if B1 ¤ 0, then s.�A/ < 0.

Proof. If s.�A/ D 0, then Theorem 6.6 yields �A1 D 0 and hence aŒ1;u� D 0 for
all u 2 D.a/. Noting that Dj 1 D 0 for all j D 1; : : : ; d , it follows that

aŒ1;u� D

Z
�

dX
jD1

bj 1Dju1 d� � hB1;uiH

D �

Z
�

.div b/u1 d�C
Z
�

.b � �/u1 d� � hB1;uiH D �hB1;uiH :

Thus, we find hB1;uiH D 0 for all u2D.a/which, by density ofD.a/ in H , implies
B1 D 0.

Conversely, if B1 D 0, then 1 2 ker.�A/, whence 0 2 �.�A/. At this point,
Theorem 6.6 yields s.�A/ D 0.

Example 6.8. A particular example of a dissipative operator B is a skew-symmetric
(or skew-adjoint) operator, i.e., B� D �B. In this case, we have RehBu;uiH D 0

for all u 2 H . We note that B is skew-symmetric if and only if both B11 and B22 are
skew-symmetric and B�12 D �B21.

Let us give a particular example for this in the case of integral operators, see
Example 3.3. We choose B11 D 0 and B22 D 0 and let k 2 L1.� � �IR/. Define

ŒB12u2�.x/D

Z
�

k.x; z/u2.z/ d�.z/ and ŒB21u1�.z/D�

Z
�

k.x; z/u1.x/ d�.x/:

Then, the resulting operator B is skew-symmetric. We note that in this case, we have
B1 D 0 if and only ifZ

�

k.x; z/ d�.z/ D 0 for �-almost all x 2 �

and Z
�

k.x; z/ d�.x/ D 0 for � -almost all z 2 �:

These conditions are satisfied, for example, if k.x;z/D f .x/g.z/, where f 2L1.�/
and g 2 L1.�/ satisfy

R
�
f d� D

R
�
g d� D 0.

In the situation of Theorem 6.6, the operator �A D �LCB is the sum of two
dissipative operators and thus dissipative itself. We close this section by giving an
example showing that merely assuming that �A is dissipative is not sufficient to
obtain the conclusions of that theorem.
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Example 6.9. Let � D .0; 1/ � R so that � D ¹0; 1º. In this case, L2.�/ ' C2.
For u in D.a/, we have u1 2 H 1.0; 1/ � C.Œ0; 1�/ and we may (and shall) identify
u2 D tru1 with the vector .u1.0/; u1.1// 2 C2.

For our example, we choose a11 D 1, b1 D c1 D 0 as well as B11, B12 and B21
the appropriate 0 operators. Finally, let

B22 D

�
1 �1

�1 1

�
:

Then B22 is symmetric and �.B22/ D ¹0; 2º so that B22 (and hence B) is not dissip-
ative. It is easy to see that

hB22u2; u2i� D ju1.1/ � u1.0/j
2:

This implies that

aŒu;u� D

1Z
0

ju01.x/j
2 d�.x/ � ju1.1/ � u1.0/j2

D

1Z
0

ju01.x/j
2 d�.x/ �

ˇ̌̌̌ 1Z
0

u01.x/ d�.x/
ˇ̌̌̌2
� 0;

by Jensen’s inequality. Thus, a is accretive, implying that �A is dissipative, whence
s.�A/ � 0. We will show that 0 2 �.�A/, so that actually s.�A/ D 0, but ker.�A/

is two-dimensional.
Indeed, for u 2D.�A/, it follows from Proposition 3.5 that�AuD 0 if and only

if u001 D 0 and @�u1 D B22u2. The boundary condition translates to

�u01.0/ D u1.0/ � u1.1/;

u01.1/ D u1.1/ � u1.0/:

Note that u001 D 0 implies that u1.t/ D aC bt . But it is easy to see that the boundary
conditions are satisfied independently of the choice of a and b. This shows that 0 2
�.�A/ and that dim ker.�A/ D 2.

7. Eventual positivity

In Section 6.1, we studied the asymptotic behavior of the semigroup T under con-
ditions which ensured the positivity of the semigroup. The advantage in this setting
is that we could draw on well-established results in the spectral theory of positive
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semigroups. However, if the semigroup is not positive, one could ask about positivity
for sufficiently large times. This leads to the question of eventually positive solutions
to evolution equations. While isolated examples of such behavior were known for
several decades for matrix semigroups and in the PDE literature, a systematic theory
of eventually positive semigroups on infinite-dimensional Banach lattices was initi-
ated fairly recently in the papers [19, 21, 22]. This topic has rapidly developed in the
last few years, and the interested reader may consult the recent survey article [34] for
an overview of the current state of the theory. Let .T .t//t�0 be a strongly continu-
ous semigroup on the Banach lattice E. It is natural to call the semigroup .T .t//t�0
eventually positive if for every f � 0, there exists t0 D t0.f / � 0 such that

T .t/f � 0 for all t � t0: (7.1)

Many of the general results currently known about eventually positive semigroups
are inspired by classical Perron–Frobenius theory and the spectral theory of positive
semigroups. For example, it is shown in [22, Theorem 7.6] that if AWD.A/ � E ! E

generates a strongly continuous semigroup that satisfies (7.1) and �.A/ ¤ ;, then the
spectral bound s.A/ is a spectral value.

However, the general theory is more fruitful if we consider a stronger notion of
eventual positivity, which we will now introduce in the specific context of Lp-spaces.

Definition 7.1. Let .M; �/ be a finite measure space, and let T D .T .t//t�0 be a
strongly continuous semigroup on the Banach lattice E D Lp.M; �/. We say that
T is eventually strongly positive if for every f 2 EC n ¹0º, there exists a constant
ı D ıf > 0 and t0 D t0.f / � 0 such that

T .t/f � ı1 for all t � t0:

If the time t0 can be chosen independently of f 2EC, then we say that T is uniformly
eventually strongly positive. Note that in this case, for every t � t0 the operator T .t/
is strictly positive, as T .t/f � 0 for every f > 0.

Remark 7.2. In accordance with [21,22], it would be more appropriate to refer to the
notion of (uniform) eventual strong positivity in Definition 7.1 as individual (respect-
ively uniform) eventual strong positivity with respect to the quasi-interior point 1. The
general theory developed in [21,22] allows for arbitrary quasi-interior points u 2 EC
instead of 1.

In practice, the notion of eventual strong positivity in Definition 7.1 is related
to the question of asymptotic behavior and lower bounds on solutions of evolution
equations. For our applications, we are particularly interested in the eigenspace cor-
responding to the spectral bound s.A/, and hence we introduce the following notion:
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an operator P WLp.M; �/! Lp.M; �/ is called strongly positive if for all f > 0,
there exists ı D ı.f / > 0 such that

Pf � ı1:

Another key ingredient for our purposes is the smoothing condition

T .t1/L
p.M;�/ � L1.M;�/ for some t1 > 0: (7.2)

By combining this condition with spectral information about the generator, the fol-
lowing characterization of eventually strongly positive semigroups can be given. For
simplicity, we only state the result for generators with compact resolvent, which is the
case considered in this article.

Theorem 7.3. Let T D .etA/t�0 be a real, strongly continuous semigroup on E D
Lp.M; �/, such that the generator AWD.A/ � E ! E has compact resolvent. If T
satisfies the smoothing condition (7.2), then the following are equivalent.

(i) T is eventually strongly positive.

(ii) s.A/ is a dominant eigenvalue, and the corresponding spectral projection
P is strongly positive.

(iii) s.A/ is a dominant eigenvalue and geometrically simple, and the corres-
ponding eigenspace is spanned by a vector v such that v � ı1 for some
constant ı > 0. Moreover, the dual eigenspace ker.s.A/I � A0/ contains a
strictly positive functional  (i.e., a positive functional such that h ;f i> 0
for all f 2 EC n ¹0º).

If any of the above conditions hold, then s.A/ is even an algebraically simple eigen-
value of A.

Proof. The equivalence of (ii) and (iii), and the fact that these conditions imply algeb-
raic simplicity of s.A/, is a general property of strongly positive projections, which
was proved in [21, Corollary 3.3].

The equivalence of (i) and (ii) is proved in [21, Theorem 5.2].

Remark 7.4. For the interested reader, we point out that the implication (i) H) (ii)
in Theorem 7.3 holds even without the smoothing condition, and this was proved
in [18, Theorem 5.1]. The reverse implication is possible thanks to the smoothing
condition, and does not hold in general, even for semigroups with bounded generators.
A counterexample is shown in [21, Example 5.4].

We now return to the Wentzell–Robin semigroup T . Our spectral analysis in the
previous section leads to a simple sufficient criterion for eventual strong positivity.
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Theorem 7.5. Assume that � is connected and that Hypotheses 3.1 and 6.4 hold.
Suppose that B satisfies the following conditions:

(i) B is dissipative and B1 D 0;

(ii) B is bounded on L1.�/�L1.�/ and extrapolates to a bounded operator
on L1.�/ � L1.�/.

Then T is eventually strongly positive.

Proof. We verify condition (iii) of Theorem 7.3.
From Theorem 6.6, we know that s.�A/D 0, �.�A/\ iRD ¹0º, and the associ-

ated eigenspace is one-dimensional and spanned by 1. In particular, s.A/ is a dominant
eigenvalue of �A. Theorem 3.8 shows that

T .t/H � L1.�/ � L1.�/

for all t > 0, and hence T satisfies the smoothing condition (7.2).
Recall that the adjoint generator �A� and dual semigroup T � arise from the

adjoint form
a�Œu;v� WD aŒv;u�; u;v 2 D.a/:

However, since A is real, one can show that the Hilbert space adjoints A� and T �

coincide with the Banach space adjoints A0 and T 0 – see [19, p. 10] for a detailed
explanation. In particular, if B is bounded on L1.�/ � L1.�/ and extrapolates to
a bounded operator on L1.�/ � L1.�/, then it makes sense to say that B�, which
is a priori bounded on L1.�/ � L1.�/, extends to a bounded operator on .L1.�/ �
L1.�//0 D L1.�/ � L1.�/.

Regarding the spectrum of �A�, we use again the relation

�.�A�/ D �.�A/� WD ¹ N� j � 2 �.�A/º

as in the proof of Theorem 6.6. This in particular, implies that s.�A�/D 0 is a domin-
ant eigenvalue of �A�, and Theorem 6.6 applied to �A� shows that the 0-eigenspace
is one-dimensional and spanned by 1. Thus, the dual eigenspace ker.�A�/ contains
the strictly positive functional  D h1; � iH , and Theorem 7.3 yields the claim.

Remark 7.6. (i) The assumption (ii) in Theorem 7.5 is not optimal. Indeed, recalling
the conditions of Theorem 3.8, we can omit condition (ii) if d D 1 and d D 2. In case
d � 3, we may replace (ii) with the following more general but technical assumption:
there exists some p 2 .d � 1;1/ such that B is bounded on Lp.�/ � Lp.�/ and
extrapolates to a bounded operator onLp

0

.�/�Lp
0

.�/, where p0>1 is the conjugate
Hölder exponent.
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(ii) The semigroup T in Theorem 7.5 is even uniformly eventually strongly posit-
ive. This is because we can apply Theorem 3.8 to the adjoint semigroup and obtain

T �.t/H � L1.�/ � L1.�/

for all t > 0. Combined with the spectral information on �A�, we can then use [19,
Theorem 3.1] to deduce the following conclusion: there exist t0 � 0 and ı > 0 such
that

T .t/u � ıh1;uiH 1

for all t � t0 and all 0 � u 2 H .

Following Example 6.8, we can identify a class of operators B for which the
corresponding semigroup is (uniformly) eventually strongly positive, but not positive.

Example 7.7. In Example 6.8, we constructed a skew-symmetric (hence dissipative)
operator B that satisfies B1D 0 via a real-valued kernel function k 2L1.���IR/.
Such an operator B is clearly bounded on L1.�/ � L1.�/, and also extrapolates
to a bounded linear operator on L1.�/ � L1.�/. Hence, B satisfies the assumptions
of Theorem 7.5. Thus, if � is connected, Remark 7.6 (ii) shows that the operator �A

associated to such B generates a uniformly eventually strongly positive semigroup T .
However, if k is not equal to 0 almost everywhere, then the conditions8̂̂̂̂

<̂
ˆ̂̂:

Z
�

k.x; z/ d�.z/ D 0 for �-a.e. x 2 �;

Z
�

k.x; z/ d�.x/ D 0 for � -a.e. z 2 �

imply that k changes sign in��� so thatB12 andB21 from Example 6.8 are not pos-
itive operators. Consequently, by the characterization in Theorem 4.4 (a), we deduce
that the semigroup T is not positive.

8. A one-dimensional example in detail

In this final section, we examine in detail a one-dimensional example that illustrates
the variety of effects that can occur when we add a very simple non-local, skew-
symmetric perturbation to an operator that generates a positive semigroup. To that
end, we investigate a slightly different B22 than in Example 6.9 and consider the
following situation.
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Hypothesis 8.1. Let � D .0; 1/ � R, � D ¹0; 1º. Let a11 D 1, b1 D c1 D 0, and let
B11, B12, and B21 be the appropriate 0 operators. Finally, let

B22 D

�
0 1

�1 0

�
and consider the family of real operators �A� D �LC �B for � 2 R.

It is easily seen that Hypothesis 8.1 automatically implies Hypotheses 3.1 and 6.4.
This example illustrates the behavior of perturbing a positive operator with a small
skew-adjoint matrix on the boundary. Slowly increasing the perturbation parameter � ,
we observe that positivity is lost instantly, but eventual positivity is maintained in a
certain parameter range. Increasing the perturbation parameter further, we see that
eventual positivity will fail for different reasons as one by one the necessary condi-
tions from Theorem 7.3 (iii) cease to be fulfilled. More precisely, we have the follow-
ing behavior.

Theorem 8.2. Assume Hypothesis 8.1. Then there are values 0 < �p < �s < ��

(defined respectively in formulae (8.5), (8.4), and (8.2) below) such that for j� j < ��

the following behavior occurs.

(a) The semigroup T� is positive if and only if � D 0.

(b) The semigroup T� is eventually strongly positive in the sense of Definition 7.1
if and only if j� j < �p .

(c) If j� j 2 Œ�p; ��/, the semigroup T� is not eventually strongly positive. More
precisely,

(i) if j� j D �p , the spectral bound s.�A� / is a dominant, algebraically
simple eigenvalue, whose eigenspace is spanned by a positive (but not
strictly positive) function;

(ii) if j� j 2 .�p; �s/, the spectral bound s.�A� / is a dominant, algebraically
simple eigenvalue whose eigenspace is spanned by a function with sign
change;

(iii) if j� j D �s , the spectral bound s.�A� / is a dominant, geometrically
simple eigenvalue that is not algebraically simple as the resolvent has
a pole of order two;

(iv) if j� j 2 .�s; ��/, the spectral bound s.�A� / is not contained in the
spectrum. Instead, there is pair of complex conjugate eigenvalues � 2
C with Re� D s.�A� /.

Remark 8.3. (i) In the case j� j< �p , we even have uniform eventual strong positivity,
see Remark 7.6 (ii).
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(ii) In the case j� j D �p , it follows from [21, Theorem 8.3] that the semigroup T�

is at least asymptotically positive in the sense that

dist.e�ts.�A� /T� .t/f ;HC/! 0 as t !1

for every f 2 HC. Note that the rescaled semigroup .e�ts.�A� /T� .t//t�0 has growth
bound and spectral bound 0. Thus, asymptotic positivity means that for positive ini-
tial data, the orbit under the semigroup, when appropriately rescaled, approaches the
positive cone HC as t !1.

Before we prove Theorem 8.2, we need some preparation. Firstly, we collect gen-
eral spectral properties of A� . Note that .0;1/ 2 �.�A� /, so if � 2 �.�A� /, then
�� 2 C n .�1; 0�. We let

p
� WC n .�1; 0�! C denote the principal branch of the

square root. For �� 2 C n .�1; 0�, we set � D
p
�� and w D i� D i

p
��. Note

that with this convention, we always have Re� � 0 and Imw � 0.

Proposition 8.4. Assume Hypothesis 8.1. Then A�� D A�� and �.A� / D �.A�� /.
Moreover, � 2 �.�A� / if and only if � D

p
�� satisfies

cot.�/ D
�2 � �2 C �4

2�3
: (8.1)

All spectral values of �A� are isolated eigenvalues which are geometrically simple.
For all � ¤ 0, it holds that s.�A� / < 0.

Proof. By Proposition 6.1 (a), all spectral values are isolated eigenvalues with corre-
sponding finite-dimensional eigenspaces. We see directly that �B is skew-symmetric,
but for � ¤ 0 we have �B1 D �B22

�
1
1

�
D
�
�
��

�
¤ 0. Thus, Corollary 6.7 shows that

s.�A� / < 0. Rewriting �A�u D �u yields the eigenvalue problem

u00.x/ D �u.x/;

u0.0/C �u.1/ D �u.0/;

�u0.1/ � �u.0/ D �u.1/:

Note that for � ¤ 0, complex eigenvalues � may also occur, so we use the com-
plex ansatz ˛ewx C ˇe�wx where � D w2. By standard ODE theory, all solutions of
u00.x/ D �u.x/ are of this shape whenever � ¤ 0, thus in particular when � ¤ 0.

A short calculation shows that the boundary condition translates to Mw

�
˛
ˇ

�
D 0

with

Mw D

�
w � w2 C �ew �w � w2 C �e�w

�wew � w2ew � � we�w � w2e�w � �

�
:

Note that
detMw D 2.��

2
� w2 � w4/ sinh.w/ � 4w3 cosh.w/;
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which shows that the spectrum only depends on the absolute value of � . Also observe
that detMw D 0 if and only if

4w3 cosh.w/ D �2.�2 C w2 C w4/ sinh.w/ or coth.w/ D �
�2 C w2 C w4

2w3
;

which is equivalent to (8.1) as � D �iw.
Finally, as L2.�/ ' C2 is two-dimensional, the dimension of the kernel is at

most two. Double eigenvalues, however, can only occur when all entries of Mw are
zero. But if the entries on the diagonal are zero, we must have �ew D .w2 � w/ and
� D .w � w2/e�w , which yields � D 0. For � D 0, the matrix can only vanish if
w D 0, which was excluded. That the unperturbed case has no double eigenvalue at 0
follows from Theorem 6.6.

In the ensuing investigations, we focus on values of � close to 0. As the operator
�A� D �LC �B is a perturbation of �L, perturbation arguments show that for j� j
in a certain range the first two eigenvalues of�A� are obtained as perturbations of the
first two eigenvalues of �L. The latter can be obtained from Proposition 8.4 setting
� D 0.

Corollary 8.5. One has �.�L/� .�1; 0� and � 2 �.�L/ if and only if �D��2 for
a solution � of cot� D �2�1

2�
. The largest three eigenvalues are �1.0/ D 0, �2.0/ �

�1:707 and �3.0/ � �13:492. They satisfy
p
��2.0/ <

�
2
< � <

p
��3.0/.

Now, set

�� D
1

2
j�3.0/ � �2.0/j � 5:891: (8.2)

Then �2.0/ � �� � �7:598. Set

H´ ¹� 2 C j �2.0/ � �
�
� Re�º

and
S´ ¹� 2 C j �2.0/ � �

� < Re� � 0; j Im�j < ��º � H;

see Figure 1.

Lemma 8.6. Let j� j < ��. Then �.�A� / \H � S and

#.�.�A� / \H/ 2 ¹1; 2º:

Moreover, exactly one of the following three cases occurs:

(A) �.�A� /\H D ¹�1.�/; �2.�/º � R where �2.�/ < �1.�/ D s.�A� /. Both
eigenvalues are algebraically simple;

(B) �.�A� / \H D ¹�.�/º � R where s.�A� / D �.�/ is geometrically simple
but not algebraically simple;
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H

S



G D int 


�2.0/ � �
� �1.0/ D 0�2.0/�3.0/

��

��

���

Figure 1. Spectral regions H and S, and integration path 
 .

(C) �.�A� / \H D ¹�1.�/; �2.�/º, where �2.�/ D �1.�/ is a pair of complex
conjugates with non-zero imaginary part. Both eigenvalues are algebraically
simple.

Proof. We adapt the strategy from [20, Lemma 3.3] to our situation. As �.�L/ \

H D ¹�1.0/; �2.0/º, an easy perturbation argument based on the Neumann series
shows that if j Im�j> ��, then �2 �.�A� /. Now, let 
 be the path along the boundary
of the open box-shaped domain

G D ¹� 2 C j �2 � �
� < Re� < ��; j Im�j < ��º:

As �L is self-adjoint kR.�;�L/k�1 D jdist.�; �.�L//j, so for any � 2H nG � 


we have kR.�;�L/k�1 D j dist.�; �.�L//j � �� or, equivalently, kR.�;�L/k �

.��/�1. This implies that H nG � �.�A� / for � < ��. Indeed,

R.�;�A� / D R.�;�L/.I � �BR.�;�L//�1 D R.�;�L/

1X
kD0

Œ�BR.�;�L/�k;

and the latter converges absolutely, as k�BR.�;�L/k � j� j.��/�1kBk < 1. Now,
consider the spectral projection

P� D
1

2�i

Z



R.z;�LC �B/�1 dz:
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As�LD�A0 has two algebraically simple eigenvalues in G, P0 has rank two. Next,
we prove that P� depends continuously on � whence a perturbation result due to Kato
[39, Lemma I.4.10] yields that P� has rank two for all j� j < ��. To that end, set
˛´ min�2
 kR.�;�A� /k

�1. Then for j� j; j� j < ��, ı 2 .0; 1/, and j� � � j < ˛ı we
have

kR.�;�A� / �R.�;�A� /k � kR.�;�A� /k

1X
kD1

k.� � �/BR.�;�A� /k
k

D
ı

˛.1 � ı/

and thus

kP� � P�k <
.4�� C j�2.0/j/ı

�˛.1 � ı/
! 0

for ı ! 0.
By what was done so far, we see that for j� j < ��, the operator �A� has at most

two eigenvalues in H, and all of them lie in G \ ¹� j Re� � 0º D S. As �A� is real,
if � 2 �.�A� / \ .C n R/, then also N� 2 �.�A� /. This shows that only one of the
cases (A), (B), or (C) can occur.

If there is only one eigenvalue, i.e., case (B) occurs, then it has to be a pole of order
two of the resolvent, as the corresponding spectral projection has rank two. Moreover,
in this case the eigenvalue has to be real, as otherwise there would be a second eigen-
value. If there are two eigenvalues, the same argument shows that they are both real
(case (A)) or a pair of complex conjugates (case (C)). In all cases, Proposition 8.4
yields the geometric simplicity of the eigenvalues.

Lemma 8.7. Let J D .0;
p
��2.0/ / and j� j < ��. Consider the function

f W NJ ! Œ0;1/; � 7! f .�/´ �
p
2� cot.�/C 1 � �2:

Then f .�/ > 0 on J , f .�/ D 0 on @J and f 00.x/ < 0 on J . Furthermore, for any
� 2 .�2.0/� �

�; 0�, we have � 2 �.�A� / if and only if there exists � 2 Œ0;
p
��2.0/�

with f .�/ D j� j, such that � D ��2.

Proof. As lim�!0 � cot.�/ D 1, we have f .0/ D 0. Straightforward calculations
yield f 00.�/ < 0 and f .�/ > 0 on J . Furthermore, f .�/ D 0 on @J as 2� cot.�/C
1 � �2 D 0 is equivalent to cot.�/ D �2�1

2�
which is satisfied for � D

p
��2.0/ by

definition.
For � 2 .�2.0/� ��; 0� and� 2 Œ0;

p
�2.0/�, the equality f .�/D j� j implies (8.1)

if � ¤ 0. For � D 0, the assertion follows form Corollary 8.5. Thus, by Proposition 8.4
the value � D ��2 is an eigenvalue of �A� , which satisfies � 2 Œ�2.0/; 0� and � 2
.�2.0/; 0/ if � ¤ 0.
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0:25

0:5

0:75

1

1:25

�

f .�/

�s
p
��1.0/

p
��2.0/

j�s j

Figure 2. The function f .�/´ �
p
2� cot.�/C 1 � �2.

On the other hand, let � 2 .�2.0/� ��; 0� be an eigenvalue of�A� and�D
p
��.

If � D 0, the assertion follows from Corollary 8.5. Now, let j� j > 0. As s.�A/ < 0, it
follows that � > 0. Moreover,

0 < � D
p
�� <

p
�� � �2.0/ <

p
8 < �:

Since � has to satisfy (8.1), we must have 2� cot.�/C 1 � �2 D j� j
2

�2
> 0. We note

that the function � 7! 2� cot.�/C 1 � �2 is continuous on .0; �/ with a single zero
at
p
��.0/, at which it changes sign from positive to negative. Thus, we must have

� <
p
��.0/ as claimed.

In a next step, we precisely characterise the value of � for which we are in the
critical case (B) of Lemma 8.6.

Proposition 8.8. Let �s be such that f .�s/ is maximal, i.e., �s is the unique solution
of the equation

1 D 2�2 � 3� cot�C �2 csc2 � (8.3)

(�s � 0:9307) and

�s WD f .�s/ D

q
2�3s cot�s C �2s � �4s � 1:1474: (8.4)
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Then the following hold true:

(a) for j� j 2 .0; �s/, we are in case (A) of Lemma 8.6. Furthermore, �2.0/ <
�2.�/ < �1.�/ D s.�A/ < 0;

(b) for j� j D �s , we are in case (B) of Lemma 8.6 and �.�/ D ��2s < 0;

(c) for j� j 2 .�s; ��/, we are in case (C) of Lemma 8.6.

Proof. As j� j < ��, it follows from Lemma 8.7 that � is a real eigenvalue of �A� if
and only if � D

p
�� solves f .�/ D � . Since f is strictly concave, it has a unique

maximum at which f .�/ D � has exactly one solution. This maximum can be found
by setting f 0.�/ D 0. Noting that f .�/ > 0 on J , we can equivalently solve

0 D 2f 0.�/f .�/ D .f 2/0.�/ D �2�.�1C 2�2 � 3� cot.�/C �2 csc2.�//:

Thus, the equation f 0.�/ D 0 is equivalent to (8.3) and we see that for � D �s , we
are in case (B) of Lemma 8.6. For 0 < j� j < �s , there are exactly two real solutions of
f .�/ D j� j and we are in case (A) of Lemma 8.6. If �� > j� j > �s , there are no real
eigenvalues, so we have to be in case (C).

In a final step, we investigate for which j� j 2 .0; �s/ it is possible to choose a
strictly positive eigenfunction. It will turn out that this is only true for j� j up to a
slightly smaller threshold �p < �s .

Proposition 8.9. Let �p be the smallest strictly positive solution of cot� D � (i.e.,
� � 0:86033) and

�p ´ f .�p/ D
q
�2p C �

4
p D

�p

sin.�p/
� 1:1349: (8.5)

Then �p < �s . Recall from Proposition 8.8 that for j� j 2 .0; �s/, we have s.�A� / 2

�.�A� / and the corresponding eigenspace Eig.�A� ; s.�A� // D span¹u0º is one-
dimensional. Then the following is true:

(a) for j� j 2 .0; �p/, we can choose u0 strictly positive on Œ0; 1�;

(b) for j� j D �p , we can choose u0 positive on Œ0; 1� and strictly positive on .0;1/,
but u0.x/ D 0 for some x 2 �;

(c) for j� j 2 .�p; �s/, u0 changes sign.

Proof. Let �p be the smallest positive solution of cot.�/ D �. Then, approximately,
�p � 0:86033 < �s . Moreover, if j�pj D f .�p/, then ��2p D �1.�p/ D s.�A�p /.
Note that

f .�p/ D
q
2�3p cot�p C �2p � �4p D

q
�4p C �

2
p

D

q
�2p.1C cot2.�p// D

�p

sin.�p/
� 1:13491 < �s:
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It turns out that (unlike the eigenvalues) the eigenfunctions do depend on the sign
of � , so we make a case distinction. For our means, it suffices to calculate the eigen-
function corresponding to the spectral bound, which corresponds to the solution of
f .�/ D j� j in the range 0 � � � �s (cf. Figure 2).

Case 1. � > 0. Set

vC.x/ D cos.�x/ �
� cos.�/C �2

�C � sin.�/
sin.�x/:

One can check that vC.x/ is an eigenfunction to the eigenvalue ��2 of the operator
�A� for � D f .�/. Note that �C � sin.�/ > 0 for � 2 J .

At � D �p we have �p sin.�p/ D �p and cos.�p/ D �p sin.�p/; thus, the eigen-
function to s.�A�p / D ��

2
p is given by

vC.x/ D cos.�px/ � �p sin.�px/;

which is a strictly positive function on Œ0; 1/ with a zero in x D 1. This proves (b).
More generally, for any � 2 J , the function vC has a zero if and only if tan.�x/ D
�Cf .�/ sin.�/
�2Cf .�/ cos.�/

. As x 7! tan.�x/ is a strictly increasing function that maps Œ0; �
2�
/ onto

Œ0;1/, for fixed �, this equation has a unique solution x� in .0; �
2�
/. We note that

x� 2 .0; 1/ if and only if tan.�/ > �Cf .�/ sin.�/
�2Cf .�/ cos.�/

; and the latter can be shown to be
equivalent to � > �p . This proves (a) and (c).

Case 2. � < 0. For negative � , we observe that

v�.x/ D sin.�x/ �
�2 sin.�/ � � cos�

� sin.�/C �2 cos.�/ � �
cos.�x/

is an eigenfunction of �A� for the eigenvalue ��2, where � D �f .�/. Note that the
denominator is strictly positive for � 2 J .

The question of a sign change of the first eigenfunction reduces to whether

tan.�x/ D
�2 sin.�/ � � cos.�/

� sin.�/C �2 cos.�/C f .�/
(8.6)

occurs for x 2 Œ0; 1�. For 0 < � < �p , the right-hand side of (8.6) is negative, so
there is no equality in (8.6) for x 2 Œ0; 1�. For � D �p , one has v�.x/ D sin.�px/,
which has a zero in x D 0. Thus, we have proved (a) and (b). To prove (c), note that
if � > �p , the right-hand side of (8.6) is strictly positive and

tan.�/ >
�2 sin.�/ � � cos.�/

� sin.�/C �2 cos.�/C f .�/
:

By continuity, (8.6) has a solution x 2 .0; 1/.
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Now, we can prove the main result of this section.

Proof of Theorem 8.2. (a). If T� is positive, then �B22 must satisfy the positive min-
imum principle by Theorem 4.4. We note that for

�
1
0

�
;
�
0
1

�
2 R2C, it holds that��

1

0

�
;

�
0

1

��
D 0;

�
�B22

�
1

0

�
;

�
0

1

��
D ��;

�
�B22

�
0

1

�
;

�
1

0

��
D �:

Both values are positive only if � D 0. This proves the necessity of � D 0. That T� is
positive for � D 0 follows immediately from Theorem 8.2.

To prove (b), first observe that Theorem 3.8 implies the smoothing condition (7.2).
Propositions 6.1 (a), 8.8 (a), and 8.9 (a) show that condition (iii) from Theorem 7.3
is satisfied for the operator �A� . As the respective eigenfunctions are continuous
and have no zeros, they can be chosen to satisfy v � ı1. The conditions on the dual
semigroup follow from the fact that �A�� D �A�� and that we can choose  as the
strictly positive element in ker.s.�A� /I CA�� /.

(c) can be deduced by showing that in all sub-cases at least one of the conditions
from Theorem 7.3 (iii) is violated. In sub-cases (i) and (ii), we use Proposition 8.8 (a)
and Proposition 8.9 (b) and (c). For (iii) and (iv), we use sub-cases (b) and (c) of
Proposition 8.8, respectively.

A. Bounded perturbations of weak�-semigroups

Throughout this appendix, let M be a compact, separable metric space and � be a
finite Borel measure on M such that �.B.x; "// > 0 for every x 2 M and " > 0.
We are interested in the space L1.M;�/. We start with a characterization of adjoint
operators.

Lemma A.1. Let T 2 L.L1.M; �//. Then T is an adjoint operator, i.e., there is
some zT 2 L.L1.M; �// with zT � D T , if and only if whenever .fn/ � L1.M; �/
is a bounded sequence with fn ! f pointwise almost everywhere, it follows that
Tfn *

� Tf .

Proof. If T D zT � and .fn/ is a uniformly bounded sequence that converges to f
almost everywhere, then for g 2 L1.M;�/, we have

hg; Tfni D h zTg; fni ! h zTg; f i D hg; Tf i

by dominated convergence.
Conversely, assume that T satisfies the stated continuity condition and fix g 2

L1.M;�/. We claim that T �g 2 L1.M;�/ where we identify L1.M;�/ canonically
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with a closed subspace ofL1.M;�/�. To see this, put �.A/D hT �g;1Ai. If .An/n2N

is a sequence of pairwise disjoint Borel sets, we define fn ´ 1Sn
kD1An

and f WD
1S1

kD1Ak
. Then the sequence fn is uniformly bounded and converges to f almost

everywhere. By assumption,

�
� 1[
kD1

Ak

�
D hg; Tf i D lim

n!1
hg; Tfni D lim

n!1

nX
kD1

�.Ak/:

This proves that � is a Borel measure. As clearly � � �, there is a function h 2
L1.M;�/ with d� D h d�. This proves T �g D h 2 L1.M;�/.

Setting zT WD T �jL1.M;�/, it follows that zT � D T .

Definition A.2. A weak�-semigroup on L1.M;�/ is a family .T .t//t�0 of bounded
linear operators on .L1.M;�// such that

(i) T .0/ D I and T .t C s/ D T .t/T .s/ for all t; s � 0;

(ii) every operator T .t/ is an adjoint operator;

(iii) for every f 2 L1.M;�/ the orbit t 7! T .t/f is weak�-continuous.

The weak�-generator A of .T .t//t�0 is defined by

Af WD weak� � lim
t!0

1

h
.T .h/f � f /;

on the domain D.A/, consisting of all f for which this limit exists.

We show next that a weak�-semigroup is just the adjoint of a strongly continu-
ous semigroup on L1.M; �/. For more information on adjoint semigroups, we refer
to [51].

Lemma A.3. Let .T .t/t�0 be a weak�-semigroup. Then there exists a strongly con-
tinuous semigroup . zT .t//t�0 on L1.M;�/ such that zT .t/� D T .t/ for all t � 0, i.e.,
.T .t//t�0 is an adjoint semigroup. If zA denotes the generator of zT , then A D zA� is
the weak�-generator of T .

Proof. If zT .t/ is such that zT .t/� D T .t/, then . zT .t//t�0 clearly satisfies the semig-
roup law. Moreover, as the orbits of T are weak�-continuous, the orbits of zT are
weakly continuous. By [27, Theorem I.5.8], zT is strongly continuous. The statement
about the weak�-generator follows from [27, Section II.2.5].

Proposition A.4. Let .T .t//t�0 be a weak�-semigroup with weak�-generator A and
let B 2L.L1.M;�// be an adjoint operator. Then ACB is the weak�-generator of
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a weak�-semigroup .S.t//t�0. Moreover, it holds that

S.t/f D T .t/f C

tZ
0

T .t � s/BS.s/f ds (A.1)

for all f 2 L1.M; �/ and t � 0. Here, the integral in (A.1) has to be understood
as a weak�-integral. Finally, if T is contractive and B is dissipative, then also S is
contractive.

Proof. Let zB 2 L.L1.M; �// be such that zB� D B . Moreover, let . zT .t//t�0 be the
strongly continuous semigroup on L1.M; �/ such that zT .t/� D T .t/ and zA be the
generator of zT , see Lemma A.1. By [27, Theorem III.1.3], zAC zB is the generator of
a strongly continuous semigroup . zS.t//t�0. The Duhamel formula (A.1) for zT and
zS follows from [27, Corollary III.1.7]. Taking adjoints, the claim follows. For the
last statement, first observe that if B is a bounded, dissipative operator, then it is m-
dissipative as some point on the positive real axis belongs to the resolvent set of B ,
see [27, Proposition II.3.14]. But then it follows that its pre-adjoint zB is also m-dis-
sipative. If T is contrative, then so is zT , and it follows from [27, Proposition III.2.7]
that the semigroup generated by AC B is contractive.

Definition A.5. Let .T .t//t�0 be a weak�-semigroup and X be a closed subspace of
C.M/. Then T is called strong Feller semigroup with respect to X if

(i) T .t/f 2 X for every f 2 L1.M;�/ and t > 0;

(ii) for every f 2 X it holds that T .t/f ! f with respect to k � k1 as t ! 0.

Remark A.6. Usually, a strong Feller operator is defined as a kernel operator on
Bb.M/, the space of all bounded, measurable functions on M , that maps Bb.M/ to
X D C.M/. However, if qWBb.M/!L1.M;�/ denotes the quotient map that maps
a bounded measurable function to its equivalence class modulo equality �-almost
everywhere, and if T 2 L.L1.M; �// is an adjoint operator that takes values in
C.M/, then one can show that T ı q is a strong Feller operator in the classical sense.
In particular, the fact that T is an adjoint operator implies that T ı q is a kernel oper-
ator. For more information, we refer to [24, Section 4.1]. We would also like to point
out that if T 2 L.L1.M; �// is an adjoint operator taking values in C.M/, then
T0 WD T jC.M/ is weakly compact and T 20 is compact, see [24, Theorem 4.4].

The following theorem could be obtained as a special case of a perturbation
theorem for more general strong Feller semigroups, see [41, Theorem 3.3] (see in
particular, [41, Example 3.4] or [40, Theorem 3.2]). However, in our situation, where
we consider weak�-semigroups, we can give an easier and direct proof.
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Theorem A.7. Let T D .T .t//t�0 be a weak�-semigroup with weak�-generator A
and B 2 L.L1.M; �// be an adjoint operator. Moreover, let S D .S.t//t�0 be the
weak�-semigroup generated by AC B . If X is a closed subspace of C.M/ and T is
a strong Feller semigroup with respect to X , then so is S .

Proof. Let us first prove that S.t/f 2 C.M/ for every f 2 L1.M;�/ and t > 0. To
that end, fix t > 0 and note that T .t � s/BS.s/f 2 C.M/ for 0 < s < t , since one
has T .t � s/L1.M/ � C.M/. For fixed x 2M , let gn D �.B.x; n�1//�11B.x;n�1/.
It follows that

hgn; T .t � s/BS.s/f i ! ŒT .t � s/BS.s/f �.x/ as n!1:

This implies that for fixed x, the map s 7! ŒT .t � s/BS.s/f �.x/ is measurable. We
may thus define the function h on M by setting

h.x/ WD

tZ
0

ŒT .t � s/BS.s/f �.x/ ds: (A.2)

Then h 2 C.M/. To see this, let xn! x. It follows that ŒT .t � s/BS.s/f �.xn/!
ŒT .t � s/BS.s/f �.x/ as n!1 and, as sups2Œ0;t� kT .t � s/BS.s/k <1, continuity
of h follows from the dominated convergence theorem. To see that actually h 2 X ,
we first note that integrating (A.2) with respect to a Borel measure � yields

hh; �i D

tZ
0

hT .t � s/BS.s/f; �i ds:

As T is a strong Feller semigroup with respect toX , it follows that for every s 2 .0; t/
the function T .t � s/BS.s/f is an element ofX . If h 62X , the Hahn–Banach theorem
implies that there exists a measure � with hg; �i D 0 for all g 2 X but hh; �i ¤ 0.
This is a contradiction. At this point, it follows from the Duhamel formula (A.1) that
S.t/f 2 X .

Next, note that C WD supt2.0;1� sups2Œ0;t� kT .t � s/BS.s/k <1. It follows that



 tZ
0

T .t � s/BS.s/f ds




 � tZ

0

Ckf k ds � Ctkf k ! 0 as t ! 0

for every f 2 C.M/. As T .t/f ! f for such f , condition (ii) in the definition of
strong Feller semigroup follows once again from (A.1).
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