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Cyclic cohomology of entwining structures

Mamta Balodi and Abhishek Banerjee

Abstract. In this paper, we introduce and study a cyclic cohomology theory H Z (4, C, y) for
an entwining structure (A4, C, ¥) over a field k. We then provide a complete description of the
cocycles and the coboundaries in this theory using entwined traces applied to dg-entwining struc-
tures over (A4, C, ¥). We then apply these descriptions to construct a pairing H;"(4, C, ¥) ®
H} (A, C' Y — H;”"'”(A A, C®C', vy ®y'), where (A, C, ) and (A’, C’, ¢') are
entwining structures.

1. Introduction

An entwining structure, as introduced by Brzezifiski and Majid [8], consists of an alge-
bra A, a coalgebra C and amap ¥ : C ® A - A ® C satisfying certain conditions.
Together, an entwining structure (A, C, ¥) behaves like a bialgebra or more gener-
ally, a comodule algebra over a bialgebra, as pointed out by Brzeziniski [5]. There is
also a well-developed theory of modules over entwining structures, with applications to
diverse objects such as Doi—-Hopf modules, Yetter—Drinfeld modules and coalgebra Galois
extensions (see, for instance, [1,3,4,6,7,9-11, 14, 16]).

In [5], Brzezifiski introduced the Hochschild complex C*(A4, C, ) of an entwining
structure and proceeded to construct Gerstenhaber-like structures on the cohomology
groups. The starting point of this paper was to find a corresponding cyclic cohomol-
ogy theory H; (A, C, ) for an entwining structure. We then study the cocycles and
coboundaries in this theory using differential graded algebras in a manner similar to
Connes [12, 13].

Similar to the classical approach of Connes [13], we take our “cyclic complex”
C(A,C,¥) to be a certain subcomplex of the Hochschild complex C*(A4, C, ¢) of
Brzezinski [5]. In [13], Connes showed that the cocycles and coboundaries in the cyclic
cohomology of an algebra A can be described using traces on differential graded alge-
bras over A. Accordingly, we show that the cocycles Z3 (A, C, ¥) in our theory can
be expressed as characters of “entwined traces” applied to dg-entwining structures over
(A, C,¥). We also obtain a description of the coboundaries B} (4, C, ¥) in terms of
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characters of “vanishing cycles” over (4, C, ¥). These descriptions are then applied to
construct a pairing

H'(A,C.y)® H}(A',C'.¢/) — H'""(A® A, CRC" .y @ y')

on cyclic cohomology groups. We mention here that we have previously studied in [2] a
modified version of the Hochschild theory of Brzeziniski [5] for entwining structures. In
the future, we hope to study further the cohomology groups of entwining structures, on
the lines of the usual cohomology theories for rings.

We now describe the paper in more detail. For an element c ® a € C ® A, we will
always suppress the summation and write ¥/ (c ® a) = ay ® c¥ € A ® C. We begin
in Section 2 by introducing the cyclic complex C} (4, C, ¥) of an entwining structure
(A, C, ). As a vector space, Gﬁ (A, C, ) consists of all k-linear maps g : C ® A®n+1
k such that

g(c®a; ® - ®ant1) = (—1)"g(c¥ ®a, ®az ® -+ ® ant1 ® ary) (1.D

forc € C and ay,...,a,+1 € A. We show (see Theorem 2.2) that GR(A, C, ) is a sub-
complex of the Hochschild complex of Brzeziriski [S5]. We denote by H} (A, C, ¥) the
cohomology groups of €3 (4, C, ¥).

In Section 3, we consider dg-entwining structures over (4, C, ¥). A dg-entwining
structure ((R®, D°®), C, ¥*®) consists of a (not necessarily unital) dg-algebra (R®, D*)
and an entwining ¥*® : C ® R* — R* ® C that is a morphism of complexes. Along
with an algebra morphism p : 4 — RO that is compatible with the respective entwin-
ingsy :C®A—>AR®Cand ¥°: C ® R® — R°® C, we say that ((R®, D*®),C, ¥*)
is a dg-entwining over (A4, C, ¥). In particular, we show that ¢ : C ® A - A ® C may
be extended to produce a dg-entwining structure ((2°4,d*), C, 1,/7) over (A, C, V), where
(2° A, d°®) is the universal differential graded algebra associated to A. Further, we show
(see Theorem 3.4) that ((2°4,d*),C, I/Af) is universal among dg-entwining structures over
(Av Cv 1//)

Suppose ((R®, D®), C, ¥*) is a dg-entwining structure over (4, C, y). By an n-
dimensional closed graded entwined trace on ((R®, D°®), C, ¥*®), we will mean a linear
map T : C ® R" — k which satisfies

T(c®D(r) =0 T(Rr'r")==D"TY ®r"r (1.2)

forallc e C,r € R* 'andr’ € R', r"” € R/ such thati + j = n. Together, the datum
((R*, D*®),C,¥*, p, T) will be referred to as an n-dimensional entwined cycle over
(A, C,¥). In Theorem 4.5, we show that each cyclic cocycle g € Z7(4, C, ¢) may be
expressed as the character of an n-dimensional entwined cycle over (A4, C, ).

Let M, (A) be the ring of (r x r)-matrices with entries in A. Then, ¢ : C ® 4 —
A ® C extends in an obvious manner to an entwining

CR®M(A)=C®ARMK) — (A M, k) ®C =M, (A)®C  (1.3)



Cyclic cohomology of entwining structures 3

that we continue to denote by . In Section 5, we show Morita invariance for Hochschild
cohomology groups HH *(A, C, ) of matrix rings. For this, we show that the morphisms
on the Hochschild complex induced by the inclusion inc; : A — M, (A) and the gener-
alized trace tr : M, (A4)®" ! — A®"+1 » > ( are homotopy inverses of each other. It
follows (see Proposition 5.5) that we have mutually inverse isomorphisms

inc} : HH*(M,(A),C,¥) — HH*(A,C,¥)

tr*: HH*(A,C,v) — HH*(M,(A),C, V) (4

of Hochschild cohomology groups.

The Morita invariance for cyclic cohomology groups H; (A, C, ¥) of matrix rings
is shown in Section 6. For this, we consider the subspace J"(A4, C, ¥) € C"(4, C, )
consisting of maps g : C ® A®"T1 — k satisfying

glc®a1 ®---Qant1) = g(C‘”"H Qary @azy @ - Q ant1y) (1.5)

for c € C and ay,...,a,+1 € A. We check that J*(4, C, ) is a subcomplex of
C*(A, C, ) and that there are induced maps inc} : I*(M,(A),C,y¥) — I*(A,C,¥) and
tr* : J°(A,C,¥) — I* (M, (A), C, ) which are homotopy inverses of each other. We also
show that J*(A4, C, ¥) is a cocyclic module such that €5 (4, C, ) is the subspace invariant
under the action of the cyclic operator on J*(A4, C, ¥). It follows (see Theorem 6.4) that
we have mutually inverse isomorphisms

inc} : Hy(M,(A),C,¥) — H(A,C, )

(1.6)
tr®: Hy (A, C,¢) — H; (M (A),C, V)

of cyclic cohomology groups.

The main purpose of Section 7 is to obtain a description for the space Bj (4, C, )
of coboundaries in €5 (A4, C, ¥). We consider the group U (A) of units of A and take the
subcollection

Uy(A) :={xeUM) | ¥(c®x) =x®cforeveryc € C}. 1.7

We verify that Uy (A4) is a subgroup of U(A). We also show that conjugation by an ele-
ment x € Uy (A) induces the identity map on cyclic cohomology groups H; (A4, C, ¥r).
Using the Morita invariance established in Section 6, we now obtain a set of sufficient
conditions for the cyclic cohomology of an entwining structure to be zero. Accordingly
(see Definition 7.9), an n-dimensional entwined cycle ((R®, D*®), C, ¥*, p, T) is said to
be vanishing if (R®, C, W) satisfies these conditions.

We now take k = C. In Theorem 7.10, we show that a cocycle g € Z}(A4,C,¥) isa
coboundary if and only if it is the character of an n-dimensional entwined vanishing cycle
over (A, C, ). In particular, the entwined vanishing cycle corresponding to a coboundary
g € B3 (A, C,¥) is constructed with the help of a certain algebra C of infinite matri-
ces with complex entries used in [13]. Taken together, Theorems 4.5 and 7.10 provide a
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complete description of the cocycles and the coboundaries in the cyclic theory of entwined
structures, developed in a manner similar to Connes [13]. Our final result is Theorem 7.11,
where we apply these descriptions to construct a pairing

H"(A.C.y)® H}(A.C'.y') — H'™ (AR A, CRC". ¢y @ y)
m,n >0, (1.8)

where (A, C, ) and (A’, C’, y’) are entwining structures.

2. Cyclic cohomology of an entwining structure

Let k be a field. Throughout this section and the rest of this paper, we let A be a unital alge-
bra over k and let C be a counital coalgebra over k. The product on A will be denoted by
0:A® A— A.The coproduct A : C — C ® C will always be expressed using Sweedler
notation A(c) = ¢; ® ¢, for any ¢ € C. The counit on C will be denoted by ¢ : C — k.
For the sake of convenience, we will denote the tensor powers A®" of the algebra A sim-
ply by A”. Similarly, an element of C ® A®”" will be denoted simply by (¢, ay, ..., a,).
We now recall the notion of an entwining structure, introduced by Brzezinski and Majid
in [8].

Definition 2.1. Let k be a field. An entwining structure (A, C, ¥) over k consists of a
unital k-algebra A, a counital k-coalgebra C and a k-linearmap ¢y : C ® A > A® C
satisfying the following conditions:

Y(c®0(a®b) =y ®ab) = (ab)y @ c¥ =ayby ® i
= (0 ®idc) o (idg ®Y) o (¥ ® idy))(c ® a ® b)
(ida ®A) (Y (c ® ) = ay ® AcY) =ay, ®c] ®cy @1
(¥ ®idc) o (idc ® ¥))(A(c) ® a)
aws(cw) =e(c)a ly ® ¥V =1Qec.

Here, the summation has been suppressed by writing ¥ (¢ ® a) = ay ® c¥ forany c € C
anda € A.

In this paper, if A’ is a non-unital algebra, we will still say that (4", C,¢¥ : C A’ —
A’ ® C) is an entwining structure if it satisfies all the conditions in (2.1) except for the
last condition 1y ® V=1®c.
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Given an entwining structure (A4, C, ), Brzezifiski [5] introduced the Hochschild
complex C*((A4, C,v¥); M) of (A, C, ) with coefficients in an A-bimodule M :
C"((A,C,v¥); M) = Hom(C ® A", M)
8" : Hom(C ® A", M) — Hom(C ® A"*', M)

5"(f)(c,a1, .. .,an+1) =diy - f(c‘/’,az, . ..,an+1)
2.2)

n
+ Z(—l)if(C,al,---,aiai+1,-.~,an+1)

i=1

+ (_1)n+1f(cvals ... ’an) Ap+1-

The cohomology of this complex will be denoted by HH *((A, C, v); M). In particular,
when M = A* = Hom(A, k) is made into an A-bimodule as follows:

(@- f-a)a"):= f@a’a) f e A* =Hom(A, k) a,a’,a" € A, (2.3)

this complex will be denoted by C*(A, C, ), and its cohomology groups will be denoted
by HH®(A, C, ). Itis immediate that an element f € €*(A4,C,¥) = Hom(C ® A", A*)
may also be expressed as a linear map g : C ® A"*! — k by setting

glc,ay,....an+1) = f(c,ar,....an)(an+1). 24

We now define a subspace €} (4, C,y) € €"(4,C,y¥) = Hom(C ® A", A*) by taking
the collection of all f € Hom(C ® A", A*) that satisfy

fe.ar,....an)(ans1) = (=1)" f(cV.az. ... . ans1)(a1y) (2.5)

forevery (c.ai,...,an41) € C ® A"T!. Equivalently, using (2.4), the space €4 (A, C, )
may also be described as the collection of all g € Hom(C ® A" *!, k) such that

gle,a,....ant1) = (=1)"g(c¥,az,as, ... ,ans1,a1y). (2.6)

Theorem 2.2. Let (A, C, ) be an entwining structure. Then, (C5(4, C,¥),8%) is a
subcomplex of the Hochschild complex of (A, C, V).

Proof. We consider [ € C% (A, C, ). We need to verify that §"(f) € GXH(A, C,¥),
that is,

8" (f)e,ar, ... ani)anta) = (1T (f)(cV az, ... anga)ary).  27)
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Using the description of the differential in (2.2) and the A-bimodule structure of A*
described in (2.3), we see that

8"(f)(c,a1, ooy ng1)(@ng2)
= f(c¥, a2, ..., an11)(ant2a1y)

+ Y (=D f(c.ar.....aigiq1. ... .ant1)(@nt2)
i=1
+ (_1)n+1f(c’ a,...,ap)(@ny1an42).
8" ()Y az, ... ans2)(a1y)
= f(cVV,as,....an12)(a1yazy)

n+1

+ Z(—l)i_lf(cw,az, @i 1 Apy2)(Ary)
i=2

2.8)

+ (=D)"T f(cY az, .. ang1)@ns2ary).

Applying condition (2.5), we obtain

n

YD flear,.ai@irns @) (@ns2)

i=2
n
= (-t Z(—l)i_lf(cv',az, s @iitt, - . Ang2)(@ry) 2.9
i=2
as well as
D" fean, .. an)(@nsrangn) = ()" F(eVaz, . aniant2) @ry).

(2.10)
Finally, using (2.5) as well as the properties of an entwining structure in (2.1), we obtain

—fc.araz, ... .ans1)(@ns2) = ()" f(cV s, .. ans2)((a1a2)y)

= (=" f(c"Y a3, ... ani2)(@1ypazy).  (2.11)

The result is now clear from (2.8)—(2.11). ]

Definition 2.3. Suppose (4, C, ¥) is an entwining structure. Then, we will say that
(C3(A, C,¥),8%) is the cyclic complex of (4, C, ¥) and the cyclic cohomology groups
will be denoted by H; (A, C, ). The cocycles and coboundaries in (€5 (4, C,v),§°%) will
be denoted, respectively, by Z3 (A4, C,v¥) and B3 (A, C, ¥).

It is clear that the Hochschild complex C*(A4, C, ¥) may be rewritten with terms
Hom(C ® A®"*! k). In that case, the Hochschild differential may be expressed as
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follows:

€"(A,C,v¥) = Hom(C ® A"t k)
8" : Hom(C ® A"™! k) — Hom(C ® A" "2 k)

5"(g)(c,a1, . ,an+2) = g(c’/’,az, ce ,an+1,an+2a1,/,) (212)
n+1
+ Z(—I)’g(c,al, e Aiig 1, .. AngD).

i=1

In the rest of this section, we will explain the intuition behind the complex €5 (4, C, ¥) in
terms of traces and derivations. When C = k and ¢ = id, we recover the complex €5 (A)
of Connes [13] which computes the cyclic cohomology groups H; (A4) of A. Let Z3(A)
denote the cocycles in €5 (A). A trace on A consists of a k-linear map s : A — k satisfying
s(ai1az) = s(azay) forall ay, a; € A. Itis easy to see that ZR(A) = H)?(A) is the space
of all such traces on A.

Let M be an A-bimodule. Then, the counterpart of the notion of a trace is a k-linear
map t : M — k satistying t(am) = t(ma) for all a € A, m € M. If (A, C, ) is an
entwining structure, then A ® C becomes an A-bimodule by setting

a1 (@ ®c):=a1a®c¢ (a2 ®c)-ay = a2a11/,®c‘” (2.13)

foray,a; € A, c € C. Accordingly, a trace on the A-bimodule A ® C consists of a linear
map? : A ® C — k which satisfies

t(@a; ® ¢) —t(azary @c¥) =t(a; - (a2 ®c)) —t((aa ®c)-a;)) =0  (2.14)

for aj, ax € A, c € C. If we set a = 1 in (2.14), we get t(a; ® ¢) = t(ary ® c¥). It
is now clear that if we define f : C ® A — k by setting f(c ® a) := t(a ® ¢), we get
f€CUA,C.y) CCUA,C,¢)and 8°(f) =0, thatis, f € ZJ(A,C, ). In other words,
we have

ZE(A, C,y) = H)?(A, C, ) = {space of A-bimodule traceson (A ® C)}. (2.15)

For example, if H is a Hopf algebra and A is a right H-comodule algebra, it may be veri-
fied that themap Yy 4 : H ® A > A® H givenby h ® a — ag) ® ha() is an entwining
structure. Here a > a(g) ® a(;) denotes the right H -coaction on A in Sweedler notation.
Then, a trace tg,4 € ZE(A, H.V¥g, 4) is determined by amap tg 4 : A ® H — k which
satisfies tg 4(ab ® h) — tg a(ba) ® hagy) =0fora,b e A,h € H.

We also know how to obtain a cyclic 1-cocycle using a derivation. For an algebra A,
lets: A— kbeatraceon A and 0 : A — A be a derivation such that s o d = 0. Then, it
is easy to check that the map A ® A — k that takes a; ® a» to s(a;19(ay)) determines a
cyclic 1-cocycle on A, that is, an element of Zi (A).

To construct a cyclic 1-cocycle on (A4, C, ), we can proceed as follows. We fix a trace
t:A® C — k onthe A-bimodule A ® C asin (2.14). For example, if s : A — k is a trace
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on A, we can verify that s ® ¢ : A ® C — k satisfies the condition in (2.14). We consider
a k-linear derivation d : A — Aon Asuchthat 0 =710 (0 ® C) : A ® C — k. We now
set

g CRAR®RA—k glc®a; ®az) :=t(a1d(az) ®c) (2.16)

foray,a, € A,c € C.Forc € C,ay,a, € A, we note that

gle®a; ®az) + g(c¥ ®ax ® ary) = t(a19(az) @ ¢) + t(azd(ary) ® c¥)
= 1(a19(a2) ® ¢) + 1 (daza1y) ® c¥)
—t(0(az)ary ® c¥)
= 1(a19(az) ® ¢) — 1(d(az)ary ® c¥) =0,

where the last equality follows from (2.14). From this, it is clear that g € C}L (A4,C,¥).
Forc € C,ay,a,,as € A, we can also check that

$Mg)c ®ar ®ar ®az) = g(c¥ ®ar» ® azaiy)

—glc®ajaz ®asz) + g(c ®ar ® azas)

= t(a2d(azary) ® c¥) —t(ar1a20(az) ® c)
+ t(a10(aza3) ® ¢)

= t(azd(az)ary ® c¥) + t(azazd(ary) @ c¥)
—t(a1a29(az) ® ¢) + t(a19(az)asz ® c)
+ t(a1a20(as) @ ¢)

= t(a1a20(az) ® c¢) —t(d(azaz)aiy ® cw)
+ t(d(azazaiy) ® c¥) —t(a1a29(a3) ® ¢)
+ t(a190(az)as ® ¢) + t(ajazd(az) ® ¢)

= —t(d(azaz)ary ® V) + t(a1d(az)as ® )
+ t(a1a20(asz) @ ¢)

= —t(a10(aza3) ® c¢) + t(ayd(az)as  c)
+1(a1a29(a3) ® ¢) = 0.

Hence, g € Z i (A, C, ). We also notice that there is a morphism
Der?(4) — Z3(A.C. ). 2.17)

where Der?(A) C Der(A) is the subspace of k-linear derivations d : A — A such that
t o (0 ® C) = 0. We can now use a similar idea to obtain cyclic n-cocycles on (A4, C, ).
Lett: A® C — k be a trace for the A-bimodule structure on (4 ® C) induced by the
entwining (A4, C,v¥) asin (2.14). If 31, ..., d, € Der?(A) is a mutually commuting family
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of derivations, we set
h:C® AT |
hc®ar® -+ ®ant1) == Y sgn(m) (2.18)

TES,

~1(a107(1)(@2)97x(2)(@3) -+ 0z (n) (@n+1) ® C)

forai,...,an4+1 € A, ¢ € C. Indeed, since the derivations {0; }1<;j<, commute with each
other, we see that
hic®a; ® - ®an+1)
= Z sgn(1)1(a107(1)(@2)9z2)(@3) *+ Ox(my(@nt+1) ® )

weS,

3 sgn(r) (t(alaﬂm(azam) (@3) Dy (ans1)) ® )

TeS,

((alaz S 0)(@3) Dy @) -

2<j<n

aJr(n) (an+1)) ® C))

= Y sgn(m)i(a10x(1)(@2072)(@3) -+ dnuy(@nt1)) ® €)

TES,
= Y sen(m)i (0r(1) (@2072) (@3) - Dy (@nt1)) a1y ® V)
weS,
==Y sgn(m)t(@20x(2)(@3) -+ 0nny (@n 1)1y (@1y) ® c¥)
TeS,

==D)"1(cY ®ar ® - ® ant1 @ary).

This means that i € C% (A, C, ). We can also check that §” (#) = 0. Thus, we can get a
cyclic n-cocycle h € Z% (A, C, ¢) from a family of mutually commuting derivations and
a trace on the A-bimodule A ® C determined by the entwining (A4, C, V).

We also see that if (A, C, ¥) is an entwining structure and A’ is any k-algebra, we
have an induced entwining structure (4 ® A’, C, ¥4). Here, ¥4 is obtained by extending
Y:CRQA—>ARCt0Ysy:CRARA - AR A ® C bysetting Y4 (c ®a®a’) :=
ay ®a' @ c¥ forae A, a’ € A', c € C. Now if t' € Z9(A') is a trace on A’ and
t: A® C — k is atrace that satisfies (2.14), it is clear that

w:ARA ®C —k a®d @cr>t'(a)t(a®c) (2.19)

satisfies condition (2.14) for the entwining structure (4 ® A’, C, ¥4/). In other words, we
have a pairing
ZAA,CY)® ZY(A) — Z3(AR A, C, yur). (2.20)
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In the remaining part of this paper, our main objective will be to obtain a general pairing
of cyclic cohomologies
HMA.C.y) @ HJ(A',C'.y") — H]™(A®A.CC .y ey
m,n >0 (2.21)

for entwining structures (A, C, ) and (4’,C’, ¥').

3. Entwining of the universal differential graded algebra

We continue with (A, C, ¥) being an entwining structure over k. We begin this section by
considering an entwining structure where the algebra is differential graded.

Definition 3.1. Let (R®, D°®) be a differential (non-negatively) graded, not necessarily
unital k-algebra, and let C be a counital k-coalgebra. A dg-entwining structure over k
consists of a k-linear map
U*:CQR*"— R°QC

of degree zero such that

1) ¥*: (CQ®R*idc ® D*) > (R* ® C, D* ® idc) is a morphism of complexes,

that is,
D"(rg)®c? = (D" @ C)(W'(c®r)) = V" (c®D"(r) =D"(rNe®c”

forc e C,r € R".

(2) the tuple (R, C, W) is an entwining structure.

Definition 3.2. Let (A, C, ¥) be an entwining structure. A dg-entwining structure over
(A, C, ) consists of a dg-entwining ((R°®, D*®), C, ¥*) and a k-algebra morphism
p : A — R such that we have a commutative diagram:

Cod — s AxC

ide ®pl lp@idc (3.1
‘I’O
C®R* —— R°®C
Given the k-algebra A, we now consider the algebra A:= A @k with multiplication
given by
(a+p)- (@ +v) = (ad" + pa' 4 va) + pv
for a, a’ € A and scalars u, v € k. It is clear that A is also a unital algebra, with 1 € k

being the unit. However, we note that the canonical inclusion A — A of algebras is not
necessarily unital.
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We now consider the universal differential graded algebra (2° A4, d*) associated to A
(see [13, §II.1]). As a graded vector space, it is given by setting Q" A = A® A®" for
n>0and Q°4 = A. Forn > 0, an element in A ® A®" is a linear combination of terms
of the form

(ap + w)day---da, a; € A, p k. (3.2)

By abuse of notation, we will use (ag + p)day - - - day to denote an element of Q" A even
for n = 0. In this case, it will be understood that & = 0. The multiplication in Q24 is
determined by

aoday ---da, = (ag) - (day) - ...-(dap) (da)-a’ = d(aa’)—a(da’)

(3.3)
day---da, = (day)-...-(day)
fora,d’, ao,...,a, € A. More generally, for elements po, ..., pi,qo,...,q; € A and u,
v € k, we have
((po + wydp1---dpi) - ((qo + v)dqi1---dg;)
= o+ dp1 -+ dpiadpugo)dar - dy)
i—1 )
+ Y (=1)"dpy---d(pipi1) -+ dpidqodq "'d‘Ij)
I=1
+ (=1 (po + ) prdpy -+ dpidqodqy - dg;
+v(po + p)dpy---dpidqy---dg;. (34
The differential on 24 is determined by setting
d((ag + p)day ---day) = dapday ---da,. 3.5)

We also define a morphism

V:CRNVA— QAR C
V(c ® ((ao + wyday -+~ day)) = (@oydary -+ dany) ® V" (3.6)
+ ;L(daw .. dan,/,) ® Cwn.

In particular, we have (da)y ® ¢V = I/Af(c ® da) = day ®cV.

Proposition 3.3. Let (A, C, ) be an entwining structure. Then, ((2°A,d*), C, 1}) isa
dg-entwining structure over (A, C, ).
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Proof. From (3.5) and (3.6), it is evident that IZ is a morphism of complexes. It is also
clear that

V(e ® (ao) - (day) - ... (dan))
= l’ﬂ\(C ®apday ---day) = (apydary - dayy) @ v
= ((aoy) - (dary) ... (dany)) ® """ Y(c ® (day) - ... (day))
= Y(c @day--day) = (dayy -+ dapy) @ ¥
= ((dary) ... (dany)) ® " 3.7)

for ag, ...,a, € A. Further, for a, a’ € A, we have

¥(c ® ((da) ) = Y (c ® d(aa)) — Y (c ® (a(da')))
=d(ad)y ® c¥ — (ayday,) ® v
=d(ayay) ® v — (ayday) ® add
= ((day) - a}y) ® V¥ = ((da)y - d}y) ® V7. (3.8)

Together, (3.7) and (3.8) show that 1Z is well behaved with respect to the multiplication
on QA. The other conditions in (2.1) for (QA4, C, 1}) to be an entwining structure may
also be verified by direct computation. Finally, it is clear that the maps @0 CRA=
CRRRA->QPARC =40 Candy : C ® A - A ® C are identical. This proves
the result. ]

Theorem 3.4. Let ((R®, D°®), C, V*) be a dg-entwining structure over (A, C, V) con-
sisting of a k-algebra homomorphism p : A — R°. Then, there is an induced morphism
p:(Q%°A,d*) — (R®, D*) of dg-algebras such that p|lg = p : A — R°, and we have a
commutative diagram:

CRd —2 s QA®C

idc®f>l lﬁ@idc (3.9)
C®R — R&C

Proof. From the universal property of (2°A4,d*®) (see [13, §11.1]), we know that there is a
unique morphism p : (Q°A4,d*) — (R®, D*®) of dg-algebras such that p|4 = p : Q04 =
A — RO. In particular, p is described as follows:

p(ao + pyday ---day)
= (p(ao)) - (Dp(ar)) - ... (Dp(an)) + u(Dp(ar)) - ... (Dplan))  (3.10)

for ag,...,a, € A and n > 0, where the products on the right-hand side are taken in R.
For the sake of convenience, we will suppress the morphism p and often write p(a) € R°
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simply as a for any a € A. For ¢ € C, we now compute

(p ®idc) o ¥)(c ® (ao + p)day -+~ day)
= (p ®idc)(aoydary -+~ dany) @ ¥ + pdary -+~ dany) ® ")
= (aoy) - (Daiy) - ...- (Dany) ® ¥ + u(Dayy) - ... (Dany) ® "

(¥ o (ide ® p))(c ® (ao + w)day -+~ day)
= W(c ® ((a0) - (Day) -...- (Dan)) + ¢ ® (u(Day) - ... (Day)))
= ((ao)w - (Dap)y - ...  (Dap)w) ® ¥ + (w(Dar)y ... (Dan)w) @ V"
= ((aow) - (Dary) - ... (Danw)) ® ¥ + ((Dary) ... (Danw)) ® V"
= ((aoy) - (Dary)-... (Dany) ® ¥ + (w(Dary) - ... (Dany)) ® ",

where the replacement of W by v in the last equality follows from the commutativity
of (3.1). We have now shown that the diagram (3.9) is commutative. ]

4. Entwined traces and classes in cyclic cohomology

In this section, we will show that cocycles in (€5 (A4, C, ¥), §°) correspond to certain
kinds of traces on dg-entwining structures over (A4, C, ). We continue to suppress the
morphism p : 4 — R® when working with a dg-entwining structure ((R®, D*®), C, ¥*)
over (A, C, ¥). We begin by introducing the notion of an entwined trace.

Definition 4.1. Let ((R®, D*®), C, ¥*) be a dg-entwining structure. An n-dimensional
closed graded entwined trace for ((R®, D*®), C, ¥*®) consists of a linear morphism

T:CQR"—k (4.1)

satisfying the following conditions:

(1) Forany ¢ € C and r € R"™!, we have
T(c ® D(r)) = 0. (4.2)
(2) Forr € R', " € R/ withi 4+ j = nand any ¢ € C, we have
Te®rr)= DT @ r'ry). 4.3)

Definition 4.2. Let (A, C,¥) be an entwining structure. An n-dimensional entwined cycle
over (A, C, V) is a tuple
((R*,D*),C,¥"°, T, p), 4.4

where
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(1) p: A— R°isamorphism of k-algebras making ((R®, D®), C, ¥*) a dg-entwining
structure over (A, C, V).

(2) thelinearmap 7 : C ® R" — k is an n-dimensional closed graded entwined trace
on ((R*, D*®),C,V*).

Definition 4.3. Let (A4, C, ¥) be an entwining structure, and let ((R®, D*®), C,V*, T, p)
be an n-dimensional entwined cycle over (4, C, ¥). Then, we define the character of the
cycle ((R®, D*®),C,¥*, T, p) to be the element g € C" (A4, C, ) determined by

ge®ar ® - Qan+1) :=T(c @ (p(ar) - D(p(az)) -+ D(p(an+1))))
foranyc ®a; @ -+ ®dapp € C @ AL,

Proposition 4.4. Let (A, C, ) be an entwining structure, and let g : C @ A®" 1 — k
be a linear morphism. Then, the following are equivalent:

(1) There is an n-dimensional entwined cycle ((R®, D*),C,V*, T, p) over (A, C, V)
such that

g(c,ag,...,an) =T(c ® (p(ag) - Dp(ay) -...- Dp(ay))) ai€ A, ceC. (45)

(2) There exists a closed graded entwined trace t : C ® Q" A — k of dimension n on
((*A,d*), C, V) such that

g(c,ag,...,an) =t(c ®apday---da,) a; € A, c € C. 4.6)
Proof. (1) = (2): By Theorem 3.4, we obtain a morphism p : (2°A4,d°®) — (R®, D*®) of
dg-algebras extending p : A — R°. We define  : C ® Q" A — k by setting
t(c ® ((ap + p)day ---day)) = T(c ® p((ap + w)day ---day)) a; € A, c € C. (4.7)
In particular, when u = 0, we get
1(c ®aoday---dan) =T (c ® (p(ao) - Dp(ar) - ...- Dp(an))) = g(c,ao, - ...an). (4.8)

We have to verify that ¢ satisfies conditions (4.2) and (4.3) in Definition 4.1. First, we note

that
t(c ® d((ap + p)day ---dap—1))

=t(c®dag---day—1)

= T(c ® (Dp(ao) - ... - Dp(an-1)))

=T(c ® D(p(ao) - Dp(ay) - ...- Dp(an-1))) = 0. (4.9)
This proves condition (4.2). Now, for & € Q' A and o’ € Q/ A withi + j = n and for any
¢ € C, we have

c®a-a)
= T(c ® pla-)) = T(c ® pla) - ple)) = (D T(c¥ ® pe) - ple))
= (~DIT? ® ple) - plag)) = (~DIT(? ® p(e’ - o))
= (D)71(c? ® (@ - ay)).
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where the equality ¢¥ ® p(a) - p(a)y = v® o) - f)(a&) follows from the commuta-
tivity of the diagram in (3.9). This shows that ¢ also satisfies condition (4.3).

(2) = (1): From Proposition 3.3, we already know that ((2°4,d*), C, l,ﬂ\) is a dg-
entwining structure over (A4, C, ). Since ¢ : C @ Q" A — k is a closed graded entwined
trace of dimension 7, it follows that ((2°A4,d*®),C, IZ ,t,id4) is an n-dimensional entwined
cycle over (A, C, ). We also have

t(c®ap-day-...-dap) =t(c ® apday ---day) = g(c,ag,...,an)
forc € C and a; € A. [

Theorem 4.5. Let (A, C, V) be an entwining structure, and let g : C @ A®" 1 — k be
a linear morphism. Then, the following are equivalent:

(1) There is an n-dimensional entwined cycle ((R®, D*),C,V*, T, p) over (A, C, V)
such that

g(c,ag,...,ay) =T(c ® (p(ag) - Dp(ay)-...- Dp(a,))) a; €A, ceC. (4.10)

(2) There exists a closed graded entwined trace t : C ® Q" A — k of dimension n on
((2°A,d*), C, ) such that

g(c,ag,...,an) =t(c ®apday---da,) a; € A, c € C. 4.11)
(3) g € ZI(A,C.¥).

Proof. From Proposition 4.4, we already know that (1) and (2) are equivalent.
(3) = (2): We know that g € €7 (4, C, ¥). We define 1 : C ® Q" A — k by setting

t(c ® (ap + pn)day ---day) := g(c,ap,ay,...,a,) (4.12)
forc € C,a; € A and u € k. We note that
t(c ®d((ap + p)day ---dan—1))
=t(c®dag---day—1) = g(c,0,a9,...,a,—1) = 0. (4.13)

We now consider elements (po + p)dp; ---dp; € Q' A and (qo + v)dq1---dq; € Q/ A
with i + j = n. Using the expression for the product on 24 given in (3.4), we obtain
1(c ® ((po + wdpy---dpi) - ((qo + v)dqi ---dq;))
= g(c, pos P1+- -+ Pi—1, Piq0-q1, - - - q;)

i—1
+ Z(—l)l_lg(c,po,pl,...,p1p1+1,...,pi,qc,m,...,q]')
=1

+ (=1)'g(c, pop1s Pas---s Pirqos----q;)
+ (=)' ug(c. p1.p2.. ... piqo. ... 4;)
+Vg(cva’Pl,--"pisql’-"’CIj)' (414)
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On the other hand, we have

1(c” ® (g0 + v)dqy++dg;) - ((po + wdpy -+ dpi) ;)
= 1" ® (qodg1 - dg;) - (poydpry -~ dpiy))
+ve(e”" ® (dgy-+-dg;) - (poydpry - dpiy))
+ut(c” ® ((qo +v)dqi---dg;) - (dpry -+ dpiy)).  (415)

We need to verify that

1(c ® ((po + wdp1---dpi) - ((qo + v)dq: --- dgj))

= (=DY1(c” ® ((qo + v)dqy - dg;) - (po + w)dpy---dpi)g).  (4.16)

For this, we compare one by one the terms in (4.14) and (4.15) using the rela-
tions (4.12), (4.13), the product on 2A described in (3.4) and the property of g €
GK (A, C,y) from (2.6). First, we note that

pt(c? ® ((qo + v)dqi---dg;) - (dpry -+~ dpiy))

= ,ug(CW,qO,qh.--,q_j,pu/,, <o Diy)
= (DY (=D’ pug(c, p1,p2,---. Pi.qo,---.q;). 4.17)

Next, we have
i @ (dg1 - dg;) - (Poydpry - dpiy))

7 i+1
= (=1)/vg(c¥" .q1.....qj. Poyr-- -+ Div)
= (—=D)"vg(c, po, p1+---, Pi q1s- ., 4j)- (4.18)

We also have

1" ® (qodg1 -+ dg;) - (poydpry -+ dpiy)

i+1
= g(cV" G0 Qi1 POYs PLps -+ Diyy)
i1
P i+1
+Y DT o qre @i G POy Diy)
I=1

i i+1
+ (=17 g ,qoq1. 925+ qjs Poys - - Pivy)
= (=1)"g(c¥, p1,.... Pi qo.---.qj—1.9; Poy)
j-1
+ ) DT D" g (el oL pra e piosq1e - Qi -1 4))
=1

+ (—1)j+"(i+1)g(c,po, ey DisGoq1:92, - -1 qj)- (4.19)
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The result of (4.16) now follows from the fact that g € Z% (A, C, ¥) satisfies §(g) = 0,
where § is the Hochschild differential as described in (2.12).
(2) = (3): We have an n-dimensional closed graded entwined trace t : C ® Q" A — k
such that
g(c,ag,...,ay) =t(c ®@apday---day) a; € A, ceC. (4.20)

Since ¢ is a closed graded entwined trace, we note that (¢ ® da; ---day) = t(c ®
d(aiday---day)) = 0. Hence,
g(c,ag,...,ay) =t(c ® (ap + pn)day---day) a;i €A, ceC, uek. 4.21)

To show that g € Z% (A, C, ), we have to verify that

3(g)(c.p1s. s Pnt2) =0
g(c. proes Pag1) = (=1)"g(¥ . pav.... Put1. P1y) (4.22)

for any p; € A and ¢ € C. Here, § denotes the Hochschild differential as described
in (2.12). We now have

g(c, proevs put1) — (=1)"g(c¥ pav..., Put1. P1y)
= 1(c ® p1dpz2+--dppt1) — (=1)"t(c¥ ® padps---dpas1dpry)
=1(c ® p1dpa---dpnt1) + t(c ® (dp1)(p2dp3 - dpn+1))
= t(c ® d(p1p2)dps -+ dpp+1) = 0. (4.23)

Applying (4.23), we now see that

n+1
1" ® (Put2) - (Prydpay -+ AP 1yy))
= (_1)"g(c'/f, P2s---sPn+lan+2Php)- (424)

Applying (4.23), we can reverse the arguments in (4.14) to see that

t(c ® (p1dpz -+~ dpp+1)(Pn+2))
n—1

=g(c.p1.- o Pny1Pnt2) + Z(—l)"_lg(c» P12 P2y PI41PI42: - - - s Pnt2)
I=1

+ (_l)ng(cyplpb~'-,pn+1,pn+2)~ (425)

From (4.24) and (4.25) and the fact that /(¢ ® (p1dps -+ dpns1)(Pns2)) — t(c?"" ®
(Pn+2) - (Prydpay - dAPp+1)y)) = 0, it now follows that §(g) = 0. L]
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5. Morita invariance of Hochschild cohomology

Let (A, C, ¥) be an entwining structure. We construct a presimplicial module Co =
Ce(A4, C, ) as follows:

{€,(4,C,¥) =C® A®n+l}n20 {di : Ch — Cn_1}o<i<n

(c‘/’,az,...,a +1a1 ) ifi = 0, (51)
di(c,a,...,an+1) := n v | .
(c.ar.....aiait1.....apy1) if0<i <n.

Lemma 5.1. The collection Co = Co(A, C, V) along with the maps in (5.1) forms a
presimplicial module.

Proof. We need to verify (see, for instance, [15, §1.0.6]) that d;d; = d;j_1d; for0 <i <
j < n.This is obvious for j > 1. Since j > i > 0, the only remaining case is that of i =0
and j = 1. In that case, we have

dod](C,al, . ,an+1) = do(C,alaz, e ,a,,_H)
= (c‘/’,ag,, o 7an+1(ala2)1ﬁ)
= (c’“’,a3, e Qpp1a1yaoy)
= dodo(c,ar,...,an41). (5.2)
This proves the result. ]

We continue to denote by C4(A4, C, ) the complex corresponding to this presimplicial
module, equipped with standard differential Z:’:O(—l)i d;. The homology groups of this
complex will be denoted by HH.(A, C, ). From (2.12), it is evident that

C*(4, C, ¥) = Hom(Ca(A, C, V), k). (5.3)

We will now show that the complexes C*(4, C, ¥) and C*(M,(A), C, ) are quasi-
isomorphic for any r > 1, where M, (A) is the ring of (r x r)-matrices with entries
in A.

First, we extend the entwining ¢ : C ® A — A ® C to a map (still denoted by V)

Y :CQMyA — M(A)®C

5.4)
V(e ®(@® Eij(1) =(ay ®Ej(1)®@c? acd ceC,

where {E;; (1)} 1<;,j<r is the (r x r)-matrix whose (i, j)-th entry is 1 and all others are 0.
It is immediate that (M, (A), C, v) is an entwining structure.
Forany 1 < p < r, we have a (not necessarily unital) inclusion of rings

inc, : A — M;(A) aw Eyp(a) (5.5)
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inducing a morphism of complexes incpe : Co (A4, C, ) = Co(M,(A4), C, ). On the other
hand, consider the generalized trace map (see, for instance, [15, §1.2.1])

tr: Mr(A)®n+1 N A®n+1

(5.6)
tr(Xl’ e Xn+1) = Z(Xilliz) ® (Xi22i3) - ® (X;:tj—_llil ’
where the sum is taken over all possible tuples (i1, ..., i,+1). Writing M,(4A) = A ®
M, (k), the generalized trace can be expressed as (see, for instance, [15, §1.2.2])
tr(aiu; @ -+ @ apt1Un+1) = tr(uy -+ Upt1)(@1 @ -+ ® dp41), 5.7

where a; € A and u; € M, (k). The generalized trace can be extended to a map (still

denoted by tr) as follows:
tr:C @ M,(4)®"t! — C ® A®"*! 5.8)
tr(c ® aju; @ -+ @ apt1Unt1) = tr(uy - Up41)(c ® a1 @ -+ ® ant1)- '

Lemma 5.2. The generalized trace induces a natural morphism of complexes tro :

Ca(M;(A),C.¥) — Co(A,C. ).

Proof. 1t suffices to show that the generalized trace commutes with the face maps d; of
the presimplicial modules. From (5.8), this is obvious for i > 0. Fori = 0, we have

dootr(c,ajuy,...,apt1Up+1) = tr(uy -~un+1)(c'/’,a2, ey Apt1aty)
= tr(uz - Unru1) (¥, a2, ... ant1a1y)
=trody(c,aiuy,...,adnr1Un+1), 5.9
where a; € A and u; € M, (k). [ ]

Proposition 5.3. The maps incqe : Ce(A, C, ) — Co(M,(A), C, V) and the maps tr, :
Ce(M,(A),C,v¥) — Ca(A, C, ) are homotopy inverses to each other.

Proof. We have
(tre 0inCle)(c R a1 ® ++- @ dpt1) =tre(c ®a1E11(1) ® -+ ® an+1E11(1))
=cQa1 Q- Qdap+1

which shows that tre 0 inc;e = id. Therefore, it remains to show that incqe o tre ~ id.
For each n > 0, we define k-linear maps

{hi | en(Mr(A), C’ Vf) — en—i—l(Mr(A)va W)}Ofisn
given by
hi(c @ aiu; @ --- @ dpt1Un+1)

=c® Z arEri(uigr) ® azEv1(U2im) ® -+ ® ai E11(Uipg)
1<k,l,...,p,q,s<r

@ IUE;(1)®airiuit1 @ ® ant1Es1 (Unt141)
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for1 <i <nand
holc ®aju; @ -++ @ Ap+1Un+1)

=c® Z LUEx(D) ®@aiu1 @ - ® anty @ an+1Est (Unt1451)-

1<k,s<r

We will now prove that # = Y ©_ (—1)"h; is a homotopy between incqe o tre and the
identity. To do so, we check the following relations (see [15, §1.0.8]):

dihj =hj_1di fori < j
dihi = dih;_1 forO<i <n

(5.10)
dihj = hjdi_l fori > j +1

dohg =id and dp41h, = incqe o tr..
‘We have
doho(c ® aju1 @ -+ @ dp1Un+1)

= do(c ® Y, LEx()®aui®: Qauu, ® an+1Es1(Mn+1sk))

1<k,s<r
=V Qann @ Qann ® Y anp1Est(nrrg) 1aE1k(1)y
1<k,s<r
=cQ®au; @ Qauyiy Z an+1Es1 (Unt15) E1ic (1)
1<k,s<r

=cQ®aiu1 @ - Qapt1Upti.

The third equality follows from the fact that (¢ ® 14 Epg(1)) = 14 Epq(1) ® c forall 1 <
p,q < r. The fourth equality follows from the fact that lek,ssr Esi(Unt1) E1x(1) =

Un+1.-
Further, using the fact that E14(1) Es1 (Un+14;) = O unless g = s, we have

dpy1hp(c @ au1 ® -+ @ ant1Uni1)

=n+1(°’® >, aEnQn) ® aEniam) ® -+ ® anEii(inpg)
1<k,l,...,p,q,s<r

R 14E14(1) ® ansr1En (Mn+1sk))

=c® Z arEr1(uikr) @ azE11(U2im) @ -+ ® an E11(Unpg)

1<k,l,...p.q,s<r
® adn+1 Elq (D) Es (un-i-lsk)

=c® Y. aEn(un) ®aEn(am) ® - ® anE1i(inpg)
I<k,l,....p.q<r

® an+1E14(D) Eq1 (Un+14x)
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=c® Z arEni(uig) @ azEr1(uzim) ® -+ ® anE11(Unpg)
1<k,l,....,p,q<r

® an+1E11(Unt14k)

=(®a1En(l)®---®ant1E11(1)) Z (M1krY2im = Unt1gk)
1<k,l,....p,q<r

=(C®aEn(l)® - ®ant1E11(1)) Z MUz - Uny1)kk

1<k<r
=(R®aEn()Q® - ®ant1E1i(1) tr(uy - unt1)

= (incje otre)(c @ iy @ -+ @ Apt1Un+1)-
Now, for 0 < i < j, we have
d,‘hj(C Raur - ®an+1un+1)

=d; (C® Z arEvi(uigr) @ azEvi(u21m) ® -+ Q@ aj Evi(uj,,)

1<k.l,....,p,q,s<r

Q@ IUE;(DN®ajujt1 @ ® an+1Es1(Mn+1sk))

=c® Z arEii(uiky) ® azEv1(uzpm)
1<k,l,....p.q,s<r

Q- ®a;i Evi(ir)aiv1 Eni(Uit1) ® - ® aj Eri(uj,,)
@ IUE1 (1) ®a;1ujr1 @ @ ant1Est (Unt151)

=c® Z arE11(uigy) ® azEv1(Uzrm)
1<k,l,....p.q,s<r

Q-+ ®aitit1 Evi(uistiv1)in) ® -+ ® aj Evi(uj,,)
® 14E15(1) ® aj11uj+1 ® - ® ant1 Est (Unt15k)
= hj—1(c ® ajuy ® aztty ® -+ ® Q1A 41U Ui 41 @ -+ ® lntp1tn+1)
=hj1di(c®aiu1 @ -+ @ Any1Unt1).
Moreover, for j > 0,

dohj(c ® aju ® - ® dpt1Un+1)

=d0(6® > arEvi(uigr) @ azE11(Uzim) ® -+ ® aj Evi(uj,,)

1<k,l,...,p,q,s<r
® l4E1y(1) ® ajr1ujt1 ® -+ ® ant1 Esi (“n+1sk))

=c'® Z ar2E11(u2im) ® -+ @ aj Evi(uj,,) ® 14E14(1)
1<k,l,...p.q.s<r

®ajr1ujt1 Q@ Qant1Esi(Untig) (@1 E11(Mik))y
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=c’® Z az2Evi(Uzim) ® -+ @ aj Evi(uj,,) @ 14E14(1)
1<k,l,....p,q,s<r

®@ajr1Ujt1 Q@ Qant1a1y Est Unyig) E11 (M)

=C1//® Z azEn(uum)®---®ajE11(uqu)®lAElq(l)
1<k,l,...,p,q,s<r

®ajy1Uj+1 @ @ apt1ary Est (Un+1u1)g)
= hj_l(c‘/’ ®arus @ -+ Q@ Ant1a1yUn+1U1)

=hj_1do(c ®aiu1 @ -+ Q apny1Uni1).

Using the equality Z;zl E11(upg)E14(1) = E1p(1)u, wehave for0 <i <n

dihi(c @ aju; @ -+ ® Ap+1Un+1)

=di(C® Z arEni(uig) @ azEr1(uzpm) ® -+ ® a; E11(Uipg)

1<k.l,...,p,q,s<r

@ UUE () ®ait1Uip1 @ ® an+1Esl(un+1sk))
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=cQ® Z arEvi(uigr) @ azEr1(u2im) ® -+ ® ai E11(Uipg) E14(1)

1<k,l,....p.q,s<r

@ ait1Uit1 @+ Q ant1 Egt (Unt15x)

c® Z arE11(uiky) ® azEqi(Uap,) @ -+ ® a; E1p(1u;

1<k,,...,p,s<r

®ait1Uit1 @ - @ ant1Es1 (Unt15x)

d (C® Z arE11(uikr) @ azE11(Uagm) ® -+ @ 14 E1p(1)

1<k.l,...,p,s<r

®aju; @aj1uit1 @+ Qant1Es (un+lsk))

=dihi 1(c®@aiu; @ - @ antr1Uni1).

For i > j + 1, it may be similarly verified that d;h; = h;jd;_;. This proves the

result.

Theorem 5.4. The morphisms

incie : HHo(A, C, ) — HH.(M,(A),C, V)
tre : HHo(M,(A),C, %) — HHo(A,C, )

are mutually inverse isomorphisms of Hochschild homologies.

For each n > 0, we now obtain k-linear maps

{hi | en+1(Mr (A)s C9 W) — " (Mr (A)7 Cv W)}Ofifn

(5.11)
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given by hi(f) = f o h;. Explicitly, for 1 <i < n, we have
(' (f))(c ® arjuy ® any1ttnt1)

:f(c® Z a1E11(u1k1)®azE11(u21m)
1<k,,....p.q,s<r

®-QaiE11(Uipg) @ 14E14(1) ® aj Uit

Q- Qanuy ®an+1ES1(un+lsk)) (5.12)

and
(h°(f))(c ® ajus ® an41tnt1)

= f(c ® Z 1UE1 (1) ®@aiu; ® -+ @ ayuy ®an+1Esl(un+lsk))~
1<k,s<r

(5.13)

Proposition 5.5. The maps tr® : C*(4, C, ) — C*(M,(A), C, ¥) and the maps inc} :
C*(M,(A),C,¥) — C°(A, C, ) are homotopy inverses to each other. In particular, the

morphisms
tr*: HH*(A,C,y) — HH®*(M,.(A),C, V)

inc} : HH®*(M,(A),C,¥) — HH®(A,C, )

are mutually inverse isomorphisms of Hochschild cohomologies.

6. Invariant subcomplex and Morita invariance of cyclic cohomology

Let (A, C, ¥) be an entwining structure. The dual C*(A4, C, ) of Ce(A4, C, ¥) is a pre-
cosimplicial module, equipped with maps {8; | €"(A, C,v¥) — C" (A, C,¥)}o<i<n+1-
For each n > 0, we set J"(A4, C, ¢) € C*(4, C, ¥) to be the collection of morphisms
g € Hom(C ® A™*!, k) satisfying

n+1
ge®a1 ® - ®ant1) = gcV" Qaiy ® @ antiy)
foreveryc € C and ay,...,a,4+1 € A.

Lemma 6.1. Let (A, C, ) be an entwining structure. Then, J*(A, C, ) is a subcomplex
of the Hochschild complex C*(A, C, ).
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Proof. We will show that §; for 0 <i <n + 1 restricts to J*(A, C, ). For any n > 0 and
g € J"(A, C,yr), we have

80g)(c ® a1 ® @ ant2) = g(c¥ ®ar ® -+ @ an42a1y)
— 1‘011-%—2 .
gl(c ® dzy ® -+ ® (Ant2a1y)y)
— 1&"+3
gV ®ary ® - ® dptaydiyy)
= (Bo)(c""" ® ary @ day ® -+ Q dnioy).
Hence, §og € 3"T1(A, C, ¥). Moreover, for 1 <i < n + 1, we have
(0ig)c®a1 @ Qaptz) =g(c®a1 @+ ®aiGi+1 @ @ ap+2)
= (""" Q@ a1y @+ ® (ai@is1)y @ ® dntay)
=g Qa1 ® - @ aiyaitiy @ ® antay)
n+2
= &) ®a1y ®ary ® -+ ® antay).
This shows that §; g € 7"*1(A, C,v) foreach 1 <i < n + 1. This proves the result. m

We will refer to J*(A, C, ¥) as the invariant subcomplex of C*(A4, C, ). For each
n > 0, we define the k-linear maps {o; | 9" T1(A, C,y) — J"(A, C,¥)}o<j<n given by

0 H)c®ar®@ - Qans1) = f(c®a1®a; @14Q@a;11 Q- any1). (6.1)
We also define the cyclic operator t, : J* (A4, C, ) — J*(A, C, ¥) as follows:
(ng)(c®a1 ® @ dnt1) = (—1)"g(c¥ ®ar ® -+ ® dpt1 ® ary). (6.2)
Proposition 6.2. The object I°(A, C, ) is a cocyclic module.

Proof. From the proof of Lemma 6.1, we know that J*(A, C, ¥) is precosimplicial mod-
ule. Together with the maps in (6.1), it may be easily verified that (.‘J‘ (A, C,¥),6;, oj') is
a cosimplicial module.

From (6.2), we have for g € 7"(4, C, ¥),

@R ®ar ® - ®an) = (-1 Ve @ary ® - R ans1y)
=glc®ar @ -+ an+1).

It remains therefore to verify the following identities:

8itho1 = —Tubi1 l<i<n
So = (=1)" 18
OiTn+1 = —Tp0i—1 I<i<n

UQT,%_H = (=1)"1,0,.
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Forl <i <nand g € 9" (A4, C,¥), we have

Bitn-18)(c ® a1 ® -+ ® an+1)
= (p-18)(c®a; ® - ®a;i@j+1 @+ aAnt1)
=(-1)""g(c"®ar ® - ®ajait1 ® - apt1 @ ary)
=(D"1Gi—19)(cV ®ar ® - ®ai ®diy1 @ dnt1 ®dry)
= —(tn6i—18)(c ®a1 ® -+ ® ap+1).
Fori = 1, we have
(b17n—18)(c ® a1 ® -+ ® an+1)
= (th—18)(c ®ai1ax ® az ® --+an+1)
=(-D""g(cV ®az ® - ® ant1 ® (a1a2)y)
= (1" (6og)(c? ®ar ® -+ ® dpt1 ® ary)
= —(bog)(c ® a1 @ -+ ® an+1).
Clearly, 69 = (—1)"1,6,. It may also be easily verified that o;t,+1 = —1,0i—1 for
1 <i < n.Further, forany g’ € 7" T1(4, C, y),
(00T 18)(c ® a1 @+ ® apnt1)
= (17118 c®14®a1 @ @ any1)
= (-1)"" (tar18)c ®a1 @+ ® any1 ® 14)
=g (" Rar® - Qdpt1 ® 14 R ary)
= (028" ® a2 ® - ® tp1 @ ary)
= (=" (ta0ng)(c ® a1 ® -+ ® an+1).

This proves the result. u

Proposition 6.3. We now show that the invariant subcomplex is Morita invariant.

(1) The maps inc} : C*(M,(A), C, y) — C*(A, C, ) and u* : C*(4,C, ¢) —
C*(M,(A), C, ) restrict to the corresponding invariant subcomplexes. In other
words, we have morphisms

inct : 9°(M,(A),C, ) — I°(A,C. ) t*:T°(4,C, ) — I°(M,(A).C, ).

(2) The morphisms inc : J*(M,(A), C,¥) — I*(A,C,v¥) and tr* : I*(A,C,¥) —
J*(M,(A), C, ) are homotopy inverses of each other. Hence, the invariant
subcomplexes 1° (M, (A), C,¥) and I*(A, C, ) are quasi-isomorphic.

Proof. (1)Forany n > 0and f € J*(M,(A),C, V), we have, fora; € A,c € C,
(ncf (N ®a1 ® - Qapt1) = flc®ar1En(1) ® - ® ant1E11(1))
= f(""" ®ary En(1) ® - ® ant1y Eni(1))
= (! (/)" @ary @ @ any1y).
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Hence, inc? (f) € J*(A, C, ). Further, for any g € J*(A4, C, ¥), we have, for a; € A4,
u; € M.(k),c € C,

" (@) ®aiu1 ® -+ ® dptr1Un+1)
=gc®a1 ® -+ ®an+1) tr(uiua - uUnt1)
=g @ary @+ ® ant1y) CU1Uz Unt1)
= (" (@) ®aryur ® -+ ® dnsrytini).

Therefore, tr" (g) € (M, (A), C, V).

(2) We will now show that the homotopy # = Y "_,(—1)"/’ as constructed in (5.12)
and (5.13) restricts to be a homotopy between the maps tr® o inc{ and idyn (as, (4),c,y). For
any f € "*Y(M,(A),C,¥)and 1 <i <n, we have

(W (f)(c ®aju; ® - ® dpt1Uni1)

=f(0® Z arEri(uixr) @ azEr1(uzpm) ® -+ ® ai E11(Uj pg)

1<k,,...,p.q,s<r
® lAElq(l) Rajr1Ujr1 @~ Qapu, an+1Es1 (un-i-lsk))

n+2
= f(C’/’ ® Z ary Evi(uigr) ® azy E11(u21m)
1<k,l,....,p.q,s<r

Q- ®aiyE11(Uipg) ® (14)y E14(1) ® aj+1yui+1

® Q@ apyUn @ an+11pEs1(un+1sk))

n+1
= f(cv' e Y. ayEnQag) ® azy Eii(tam)

1<k,l,...,p,q,s<r
® - @ aiy E11(tipg) ® 14E14(1) ® ait1yUiv

Q- Qdnyly @ an+11//Es1(un+1sk))
= B (N @aryur ® -+ @ dyylin @ dnt1ytins1)
and
(h°(N(c ®aru; ® -+ ® any1Unt1)

= f(c ® Y LER()®aiu & Qauuy ®an+1Es1(Un+1sk))

1<k,s<r

n+1
= f(cllf " & Z L4E (1) @ aryur @ -+ @ apy iy ®an+11/fEs1(un+1sk))

1<k,s<r
= RONE" @ arpur @ -+ ® anylin @ ant1yling1)-

This proves the result. ]
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We now observe that C3 (4, C,¥) € J*(A,C,¥). For any g € (4, C, ¥), we have

ge®a; ® - ®ans1) = (—1)"g(c?Y ®a, @+ ® any1 @ ary)
_ (_1),z(n+1)g(cw"+1 Rdiy @ ® dntiy) (6.3)

foreveryc € C and ay,...,a,+1 € A. In fact, we observe that

CLA.C.¥) ={g € T°(4.C.¥) | Teg = g}- (6.4)
Theorem 6.4. We have mutually inverse isomorphisms
inct : Hy (M, (4).C.9) — Hi(A.C.¥) u*: Hj(A.C.¥) —> H}(M:(4).C. )
of cyclic cohomology groups.

Proof. By Proposition 6.3, inc} : 3*(M,(A),C,y¥) = I*(A,C,y¥) and tr* : I*(A,C,¢) —
J*(M,(A), C, ) are obtained by restricting the dual of maps incje : Ce(4, C, V) —
Ce(M,(A),C, ) and tre : Co(M,(A), C, ) — Co(A, C, V) to their respective invariant
subcomplexes. It is easily verified that inc] and tr® commute with the cyclic operators on
J*(A,C, ) and I* (M, (A), C, ¥). This shows that inc] : I*(M,(A4),C,y¥) — I*(4,C,¥)
and tr* : J°(A, C, ¥) — I*(M,(A), C, ¥) induce morphisms of the double complexes
computing the cyclic cohomology of 3*(A4, C, ¥) and I* (M, (A), C, ¥).

From Proposition 6.3, we know that inc] and tr® induce mutually inverse isomor-
phisms of the Hochschild cohomologies of J*(A, C, ) and J*(M,(A), C, ¥). Since
CLA,C.¥) ={g €I°(A,C, V) | Teg = g}, the result now follows from the Hochschild
to cyclic spectral sequence. ]

7. Vanishing cycles and coboundaries

Let (A, C,¢) and (A’, C’, ¥’) be entwining structures. A morphism of entwining struc-
tures from (4, C, ¥) to (A’, C',¥') is a pair («, y), where @ : A — A’ is a k-algebra
morphism and y : C — C’ is a k-coalgebra morphism such that

@®y)oy =y o(y®a). (7.1)

Lemma 7.1. Let (o, y) : (A,C,¥) — (A’,C’, ') be a morphism of entwining structures.
Then, (a, y) induces a morphism of complexes F*(a,y) : C*(A",C',y') — C*(A,C, V)
and a morphism

F*(a,y): Hy(A',C",y') — H; (A, C,v)

of entwined cyclic cohomologies.
Proof. Given (a,y) : (A, C,v¥) — (A’, C’, ¢'), we have a morphism

Fn(Ol,J/) =y ®an+l C® An+l Yol ® A/n-H.
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We denote its dual by F”(a,y) : Hom(C’ ® A"+ k) — Hom(C ® A"+, k). We first
need to show that the following diagram commutes for alln > 0and 0 <i <n + 1:

Hom(C’' ® A"+ k) — > Hom(C' ® A™+2 k)
F"(a,y)l lpnﬂ(a,y) 12)
Hom(C ® A1, k) —— Hom(C ® A"2, k)
For any f’ € Hom(C’' ® A1, k), we have, forc € C,ay,...,an1o € A,

(F" N a.y)80 f)(c ® a1 ® -+ ® ant2)
= (Jo.f)(y(c) ®a(a1) ® -+ ® a(an+2))
= f((©) @ a(az) ® - ® a(ans2)(@(@1))y)
=fy(")®a(@)® - ® a(ani2a1y))
= (o F"(a, V) f)lc®a1 ® -+ ® ant2). (7.3)

The third equality in (7.3) follows by using (7.1) and the fact that « is an algebra map.
Similarly, it may be easily verified that F"+!(a,y)8; = 8; F"(«,y) foreach 1 <i <n + 1.
Finally, if /" € €7(A’,C’, ¥’'), we have

(F"(a,7) f)c ®a1 ® -+ ® dny1)
= f'(y(c)®a(ar) ® - @ al@n+1))
= D"V ®a(ar) ® -+ ® a(dns1) ® alar)y)
= (=1)"f'(y(c¥) @ a(az) ® -+ ® a(dnt1) ® a(ary))
= (=D"(F*a.7) )Y ®ar @+ ® ant1 ® ary). (7.4)

Hence, (F" (e, y) f') € €7 (A, C,¥). This proves the result. |

Remark 7.2. The definition in (7.1) and the proof of Lemma 7.1 make sense even if the
k-algebra morphism « : A — A’ is not unital.

Suppose that we have morphisms («y, y1) : (4, C,¥) — (A’, C’, ¢’) and (a2, ) :
(A,C", ¢y — (A", C",y") of entwining structures. Then, we note that F*(ap o oy, ¥ ©
Y1) = F*(a1,y1) o F* (a2, y2).

For any algebra A4, let U(A) :={x € A |3y € Asuchthat xy = yx = 14} be the
group of units of A. Given an entwining structure (A4, C, ), we set

Uy(4) :={xeU(4) | y(c®x) =xQcforeveryc € C}.

Lemma 7.3. Let (A, C, ) be an entwining structure. Then, Uy (A) is a subgroup of
U (A).
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Proof. Clearly, 14 € Uy (A). Let x,x" € Uy (A). Then, for any ¢ € C, we have
V(e ®xx) =0 ®ide)(id4a @ V) (¥ ®ida)c @ x®x') = xx' ®c,

where 6 : A ® A — A is the product on A. Hence, xx’ € Uy (A4).
Now let x € Uy (A), and let y € U(A) be its inverse. We will show that y € Uy (4).
For this, we set ¥ (c ® ¥) = ) ; »i ® ¢; € A ® C. Then, we have

lu®c=y(®xy) =0 ®idc)(ids @ Y)Y ®idA)(c ®x ®y) = ) xyi ®¢;.

Therefore, y ® c = ) ; yxyi @ ci =Y ; ¥i ®c¢i = ¥(c ® y). Hence, y € Uy (4). =

Lemma 7.4. Let (A, C, ) be an entwining structure and let x € Uy, (A). Then,

(1) the pair (¢x,idc) : (A, C, ) — (A, C, V) is a morphism of entwining structures,
where ¢ : A — A is the inner automorphism given by ¢x(a) := xax™! for all
aceA.

(2) the pair (Oy,idc) : (M2(A),C,¥) — (M3(A), C, ) is a morphism of entwining
structures, where @ : My(A) — M5, (A) is the inner automorphism given by

ail an I 0 ain  an 1 0
o, - : : °).
a1y ax 0 x ar ax 0 x
Proof. (1) Since x,x~! € Uy (A4), we have

(Y o(idec ® px))c ®a) =¥ (c ®xax™ ") =xayx ' ®@c¥ = ((¢px ®idc) o ¥)(c ® a)

for any ¢ € C and a € A. This shows that (¢, id¢) is a morphism of entwining structures.
(2) Forany ¢ € C and (g}! 412) € M>(A), we have

azy azz

: air ap\\ _ an  apx”!
Wolde® d)x))(c ® (azl azz)) a 1//((: ¥ (vaI x‘mx_l))

_ (allw alzwx_l ) ®cV
Xd21y X022¢X_1

=«%®WNWG®C““ﬂ)
azir az
Hence, (®,,id¢) is a morphism of entwining structures. [

For x € Uy (A), we will always denote by ¢ : A — A and @, : Mr(A4) — M>(A)
the inner automorphisms described in Lemma 7.4.

Let (A, C,v¥) and (A4’, C’, ¥’) be entwining structures. Then, it may be easily seen
that the tuple (A ® A’,C ® C’, ¥ ® ') is also an entwining structure with the entwining
YRY (CRCH®(ARA)— (AR A') ® (C ® C’) given by

WY RYNc®®a®a)=ay®a), @c’ ® V'

foranyc ®c’' e CC'anda®a’ € AQ A'.
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Lemma 7.5. Let (A, C, V) and (A, C’,y’) be entwining structures. Let x € Uy (A) and
x' e Uw/(A/). Then, x ® x' € Uv,@w/(A ® A).

Proof. This follows immediately from the definitions. ]

We now show that conjugation by a unit x € Uy, (A4) induces the identity on cyclic
cohomology of (4, C, ).

Proposition 7.6. Let (A, C, ) be an entwining structure. For any x € Uy (A), the pair
(¢x.1dc) : (A, C,¥) — (A, C, V) induces the identity map on H; (A, C, V).

Proof. According to Lemma 7.1, we have morphisms inc] = F*®(incy, id¢), inc5 =
F*(incy,idc) : HF (M, (A),C,¥) — H3(A,C, V). By Theorem 6.4, the maps

inc] : H; (M, (A),C,y) — Hy(A,C,¥) u*:H}(A C,y)— H;(M:.(A),C.y)
are mutually inverse isomorphisms. Therefore,
F*(incs, id¢) o (F*(incy,id¢)) " = F*(inc,,id¢) o tr®
= F*(troincy,id¢) = ide(A,C,w} (7.5)

We notice that we have the following commutative diagram:

incy incy

A — s My(A) —2— 4

idAl lcpx lm

incq incp

A —L My(A) =2 4

Using Lemma 7.4, we know that (¢, idc) and (®y, idc) are morphisms of entwining
structures. Therefore, we obtain the following commutative diagram:

. F*(incy,idc) . F*(incy,idc) N
HY(A,C.y) 2 (Mo (A), Cy) — 2% H2 (A, C.y)
F'(idA,idc)T TF°(<I>x,idc) TF'(dchdc)
F*(incy,idc) F*(incy,idc)

H(A,C, ) «——— H;(M2(A),C,y) ———> H}(A,C,¥)
Therefore, using (7.5), we get

F*(¢x,idc) = (F*(incy,idc)) o F*(incy,idc) ™! o F*(idg,idc)
o (F*(incy,idc)) o F*(incy,idc) ™" = idysa.c.y)- n

Proposition 7.7. Let (A, C, V) be an entwining structure. Suppose that there is an algebra
morphism v : A — A and an element X € Uy, (M>(A)) such that
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(1) the pair (v,idc) : (A4, C,¥) — (A, C, V) is a morphism of entwining structures,
that is, (v ® id¢) oy = ¢ o (id¢c ® v).
(2) the inner automorphism ¢px = X(_ )X ™' : Ma(A) — My (A) satisfies

a 0\ _ (0 0
o (65 )= (0 o)
foralla € A. Then, H;(A,C,v¥) = 0.

Proof. Leta: A — M>(A) and § : A — M5 (A) be the algebra morphisms defined by

ala) = (g v(oa)) = incy(a) + (inc; ov)(a)

Bla) = (8 » )) — (incz ov)(@)

for a € A. Since (incp ov) ® id¢ = (inc; ® id¢) o (v ® id¢) and using the fact that
the pairs (v, idc), (incq, idc) and (inc,, idc) are morphisms of entwining structures, we
see that the pairs (o, id¢) and (8, id¢) are also morphisms of entwining structures from
(A4, C.y) to (M2(A),C. V).

Applying Lemma 7.1, we now have morphisms on cohomology groups
F*(a.idc) : Hj (My(A). C.y) —> H3(A.C.¥)
F*(B.idc) : H; (M2(A),C.y) — H;(A.C.¥).

Further, using assumption (2), we have ¢y o « = . Applying Proposition 7.6 with
X € Uy (M>(A)), we obtain

F*(B.idc) = F*(¢x o,idc) = F*(a,idc) o F*(¢x,id¢c) = F*(a,id¢). (7.6)

Now let g € Z7 (A, C, ¥). Using the isomorphism of cohomology groups in Theo-
rem 6.4, we have g := tr"(g) = g otr € Z7(M>(A), C, V). Let [g] denote the cohomology
class of g. Then, using (7.6), we have F"(«,idc)[g] = F"(B.idc)[g] in H}(A,C,¥).In
other words,

o Fu(,idc) — F o Fu(B.idc) € BL(A,C, )

so that
go Fy(a,idc) — g o F,(B,idc) = g o Fy(incy,idc) = g € B (A,C, ¥).
This proves the result. ]

For the remainder of this paper, we assume k = C. Let C be the algebra of infinite
matrices with complex entries (a;;);, j>1 (see [13, p. 103]) satisfying the following two
conditions:
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(i) Theset{a;; | i, j > 1} is finite.
(i1) The number of non-zero entries in each row or each column is bounded.

Let (A, C, ¥) be an entwining structure. Then, ¥ extends to an entwining C ® C ®
A — C® A ® C, which we continue to denote by ¥ and determined by c ® U ® a —
U®aw®c‘” for any c € C, U € C and a € A. Thus, (C® A4, C, ) is also an
entwining structure. Similarly, ¥ can also be extended to obtain an entwining structure
(Mr(C® A),C, ).

Lemma 7.8. Let (A, C, ) be an entwining structure. Then, H; (C ® A, C,¢) = 0.

Proof. We will show that the entwining structure (C ® A, C, ) satisfies the assumptions
in Proposition 7.7. By the result in [13, p. 104], we know that there exist an algebra mor-
phism v : C — C and a unit X € M,(C) such that the corresponding inner automorphism
¢x : M>(C) —> M5 (C) satisfies

U o 0 0
bz (0 v(U)) - (0 v(U)) 7
forall U € C.

The map v extends to an algebra morphism v ® idg : C® A — C ® A such that
(v®idg ®idc) oy = wO(idC Qv ®idy).

Hence, the pair (v ® id4,id¢) is a morphism of entwining structures (C ® A4, C, ) —
(C® A, C, ). Moreover, under the identification M>(C ® A) =~ M,(C) ® A, we have
the unit X ® 14 € M>(C ® A). By definition, ¥ (c ® X ® 14) = X ® 14 ® c. Hence,
XR®14€Uy(M(C) @ A) = Uy ((M2(C® A)).

Clearly, px g1, = ¢x ®idg : M2(C) ® A — M, (C) ® A. It then follows using (7.7)
that

) U®a 0 0 0
(Px ®idy) ( 0 v ® idg)(U ®a)) - (0 (v ®idg)(U ®a))

for any U ® a € C ® A. Hence, the entwining structure (C ® A, C, ) satisfies the
assumptions in Proposition 7.7 and therefore, H ; (C®A,C,¢) =0. [

Definition 7.9. Let (A4, C, ¥) be an entwining structure and ((R®, D®), C, V*, T, p)
be an n-dimensional entwined cycle over (A4, C, ¥). Suppose that R® is a unital k-
algebra and that U0(c ® 1z0) = 1go0 ® ¢ for each ¢ € C. Then, we say that the cycle
((R*®, D*),C,¥*, T, p) is vanishing if the entwining structure (RY, C, ¥°) satisfies the
assumptions in Proposition 7.7.

As a consequence of Theorem 4.5, we observe that the character of an n-dimensional
entwined cycle over (4, C, ¥) always lies in Z} (A, C, ¥). We will now describe the
coboundaries B} (A4, C,¥).
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Theorem 7.10. Let (A, C, V) be an entwining structure, and let g € Z5 (A, C, ). Then,
the following are equivalent:

(1) g € BY(A.C. ).

(2) g is the character of an n-dimensional entwined vanishing cycle over (A, C, V).

Proof. (1) = (2). Let g € B} (A, C, ). Then, g = §(g’) for some g’ € GK‘I(A, C, ).
Extending g’, we obtain an element g’ € "~ 1(C ® A, C, V) as follows:

Ui ®a)® U, ®ap) :i=g'(c® (U)1a1 ® -+ Q (Up)y1an)
foranyce Cand (U; ®a1) Q-+ ® (U, ® ay) € (C® A)". We have

g ®U:®a)® & (Uy ® an) ® (Us ® ar)y)
=3’ QU2 R®a) @ ® (Uy ® an) ® (Ur ® ary))
=g’ ® (U2)11a2 ® -+ ® (Up)y1an ® (Ur)y1a1y)
= (=D)""g'(c ® (U1)11a1 ® (U2)11a2 ® - @ (Un)y1an)
=)@ Ui ®a) ® - @ (Un @ an)).
Hence, g’ € GK‘I(C ® A,C,¥).
We now set g” := §(g") € Z}(C® A, C, ). We also consider the algebra morphism
p:A—> CQ® Agiven by a — I ® a, where [ is the identity matrix in C. By the impli-

cation (3) = (2) in Theorem 4.5, there exists an n-dimensional closed graded entwined
trace ¢ on the dg-entwining structure ((2°*(C ® A),d*), C, ) satisfying in particular that

t(c ® plar)d(p(az))---d(p(an+1)))
=g"(c®p(a1) ® -+ ® p(an+1))
=8"(cRI®a1® QI ®any1)
=88)Nc®I®a1® QI Qant1)
=68(g)Nc®ar ® - ®ant1)
=g(c®a1 Q@+ Qdny1). (7.8)

Since (p,idc) : (A, C,¢¥) - (C® A, C, ¥) is a morphism of entwining structures,
the tuple ((R*(C ® A),d*), C, 1[7, t, p) is also an n-dimensional entwined cycle over
(A, C, ¥). We notice that Q°(C ® A) = C ® A is unital and ¥(c ® (I ® 14)) =
(I ® 14) ® ¢ foreach ¢ € C. From the proof of Lemma 7.8, we now know that ((22*(C ®
A),d*®),C, @, t, p) is a vanishing cycle. From (7.8) it is clear that g € B} (A, C, ) is the
character of this vanishing cycle.

(2)= (1).Letg € ZJ(A,C,¥) C C} (A, C, ¥) be the character of an n-dimensional
entwined vanishing cycle ((R®, D*®), C, V*, T, p) over the entwining structure (A, C, ).
Then, by definition, the tuple (R®, C, ¥°) is an entwining structure. We define f €
C"(RY, C, ¥?) by setting

fle®r®: - ®rpt1) :=T(c®r1D(rz)--- D(rp+1))
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forany c @ ry ® -+ @ rp41 € C ® (R%)®"1, Since W* is a morphism of complexes
and T is a closed graded entwined trace of dimension n, we have
f(C\PO Qr2® & Int1 ® rygo)

= T(c"" ® r2D(r3) - D(rus1) D(r190))

=T ® r2D(r3) - D(ras1) D(r1)w1)

= (=1)""'T(c ® D(r))raD(r3) --- D(rn+1))

= (=1)""N(T(c ® D(r1r2)D(r3)--- D(rp+1))

—T(c ®r1D(r2)D(r3) - D(rnt1)))

= (—1)"T(c ® r1D(r2) D(r3) - D(rp+1))

==D"fc®r ®: - ®rut1).
This shows that f* € C} (R®, C, ¥°). Moreover, using the implication (1) = (3) in The-
orem 4.5, we see that f € ZX (R, C, W9). Since ((R*, D*®),C,¥°, T, p) is a vanishing

cycle, we know that HX(RO, C, W% =0.Hence, f =§f' forsome f’ € Gﬁ_l (R, C,¥9).
Since ((R®, D*®), C, V*®) is a dg-entwining structure over (A4, C, ¥), we have

(p®idc) oy =W o (ide ® p). (7.9)

that is, the pair (p,id¢c) : (4, C,¥) — (R°, C, ¥?) is a morphism of entwining structures.
As in the proof of Lemma 7.1, it is clear that we have an induced morphism of complexes

F*(p,idc) : C5(R%, C,¥°) — C5(A4,C, ¥).
We set 1 := F" (p,idc)(f") € @K_I(A,C, ¥). Then,
fle®ar® - ®an) = f'(c®plar) ® - ® plan))
foranyc ® a1 ® ---®a, € C ® A". Since F*(p,idc) is a morphism of complexes, we
must have
Bf"Ne®ar @ ®ant1) = Bf)c ® plar) ® -+ ® p(an+1))
foranyc ®a; ® - Q®apy1 €CQ® A" Thus, we obtain
glc®ar ®--®any1) = T(c ® pla1)D(p(az)) - D(p(an+1)))
= flc®pla1) ®:-- & p(an+1))
= (f)c®pla) ®:-- ® plant1))
=0f")Nc®a1 Q@ Qany1).
Hence, g = §f”, where /" € Gﬁ_l(A, C. {). This proves the result. n

Taken together, Theorems 4.5 and 7.10 give a complete description of the cocycles
and coboundaries of the complex €3 (4, C, ) in terms of entwined cycles over (4, C, ¥).
We conclude by applying these descriptions to obtain a pairing on cyclic cohomologies.
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Theorem 7.11. Let (A, C, ) and (A', C’, ') be entwining structures. Then, we have a
pairing

H"(A,C.y)® H}(A.C'.y") — H'"™(A® A, CRC' Yy @Y
foranym,n > 0.

Proof. Let g € ZJ'(A,C, ) and g’ € Z(A’, C', ¥'). Then, by Theorem 4.5, we
know that g (resp. g’) must be the character of an m (resp. n)-dimensional entwined
cycle ((R*, D*®),C,¥*, T, p) (resp. (R®*, D’*),C’,¥'*, T, p)) over (A, C, ) (resp.
(A", C"y")).

We know that (R ® R)®, (D ® D’)®) is a differential graded algebra, where (R ®
R =Dt j=p R* ® R'J for p > 0. The multiplication and differential on R ® R’ are
given, respectively, by

(r1 ® r)(r2 ® rp) = (—1)%eDr (1) @ 1i1%)
(D ® D’)(r X r’) — D(r) ® r + (_1)deg(r)r ® D/(r,)

for homogeneous elements r1,7>,7 € R and r{,r5,r" € R’. Using the fact that ¥ is a map
of degree zero and both ¥, W’ are morphisms of complexes, we have

(D® D' ®idcgc) o (¥ QYN (c®c' @r®r')
=(D®D Qidcge)(ry @ry @c¥ @c'Y)
=D(rg) ®ry ®c? ® 4 (1)) @ D'(rp)®c? ® Y
=Dy @ry®c?® M+ () @ D'(F )y @ Y @ Y
=WRV)c®c®(D®D)rar).

where ¢ ® ¢/ € C ® C’ and r, r’ are homogeneous elements of R and R’, respectively.

This shows that ¥ ® W’ is a morphism of complexes. Thus, we obtain a dg-entwining
structure (R ® R)*, (D ® D)*),C ® C', ¥ ® ). It is also clear that the tuple
((R®R),(D®D)).CRC',¥®WV, pQp)is a dg-entwining structure over
(A® A,C ®C', ¥ ® ¥'). We will now construct a closed graded entwined trace of
dimension (m + n) on this dg-entwining structure.

For this, we consider the k-linearmap T @ T’ : (C ® C') ® (R ® R')" " — k given
by

(T ® T’)( P cedene® r,’-)) =T ®@rm)T'(c®7))
i+j=m+n

foranyc ® ¢’ € C ® C’'and @; 1 j_ppip i ® 1) € (R® R)™H7.
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It may be easily verified that 7 ® T satisfies the condition in (4.2). Further, using the
fact that 7 and T are graded entwined traces, we have

TRTNceRcdR(r@r)(s®s'))
= (_])deg(r/)deg(s)(’r ® T/)(C R @rs ® r/s/)
— (_l)deg(r/)deg(s)T(c ® (rs)m)T/(C ® (r/s/)n)
= (- l)deg(r/)deg(S) (- 1)deg(r)deg(S) (— l)deg(r/)deg(s/)

T @ (5r9)m)T' (Y & ('l )n)
= (- l)deg(r/)deg(s) (_1)deg(r)deg(s) (— 1)deg(r/)deg(5/)

(—1)dee6et) (T @ T (¥ @ Y ® (s ® 5') (rw ® riy))
— (_1)deg(r®r’)deg(s®s/)(T ® T/)((C ® c/)\ll®‘l’/ ® (S ® s')(r ® r')\y®\y/)

forany ¢ ® ¢’ € C ® C’ and homogeneous elements r,s € R and r’, s’ € R’. This shows
that T ® T’ satisfies the condition in (4.3) Hence, T ® T’ is an (m + n)-dimensional
closed graded entwined trace.

Therefore, (R ® R)*,(D ® D)*),CQC' VWV, TQT',p® p)isan (m + n)-
dimensional entwined cycle over the entwining structure (A ® A, C ® C', ¥ ® ¥).
Using Theorem 4.5, we know that the character of this cycle, denoted by g ® g’, lies
in Zi""(A® A'.C ® C', ¥ ® ¥'). The association (g.g') — g ® g’ gives a pairing

E:Z](AC ) ®ZIAC oY) — ZPT (AR A,CRC Yy ®y). (7.10)

From the equivalence of (1) and (2) in Theorem 4.5, it is clear that this pairing does not
depend on the choice of the cycles ((R®, D*®),C,¥*, T, p)and ((R"*, D’*),C’,¥'*,T’,p)
determining g and g’, respectively.

To induce the pairing on cohomologies, it suffices to show that £ restricts to a pairing

BI'(A,C.y)® ZJ(A'.C' ') — BI(A® A .CRC.Y @Y.

Let g € Bi'(A, C, ¥). Then, by Theorem 7.10, we know that g is the character of an
m-dimensional entwined vanishing cycle ((R®, D*), C,¥*, T, p) over (4, C, ). In par-
ticular, by Definition 7.9, we know that R is unital and ¥°(c ® 1z0) = 1 g0 ® c for each
¢ € C. Using the implication (1) = (2) in Theorem 4.5, we might as well assume that R°
is unital and that W"°(¢’ ® 1g0) = 1g0 ® ¢’ for each ¢’ € C’. In fact, we might even
assume that (R'®, D’®) = (Q°A4’,d"*).

It now suffices to show that the cycle (R ® R')*, (D ® D')*),C @ C' . ¥ @ V'.T ®
T.pQp ) used in (7.10) is a vanishing cycle. In other words, we need to verify that
the entwining structure (R® ® R?,C ® C’, ¥° ® W) satisfies the assumptions in
Proposition 7.7.

Since ((R®, D*®), C,¥*, T, p) is a vanishing cycle, there exist an algebra morphism
v: R% — RO and aunit X € Ugo(M,(R?)) satisfying the assumptions in Proposition 7.7.
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Extending v, we have the algebra morphism v ® idgo : R ® R® — R° ® R°. Iden-
tifying M>(R® ® R'®) = M»(R®) ® R and using Lemma 7.5, we have X ® 1go €
Ugoguo(M2(Ro) ® R'®) = Ugogyo (Ma(Ro ® R')). Clearly, the pair (v ® idgo,idc ®
idc-) is a morphism of entwining structures. Identifying ¢x @1,,, = ¢x ® idgno : My(R° ®
R — M,(R® ® R'°), we also see that

. rer’ 0 0 0
(Px & idge) ( 0 (V®idgo)(r® r’)) B (0 (v ®idgo)(r ® r’))

forany r ® ' € R® ® R".

Thus, all the assumptions in Proposition 7.7 are satisfied by the entwining structure
(RP® R, C ® C',¥° ® ¥"). Hence, ((R® R)*,(D® D')*),C C' VvV, T®
T’, p ® p') is a vanishing cycle. This proves the result. ]
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