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Quantum SU(3) as the C *-algebra of a 2-graph
Olof Giselsson

Abstract. We show that, for ¢ € (0, 1), the C*-algebra SUg4(3) is isomorphic to a rank 2 graph
C *-algebra (in the sense of Kumjian and Pask), and describe the graph in terms of its skeleton
and commutation relations. Moreover, this isomorphism is T 2-equivariant with respect to the right
action on SUyg (3) and the gauge action coming from the 2-graph.

1. introduction

We observe that certain quantised algebras of continuous functions on homogeneous spaces
can be given the structure of graph C *-algebras. A well-known example is the case of the
Soibelman—Vaksman quantum odd spheres [11]. In particular, SU,(2) — the algebra of
quantised continuous functions on SU(2) introduced by S. L. Woronowicz in [12] — is
isomorphic to the graph C *-algebra of the directed graph

O

([4, Proposition 2.1]). A natural question to ask would be if a similar result holds for
SU,(n) when n > 3. However, the primitive spectrum of these C *-algebras will topolo-
gically contain the space T”~! and it is known that such C *-algebras cannot come from
directed graphs (see the [4, end of the introduction]).

In [6] Alex Kumjian and David Pask generalised the notion of a C *-algebra construc-
ted from a directed graph, by introducing higher-rank graphs together with their associated
Cuntz—Krieger algebras. In a graph of degree k (or k-graph for short), the usual dots-
and-arrow presentation is replaced by a countable category § together with a functor
19 — N¥ called the rank functor (the semi-group N is considered as a category with
one element). In this context, a 1-graph is equivalent to a category generated by a directed
graph.

In this paper we show that the compact quantum group SU,(3) (as a C *-algebra) is
isomorphic to a C*-algebra coming from a 2-graph r: Su(3) — N2, whose 2-skeleton
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(i.e., the set of objects in Su(3) together with the pre-images of morphisms r~!(1,0) and
r~1(0, 1)) can be visualised by the coloured directed graph

»
o
»

O- -
w2

We get this graph by passing to the limit ¢ — 0 for an set of SU,(3)-generators under
the usual faithful Soibelman representation. This is similar to how the graph of SU,(2)
is derived, where one passes to the limit ¢ — 0 on appropriate generators, and then show
that the resulting limits still generates the same C *-algebra. However, due to the addi-
tional dimension, some further steps are needed. Under the Soibelman representation, we
realise SU,(3) as a C*-subalgebra of C*(S)®3 ® C(T) ® C(T) (here C*(S) denotes
the C *-algebra generated by the forward shift S € B(¢?(N)), i.e., the Toeplitz algebra),
and the issue is that these C *-subalgebras varies as a function of g, even though they are
all isomorphic (see [3, 8] for the latter claim). In order to then get an isomorphism with
the limit at 0, one must first straighten out the field of C *-algebras. Unfortunately, this
method is non-constructive and based on a lifting lemma, so that, in comparison with the
SU,(2)-case, it is much less clear how the 2-graph “sits” inside of SU,(3).

The topic of this paper connects with some similar recent investigations. In [7], M. Ma-
tassa and R. Yuncken showed that, for any compact semisimple Lie group K, if one looks
at an appropriate *-subalgebra of its quantised coordinate ring O4[K] (of elements reg-
ular at ¢ = 0), then, under the faithful Soibelman representation, the limit ¢ — 0 exists
for every element in this subalgebra, and the resulting x-algebra can be described as a
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Kumyjian—Pask algebra coming from a higher rank graph (with the rank of the graph equal
the rank of K). In particular, in the case of SU(3), Matassa and Yuncken derive the same
2-graph as we do here. Whereas our 2-graph was the result of empirical investigations,
they derive theirs from the theory of crystal bases. It thus seems reasonable to expect that
the results here can be generalised to hold for every compact semisimple Lie group K.

Another recent approach to understand the limit ¢ = 0 in the case of SU, (1) was given
by M. Giri and A. K. Pal in [2]. They gave a description of SUg(n) in terms of generators
and relations. They focus in particular on the case SUy(3) and classifies its irreducible
representations.

1.1. Higher rank graph C *-algebras

Graph C *-algebras of higher rank are a generalization of graph C*-algebras that were
introduced by Kumjian and Pask in [6]. We give the definition. For a small category €,
we let Cyp; denote the set of objects of € and €, the set of arrow of €.

Definition 1 (Graph of rank k). Consider the abelian semigroup N¥ (we will assume that
0 € N). Viewing N* as a category with one object, with arrows the elements in N*, and
with composition of arrows a, b € N is the sum a + b € NX. A graph of rank k (or
k-graph for short) is a countable category ¥ together with a functor r: ¥ — N called
the rank functor, such that if v(f) = a +b € N¥, for a,b € N then there are unique
arrows g and & such that r(g) = a, r(h) =band f = goh.

It is easy to see from the definitions that the pre-image r—!(0) is the set of identity
arrows of % . Moreover, the category F has the property thatif f = goh = g’ o h, then
g = ¢, and similarly if f = goh = goh’,then h = I/, i.e., every arrow in ¥ is both a
monomorphism and an epimorphism.

Following [6], we introduce some notations and terminology about higher rank graph.
Let ¥ be a graph of rank k.

e Forn € N¥ let #" := r~'(n). It is easy to see that we can identify % ° with Fobj-

» For f € Fyp,letr(f) :=cod(f) € Fopjand s(f) := dom( f) € Fqp; (range and source
maps).

e For EC Fypand f € Fy, let fE:={fog|gekE, r(g) =s(f)} and similarly
Ef :=={go f|s(g) =r(f)g € E}. Moreover, for v € Fu,; we write vE for the set
Id, ¥ ={g € E | r(g) = v}, ie.,the set of elements in E with range v. Similarly we
write Ev for the set {g € E | s(g) = v}.

o If f € Furandn <m < j = r(f) in the partial ordering of N¥ then we write £(0,n),
f(n,m), and f(m, j) for the unique paths of degree n, m — n, and j — m respectively,
such that f = f(0,n) o f(n,m)o f(m, j).

e We call a k-graph & row-finite if [v F™ | < oo foralln € N¥ and v € Fonj-
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. Forn=(nl,...,nk)eNk,WewritefFS"fortheset
F={feF |r(f) <mandv(f)i <n = s(f)F =0},

where the subscript i denote the i-th coordinate in N* and e; € N¥ is the element with
a 1 in the i-th coordinate and 0 elsewhere.

»  We say that  is locally convex if, whenever j #i, f € F%,g € F% andr(f) =
r(g),wehave s(f) % # @and s(g) F # @.

Remark. The higher rank graphs considered in this text will have the property that v ¢
@ and ¥ v # @, forevery v € Fovjand i = 1,..., k. Thus, they will be locally convex,
and we will have ¥ =" = F".

We give the definition of a higher-rank graph C *-algebra.
Definition 2. Let & be a locally convex, row-finite graph of rank k. The C*-algebra

C* (&) is the universal enveloping C *-algebra generated by orthogonal projections { Py |
0 € Fopj} and partial isometries {Sr | f* € Fur} subject to the Cuntz—Krieger relations:

(CK1) the projections { Py | v € Fopj} are all mutually orthogonal,

(CK2) S¢S = Sfoq Whenever s(f) = r(g),

(CK3) S;Sf = Py forall f € Fyy, and

(CK4) Py =Y se, g=n SyS} forall v € Fopj and n € N¥.

For a k-graph % , we have a natural homomorphism a: TX — Aut(C*(¥)) determined

on generators as
Oez(Sf) = tr(f)Sf,

where 7)) = (¢} O t,:(f )y (with 19 = 1). Clearly, by (CK2) and the functorial
property of v for every ¢ € T, this map extends to an automorphism of C*(F).

Definition 3. The set of homomorphisms {a; | € TX} is called the gauge action on
C*(¥).
A useful result in the representation theory of higher rank graph C*-algebras is the

“Gauge Invariance Uniqueness Theorem” due to A. Kumjian and D. Pask.

Theorem 4 ([6, Theorem 3.4]). Let & be a k-graph, let B be a C*-algebra, and let
n:C*(¥) — B be a homomorphism. If we have an action B: T* — Aut(B) such that
moa, =P, on forallt € TK. Then n is faithful if and only if w(P,) # 0 forall o € F°.

2. SU,(3) as a rank-2 graph C*-algebra

The proof of the main result is divided into two steps.
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(i)  Give a proper definition of the C *-algebra

SUo(3) = lim SU(3).

and finding an appropriate 2-graph Su(3) such that SUy(3) =~ C*(Su(3)).
(i)  Show that SUy(3) = SU,(3) forall0 < g < 1.

Remark. Step (i) was done more generally in [7]. The obstacle to generalizing the main
result here is to prove (ii).

Here, we prove (i) by explicitly finding a set of partial isometries that generates SUq(3),
and that can be seen as the edges of a 2-graph Su(3). We then show that SUg(3) is the
universal C*-representation for this graph. We then prove (ii) by extending the proof
from [3] to the ¢ = O case.

2.1. The Hopf =-algebra C[SU(n)],
Recall the definitions of the *-Hopf algebras C[SU(n)],, for g € (0, 1). It is defined by

generators {#;; | i, j = 1,...,n}, along with a unit /, subject to the relations
Lijtr — q ity =0 fori:kandj <l,ori <kandj=l,
tijter — tritiy =0 ifi <kandj >1I,

Lijter — tkitij — (q —q_l)liltkj =0, fori <kandj <I,
det, t = 1.

Here
detyt = > (=¢)" Qéery tnomy

€S,

(where S, is the permutations of n elements and £ the length of the permutation) is the
q-determinant of the matrix t = (#,;); ;_;. The comultiplication A, the counit &, the
antipode S and the involution % are defined as follows:

Aty) =) ik @ty (tiy) =85, S(tiy) = (—¢)'" ™7 dety t;.
k
and
1 = (—q)’ ™" detg ti,
where t;; is the matrix derived from t by discarding its i-th row and j-th column.
2.2. Representation theory of C[SU(3)],

We give a quick rundown of the representation theory of C[SU(3)],. These results are
standards and the proofs of the statements here can be found in [5].
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For two p;: C[SU(3)]; — B(H;), i = 1,2, we use the box-times notation to denote
their tensor product

p1 X p2 := (p1 ® p2) 0 A:C[SUB)]; — B(H; @ Ha).
We give the usual construction of C[SU(3)],-representations. Let
C;,S, Dy t*(N) — (*(N)
be the operators defined on the natural orthonormal basis {x; };en as follows:
Sxn = Xpnt1, Cgxp = mxn, Dgxy = q"xy. 2.1
By [12], the map
mq(ti) = S*Cy, my(ti2) = —qDy, 74(t21) = Dy, 74(t22) = C4S

extends to a *-representation of C[SU(2)],. Let C*(S) € B(¢?(N)) be the C*-algebra
generated by S (so that C*(S) is the Toeplitz algebra). From the expressions (2.1) for C,
and Dy, it is easy to see that C,;, D, € C*(S), and, hence, that

mq(C[SU@)]g) € C*(S).

Fori = 1,2, we have the two homomorphims

CISUG)], 2> CISUQ)],

corresponding, respectively, to the two embeddings

su@ o011 o
[ 0 1]’[0 SU(Z)}ESUG)’

and that are determined on the generators as

e 1< jk <2, (Gone-n 2=k <3,
mmw={’ Da(ty) = § VTV

8jkl  otherwise, S otherwise.

For i = 1,2, we define the two representations
7@ = 7, 0 9;: C[SUB)]; — C*(S). 2.2)

Moreover, we have two natural homomorphisms t;: C[SU(3)]; — C(T) fori = 1,2
determined by compositions

@ .
4:CISUB)], —— C*(S) X5 €*(8)/X = C(T),
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using the standard isomorphism C*(S)/K = C(T), where X C B(£*(N)) denotes the
compact operators. To be specific, we consider the image of S under the homomorphism
C*(S) — C(T) to be the coordinate function z. Thus, as D, and C; — I are compact,
we have (using the letter / again for the identity in C(T'))

T(ti) =2z, ut)=1z, ut3)=1,
) =1, w(n)=2, 0(t:3)=:z,

and 7; (tx;) = O for all other indices.

The homomorphism 7, X 71: C[SU(3)], — C(T) ® C(T) corresponds to the max-
imal torus restriction T2 C SU(3). We denote the universal enveloping C *-algebra of
C[SU(3)]4 by SU4(3). From the representation theory, we get that SU,(3) is isomorphic
to the closure of C[SU(3)], under the faithful representation

g, =@ PR R7D)R (r; ®11): C[SUQ)], = C*(S)®* ® C(T) @ C(T).
(2.3)
In this paper, we will usually identify C[SU(3)], with Im E, and the C *-algebra SU,(3)
with its closure. This is to be able to simultaneously consider all these algebras as sub-
algebras of C*(5)®3 ® C(T) ® C(T).

2.3. The algebras lim,_,9 C[SU(3)], and lim,_,o SU, (3)

To make sense of the C *-algebras C[SU(3)]o and SUy(3) in the limit ¢ — 0, we want to
take an appropriate set of generators of C[SU(3)],, where we have that the limits ¢ — 0
under the representation (2.3) actually exists. We then define C[SU(3)]o as *-algebra that
these limits generates, and SUy(3) its C *-closure.

Let U, (s1u(3)) be the Jimbo—Drinfeld g-deformation of the universal algebra of s11(3),
and let V, denote the set of dominant weights. For A € V., we let M f denote the
U, (su(3))-module with highest weight corresponding to A. We let w; € V., fori = 1,2,
denote the fundamental weights, ordered such that

1 1 11
= 15__’__ 5 = <_7_5_1)'
o= 2 2> »2=\22
Asdim MJ =3, fori = 1,2, welet {éj)i , 53)1_, 03)1_} C M. be an orthonormal basis, such
that EC})I, generates the highest weight space, 53,,- generates the lowest.
Using the identification of C[SU(3)], with the reduced dual of U, (su(3)), we con-
sider the elements in C[SU(3)], defined as

CP )= (& ba) 1=1.2,j =123 @4

By [5, Theorem 2.2.1], the elements (2.4) generates C[SU(3)], as a *-algebra. Moreover,
by perhaps multiplying these element with an appropriate value in T, it is not hard to see
that one can express these elements in the usual set of generators f;; as

C =t €= ()"t (2.5)
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We omit the proof of this statement, as we will do explicit calculations involving the right-
hand sides of (2.5). It is a simple calculation to show that these generates C[SU(3)], as a
x-algebra. Formula (2.4) is there to give a more structural understanding of what is going
on and to align this text with the framework from [7]. We will thus assume that (2.5) holds,
and consider it as the definition of C j‘”i .

Let P € B({?(N)) denote the orthogonal projection onto the subspace generated
by eg. We let Q = I — P. Moreover, let z € C(T) be the coordinate function. Taking
q — 0, we have limits in norm (we spare the reader the standard — but tedious — calcula-

tions)
E,C) > 1RSRIQz® 1 = A, (2.62)
B (C) > SQPRI®zR ] = B, (2.6b)
B,(CP)>PRPRI®zRI =C, (2.6¢)
E,CP* > SRI®QS®RIQ: = X, (2.6d)
B CY)Y > PRI®SQIRz+S*®SQPRIQz=7, (2.6¢)
E,C* > TIRPQPRI®:z =7Z. (2.6f)

These are all partial isometries, as
=IRI®RIRI®I, AA*=1R0QI1”1®]I,

=IQPQRIQI®I, BB*=0Q0PQIQI®I,
C*C=CC*=PRPRIRIRI;

A*A
B*B

A~

X*X=I1QIQI®I®I, XX*=0QIQ0QIQI,

Y =PQIQIQIQRI+0QIQPRIRI,

V*=PRI®0RIRI+I®Q0®PRI®I,
722 =722*"=1QPQRPQIQI.

>

=)~

Recalling that a partlal 1sometry v is called quasinormal if vv* < v*v, we see from the
above that A, B, C, X, Y, Z are in fact quasinormal partial isometries.
Moreover, we see that
AA* + BB*+CC* =1 =XX*"+YV*+ 22"
Definition 5. We denote the *-algebra generated by the limits (2.6) by C[SU(3)]o, and

denote its norm-closure by SUg(3).

The right action §;, for t = (t1,1;) € T2 of the maximal torus on Cj“”', is induced by
B:(C;?) = 1 C;”* and B(C;*') = 1C;*". Taking any non-commutative polynomials F
in the variables C j‘"" .(C ;”i )*, we get from the limit

li Eq(F)| =l © F
lim (12, (F)]| = lim | Zq(,(F))
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(since F was arbitrary) that B, extends to an automorphism of SUg(3) induced by the
actions

{A,B,Cy > {t1 A,1,B.1;C}, {X.Y.Z} > {6:X. Y. 52}, fort = (t1,12). 2.7)

From (2.7), it follows that ;5 = B; o Bs. Moreover, as the map ¢ € T? ,Bt(ﬁ) is norm-
continuous when R € {//1\ B.C.X.Y.Z }, we get from a standard approximation argument
that also ¢ — f;(a) is norm-continuous for every a € SUy(3). Thus, we have an inject-
ive homomorphism B;: T2 — Aut(SUg(3)) that is point-norm continuous. By using the

natural identification
T® @ C(T)® C(T) = C(T?: 7%3)

(i.e., continuous functions T2 — T ®3) we see that, for f(z;,z;) € SU,(3) € C(T?:
7®3) and all q € [0, 1), we have

,Bt(f(zl’ZZ)) = f(tlzl, 1222). (28)

Thus, B is actually the restriction of the T?2-action (f(z1,22)) — f(t12z1.1222) on the
ambient C *-algebra (identified with) C(T? : 7®3). We can thus, with a slight abuse of
notation, use the same symbol S to denote all these group actions.

2.4. The coloured graph of SUy(3)

We make a set of projections that will be corresponding to the nodes of our graph and that
will be labelled by the set {AX, AY, BX,BZ,CY,CZ}:

Pc; =CC*ZZ*=PQPQPQRIQI, (2.9a)
Pcy =CC*YY*=PRP®0QI®I, (2.9b)
Ppz =BB*ZZ*=QQPQPQ®I®I, (2.9¢)
Ppx = BB*XX*=0QP®0®IQI, (2.9d)
Pyy = AA'YY* =PRQOR®QORIRI+I®RQ0QPRIRI, (2.9¢)
Pix = AA*XX* =0@0Q0®I1®1I. (2.9f)

A quick calculation shows that these projections actually adds up to the identity.

We will construct a directed 2-coloured graph § = (V, E, r, s) for which these projec-
tions will correspond to the vertices of. The vertices will be labelled by the corresponding
index in the projection. Thus, the V = {AX, AY, BX, BZ,CY,CZ}. The set of edges E
is defined and labelled by {A4, B, C, X, Y, Z} in the following way. There is directed edge

e
V1 — VU2,
labelled by e € {A, B, C, X, Y, Z} if we have

P,,éP,, #0.
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Moreover, we will colour the edges either red or blue (dashed) depending on if the label

takes values in the sets {4, B, C} or {X, Y, Z} respectively. It is easily verifiable that
resulting graph § looks as follows:

(2.10)

This will be the blueprint for the 2-graph Su(3) that we construct below. There are fur-
ther relations in the compositions of the operators A AU 7 , that is not captured by the
graph (2.10). As an example, it is not hard to see that Y B = AZ. The same relations
will hold for all admissible compositions of morphisms labelled as such in the 2-graph
category.

Remark. This text is quite heavy on the calculations, and, all throughout it, we will use
(2.10) as a calculation tool.

2.5. Construction of the 2-graph S« (3)

We will use the methods from [6, Section 6] to construct the 2-graph. The basis for their
construction is a directed coloured graph, such that the transition matrices commutes for
different colours, together with further commutation rules whenever there is ambiguity in
the arrow composition.
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Let us consider the complex vector space C°. We identify the canonical basis vectors
V1, ..., Ve with the vertices of (2.10) in the following way:

1=CZ, 2=BZ, 3=CY, 4=BX, 5=A4Y, 6=AX.

We define the transition matrices Mg and Mg (R for red and B for blue) such that Mg has
a 1 at the (7, j) index if in (2.10) we have a red arrow i — j between the corresponding
vertices. For Mg, we proceed in a similar way. With this definition, we have

1 000 0O 1 000 0O
1 1.0 0 00 01 00 0O
001 00O 1 01 00O
Me=tp 1t 10100l M={o101 00
0 01 010 1 11010
|00 0 0 1 1} (00 0 1 0 1]
A calculation gives that
(1 0 0 0 0 O]
1 1.0 000
1 01 0 00
MgpMp = MpMp = v 2110 0 (2.11)
21 2010
11 1 1 1 1]

so that these matrices fulfill the requirements in [6, Section 6]. We see that in (2.11), we
have 4 indices with 2’s in them, and we need to resolve these ambiguities.
Let us define

AZB = {(a, x) | a ared arrow, x blue, such that r(a) =i, s(a) = r(x) and s(x) = j}.

and we define Ag g similarly, but with the colours switched. From (2.11), we deduce that
the sets A% p and Ag g contains the same number of elements for all indices 7, j . For each
i, j, we will construct a bijection

bij: AZR - A%B'
Itis clear from (2.11) that we only need to specify ¢;; fori, j = (1,4),(1,5),(2,4),(3.5),
i.e., for
(CZ) — (AY), (BZ) — (AY), (2.12)
(CZ) — (BX), (CY)— (BX). (2.13)

We get these from the relations satisfied by the operators (2.6) as (for the arrows with the
labels)

ZoA=BoY, YoA=AoY, for¢is,pss (thearrows from (2.12)), (2.14a)
YoB=CoX, XoB=BoX, ford¢is,prs (the arrows from (2.13)). (2.14b)

From [6, Section 6], we now get the following result.
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Proposition 6. This input-data uniquely determines a 2-graph Su(3).

Thus, Su(3) is the 2-graph with vertices the nodes in (2.10), the blue and red arrows,
the sets (1, 0) and r=1(0, 1), respectively, and where we have the additional relations
between the red and blue arrows determined by (2.14).

2.6. Proof that C*(Su(3)) & SUo(3)

We define operators A, B,C, X, Y, Z € C*(Su(3)) by letting these be the sum of all the
partial isometries in C*(Su(3)) corresponding to the edges in (2.10) labelled respectively.
We denote the orthogonal projections in C*(Su(3)) coming from the vertices by P, with
ve{AX,AY,BX,BZ,CY,CZ}.

Lemma 7. The elements A, B,C, X, Y, Z are generating C*(Su(3)).

Proof. Note that all the red or blue arrows with range a particular vertex has the same
labels. By inspection of the graph (2.10), and (CK4), we have

AA* = Pgx + Pay BB* = Pgx + Ppz CC* = Pcy + Pcz; (2.15a)
XX* = P4x + Px Yvy* = Puy + Pcy zZzZ* = Ppz + Pcz. (2.15b)

From the list (2.15), we see that withm € {4, B,C} andn € {X,Y, Z}, we have
mm*nn* = Py,.
It follows that we can recover all the edges in (2.10). [

Unsurprisingly, this is the same formula for the projection as (2.9). We also see from
(2.15) that
AA* + BB*+CC*=1=XX*+YY*+ZZ".

Lemma 8. A, B,C, X, Y, Z are all quasinormal partial isometries. In particular, A and
X are isometries. Moreover, the following relations hold:

BA=B*A =0, YA = AY, CA=C*4A=0, (2.16a)
ZB = BZ, YB=AZ, ZA=Z*A=0, (2.16b)
CB=C*B=0, AX = XA, AX* = X*4; (2.16¢)
YX=Y*X=0, BX=XB, ZX =Z*X =0, (2.16d)
CY =YC, BY =XC, CX=C*X=0, (2.16¢)
ZY =Z*Y =0. (2.16f)

Proof. Notice that, by the symmetry of the graph (2.10) and the relations (2.14), we can
switch 4, B, C with X, Y, Z. By this argument, the relations below the gap in (2.16)
follows from the ones above.
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Let us first show the claims of quasinormality and isometry. We know from Lemma 7
that A, ..., Z are partial isometries. Moreover, as every vertex is a source vertex for
an A or X arrow, it follows that A and X are actually isometries. Quasinormality (i.e.,
vv* < v*v) is easy to see from (CK3) and (CK4), as, for example in the case of Y, the set
of range vertices for Y -labelled arrows is a subset of the source vertices. Similarly for the
others.

Assume for this paragraph that A4, ..., Z again denote the arrow-labels in (2.10). The
definition of Su.(3), in particular (2.14), shows that YA = AY, ZB = BZ,YB = AZ, and
AX = XA for all composable arrows with these labels. Some diagram inspection shows
that the same is true for the corresponding operators.

We deduce that BA = B*A = CA =C*A=Z7ZA = Z*A = 0 from the fact that
in (2.10) no arrow with label A has its range on any vertex that is the source or range of
an arrow labelled either B, C, or Z. We have CB = C* B = 0 for the same reason.

Lets prove the last relation AX* = X*A. Some diagram chasing of (2.10) shows that
the projection onto ker A* is given by P = Ppx + Ppz + Pcy + Pcz. By (2.10), this
subspace is invariant under X . It follows that

PXP=XP = (I-P)X(I-P)=({-P)X.
As AA* =1 — P, we get from AX = XA that
XA* = A*(AX)A* = A*(XA)A* = A*X(I - P).
Then
A*X(I —P)=A"AA*X(I —P)=A"U-P)XUI -P)=A"I -P)X=A"X. =
Assume that we have a Hilbert space H and a faithful representation
p:C*(Su(3)) - BH).

Let us denote & = p(Pcz)H. To make things appear more concise, we will suppress p and
write x instead of p(x) for x € C*(Su(3)). This is safe as p was assumed to be faithful.

By conditions (CK3)—(CK4), we have that & is invariant under the operators C and Z,
and, moreover, the restrictions to this subspace are unitary. Thus, let us denote C:=C le
and Z := Z |¢. Clearly, C.Ze B(&) are commuting unitary operators. Moreover, as the
representation is assumed to be faithful, it follows from the gauge action that we have an
isomorphism C *(C,Z ) = C(T) ® C(T), and, moreover, that this isomorphism can be
takensothat C — z® [ and Z — [ ® z.

Consider the closed subspaces

(k) = A*B Y"C~*+DZme  fork = (j,k,m) € N3. (2.17)

Note that the negative exponents are not a problem as C and Z are unitary.
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Lemma 9. We have &(K)L& (n) for k # n, and a unitary isometry

w:ek) - 2N e, (2.18)
keN3
given by the formula
AkBiymC—ktNZz=my s e Qe ®em x, forxeb. (2.19)

Proof. As C and Z are unitary, we can safely ignore these factors in (2.17) when we
prove the orthogonality and non-zero-ness of the subspaces & (k). An inspection of the
graph gives that

A*A =1, AA* = Pyx + Puy,
B*B = Ppx + Ppz + Pcy + Pcz, BB* = Ppx + Ppz,
Y*Y = Pqy + Ppz + Pcy + Pcz, YY*= Pqy + Pcy.

It follows from this that A, B,Y are isometries when restricted to the ranges of A*A, B* B,
Y *Y, respectively (note that these subspaces also reduces their respective operator). Moreover,
the Wold—von Neumann decomposition gives, with &4 = (I — P4x — P4y)H, &p =
(Pcy + Pcz)H, and &y = (P4y + Pcy)H, for R € {A, B,Y} and all k € N a unit-
ary operator

R:R*¥€gr — RF ey,

and, moreover,
R"ERLRIER, form # j.

An inspection of (2.10) gives
§Cé&y, Yvecg&p, BFepcC &y, forallkeN.
From this, we can then deduce that for, allk = (j,k,m) € N3, the map
A¥BIY™: & — (k)

is unitary, and, moreover, that & (k) L& (n) for k # n. In particular, it follows that W
determined by (2.19) is unitary. ]

Proposition 10. The subspace @y s € (K) is reducing the images of A, . . ., Z. Moreover,
if W is the isomorphism (2.18), then

WAW* =1®S®1®C, (2.20a)
WBW*=SQP®I®C, (2.20b)
WCW*=P®PRIQC: (2.20c)
WXW*=S®IQS®Z, (2.20d)
WYW*=PRI®S®Z+S*®@SQPQZ, (2.20e)

WZW*=IQPQPQZ. (2.20f)
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Proof. We Will use the notation
[X](j. k,m) := A¥BIymC—*k+DZ7=mx  forx € €.

By using the list of relations (2.16) from Lemma 8, it is simple to calculate the actions of
A,...,Z,and A* — Z* on this element as

A[X1G. k,m) = [Cx](j. k + 1, m)

« . 0 ifk =0,
A*[x](jkom) = ~ ,
[C*x](j,k —1,m) otherwise,

. 0 ifk >0,
B[x](j, k,m) =1 ~ ,
[Cx](j + 1,0,m) otherwise,

. 0 ifk >0o0rm =0,
B*[x](j.k,m) =1 ~. .
[C*x](j —1,0,m) otherwise,

. 0 if j,k >0,
Clx](j, k,m) =1{ ~ .
[Cx](0,0,m) otherwise,

* . 0 if j,k >0,
C* G kom) = { .
[C*x](0,0,m) otherwise,

X[x](j, k,m) = XAKB/ymC—k+D z-my
= AkB/ xymC—*k+Dz—m
= AKB/(xC)ymC—kHitD Zzmy
= A¥B/ (BY)y"C~kt+itDz=m+tD 7
= [Zx](j + 1.k,m + 1),
X*[x](j, k,m) = X*AkBIymC—k+D Zz=my
= Ak x*BiymC—k+NZzmy, (2.21)
We break down the calculation of the right-hand side of (2.21) into three cases:
() ifj =0,then AXX*Y™mCkZmx =0,
(i) ifm =0, then AKX*BIC~*+Nyx = Ak(x*Z)B/C~*k+NZ-1x =,
(iii) if j,m > 0, then
Ak x*BIymC—k+DZz=my — gk x*gi—Y(BYy)ym~'C—k+NZzmy
= AKX B~V (xC)ym 1 C kN Zmy
— Ak(X*X)Bj—l Ym‘lﬁ‘(k+f‘1)2‘(m‘1)2*x
— AkBf_lY’”‘lé‘(k”“)Z‘(m_”Z*x
= [Z*x](j — 1, k,m —1).
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It is easy to see (again using (2.16)) that the action by Z, Z* is given as

211G kom) 0 ifk,m >0,
x|(j,k,m)=1{ -
J [Zx](j,0,0) otherwise,

" ) 0 ifk,m> 0,
Z¥x)(kom) =1~ .
[Z*x](/,0,0), otherwise.

To calculate the action of Y, we break this into the cases j = 0 and j > 0. We then have:
(1) if j = 0, then
Y [x](0,k,m) = YA*Y"C*Z™x
— Ak Ym+16—k Z—(m-i—l)zx
= [Zx](0,k,m + 1);
(2) if j > 0, then
vaAkgiymC—k+tnz=my
= AK(yB)B/tymC—k+NZmy
= A¥(AzZ)B/tymC kD Zmy
= Aktigi—lzymC—k+i) z=my
ARTIBI-Y(zy)ym-1C~k+tNZz-my — ¢ if m > 0,
- {Ak+le—16—<k+f>Zx =[Zx](j — 1.k +1,0) ifm =0.
We have shown that Py .3 & (K) is an invariant subspace for XX * and ZZ*. As XX * +

YY* + ZZ* = I it follows that its invariant under Y Y * as well. Moreover, a calculation
using (2.10) gives that

Y*Y = Pcz + Pcy + Ppz + Pay =YY*+CC*ZZ* + BB*ZZ*,

and thus by what we have proven, the subspace Py .3 € (k) reduces Y *Y as well. Since
we have that Y is a quasinormal partial isometry, it follows that Py 3 € (K) is also
invariant under Y *. Formulas (2.20) now follows from the above calculations. ]

Proposition 11. We have an isomorphim ¢: C*(Su(3)) — SUq(3) that intertwines the
gauge action C*(Swu(3)) with the right action on SUy(3).

Proof. From formulas (2.20), as well as the comments about c*(é , Z) made before
the statement of Proposition 10, we have a surjective homomorphism ¢: C*(Su(3)) —
SUy(3). The gauge action o, fort € T2 on C*(Su(3)) actson A4, ..., Z fort = (t1,12)
as

{A,B,C}+— {t1A,t1 B,1,C},
(XY, Z} = X, Y, 2}
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From (2.7), recall that we had the homomorphism B: T2 — Aut(SUy(3)) with action
induced by (2.7). It follows that we have ¢ o oy = fB; o ¢. Clearly, ¢(Ps) # 0 for all
0 € Su(3)obj. We then get from Theorem 4 that ¢ is faithful, and thus an isomorphism. =

2.7. Proof that SUy(3) = SU, (3)

Recall that we consider the C*-algebra SU((3) as a closed subalgebra of C*(S)®3 ®

C(T) ® C(T). Proposition 11 gave us the result that SUy(3) == C*(Su(3)), and thus in

order to show that SU,(3) is the graph C *-algebra of Su(3), we need to prove that we

have an isomorphism SU¢(3) = SU,(3). In order to do this, we essentially retrace the

proof of the g-independence of SU,(3) from [3] (or [8]), and extend it to the limit g — 0.
In this section, we aim to prove the following result.

Theorem 12. For all q € (0, 1), we have an isomorphism SUy(3) = SU,(3) that is
equivariant with respect to the right actions.

We first need some lemmas.
Lemma 13. The image of SU,(3) in
(C*(S)®C*(S) ® C(T)) & (C(T) ® C*(S) ® C*(S5))) ® C(T) ® C(T)
under the representation
Ay = ((nfq) X néq) X)) (n X néq) X ]'(l(q))) X (1, X 11)

does not depend on q. Moreover, this C*-algebra is generated by the limits ¢ — 0 of the
image of the generators C;')",fori =1,2,and j =1,2,3.

Proof. This is verified by a straightforward calculation. Recall that the generators C ;"" are
given by the formulas

C =11, € = (=) t_5

We calculate the images of these under A, as

AgCPY ' =((CS®IQR2)B(zQRTI®CS)®I ®z, (2.22a)
Ag(CNY* = (D ®IR®2)D(ERC,S®DY))®I Rz, (2.22b)
Ag(CM)* = ((090®0)D (I ® Dy ® Dy))® I ® z; (2.22¢)
AgCPH)* ' =((URCSRNB(IRC,SRI)N)QRz® I, (2.22d)
Ag(C)* = ((CgS @D RN B (z®D;®1) Rz 1, (2.22e)
Ag(C)* =((Dg®Dy 1D (0®0R0)®zQ 1. (2.22f)

Notice that all images have norm-continuous limits at ¢ = 0. We denote these limits by
Ao(C ;”i )*. It is not hard to see that the two C *-algebras

A1 = C*(Ag(CP)* Ag(CF)*, Ag(C)),
Ay = C*(Ag(CPH)*, Ag(CFH)*, Ag(C2)™)

are independent on g and generated by the limits ¢ — 0.
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We prove this for #;. The case of 4, is treated similarly. Take the limits ¢ — 0 to get

A(CP)Y* =((S®IQ2)®(zR1I®S)®I Rz,
A CNY* =(PRI®2)D(EZ®S®P)RI ®z,
Ao(C)* = (0300 B(IQP®P)RI ®:z.
First, we show that Ao(C;*")* € A; fori = 1,2,3. Clearly, Ay (C;"")A4(C™")* is invert-
ible. It follows that
Ag(CP)* (Ag(CPNALC)N T = (S®T®2)S(RI®S) Rz
= Ao(CP)* € A,

From this, we get that also
Ao(CP)Ao(CP)* — Ao(C)* Ao(CP)
=(PRI®NDURIR®P)RIRI € A.
Thus,
(PRI®NDPUIRI®P)®IQIALHC)”
=(PRI®)BERC,S®P)R®I ®zc A. (2.23)

Itis not hard to see that 0 is an isolated point in the spectrum of the absolute value of (2.23).
Thus, the partial isometry of its polar decomposition lies in #;, so that

(PRI®2)B®ERS®P)®I®z=Ag(CS)* € Ay

From (2.22), it is also clear that 1 is an isolated point in the spectrum of the operator
Ag(CYMAL(CP)*, and so it follows from the spectral theorem that ((0 ® 0 ® 0) &
I®PRP)®I®I € A;. Thus, we have

(02020)® (I ® P ® P)A(CO)*
— (09000 DU ®P®P)®I®z=Ao(CO)* € Al
This finishes the proof that Ao(C/”')* € A fori = 1,2,3.

That these elements also generates #; follows from the easily-verified norm-conver-
gent formulas

Ag(CPD)* = Ao(CP)* (Ag(CPHAL(CP)*)?
= Ao(CPD (1= %) D g (Ao(CP) ) (Ao(CP)F)2,

k=0
Aq(CM)”

o0 o0
=g A€ ((1 = g1 2TV AG(CE) Y Ao(C5))E Ag(CE)* Ao(CPE,
k=0 J=1
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Ag(CPH)”

= g (Ao (CP) M (A(CS)*) ) A0 (CEN* (Ao (€M) (Ao(CP)F).  m
k,j=0

By [5], we have that SU,(3) is a C *-algebra of type I. Thus, the C*-algebra from
Lemma 13 is type I as well, by virtue of being the image of SU,(3) under a homomorph-
ism.

One of the central idea in G. Nagy paper [8] (e.g., to show that the C *-algebras SU, (3)
are all isomorphic) was to use the following lifting result, based on the theory developed
in [10], to extend the trivial isomorphisms from Lemma 13, to isomorphisms between the
full C *-algebras.

Lemma 14 ([8, Lemma 2]). Let H be a separable Hilbert space, let K be the space of
compact operators on H, let Q(H) = B(H)/K be the Calkin algebra, and let p: B(H) —
Q(H) be the quotient map. Suppose A is a fixed separable C*-algebra of type 1 and
Yq: A — OH), g € [0, 1], is a point-norm continuous family of injective *-homomorph-
isms. Denote
Ay 1= Yg(A), My :=p~'(Uy).

Then there exists a family of injective *-homomorphisms W,: Mo — B(H), g € [0, 1], with
the following properties:

(@) Y,(My) = M, forq €[0,1] and Vo = Idpy,;

(b) the family Wy: My — B(H), g € [0, 1] is point-norm continuous;

(¢) foreveryq € 0, 1], the diagram

\I,q
My —*— M,

”l lp (2.24)

Wy —— A
O Typeuyt T

is commutative.

By using similar arguments (or rather half the arguments) as in [3, Lemma 2], one can
extend this lemma to the half-closed interval [0, 1). We remark that this extension is not
really needed for the purpose here, as we are mostly interested in establish an isomorphism
between SUq(3) and SU,(3), and thus need to only consider the interval [0, q].

Lemma 15. Let X € C*(S)®3 denotes the C*-algebra of compact operators. We have
K@ C(T)® C(T) < SUu(3).
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Proof. This is a calculation done using the operators (2.6). We have (6 *C )(2 *2) =
PRPRPRI®I € SUH3). Thus, also

CPRPR®PRIQRI)=PR®PQ®PRz®I € SUy(3),
ZIPQPROPRIR®)=PRPRPR®IQzecSUy(3).

We then get from the Stone—Weierstrass theorem that P ® P ® P ® C(T) ® C(T) C
SUy(3). Assume that we have the usual inclusion C(T) € B(L?(T)). A simple calcula-
tion shows that, for all (j, k,m) € N3, we have

(A¥BIYMC=mO 7= (xg @ xo @ X0 R 1R 1) =x; @ X, @ x ® 1@ 1.
From this, it follows easily that X ® C(T) ® C(T) < SUy(3). |
After this lemma, we can now proceed with the proof of Theorem 12.

Proof of Theorem 12. We have the SU, (3)-representation
M, =72 R 2? ®7?:50,3) - C*(5)®* < BU*(N)®?),

where ni(q): SU,(3) — C*(S) is as in (2.2). By [5], this representation is irreducible. As
SU,(3) is type I, we have
X CImIl, € C*($)®?

(where again K denotes the compact operators). Consider now the homomorphism defined
as the composition

SU,(3) Mo, BL*(N)®3) =K BUPN)®3) /K = QU*(N)®?). (2.25)

We can deduce from the SU,(3)-representation theory ([9, Theorem 4.1 (ii)]) that the
kernel of the representation (2.25) is the same as for the representation

b, = (nl(q) X néq) Kt) (X Jl’éq) X nl(q)).

By evaluating the C*-algebra from Lemma 13 at the point (1, 1) € T? at the factor
C(T) ® C(T), one sees that the image of ¢, is actually independent of ¢, and that it
is generated as a C *-algebra by the limits lim,_.¢ ®, (Cj‘”i ).

We denote A := Im ®,. By comparison of kernels, it follows from the representation
theory of SU,(3) that we have an injective homomorphism ¢,: A — Q(¢*(N)®3) such
that the following diagram commutes:

C(SU3)y —2 5 4
m,| lwq (2.26)
BEN)®?) —> QE(N)®?)



Quantum SU(3) as the C *-algebra of a 2-graph 115

Let F(t(g)) be a fixed non-commutative polynomial in the set {C;”‘ , (C_;”i 1j=12,i=
1,2,3}. Such elements are dense in SU,(3) for g € [0, 1). As the images of the generators
C jw,- under ®, and I1,; depends norm-continuously on ¢ € [0, 1), it follows that so does
®,(F(t(g))) and I1, (F(t(g))). In particular, we have norm-limits

lim & (F(£(q))) = ®o(F(L(0)).

Jim Tlq (F(t(g))) = To(F(t(0)).

We claim that ¢, depends point-norm continuously on ¢ € [0, 1). To prove continuity at
g € (0, 1), we consider elements in A of the form ®,(F(t(g))). We have

l9g (g (F(t()))) = ¢g+¢(Pg (F(t(g)))]l
< llgg (Pq(F(t(2)))) = pg+e(Pg+e(F(t(g +€)))||
+ 9+ (Pg+e(F(t(g + €))) — @g+e(Pg (F(t ()]
=< [Ty (F(t(9))) = Hg+e(F(t(g + NIl + [P+ (F(t(g + €))) — Py (F(t()].

and by the above comments, both terms in the last expression — 0 as |€| — 0. The claim
follows as these elements are dense in A. We show the existence of the point-norm limit
limg 0 ¢4, and that ¢o maps ®o(F(t(0))) to ITo(F(t(0))) + K. For € > 0, we have

[TLo (F(£(0))) + K — e (Po(F(t(0))))
< [To(F(t(0)) + K — ¢ (P (F(t())))]l
+ [|9e (P (F(t(€)))) — @e (Lo (F(£(0))))l

= [Ho(F(t(0))) — e (F(t())]l + | Pe(F(t(€))) — Po(F(t(0))Il,
and both these last terms converges — 0 as € — 0. Again, by the density of ®((F(t(0))),
the point-norm limit go: A — @(£?(N)®3) exists and is an injective homomorphism (as
it is a point-norm limit of injective homomorphisms). We can thus apply Lemma 14 to get
isomorphisms

Ty: p~(@o(4)) = p~H(pq(A)) = B4(C(SU3),).

Let us denote M := p~!(po(A)). By Lemma 15, evaluating the C(T) ® C(T)-factors
in SUp(3) at a point shows that the C *-algebra generated by elements I1o(F(t(0))) con-
tains K. Thus, it coincides with M . In particular, we have that

SU¢(3) €M ® C(T) ® C(T) < C*(5)®* ® C(T) ® C(T).

As
(]qu) X néq) %4 ]qu)) R(nRn)=E8,=10,X (K1)

gives a faithful representation of SU,(3), we can consider this C*-algebra as a sub-
C *-algebra

SU,(3) € T1,(SU4(3)) ® C(T) ® C(T) € C*(S)®* ® C(T) ® C(T).
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We now show that I'y ® ¢ ® ¢ restricts to an isomorphism
Iy ®1®1t:SUp(3) = SU4(3), forg e (0,1). (2.27)

To do this, note that we have the ideal X ® C(T) ® C(T) < SU,(3) for g € [0, 1). For
q € (0, 1), this is standard theory ([3, Lemma 16]); and, for ¢ = 0, this is Lemma 15. By
the diagram (2.24), the isomorphisms I'y fixes X, so that (2.27) fixes K ® C(T) ® C(T).
Thus, to show that (2.27) is an isomorphism, it is enough to check this modulo this ideal.
By (2.24), this is the same as showing that ¢, 0 ¢3! ® ¢ ® ¢ restricts to a isomorphism

(g 095 ®1®1):SUp(3)/K ® C(T)® C(T) — SU,(3)/ K & C(T)® C(T). (2.28)
Notice that, for ¢ € [0, 1), we have
SU4(3)/K @ C(T) ® C(T) < ¢4(4) ® C(T) ® C(T),
so that (2.28) can be reduced to the question if the following equality holds:

(05! ® 1 ®1)(SUp(3)/K ® C(T) ® C(T))
= (p;' ® 1®1)(SU4(3)/ K ® C(T) ® C(T)) (2.29)

as sub-C *-algebras of A ® C(T) ® C(T'). Due to (2.26), the question of equality in (2.29)
is the same as whether we have independence of ¢ of the images of

PR Ry =(r PR R Rr?RrP) R, K.

However, this was proven in Lemma 13. Thus, (2.29) holds, and hence I'; ® ¢ ® ¢ induces
an isomorphism SUy(3) — SU,(3). By (2.8), we have for all # € T that

Tg®@t®@)ofr =0l ®R). L

Remark. Since Iy fixes the compacts, it can be written as I'y(a) = U aU, for some
unitary U, € B(?(N)®3) ([1, Corollary 1.10]).

By combining Proposition 11 with Theorem 12, we have proven the main result here.

Theorem 16. For every q € (0, 1), we have an isomorphism ¢4: C*(Su(3)) — SU4(3),
intertwining the gauge action on C*(Su(3)) with the right action on SU4(3).

Proof. Take ¢y = (I'y ® t ® 1) o ¢, where ¢ is the isomorphism from Proposition 11 and
I'y ® ¢ ® ¢ is the isomorphism from the proof of Theorem 12. ]
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