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Categorical resolutions of filtered schemes
Timothy De Deyn

Abstract. We give an alternative proof of the theorem by Kuznetsov and Lunts, stating that any
separated scheme of finite type over a field of characteristic zero admits a categorical resolution of
singularities. Their construction makes use of the fact that every variety (over a field of characteristic
zero) can be resolved by a finite sequence of blow-ups along smooth centres. We merely require
the existence of (projective) resolutions. To accomplish this we put the #A-spaces of Kuznetsov and
Lunts in a different light, viewing them instead as schemes endowed with finite filtrations. The
categorical resolution is then constructed by gluing together differential graded categories obtained
from a hypercube of finite length filtered schemes.
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1. Introduction

Main result and motivation
In [23], Kuznetsov and Lunts prove the following theorem.

Theorem. Any separated scheme of finite type over a field of characteristic zero has a
categorical resolution by a strongly geometric triangulated category. Moreover, if the
scheme is proper, so is the resolving category.
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Roughly speaking, a strongly geometric categorical resolution of a scheme X, as
in the theorem, is a ‘nice’ embedding of the derived category D(X) := D(QCoh(X))
into a smooth triangulated category admitting a semi-orthogonal decomposition with as
components derived categories of smooth algebraic varieties. The construction in loc.
cit. makes use of a strong version of Hironaka, namely, that every variety (over a field
of characteristic zero) can be resolved by a finite sequence of blow-ups along smooth
centres. In this paper, we reprove this result in Theorem 7.10 without making use of the
strong version of Hironaka. We merely require the existence of (projective) resolutions.
It is well known that such a projective resolution is a blow-up (at least when the target is
quasi-projective over an affine Noetherian scheme').

The motivation for weakening the assumptions on the resolutions of singularities used
is so that the construction can be applied to orders over schemes (types of coherent sheaves
of (non-commutative) algebras over schemes). Therefore, this paper should be viewed as
part one in a bigger picture. Part two, which is in preparation, will apply the ideas in this
paper to construct geometric categorical resolutions of orders over schemes.

For simplicity, let X be a variety. In [23], the authors consider a resolution of singular-
ities of the form

Y,

fn—ll

Y1 «—— Zy

i
|

Yi+— 74

‘|

X +——— Z,,

(1.1)

where each of the f; are blow-ups with smooth centre Z; and Y,, is smooth. They then
inductively construct categorical resolutions of ¥; fori = n,...,0 (with Yy := X). The
semi-orthogonal components of the categorical resolution are copies of D(Z;), with suitable
multiplicity, and D(Y;,).

In this work instead we obtain the categorical resolution from a diagram of the form

Xo X Xn—1 X,
H (1.2)

N ]

X ¢ > S 4 > e & > dp—1 < > Sy,

By some form of Chow’s lemma [37, Lemma 088U], quasi-projectiveness can be achieved by blowing
up.
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where each g; is a blow-up with potentially singular centre S;; and the reduced schemes
associated to the X;’s are smooth. In this case, the semi-orthogonal components of the
categorical resolution are copies of D((X;)q), again with suitable multiplicities. It is
interesting to note that here the dimensions of the components strictly decrease with
increasing i, and therefore, the integer n appearing in the diagram is bounded above by the
dimension of X .

Although the diagrams (1.1) and (1.2) look similar, there is no analogue in our case
for the inductive procedure in [23] and we have to proceed differently. The categorical
resolution is constructed by gluing together a number of differential graded (dg) categories
in a suitable way. In the work of Kuznetsov and Lunts it is possible, through an inductive
regluing procedure, to restrict to gluing pairs of dg categories in every step of the construc-
tion. In our set-up this regluing procedure no longer works; we lose control over the gluing
bimodule (there is no analogue of [23, Lemma 6.9]). Therefore, we have to glue multiple dg
categories simultaneously. To this end, we consider the gluing of (punctured) hypercubes
of dg categories and construct a quasi fully faithful functor from the dg category situated
at the puncture to the glued dg category. It is this dg functor that yields the categorical
resolution, the relevant condition for quasi fully faithfulness is that of the hypercube being
‘acyclic’. The nonrational loci defined by Kuznetsov and Lunts yield acyclic squares.

In addition, for our approach, we put some of the results of Kuznetsov and Lunts
into a slightly different framework. Namely, throughout we work in the category of finite
length filtered schemes (together with the corresponding pullback and pushforward functors
between an adequate notion of quasi-coherent sheaves over them). Finite length filtered
schemes are equivalent to the #-spaces considered in [23], but the latter seem less con-
venient to deal with functoriality issues, especially when we deal with morphisms that
change the length of the filtration (the so-called ‘refinements’, see Section 6.1.4 or the next
subsection). One should also note that the utility of filtrations could already be seen in the
work of Kaledin and Kuznetsov [19], but the approach here is different.

In a nutshell

Let X be a variety and suppose f : Y — X is a resolution of singularities. When X does
not have rational singularities, i.e.,

ROy # Ox,

the derived pullback L /* : D(X) — D(Y) is not fully faithful, and so, it does not give rise
to a categorical resolution, a ‘nice’ embedding of D(X) into a smooth triangulated category
(see Definition 7.1 for a precise definition). To obtain a fully faithful functor one uses the
ingenious insight from Kuznetsov and Lunts to adequately modify D(Y'). This is done by
gluing D(S) onto it, where S C X is a so-called nonrational locus of X with respect to f,
it satisfies

Rf*If—l(S) = IS.
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Here, I7 denotes the ideal of the closed subscheme ? € X. The resulting square

Y« f7(S)

AR

X+— S

is acyclic, in some sense, and this acyclicity yields a fully faithful functor as required for a
categorical resolution.

However, the resulting gluing will only be smooth if both ¥ and the associated reduced
scheme of S are smooth. When f is a blow-up with centre Sy, S is some nilpotent
thickening of Sy. In particular, it is, generally, not reduced, and so, there is certainly no
reason for it to be smooth. Thus, we have to get rid of the non-reducedness and potentially
further resolve S. Removing the non-reducedness can, in some sense, be done by viewing
S as a filtered scheme by equipping it with its radical filtration, see also the next paragraph.
Further resolving S (endowed with its radical filtration) and inductively continuing the
procedure, using the fact that one can construct acyclic squares as above in a (somewhat)
functorial fashion, we inductively construct bigger and bigger acyclic hypercubes. As S is
strictly smaller than X, this procedure stops at some point. For example, with notation from
diagram 1.2, in the second step one obtains a cube of the form (we leave out the filtrations)

Xg¢—— o
./_'./l
!

X +—|— X1.

/ /!

Sz(—o

A sketch of the construction of the hypercube can be found in Section 7.2.2. With the
resulting hypercube of (filtered) schemes we associate a hypercube of dg categories. The
punctured hypercube of dg categories is then glued in order to obtain a categorical resolution
of X. The smoothness of the resulting glued dg category is ensured by the fact that all
the vertices adjacent to X are smooth by construction (and that all the morphisms in the
hypercube are proper). Placing adequate (finite) filtrations on the schemes in diagram (1.2)
we obtain a categorical resolution of the form

D(X) < (D(Xo. F§).D(X1, F}).....D(Xs. F))))

with n < dim X and where every component admits a further semi-orthogonal decomposi-
tion
D(Xi’ Fi*) = <D((Xi)red)a ey D((Xi)red))- (1.3)

length F; components

The semi-orthogonal decomposition (1.3) is the main reason for considering filtrations.
Suppose S is some non-reduced scheme whose associated reduced scheme is a smooth
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variety. Then, by endowing S with its radical filtration F}, we obtain a (finite length)
filtered scheme (S, Fr:d) that behaves smoothly; of course, S is not smooth. To formulate
the proof, i.e., to adequately place filtrations on the schemes in diagram (1.2), we work in a
category with as objects filtered schemes. The morphisms in this category include those one
expects, morphisms of schemes that are compatible with the filtrations, but another type of
morphism is also included. These are the so-called refinements, an example of which is the
procedure S — (S, Fx;) of endowing a scheme with a (finite) filtration. Combining filtered
morphisms with refinements we obtain what we call generalised morphisms, for lack of
inspiration, and generally denote these by a squiggly arrow ~>. Foundational material
concerning the category of filtered schemes, including the (derived) category of quasi-
coherent modules and the (derived) pushforward and pullback functors for generalised
morphism, is developed in Section 6. The reader that is willing to take these results for
granted, accepting that everything for filtered schemes works as one expects, can skip this
section. Moreover, we recommend the reader simply read Section 7, looking back at the
previous sections when necessary.

Overview of the paper

We start in Sections 2 and 3 by recalling some facts concerning triangulated and dg
categories; this can safely be skipped by readers already familiar with those concepts.
These sections mainly serve to introduce terminology, notation, and conventions.

After this, in Section 4, we study ‘directed dg categories’, a natural extension of [27, Sec-
tion 3.2]. These are the dg categories that appear as enhancements of triangulated categories
admitting semi-orthogonal decompositions. We give a sufficient condition for their smooth-
ness in Proposition 4.5. In Appendix A, we briefly discuss necessary conditions.

Then, in Section 5, we discuss how to glue (punctured) hypercubes of dg categories.
The way in which the categorical resolution is constructed is by gluing a punctured
hypercube of dg categories. We give sufficient conditions for the glued category to be
smooth (Corollary 5.18) and discuss necessary and sufficient conditions for a natural dg
functor from the dg category situated at the puncture to the glued punctured hypercube to
be quasi fully faithful (Proposition 5.13).

Filtered schemes are introduced in Section 6. Most of the chapter consists of making
everything that works for schemes also work in the filtered setting. In Section 6.1, we define
(finite length) filtered schemes and associate appropriate modules over them. Particularly,
we have the usual pullback/pushforward-like adjunction between the module categories
for any generalised morphism. A special instance of a generalised morphism is ‘taking a
refinement’. Then, in Section 6.2, we briefly discuss the relation between filtered schemes,
schemes and the A-spaces of [23]. Next, in Section 6.3, we discuss the derived category of
a finite length filtered scheme, showing that it has enough admissible complexes to obtain
a derived pullback/pushforward-like adjunction. We define and discuss perfect complexes
and the existence of semi-orthogonal decompositions of finite length filtered schemes in,
respectively, Sections 6.4 and 6.5. Functorial enhancements of certain types of filtered
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schemes are constructed in Section 6.6. Lastly, in Sections 6.7 and 6.8, we extend blow-ups
and nonrational loci to the filtered setting, and show in Section 6.9 how the latter and
refinements induce acyclic squares on enhancements.

Finally, in Section 7, we construct a categorical resolution of any finite length filtered
scheme whose underlying scheme is separated and of finite type over a field of characteristic
ZEero.

Some conventions

Throughout k denotes an arbitrary field of characteristic zero. As everything will be
considered over this field, we will neglect to write the adjective ‘k-’ in places.

By ‘module’ we mean ‘right module’, unless otherwise specified. All dg categories
considered are small unless explicitly stated otherwise. For dg bimodules, by convention,
the contravariant variable comes first just as for hom-complexes, i.e., for dg (A, B)-
bimodules we consider dg functors B ®y A — C(k). Perfect dg modules are the compact
objects of the derived category (they are not assumed to be in addition h-projective).

The closed subscheme corresponding to a quasi-coherent ideal I of a scheme X is
denoted by Vy (I). For finite length filtered schemes we often adopt a naming convention
for the filtration that reflects its length. For example, (X, F*) and (Y, F*) are implicitly
understood to have the same length, whilst (Z, G*) could have an a priori different length.

2. Preliminaries on triangulated categories

We advise the reader knowledgeable about triangulated categories to skip this section. It
collects some definitions and results concerning triangulated categories that we will use
throughout this paper. As most definitions are standard, this mainly serves to introduce
notation.

2.1. Compact objects

Let T be a triangulated category with arbitrary direct sums (some authors call this cocom-
plete, but we refrain from using this terminology). An object A of T is called compact if
Hom:(A, —) : T — Ab, the covariant hom-functor, commutes with arbitrary direct sums.
The full subcategory of T consisting of compact objects is a thick (i.e., closed under direct
sums) triangulated subcategory and denoted T¢.

A triangulated category T with direct sums is compactly generated if there exists a set
S C T¢ of compact objects that generate T, i.e., such that its right orthogonal

S+ :={B e T|Hom(4,B[i]) =0for A S,i € Z} = 0.
In this case, S determines both T and T¢, namely,
T¢ = Thick(S),
T = Loc(S),
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see, e.g., [28, Theorem 2.1]. Here, Thick(S), respectively, Loc(S), denotes the smallest
strictly full triangulated subcategory containing S that is thick, respectively, localising (i.e.,
closed under direct sums).

Let F : T; — T, be a triangulated functor between triangulated categories with direct
sums. We say F commutes with direct sums if, for any set of objects A; in Ty, the natural

morphism
@ F(4;) — F( @ Ai)

is an isomorphism. Moreover, we say F preserves compactness when F(T{) C T$.

To finish this subsection, we recall two lemmas, for which we refer to [23] for proofs.
Some original (or at least older) references for some of these statements are [28, Theorem
5.1] and [4, Lemma 1].

Lemma 2.1 ([23, Lemma 2.10]). Let F : Ty — T, be a triangulated functor between
triangulated categories with direct sums.

(1) Assume F is fully faithful and commutes with direct sums. If F(A) is compact, then
A is compact.

(2) Assume F has a right adjoint G and T is compactly generated. Then, F preserves
compactness if and only if G commutes with direct sums.

Remark 2.2. The requirement that T; is compactly generated in (2) is only needed for the
only if direction.

Lemma 2.3 ([23, Lemma 2.12]). Let F : T1 — T, be a triangulated functor between
triangulated categories with direct sums that commutes with arbitrary direct sums. Let

S C TS be a set of compact objects that generates T1. If F preserves compactness and, for
all A,A’ € Sandi € Z,

F : Homy, (A, A'[i]) — Homy,(FA, FA'[i])

is bijective, then F is fully faithful. If, moreover, F(S) generates T, then F is an equival-
ence.

Remark 2.4. Itis enough to assume F(S) C T§ since this implies I preserves compactness
(as T{ = Thick(S)).

2.2. Semi-orthogonal decompositions

Let T be a triangulated category and let Ty, ..., T, be triangulated subcategories of T. The
sequence (Tq, ..., T,) is called a semi-orthogonal collection of triangulated subcategories
if

Homr(T;,T;) =0 forl<j <i <n.

In words, there are no morphisms ‘going backwards’. If, in addition, the smallest trian-
gulated subcategory containing Ty, ..., T, is the whole of T, the sequence is called a
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semi-orthogonal decomposition. The subcategories T; are called the components of the
decomposition. We use the notation

T=(T1,...,Tn)

to express that T has a semi-orthogonal decomposition with components Ty, ..., T,.

We mention some properties in the special case n = 2. So, assume T = (T;, T2) has a
semi-orthogonal decomposition with two components. In this case, T; is left admissible
and T, is right admissible, by definition, this means that the inclusion j : Ty < T admits a
left adjoint j* and the inclusion i : T, < T admits a right adjoint ‘. Furthermore, for any
object A in T there exists a distinguished triangle

ii'A—>A— jj*A—
and we have
T, = Té‘ = {A € T | Homy(T2, 4) = 0}’
T, =17, := {A €T | Homr(A.T)) = O}'

Conversely, any right admissible triangulated subcategory S C T induces a semi-orthogonal
decomposition
T=(s%,s).
Of course, a ‘mirrored’ statement holds for left admissible triangulated subcategories.
Let us finish this section with a lemma for future reference.

Lemma 2.5. Let T be a triangulated category with direct sums admitting a semi-orthogonal
decomposition T = (Tq, T,). Assume that Ty = Loc(Sy) with S1 C T¢. Then, for any
distinguished triangle

Ay > A —> A1 —

with A; € T; we have that A is compact if and only if A1 and A, are compact (in T).

Proof. One direction is obvious, for the other assume A is compact. Let j : Ty — T denote
the inclusion and let j * be its left adjoint. We have A1 = jj* A (this follows for example
form [14, Section IV.1 Corollary 5]). By assumption, T; is closed under direct sums, so as a
result j commutes with direct sums. Therefore, its left adjoint j * preserves compactness by
Lemma 2.1. Moreover, as Ty is compactly generated by S; by assumption, T{ = Thick(S1),
so j(T{) € T¢ as §1 C T¢. It follows that A; is compact in T, and thus also A,. |

Remark 2.6. It follows that
T¢=(Ty N1, T,NT)

and, moreover, T{ = T; N T¢. However, in general, T, N T & T (e.g., look at D(X) =
(D(U),Dz(X)) with U C X a quasi-compact open of a quasi-compact quasi-separated
scheme X and Z := X — U). In addition, the statement is not true when one replaces the
assumption on Ty by a similar one on T, (e.g., look at D((} %)) = (6'D(B).a*D(A)),
where we used the notation of Lemma 4.7).



Categorical resolutions of filtered schemes 127
3. Preliminaries on differential graded categories

We advise the reader knowledgeable about differential graded (dg) categories to skip this
section. It gathers some recollections concerning dg categories. As most definitions are
standard, this mainly serves to introduce the conventions and notation we use. This is far
from a comprehensive introduction to the subject. A good introduction to dg categories
is [20], see also [23, Section 3] and [29, Section 3] on which we based much of this section.
We fix a ground field” k. As everything will be considered over this field, we will neglect
to write the adjective ‘k-’ in places.

3.1. The category of differential graded categories

A dg category A over a field k is a category enriched over C(k), the closed symmetric
monoidal category® of cochain complexes over k. That is, it is a usual category such
that for all objects A, B € A the morphism set Hom 4 (A4, B), which we will often simply
denote by A(A, B), has the structure of a k-complex and the composition is a morphism
of k-complexes. Thus,

A(A.B) = P A(A. BY

i€Z

is a graded k-module endowed with degree one morphisms d* : A(A, B)' — A(A, B)' 1
squaring to zero. When f € A(A;, Ay), we say f is homogeneous of degree i and we
denote this by | f| = i. We say f is closed when df = 0.

For any dg category A its homotopy category [A] is an ordinary category that has the
same objects as A and has H° Hom (—, —) as morphisms. Similarly, its underlying cat-
egory Z° A is the category obtained by taking Z° Hom 4 (—, —) instead of H° Hom 4 (—, —).
We say a degree zero morphism f is a homotopy equivalence if it is invertible in [A], and
is a dg isomorphism if it is invertible in Z%A. Two objects of A are homotopy equivalent if
there exists a homotopy equivalence between them; similarly, they are dg isomorphic if
instead there exists a dg isomorphism.

20f course, most of what follows works more generally over a general commutative base ring. But,
as our main application will be in the setting where k is a field we restrict to this here already for ease.
(Otherwise we would have to take derived tensor products at appropriate places.)

3 The monoidal structure on C(k) is given by the usual tensor product of complexes with symmetry
given by

a®br ()" ®a,

where | — | denotes the degree of an element. This is the so-called ‘Koszul sign rule’, i.e., add signs when
exchanging elements, and is why there are so many minus signs abound when working with dg categories.
Note moreover that by the definition of the monoidal structure we have

(f ® ga®b):= (-1 fa) ® g(b).
(f®go(f ®g):=D"El(fofH®(gog).

where f, f/, g and g’ are morphisms of complexes and a and b are elements in the respective domains of
the morphisms.
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For any two dg categories A and B a dg functor F : A — B is a C(k)-enriched functor,
i.e., forall A, B € A the map A(A, B) — B(FA, FB) is a morphism of k-complexes. A
‘good’ notion of equivalences between dg categories is given by quasi-equivalences. These
are dg functors that induce quasi-isomorphisms on the morphism complexes, we say it is
quasi fully faithful, and in addition induce essentially surjective functors on the homotopy
categories.

The category of small dg categories is denoted dgcat and has the small dg categories,
i.e., whose objects form a set, as objects and the dg functors as morphisms. In this text all
dg categories considered are small unless explicitly stated otherwise. The category of small
dg categories has the structure of closed monoidal category. Namely, the tensor product
of two dg categories A and B is the dg category A ® B with objects Obj A x Obj B and
morphisms

(A ®xk B)(A, B), (A", B)) := A(A, A") ®k B(B, B').

There are minus signs in the composition due to the Koszul sign rule. Moreover, for any
two dg categories /A and B there is a dg category Fung, (A, B) whose objects are the dg
functors from A to B. Given dg functors F, G : A — B the complex Hom(F, G) has as
ith component families of morphisms 14 € B(FA, GA)' making the usual diagram for a
natural transformation commute up to a sign given by the Koszul sign rule.

Lastly, for any dg category A there is an opposite dg category A°P. It has as objects
Obj A and as morphisms A°P(A, B) := A(B, A). Again, there are some minus signs in the
composition given by the Koszul sign rule.

3.2. Differential graded modules

To any dg category A one can associate the (big) dg category of (right) dg A-modules
dgMod A. It is defined as the dg category Fungg (A, C(k)), where C(k) is the (big) dg
category of k-complexes (as C(k) is closed monoidal it is naturally enriched over itself).
With this definition k-complexes are simply dg k-modules, where we view k as a dg
algebra (a dg category with one object) concentrated in degree zero. There is a natural fully
faithful dg functor

h*: A —dgMod A, A A(—,A),

defined on morphisms by composition, called the Yoneda embedding. The image of an
object A € A is denoted 1 and is called a representable dg A-module (represented by A).
The category of left dg A-modules is dgMod A°P. Moreover, for any two dg categories A and
B we can define dg (A, B)-bimodules by considering dgMod(B ®[ A°P). By convention
the contravariant variable comes first just as for hom-complexes, i.e., we consider dg
functors B°? ® A — C(k). This is for convenience as most bimodules we consider will
end up being hom-complexes in dg categories. For any dg category A there is a special dg
(A, A)-bimodule worth mentioning, namely, the diagonal dg bimodule which we simply
denote by A. It is given by mapping (A4, B) +— A(A, B). (Note that by our convention on
bimodules there is no confusion possible when we write A(A4, B), i.e., whether we mean
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hom-complex or diagonal bimodule.) Furthermore, for any dg (A, B)-bimodule ¢ and dg
functors F : A" — A and G : B’ — B we define the restricted dg (A’, B')-bimodule r¢g,
also denoted 4/¢3, as

roG(B', A') := o(G(B), F(4')) forAe A, B 3.

As for ordinary modules over rings, one can tensor and hom dg modules to obtain new
dg modules and there is the tensor-hom adjunction. We refer the reader to the references
given above for details.

Let F : A — B be a dg functor between dg categories. Precomposition with F induces
the restriction dg functor F, : dgMod B — dgMod A, sometimes also denoted Resr, it
maps N > N o F.Ithas aleft adjoint F* : dgMod A — dgMod B, the induction dg functor,
sometimes also denoted Indf, given by mapping M +— M ® 4 rB, where rB is the dg
(A, B)-bimodule obtained from the diagonal bimodule by restricting along the left B-action.
It is useful to note that F*(h4) = hF ) functorially, so F* extends F to dg modules.
Lastly, F, also has a right adjoint F'. It is defined by F'M(B) := (dgMod A)(F.h®, M).
Succinctly, we have the following diagram:

dgMod A

/TN

Fo £ G.)

N Y

dgMod B .

Let A be a dg category. We say that a dg A-module M is acyclic if the dg k-module
M(A) is acyclic for all A € A. The dg subcategory of acyclic dg modules is denoted
Ac A. The homotopy category [dgMod A] carries a natural triangulated structure, which we
discuss in the next section, and [Ac A] is a localising triangulated subcategory. We define
the derived category of A as the Verdier quotient

D(A) := [dgMod A] /[Ac A].

It is a compactly generated triangulated category, so in particular it has (arbitrary small)
direct sums. The Yoneda embedding induces a fully faithful functor [A] — D(A) and its
image (the representable dg modules) forms a set of compact generators.

For the definition of free, (finitely generated) semi-free, h-projective, h-injective and
h-flat dg modules we refer to the references given above. We simply mention that these
allow us to define derived functors in the usual fashion. In particular, we obtain derived
versions of the functors in the diagram (3.1) and a straightforward application of Lemma 2.3
yields.

Lemma 3.1. Let F : A — B be a dg functor. Both the derived induction functor LF* and
the restriction functor F, commute with arbitrary direct sums. Moreover,

LF*(h%) = hE@W.
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Thus, if F is quasi fully faithful (respectively, a quasi-equivalence), then LF* is fully
faithful (respectively, an equivalence).

A dg functor whose derived induction functor (or equivalently restriction functor)
induces an equivalence at the derived level, as in the above lemma, is called a Morita
equivalence. Hence, the lemma shows that any quasi-equivalence is a Morita equivalence.

A dg module M is called perfect if its image in D(A) is compact, i.e., D(A)(M, —)
commutes with direct sums. Sometimes perfect dg modules are assumed to be additionally
semi-free or h-projective, in which case the perfect dg modules are the homotopy direct sum-
mands of finitely generated semi-free dg modules. We do not include this assumption, they
are merely direct summands in the derived category instead of homotopy direct summands;
but as a consequence, the perfect dg modules are closed under quasi-isomorphisms.

We finish this subsection with a definition that will be needed later on. A dg (A, B)-
bimodule ¢ is said to be right perfect, or B-perfect, if p(—, A) is a perfect dg B-module
for every A € A; equivalently if Ly := — ®]]1 ¢ : D(A) — D(B) preserves perfectness
(i.e., compactness). More generally, if P is a property of dg modules we will say that ¢ has
P as right dg module, or is right P, if ¢(—, A) has P for every A € A. Of course, we can
also consider the left version of the above.

3.3. Pretriangulated differential graded categories and enhancements

Let A be a dg category. For any dg A-module M and integer n € Z we can define the
shifted dg module M [n] of M by shifting the objectwise complexes

M[n](A) := M(A)[n] for A € A.

Similarly, for any closed degree zero morphism f : M — N between dg A-modules we
can define its cone dg module cone( /) by taking the cone objectwise, i.e., for any object
A € A we have a morphism of complexes f4 : M(A) — N(A) so we can put

cone( f)(A) := cone(fy : M(A) - N(A)).

Both of these objectwise constructions are readily seen to extend to dg functors. In fact,
we can characterise them more abstractly. The shift M [n] is the unique (up to unique
dg isomorphism) dg module equipped with a closed degree n isomorphism M [n] — M.
Similarly, cone( f) is the unique (up to unique dg isomorphisms) dg module equipped with
degree zero morphisms

MI1] 2, cone( f) 2 MI[1], N i> cone( f) 2 N,
satisfying

pl = 1dM[l]v Sj = idw, P] =0, si=0, lP + jS = idcone(f)7
d(j)=d(p) =0, d(i)=jfe, d(s)=—fep,
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where ¢ : M[1] — M is a closed degree one isomorphism. (Not all of the above relations
are needed to uniquely determine the cone, e.g., the latter two imply each other given
the former.) Using the shift and cone we obtain, as for complexes over k, a canonical
triangulated structure on the homotopy category of dg modules [dgMod A].

A dg category A is called pretriangulated if the essential image of [A] in [dgMod .A]
under the Yoneda embedding is closed under shifts and cones of degree zero morphisms,
i.e., the essential image is a triangulated subcategory of [dgMod .A]. Worded differently,
A is pretriangulated if for every A € A and k € Z the dg module h4[k] is homotopy
equivalent to a representable dg module and for every closed degree zero morphism
f:M — N the dg module cone(h/ : h™ — 1)) is homotopy equivalent to a representable
dg module. If instead of ‘homotopy equivalent’ we require ‘dg isomorphic’, we say that
A is strongly pretriangulated. By the dg Yoneda lemma, being strongly pretriangulated is
simply requiring the existence of certain objects in A together with appropriate morphisms.

Every dg category can be embedded in a ‘smallest’ strongly pretriangulated dg category,
called its pretriangulated hull. For example, one can define this as the dg category consisting
of the finitely generated semi-free dg modules, these are exactly the dg modules generated
by the representable ones under shifts and cones. Alternatively, it can be described more
concretely using twisted complexes. See the next section for this.

The importance of pretriangulated dg categories lies in the fact that they can be used to
enhance triangulated categories. An enhancement of a triangulated category T is a pretri-
angulated dg category A together with an equivalence T = [A] of triangulated categories.
We often do not mention the specific equivalence explicitly, although it is part of the data,
and simply say that A is a dg enhancement of T. Enhancements do not always exist and,
if they do, need not be unique up to quasi-equivalence. However, in most algebraic and
geometric settings they exist and are unique. See [11] for an overview, and [10] for more
recent results.

Let A be a dg category and B C A be a dg subcategory. One can consider its dg quotient
A/B as constructed in [13]. As we are working over a field the quotient is constructed
by adding a contracting homotopy for every B € B, i.e., a morphism ¢p of degree minus
one with d(eg) = idp. When A and B are pretriangulated this construction gives a natural
enhancement of the Verdier quotient [A]/[B] as A/ B is then pretriangulated and

[A/B] = [A]/[B].

see [13, Theorem 3.4] and [26, Lemma 1.5].

3.4. Twisted complexes

We will define our gluing of dg categories as the pretriangulated hull of a ‘directed’ dg
category. One way of working with the pretriangulated hull in an explicit fashion is by
considering twisted complexes. This subsection serves to make our conventions concerning
twisted complexes explicit. We use those of [6] and [13] (though the latter is not explicit
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in the signs of the differential in the ‘shift closed dg category’). For the remainder of this
subsection, A is a fixed dg category.

3.4.1. Adding shifts. The shift closed dg category Z.A is defined as follows.

* The objects are formally tuples (A, n), where A € A and n € Z. However, we mostly
write (A4, n) as A[n].

*  The morphism complex ZA(A[k], B[l]) is equal to A(A, B)[l — k] as graded complex
but with differential given by dyew = (-1 dyq. Composition is naturally induced from
A.

Clearly, Z.A contains A as a full dg subcategory. The following motivates our choice in
signs.

Lemma 3.2. The category Z.A embeds into the category of dg A-modules dgMod A by on
objects mapping Aln] — h[n] and on morphisms sending f € ZA(A[k], B[I])" to the
natural transformation fi : h4[k] — hB[l] of degree n with

foc tAC. Akl > AC.B)[I]. g+ fg.CeA

on morphisms.

3.4.2. Adding direct sums. The shift and (direct) sum closed dg category LA is defined
as follows.

» The objects are formally finite sequences (4;)7_; = (A1, A, ..., Ay) of objects in
ZA. We usually write (4;)"_, as @;_, A; or simply P; A;.

¢ The morphism complex ZA(D; 4;,D; B;) is equal to P; ; ZA(A;, Bj) with com-
position given by matrix multiplication.

Note that the empty sequence is allowed above, in which case the morphism complex is zero.
So, the empty sequence yields a zero object. Moreover, in order to get matrix multiplication
to work nicely, one must index morphisms as follows, for ( fj;) € ZA(P; 4;. P ; Bj) we
have f;; : A; — Bj.

3.4.3. Adding cones. The dg category of twisted complexes tw A is defined as follows.

* The objects are tuples (A4, §), called twisted complexes, where A is an object of XA
and ¢ is a degree one endomorphism of A4 in XA given by a strictly upper triangular
matrix, i.e., 6;; = 0 for i > j (‘8 decreases the A4;”), satisfying dx 46 + 582 =0.

* The morphism complex (tw A)((4,8), (B,d')) equals ZA(ED,; Ai, €D, B:) as graded
complex but with differential given by d + [§, —], where d is the differential of X.A.
Explicitly, for f : (A,8) — (B,§'), wehave dy 4 f = dsaf + 8 f — (=11 £8.

In particular, the following shows that [tw .A] identifies with the triangulated subcategory

of [dgMod A] generated by the representable dg A-modules (under the functor mapping

(D Ailki]. §) to the dg A-module ; A(—, A;)[k;] as a graded module endowed with the

differential d4 + €D; ; 8ij)-
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Proposition 3.3 ([6, Proposition 3.10]). Let A be a dg category. Then, the following
statements hold:

(1) the dg category tw A is closed under taking cones of closed degree zero morphisms,

(2) every object in tw A can be obtained from objects in A by taking successive cones
of closed degree zero morphisms.

Remark 3.4. With these conventions, the cone of a closed degree zero morphism f : A —
B in A is given by the twisted complex (B @ A[l], (g f;))

3.5. Smooth and proper differential graded categories

A dg category A is (k-)smooth if the diagonal bimodule is perfect, i.e., A is perfect over
A ® A. Spelled out, this means that A as bimodule is a direct summand, in the derived
category, of a bimodule obtainable from representable bimodules by a finite number of
shifts and the taking of cones of closed degree zero morphisms. We say that A is (k-)proper
if for all objects A, A> € A the k-complex A(A1, A3) is perfect; equivalently, it has finite
dimensional cohomology.

The following lemma of Toén and Vaquié will be crucial for showing the perfectness of
bimodules later on. We include a proof for the convenience of the reader.

Lemma 3.5 ([40, Lemma 2.8.2]). Let A, B be dg categories and let ¢ be a dg (A, B)-
bimodule. Assume A is smooth and ¢ is right perfect, then ¢ is perfect.

Proof. As ¢ is right perfect, tensoring with ¢ induces a compactness preserving functor
D(A® ®y A) — D(A® Q@ B) (it maps the compact generators 1447 to h4 @y ¢(—, A')).
Moreover, as it maps A — ¢ and A is perfect by assumption, we conclude that ¢ is
perfect. |

4. Directed differential graded categories

In this section, we collect some results on directed dg categories, which are a natural
extension of [27, Section 3.2]. These appear naturally as dg enhancements of triangu-
lated categories equipped with semi-orthogonal decompositions. We give some sufficient
conditions for their smoothness and make some remarks concerning necessary conditions.

4.1. Terminology

Let C be a dg category and assume it has full dg subcategories* Ay, ..., A,_1 such that
ObjC=|l;—.. .1 ObjA; and’ Hom4 (A;, A;) = Ofori > j. We call such a dg category

4The indexing 0, . . ., n — 1 may seem strange to the reader, it is chosen to be uniform with the hypercube
indexing later on.

STt actually suffices to merely require these hom-complexes to be acyclic, as the dg category is then
quasi-equivalent to a dg category where they are zero.
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directed, or say that it comes with a directed decomposition. One can think of a directed dg
category as a lower® triangular matrix. Indeed, giving such a dg category is equivalent to
giving the data of dg categories Ay, . .., A,_; together with dg (A;, A;)-bimodules ¢;; for
i > j and (A;, Aj)-bimodule morphisms @iz @4, ¢xk; — ¢ij for0 < j <k <i <n—-1
satisfying the natural associativity and unitality conditions. One can graphically depict this
as a lower triangular matrix

Ao 0 0 0
®10 A 0 0

e=] o0 $21 Ay o 0| 4.1)
On-1,0 Pn-1,1 Pn-12 - Ap—1

but note that for n > 2 the notation does not include all the data necessary for defining the
composition.

These types of dg categories naturally induce semi-orthogonal decompositions, as the
following result shows. (This is similar to [23, Corollary 4.5] or [29, Proposition 3.7] but
with a slightly different set-up, as they assume the A;’s are pretriangulated.)

Proposition 4.1. Let C be as in equation (4.1). The inclusions A; — C induce a semi-
orthogonal decomposition

[tw €] = ([tw Aol . .., [twAu_1]).

Proof. The inclusions induce fully faithful triangulated functors [tw A;] — [tw C]. We thus
shamelessly identify the domains with their essential image.

To observe the claim, note that the tw A;’s are suitably orthogonal (as the A;’s are) and
that they generate [tw C] as triangulated category, i.e., [tw C] is the smallest triangulated
subcategory of itself containing them, since they contain the objects of € (and tw € is
generated by those under cones and shifts). ]

Conversely, these categories appear naturally as enhancements of triangulated categories
with semi-orthogonal decompositions, as the following proposition shows. Its proof is
exactly the same as [29, Proposition 3.8] which is the case n = 2.

Proposition 4.2. Let T = [A] be a dg enhanced triangulated category and assume it admits
a semi-orthogonal decomposition of the form T = (Ty, ..., Ty—1). Define A; as the full
dg subcategory of A with objects from T; and put ¢;j := a;Anx; the restriction of the
diagonal bimodule equipped with bimodule maps induced from the composition in A. Then,
T = [tw(C)] with C as in equation (4.1).

This depends a bit on one’s point of view, as

A 0\ _ (B o dAO""_A"Pga"P
¢ 8) \o 4a) ™ \¢ 8) "o 3
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To finish this subsection, we note that there also exists a semi-orthogonal decomposition
on the derived level.

Proposition 4.3. Let C be as in equation (4.1). The derived induction functors of the
inclusions A; — C induce a semi-orthogonal decomposition

D(€) = (D(Ap). - ... D(An-1)).

Proof. By induction, we can reduce to the case n = 2 (for the induction step see, e.g., the
beginning of the proof of Proposition 4.5 below). This is then essentially [23, Proposition
4.6], but, as the set-up is slightly different, we repeat the argument for convenience of the
reader.

So, let C = (“;} %) and denote by a : A < Cand b : B — C the inclusion functors.
We have to show D(C) = (D(A), D(B)).

First, note that a* is exact (see Lemma 4.7 below) and, by Lemma 3.1, La* = a* and
Lb* are fully faithful as a and b are, so we identify their domains with their essential
images. As Lb* admits a right adjoint, we have a semi-orthogonal decomposition

D(C) = (D(B)*:,D(B)).

Moreover, bya™ = — ®';l «Cp = 0as 4, Cp = 0 due to the directedness. So, D(A) € D(B)~L.
Thus, as a* also admits a right adjoint, we obtain a further semi-orthogonal decomposition

D(B)" = (D(A)" ND(B)". D(A)).

ButD(A)L ND(B)L = 0as D(C) is generated by the representable dg modules h’é‘ = a*h::‘l
and h8 = Lb*hB with A € Aand B € B.

Alternatively, one can also argue that D(A) and D(B) generate D(C) using the distin-
guished triangle (4.3) below. ]

4.2. Smoothness and properness
Recall the following theorem of Lunts and Schniirer.

Theorem 4.4 ([27, Theorem 3.24]). Let C = ({pl 2 ) The following are equivalent:
(1) A and B are smooth and ¢ is perfect,
2) Cis smooth.

In this subsection, we give some sufficient conditions for the smoothness and properness
of directed dg category when n > 2. The conditions we give are far from being necessary,
but suffice for our purposes. We elaborate a bit on necessary conditions in Appendix A.

Our goal is to prove the following proposition.

Proposition 4.5. Let C be a directed dg category as in equation (4.1). Assume the dg
categories A; are smooth and the dg bimodules ¢;; are right perfect. Then, the directed dg
category C is smooth. Moreover, if the A; are proper, then so is C.



T. De Deyn 136

We will prove this by induction on n, reducing to Theorem 4.4. The main ingredient in
proving the above proposition is the following result, which characterises perfect modules
over directed dg categories for n = 2.

Proposition 4.6. Let C = (fﬂl %) and denote by a : A — Cand b : B — C the inclusion
functors. Then, a dg C-module M is perfect if and only if the dg modules b M and
cone(bs M ®Ié @ — a,M) are perfect, where the morphism is induced by the C-action’.

In particular, whenever @ is right perfect, M is perfect if and only if its restrictions
axM and b M are perfect.

In the remainder of this subsection, we state some preliminary lemmas after which we
prove both propositions.

Lemma 4.7 (See also [27, Section 3.2]). With notation as in Proposition 4.6, there is
an equivalence of dg categories between dgMod C and the dg category consisting of
triples (M 4, M5, (1) where M 4 and My are, respectively, a dg A-and B-module and
n:Mp @p ¢ — My is a morphism of dg A-modules.

Moreover, a : A — Cand b : B — C induce the following dg functors:

ax := Res, : dgMod C — dgMod A,
(Ma, Mz, 1) > Ma,
by := Resp : dgMod € — dgMod B,
(Ma, Mg, ) > Mz,
a* :=Ind, : dgMod A — dgMod C,
M — (M,0,0),
b* :=Indy : dgMod B — dgMod C,
M= (M ®g ¢, M,id),
a’ : dgMod A — dgMod C,
M — (M, B — Hom(¢(—, B), M), evaluation),
b' : dgMod B — dgMod €,
M + (0, M,0) (= C — Hom(b,h€, M)),

and
a*Haxdd', b*-bs b

7With notation of Lemma 4.7 below, it is obtained by precomposing  with the natural morphism
Mz ®% ¢ > Mz ®3 ¢.
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Lemma 4.8. With notation as in Proposition 4.6, the dg functor by preserves h-projective
dg modules and when ¢ is right h-projective so does ax.

Proof. Considering Lemma 4.7, we observe that b' preserves acyclics and a' does so when
@ is right h-projective. The claim follows from this by abstract nonsense. ]

Proof of Proposition 4.6. We may assume that ¢ is h-projective as bimodule. Indeed, let
@ — @ be an h-projective resolution. As the vertical arrow in the commutative diagram

G
SR

~
(v 3)
AO)

is a quasi-equivalence, we may replace ¢ by ¢. (We can ‘push down’ the result from ( 7B
to (é 2 )). Moreover, as we work over a field, ¢ is also h-projective as right (and left) dg
module.

To prove the claim, we may also assume M to be h-projective, replacing it by an
h-projective resolution if necessary. Taking the cone of the counit b*b, — 1 in dgMod C
gives the triangle

(M‘B ®3 (ﬂ) N (MA) N (COHC(MB ®3 ¢ > MA)) N 42)
Mz My cone(idps,, )

«N>

inducing a distinguished triangle in D(C). As

cone(Mg @5 ¢ — My) . cone(Mg @5 ¢ — My)
0 cone(idas,, )

is a quasi-isomorphism (exactness can be checked componentwise), M is h-projective and
@ is right h-projective, we have by Lemmas 4.7 and 4.8 that the distinguished triangle
induced by (4.2) has

leftmost term = Lb* (b« M),
middle term = M,
rightmost term = a*(cone(b. M ®% ¢ — axM)).

The claim now follows from Lemmas 2.1, 2.5 and Proposition 4.3. (Both a* and Lb*
reflect and preserve perfectness, as they are fully faithful, commute with direct sums and
have right adjoints that also commute with direct sums.) |

Remark 4.9. The last claim of the proposition (i.e., the case when ¢ is right perfect) can
also be proven as follows. Both a, and b, preserve perfectness as they map representable
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dg modules to perfect ones. The requirement that ¢ is right perfect is necessary here as
a«h8 = ¢(—, B) for B € B.

The fact that they jointly reflect perfectness can be seen making use of the following
distinguished triangle:

a*(b«M ®% ¢) —» a*axM & Lb*b .M — M — (4.3)

in D(C). Its existence is shown by reducing to the case M and ¢ h-projective, as above,
and inferring it from the short exact sequence

0— a*(b«iM Q@ @) — a*asM & b*bM — M — 0
in dgMod C.

Proof of Proposition 4.5. We prove this by induction on n. The case n = 2 follows from
Lemma 3.5 and Theorem 4.4.
So, let n > 2. Define

A := the full subcategory on the objects Obj.Ag LI Obj.A;,
@k := 4, C4 the restriction of the diagonal bimodule,

@ik ® 4, ¢k — @i induced by the composition of C.

Then,
Ao O
A=
(<P10 -Al)
and
A 0 0 0
@2 Aa 0 0
ec=| 3 @32 Az .- 0
On-1 Qn-12 @n-13 - Az

By induction, A is smooth and we will be done, again by induction, if we can show that
the ¢; are right perfect. But this follows immediately from Proposition 4.6 as, denoting the
inclusions A; — A by a;,

ao @k (=, Ax) = @ro(—, Ax),
ay«Pr(—, Ag) = o1 (=, Ax) for Ag € Ay.

Lastly, assume in addition that the A; are proper. As the A; are smooth, the bimodules
@;; are perfect by Lemma 3.5. Therefore, ¢;;(A4;, A;) is k-perfect for every A; € A; and
A; € A; (this holds for the representable dg modules hence also for the perfect dg modules).
Thus, all the hom-complexes in C are k-perfect, so by definition C is proper. ]
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5. Gluing hypercubes of dg categories

Let [#] :={0,...,n — 1} (and [0] := @) and consider a hypercube (or n-cube when we
want to emphasise the dimension) of dg categories

A=A, ={Ar. Vi j}ic),j¢l

i.e., a collection
{Ar}icn

of dg categories together with dg functors®

Gitseiseesir bk - Pty 7 Pitoeir
that strictly9 commute. In short, it is a functor PILANEN dgcat, where we view 2l (:=the
power set of [n]) as a category obtained from the poset ordered by inclusion. We will
usually write V;, for V{il,...,fk,...,ir},ik' Moreover, for I = {i; <--- < i}, we usually write
Vi or V.., for any composition (they are all equal by assumption) of V;’s starting at a
Ay, with I’ C [n] disjoint from 7, and ending at A;/ ;. Giving the same name to different
functors is sloppy, but it makes the notation easier. As everything strictly commutes, not
much confusion can arise in practice, so we hope the reader forgives us.

In addition, we also consider the punctured hypercube obtained by removing the dg
category Ag. We denote the resulting data by A; .

In this section, we do the following:

 we construct a dg category Glue(A,) glued from the punctured n-cube,

*  give necessary and sufficient conditions for a natural dg functor Ag — Glue(A; ) to be
quasi fully faithful,

* find suitable conditions to ensure smoothness/properness of Glue(A,,).

Lastly, we discuss two constructions, stacking and extending, of hypercubes.
For the remainder of this section, let A, denote a hypercube of dg categories.

5.1. Totalisation

We give a procedure to associate a complex to the data of a hypercube with complexes
as its vertices. This will then easily extend to hypercubes with values in Z° dgMod A for
A a dg category. The procedure is a slight modification of the one given by Khovanov in
[21, Section 3.3]. We modify it by simultaneously taking the total complex, so that we

8We use the following notation. If I C [1] consists of elements i < -+ < i, we write A;,
Moreover, fk indicates that the element i is omitted from the set.

°Tt is more natural to weaken this, only allowing the squares to commute up to some higher data. One
need then take this data into consideration when totalising. However, in our setting we can always reduce to
strictly commuting squares, so we do this here for simplicity.

i, for Aj.

.....
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obtain a complex as opposed to a double complex. Moreover, we also ‘flip’ the signs in
some sense.

Let W be the graded algebra generated by X; of degree —1 and d; := d/dX; of degree
1, fori €{0,...,n — 1}, satisfying the relations

Xin + XjX,‘ =0,
8,-8]- + 8]8,' =0,
1 ifi =j,
ax; X9 =4 =7
0 ifi #J.
We will make use of the X;’s and 9;’s to take care of the minus signs in the differential of
our complex. For this we view below products of X;’s as elements in W/(}_; W9;) and
consider the endomorphism induced by multiplication by 9; on W/(}_; W ;).
Let A = {A},ar1}1c[n),1¢1 be a hypercube of k-complexes. We associate a single
complex #(A) to A, called its fotalisation, as follows:

1(4) = @( [1 Xl) ®K A7

IC[n] “le[n]\I

10

as graded k-module'’ with differential given by'!

d = @ (( @ (07 - —) ®k 061,1) + 1 ®k dA;)~

ICn] N Nleln)\I

For notational ease we will often simply write X[\ 7 instead of ([ ;[ s X1)- The follow-
ing lemma is obligatory.

Lemma 5.1. We have d od = 0.
Proof. This follows as d;0;, = —d:9; forl # [I’. m

Remark 5.2. In the construction we did not have to choose any explicit signs in the
differential. The signs come about when choosing an explicit ordering of [r] and hence
of the factors in [ [; X;. However, it is worthwhile to note that any explicit choice, such
that every square in the hypercube anti-commutes, gives an isomorphic complex (the
algorithm given in [31] also works in this setting). Alternatively, one can argue by viewing
the hypercube as a CW-complex and a choice of signs as a cellular 1-cochain whose
differential has value —1 on every face. Different sign choices then differ by a coboundary
as the hypercube is contractible, which induces an isomorphism of the corresponding chain
complexes, see, e.g., [30, Lemma 2.2].

10Tn principle we should write (k [] te X1) ®k A, but we do not.
Recall from footnote 3 that signs arise when evaluating this on elements.
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We give some examples for small n (omitting the X;’s and d;’s from the notation).

Examples 5.3. We have the following.
(1) A O-cube of complexes is the same as a complex A°. Clearly, t(A4°) = A°.

(2) A 1-cube of complexes is the same as a morphism of complexes f : A®* — B®. We

have'?

t(A* L B*®) = cone(f).

(3) For a2-cube, i.e., a square,

S

B* —L p*
=k
a1, e
of complexes we have
(%) (re) .
t(D):Tot(---—>0—>A'———>B ®»C*—=D —>O—>---),

where D* is in the zeroth position and the signs depend on the chosen explicit
ordering of [2].

For a morphism { f7}7c[s] : A — B (which is just a natural transformation between
the corresponding functors) we obtain a morphism of complexes

P (1 ®x f1):1(4) > 1(B) (5.1)
1Cl[n]
as
(1®k f1)(1 ®k da,) = (1 ®k dp,)(1 Kk f1)
and

(1 ®x f1)((3;-—) k ary) = ((0; - —) ®k Br.)(1 @k f1),

since the { f7 } have degree zero. Hereby, we obtain a functor
¢ Fun(2, c(k)) — c(k).

Moreover, we can extend (5.1) to the case when the { f7} are not necessarily closed or of
degree zero (but of course we do not obtain morphisms of complexes in this way). This
allows us, by simply taking the above construction objectwise, to extend the 7-construction
to hypercubes of dg modules over a dg category A with closed degree zero morphisms as
edges. We obtain a functor

¢ : Fun(2™, Z° dgMod A) — Z° dgMod A. (5.2)

12This is why we put the [1; X:’s as first factor in the tensor product.
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In more detail, for a hypercube of dg modules M : 2[") — Z° dgMod A, we define
t(M)(A) :=t(M(A)) forAeA
(M (A) is the composition of M with ‘evaluation at A’) and define the action of A via'?

(Xpvr ®x m) -a = (X1 Ok (m - a)).

Remark 5.4. Further along, we will also use the above procedure for hypercubes indexed
by index sets different from 2["]. For example we will use indexing by

Jy={IChl{i.jycIcliii+1l,....j—1j}}.

Then, we change [n]\7 to {i,i + 1,...,j — 1, j}\[ in the construction.

More generally, the above procedure works for any set K and subset J C 2K of
‘hypercube shape’, if we change [n] — I by Jyuax — I, where Jyqx € J is the subset of
maximal cardinality.

5.2. The gluing

We associate a dg category Glue(A, ) to the punctured hypercube A;, which we will think
of as the dg category obtained by gluing the punctured hypercube. This is constructed as the
dg category of twisted complexes, i.e., the pretriangulated hull, over a directed dg category
that we construct first. An alternative, more explicit, definition, which only considers a
subcategory of the twisted complexes, is discussed in Appendix B. In the case n = 2, i.e.,
a square, we obtain the usual gluing of two dg categories along a bimodule (of a specific
type). In Section 5.3, we compare our conventions for the gluing with others found in the
literature.

5.2.1. Generalised arrow dg category. We start by associating a directed dg category to
the punctured hypercube. In order to define the morphism complexes, let us consider the
following subsets of the power set of [n] forany 0 <i < j <n —1:

Jj={Ichl{i.jycIclii+1,....j—1j}}.

(These form a partition of 2"\ &)
Define the generalised arrow dg category'* Gac(A; ) as the dg category having objects

n—1
| | objA;.
i=0

3By definition m - a := (—1)‘“”"‘|M(a)(m), S0 a acts via @,C[n](l ®k Mj(a)), the various minus
signs cancel each other.

4The name comes from viewing a directed dg category € = (;‘ % ) as an ‘arrow dg category’, as it
effectively makes elements of the dg bimodule ¢ into arrows. Directed dg categories can then be thought of
as ‘generalised arrow dg categories’.
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Fori < j denote by AJU_ the subgraph {A; };cy;; of A, viewedasa ((j —i —1) v 0)-cube
(we will identify J;; with [(j —i — 1) Vv 0] for indexing the hypercube'”). We can view
A J,;asa hypercube of dg (A;, A;)-bimodules, by first considering the vertices as diagonal
bimodules and then suitably restricting them along the edges of the hypercube. Applying
the z-construction then yields a dg (A, A;)-bimodule that can be evaluated on objects
A; € A; and Aj € A;. We define the morphism complex

HAS (A Ap) i <,

Homgac(4;, 4)) := {0 (5.3

ifi > j.
Concretely, fori < j,
Homgac(4;. 4;) == €P ( I1 Xl) @k Ar (Vi3 Ai, VivgiyAj)
1CJij “lefi,....j)\I
with differential
t=@(( B @eti) i)
1CJ;j; le{i,...j}\I

Sometimes we suppress IT; X; from the notation, denoting a morphism (I;ey;,.... jn7 X7 @K
J1) living in the I C J;; summand of Hom(X, Y) by f7. Moreover, we will use the
subscript to keep track of the degree of f7 as a morphism in the generalised arrow category,
it has degree | f7| — [{i, ..., j}\1| (here, as well as in the sequel, | f7| denotes the degree
considered as a morphism of Ay).

We define the composition as follows. For i < j < k (it is the zero map otherwise),
A; € A;, Aj € Aj and Ay € Ay, the composition

HomGac(Aj s Ak) Rk HomGac(Ais Aj) - HomGac(Ai , Ak)

sends'®

(this element lives in the I/ U I’ C J;; summand of Homg,c(A4;, A)). (5.4)
The unit morphism of an object A; € A; is given by

1 ® lg; € 1 @k Ai(A;, Ai) = Homgac (A, 4;).

B{I —{i,jh—i—1]1¢€Jij} =[(j —i—1) V0], essentially this identification just results in the
change we mentioned in Remark 5.4.
16 On the TT; X; part, which we did not write, we simply do concatenation

(As {j,..., KNI ud{i,..., JINI=1{,.... k}\(I U I').) Note that when making signs explicit, it is best
to order the product of the X;’s with the order opposite to the usual one of N. This ensures that there is no
minus sign when concatenating.
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Lemma 5.5. The composition is associative and unital, and it is a morphism of chain
complexes.

Proof. This is a graded morphism as {j,...,.k}\I'u{i,...,j}\I ={i,....k}\(I U
1), see also footnote 16. Showing that it commutes with the differential is tedious but
straightforward. Moreover, checking associativity and unitality boils down to a routine
verification that the signs match up. (For associativity note |I U I'|=[I|+|I'|—1.) =

5.2.2. Gluing dg category. We define the gluing dg category Glue(A,; ) of the punctured
hypercube A, as the dg category of twisted complexes over the generalised arrow dg
category

Glue(A,) := tw(Gac(A4,)).

An alternative, more concrete, description is given in Appendix B.

Remark 5.6. The gluing of hypercubes also appeared recently in the setting of stable
oo-categories in [12], as part of their ‘totalizations of categorical multicomplexes’. The
gluing dg category here appears as one of the terms in the complex obtained by ‘totalizing’
the hypercube diagram as in loc. cit. It is not immediately clear how to naturally obtain the
other terms, and thereby the complex, in this framework at the moment.

Remark 5.7. The ordering of the vertices matters, see Remark 5.9.

As an immediate corollary of Propositions 4.1 and 4.3 we obtain (note D(tw(—)) =

D(-)).
Corollary 5.8. We have semi-orthogonal decompositions

[Glue(A;)] = ([tw Aol. ... [twA,—1]).
D(Glue(A;)) = (D(Ao). . ... D(A,—1)).

5.3. An example: Gluing squares

Consider a punctured square
Ao —25 Aoy
a (5.5)
A
and let ¢ := y,Ao1y, be the dg (A1, Ap)-bimodule obtained by restricting the diagonal.
The following notions of a gluing of Ao and A along ¢ can be found in the literature.

e In Tabuada [38] the directed dg category

Ao O
B =
( 2 -Al)
is considered (as upper triangular matrix (! )
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* In Orlov [29] the gluing is defined as the pretriangulated hull of B. This is precisely
Glue(AS).

» Lastly, we could define the gluing as the full dg subcategory of tw B consisting of

objects cone(My = M), i.e., the twisted complex (M; @ Mol[l], (34)), where My €
Ao, My € Ay and u € (My, M) is a closed morphisms of degree zero. This is the
alternative gluing discussed in Appendix B.
Moreover, this is essentially the definition of Kuznetsov and Lunts in [23]. However,
their gluing Ag X, A; is defined as the full dg subcategory of tw ( (pfi"l] ;l)l ) (note the
shift in the bimodule) consisting of twisted complexes of the form (M; & M, (8 ’3)),
where My € Ay, M1 € Ay and u € p(My, M,) is a closed morphism of degree zero.
This explains the ‘strange’ minus signs in their composition and differential; they are
artefacts of working with the shifted bimodule ¢[—1] (and hence the differential and
left module structure of ¢ obtains extra minus signs). On the other hand, they have no
signs coming from shifts in the twisted complexes.

Remark 5.9. Let us denote Ag |_| o1 i= Glue(A3) in this remark to make the ordering of
the vertices clear. In general, Ag | | Aot Aqand Aq || Aot Ay are different. Take for example
Aop1 to be an enhancement of the perfect complexes over P]li and A; the dg subcategory
‘triangularly generated’ by Op:1 (7). Then, Ag |_|4,, A1 gives back the perfect complexes
over P! whilst Ay | |4 o Ao gives the perfect complexes over k2. These are not quasi-
equivalent (the homotopy category former is indecomposable whilst that of the latter is
not).

Remark 5.10. One can show that the homotopy pullback Ag XZ Ay of the diagram
(5.5) (for the model structure on dgcat for which the weak equivalences are the quasi-
equivalences and the fibrations are ‘componentwise surjections giving isofibrations on
H?) can be identified with the full subcategory of Glue(A3) consisting of those twisted
complexes cone(M, Ly 1) for which p is a homotopy equivalence when viewed as a
morphism in Apy, see, e.g., [10, Section 3.3]. In general the inclusion Ay xi’qm Al —
Glue(A3) is not a quasi-equivalence. Moreover, it can happen that the latter is smooth
whilst the former is not.

5.4. Acyclic hypercube and quasi fully faithful dg functor

We give sufficient and necessary conditions for a natural dg functor 7 : Ag — Glue(A;)
(which we define below) to be quasi fully faithful. The relevant condition is the following.

Definition 5.11. A hypercube A, of dg categories is called acyclic if, when viewed as a
hypercube of dg (Ag, Ag)-bimodules'”, it yields an acyclic dg (Ag, Ag)-bimodule after

17Recall that we do this by first considering the vertices as diagonal bimodules and by then suitably
restricting them along the edges of the hypercube.
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applying ¢, i.e.,
1(A,) € dgMod(AY ®x Ao)
is acyclic.
Remark 5.12. This is independent of the ordering of the vertices in the hypercube.
Let us define a natural dg functor
7 Ag — Glue(Ay).

We use notation of Section 3.4. Moreover, for 0 <i < n, let temporarily 7 denote n —i — 1.
The dg functor is given on objects by mapping A € Ag to the twisted complex

n—1
(D raina).
i=0
with
aji = (=1) 1y, 4 € AY; (Vij A, Vij B) € Homgy! ™ (Vid, V; A)
= Homg g, (ViA[i], V; Alj])
for j < i and zero otherwise, and on morphisms by mapping f : A — B to

nf =@ ey e @A (viA, viB)
i i
= @Homlfl(VA ViB) C Hom)/! (rA,B)
- Gac\"14% V1 = Glue ’ .
i

The minus signs compensate for the fact that A; = A,_;_; sits in the image of 7 with a
twist []. To verify that 7 is indeed a dg functor one has to check the following:

» the o’s satisty da + o = 0,
e 7 commutes with the differential,
* 7 respects units and composition.

This is straightforward, we leave it to the motivated reader.
The following shows that the acyclic hypercube condition is ‘natural’.

Proposition 5.13. The hypercube A, is acyclic if and only if the natural dg functor
7 : Ag — Glue(A,) is quasi fully faithful.

Proof. The inclusion A, <> A, induces, for every A, B € Ag, a distinguished triangle
o 8 o
1(A,) (A, B) —> 1(A,)(A, B) > Ag(4, B)[n] — 1(A,)(4, B)[1]

with boundary morphism
§:Ag(A. B)n] > tA)A.B)1]. [ =Y () Dyf

(see, e.g., [37, Definition 0141]).
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We claim that there exists an isomorphism
1(A;)(A, B)[1] = Homgeag) (A, 7 B)[n], (5.6)
making the diagram

Ag(A, B)[n] —— 1(A2)(4, B)[1]

\ leq. (5.6)

HomGlue(A;)(nA, 7w B)[n]

commute. It follows that #(A,,) is acyclic if and only if 7 is quasi fully faithful.
Thus, it remains to show the existence of the isomorphism (5.6). For this observe that
by definition (as graded modules)

tANA B =P B (X ®x Ar(ViA Vi B))[1]
i<j ICJ,']'

(as2'\g = | |,_; Jij) and

Homgue(us) (mA, 7B)[n] = @D Homgacus) (Vi A. V; A)li — j + n]

i
= P 1Ay )ViAV; Al — j -+ 1]
i<
=P D Xttt ®x A1(ViA VI B))li = j +nl.
i<jI1CJjj

The required isomorphism is given on the summand corresponding to / C J;; by mapping

..........

i.e., it is graded (the difference in shifts is nicely compensated by the difference in X;’s),
compatible with the differentials and makes the diagram commute. Checking this is straight-
forward but uninteresting, so we leave it to the motivated reader. [

Remark 5.14. Let [ € J;j forsomei < j.Int(A;)(A, B) all the edges V;; for [ € [n]\I
contribute to the differential, whilst in Homgye(a2) (A, B) only the edges withi </ < j
appear in P, ; t@Jij)(V,-A, V; A). The other Vy;’s, with [ < i or j <[, emerge in the
commutator term [§, —] of the differential of the twisted complexes.

It will be crucial later, when showing that we obtain a categorical resolution, to have
some control over the image of the restriction functor associated to 7 : Ag — Glue(A,).
We finish the subsection with this.

Let us first explain and introduce some notation. The inclusion A; < Gac(A4,) <
Glue(A,) along with the dg Yoneda embedding allows us to identify [A;] € D(Glue(A,)).
This is compatible with the semi-orthogonal decompositions of Corollary 5.8. Moreover,
denote by ¢;; the hom-complex defined in equation (5.3) viewed as dg (A;, A;)-bimodule.
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Lemma 5.15. Let A, be a hypercube of dg categories and consider the restriction functor
Res; : D(Glue(A;)) — D(Ag).

The image of A; € [A;] under Resy is an iterated cone of its images under Resy, (— ®IJ;U
@ij)’s where V; denotes the edge Ay — Aj.

Proof. Consider the restriction dg functor on the level of dg modules, i.e.,
Res, : dgMod Glue(A;) — dgMod Ag.

For any A € Ag the twisted complex m A is an iterated cone of V; A’s. This is functorial
in A. Therefore,
(Res h41)(A) = Homiye (1A, Ai)

is an iterated extension of Homge(V; A, A;)’s. Now, observe that
HomGlue(VjA’ Al) = gol] (‘/]Aa Al)
= (WY @4, 9ij)(V; A)
= (Resy, (h* @4, ¢i))(4)
from which the claim follows as everything is functorial in 4. ]

Remark 5.16. This can be done in a more sophisticated way, but the above suffices for
our purposes. By making ‘iterated cone’ of functors more precise, one can describe the
functor Res;, restricted to D(A;) itself as an iterated cone (making use of [39, Theorem
7.2] essentially reduces this to the above).

5.5. A sufficient condition for smoothness and properness

‘We have
Ao 0 0 0
®10 Ay 0 0
Gac(A;) = | %20 P21 A -0
$n—-1,0 Yn-11 $n-12 An_1

where the ¢;;’s are the hom-complexes defined in equation (5.3) viewed as dg (A;, A;)-
bimodules.

Lemma 5.17. Suppose that the restriction functors
Resy,,, : D(Ar) = D(A;) fori el Cn],

induced from composing the edges of the hypercube, preserve compactness. Then, the
bimodules @;; are right perfect.
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Proof. For a dg (A;, A;)-bimodule of the form ¢ = v, ;,(Ar)v, . fori, j € I < [n],
we have Ly = ResV[\m LIndVI\m as, for M € dgMod A; and 4; € A;,

(M ®@4; 0)(Ai) = M @4, Ar(V\y(4i), VI3 (5))
= (Indy,,;, M)(V\ii3 Ai)
= (dgMod A7) (h"1\®4i Indy,, , M)
= (dgMod A7) (Indy;, ,, &, Indy,, ,, M)
= (dgMod A;)(h*7 Resy,, ,, Indy,,,,, M)
= (Resy,,y Indy,, ;) M) (Ai).

Since L Indy,,;, always preserves compactness (e.g., by Lemma 2.1 as its right adjoint
commutes with coproducts, or simply because it maps representables to representables) and
Resy,,;, preserves compactness by assumption, it is clear that L preserves compactness.

In general, we can write ¢;; as an iterated cone of bimodules of the above form. Indeed,
fori < j, A; € A; and A; € A;, we have (as graded module)

1CJj;

Define
JE={1cuj =k} for2<k<j—i+]1.
This gives us a filtration
{i...pyy=0""cri7c..ciz=1U;.
Let A ;« be the subgraph of A i obtained by inserting zeroes whenever I € J;; \Jilj, still
ij "

viewed as a (j —i — 1)-cube.
Finally, the inclusion A ;x+1 <> A ;x induces a distinguished triangle of dg bimodules
ij 1

(Apge) > 1A > D v Al =i+ 1=K >,
{1eJijllI|=k}

which shows the claim. [

Combining the previous lemma with Proposition 4.5, noting that smoothness is invari-
ant under Morita equivalences [27, Theorem 3.17] and that the dg category of twisted
complexes over a proper dg category remains proper; we immediately obtain the following.

Corollary 5.18. Let A, be a hypercube of dg categories. Suppose the dg categories A; are
smooth and restriction along A; — Ay fori € I C [n], induced by composing the edges
of the hypercube, preserves compactness. Then, the glued dg category Glue(A;) is smooth.
Moreover, if the A; are proper; then so is Glue(A,).
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5.6. Two constructions

We end this section by giving two constructions of hypercubes in the category C :=
7% dgMod(A), with A a dg category. These constructions work more generally for hyper-
cubes in an arbitrary category C, but we are mostly interested in how these constructions
behave with respect to acyclic hypercubes. It will be convenient at times to name our
n-cubes with binary labels, i.e., thinking of them as functors {0, 1} — C (where we view
{0, 1}™ as a category obtained from the poset ordered by lexicographical ordering) instead
of functors 2[*~11 — C. (Binary labels are convenient for the operations below, whilst for
the ¢-construction power set labels are convenient)

The following lemma is key to all we do in this section. From a high-brow point of
view it follows from noting that the ‘category’ of categories is cartesian closed, i.e., we
have the following equivalence of functor categories

Fun({0, 1}, Fun({0, 1}"~, C)) = Fun({0, 1} x {0, 1}"1, C).

This allows us to view n-cubes as morphisms of (7 — 1)-cubes. We will use this to define
operations on hypercubes. Concretely, with Cube, := Fun({0, 1}", C) the equivalence gives.

Lemma 5.19. We have
Cube, = Mor(Cube,_1).

More precisely, let A be an n-cube. We can view A as a morphism of (n — 1)-cubes as
follows. Define (n — 1)-cubes A, and A, via

Ao(io, ... in—2) = Ao, ...,in—2,0),
A, (o, ...,in—2) 1= Ao, ..., in—2,1)
and a morphisma : Ay — A, via
Wig,..in—n = Alios -+, in—2,0 < 1).
Then, the above equivalence maps A to «.
Remark 5.20. Technically, we applied, in addition, another equivalence
Fun({0, 1} x {0, 1}, C) = Fun({0, 1}~ x {0, 1}, C)

to get the specific indexing as in the lemma.
Similarly, there are n — 1 other ways we could have viewed A as a morphism, corres-
ponding to a splitting {0, 1}" == {0, 1} x {0, 1}"~L.

Lemma 5.21. With notation as in the previous lemma,
t
t(4) =t(t(4p) ﬂ) t(A,)) (up to possible signs that are not of importance).

Consequently, a hypercube A is acyclic if and only if the corresponding morphism o
induces a quasi-isomorphism t (o).



Categorical resolutions of filtered schemes 151

Proof. In fact, with a specific choice for the signs in the complexes, we get an honest
equality. (Different choices would then lead to compensating minus signs.) Relabelling
to power set labels we have Ay = {A;}rcu—1] and A; = {A7u{n—1}}1c[n—1]- We can

think of 7 (t (4,) ﬂ) t(A,)) as X,—11(A4,) @ t(A;) with differential equal to that of #(A4).
When picking an ordering of the products of the X;’s so that n — 1 is the smallest, we have
equality of the complexes. (If one does not want to pick an ordering, the isomorphism is
given by applying X,_10,—1 to the summands indexed by / C [n — 1] and the identity to
the others.) [

The following lemma follows immediately from the previous lemma.

Lemma 5.22. A hypercube having two opposing acyclic faces is itself acyclic. Con-
sequently, a hypercube A such that all squares ‘in one direction’ are acyclic, i.e., the
square A(e,e,i3,...,1I,) (or some permutation) is acyclic for all {is, ...,in} € {0, 1}, is
an acyclic hypercube.

Definition 5.23. Let A and B be n-cubes sharing a face, we define the stacking of A and
B to be the n-cube obtained by composing the corresponding morphisms of (n — 1)-cubes
from Lemma 5.19 along their common face.

Example 5.24. This does exactly what you would expect. The stacking of

A+ F E« g
[|g 4 '/|f 4
B«+—%2 F F«+—2 J
J, and \L
J C<—lg2—G l G<—Jf2—K
e e x/f N
D«+% _H H 2 [

is

/

I

g3f3 / J/
l

— K.

B J
J/ J]ngz
g4f4

D +——— L
Lemma 5.25. The stacking of acyclic hypercubes is acyclic.
Proof. This follows immediately from the definition and Lemma 5.21. ]

Definition 5.26. Leto : A, — A, and 8 : B, — B, be n-cubes sharing the face 4; = B,
we define the extension of A by B (the order matters) to be the (n + 1)-cube obtained as
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follows. Denote by C the n-cube corresponding to id : B; — B,. Then, B« and f define
a morphism y : A — C by Lemma 5.19:

Ao #Alzﬁo

We define the extension to be the (n 4 1)-cube corresponding, again by Lemma 5.19, to y.

Example 5.27. It is perhaps less clear what this construction does. The extension of

is

B
db
v
F T F
T A2 —
ca\/ C)/
E E

Lemma 5.28. The extension of an acyclic hypercube, by a (not necessarily acyclic) hyper-
cube, is acyclic.

Proof. With notation as in the definition we have that 4 and C are acyclic. Hence, the
result follows immediately from Lemma 5.22. ]

6. Filtered schemes

In this section, we set up the general theory of (finite length) filtered schemes. As we will
see, these are an alternative incarnation of the #A-spaces from [23]. For this reason many of
the results proved in this section for filtered schemes will directly parallel or follow in a
quite straightforward manner from results in loc. cit.

6.1. The category of filtered schemes

6.1.1. Generalities. We start with some basic definitions.
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Definition 6.1. A filtered scheme is a scheme (X, Ox ) equipped with an ascending filtration
(F i Oyx)iez of quasi-coherent sheaves of ideals satisfying the following: 18

(1) F°0Ox = Oy,
(2) FIOxF/Ox C Fiti9x foralli, j € Z.

If we want to make the filtration explicit in the notation we write F* := F*Ox :=
(F'Ox);ez and denote the filtered scheme by (X, F*).

We say that a filtered scheme has finite length n, or is an n-filtered scheme, if F 7" Oy =
0. Explicitly, this means that the filtration has the following form:

0=F"0x CF "0y c---C F'0x € F°0x = Ox.

The n is part of the data, we will therefore sometimes denote an n-filtered scheme by
(X, » F*). Moreover, we often adopt a naming convention for the filtration of a filtered
scheme of finite length that reflects its length. For example, (X, F*) and (Y, F*) are
implicitly understood to have the same length, whilst (Z, G*) could have an a priori
different length. Note that finite filtrations are solely a non-reduced phenomenon, every
finite filtration on a reduced scheme is the trivial one.

Usually, the filtration considered will be finite. Therefore, whenever we say ‘filtered
scheme’ we really have ‘finite length filtered scheme’ in mind.

Definition 6.2. A morphism of filtered schemes (X, F*) — (Y, G*) consists of a morphism
of schemes (f, f#) : X — Y such that the morphism on the structure sheaves'

IH:(0y.G") = (f«Ox. F*)
or equivalently
fE(f710y.G") - (Ox. F*)
is a morphism of filtered sheaves of rings. Explicitly, we require that
MG Oy) C foF'Ox < fH(f~'G'0y) € Fl0Ux
foralli € Z.

In this way, we obtain a category. We denote the category of filtered schemes by fSch
and the full subcategory of n-filtered schemes by n-fSch.

Let P be a property of schemes or of morphisms of schemes. We say that a filtered
scheme (X, F*) has property P if the underlying scheme X has property P. Similarly,
a morphism of filtered schemes (X, F*) — (Y, G*) has property P if the underlying
morphism of schemes has property P.

'81n the left-hand side of (2), F! Ox F/ Oy is the image of the natural morphism F' Oy ®¢@, F/Ox —
Oyx . More precisely this is the subsheaf of @Oy whose sections can locally be written as sums of products of
sections of F!@x and F/ Ox.

19The direct and inverse image of a filtered sheaf of rings have a natural induced filtration (as they are
left exact).
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6.1.2. Rees algebra. To define appropriate ‘modules’ over filtered schemes, we make use
of sheaves of graded modules over the Rees algebra associated to the filtered structure sheaf.
Therefore, we start by motivating this choice and collecting some facts concerning these.

Let (X, F'*) be a filtered scheme. We can consider the category Filt(X, F'*) of sheaves of
filtered Ox-modules, or simply filtered modules. Its objects are Ox-modules M equipped
with an exhaustive’” ascending filtration (F?.M);cz compatible with that of (Ox, F*)
under the Oy-action on M. ‘Unfortunately’, however, this category is not abelian, but
merely quasi-abelian®'. As homological algebra is our bread and butter, and works easiest
in abelian categories, we instead would like to consider an abelian category that best
encapsulates Filt(X, F*). This is done by considering graded modules over the associated
Rees algebra.

Define the Rees algebra associated to (Ox, F*) to be

(5(X,F*) := Rees(Oyx, F*) = @ Fi(9xti C Oxlt, t_l],
i€Z
which obtains its ring structure and grading by viewing it as a subalgebra of Ox[t,771].
The indeterminate ¢ of degree one is helpful to keep track of the degree of elements, but we
often omit it. This is a sheaf of graded Ox- algebras As the filtration is usually clear from
context, we often use the slightly abusive notation Oy instead of (9( X,F*)-

Next, consider the category grMod ((9X) consisting of sheaves of graded modules over
5X, or simply graded modules. Its objects are families?> (Mi)iez of Ox-modules together
with morphisms

M x FIOx — M7, i,jel,
satisfying the usual associativity and unitality conditions. We will usually simply denote
our graded modules as
SPECE
i

but one should really think of them as a collection of Ox-modules (Mi)iez. Graded
modules have a natural Z-action given by shifting, this is defined by

M) = M

(We use round brackets to distinguish this from the shift when viewed as a complex
concentrated in degree zero.)
We have the following.

0That is, M = Uiez F M, where the right-hand side includes a sheafification.

2IA quasi-abelian category is a pre-abelian category in which the collection of kernel-cokernel pairs
forms an exact structure.

22This is the ‘correct’ way of thinking of a sheaf of graded modules, as opposed to as a single sheaf of
modules @; M’ with a direct sum decomposition. Although, as the category has countable direct sums,
both descriptions are equivalent. However, the benefit of the former, for example, is that it makes it clearer
how to define the pushforward (as the pushforward of sheaves need not commute with direct sums, and so,
will not commute with forgetting the grading).
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Proposition 6.3. The category ngod(@X) is the ‘(right) abelian hull’ of Filt(X, F*). This
means that there exists a fully faithful functor
L: Filt(X, F*) — grMod(Ox).
(M, F*) — @ F'M
i

that preserves and reflects exactness and is universal in some precise sense (see [34,
Proposition 1.2.34]). Its essential image consists of the t-torsion free graded modules,
where t is the distinguished degree one element of Ox.

Moreover, 1 induces an equivalence D(Filt(X, F*)) =~ D(grMod (@X)) of derived cat-
egories.

Sketch of proof. This follows, for example, from [34, Propositions 1.2.32 and 1.2.36]
adapting [33, Proposition 3.14] to show that any graded module is a quotient of a filtered
module. See also [8, Appendix B]. [ ]

We henceforth identify Filt(X, F*) with the full subcategory of ngod(@X) consisting
of t-torsion free modules. Moreover, as we are ultimately only interested in the derived
category associated to a filtered scheme, we see that there is no harm in simply considering
graded modules over the Rees algebra.

When (X F*) has finite length n our main interest will be in the full abelian subcategory
grMod” ((DX) of ngod((DX) consisting of length n graded modules M = ); M for which

M! = 0 fori < —n and multiplication by ¢ induces an isomorphism M’ —> M'T! for
i > 0. We also allow n = oo in which case we only require the latter condition.

Remark 6.4. There are obvious analogous categories on the filtered side, Filt” (X, F*)
consists of length n filtered modules, i.e., filtered modules (M, F*) with FO.M = M and
F7" M = 0. Proposition 6.3 restricts nicely to this setting.

We end this subsection with a result that will be important when defining pullback
functors below.

Lemma 6.5. Let (X, F*) be a filtered scheme (not necessarily of length n). The inclusion
grMod” (Ox) <> grMod*™ (Ox)
has a left adjoint I which, on objects, is given by
M > M) My,
where My is the graded Ox -submodule of M generated by @, _,, M’
Proof. More explicitly, we have

M, =

M7 if > —p,
M ifi <-—n,
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and
1"(M) = M) (M) i > —n,
0 ifi < -—n.
As any morphism from M to an object of grMod” (5X) sends M to zero, and hence factors
uniquely through /" (M), the adjunction follows. |

Remark 6.6. The inclusion grMod” (@X) — ngodw(éx) also has a right adjoint r", the
sections of 7" (M)" are those sections of M that (locally) get annihilated by €D j<ni I 7 0x.
We will not use this adjoint, so we do not go into further detail.

We refer to the left, respectively, right adjoint of the inclusion
grMod” (Ox) <> grMod* (Ox)

as the left, respectively, right nth truncation functor. In the next lemma, we collect some
relations that will be used below. They follow from the uniqueness of adjoints.

Lemma 6.7. The left truncation functors [" : ngod°°((5X) — grMod” (@X) satisfy the
following:

1) ifm > n, then I"I™ =",

(2) fori = 0,1"(=)(i) = I"*(=(i)).
6.1.3. Module categories. To any filtered scheme (X, F*) we associate an abelian cat-
egory of (quasi-coherent) sheaves of modules, or simply (quasi-coherent) modules, by

considering (certain) graded modules over the Rees algebra associated to the filtered
structure sheaf. Define

Mod(X, F*) := grMod(Ox),
QCoh(X, F*) := ngonCoh(@X),
where the latter notation means graded Ox-modules that are quasi-coherent as underlying
Ox-modules (which is equivalent to every graded component being a quasi-coherent
Ox-module)*.
When (X, F*) has finite length n, we consider moreover the following subcategories
of length n (quasi-coherent) modules
Mod" (X, F*) := grMod” (@X),
QCoh™ (X, F*) := grMod{¢,,(Ox).

BAs F'Ox = Oy, we have a morphism of graded rings Ox — @y, where we view Oy as concentrated
in degree zero. Thus, any graded Ox-module is a graded Ox-module (and a direct sum of modules is
quasi-coherent if and only if every summand is quasi-coherent).
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Furthermore, length n coherent modules also make sense in this setting. We define
Coh™(X,F*) := ngodgoh(@X)

as the length n graded Ox-modules M = @; M’ such that @, o M’ is coherent as
Ox-module (which is equivalent to M1, ... M~ and MO being coherent).
There are other ways of characterising these modules.

Lemma 6.8. Let M be an object of Mod(X, F*). The following are equivalent:>*
(1) M € QCoh(X, F*),
(2) for every point x € X there exists an open neighbourhood x € U C X such that

M|y is isomorphic to the cokernel of a map

P ov ki) > P du )

iel jeJ
for some sets I and J and integers k; and [;.
Moreover, we can change (1) and (2) above by
* (1) <> M € QCoh*>®(X, F*),
(2) <> the integers ki, l; are positive,
Furthermore, suppose that (X, F*) is of finite length n. Then, we can change (1) and (2)
above by
e (1)< M € QCoh™(X, F*),
(2) < Oy (ki) and Oy (I;) replaced by 1" (Oy (k;)) and " (Oy (I})), and the integers
ki,l,’ S {O,...,n— 1},
and if, in addition, every F' Oy is coherent as Ox-module™ by
e (1)< M e Coh™(X, F*),
(2) <> Oy (ki) and Oy (1) replaced by " (Oy (k;)) and 1" (Oy (1})), the sets I and J
taken finite and the integers ki, l; € {0,...,n —1}.

Proof. One way to prove the non-obvious direction is noting that affine locally on Spec(R)
a (quasi-)coherent graded module M corresponds to an R-module M which is naturally a
graded Rees(R, F*)-module. The claim follows from this.

An alternative way, is noting that QCoh, QCoh®®, QCoh” and Coh” are closed under the
appropriate operations, kernels and (possibly infinite) direct sums, and contain the Ox @@)’s

24This uses the fact that the filtration consists of quasi-coherent ideals, hence that o 'y is a quasi-coherent
Ox-module.

2 Meaning that @X € Coh™(X, F*) (which is clearly necessary for the lemma to hold). This holds
automatically when (X, F*) is locally Noetherian as coherent modules are better behaved then. For example,
coherent = finite presentation = quasi-coherent finite type, and quasi-coherent submodules/quotients of
coherent modules are again coherent. In general the structure sheaf need not be coherent, but when it is
coherent = finite presentation. This is essentially the content of this part of the lemma.
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or[" ((§X (7))’s. Hence, it suffices to locally construct a surjection from a (truncated) free
graded module. This can be done by constructing a surjection from a free Ox-module in
every graded component, tensoring with Ox over Oy, postcomposing with multiplication
and then truncating. ]

We sometimes refer to Mod”, QCoh” and Coh” as truncated module categories. When
working with filtered schemes of finite length, these are the categories that are of import-
ance. Furthermore, the natural embedding of Proposition 6.3 clearly restricts well to (the
truncated) (quasi-)coherent filtered (Ox, F*)-modules. So, we likewise identify these types
of filtered modules with their essential image.

6.1.4. Generalised morphisms, pullback, and pushforward. In general, the usual pull-
back and pushforward of schemes, suitably reinterpreted for the graded context, will not pre-
serve the truncated module categories. Therefore, in order to obtain a pullback/pushforward-
like adjunction between them, we have to post-compose with the left/right truncation
functors. Unfortunately, doing so can break the functoriality of the composition of the
pullback and pushforward functors when the filtration length decreases from source to
target’®, as the truncation functors do not always compose well themselves. To overcome
this we define a slightly more general type of morphism between filtered schemes which
allows us to decrease the length. For this, we include a Veronese into the definition, where
the d-Veronese of a graded object M = (M), ¢z, is the graded object

M@D = (MY);eg
obtained by keeping only the multiples of d in the grading.

Definition 6.9. A generalised morphism, or d-morphism, from a dn-filtered scheme to
an n-filtered scheme (f,d) : (X, gn F*) » (Y, ,G*) consists of a morphism of schemes
(f. f%) : X — Y such that

¥ (0y.G*) = (f0x, FH)D,

or equivalently
SE(fT10y.GY) — (0x. FHD,

is a morphism of filtered sheaves of rings. Explicitly, we require that
G Oy) € fiFY0x & fH(fTTFIOy) € FY0x (6.1)

foralli € Z.

. . . S
26When the lengths increase from source to target, everything works out fine. For morphisms (X, F*) =
g . . . -
(Y,G*) = (Z, H*) with nx < ny < nz we have a natural isomorphism and equalities /"X (g o f)* =~
"X f* o ["Y g* Y f, = fi, "2 g, = g and r"Z(g o f)« = (g o f)«, when interpreted as functors on
the ‘correct’ domains. (The first isomorphism can be seen using the latter equalities and uniqueness of
adjoints.) However, as morphisms of this form do not naturally appear in this work, we do not consider them.
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Note that generalised morphisms compose as they should, i.e., (g,e) o (f,d) = (g o
f,de). We sometimes leave the ‘(d) part’ out of the notation and denote a d-morphism, for
d > 1, by a squiggly arrow ~>. Two special cases of d-morphisms are worth highlighting:

* when d = 1, we obtain the usual notion of a morphism between filtered schemes of the
same length,

* when f = id and we have equality instead of inclusion in equation (6.1), we obtain a
d-refinement. This is a one-sided inverse to taking the d-Veronese, i.e., a d -refinement
of an n-filtered scheme (X, F*) is a dn-filtered scheme (X, G*) such that G4 Oy =
F'Ox for all i € Z. Refinements are certainly not unique. We always view a d-
refinement of an n-filtered scheme as a dn-filtered scheme.

In fact, any generalised morphism can be written as the composition of an ordinary
morphism and a refinement. Indeed, let (f,d) : (X, g, F*) » (Y, ,G*) be a d-morphism.
Define a dn-filtered scheme (Y, G'*) via®?’

G/iOY = GLl/dJ (9Y9
then (f, d) decomposes as

> id,d
XoanF*) L2 (1,406 B2 (1,,67),
where the first morphism is an ordinary morphism and the second is a refinement. As
refinements give well-behaved functors at the level of the truncated morphism categories
we obtain the following.

Lemma 6.10. Any generalised morphism of filtered schemes
(f’ d) : (X’ an*) ~> (Yv nG*)
induces a pullback/pushforward-like adjunction

Mod?"(X, F*)

(f,d)* < - > (fd)«

Mod" (Y, G*),

which, when f is quasi-compact and quasi-separated, restricts to quasi-coherent modules
and, when in addition f is proper and the filtered schemes are locally Noetherian, restricts
to coherent modules.

Moreover, these compose well: ifn = em and (g,e) : (Y, emG*) v (Z,, H*) is an
e-morphism we have (g,¢)« o (f,d)x = (g o f, de)s (honest equality) and consequently
canonically (f,d)* o (g,e)* = (go f,de)*.

2This is, in some sense, the left adjoint to taking the d-Veronese, see also the proof of Lemma 6.10.
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Proof. As above define a dn-filtered scheme (Y, G'*) via G Oy := G//4109y. Taking
the d-Veronese induces a functor
(—)? : Mod?™ (Y, G™) — Mod™ (Y, G*),
D > P
i i
admitting a left adjoint
& : Mod" (Y, G*) — Mod?" (Y, G'™),
Dt - @t
i i
We define (f,d)* and ( f, d)« through the following diagram:
(fid)+

Mod?™(X,F*) T Mod?"(Y,G"™*) T Mod"(Y,G*). 6.2)

()

Here, f. applies the usual pushforward component-wise:
f*(@ Mi) =P fid’,
i i
whilst f* is defined as one expects, using the graded tensor product:
f* ( @ ,/\/{l) = f—l ( @ Ml) ®f_l(@(Y,G’*)) 6(X,F*)'
14 14

The latter will in general have a longer length than dn which is why there is a truncation
in diagram (6.2). We may apply this truncation as f* maps Mod® into Mod®®, this can be
seen using the description of Lemma 6.8.

The claims concerning the restrictions to (quasi-)coherent modules follow immediately
from the corresponding statements for usual schemes. The composition claims follow from
the equalities

(8.0 (frd)x=(-)gu() fi = () () g fr=(-)(g 0 f)u=(g o f.de)s. m

6.1.5. Refinements. The operation of taking d -refinements can be used to, in some sense,
remove the non-reducedness of a filtered scheme”®. The following shows that in many

28In [23], they consider #-spaces to do exactly this (we briefly recall #A-spaces in the next subsection).
They associate to a non-reduced scheme X an #A-space (X, 4y ) to remove the non-reducedness (if X;eq is
smooth, (X, #Ay) is smooth). This is in fact a special instance of taking a refinement.
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cases refinements exist and can be made functorial for morphisms between filtered schemes
of the same length.

Proposition 6.11. Let (£, f*) : (X, F*) — (Y, F*) be a morphism of n-filtered schemes
and suppose we are given ideal sheaves Ix C Ox and Iy C Oy such that

I$ CF7'0y and fY(Iy) C fulx.
Then, there exist compatible d -refinements, i.e., a commutative square

x, F*) &2 (x, 6%

7|
v, F*) &2 (v, 6%,

where G* is a d -refinement of F*. Moreover, if F~'0 C I9 one has G109 = I,.
Proof. Defining

F%09, fori >0,

GOy := . )
{FJ(%I;—i—F/_l@? fori <Oandi = jd —r withj <0<r <d

does the trick. [

Recall that n-fSch denotes the category of n-filtered schemes with ordinary (i.e., not
generalised) morphisms between them.

Corollary 6.12. We obtain a functor

d-ref : n-fsch /(Y, F*) — dn-fSch,
(f : (X, F*) = (Y, F*)) > refinement using f ' Iy - Ox
together with a natural transformation d - ref — id consisting of the generalised morphisms

(id, ).

6.2. Relation to schemes and +A-spaces

Succinctly, we have
{schemes} C {A-spaces of [23]} C {filtered schemes}.

In this section, we briefly elaborate on this.

6.2.1. Schemes. A 1-filtered scheme (X, F*) is simply a scheme X endowed with the
trivial filtration
FZ°09x = O0x and F~°0x =0.
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It follows immediately that the category of 1-filtered schemes 1-fSch is simply the category
of schemes Sch. In addition, the module categories are compatible

Mod! (X, F) = Mod(X),

QCoh!(X, F) = QCoh(X),

Coh!(X, F) = Coh(X),
where the right-hand sides are the ‘usual ones’, i.e., respectively, the category of sheaves
of modules, quasi-coherent sheaves of modules and coherent sheaves of modules over
the scheme X. Moreover, it is clear from their definition in Lemma 6.10 that the pull-
back/pushforward functor obtained from a morphism of 1-filtered schemes is simply the

ordinary pullback/pushforward functor of schemes in this case.
For future reference, we note the following.

Lemma 6.13. Let (X, F*) be an n-filtered scheme. For any 0 < i < n we have an adjunc-
tion
Mod" (X, F*)

MHM@(DXI"(@X(i))C 4 >w=ea,- NN =g N
Mod(X) .

Proof. By viewing [ "(@X (i)) as an (Oy, @X)—bimodule, this essentially boils down to
some form of the tensor-hom adjunction

Mod” (X, F*)(M ®o, I"(Ox (1)), N)
= Mod(X)(M. Homg, (I"(Ox (). N))
Mod(X)(M. Jomg, (Ox (). N))
Mod(X) (M, N 7). .

2

2

Remark 6.14. The case i = 0 corresponds to ‘forgetting the filtration’. This is the pull-
back/pushforward adjunction along the generalised morphism (id, n) : (X, F*) — X.
Indeed, (id, n)* (M) = M ®oy Ox and (id, n)«(D; NT) = NO.

Remark 6.15. The functor EB;’;S gr_; : Mod™ (X, F*) — Mod(X) is (essentially) restric-
tion of scalars along the inclusion of the zeroth graded piece Ox — Ox (together with
forgetting the positive degree terms, but there is no extra information in there anyway). It
follows that this has a left adjoint given by M — M ®g, @::é [ ”((5X 1)).

6.2.2. A-spaces. Let X be a scheme and +4 a coherent sheaf of Oy -algebras. We denote by
Mod(X, #) the category of right #A-modules, and by QCoh(X, +4) (respectively, Coh(X, #4))
the subcategories consisting of those right #A-modules that are quasi-coherent (respectively,
coherent); as # is coherent as Ox-module this is equivalent to the underlying Ox-module
being quasi-coherent (respectively, coherent). In [23] the authors consider specific types of
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sheaves of coherent Oy -algebras, called Auslander algebras (see also Remark 6.17 below)
after [2, Corollary on page 551] where similar algebras, over Artin algebras, first appeared.
A pair of a scheme together with an Auslander algebra over it is called an #A-space in [23].
As the following proposition shows, these A-spaces are exactly the finite length filtered
schemes equipped with the I -adic filtration for some nilpotent ideal I C Oy.

Proposition 6.16. Let (X, F'*) be an n-filtered scheme and put

n—1
P =P I"(Ox () and Ap+ = Endg ().
i=0

Then, E(—) := Jfom@X (P, —) induces equivalences
Mod™ (X, F) = Mod(X, AF~),
QCoh™ (X, F) = QCoh(X, A=),
Coh™(X, F) = Coh(X, Afp=).

Remark 6.17. To make the link with #A-spaces complete, note that 4 g+ can be interpreted
as the following matrix:

Ox F_1(9X F_2(9X e Fl_n(gx
@X/Fl_n@x Ox/Fl_nOX F_l(gx/Fl_nOX F2—n(9X/F1—n(9X
(9)(/F2_n(9X (9x/F2_n(9X (9x/F2_n(9X F3_n(9x/F2_n(9X
(9x/F_1(9X (9x/F_1(9X (9x/F_1(9X (9x/F_1(9X

We will refer to (sheaves of) algebras of this form as Auslander algebras. In [23] they
considered algebras of this form where F* is the 7-adic filtration for some nilpotent ideal
I C 0Oy.

Proof. The functor E has a left adjoint (— ® 4. &). Therefore, checking that E is an
equivalence can be done locally at the level of stalks (i.e., checking that the (co)unit is
an isomorphism of sheaves can be done stalk-wise). The claim then follows by Morita
theory as, in~the affine case, P is a progenerator29 for Mod" (X, F). (This follows as
Homg (I"(Ox (i), M) = M)

As (quasi-)coherence is determined at the underlying Ox-module level, E restricts
suitably since it does not change the underlying module, it only ‘switches’ the Ox- and
A-module structures. A module M = @; M’ in Mod" (X, F) gets mapped to the row
(MO M™Y. ML) where the sA-action is simply matrix multiplication from the right,
induced by the Ox-action of M. |

That is, a small projective generator. An object X in an abelian category with coproducts is called a
progenerator if the covariant hom functor Hom(X, —) commutes with all colimits and is faithful.
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This equivalence is compatible with pullback/pushforward functors. Let f : (X, F*) —
(Y, F*) be a morphism of n-filtered schemes (we consider only ordinary morphisms since
refinements/Veroneses, and hence generalised morphisms, do not have a natural description
on the A-space side), and consider

n—1 n—1
Ay = Endg_ (@zn(@“x(i))) and Ay = Endg, (@z"(@“y(i))).
i=0 i=0

Then, f induces a morphism (X, Ax) — (Y, Ay) of the corresponding #A-spaces, which
we also denote by f, and the following diagrams (2-)commute:

Mod" (X, F*) — Mod(X, Ax) Mod" (X, F*) — Mod(X, Ax)
f*T Tf* and f*J, J’f* (63)
Mod™ (Y, F*) —5 Mod(Y, Ay) Mod” (Y, F*) 5 Mod(Y, Ay) .

Of course, these also suitably restrict to QCoh and Coh in the appropriate settings. For
example, the commutativity of the left diagram follows essentially from the fact that both
legs of the diagram send / "((5;( (7)) to the ith row of Ay (we start counting rows and
columns of matrices at zero) or can be seen using (a slight generalisation of) Lemma 6.24
below. The commutativity of the right diagram then follows by uniqueness of adjoints.

In Section 6.3.4, we observe that these compatibilities descend to the derived level.

6.3. Derived category

We define the derived category of an n-filtered scheme (X, F*) as
D(X, F*) := D(QCoh™ (X, F*)).

Here, the length of the filtered scheme is left out the notation, if we want to make the length
explicit, we write D(X, , F'*).

Remark 6.18. For (X, F*) quasi-compact and separated, the natural functor
D(QCOhn (X’ F*)) - DQCOh (MOdn (Xv F*))

is an equivalence. The same proof as [1, Proposition 1.3] works. See also [9, Theorem 2.10,
page 222] for the bounded case. Moreover, in fact, one can actually deduce the filtered case
from the non-filtered case without needing to reprove anything (by using compatibilities
with the forgetful functor to the underlying Ox-module structure).

Calling D(QCoh™ (X, F*)) the derived category of (X, F*) is therefore only really sens-
ible when (X, F*) is quasi-compact and separated. For more general filtered schemes one
should look at Docon(Mod™ (X, F*)), the full subcategory of the derived category of mod-
ules consisting of complexes with quasi-coherent cohomology, instead of D(QCoh™ (X, F*))
(e.g., to have the existence of enough flat objects and h-flat complexes).
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Remark 6.19. By Proposition 6.3 and Remark 6.4, we see that D(X, F'*) is equivalent to
the derived category of length 7 filtered quasi-coherent modules over (X, F'*). Of course,
by Proposition 6.16, it is moreover equivalent to the derived category of right quasi-coherent
modules over the associated Auslander algebra.

In this subsection, we show that QCoh™ (X, F*) has enough h-injective and h-flat
complexes. As these are ‘adapted’ to, respectively, the pushforward and pullback functor
associated to any generalised morphism, it follows that we obtain an induced adjoint pair
at the derived level. Showing the existence of h-flat complexes requires some work, e.g.,
we have to define what this means in the filtered context. Moreover, as the existence of
the latter requires our filtered schemes to be quasi-compact and separated, we will usually
make this assumption from here on out.

Before doing this, let us note the following.

Lemma 6.20. Let (X, F*) be a Noetherian n-filtered scheme. We have
D5, (X, F*) = Db(Coh™ (X, F*)),

where the left term is the full subcategory of D(X, F*) consisting of complexes of modules
with bounded and coherent cohomology and the right term is the full subcategory of
D(Coh™ (X, F*)) of complexes with bounded cohomology.

Proof. Copy the usual proof, see, e.g., [37, Lemma OFDA]. [

6.3.1. H-injective complexes. For the existence of enough injective modules and h-
injective complexes it is enough to note that QCoh™ (X, F*) is a Grothendieck abelian
category.

Lemma 6.21. Let (X, F*) be an n-filtered scheme. The category QCoh™ (X, F*) is a
Grothendieck abelian category. Consequently, there exist functorial embeddings into inject-
ive modules and every complex functorially admits an injective quasi-isomorphism into an
h-injective complex with injective components.

Proof. That QCoh™ (X, F*) is Grothendieck follows immediately from Proposition 6.16
and the corresponding statement on the #A-space side [23, Lemma 5.6]. The other claims are
well-known to follow from this (see, e.g., [37, Theorem 079H] and [37, Theorem 079P]).

Alternatively, showing that QCoh™ (X, F*) is Grothendieck can be done directly at the
filtered level. The fact that it is abelian and has exact filtered colimits is clear. To show that
it has a generator, use Remark 6.15 to ‘lift’ the generator of QCoh(X) (the left adjoint to a
faithful functor preserves generators). ]

As h-injective complexes are adapted to any additive functor, these can be used to
compute right derived functors. Thus, the right derived pushforward exists and can be
computed using h-injective complexes.


https://stacks.math.columbia.edu/tag/0FDA
https://stacks.math.columbia.edu/tag/079H
https://stacks.math.columbia.edu/tag/079P
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6.3.2. H-flat complexes. We define flat modules and h-flat complexes for filtered schemes.
This is done in such a way that they are compatible with Proposition 6.16.

The monoidal structure. Let (X, F'*) be an n-filtered scheme. We start by defining a
monoidal structure on Mod” (X, F*), which, using the descriptions of Lemma 6.8, is seen
to restrict to QCoh™ (X, F*) and Coh™ (X, F*). First, note that the usual graded tensor
product of two modules in Mod® (X, F*) remains in Mod*® (X, F*). Hence, it makes sense
to truncate this resulting tensor product.

Definition 6.22. For M and N in Mod” (X, F*) we define their tensor product
M Q(X,F*)|n N =1 (M ®@'X N) € Mod" (X, F™),
where — ® By — is the usual tensor product of sheaves of graded modules.

As the filtration is usually clear from context, we often use the slightly abusive notation
®x|n instead of ®(x,F*)jn-

The following lemma immediately implies that we obtain a symmetric monoidal
structure on Mod” (X, F*).

Lemma 6.23. For M and N in Mod*° (X, F'*) the natural morphism
"M g N) = 1"1"M @5, N).
induced by the natural morphism M — [" M, is an isomorphism.

Proof. By looking at the stalks, we reduce to the case of graded modules over the Rees
algebra R of a finite length filtered ring (R, F*). In this case it suffices to take N = R(i)
for i > 0 as both sides are right exact in . (The description of Lemma 6.8 holds globally
in the affine case.) The required isomorphism then reduces to the following string of
isomorphisms:

I"(M @z R(i)) = I"(M(i))
~ ["(I"T(M(i))) (Lemma 6.7)
= ["(I"(M)(i)) (Lemma 6.7)
= ["(I"M @5 R(i)). .
Next, we show that this monoidal structure is compatible, in a suitable way, with the
equivalence of Proposition 6.16. So, let, as in the proposition, & := EB::& l ”(@X @),

A= Apx 1= Snd(;X (P)and E(-) := J{’om(gx (P, —). We start by associating to any M
in Mod" (X, F*) a natural (4, #4)-bimodule. Define

E(M) = E(P Qxjn M) = Homg (P, P Qxjn M).

This carries a natural left #-module structure by functoriality of the tensor product.
Concisely, a section a of # acts by mapping sections g — (a ®x|, 1.4) o g. Note that
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A = E(@X). By writing

n—1

E(M) = E(P @xjn M) = E(@Z"(@‘X(i)) ®x|n M)
i=0
- n—1
~ @ (I"(Ox (D) ®x1n M) = €D E"(M())).
i=0 i=0

we can think of £ (M) as an n-by-n matrix, the left and right A-module structures are
simply matrix multiplication. When considering matrices we will number the rows and
columns starting at zero. We write e; for the idempotent of # corresponding to projection-
inclusion of the /" (R(i)) component of & (thinking of + as a matrix, ¢; corresponds to
the matrix with a one in the (i, i )-position and zeroes everywhere else).

Lemma 6.24. For M and N in Mod" (X, F*) composition induces a functorial isomorph-
ism
E(M) @4 E(N) > E(M ®xjn N),
f®ag (f ®xmln)og

of right A-modules.

Proof. As in the proof of Lemma 6.23, we reduce to the case of graded modules over the
Rees algebra R of a finite length filtered ring (R, F*) and M = ["(R(i)) for 0 <i < n.
The required isomorphism then reduces to the following string of isomorphisms:

E(I™(R(i))) ®4 E(N) = eih @4 E(N)
>~ ¢; E(N)
=~ Hom(P, 1" (R(i)) ®xn N)
= E(I"(R(i)) ®x|n N). =

We introduce a third functor, mapping to left A-modules. For this let gr, be the
projection on the zeroth graded component (defined in Lemma 6.13). Define

E'(M) := E(M)eg = gro(P Rxjn M),

which has a natural left #-action through the action on &. Writing E’(.M) as a column
vector, this is (MO MO/t M1 MO/t IMH )T Recall that we have the subcategory
Filt" (X, F*) of Mod(X, F*) consisting of filtered modules, i.e., those modules for which
multiplication by the distinguished degree one element 7 in Oy is injective. The functor
E’ is right exact and is furthermore fully faithful, exact and reflects exactness on filtered
modules (see Lemma 6.29 below). It should be stressed that this functor is generally not an
equivalence; it need not be fully faithful on non-filtered modules and need not be essentially
surjective.
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Lemma 6.25. With notation as in the previous lemma. We have a functorial isomorphism
E(M) ®4 E'(N) = gro(M @xin )
of Ox -modules.

Proof. This follows from Lemma 6.24 by multiplying on the right with ey and noting that
E(-)eq = gro(-). .

In the affine setting, the next lemma follows immediately (as there are enough project-
ives). This will be true more generally once we can speak of h-flat complexes.

Lemma 6.26. Let M® and N*® be complexes over’® Mod" (R, F*). We have
E(M*) @4 LE'(N®) = gro(M* &%, N°).

where the derived functors are computed with h-projective resolutions (these are cheap to
construct since filtered colimits are exact [36, Corollary 3.5]).

In the sequel it will be important to have some control over the essential image of E’.
We describe this now. Let M be a left A-module, we can think of it as column vector
(MO Mo M~ T1)T where the left s-action is given by matrix multiplication (i.e.,
M7= e; M). For any 0 < i < n we have inclusions Ae; — sAeq of the ith column into
the Oth column which, by applying Hom4(—, M), gives rise to a morphism

sit MO —> M7E. (6.4)

(When thinking of » as a matrix, s; is given by multiplication with the matrix consisting
of a one in the (i, 0)th position and zeroes everywhere else.) These give us control over
which left #A-modules lie in the image of E’.

Lemma 6.27. A left A-module M lies in the essential image of E’ if and only if the
morphisms s; of equation (6.4) are surjective. Moreover, in this case M is of the form
E'(M') with M in Filt" (X, F*).

Proof. For M of the form E’(M’) the s; are exactly the quotient maps M’ O MO M,

so one implication is clear. For the other direction put M’ ™" = ker(s; ). This gives a filtration
on Mo which, viewed as an object of Mod" (X, F*), gets mapped by E’ to an #4-module
isomorphic to M (the s;’s induce an isomorphism). ]

Lemma 6.28. The essential image of E’ is closed under quotient objects and contains the
injective left A-modules.

Proof. Clearly, the condition of s;’s being surjective is closed under quotients. Moreover,
by the definition of the s;’s they are surjective for injective modules. ]

30To avoid confusion, here we simply mean modules, i.e., this is QCoh” (Spec R, F*).
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Lemma 6.29. The functor E’ is fully faithful, exact and reflects exactness on Filt" (X, F*).

Proof. Given a sequence KX — M — N in Filt" (X, F*) the exactness claims follow from
the diagram

0 0 0
| | |

0 » K > M7 >y N » 0
| | |

0 s KO s MO s NO s 0
Lkl

0 — K%K —— MOYM™' —— NO/NTT —— 0

| |

0 0

S —

with exact columns and the fact that exactness of the upper or lower two rows implies the
exactness of the third. Moreover, it is clear from the diagram how morphisms X — M
and E’'(K) — E’(M) determine each other. L]

Flat modules. We define flat modules as those that are flat after applying E, and will then
give an intrinsic definition using Q.

Definition 6.30. A module M in Mod" (X, F*) is called flat if E(M) is flat in Mod(X, +4).

Lemma 6.31. The stalk at x € X of any flat module M is a colimit of a directed system
consisting of direct sums of " (Ox x(i))’s. Consequently, M ®x|, — maps filtered modules
to filtered modules. In particular, M is filtered.

Proof. By the Govorov-Lazard theorem applied to E (M), we see that M is a direct limit
of the [" (Ox x(i))’s.

For the second statement, we can reduce, as being filtered can be checked at stalks and
is closed under filtered colimits, to the case M = [ "(@X (7)), in which case the claim is
clear. ]

Proposition 6.32. A module M is flat if and only if M ®x|, — is exact on Filt" (X, F*).

Proof. As ™ is exact on filtered modules, we observe that E (—) is exact on filtered modules.
The only if direction thus follows from Lemma 6.24 by noting that E is an equivalence
and hence reflects exactness.

For the other direction, we reduce to the usual affine setting, as everything in the
statement can be checked stalkwise (E commutes with taking stalks and skyscraper sheaves



T. De Deyn 170

preserve filtered objects). We omit the calligraphic font. So, suppose M ®g|, — is exact
on Filt” (R, F'*). Let N be an arbitrary left A-module and consider a short exact sequence

0->N—->I1I—->K-—0
with [ injective. By Lemma 6.28 this short exact sequence is of the form
0— N — E'(N;) »> E'(N;) > 0

with N; in Filt? (R, F*). Hence, Tori" (E(M), N) =0by Lemma 6.26. As N was arbitrary,
this implies that £ (M) is flat. [

H-flat complexes. Just like for flat modules we define h-flat complexes as those that
are h-flat after applying E. Unfortunately we cannot give an intrinsic definition for these
complexes using ®x|,, but we give one for h-flat complexes with flat components.

Definition 6.33. A complex M* over Mod” (X, F*) is called h-flat if E(M?®) is h-flat over
Mod(X, #4).

Proposition 6.34. A complex M*® with flat components is h-flat if and only if M* Qx| N*
is acyclic for any acyclic complex N® over Filt" (X, F*).

Proof. The only if direction follows again from Lemma 6.24.

For the other direction, we reduce to the usual affine setting, omitting the calligraphic
font, as everything can again be checked at stalks. So, let N® be an acyclic complex of left
A-modules. We have to show that E(M*®) ®4 N° is acyclic. By Lemma 6.21 there exists a
short exact sequence

0—>N*—>I*">K*—0,

where every component of /° is injective. Using Lemma 6.28 and the fact that E” is fully
faithful and reflects exactness on filtered modules by Lemma 6.29, this short exact sequence
is of the form

0—> N®*— E'(NJ)—> E'(N;) —> 0

with N® acyclic complexes over FiltN (R, F*). As the components E(M") are flat by
assumption, this induces a short exact sequence of complexes

0> EM®)®4 N*— E(M®)®4 E'(N;) > E(M®) ®4 E'(N;) — 0.
The claim now follows from Lemma 6.25 and the long exact sequence of cohomology. m

Remark 6.35. Note that having flat components is only needed for the if direction.

Because of the previous proposition, we will always assume that our h-flat complexes
have flat components. We can make this assumption at no cost, as the usual construction
[36, Proposition 5.6] of h-flat complexes automatically gives h-flat complexes with flat
components.
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Lemma 6.36. Let (X, F*) be quasi-compact separated n-filtered scheme. The category
QCoh™ (X, F*) has enough flat modules, h-flat complexes and h-flat complexes with flat
components.

Proof. This follows immediately from Proposition 6.16 and the corresponding statement
on the A-space side [23, Lemma 5.6].

Alternatively, showing QCoh™ (X, F'*) has enough flat modules can be done by reducing
to the affine situation following the argument of the proof in the non-filtered case, see,
e.g., the proof of [, Proposition 1.1]. The existence of enough h-flat complexes and h-flat
complexes with flat components then follows from this, see, e.g., [36, Theorem 3.4]. =

Remark 6.37. For the existence of enough quasi-coherent flat modules, one needs at least
quasi-compactness with affine diagonal in order for the usual proof for schemes to go
through, as roughly it goes by showing the existence of enough flat modules by patching
together over a finite affine cover (whose finite intersections remain affine).

Derived pullback. Let (f,d) : (X, 4, F*) — (Y, ,G™) be a generalised morphism of
a filtered scheme. The following shows that the left derived pullback exists and can be
computed using h-flat complexes (which by our convention have flat components).

Proposition 6.38. The pullback (f, d)* preserves flat modules, h-flat complexes and
acyclic h-flat complexes.

Proof. Define a dn-filtered scheme (Y, G'*) via G" Oy := G/419y and let
& : Mod™ (Y, G*) — Mod?" (Y, G"™),
B - .
i i
By definition the pullback
—1 -~
LDy M= [T M) ® 1, o yian O o).

Using (a slight generalisation of) Lemma 6.24 it follows that the ‘tensor part’ preserves flat
modules and (acyclic) h-flat complexes. Therefore, it suffices to show that & preserves flat
modules and h-flat complexes (it preserves acyclic complexes as it is exact).

The fact that ¢ preserves flat modules follows from Lemma 6.31 since

e(I"(O,+ (i) = 1" (Oy,6)(di))

is flat.
To show that ¢ preserves h-flat complexes, we will first show that the morphism

M* @y, (N)D = (e(M*) ®v,6r)lan N )@ (6.5)
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induced by (—)@ o ¢ = 1 and lax monoidality of (—)“) is an isomorphism’'. First of all
note that, by definition of the tensor product of complexes, it suffices to show the morphism
(6.5) is an isomorphism for M*® = M and N* = N being objects concentrated in degree
zero. Moreover, we can reduce, as usual, to the affine case with M = ”(éy,g(i )) and
0 <i < n. The required isomorphism then reduces to the following string of isomorphisms:

I"(Or.6() ®.Goim N = 1"(ND(0))
= 19" (N (di)@D
= (1" (0.6 (1) ®w.o)jan M@
= (" (Oqr.6(1)) ®w.6ylan M) D
Now, let M* be an h-flat complex with flat components over Mod” (Y, G*). We have to

show that

K= B(M.) ®(Y,G/*)|dn N
is acyclic for every acyclic complex N *® over Filt”(X, F*). By shifting and using the
isomorphism (6.5) we see that /9" (K*(i))@ is acyclic for all i > 0. As M* has flat
components, and we already know that ¢ preserves flatness, by Lemma 6.31, we have
that JK*® has filtered components. Hence, it follows by Lemma 6.39 below that K*® is
acyclic. ]

Lemma 6.39. With notation as in the proof of the above proposition. Let M*® be a complex
over Filt¥” (Y, G™) and suppose 14" (M*(i)) @D is acyclic for all i > 0. Then, M*® is acyclic.

Proof. We have to show that gr; M* is acyclic for all —dn < j < 0. This is clear for j =0
as
grg M* = gro 14" (M*(0)@.

For j < 0 note that
gro 11 (M (j + dn)@D = grg M®/ gr; M.

Hence, the acyclicity of gr; M*® follows by the long exact sequence of cohomology obtained
from the short exact sequence

0— gr; M* — grg M* — gro M®/ gr; M* — 0. ]

Remark 6.40. It is somewhat unfortunate that we had to use Proposition 6.34, and thus as
a result need to assume our h-flat complexes have flat components. The main reason for
this is that taking refinements is not very natural on the 4-space side. So, using an intrinsic
characterisation seems necessary to show that ¢ preserves h-flats.

6.3.3. Induced derived adjunction. As a direct result of the above we have the following
proposition.

31This is formally somewhat similar to the projection formula.
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Proposition 6.41. Any generalised morphism of quasi-compact separated filtered schemes
(fod): (X, gnF*) » (Y, nG*) induces a derived pullback/pushforward-like adjunction

D(X, F*)

L(f,d)*< - >R(f,d)*

D(Y,G*).

Moreover, these compose well: if n = em and (g, e) : (Y, emG™*) v (Z, nH™) is an
e-morphism of quasi-compact separated filtered schemes, then L(f, d)* o L(g, e)* ~
L(go f,de)* and R(g,e)« oR(f,d)« = R(go f,de)x.

Proof. The derived functors exist as quasi-compact separated filtered schemes have enough
h-flat and h-injective complexes and these are adapted to, respectively, the pullback and
pushforward functor; [37, Lemma 09T5] then shows that they are adjoint.

To prove the composition claims, we note that, by Proposition 6.38, we have L( f,d)* o
L(g.e)* = L(g o f.de)*. Consequently, by adjointness™”

R(g,e)x oR(f,d)« = R(go f de)x. u
As a corollary, we have the following.

Corollary 6.42. With notation as in the above proposition, we have functorial isomorph-
isms

RHomy (L(f,d)*M, N) = RHomy (M,R(f,d)«N) (in D(Ab))
for M e D(Y,G*)and N € D(X, F*).
Proof. The trick of Lipman [24, Corollary 3.2.2], showing that the natural morphism

Hom$, (M, (f.d)«N) — RHomy (M, (f,d)«N)

is a quasi-isomorphism for M h-flat and N h-injective works here too, allowing one to
reduce to the non-derived setting by picking an h-flat and h-injective resolution. ]

6.3.4. Derived compatibilities with schemes and A -spaces. We collect some compat-
ibilities. Let D(X) := D(QCoh(X)) denote the usual derived category of quasi-coherent
modules over a scheme X. Moreover, note that the functor gr_; from Lemma 6.13 is exact
and thus graciously descends to the derived category.

32This implies that the canonical map, obtained from the universal property of the right derived functor,
is an isomorphism.
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Lemma 6.43. Let (f,d) : (X, anF*) v (Y,,G*) be a generalised morphism of quasi-
compact separated filtered schemes. Then, the diagram

&X,—di

D(X, F*) D(X)
R(f,d)* Rf*
Lo
D(Y,G*) —7 5 p(y)

(2-)commutes for all 0 < i < n. In particular, when the filtered schemes are in addition
Noetherian and [ is proper, the derived pushforward preserves coherence, i.e.,

R(f,d)«(D?(Coh?" (X, F*))) € DP(Coh™ (Y, G*)).

Proof. Both sides are compositions of right adjoints, so it suffices to check that the composi-
tions of their left adjoints are isomorphic. As the left adjoints to gry _;; and gry _; are given
by tensoring (see Lemma 6.13) these preserve h-flat complexes (with flat components).
The isomorphism thus follows as, with notation from Lemma 6.10,

(f.d)* (M ®0y I"(O,6+ (i)
= /7N EM B0y I"(Bw.6m ) 1§,y groyyian O0F)
= UM @0y 17" (Oy.c+)(di))) ®f-1(Gy grey)ldn Owx.rv)
= [N M) ®f-1(0y) 1" (Ox,Fo(di))
= f*(M) ®oy 1 (O(x.F+)(di)).

The second statement follows immediately from the corresponding statement for
schemes, see, e.g., [15, Theorem 3.2.1], since we can check coherence componentwise. m

Let us finish this subsection by mentioning that the diagrams (6.3), stating the compatib-
ility of the pullback/pushforward functor with the A-space side, descend to the derived level.
Indeed, the equivalences D(X, F*) =~ D(X, Ax) and D(Y, F*) = D(Y, 4Ay), induced by
Proposition 6.16, clearly preserve h-injective and h-flat complexes (with flat components).

6.4. Perfect complexes

Let (X, F*) be an n-filtered scheme. We define and collect some facts concerning perfect
complexes over (X, F*).

Analogous to schemes, we say that a complex is strictly perfect if it is bounded with
terms consisting of finite direct sums of the objects /" ((§X (i)) for 0 < i < n. (Direct sum-
mands of these objects would again be (locally) of this form?*.) We then define the category

3Namely, @X, « is graded local, with unique homogeneous maximal ideal fit induced by the maximal
ideal m of Oy, (W equals Oy, except that it has m as Oth piece). Using this, one can show that every
finitely generated projective module in Mod” (Ox x, F*) is a direct sum of /" (Ox (i))x’s (the proof is

exactly the same as in the non-filtered n = 1 case, Ox /M = Oy /1 is a field). Now, use an extension
of [37, Lemma 0B8J].
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of perfect complexes Perf(X, F*) to be the full subcategory of D(X, F*) consisting of
those complexes that are locally quasi-isomorphic to strictly perfect complexes.

Remark 6.44. Under the equivalence of Proposition 6.16 the perfect complexes over
(X, F*) correspond to the perfect complexes over (X, AF=), i.e., those complexes that
are locally quasi-isomorphic to bounded complexes having direct summands of finite free
A p+-modules as components. This follows as, with notation as in the proposition, J is
mapped to A r+ and the equivalence is compatible with restriction to open subsets.

Proposition 6.45. Ler (X, F*) be a quasi-compact separated n-filtered scheme. An object
M of D(X, F*) is compact if and only if it is perfect.

Proof. Suppose M is compact. As the underlying scheme is quasi-compact and separated,
derived pushforwards along open immersions preserve direct sums®*. Hence, restriction to
open subsets preserves compactness by Lemma 2.1. Thus, we reduce to the case where X is
affine and consequently @;’:—é / "((5X (i)) is a compact generator. So, M € D(X, F*)¢ =
Thick(@:’;é 1"(Ox (i))) is strictly perfect.

Conversely, suppose M is perfect. As in the proof of [8, Lemma 3.3.7] we can reduce
to the case where X is affine (essentially by looking at Mayer—Vietoris type distinguished
triangles). Then, suitably adjusting [37, Lemma O8EB], one can show that M is quasi-
isomorphic to a bounded complex of projective modules, in which case it is clearly compact.
Alternatively, when X is additionally Noetherian, one can, using Lemma 6.20, copy
[3, Theorem 4.1 (iii)=>(i)] to show that M is quasi-isomorphic to a bounded complex of
projective modules. ]

Proposition 6.46. Let (X, F*) be a quasi-compact separated n-filtered scheme. The
derived category D(X, F*) is compactly generated, consequently Perf(X, F*) is essentially
small (i.e., equivalent to a small category).

Proof. Let P := @:’;& " ((5X (i)). By Remark 6.15 we have an adjunction (ignoring the
components in positive degree)

D(X, F*)

(&l P) < 4 >(—)|(9X

D(X).

It is well-known [8, Theorem 3.1.1] that D(X) admits a compact generator U. As (—)|oy
is exact, commutes with coproducts and moreover reflects the zero object, it follows by
abstract nonsense that U ®%9X P is a compact generator for D(X, F'*). ]

3One can reprove this in our setting; the proof for schemes works, but one can also reduce to the
non-filtered case using Lemma 6.43.


https://stacks.math.columbia.edu/tag/08EB

T. De Deyn 176

6.5. Semi-orthogonal decompositions

We make use of the following notation. Let X be a scheme and I a quasi-coherent ideal
sheaf, then Vx (1) denotes the closed subscheme of X defined by I.
The following are two results of [23] translated into the filtered language.

Proposition 6.47. Let (X, F*) be a Noetherian n-filtered scheme, put Xo := Vy (F~1Ox).
There are semi-orthogonal decompositions

n components
D(X, F*) = (D(Xo), D(Xp). ....D(Xo))
D’ (Coh™(X, F*)) = (D?(Coh(Xy)), D?(Coh(Xy)), . .., D?(Coh(Xy))).

n components

Proof. This follows from Proposition 6.16 and [23, Corollary 5.15] (in loc. cit. X is
assumed to be separated and of finite type over a field, but this is not needed). ]

Proposition 6.48. Let (X, F*) be a separated n-filtered scheme of finite type over k.
Suppose Xo := Vx(F~'0Oy) is smooth, then Perf(X, F*) = DP(Coh™ (X, F*)).

Proof. This follows from Proposition 6.16 and [23, Theorem 5.17]. It makes use of the
semi-orthogonal decompositions of Proposition 6.47 being ‘nice’. ]

6.6. Functorial enhancements

We construct functorial small enhancements of separated finite length filtered schemes of
finite type by combining [23, Theorem 3.11] with the usual passage from a pseudo-functor
to a functor, see, e.g., [5, Subsection 4.1] or [41, Theorem 3.45].

Let fSch be the category consisting of the following:

* objects are separated finite length filtered schemes of finite type over a field k of
characteristic zero,

* morphisms are generalised morphisms.

Furthermore, let dgCat and Tri denote, respectively, the (2-)‘category’ of big (i.e., not
necessarily small) dg categories and triangulated categories.

For any filtered scheme (X, F*) in fSch we have enough h-flat complexes and therefore
an enhancement of its derived category by taking the Drinfeld dg quotient of the (big) dg
category h-flat(X, F*) of h-flat complexes with flat components by the full (big) dg sub-
category h-flat®(X, F*) of those complexes that are additionally acyclic. For convenience,
we henceforth identify?’

D(X, F*) = [h-flat(X, F*)/ h-flat° (X, F*)].

35 Note that, if we define h-flat(X, #4 f+) as the dg category of h-flat complexes with flat components
of right modules over the corresponding Auslander algebra, then h-flat(X, F*) and h-flat(X, Af+) are dg
equivalent. So, the dg enhancements constructed in [23] on the #-space side are quasi-equivalent to the
ones defined in this section.
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Moreover, as the pullback along any generalised morphism preserves (acyclic) h-flat
complexes and flat objects it induces a dg functor between these enhancements. This gives
a pseudo-functor

h-flat / h-flat® : fSch®® — dgCat. (6.6)

(One way of seeing that this is a pseudo-functor is as follows. Pulling back gives a
pseudo-functor on the level of complexes of quasi-coherent modules, as the pullback is
adjoint to pushforward and we have actual equality of composition for the pushforward,
cf. [41, Subsection 3.2.1]. This then descends to the category h-flat and to its dg quotient.)
Moreover, by post-composing with H° we obtain a pseudo-functor D : fSch® — Tri.

Let h-flat-perf(X, F*) denote the full (big) dg subcategory of h-flat(X, F*) of those
complexes that are additionally perfect. Then, the pseudo-functor (6.6) restricts to a pseudo-
functor h-flat-perf / h-flat® : fSch®? — dgCat as pullback preserves perfectness. This gives
big enhancements of the perfect complexes over filtered schemes.

Lastly, we also have a pseudo-functor D : dgcat — Tri by associating to any dg category
its derived category and any dg functor its induction functor. (A similar reasoning as before
shows that this is a pseudo-functor.)

The main result of this section is the following proposition.

Proposition 6.49. There exists a functor D : fSch®? — dgcat such that the diagram

h-flat-perf / h-flat®
e ~
fSch®P dgCat
o A
D inc
Yt -

dgcat (6.7)

D | D
D
1
Tri
is 2-commutative (i.e., the triangles commutate up to ‘natural equivalences’, the upper

triangle is up to fully faithful quasi-equivalence, the bottom left is up to equivalence and
the bottom right is simply equality).

Proof. First note that the commutativity of the bottom left triangle follows from that of the
upper one, as we have a natural transformation of pseudo-functors

D(h-flat-perf / h-flat®) =~ [h-flat / h-flat’] = D,

which is proven in exactly the same manner as the latter part of [23, Theorem 3.11].

Thus, it suffices to construct D and to show the commutativity of the upper triangle.
For the construction note that the category fSch is essentially small, as finite type schemes
are essentially small and the addition of a filtration does not change this. Let S denote a set
of representatives of isomorphism classes of objects in fSch.
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Take (Y, G*) in S. By Proposition 6.46 Perf(Y, G*) is essentially small. Hence, we
can find a small dg subcategory Do(Y, G*) of h-flat-perf / h-flat®(Y, G*) inducing an
equivalence on the homotopy categories, i.e.,

[Do(Y, G*)] = [h-flat-perf / h-flat® (Y, G*)] = Perf(Y, G*).
Now, let (X, F*) be arbitrary, we define D(X, F*) as follows.
* Objects: pairs (g, M) where g : (X, F*) ~» (Y, G*) is a morphism with target in S
and M is an object of Do (Y, G*).
*  Morphisms: Hom((g1, M1), (g2, M>)) := Hom(g] M1, g5 M), where the latter Hom
is taken in h-flat-perf / h-flat® (X, F'*).

As S is a set, we also have a set of morphisms with target in S. Therefore, as the Dy’s are
small, D is small. In the following we will denote by

ape [T — (gf)" and  ex Fw i ([dx,F*)" — 1dhfatpert/ hflat° (X, F*)

the coherence isomorphisms of the pseudo-functor h-flat-perf / h-flat®. In order to make
D into a functor we define for any morphism f : (X, F*) ~» (X', F'*) a dg functor
f* DX, F™) » D(X, F*) as follows.

* On objects: (g, M) — (gf. M).

*  On morphisms: sent ¢ : (g1, M1) — (g2, M>) to the upper morphism in the diagram

&1 f)*My ——--3> (g2/)*M>

™ T
Afer Ofer (6.8)

| |
f*
frermy, L2 frarM, .

This gives us the sought after functor D : fSch — dgcat; functoriality follows by the
naturality and coherence conditions of the o’s and ¢&’s.

It remains to show the claim concerning the upper triangle in (6.7). Define a dg functor
D(X, F*) — h-flat-perf / h-flat® (X, F*) on objects by (g, M) — g*M and on morphisms
as equality. Clearly, this functor is fully faithful. Moreover, it gives an equivalence on H°.
Indeed, let M be an arbitrary h-flat perfect complex over (X, F*) and pick an isomorphism
s (X, F*) — (Y, F*) with target in S. Then, M is homotopic to s* M’ where M’ is any
object of Do (Y, F*) homotopic to s« M.

Lastly, for any f : (X, F*) ~> (X', F'*), the ay,_’s give, using (6.8), a natural iso-
morphism making the diagram

D(X', F™*) —— h-flat-perf / h-flat® (X', F'"*)
| _ |
f* o, f*
1 1

D(X, F*) —— h-flat-perf / h-flat’(X, F*)

2-commute. [
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Remark 6.50. In particular, with notation as in the proposition, we have for each general-
ised morphism f : (X, F*) » (Y, G*) in fSch a 2-commutative square

D(D(Y, G*)) —*, p(D(X, F*))

| |
D(Y,G*) —*" . p(x, F¥)

where the vertical morphisms are equivalences.

Remark 6.51. It seems likely that the proof of [10, Theorem B] generalises to the filtered
setting, showing that the category of perfect complexes over a quasi-compact (quasi-)
separated finite length filtered scheme has a unique dg enhancement. For the derived
category this is known by Theorem A of loc. cit. which shows that for any abelian category
A the derived category D?(A), for ? = b, 4+, —, &, has a unique dg enhancement.

The following is [23, Theorem 5.20] translated into the filtered language.

Proposition 6.52. Let (X, F*) be a filtered scheme in fSch. Suppose X := Vx (F~10x)
is smooth (over k), then D(X, F*) is a smooth dg category (over k). If Xy is additionally
proper, then D(X, F*) is dg proper.

Proof. This follows from Proposition 6.16 and [23, Theorem 5.20]. It is a consequence of
the semi-orthogonal decomposition of Proposition 6.47 having appropriate perfect gluing
bimodules. ]

6.7. Filtered blow-ups

We start by briefly recalling some aspects of the relative Proj construction in the non-filtered
setting, see for example [16, Section 3] for more information.

Thus, let X be a scheme and 4 a commutative quasi-coherent graded Ox-algebra.
One can construct a scheme PrQ] 4 by gluing together the usual Proj of a graded ring
Proj A(U) for Spec R = U < X affine open (see, e.g., [37, Section 01M3] for its con-
struction). As 4 (U) is an R-algebra, Proj 4 (U) is equipped with a natural morphism to
U . These glue to give a natural morphism @X A — X. Moreover, to any quasi-coherent
Z-graded A-module M we can associate a quasi-coherent sheaf over Proj ¥ A. We will use

M or M™ to denote this associated sheaf, as is customary. In order to avoid confusion with
our notation for the associated Rees algebra of a filtered algebra, we will simply denote the
latter Rees(: - - ) in this subsection and the next. The functor ~ is exact.

Now, let (X, F*) be an n-filtered scheme. We extend the relative Proj construction to
the filtered setting. Recall that Filt” (X, F'*) is the category of length # filtered (Ox, F*)-
modules; it consists of those filtered modules (M, F*) with F OM = Mand F7"M = 0.
Consider an N-graded commutative algebra object (4, F'*) of Filt” (X, F'*) whose filtration


https://stacks.math.columbia.edu/tag/01M3
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pieces are quasi-coherent. Explicitly, (s, F*) consists of a collection®® {(A;, F*)}jen C
Filt" (X, F*) s.t. every F/ #; is quasi-coherent as Ox-module together with commutative
unitality and associativity (filtered) maps. Alternatively, we can think of (4, F*) as a
commutative quasi-coherent N-graded Ox-algebra equipped with a length r filtration (i.e.,
satisfying FO#4 = 4 and F~"# = 0) that is compatible with the filtration of (Ox, F*),
i.e., (A, F*)is afiltered (Ox, F*)-module. See also the next paragraph.

By looking at the F°-part of the filtration we obtain a quasi-coherent N-graded Oy -
algebra FOA := @, F°A;(= @, A; = 4) and we can consider the scheme Y :=
Pr_on (F°A). Moreover, every filtered piece F/#4 can be viewed as a graded FOs-
module @i FJ 4; which is quasi-coherent as Oy-module. Thus, we can associate a
quasi-coherent module F/ @y := (F/A)™ over Y, and note that F°Qy = Oy . Therefore,
we have a natural filtration on Oy, which moreover has length n. Denote the associated -
filtered scheme (Y, F*) by Pr_on (+A, F*). Furthermore, note that the canonical morphism
.Y — X is compatible with the filtrations, thus giving a morphism of filtered schemes
7 (Y, F*) — (X, F*). Of course, all of this also makes sense for filtered schemes with
unbounded filtration.

This leads to the following extension of blowing up in the filtered setting. Let I C Oy
be a quasi-coherent sheaf of ideals. (There is no distinction between filtered ideal sheaves of
(Ox, F*) and ideal sheaves of Oy as the filtration is uniquely determined by the inclusion
being a strict monomorphism, see also the beginning of the next subsection.) Denote by
A=@, 1 ! the Rees algebra of I which we view as an N-graded algebra and equip every
A; = I' with the filtration induced from (Ox, F*),ie., FJA; == I' N F/Ox. Then, we
are in the above setting and can apply the relative Proj construction to (4, F*). We obtain
an n-filtered scheme Blz(X, F*) := Proj,, (A, F*) which we refer to as the filtered blow-up
of (X, F*) along I, and a canonical filtered morphism 7 : Blz(X, F*) — (X, F*).

The next proposition, although straightforward, will be important as it lets us lift
blow-ups in some sense, which we make precise now. Recall that for a scheme X and a
quasi-coherent ideal sheaf I, the closed subscheme defined by I is denoted by Vx (I).
We say that a morphism of filtered schemes 7 : (Y, F*) — (X, F*) lifts a morphism of
schemes 77 : ¥ — X when the following statements hold:

(1) X = Vx(F~'0x),

2) ¥ = Vy(F~'0y),

(3) the morphism

Y X
Il Il

Vy(F7'0y) —— Vx(F'0x)

induced by 7 equals 7.

36 We use lower indjces here as, in the next subsection, we will have to consider Rees(cA, F*) =
D, F/ At/ =P, ; F/A;t/, whichis a Z2-graded algebra; having upper and lower indexes will help
differentiate between the gradings.
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Of course, it is always possible to find a lifting by endowing ¥ with the trivial filtration, but
this is not always what one wants. Moreover, more generally, we can weaken the above, only
requiring isomorphisms in (1) and (2) and then requiring the induced morphism in (3) to be
equal modulo those isomorphisms. (The reason we are interested in the closed subschemes
defined by the F~!-parts of the filtration is because of their presence in Proposition 6.52.)

Proposition 6.53. Let (X, F*) be a filtered scheme and X := Vx (F~'Ox). Suppose
7Y = Blf()?) - X

is the blow-up along a quasi-coherent sheaf of ideals Ico i- Then, there exists a quasi-
coherent sheaf of ideals I C Ox such that

7:(Y,F*):=Blz(X,F*) > (X, F"),
the filtered blow-up at I, lifts 7.

Proof. Leti : X — X denote the closed embedding. Consider the quasi-coherent ideal
sheaf I of X containing F~ 10y with I/F_I(QX = i, I, i.e., the pullback

N N
(9X —_— i*(g}? .
Define
(7, F*) = Blz(X, F*)

the filtered blow-up of (X, F'*) along I and denote by 7 the canonical filtered morphism
to (X, F*).
To show (2) in the requirement of a lift note that

FOA/F' A = D .rf/ P/ nFox)
J J
=@’/ nFox)
J

=P’ + F'ox)/F'0x
J

-(@7)

as Ox-modules (where we sneakily used that i, commutes with direct sums). Therefore,
Vy (F~10y) is exactly

Proj, (FO,A,/F—I,A,) = Proj,, (i*(@ ff))
J
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but we have®’
proj, (@D 7)) = proi (D T7) = 7.
J J
Furthermore, by looking at affine opens of X, one sees that the diagram

Y :Pr_ojx(@jfj

) 7= X
Proj, (i+(ED; 1) ]i
7 = P (@, 1) — X

commutes, showing that (3) in the requirement of a lift is fulfilled. ]

Corollary 6.54. Let (X, F*) be a filtered scheme such that X := Vx (F ~'Ox) admits a
resolution of singularities 7 : Y — X by a blow-up.

Then, T can be lifted to a morphism of filtered schemes 7w : (Y, F*) — (X, F*). In
particular, Vy (F~'Qy) = Y is smooth.

Remark 6.55. If X is a quasi-projective variety, a proper birational morphism being a
blow-up is equivalent to it being projective. Moreover, as the composition of a blow-up is a
blow-up (under some mild hypotheses [37, Lemma 080B]), it follows from Hironaka [18]
that every reduced separated scheme of finite type over a field of characteristic zero can be
resolved by a blow-up.

6.8. Filtered nonrational loci

Let (X, F*) be a filtered scheme. A morphism of filtered modules f : (M, F*) —
(N, F*) is called strict if f(F':M) = f(M) N F'N foralli € Z. It is a monomorph-
ism, respectively, epimorphism in Filt(X, F*) when M — N is so in Mod(X), equival-
ently the kernel, respectively, cokernel of this map is zero. In general only the strict
monomorphisms/epimorphisms get mapped by ¢ from Proposition 6.3 to monomorph-
isms/epimorphisms in ngod(@X).

3Asi : X < X is affine, the subscript in the relative Proj only changes the scheme over which we view
the Proj, not the actual scheme itself. To see this, look at the construction; the graded algebras that get glued
are the same. Moreover, here specifically we even have

proj, (i@ 7)) = Proiy (@@ 7)) x X = Proi (170D ) ) = poi (B 7).
J J J J

where the first identification follows from the fact that @X (i~(P i I )) — X factors through the mono-
morphism X < X (as the ideal F~!@x gets mapped to zero).


https://stacks.math.columbia.edu/tag/080B
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Anideal I C Oy is always endowed with the filtration induced from (Oy, F*), i.e.,
F'I:= IN F'Ox.Another way of stating this is that we require the inclusion (I, F*) <>
(Ox, F*) to be a strict monomorphism. We sometimes refer to these as filtered ideal
sheaves, but as there is no choice in the filtration there is no difference between a filtered
ideal sheaf and an ideal sheaf.

Furthermore, to any ideal I C Ox we can associate a filtered closed subscheme of
(X, F*). This is done by considering the usual closed subscheme i : Vy (I) < X endowed
with the filtration induced from (X, F*), i.e., FjOVX(I) =i '((F/Ox + I)/I). Thisis
exactly requiring (Ox, F*) — ix(Ov, (1), F*) to be a strict epimorphism.

As (F/Ox + I)/I = F/Ox/I N F/Ox the above two constructions are nicely
compatible. Further evidence that these are the ‘correct’ things to do is given by the
following lemma, which is proven in exactly the same way as in the non-filtered case.

Lemma 6.56. Let (X, F*) be a filtered scheme. There is a one-to-one correspondence
between quasi-coherent filtered ideal sheaves (I, F*) of (Ox, F*) and filtered closed
subschemes™ i : (Y, F*) — (X, F*). More precisely,

(I, F v (Z,F"),

where Z is the support of Ox /I and (Oz, F*) is the sheaf of filtered rings on Z corres-
ponding to (Ox, F*)/(I, F*), and

ker(i*) < (Y, F*),
where i% is the morphism (Ox, F*) — i+(Qy, F*) of structure sheaves.

Remark 6.57. If we allowed non-strict monomorphisms (I, F*) < (Ox, F*) as filtered
ideals, we would not obtain this bijection. To go from a closed subscheme to the associated
ideal, one takes a kernel and kernels are always strict monomorphisms. Similarly, if, for
a filtered closed subscheme, one wants i.(OQy, F*) to be the cokernel of (I, F*) —
(Ox, F*), one is lead to require (Ox, F*) — i+(Oz, F*) to be a strict epimorphism.

The following is the natural generalisation of the definition of a nonrational locus of
[23, Definition 6.1] to the filtered setting (but we choose to state it using the ideal sheaf
instead of the corresponding closed subscheme).

Definition 6.58. Let f : (Y, F*) — (X, F*) be a morphism of n-filtered schemes. A
quasi-coherent ideal sheaf I € Oy of X is called the ideal sheaf of a filtered nonrational
locus of (X, F*) with respect to f if the canonical morphisms*’

(I.F* = fu(f 7' IOy, F*) > Rfu(f711- Oy, F¥) (6.9)

are isomorphisms.

3The map i is the inclusion of a closed subset Y of X and the morphism of structure sheaves i* :
(X, F*) — ix(Y, F*) is a strict epimorphism.

%Here, the first morphism is obtained by adjunction from the morphism f*I — f~!I -y (obtained
in its turn from the factorisation through the image of f*I — f*Ox = Oy) which is compatible with
the filtrations (this follows immediately from the fact that f is a filtered morphism since ideals carry the
induced filtration). The second morphism is the usual one which is part of the data of a derived functor.
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Remark 6.59. Of course, we should really have written
I, F*) = fu(l(fT'T-Oy. F*) > Rfu(u(f 7' T- Oy, FY)).

where ¢ denotes both inclusions Filt” < grMod”, see Proposition 6.3. As this looks even
more unsightly we refrain from doing this unless confusion can arise.

Remark 6.60. Justification for the name is as follows. Suppose X is a variety over field
of characteristic zero, and f : Y — X is a resolution of singularities. One says that X
has rational singularities when the natural morphism Oy — R f, Oy is an isomorphism.
If S := Vyx(I) is a nonrational locus for f, then X\S has rational singularities (as

Ilx\s = Ox\s, etc.).

Suppose I is the ideal of a filtered nonrational locus as in the definition. Then, due to
the following diagram:

Rf*@y —_— Rf*évy(f—lf.gy) — Rf*(f_lf-Qy,F*)[l] S

| I i

Ox ——— (5VX(D > (I, FH)[l] ——,

one can already guess, taking a glance at Lemma 5.21, how this notion will lead to an
acyclic square on the level of enhancements. We show this in Proposition 6.68 below.

It is not clear how to construct nonrational loci in general. Luckily [23, Lemma 6.3],
showing the existence of nonrational loci for blow-ups, extends to the filtered setting.

Proposition 6.61. Let (X, F*) be a Noetherian filtered scheme of finite length. Suppose
f :Blg(X, F*) — (X, F*) is a filtered blow-up along a coherent’ sheaf of ideals I.
Then, for k > 0 the ideal I* is the ideal of a filtered nonrational locus of (X, F*) with
respect to f.

The proof requires some preparatory work which we do now. Essentially, in order to
‘copy-paste’ the proof of [23, Lemma 6.3] we have to extend some results of Serre [35]
concerning the cohomology of coherent modules over projective schemes to the filtered
setting.

6.8.1. Cohomology of sheaves of graded rings.

Non-filtered version. Let X be a Noetherian scheme and 4 = €, 4; a quasi-coherent
graded Ox-algebra*' such that # is a coherent Qx-module. Assume furthermore, for

“OThis is automatic if one requires I to come from a filtered closed subscheme, as it will then be
quasi-coherent and hence automatically coherent as we are in a Noetherian setting.
41 Again, we write the grading with subscripts here, see also footnote 36.
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convenience, that + is locally generated by -+, as an #g-algebra (equivalently as Ox-
algebra); by this we mean that the morphism Sym 4 A1 — s induced by multiplication is
surjective. It follows that + is coherent in every degree, and moreover is Noetherian*’.

The following can be made to work, with slight modifications, without the local degree
one generation (essentially because some Veronese will be locally generated in degree one),
see also [37, Section OBXE]. However, as we are only really interested in the blow-up
situation, we restrict to the locally generated in degree one setting for ease.

Recall that to any quasi-coherent Z-graded #A-module M we can associate a quasi-
coherent sheaf M over ¥ := Pr_on 4. By the degree one generation assumption this
commutes with tensor products®*. In particular, (M (k))™~ = M (k) := M ®¢, Oy (1)®*
(where Oy (1) := (A(1))7).

Lemma 6.62. LetY = Pron A be as above and denote by f : Y — X the corresponding
structure morphism. Let M be a coherent Z.-graded A-module. The canonical morphisms

Mic = fx(M(k))™) = Rf((M(k))™) (6.10)
are isomorphisms for k >> 0.

Proof. This is well-known, see, e.g., [37, Lemma 0AG6] and [37, Lemma 0AG7] for proofs
(in the case that X is affine, from which the relative version follows). ]

Remark 6.63. We chose to twist on X instead of on Y, which is what is commonly done,
for reasons that will become clear when we look at the filtered version, see Remark 6.65.
Since (M(k))™ = M (k), as + is locally generated in degree one, this does not matter.
When # is not locally generated in degree one, twisting on X is the ‘correct’ thing to do (the
functor M — P, f« (ﬂ(k)) is not compatible with shifts whilst M — @ fix((M(k))™)
is).

Filtered version. Now, let (X, F*) be a Noetherian n-filtered scheme and (4, F*), as
in Section 6.7, an N-graded algebra object of Filt" (X, F*) whose filtration pieces are
quasi-coherent. Furthermore, assume that the graded Ox -algebra FOsA (= +4) satisfies the
same assumptions as in the non-filtered case, i.e., F' 0.4, is a coherent F°O@y-module and
FO4 is locally generated by FO4, as an F%q-algebra. It follows that every F/ #4; is
coherent.

421t satisfies the ascending chain condition on quasi-coherent ideal sheaves, i.e., the categorical definition
of being a Noetherian object of QCoh(X, +), or equivalently it is given by a Noetherian algebra on every
affine open subset.

“This uses the local generation in degree one assumption. If S is a graded ring, M and N are graded
S-modules and f € S, then the natural morphism (notation of Hartshorne for example)

M) ®ssy Nisy > (M @5 N)p)

is in general only an isomorphism if deg( f) = 1, see, e.g., [37, Remark 01 ML] for a counterexample.
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Let Rees(+, F*) = €D, ; FJ #4;t/ be the Rees algebra of (s, F*). This is a sheaf of
7*-graded Ox-algebras. By convention the lower index indicates the grading obtained from
FOst = &b, F 94, and the upper index indicates the grading obtained from the filtration F*.
We denote by grMod” (A, F*) the full subcategory of Z2-grMod(Rees(s, F*)) consisting
of Z?-graded modules M = D, j Mlj (the same naming convention concerning gradings
applies here too) over Rees(+A, F*) for which ML = 0 for j < —n and multiplication
by ¢ induces an isomorphism ,Mi = Mi“ for j > 0. The shift M (k) of an object in
grMod” (A, F*) shifts the lower grading, (M(k)){ = eA/(ijJrk. We say that an object M in
grMod” (4, F*) is coherent if every M’ is coherent as a module over Rees(+, F*)? =
FOA.

Let (Y, F*) := Proj, (A, F*) be defined as in Section 6.7. Applying ™~ to a coherent
object eA{in grMod™ (M, F*), component-wise ‘using’ the lower grading, gives an object
M = (ML)jez in Coh™ (Y, F*).

Lemma 6.64. Let (Y, F*) = Pron(A, F*) be as above and denote by [ : (Y, F*) —
(X, F*) the corresponding structure morphism. Let M be a coherent object in grMod” (A,
F*). The canonical morphisms

Mic = fx(M(k))™) = Rf((M(k))™) (6.11)
are isomorphisms for k >> 0.

Proof. To show that the morphisms in (6.11) are isomorphismes, it suffices to check this for
each graded component separately, i.e.,

gty My = gr; fu((M(K)™) — gr; R fu(M(K))™)

is an isomorphism for each 0 > j > —n. As there are only finitely many j’s for which we
ha\{e to check this, the result follows, using Lemma 6.43, _from Lemma 6.62 applied to the
Mi’s since gr; My = (Mg and gr; (M (k))™) = (M (k))™. n

Remark 6.65. Twisting on (X, F'*) is necessary here as opposed to naively twisting on
(Y, F*), i.e., applying — ®y|, (+4(1))™~. The latter is not compatible with taking graded
components as tensoring on (Y, F*) mixes these; twisting on (X, F'*) twists a different
grading giving gr; (M (k))™) = (ML (k)™

6.8.2. Proof of the proposition.

Proof of Proposition 6.61. Recall that Blz(X, F*) := Pr_on (s, F*) where A := @; I'
is the Rees algebra of I viewed as an N-graded algebra object of Filt” (X, F*) by equipping
every #; = I' with the filtration induced from (Ox, F*),ie., F/#4; := I' N F/ Ox.
Put § := f~1I-Oy the inverse image ideal sheaf and note that § = (I4)~ (e.g.,
this follows from the exactness of ~ and f*I = (I ®@, #)~). Moreover, we have
gk = (f7'1-0y)k = f711F. 9y = (I¥A)~. Observe that #A(k)>o C A and the
filtration on A(k)>¢ obtained by twisting is the one induced from + by this inclusion
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(since A;+x © A; € Ox and the filtrations on both ;4 and #A; are induced from Oy).
Therefore, under the identification

(AK)™ = (A(K)z0)™ = (TFA)” = g¥,

the filtration on (k) obtained by twisting (A, F*) gives exactly the filtration on g*
induced from (OQy, F*). Schematically,

(AK)=0, F*) < (A, F¥)
(g%, F*) < (Oy,F%)
where both inclusions are strict monomorphisms (as ~ is exact it preserves strict mono-

morphisms of filtered objects).
Applying Lemma 6.64 with M = Rees(+, F*) gives isomorphisms

Rees(, F*)r — fx((Rees(A, F*)(k))™) — R fiu((Rees(A, F*)(k))™)
for k > 0. Using that Rees(A, F*); = ((I¥, F*), that by the previous paragraph

(Rees(A, F*) (k)™ = (F/ A(k)™)jez
= (F/g%)jez
=u(f711k. 0y, F)

and noting that the morphisms of equation (6.11) are exactly those of equation (6.9) gives
the result. ]

6.9. Two acyclic squares

The importance of nonrational loci and functorial refinements is that they induce acyclic
squares of the enhancements. This will be crucial in our construction of an acyclic hyper-
cube, and thus of a categorical resolution in the next section. Below we use the functorial
enhancement D : fSch®® — dgcat (constructed in Section 6.6), so we restrict to separated
finite length filtered schemes of finite type over k. In particular, the diagrams we obtain do
actually strictly commute and we can apply the 7-construction from Section 5.1.

6.9.1. Refinements.

Proposition 6.66. Let (id,d) : (X, G*) v (X, F*) be a d-refinement. Then, the derived
pullback functor
L(id, d)* : D(X, F*) — D(X, G*)

is fully faithful.
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Proof. The derived pullback functor being fully faithful is equivalent to the unit of the
adjunction L(id, d)*  (id, d)« being an isomorphism (in the derived category). The
latter question is local, so we may reduce to the affine setting. As L(id, d)* commutes
with direct sums and {/ "((9(X F )(1))}0<,<,, is then a set of compact generators that gets
mapped to compact objects L(id, d)* (Z"((Q(X (i) = 4n ((Q(X G+ (di)), it is enough,
by Lemma 2.1, to show that

D(X, F*)(I™(Ox, 5+ () 1" (Ox,r (7 )IK])
— D(X, G*)(L(id, d)* (1" (Ox,F+(0))), Lid, d)*(I" (Ox,r+ () [k])

is bijective for 0 < i, j <n and k € Z. If k # 0 both sides are zero as the objects are in
addition projective, whilst for k = 0 we have

LHS = I"(Ox.F+(j)~i = F/~'Ox | F/ ™" 0x
=GV 0y |GV Ox =1 (O(x.6+(d]))-ai = RHS. .
Corollary 6.67. In the setting of Proposition 6.11, i.e., (id,d) : (X, G*) » (X, F¥)

and (id, d) : (Y, G*) ~ (Y, F*) are compatible d-refinements, the induced square of

enhancements

DX, F*) D7 px, 6%

T T

Dy, F*) 2D iy, 6%

is acyclic.
Proof. By Lemma 5.22, it suffices to show that any refinement
(id,d) : (X,G*) » (X, F™¥)
induces a quasi fully faithful dg functor
(id,d)" : DX, F*) - D(X,G")
of the enhancements. This holds by the (2-)commutative diagram

DX, F*) — 24" px G

{1 ]

LindGg,g)*
D(D(X, F*)) D(D(X,G"))

) )

DX, Fr)] —2D0 i x, 67

and the previous proposition. |
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6.9.2. Filtered nonrational locus. The following, together with Proposition 5.13, is
essentially a reinterpretation of [23, Proposition 6.5].

Proposition 6.68. Let I be the ideal sheaf of a filtered nonrational locus for a morphism
f (Y, F*) — (X, F*) of separated finite length filtered schemes of finite type over a field.
Then, the induced square of enhancements

DY, F*) — D(Vy(f~'I-0Oy), F*)

T T

D(X, F*) ——— D(Vx(I), F*)
is acyclic.
Proof. For notational ease, let us denote
S:=Vx(I) and T :=Vy(f 'I-0y)

and label the morphisms as follows:

(Y, F*) <— (T, F%)

T

(X, F*) «— (S, F*).

We have to show that for any M, N in D(X, F*) the diagram

DY, F*)(f*M, f*N) L= DT F*)((f 0 )*M.(f 0 /)*N)

f*T Tp*

DX, F*)(M,N) ————— D(S, F*)(i*M,i*N)
is acyclic after applying z. This is equivalent, by Lemma 5.21, to
H(D(X, F*)(M.N) 5> D(S. F*)(i*M.i*N))
* * * J* * .k .k
= t(D(Y, F*)(f*M, f*N) = D(T, F*)((f 0 j)*M,(f o j)*N)) (6.12)

being a quasi-isomorphism. We may assume that M = M® and N = N ® are honest perfect
h-flat complexes**. Using adjunction and the projection formula (Lemma 6.69 below) the

“By our construction of D we have an on the nose fully faithful quasi-equivalence D(X, F*) —
h-flat-perf(X, F*)/ h-flat°(X, F*) (in fact it gives actual equality on the hom-complexes). Moreover, the
hom-complex in the latter identifies, through quasi-isomorphism, with RHom and this is all compatible with
the pullback morphisms.
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morphism (6.12) identifies with®

cone(RHomy (M®, N'*) — RHomy (M®, N* Qx| i+O5s))
— cone(RHomy (M*, N* Qx| R f.Oy) — RHomy (M*, N°® ®x|n R /. j+O7)).

This is exactly RHomy (M*, N * ®x|, —) applied to
(I,F*) > Rfu(f1I-0y, F*).

As the latter morphism is a quasi-isomorphism by definition of a nonrational locus and the
functor we applied is triangulated, the claim follows. ]

In the proof of the following lemma we make use of ‘flasque filtered resolutions’.
We briefly explain what we mean by this. Recall that a flasque sheaf ¥, also called
a flabby sheaf, is a sheaf for which the restriction maps ¥ (V) — ¥ (U) along open
subsets U C V are surjective. They have the pleasant property of having no higher sheaf
cohomology. Thus, an exact sequence of flasque sheaves is exact as sequence of presheaves.
Let (M, F*) be a filtered module over a filtered scheme (X, F*). The Godement resolution
ME™ of M, defined by MEI™(U) := ]_[peU M, over an open U, is naturally filtered.
Indeed, simply put F¥ (ME9™) := (F' M)&9™ As FI(ME9™) N M = F' M, the natural
morphism (M, F*) — (M8™ F*) is a strict monomorphism and thus its cokernel in
grMod remains filtered. As a consequence, any filtered module admits a resolution by
filtered flasque modules.

Lemma 6.69. Let [ : (X, F*) — (Y, F*) be a morphism of quasi-compact separated
n-filtered schemes. For M* € D(X, F*) and N°® € D(Y, F*) there exists a functorial
isomorphism (called the projection formula)

RfAM® @Y, N® = Rf(M® ®F, Lf*N°)
inD(Y, F*).

Proof. The construction of the functorial morphism is standard abstract nonsense. To show
it is an isomorphism we readily reduce to the case N* = ["(Oy (i)) fori > 0, see, e.g.,
[37, Lemma O8EU]. In this case the required isomorphism boils down to showing that

LI"R f,,(M®) = Rf LI" (M*). (6.13)

In our set-up, i.e., (X, F*) and (Y, F*) quasi-compact and separated, f has finite
cohomological dimension on QCoh™ (X, F*) by [15, Corollary 1.4.12], which can be lifted

“This is probably most easily seen using RHom(—, —) = H*® RHom(—, —) = Ext*(—, —) since this is
a complex of vector spaces, see, e.g., [14, Section II1.2, Proposition 4], thereby reducing to showing the
compatibility on the level of hom’s in the derived category.
As an aside, note that the derived pullback on RHom level can be defined via the lifted adjunction
Corollary 6.42 and precomposing with the counit.
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to the filtered setting using Lemma 6.43. Moreover, [" always has finite cohomological
dimension as any quasi-coherent module has a resolution by a two term quasi-coherent
filtered complex (it suffices to find a surjection from a quasi-coherent filtered module, e.g.,
take a flat quasi-coherent module as these are filtered, the kernel is then automatically
filtered). Hence, using that both functors are consequently way-out in both directions, and
by first replacing M® by a complex of quasi-coherent filtered modules, we can reduce to the
case where M*® = M is a quasi-coherent filtered module viewed as complex concentrated
in degree zero by [17, Chapter I Proposition 7.1].

Lastly, we may replace M by a flasque filtered resolution (subtly making use of
Remark 6.18 as flasque modules are not quasi-coherent in general). As these complexes are
both fi-and ["-acyclic, i.e., fi and [” map acyclic flasque complexes to acyclic complexes,
and are preserved by f, and [" the result follows from the fact that [” f, = f.I" on flasque
sheaves (as an exact sequence of flasque sheaves is exact as sequence of presheaves). m

Remark 6.70. ‘Unfortunately’, the above proof requires the pushforward to have finite
cohomological dimension, and hence some separated and quasi-compact assumptions. As
is clear from the proof, the crux is finding enough complexes that are simultaneously f-
and /" -acyclic. It seems unclear how to find these in general.

7. Categorical resolutions

This section is dedicated to reproving the main theorem of [23, Theorem 1.4] in the finite
length filtered setting without using the strong version of Hironaka.

Theorem (Theorem 7.10). Any separated finite length filtered scheme of finite type over a
field of characteristic zero has a categorical resolution by a strongly geometric triangulated
category. Moreover, if the filtered scheme is proper, so is the resolving category.

For this we start by recalling the definition of a (strongly geometric) categorical
resolution and its dg version in Section 7.1. Followed by this, in Section 7.2, we construct
the hypercube of filtered schemes which will give rise to the sought after categorical
resolution. Finally, the present gets unwrapped in Section 7.3, where we give a proof of the
above theorem.

7.1. Generalities

There are a few different definitions of categorical resolutions of singularities [7,22,23,25],
all of which ‘somewhat suitably’ extend the usual geometric notion to a categorical setting.
We use the definition of [23], extended to filtered schemes. Their definition is tailored
towards the ‘big’ triangulated category associated to a scheme, i.e., the unbounded derived
category.

The distinction between big and small is quite imprecise. Roughly speaking a trian-
gulated category would be considered big when it has direct sums, whilst it would be
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considered small if it is essentially small as a category. One way of going from big to small
is by looking at the triangulated subcategory of compact objects (or other objects subject
to some suitable finiteness condition), whilst going in the converse direction could, for
example, be done in an enhanced setting by taking the derived category of the enhancement.
Of course, to make this correspond nicely extra hypotheses are necessary.

Before stating the definition of a categorical resolution, we introduce a few notions.
Recall that every compactly generated triangulated category T has direct sums by definition
and that the triangulated subcategory of compact objects is denoted T¢. We say T is smooth
if there exists a smooth dg category A such that D(A) is equivalent to T. Since T¢ is then
equivalent to the homotopy category of the dg category of perfect complexes over A, which
is also smooth, this is at least morally akin to T¢ having a smooth dg enhancement (and it
is equivalent when T¢ has a unique enhancement). Moreover, we say T is proper if T¢ is
Ext-finite, that is @i Homy (A, B[i]) is finite dimensional over k for all A, B € T°. When
T¢ is enhanceable this is equivalent to the enhancement being proper. Of course we should
mention that for a ‘nice enough’ scheme X, smoothness, respectively, properness of D(X)
is equivalent to smoothness, respectively, properness of X, see, e.g., [29, Propositions
3.30 and 3.31]. Lastly, we follow Kuznetsov and Lunts and say that a smooth triangulated
category is strongly geometric if it admits a semi-orthogonal decomposition consisting of
derived categories of smooth varieties. Our goal it then to construct strongly geometric
categorical resolutions for filtered schemes in fSch. Let us start by defining categorical
resolutions.

Definition 7.1. A categorical resolution of a finite length filtered scheme (X, F*) is a
smooth compactly generated triangulated category T (in particular it has direct sums)
together with an adjoint pair of triangulated functors

D(X, F*)

().

T

such that
(1) e om™ =1id,i.e., 7* is fully faithful,
(2) m« commutes with arbitrary direct sums (7 * automatically does so as it is a left
adjoint),
(3) ma(T¢) S D2, (X, F¥).

Remark 7.2. Condition (2) implies that *(Perf(X, F*)) C T¢ (in fact (2) is equivalent
to this by Lemma 2.1 as D(X, F*) is compactly generated). Together with condition (3)
this implies that there is an induced categorical resolution on the ‘small’ derived category,
as defined in [22, Definition 3.2], i.e., the functors restrict to 7* : Perf(X, F*) — T¢ and
me T¢ = D8 (X, F*).
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In fact, condition (3) can be interpreted as ‘properness’ of the categorical resolution.
Note, however, that there are no birationality requirements in the definition, e.g., D(IP})
yields a categorical resolution of D(Spec(k)).

The categorical resolutions we construct are made at the enhanced level, by gluing
together a hypercube of dg categories. Therefore, in fact, we first construct a dg version
of a categorical resolution. We recall its definition from [23] (although we leave out the
pretriangulated requirement).

Definition 7.3. A categorical dg resolution of a dg category C is a smooth dg category D
together with a quasi fully faithful dg functor 7 : € — D.

A bridge between the two definitions is given by [23, Proposition 3.13]; rephrased in
the filtered setting it reads.

Proposition 7.4. Let (X, F*) be a finite length filtered scheme and let 7 : D(X, F*) — D
be a dg resolution. Put

7* :=LInd, : D(X, F*) = D(D(X, F*)) - D(D),

the derived induction functor, and 7ty := Res, : D(D) — D(X, F*), the restriction functor.
If (D)) S DL (X, F*), then (D(D), w*, w4 is a categorical resolution of (X, F*).

Proof. Conditions (1) and (2) in the definition of a categorical resolution are fulfilled
by Lemma 3.1. Whilst condition (3) is exactly what we assumed since Thick([D]) =
D(D)c. [ ]

Remark 7.5. In[23, Remark 3.14] it is remarked that, in the non-filtered setting, 77 ([D]) <
ch’oh (X) holds automatically when X is projective and D is proper. It would be interesting
to know whether this remains true in the filtered setting. Using results from [32] it seems
plausible that this remains true in the filtered setting, but we did not check the details.

7.2. Constructing the resolution

We show how to construct, starting from a filtered scheme in fSch, a hypercube of filtered
schemes such that the edges adjacent to the initial filtered scheme are dg smooth. Applying
the functorial enhancement and then gluing the punctured hypercube will give a categorical
dg resolution of the enhancement of the initial filtered scheme.

7.2.1. Finitely functorial squares. The key observation is that we can construct ‘finitely
functorial acyclic squares’.

Let | be the category associated to a finite poset with a greatest element, and consider a
functor | — n-fSch. We identify | with its image. Suppose (X, F*) is the terminal object
of I and we are given a filtered blow-up f : Blz(X, F*) — (X, F*). (What we really have
in mind here is, unsurprisingly, a subcategory shaped as a hypercube with (X, F*) as its
highest vertex.) Then, we can construct a compatible system of squares in the same shape
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as |, i.e., every object is replaced by a square. By combining this with Corollary 6.12 we
have the flexibility to, in addition, pick a (specific type of) refinement of the nonrational
locus of (X, F*) with respect to f. Thus, we get a finite functorial system of squares:

Blz(X, F*) «—— (Vai(f7'1 - Og), F*) ¢~ (Vai(f 711 - Op1), G*)

l l | o

(X, F*) s (Vx (D), F*) ¢ (Vx (1), G7)

where the left square is a nonrational locus square and the right square is a refinement
square. (By Lemma 5.25, Corollary 6.67 and Proposition 6.68 this gives an acyclic square
on enhancements.)

Unfortunately, guaranteeing that all the squares are acyclic is only possible after
potentially replacing I by some power I*, i.e., by considering some finite order thickening
of the nonrational locus. As this k needs to be chosen large enough for every object in |
separately, we need | to be finite.

Lemma 7.6. Let | and [ : (Y, F*) := Bl(X, F*) — (X, F*) be as above. For every
morphisma : (X', F*) — (X, F*) in | we have a cube

(Y, F*) 4rnnmmnnnnn- (T, G¥)
A | e
(Y, F*) ¢~nmmnmmnnn (T, G*) l
(71.2)

lf’ (X, F*) WJNWW (S,G%)
i 7
(X', F*) $rrmnnmnmnnn (87, G*)

such that the back and front face give rise to acyclic squares, where the back face is fixed
and we can pick any refinement as in Proposition 6.11 of the nonrational locus (S, F*) of
(X, F*) with respect to f.

Moreover, this construction can be made compatible with compositions. If we are given
another morphism b : (X", F*) — (X', F*) in |, then the cube obtained from b o a is the
stacking of (7.2) and the cube obtained from b using f".

Proof. By Corollary 6.12, it suffices to show this for nonrational loci squares. Put § :=
a~ 11 - Oy and consider the cube

Bl (X, F¥) < > (Vei(f 71 I% - Or). F¥)
7 |f ——
Blgx (X', F*) T (Var ()" g% - Opy), F*)
f (X, F*) < > (Vx (I5), F*).
y
(X', F*) < > (Vi (%), F*)
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For k > 0 we may assume, by Proposition 6.61, that 7% and g* are the ideal sheaves of
filtered nonrational loci, i.e., the back and front face give rise to acyclic squares.

The second claim follows as 51 ¢¥ - Ox» = (b 0a) "' I¥ - Ox: by picking k big enough
to work for every morphism in I. ]

Remark 7.7. Observe that, when a is proper, all the morphisms in the cube (7.2) are
proper. One can, for example, see this by noting that, when forgetting the filtrations, all
but the left and right faces are pullback squares and Blgx (X ") is a closed subscheme of the
pullback B/ (X, F*) xx X'. This will be important later.

7.2.2. A sketch, a warm-up, a cube. The acyclic hypercube will be constructed induct-
ively. Here, we illustrate the idea behind the construction in the first few low-dimensional
steps, as we can easily illustrate these with pictures. We make these pictures in the filtered
scheme setting, although in reality all statements concerning acyclicity are on the dg level
after considering the dg enhancements. This procedure will be formalised in Proposition 7.8.
However, we urge the reader to simply keep the following sketch in mind when reading the
proof. (Essentially all that changes in the general case is that the arrows ‘going down’ in
the 3-cubes are replaced by hypercubes.)

So, let (X, F*) be a filtered scheme of finite length which is separated and of finite
type over a field of characteristic zero. We start by considering a refinement

(X, F*) -~ (So. Fy) (7.3)

such that Vg, (FO_1 Os,) is reduced. It can then be resolved via a blow-up that can be lifted,
i.e., there exists a morphism (Xo, Fg) — (So, F) with Vx, (F; ! Ox,) smooth. Picking a
filtered nonrational locus (S, Fj') we obtain

(Xo, Fy) <— (T, Fy)

| l

(S(), FO*) — (S], FS() s
which we can further refine to get an acyclic 2-cube

(X()vF(;k) M (Tla Fl*)

1 1 (7.4)

(S07 F()*) <-W (Slv Fl*)

such that moreover Vg, (F| 19s,) is reduced. By extending the 1-cube (7.3) and stacking
with the 2-cube (7.4) we obtain an acyclic 2-cube

(X, F*) <~ (So, Fy) «+— (Xo, Fy)

t H H

(S1, Ff) = (81, F)) «— (T, F}) .
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Now, in the (rotated) resulting acyclic 2-cube

(Xo., Fy) <~ (T, FY)

{ | (1.5)

(X, F*) 4~ (S1. FY)

we have that D(X, Fy) is smooth as V(F; !Ox,) is smooth. However, as we did not
use strong Hironaka, there is no reason for V (F; 10s,) to be smooth, hence we need to
replace the (S1, F*) vertex. As V(F; 1Os,) is reduced, we can again find a morphism
(X1, F¥) = (S1, F}) with Vy, (F7'Ox,) smooth. By using the functorial squares we
construct an acyclic 3-cube which shares an edge with the 2-cube (7.5)

| e Mi

Z
<

1
(X,F*) (-'*/\MMJ/NWVV- (SI,FI*) (—J/— (leFl*)-
T T
(82, Fy) «—— (T2, FY)

Extending the 2-cube and stacking with the 3-cube gives us an acyclic 3-cube

(X()’F()*) EAANAANAAANAANAN~ (TI’F]*) £ [

= o w’”ﬁl

S

$ \ (1.6)
l (X, F*) Wl«www (S1, Ff) <—l— (X1, F}).
T T T
(S5 Ff) = (2. F}) ¢ (T0. F})

Now, two of the vertices (Xo, F') and (X1, F;") connected to (X, F*) are ‘good’, but at
the cost of making a third one (5>, F,’) that is ‘bad’

(X07F0*) LrrAmAANAAANAAANANA- @

T Mﬁl

y
<

(7.6) = $
l (X, F*) Wlww (X1, F}).
T T

(52, F) «———— (12, FY)

Note that the front face only contains filtered schemes of the same length. We can thus,
similarly, replace every vertex in this front face by an acyclic square, thereby obtaining an
acyclic 4-cube. Extending the 3-cube (7.6) and stacking with this 4-cube we then obtain an
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acyclic 4-cube. This time three of the four vertices connected to (X, F*) will be ‘good’
whilst we have created a fourth ‘bad’ vertex (53, F;'). However, in every step the dimension
of §; strictly decreases, as its complement in S;_; is dense. Hence, after a finite number
of steps, S, will be a disjoint union of points. Thus, (S,, F,) is already ‘good’, and we
obtain in this manner an acyclic hypercube as desired.

7.2.3. Constructing the acyclic hypercube. We say that a hypercube of filtered schemes
in fSch is acyclic if applying the functor D : fSch® — dgcat of Proposition 6.49 yields
an acyclic hypercube of dg categories. Because the functor D is contravariant we use the
opposite order to label our hypercubes of filtered schemes, so that after applying D the
hypercube of dg categories has the correct labelling. Concretely this means that the arrows
in the hypercube of filtered schemes point in the opposite direction of how they would for
dg categories:

» for fSch all arrows point towards &,
» for dgcat all arrows point away from &.

Proposition 7.8. Let (X, F*) be a separated finite length filtered scheme of finite type over
a field of characteristic zero. There exists an acyclic hypercube A, , | of filtered schemes in
fSch, with r < dim X, such that

(1) Ag = (X, F"),
(2) foralli €10,...,r} the filtered scheme A; =: (X;, F;*) has Vy, (Fi_l(DXl.) smooth,
(3) the edges of the hypercube are proper morphisms of filtered schemes.

Proof. To begin we note that X, being of finite type over a field, is finite dimensional. For
the proof we inductively construct sequences of filtered schemes (So, Fy').. ... (Si—1. F{* )
and (Xo, Fy), ..., (X;—2, F;*,) together with an acyclic i-cube A(7) such that

(1) X =S802S81 22 8;_ are closed subschemes of strictly decreasing dimension,
(2) the Vg, (F;"'Os,)’s are reduced and the Vy, (F;~' Ox;)’s are smooth,
(3) Al)e = (X, F"),
@) AG); = (Xj. Ff)for0< j <i—1,
(5) A@)i-1 = (Si-1, F*)),
(6) the face determined by the subset {/ € [i] | i — 1 € I} consists of filtered schemes
of the same length.
Since by construction dim(S;) < dim(S;_;) after a finite number of steps either
s Vs, (F10s,) is already smooth, so we put (X, F*) := (S, F}),

 dim(S,) = 0 in which case Vg, (F,'Os,) is a disjoint union of reduced points, and
hence certainly smooth. Again, we put (X, FJ*) := (S,, F}).
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Moreover, as every morphism of filtered schemes throughout the construction is proper,
taking i = r + 1 gives the desired hypercube.

Let F~10x C I C Oy be the ideal with I/F~'Ox = rad(Ox/F ~'Ox) Then, as X
is Noetherian, there exists an integer d s.t. 7 d c f-1 Oyx . Therefore, by Proposition 6.11,
there exists a refinement F with F; 'Ox = I. We put (So, Fy) := (X, Fy). If per chance
Vs, (Fy 1 Os,) is smooth, we put (Xo, Fy') := (So, Fy) and are done. Otherwise, as

Ox/I = (Ox/F'0x)/(I/F'Ox) = (Ox/F~'Ox)/rad(Ox /| F ' Ox).

Vs, (Fy 'Os,) is areduced separated scheme of finite type over a field of characteristic zero.
Thus, it can be resolved via a blow-up, which by Corollary 6.54 can be lifted to a filtered
morphism fo : (Xo, FJ) = (So, Fy) with Vx, (F; ' Ox,) smooth. Using Proposition 6.61
we find a filtered nonrational locus (Sy, F") and obtain a (pullback) square (77 = f5 ' (S1)
is the scheme theoretic inverse image)

(Xo, Fg) <— (Th, Fy)

fo [ so1m, (7.7

(S(), FO*) — (Sl, FO*) .
By applying Proposition 6.11 again, this time with F;'0g, € Is, € Og,, the ideal
such that Ig,/F; 'Os, = rad(Os,/Fy'Os,), and I, = (folr,) ' Is, - Or,, we find

refinements
(Tl’ F(;k) Ahae (Tlv Fl*)

| | (7.8)

(S1. Fy) ¢~ (81, F)

such that Vg, (F| 10, ) is reduced. Stacking the squares (7.7), (7.8) and using Lemma 5.25,
Corollary 6.67 and Proposition 6.68 we obtain an acyclic square

(X()vF(;k) M (TI’F]*)

l l (7.9)

(S(), FO*) - (S], Fl*) .
Extending the refinement

(SO» FO*)

¢

(X, F*)

and stacking with the previous square (7.9) we thereby obtain, this time using Lemmas 5.25
and 5.28, the required acyclic 2-cube

(Xo, Fy) <~ (T1, )

4= ¢ |

(X, F*) «~~ (S1. F) .,
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e, AQ)g = (X, F*), AQ2)0 = (Xo, F{), AQ)1 = (S1. FY) and AQR)or = (T}, 7).
That dim(S;) < dim(Sp) follows as the resolution of Sy is an isomorphism over the regular
locus, in particular So\S; is dense in Sp.

Now, suppose A(i) has been constructed. If VS;-—1(F1'_—11(9S1-—1) is smooth we can
put (X;_1, F* ) := (S;—1. F* ) and are done. Otherwise, consider the face F of A(i)
determined by the subset {/ € [i] | i — 1 € I}. When viewing A(i) as a morphism,
via Lemma 5.19, F is the source and the target is the ‘good’ face containing (X, F*)
and all the (Xj, Fj*)’s. As Vg, | (Fi_—11(9Si—1) is reduced we have, as above, a morph-
ism (X;—1, Fi*_l) — (Sj-1, Fi*_l) with Vy,_, (Fi__l1 Ox,_,) smooth. Since all the filtered
schemes in F have the same length, we obtain, using Lemma 7.6, an (i 4+ 1)-cube B by
‘inserting’ an acyclic square at every vertex of F'. More precisely, the vertex (S;—1, F;* )
is replaced by an acyclic square

(Si—l, Fi*—l) — (Xi—l» Fz*—l)

i i (7.10)

(Si, F*) «—— (Ti. F{")

where dim S; < dim S;_; and, by possibly refining, Vg, (Fi_1(95,.) is reduced and every
other vertex is replaced by a square of this form. We have B acyclic by Lemma 5.22. Let*®
G be the face of B which, when viewed as a morphism via Lemma 5.19, has F as target
and has (S;_1, F;* ,) as image of (S;, F;*), which sits in the opposing face F’ of G. Finally,
denote by C the extension of G by A(i) (G and A(i) share the face F'), which is acyclic
by Lemma 5.28, and define A(i + 1) to be the stacking of B and C (they share the face
G), which is acyclic by Lemma 5.25,

A +1) = W 4 % B [ (7.11)
— F ..

In the diagram*’ (7.11), the upper left vertex is the ‘good’ face of A(i), the one containing
(X, F*) and all the (X;, Fj*) for j <i — 1. The lower left vertex contains (S;, F;*)
whilst the upper right vertex contains (X;_1, F;* ;) (the stacking exchanged (S;—1, F;* ;)
which was contained in F by (X;_1, Fi*_l)). Moreover, the face determined by the subset
{1 €[i +1]|i € I} consists of filtered schemes all having the length of F;*. The resulting
hypercube A(i + 1) thus has all the required properties. |

46To follow this part it is easiest to think of B as portrayed in the right square of the diagram (7.11)
below, which one should think of as the square (7.10) with every vertex replaced by an (i — 1)-cube (all of
whose filtered schemes have the same length as the filtered scheme from the respective vertex of (7.10)).

4TCompare this diagram with the top view of diagram (7.6).
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7.3. Proof of main theorem

We are finally ready to prove the main theorem. First, we show that we obtain a dg
resolution.

Theorem 7.9. Let (X, ,, F*) be a separated finite length filtered scheme of finite type over
a field of characteristic zero. Then, there exists a (pretriangulated) dg category D, glued
from several copies of filtered schemes, and a dg functor © - D(X, F*) — D such that

(1) (D, m) is a categorical dg resolution of D(X, F*),

(2) the restriction functor
Res; : D(D) — D(D(X, F*)) =D(X, F*)

maps [D] into DP (Coh™ (X, F*)).
Moreover, if (X, F*) is proper, then so is D.

Proof. Let A, be the acyclic hypercube constructed in Proposition 7.8 and put D, , ; :=
D(A, ). Next, define
D := Glue(D; ;)

and let = denote the quasi fully faithful dg functor
DX, F*)=Dgyg —D

from Proposition 5.13.
To show (1) it suffices, by Corollary 5.18, to verify that restriction along

'D,’—)'D[

fori € I C [r + 1], induced from composing the edges of the hypercube, preserves com-
pactness. To see this, observe that sucha V : D; — Dy is of the form f* : D(X;, », F;*) —
D(T, mG*) for some proper (generalised) morphism of filtered schemes with in partic-
ular Vy, (F;"!Ox,) smooth. Consequently, by adjointness, Resy identifies with R f; (as
LIndy identifies with L f*). Thus, we need to show that R £, preserves perfect complexes,
as these are exactly the compact objects by Proposition 6.45. As f is proper, we know
by Lemma 6.43 that R f; preserves coherence. Hence, since Vy;, (Fi_1(9xl.) is smooth,
we conclude by Proposition 6.48 that R fx maps Perf(T, G*) C D?(Coh™ (T, G*)) into
D?(Coh™ (X;, F*)) = Perf(X;, F*).

Showing (2) is similar. By Lemma 5.15 together with the first semi-orthogonal decom-
position from Corollary 5.8 (and with the Lemma 5.17 and the previous paragraph) it
suffices to show that restriction along

iDg—)Di

preserves coherence. This is shown in exactly the same manner as the previous paragraph.
(]
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By the above theorem, together with Proposition 7.4, we immediately obtain our desired
categorical resolution. The fact that it is strongly geometric follows from Corollary 5.8
and the semi-orthogonal decomposition of the derived category of a finite length filtered
scheme from Proposition 6.47. Indeed, let (X;, p, Fi*) be as in the theorem and put X; =
Vx, (F~'0Ox,). Then, we have a semi-orthogonal decomposition

D(D) = (D(Xo, F§),D(X1, Fy),....,D(X,, F¥))
= (D(Xo)....,D(X0),D(X)),....D(X)),....D(X,).....D(X,)),

nocomponents njcomponents nycomponents

where r < dim X and the components are derived categories of smooth (potentially non-
connected) varieties. Altogether we have obtained the desired result.

Theorem 7.10. Any separated finite length filtered scheme of finite type over a field of
characteristic zero has a categorical resolution by a strongly geometric triangulated
category. Moreover, if the filtered scheme is proper, so is the resolving category.

Remark 7.11. Similarly as in [23, Section 6.5] one can argue that this resolution is
birational in some sense; essentially because the entire construction is relative over the
initial filtered scheme (X, F*).

For any open U C X we can restrict the acyclic hypercube A4, ,;, constructed in
Proposition 7.8, to obtain a hypercube with @-vertex (U, F*) (replace every other vertex
by its restriction to the inverse image of U ). Applying D and then gluing gives a categorical
resolution Dy of D(U, F*). The mapping U — Dy defines a presheaf of dg categories
on X.

Now, suppose that moreover Vy (F -1 Xp) is reduced, so that we can take F" = F* in
the construction. Then, for U small enough, contained in the complement of S;, Dy =
D(U, F*), giving ‘birationality’. (Let fo : Xo — X denote the underlying morphism in the
hypercube, then all the vertices in the hypercube are zero except for D(f; ' (U), F§) =
D, F§) =D, Fy§).)

A. More on the smoothness of directed dg categories

We briefly mention necessary conditions for the smoothness of directed dg categories, at
least for small n.

In Proposition 4.5 the bimodules are required to be right perfect, instead of merely
perfect as one would expect by naively trying to generalise Theorem 4.4. Undoubtedly
our assumption is too strong and one could get by with less. However, simply requiring
perfectness of the bimodules will not be enough, as can be expected from Proposition 4.6,
see also Remark A.2. In general there will be conditions involving the dg bimodule
morphisms @;x ®4, ¢r; —> @;i; of the directed dg category, and thus simply requiring the
bimodules to be perfect will not suffice. In effect the right perfectness assumption allows
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us to avoid taking these morphisms into consideration. Moreover, as Example A.3 below
shows, requiring the dg bimodules to be perfect is in general not necessary. A possible
explanation for the dichotomy between the cases n = 2 and n > 2 is the fact that in the
former case the directed dg category is a tensor dg category, which does not hold for n > 2
in general. So, it is not unreasonable to expect a difference in behaviour for both cases.

As an illustration, for the n = 3 case we obtain the following sufficient and neces-
sary conditions (the cases n > 3 become slightly more complicated for increasing 7, see
Remark A.4).

Proposition A.1. Let

Ao 0 0
6 = ®10 .Al 0
©20 @21 Ao

Then, C is smooth if and only if the A;’s are smooth and @19, @21 and cone(@a1 ®Ifll 010 =
¥20) are perfect.

A()®]kfl;p 0
P10k A A1®KAY
(with the obvious dg module structure). This is exactly the content of Proposition 4.6, using

Proof. 1t suffices to determine when ( #20 ¢21 ) is perfect as ( )—module

$21 ®;1®kfl§" (#10 @K AY) = 921 ®Y, ¢10.

(Which can be seen by taking an h-projective resolution of ¢, and noting that h-projective
bimodules are right h-projective as we work over a field.) |

Remark A.2. There is no reason for ¢, ®];Ll @10 to be perfect when ¢, and @19 are
merely perfect. This would hold if ¢, is left perfect or ¢; is right perfect. However, in
general for a dg (A, B)-bimodule perfectness implies left (respectively, right) perfectness
only when B (respectively, A) is proper (as can be seen by letting A (respectively, B) equal
k).

Example A.3. Let A, B and C be k-algebras which we view as dg categories concentrated
in degree zero with one object. Then, it immediately follows from the previous proposition

that
A 0 0

B ®k A B 0
CRKkBRIKA CRkB C

is smooth if 4, B and C are smooth. However, when B is infinite dimensional as a k-vector
space, C ®k B ®x A is not a perfect (A, C)-bimodule.

To finish we say something about the n > 3 case.

Remark A.4. Writing down the necessary and sufficient conditions for smoothness expli-
citly for general n becomes a bit ‘tricky’, but it will be clear from the n = 4 case below
what one should expect. The reason is that an inductive proof leads to conditions involving
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taking cones of cones, of cones, etc. Luckily these iterated cones can be packaged nicely,
using the ¢-construction from Section 5.1.
As an illustration we write out the n = 4 case. Let

Ao 0 0 0

o A1 0 0

20 ¢21 A2 0

®30 @31 ¢ As

Then, € is smooth if and only if

e Ay,..., Az are smooth,

* @10, @21 and @3 are perfect,

* cone(¢z1 ®Y, @10 = ¢20) and cone(pzr ®Y @21 — @31) are perfect,

*  cone(cone(psz ®Y 21 = ¢31) ®Y ¢r0 — cone(psz ®Y, 920 — @30)) is perfect.

Rewriting these conditions a bit, getting rid of all the cones, one finds a more symmetric
description. Namely, C is smooth if and only if

e Ayp,...,As are smooth,
* @10, Y21 and @3, are perfect,

© (21 ®Y, 910 — ¢20) and 1(p32 ®Y, p21 — p31) are perfect,

@32 ®Y, 21 ®Y, 910 — 932 ®Y, ¢20

t 1 J,

@31 ®% 910 ——— 30

is perfect.

(There are some subtleties concerning the fact that we have derived tensor products, which
we have swept under the rug. It suffices to pick resolutions for ¢35 and @1, then everything
can be expressed with honest morphisms of complexes. In general choosing resolutions, to
compute the derived tensor products, for all the ¢’s in a compatible way seems tricky.)

B. An alternative definition of the gluing

Here, we give an alternative definition of the gluing, more in line with how the gluing of
two dg categories is defined in [23]. As it makes sense for arbitrary directed dg categories,
we do it in this setting. To obtain the gluing of a hypercube, we then apply the construction
below to the generalised arrow dg category. This construction is only well-suited when the
vertices of the hypercube are pretriangulated.
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Let € be a directed dg category as in equation (4.1). We define Glue’(C) to be the full
subcategory of the twisted complexes over C consisting of objects of the form

n—1
(@Mn_l_i [i],u), (B.1)
i=0

where M; € Aj, and p is a strictly upper triangular matrix satisfying the usual condition
for a twisted complex. For notational ease, we will not denote these objects by (B.1), rather
we opt for notation that leaves out the @ and [i]’s. We write the objects as

((M;), (uij))

with M; € A;j and*® w;; € C=/+1(M;, M;) where the hom-complex of € carries an extra
(=1)"1=/ in the differential due to the shifts in the twisted complex. Note that this minus
sign reflects the fact that A; sits in Glue’(C) with a twist [z — 1 — j].

For convenience we make some aspects of this category more explicit.

* The (u;;) satisfy the following relations

nij =0 fori > j,

(—l)n_l_jdﬂij + Z/*Lk]/j/lk = 0 fOr alll E j, (Bz)
k

where the differential and composition are those of € (i.e., we already took into account
the minus signs from the shifts in the twisted complex).

* The morphism complexes are given by

Hom (M), (11i)). (Ni). (viy))) = @D €(M;. Nj)i — j]

iJ

with differential

d(fi) = ((—l)n_l_jdfij + Y (ks fik — (_l)lf‘fkjluvik))
k

for f = (fij) : (Mi). (i) — ((Ni). (vij)) of degree | f'| (= | fii| for all i) (here the
differential and composition are again those of C).

* Composition of morphisms is matrix multiplication

(fij)(gij) = (Z fkjgik)-
k

“8We altered the naming convention for morphisms, compared to Section 3.4, writing p1;; : M; — M;
instead of wj; : M; — M;.
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Remark B.1. The ordering in our objects (B.1) comes from the ordering of the morphisms
in € (which is chosen so that the indices in the resulting semi-orthogonal decomposition
increase from left to right). If we considered the subcategory with objects (@:’;& M;li], p),
o would always equal zero as there are no arrows between the M; when i increases. Then,
the gluing category would just be €D; A;, which is clearly not what we want.

The following lemma mimics [23, Lemma 4.3] and shows that Glue’(€) is pretriangu-
lated whenever the Ay ’s are pretriangulated, and thus Glue’(€) gives a much smaller (and
more hands-on) pretriangulated hull compared to tw(C).

Lemma B.2. Ifthe A;’s are pretriangulated, respectively, strongly pretriangulated, then
so is Glue’(C).

Proof. The same proof as [23, Lemma 4.3] works in this generality, although it is more
tedious to check all the details. We give a sketch.

By a suitable generalisation*” of [23, Proposition 4.14] we can replace Ay by tw(Ay),
thereby reducing to the strongly pretriangulated case. Thus, we henceforth assume that the
Ay are strongly pretriangulated.

It is clear that Glue’(C) is closed under shifts; the shift of ((M;), (1i;)) is represented by
((M;[1]), (—ij))- So, it suffices to show that it is closed under cones. Thus, let /' = (f;;) :
(M), (1ij)) = ((Ni), (vij)) be a closed degree zero morphism. As (=)7K frge
My — Ni is a closed degree zero morphism of Ay, which is strongly pretriangulated, we
can take its cone Cy. This comes with degree zero morphisms

Ml % ¢ 25 M1l Ne 5 e 5 N
satisfying
Prix = idpp 1), Skjk = idn,, prjk =0, sgip =0, igpr + jiSk = idcy,
d(ji) = d(pr) = 0. d(ix) = (=1)""Fji fixe,  dse) = =(=D"""7 frepr,
where ¢ : M[1] — M is a closed degree one isomorphism. Put
vij = —ije" wijepi + jivijsi + jj fisepi € €(Ci, C;) fori < j.
Then, (C;, y;;) is the cone of f. For this one needs to check two things

(1) the y’s satisfy the relation (B.2),

(2) collecting the ix’s, px’s, ji’s and si’s together (as diagonal matrices) into morph-
isms i, p, j and s, these satisfy the required relations defining a cone intrinsically
in the dg category Glue'(C).

‘We leave this to the motivated reader. [

49One needs a neat trick for this. Namely, suppose ( f;;) is a closed degree zero morphism with every
fii a homotopy equivalence. Then, (f;;) is itself a homotopy equivalence. To see this, note that, using
the natural filtration on twisted complexes, ( f;;) can be written as an iterated extension of the f;;’s in the
homotopy category.
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