J. Noncommut. Geom. 20 (2026), 269-323 ©2025 European Mathematical Society
DOI 10.4171/INCG/633 Published by EMS Press
This work is licensed under a CC BY 4.0 license

SL(2, Z) modular forms and Witten genus
in odd dimensions

Jianyun Guan, Yong Wang, and Haiming Liu

Abstract. Using SL(2, Z) modular forms introduced in Liu (1996) and Chen—Han—Zhang (2011),
we construct some modular forms over SL(2, Z) and some modular forms over I'°(2) and Ty (2)
in odd dimensions. In parallel, we obtain some new cancellation formulas for odd-dimensional
spin manifolds and odd-dimensional spin® manifolds, respectively. As corollaries, we get some
divisibility results of index of the Toeplitz operators on spin manifolds and spin® manifolds.
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1. Introduction

In [1], Alvarez-Gaumé and Witten discovered a formula that represents the beautiful
relationship between the top components of the Hirzebruch L-form and A-form of a
12-dimensional smooth Riemannian manifold. This formula is called the “miraculous can-
cellation” formula for gravitational anomalies. In [13], Liu established higher-dimensional
“miraculous cancellation” formulas for (8k + 4)-dimensional Riemannian manifolds by
developing modular invariance properties of characteristic forms. These formulas can be
used to deduce some divisibility results. In [11,12], Han and Zhang established some more
general cancellation formulas that involve a complex line bundle over each (8k + 4)-
dimensional smooth Riemannian manifold. This formula was applied to spin® manifolds,
then an analytic Ochanine congruence formula was derived. In [17], Wang obtained some
new anomaly cancellation formulas by studying the modular invariance of some char-
acteristic forms. This formula was applied to spin manifolds and spin® manifolds, then
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some results on divisibilities on spin manifolds and spin® manifolds were derived. More-
over, Han, Liu and Zhang, using the Eisenstein series, derived a more general cancellation
formula [8]. In [9], the authors showed that both of the Green—Schwarz anomaly factoriza-
tion formula for the gauge group Eg x Eg and the Horava—Witten anomaly factorization
formula for the gauge group Eg could be derived through modular forms of weight 14.
This answered a question of J. H. Schwarz. They also established generalizations of these
decomposition formulas and obtained a new Horava—Witten type decomposition formula
on 12-dimensional manifolds. In [7], Han, Huang, Liu and Zhang introduced a modu-
lar form of weight 14 over SL(2, Z) and a modular form of weight 10 over SL(2, Z),
and they got some interesting anomaly cancellation formulas on 12-dimensional mani-
folds. In [18, 19], Wang obtained some new anomaly cancellation formulas by studying
some SL(2, Z) modular forms. Some divisibility results of the index of the twisted Dirac
operator were obtained.

In [14], Liu introduced a modular form of a 4k-dimensional spin manifold with a
weight of 2k. In [5], Chen, Han and Zhang defined an integral modular form of weight 2k
for a 4k-dimensional spin® manifold and an integral modular form of weight 2k for a
(4k + 2)-dimensional spin® manifold. A natural question is whether we can get some
interesting cancellation formulas and more results on divisibilities in odd dimensions.
In[15,16], Liu and Wang go through studying modular invariance properties of some char-
acteristic forms to get some new anomaly cancellation formulas on (4k — 1)-dimensional
manifolds. And they derive some results on divisibilities on (4k — 1)-dimensional spin
manifolds and congruences on (4k — 1)-dimensional spin® manifolds. Inspired by this,
we introduce some modular forms of weight 2k over SL(2, Z) and some modular forms
of weight 2k over I'°(2) and Ty(2) in odd dimensions, respectively, through the SL(2, Z)
modular forms introduced in [14] and [5]. In parallel, we derive some new anomaly can-
cellation formulas and some divisibility results over spin manifolds and spin® manifolds
in odd dimensions.

The structure of this paper is briefly described below: In Section 2, we introduce
some definitions and basic concepts that we will use in the paper. In Section 3, we
prove some generalized cancellation formulas over SL(2,Z) in odd dimensions. Finally,
in Section 4, we obtain some generalized cancellation formulas over I'°(2) and I'y(2) in
odd dimensions.

2. Characteristic forms and modular forms

The purpose of this section is to review the necessary knowledge on characteristic forms
and modular forms that we are going to use.

2.1. Characteristic forms

Let M be a Riemannian manifold. Let V™ be the associated Levi-Civita connection
on TM and R™ = (V™)?2 be the curvature of V'™, Let A(TM, V™) and L(TM, V™) be
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the Hirzebruch characteristic forms defined, respectively, by (cf. [20])

A(TM, V™) = det2 (ﬂ)
sinh (Y=L R7M)

«é_;ﬁRTM )

tanh(“{‘—?RTM> .

Q2.1

L(TM, V™) = det2 ( 2.2)

Let E, F be two Hermitian vector bundles over M carrying Hermitian connection
VE VF respectively. Let RE = (VE)2? (resp. RF = (VF)?) be the curvature of VE
(resp. VF). If we set the formal difference G = E — F, then G carries an induced
Hermitian connection V¢ in an obvious sense. We define the associated Chern character
form as

Gy _ voloey| V-l oF
ch(G,V )—Tr|:exp( e R )i| Tr|:exp< 7 R ) . (2.3)
For any complex number 7, let
A(E)=Clpyy +tE +1> N> (E)++--, S{(E)=Cly +tE +1*S*(E) +---

denote, respectively, the total exterior and symmetric powers of E, which live in K(M)[t].
The following relations between these operations hold:

A (E)

Si(E) = A (F)

N(E—F) =

_— 2.4)
A (E)

Moreover, if {w;}, {w]’} are formal Chern roots for Hermitian vector bundles E, F,
respectively, then

ch(A(E)) = [J1 + e“1). (2.5)
i
Then we have the following formulas for Chern character forms:

[1;(1+e®t)

ch(S((E) = = ch(A((E - F)) = 0
[1;(1+e%1)

M —en)’ 20
If W is a real Euclidean vector bundle over M carrying a Euclidean connection V¥ | then
its complexification W = W ® C is a complex vector bundle over M carrying a canon-
ical induced Hermitian metric from that of W, as well as a Hermitian connection V"¢
induced from VY. If E is a vector bundle (complex or real) over M, set E=E—dimE
in K(M) or KO(M).
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2.2. Some properties of the Jacobi theta functions and modular forms

We first recall that the four Jacobi theta functions are defined as follows (cf. [3]):

0(v, 7) = 2¢* sin(v) H[(] —qH(1- eZ”ﬁ”qj)(l — e_z”ﬁ”qj)], 2.7)
j=1

el(v,r)zzq%cos(nv)]_[a— g (14 Vgl (1 4+ eV "10g0)] (2.8)

oo

0,(v,7) = 1_[[(1 — qj)(l — eznﬁ“qj_%)(l — e_z”ﬁ”qj_%)], 2.9)
j=1

O30, 0) = [][(1 —g/)(1 + V07 73) (1 + 27V TvgI73))], (2.10)
j=1

where g = e2% V=1t with 7 € H, the upper half complex plane. Let

, 0(v, 1)
= . 11
0'(0, 1) 55 lveo (2.11)
Then the following Jacobi identity (cf. [3]) holds:
0'(0,7) = 70;(0, 7)60,(0, 7)03(0, 7). (2.12)

Denote
SL(2,Z) = {(‘c’ Z) la,b,c,d € Z, ad —bc = 1}
the modular group. Let S=(9%").T = (41) be the two generators of SL(2, Z). They

acton Hby St = —=, Tt = t 4 1. One has the following transformation laws of theta
functions under the actlons of S and T (cf. [3]):

O(v, r+l)—e = 9(1) 7), 9(1),—%):\/%_1(\/%_1)2

L™V g1y 1), (2.13)
bt +1) =™ 0,0, 7), 6 (v,—%) - (\/L__l)ie”ﬁ“’zez(w,f), (2.14)
0r(v, 7 + 1) = 03(v, 1), ez(v,—%) - (\/’__l)ie”ﬁwzel(m,r), (2.15)
B3(v, 7 + 1) = b2 (v, 1), eg(v,—%) - (\/Z_l);e”ﬁwz%(w,r), (2.16)
00,7+ 1) =™ 0/, 1), 9/(0,—%) - L_l(\/%_l)zze/(o, 0. @17
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Definition 2.1. A modular form over I', a subgroup of SL(2, Z), is a holomorphic
function f(7) on H such that

at +b
ct+d

10 = (507 ) = aoer v @ ve= (0 G)er e

where y : T — C* is a character of T', and k is called the weight of f.
Let

To(2) = {(‘c’ 2) €SL(2,Z) | ¢ = 0 (mod 2)},
r'Q) = {(‘Cl z) € SL(2,Z) | b = 0 (mod 2)}

be the two modular subgroups of SL(2, Z). It is known that the generators of I'g(2) are
T,ST2ST, and the generators of I'%°2)are STS,T?STS (cf. [3]).

If I is a modular subgroup, let Mg(I") denote the ring of modular forms over I’
with real Fourier coefficients. Writing 8; = 6;(0,t), 1 < j < 3, we introduce six explicit
modular forms (cf. [13]):

1 1
B1() = 503 + 6. ex(r) = 70563,
1 1
82(t) = —=(OF +07), ex(r) = —0;65,
8 16
1 1
83(1) = (6 = 07).  e3(v) = —1616;.

They have the following Fourier expansions in q%:

1 1
51(T)=Z+6q+---, 81(f)=ﬁ—q+---,
1
82(1):_§_3q%+’ 82(1—)=q%+...’
1
B3(1) = —5 + 302 oo ea(D) = =g 4o
where the ““---” terms are the higher degree terms, all of which have integral coefficients.
They also satisfy the transformation laws:
1 5 1 4
82 —— =7 81(‘[), El——) =T 81(7:), (219)
T T
Sa(t +1) =83(r), et + 1) = e3(7). (2.20)

Lemma 2.2 ([13]). Let §;(t) (resp. €1(t)) be a modular form of weight 2 (resp. 4) over
To(2), 82(v) (resp. e2(t)) is a modular form of weight 2 (resp. 4) over T'°(2), while
83(t) (resp. e3(t)) is a modular form of weight 2 (resp. 4) over T'g(2), and moreover,
Mr(T°(2)) = R[82(7), e2(2)].
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3. Some modular forms and Witten genus over SL(2,Z) in odd
dimensions

In this section, we will construct some modular forms over SL(2, Z) in odd dimen-
sions. Furthermore, we calculate and derive some new cancellation formulas for
odd-dimensional spin manifolds and odd-dimensional spin® manifolds, respectively.
Meanwhile, we will derive some divisibility results of index of the Toeplitz operators
on spin manifolds and spin® manifolds.

3.1. Some modular forms and Witten genus in spin manifolds

Let M be a (4k — 1)-dimensional spin manifold and A(M) be the spinor bundle. Let
TeM = TcM — dim M. Set

©1(TcM) = ) Sgr(TeM) ® R) Agn(TcM), 3.1)
n=1 m=1

O2(TeM) = Q) Sgr(TeM) ® Q) A_ -y (TeM). (32)
n=1 m=1

O3(TeM) = Q) S (TeM) ® Q) Ay (TeM). (33)
n=1 m=1

We recall the odd Chern character of a smooth map g from M to the general linear
group GL(N, C) with N a positive integer (see [20]). Let d denote a trivial connection
on C¥|yr. We will denote by ¢, (M, [g]) the cohomology class associated to the closed

n-form
(n+1)
2

en(C 1. g.d) = ( Trl(g~"dg)"]. (3.4)

)

The odd Chern character form ch(C¥ |y, g, d) associated to g and d by definition is

ch(C |y, g.d) =) 2n+1((CY|u, g, ). (3.5)

n!
Let the connection V,, on the trivial bundle C* | be defined by
Ve=0—-u)d +ugt-d-g, uel01l]. (3.6)
Then we have
d ch(CN |y, g, d) = ch(CN |p,d) —ch(CN [p.g7" - d - g). (3.7)

Now let g : M — SO(N), and we assume that N is even and large enough. Let E
denote the trivial real vector bundle of rank N over M. We equip E with the canonical
trivial metric and trivial connection d. Set

V,=d +ug 'dg, uel01l].
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Let R, be the curvature of V,,, then
Ry = (0 —u)(g~'dg)*. (3.8)

We also consider the complexification of E, and g extends to a unitary automorphism
of Ec. The connection V,, extends to a Hermitian connection on E¢ with curvature still
given by (3.6). Let A(E) be the spinor bundle of E, which is a trivial Hermitian bundle
of rank 2 . We assume that g has a lift to the spin group Spin(N) : g2 : M — Spin(N).
So g2 can be viewed as an automorphism of A(E) preserving the Hermitian metric. We
lift d on E to be a trivial Hermitian connection d® on A(E), then

VA =(1—wd® +u(@®)™-d% g% uelo1] 3.9)
lifts V,, on E to A(E). Let Q;(E). j = 1,2, 3 be the virtual bundles defined as follows:

01(E) = AE) ® Q) Agn(EC), (3.10)
n=1

02(E) = r@/\_qn_%(f%), 3.11)

0s(E) = @Aqn_%(ﬁ‘c). (3.12)

Let g on E have alift g2) on Q(E) and V,, have a lift VMQ(E) on Q(E). Following [10],
we defined ch(Q(E), g2®) d, 1) as follows:

ch(Q(E), VZE) 1) —ch(Q(E), VEE) 1) = —d ch(Q(E), g®.d. 7). (3.13)

where
O(E) = 01(E) ® 02(E) ® 03(E),
and
2% !
ch(Q(E), g2®) d, 1) = ——2f Trlg~'dg(A)]du, (3.14)
8 0
with

_ O0{(Ry/(4n?), 1) | O5(Ry/(47?), 1) | O4(Ry/(472), 1)
01(Ry/(47%),7)  02(Ry/(472),7) = 63(Ry/(47%), 1)
By [10, Proposition 2.2], it follows that if c3(Ec, g, d) = 0, then for any integer
r > 1, we obtain ch(Q(E), g2F) d, v + 1)) = ch(Q(E), g2®) d, 1)* D and
ch(Q(E), g2®). d, —%)W_l) = 12" ch(Q(E), g2E)  d, 1)@ =1 Therefore, we can
deduce ch(Q(E), g2¥), d, 1)* 1 are modular forms of weight 2r over SL(2, Z). Let

Q(V™ g.d,v) = {ATM, V™) ch([A(M) ® ©1(TcM) + 2%*@,(Tc M)

+2%k@3(Tc M) ch(Q(E), g2B) d, v) k=1
(3.15)
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Let g : M — SO(N) and N is even and large enough. Let E denote the trivial real
vector bundle of rank N over M. We have the following theorem.

Theorem 3.1. Let dim M = 4k — 1. Suppose g has a lift to the spin group Spin(N) :
g% M — Spin(N). If c3(E, g, d) = 0, then for any integer p,r > 1, (V™ ¢.d 1) is
a modular form over SL(2, Z) with the weight 2p + 2r = 2k.

Proof. Let

O(M,7) = {A(TM, V™) ch([A(M) ® O1(TcM)
+2%@,(TeM) + 22 @3(Tc MY, (3.16)

then we have
Q(V™ g.d,7) = Q(M.7)-ch(Q(E), g2E) . d, r)“ V. (3.17)

Let {£27+/—1x;}, (1 < j < 2k — 1) be the formal Chern roots for 7c M, then we have

2k—1
~ 2x;6'(0,7) 01 (x5, 7)
A(TM, V™) ch(A(M)) ch(®1(TcM)) = / AR 3.18
( ) ch(A(M) ch(©1(TeM)) ,1:[1 0 Bon OB
2k—1 / _
ATM, V™) ch (@ 0x(TeM)) = ] 2’;1(9 '(O’ 2 992(’8 223 (3.19)
o 0T 6:(0,0)
2k—1
~ 2x;0'(0,71) O3(x;, 1)
A(TM, V™) ch(2**O3(TcM)) = J EARSA 3.20
( ) ch(2%*@3(TcM)) ,»1:[1 005D 500 (3.20)
So we have
2k—1
B 2x;6'(0. 1)
Q(M,T)—(l_[ 0(x;.7)

2k—1 (4p)
. 1_[ el(xjvt) 1_[ ez(x],f) 1_[ 93()6]77:) (3 21)
o 6:(0.7) 63(0,7) S
By [10, Proposition 2.2], and (3.16)—(3.21), we have
Q(V™,g.d, T+ 1) = Q(M,7)-ch(Q(E),g?® . d, )¢~V = 0(V™, g.d,7)
and
1
Q(VTM»gv d. ") =P Q(M,7)- 7 ch(Q(E), g%, d, 1)~
T
=1*Q(V™ g.d, 1),

so Q(V™™ g.d, 1) is a modular form over SL(2, Z) with the weight 2p 4+ 2r = 2k. =
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Remark. In Theorem 3.1, g has a lift to the spin group Spin(N) : g% : M — Spin(N),
which is satisfied when M is simply connected and c3(E, g,d) = 0if H3(M,R) = 0. For
more specific details, see [10].

Remark. All the conclusions given later hold true under this condition that g has a lift to
the spin group Spin(/N') and will not be elaborated here.

Set
(0(V™, g.d,7),[M]) = —Ind(T ® (A(M) ® O1(TcM) +2240,(TcM)
+2203(TcM)) ® (Q(E). g2y, (3.22)

where Ind(7 ® ---) denotes the index of the Toeplitz operator. Clearly, ®1(T¢c M) ®
Q(E),0,(TcM) ® Q(E) and O2(Tc M) ® Q(E) admit formal Fourier expansion in q%
as

O1(TcM) ® Q(E) = By(TcM, Ec) + B{(TcM, Ec)q + By (TcM, Ec)q® + -+,

©2(TcM) ® Q(E) = BX(TcM. Ec) + BX(TeM. Ec)q? + B2 (TcM. Ec)q + -+ ,

©3(TcM) ® Q(E) = B3(TcM. Ec) + B} (TcM. Ec)q* + B3(TeM, Ec)q + -+ |

where the B} are elements in the semi-group formally generated by Hermitian vector
bundles over M. Moreover, they carry canonically induced Hermitian connections. If

Bj(TcM.E) = B} ,(TcM) ® B} ,(E).
we let _
ch(B(TcM. E)) = ch(B] (TcM)) ch(B} ,(E). g2, d).
If w is a differential form over M, we denote by w“*¥—1 its top degree component.
Our main results include the following theorem.

Theorem 3.2. When dim M = 7 and c3(E, g,d) = 0, we have

{A(TM, V™)[ch(A (M) ® 2TcM) ch(A(E), g2®), d)

+ ch(A(M)) ch(A(E) ® 2 A2 Ec — Ec ® Ec + Ec). g.d)]

+ 324(TM, V™)[ch(TcM + A*TcM) ch(A(E), g2®) d)
+ ch(A(E) ® 2 A2 Ec — Ec ® Ec + Ec). g.d)}”
= 240[A(TM, V™) ch(A(M)) ch(A(E), g2, d)
+ 324(TM, V™) ch(A(E), g2, d)], (3.23)

{A(TM, V™)[ch(A(M) ® QTcM + A2TecM + TeM ® TeM + S2TeM))

-ch(A(E), g2®) d) + ch(A(M) ® 2TcM) ch(A(E) ® (2 A2 E¢
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— E¢ ® Ec + E¢). g.d) + ch(A(M)) ch(A(E) ® (A2 Ec
® A2Ec + 2 A* Ec —2Ec ® A*Ec + 2Ec ® AEc — Ec
® Ec ® Ec + Ec + A2Ec), g, d)]
+ 32A(TM, V™) [ch(A*TcM + A2TcM & TcM + TeM @ TeM
+ S2TcM + TcM) ch(A(E), g2, d)
+ch(TcM + A*TeM) - ch(A(E) ® (2 A? Ec — Ec
® Ec + Ec), g.d)
+ ch(A(E) ® (A2Ec @ A2Ec + 2 A* E¢ — 2E¢ ® APE¢
+2Ec ® A’Ec — Ec ® Ec ® Ec
+ Ec + A*E¢), g, )7
= 2160[A(TM, V™) ch(A(M)) ch(A(E), g2F) d)
+ 324(TM, V™) ch(A(E), g2, d)]. (3.24)
Proof. Ttis well known that modular forms over SL(2, Z) can be expressed as polynomials
of the Eisenstein series E4(7) and E¢(7), where
E4(t) = 1 4 240q + 2160¢% + 6720g> + -+ - , (3.25)
Es(t) = 1 —504q — 16632¢> — 1229764 + - . (3.26)
Their weights are 4 and 6, respectively. When dim M = 7, then Q(V™, g, d, 1) is a
modular form over SL(2, Z) with the weight 4. By (3.1)—(3.3) and (3.10)—(3.12), we have
O1(TcM) = 1 +2qTcM + ¢*QTcM + N*TcM + TeM
® TcM + S2TcM) + 0(q°). (3.27)
Ox(TeM) = 1 — g3 TeM + g(TcM + A2TcM)
— g3 (N TcM + TcM + TeM ® TeM)
+ P(ANTeM + A*TeM & TeM + TeM © TeM
+ S2TcM + TcM) + 0(q3), (3.28)
O3(TcM) = 1 4+ q2TcM + q(TcM + A2TeM)
+q3 (N3 TcM + TeM + TeM ® TeM)
+ P (N TcM + A*TeM @ TeM + TeM ® TeM
+ S2TcM + TeM) + 0(¢3), (3.29)
Q(E) = ch(A(E), g2*),d) + g ch(A(E) ® (2 A* Ec — Ec
® Ec + Ec).g.d) + ¢* ch(A(E) ® (N Ec ® A’ Ec
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+2A*E¢c —2E¢ ® APE¢ + 2E¢ ® A2E¢ — Ec
® Ec ® E¢ + Ec + A*Ec).g.d) + -, (3.30)

SO

O(V™, g.d 1) = [A(TM. V™) ch(A(M)) ch(A(E). g25), d)
+ 22K A(TM, V™) - ch(A(E), g2 B, )] @k
+ q{A(TM, V™™)[ch(A(M) ® 2TcM) - ch(A(E), g2 d)
+ ch(A(M)) ch(A(E) ® (2 A? Ec — Ec
® E¢ + E¢). g.d)] + 22KV A(TM, V™) [ch(TcM
+ A’ TcM) ch(A(E), 28 d)
+ ch(A(E) ® (2 A2 Ec—Ec® Ec + EE)’ g, d)]}(4k—1)
+ HATM, V™) - [ch(A(M) ® RTcM + A2TeM
+ TeM ® TeM + S2TeM)) ch(A(E), g2E) d)
+ ch(A(M) ® 2TcM) ch(A(E) ® (2 A* Ec — Ec
® Ec + Ec). g.d) + ch(A(M))
-ch(A(E) ® (N2 Ec ® A’Ec + 2 A* Ec —2E¢ ® AP Ec
+2Ec ® A’Ec — Ec ® Ec ® Ec + Ec
+ A?Ec). g.d)]
+ 22KV A(TM, V™) [ch(A* TcM + A2TcM ® TcM
4 TeM ® TeM + S2TM + TeM) ch(A(E), 2B, d)
+ ch(TeM + A2TeM) ch(A(E) ® (2 A2 Ee — Ec
® Ec + Ec). g.d) + ch(A(E) ® (A\*Ec ® A*Ec
+2A* Ec — 2Ec ® A*Ec + 2Ec ® A*Ec
~Ec® Ec ® Ec + Ec + A2Ec). g. d)* D 4 ...
3.31)
When dim M = 7, then Q(V™, g, d, ) must be a multiple of
E4(t) = 1 4 240q + 2160g% + 6720¢> + --- .

By (3.25) and (3.31), we compare the coefficients of 1, g, 2. We get Theorem 3.2. ]
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Corollary 3.3. Let M be a T-dimensional spin manifold without boundary. Suppose M
is simply connected and H*(M,R) = 0, then

nd(T ® (A(M) ® 2TcM ® (A(E), g2F) d) + A(M) ch(A(E)
® 2A2Ec— Ec® Ec + Ec).g,d))) =0 mod 16Z, (3.32)
Ind(T ® (AMM) ® (2TcM + A2TcM + TeM ® TeM + S2TeM)
® (A(E), g2®) d) + 2TcM @ (2 A2 E¢
— Ec ® Ec + Ec).g.d) + (A(E) ® (\*Ec ® A’ Ec

+2A* Ec —2Ec ® A*Ec + 2E¢ ® A2E¢

—Ec® Ec® Ec + Ec

+ A2E¢).g.d)) =0 mod 16Z. (3.33)

Remark. In the even-dimensional case, Rocklin’s theorem says that on the 4-dimensional
spin closed manifold, Ind(d + §)4+ = o(M) = 0(mod 16), where d + § is the signature
operator and o (M) is the signature. Ochanine’s theorem says that on the (8k + 4)-
dimensional spin manifold, Ind(d + §)+ = o(M) = 0(mod 16). If M is an (8k + 4)-
dimensional closed spin manifold, then the twisted signature Sig(M, T') is divisible
by 256. If M is an 8k-dimensional closed spin manifold, then Sig(M, T') is divisible
by 2048. If M is an (8k + 4)-dimensional closed spin manifold, when dim M = 4, the
twisted signature Sig(M, T ® T) is divisible by 256 - 7; when dim M = 8k + 4,k > 1,
the twisted signature Sig(M, T ® T) is divisible by 256 (resp. [4]), where T is the tan-
gent bundle. So Index mod 16 is very meaningful. So in the case of odd-dimensional spin
manifolds, our Corollaries 3.3 and 3.5 may be considered as the analogy of the above
theorems.

Theorem 3.4. Whendim M = 11 and c3(E, g,d) = 0, we have
{A(TM, V™)[ch(A(M) ® 2TcM) ch(A(E), g2E), d)
+ ch(A(M)) ch(A(E) ® (2 A Ec — Ec ® Ec + Ec). g.d)]
+ 128A(TM, V™)[ch(TcM + A2TcM) ch(A(E), g2 d)
+ch(A(E) ® (2 A? Ec — Ec ® Ec + Ec). g. )]}V
= —504[A(TM, V™) ch(A(M)) ch(A(E), g2 d)
+ 128A4(TM, V™) ch(A(E), g2B), d))], (3.34)
{A(TM, V™)[ch(A(M) ® QTcM + A2TcM + TeM ® TeM + S*TeM))
-ch(A(E), g2, d) + ch(A(M) ® 2Tc¢M) ch(A(E)
® 222 Ec— Ec ® Ec + Ec), g.d)
+ ch(A(M)) ch(A(E) ® (N Ec ® A2Ec +2 A* Ec —2Ec ® A*Ec
+2Ec ® A2Ec — Ec ® Ec ® Ec + Ec + A*Ec), g, d)]
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+ 128 - A(TM, V™) [ch(A*TeM + A2TeM ® TeM + TeM
® TcM + S*TcM + TeM) ch(A(E), g%, d)
+ch(TcM + A2TeM) ch(A(E) ® (2 A2 Ec — Ec ® Ec + Ec), g.d)
+ch(A(E) ® (N*Ec ® A*Ec +2 A* Ec —2Ec ® A*Ec
+2Ec ® A2Ec — E¢ ® E¢ ® E¢ + E¢ + A2E¢). g, d)]}0V
= —16632[A(TM, V™) ch(A(M)) ch(A(E), g2B) . d)
+ 128A(TM, V™) ch(A(E), g2B), d))]. (3.35)
Proof. When dim M = 11, then Q(V'™, g, d, t) is a modular form over SL(2, Z) with

the weight 6, so
Q(V™ g.d,v) = LEs(7), (3.36)

where A is degree 11 forms. When dim M = 11, direct computations show that
Q(V™, g.d,v) = [A(TM, V™) ch(A(M)) ch(A(E), g2, d)
+ 128A(TM, V™) . ch(A(E), g2 ®), 4))1D
+ g{A(TM, V™)[ch(A(M) ® 2TcM) - ch(A(E), g2, d)
+ ch(A(M)) ch(A(E) ® (2 A2 Ec — Ec ® Ec + Ec). g.d)]
+ 128A(TM, V™)[ch(TcM + A2TcM) - ch(A(E), g2, d)
+ch(A(E) ® (2 A% Ec — Ec ® Ec + Ec). g. )}V
+ 2{A(TM, V™) . [ch(A(M) ® QTcM + A2TcM + TeM
® TcM + S2TcM)) ch(A(E), g2E) d) + ch(A(M)
® 2TcM) ch(A(E) ® 2 A2 E¢c — E¢ ® Ec + E¢).g.d)
+ ch(A(M)) ch(A(E) ® (A2Ec ® A2Ec + 2 A* E¢
—2Ec ® AYEc 4+ 2Ec ® AEc — Ec ® Ec ® Ec
+ Ec + A2Ec). g. d)] + 128A(TM, V™)
[eh(A*TeM + A2TcM & TeM + TeM
® TcM + S*TcM + TcM) - ch(A(E). g2 d)
+ ch(TcM + A*TcM) - ch(A(E)
® A2 Ec— Ec ® Ec + Ec), g.d)
+ ch(A(E) ® (A2Ec ® A2E¢ + 2 A* Ec — 2E¢
® A3Ec +2Ec ® A2Ec — Ec ® Ec ® Ec
+ E¢ + A2E¢), g. )Y 4 -on (3.37)

In (3.36), we compare the coefficients of (3.36), and we get three equations about A.
By (3.26), (3.36) and (3.37), we get Theorem 3.4. ]
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Corollary 3.5. Let M be an 11-dimensional spin manifold without boundary. Suppose M
is simply connected and H*(M,R) = 0, then
Ind(T ® (A(M) ® 2TcM @ (A(E). g%P).d)

+ A(M)ch(A(E) ® 2 A2 Ec — Ec ® Ec + Ec),g.d))) =0 mod8Z,
(3.38)

Ind(T ® (AMM) ® (2TcM + A2TecM + TeM ® TeM + S2TeM)
® (A(E). g% ) d) +2TcM & (2 A2 Ec — Ec ® E¢
+ Ec).g.d) + (A(E) ® (\*Ec ® AEc +2 A* Ec
—2Ec ® A*Ec + 2Ec ® A’Ec — Ec ® Ec
® Ec + Ec + A2Ec),g.d))) =0 mod8Z. (3.39)

Theorem 3.6. When dim M = 15 and c3(E, g,d) = 0, we have

{A(TM, V™)[ch(A(M) ® 2TcM) ch(A(E), g2®)  d)
+ ch(A(M)) ch(A(E) ® (2 A* Ec — Ec ® Ec + Ec). g.d)]
+ 5124(TM, V™) [ch(TcM + A2TcM) ch(A(E), g2®B), d)
+ ch(A(E) ® (2 A Ec — Ec ® Ec + Ec). g. d)}"
= 480[A(TM, V™) ch(A(M)) ch(A(E), g2, d)
+ 512A(TM, V™) ch(A(E), g2 B, d)). (3.40)
{A(TM, V™)[ch(A(M) ® QTcM + A2TeM + TcM ® TeM + S*TeM))
-ch(A(E), g2®) d) 4 ch(A(M) ® 2TcM) ch(A(E) ® (2 A E¢
— Ec ® Ec + Ec).g.d) + ch(A(M)) ch(A(E) ® (A2Ec ® A2 Ec
+2A*YEc —2Ec @ A*Ec + 2Ec ® A2Ec — Ec ® Ec ® Ec
+ Ec + A*Ec).g.d)]
+ 512A(TM, V™) [ch(A*TcM + A2TeM @ TeM + TeM ® TeM
+ S2TcM + TeM) - ch(A(E). g2B). d)
+ch(TcM + A2TcM) ch(A(E) ® (2 A* Ec — Ec ® Ec
+ Ec). g.d) + ch(A(E) ® (A*Ec ® A*Ec
+2A*Ec —2Ec ® AEc + 2E¢ ® A2Ec
—~Ec® Ec ® Ec + Ec + A*Ec), g. d)]}"
= 61920[A(TM, V™) ch(A(M)) ch(A(E), g2F) . d)
+ 5124(TM, V™) ch(A(E), g2B), d)). (3.41)
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Proof. When dim M = 15, then Q(V™ g, d, ) is a modular form over SL(2, Z) with
the weight 8, so

Q(V™, g,d,7) = XE4(7)?,

where A is degree 15 forms. By (3.25), we have

E4(7)?> = 1 + 480g + 61920¢> + - - .

When dim M = 15, direct computations show that

O(V™ g.d 1) = [A(TM. V™) ch(A(M)) ch(A(E). g5, d)

1 5124(TM, V™) . ch(A(E), g2®) )] 15
+ g{A(TM, V™)[ch(A(M) ® 2TcM) - ch(A(E), g2 d)

+ ch(A(M)) ch(A(E) ® 2 A2 Ec — Ec ® Ec
+ Ec), g.d)] + 5124(TM, V™)
- [ch(TeM + A2TcM) - ch(A(E), g2®. d)
+ ch(A(E) ® 2 A2 E¢ — E¢ ® Ec + Ec), g.d)]}1S

+ gH{ATM, V™)[ch(A(M) ® RTcM + A*TcM + TeM

® TcM + S2TcM))
-ch(A(E), g2®) d) + ch(A(M) ® 2TcM)
- ch(A(E) ® (2 A% Ec — Ec ® Ec
+ Ec).g.d) + ch(A(M))
- ch(A(E) ® (N*E¢ @ A2E¢ + 2 A* E¢
—2Ec ® A*Ec + 2Ec ® A?Ec
—Ec® Ec® Ec + Ec
+ A2EQ). . d)]
+ 512A(TM, V™)[ch(A*TcM + A2TcM @ TeM + TeM
® TcM + S*TcM + TeM)

-ch(A(E), g2®) d) + ch(TcM
+ A2TcM) - ch(A(E) ® (2 A2 E¢

~Ec® Ec + E¢).g.d)

+ ch(A(E) ® (A2Ec ® A2Ec
+2AYE¢ —2Ec ® A3E¢ + 2E¢
® A2E¢ — Ec ® Ec ® Ec + Ec
+ A2Ec). g )} 4 -

(3.44)
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By (3.42)—(3.44), we compare the coefficients of 1, g, g>. We get Theorem 3.6. ]

Corollary 3.7. Suppose M is a 15-dimensional spin manifold without boundary. If
c3(E,g,d) =0, then
Ind(T ® (A(M) ® 2TcM & (A(E), g2, d)

+ A(M) ch(A(E) ® 2 A2 Ec — E¢ ® E¢ + E¢).g.d))) =0 mod 32Z,
(3.45)

d(T ® (AM) ® (2TcM + A2TcM + TeM ® TeM + S2TeM)
® (A(E). g2*) . d) +2TcM & (2 A* Ec — Ec
® Ec + Ec).g.d) + (A(E) ® (A\2E¢ ® A2E¢
+2A* Ec —2Ec ® A’Ec + 2Ec ® A*Ec — Ec
® Ec ® Ec + Ec + A2E¢),g.d)))) =0 mod 32Z.
(3.46)
Theorem 3.8. Whendim M = 19 and c3(E, g,d) = 0, we have
{A(TM, V™)[ch(A(M) ® 2TcM) ch(A(E), g2®) . d)
+ ch(A(M)) ch(A(E) ® (2 A2 Ec — Ec ® Ec + Ec). g.d)]
+ 2048 A(TM, V™)[ch(TcM + A2TcM) ch(A(E), g2 d)
+ ch(A(E) ® 2 A2 Ec — Ec ® Ec + E¢).g.d)]}*”
= —264[A(TM, V™) ch(A(M)) ch(A(E), g2 d)
+ 2048 A(TM, V™) ch(A(E), 2P, d)], (3.47)
{A(TM, V™) [ch(A(M) ® QTcM + A2TecM + TeM ® TeM + S2TeM))
-ch(A(E), g2 d) + ch(A(M) ® 2TcM) ch(A(E) ® (2 A% E¢
— Ec ® Ec + Ec), g.d) + ch(A(M)) ch(A(E) ® (A2Ec ® A*Ec
+2A*Ec—2Ec ® AEc +2Ec ® A’Ec — Ec ® Ec ® Ec
+ Ec + A%Eq), g,d)]
+ 2048 A(TM, V™) [ch(A*TecM + A2TeM ® TeM + TcM ® TeM
+ S2TcM + TeM) ch(A(E), g2 d)
+ch(TeM + A*TeM) - ch(A(E) ® (2 A? Ec — Ec
® Ec + Ec). g.d) + ch(A(E) ® (A2 Ec ® A2 Ec
+2A*Ec —2Ec ® AEc + 2E¢ ® A2Ec
— Ec ® Ec ® Ec + Ec + A*Ec). g.d)]}1”
= —117288[A(TM, V™) ch(A(M)) ch(A(E), g2 B, d)
+ 2048 A(TM, V™) ch(A(E), g2 B, d)]. (3.48)
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Proof. When dim M = 19, then Q(V™ g, d, ) is a modular form over SL(2, Z) with
the weight 10, so

O(V™. g.d,7) = AE4(7)Es(v), (3.49)
where A is degree 19 forms. By (3.25) and (3.26), we have
E4(1)Eg(r) = 1 —264g — 117288¢% + --- . (3.50)

When dim M = 19, direct computations show that
Q(V™. g.d.7) = [A(TM, V™) ch(A(M)) ch(A(E), g%, d)
+ 2048 A(TM, V™) . ch(A(E), g8, d)]1
+ q{A(TM, V™)[ch(A(M) ® 2TcM) - ch(A(E), 2P d)
+ ch(A(M)) ch(A(E) ® (2 A2 E¢ — E¢ ® Ec
+ E¢). g.d)] + 2048 A(TM, V™)
[eh(TcM + A?TcM) - ch(A(E). g2 ). d)
+ch(A(E) ® 2 A% Ec — Ec ® Ec + Ec). g. )]}
+ 2{ATM, V™) . [ch(A(M) ® QTcM + A2TeM + TcM
® TcM + S*TcM))
-ch(A(E), g2 d) + ch(A(M) ® 2TcM)
-ch(A(E) ® 2 A2 E¢ — E¢ ® Ec
+ Ec). g.d) + ch(A(M))
-ch(A(E) ® (N Ec ® A*Ec +2 A* Ec
—2E¢ ® A3E¢ + 2Ec
® A2Ec — Ec ® Ec ® Ec
+ Ec + A2Eq), g, d)]
+ 2048 A(TM, V™)[ch(A*TcM + A2TeM ® TeM + TeM
® TcM + S*TcM + TeM)

-ch(A(E), 2B d) + ch(TcM
+ A2TcM) - ch(A(E) ® (2 A2 E¢

~Ec® Ec + Ec).g.d)

+ ch(A(E) @ (N2Ec ® A2E¢
+2A*Ec —2E¢ ® AP Ec
+2Ec ® A2 Ec — E¢
® Ec ® Ec + Ec
+A2Ec), g YD + -

(3.51)
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By (3.49)—(3.51), we compare the coefficients of 1, g, g>. We get Theorem 3.8. ]

Corollary 3.9. Suppose M is a 19-dimensional spin manifold without boundary. If
c3(E,g,d) =0, then
Ind(T ® (A(M) ® 2TcM ® (A(E), g2®),d)

+ AM)ch(A(E) ® 2 A2 E¢ — E¢ ® E¢ + E¢).g.d))) =0 mod8Z,
(3.52)

Ind(T ® (A(M) ® (QTcM + A2TcM + TcM ® TcM + S*TcM)
® (A(E). g2 ") d) +2TcM & (2 A* Ec — Ec ® Ec
+EQ).g.d) + (A(E) ® (N Ee ® A2E¢ + 2 A* B
—2Ec ® A*Ec + 2Ec ® A?Ec — Ec ® Ec ® Ec
L Ee+A2EQ),g.d)+) =0 mod8Z.  (3.53)

Theorem 3.10. When dim M = 23 and c3(E, g,d) = 0, we have

{A(TM, V™) [ch(A(M) ® QTcM + A2TcM + TeM ® TeM + S*TeM))
-ch(A(E), g2 d) + ch(A(M) ® 2Tc¢M) ch(A(E) ® (2 A% E¢
— Ec ® Ec + Ec). g.d) + ch(A(M)) ch(A(E) ® (A*Ec ® A*Ec
+2A*Ec—2Ec ® A*Ec +2Ec ® A’ Ec — Ec ® Ec ® Ec
+ Ec + A%Ec), g.d)]
+ 8192A(TM, V™)[ch(A*TcM + A*TeM @ TcM + TeM ® TeM
+ S2TcM + TeM) ch(A(E), g2, d)
+ ch(TcM + A*TcM) ch(A(E) ® (2 A2 Ec — Ec
® Ec + Ec), g.d) + ch(A(E) ® (A2 E¢ ® A2Ec
+2A*E¢ —2E¢ ® A*E¢ 4 2E¢ ® A2Ec
— Ec ® Ec ® Ec + Ec + A*E¢). 8. d)]}®
= {196560[A(TM, V™) ch(A(M)) ch(A(E), g2 B, d)
+ 8192A(TM, V™) ch(A(E), g2 B, d)]
— 24{A(TM, V™) . [ch(A(M) ® 2TcM) ch(A(E), g2, d)
+ ch(A(M)) ch(A(E) ® (2 A? Ec — Ec ® Ec
+ Ec). g.d)]
+ 8192A(TM, V™) . [ch(TcM + A*TcM) ch(A(E), g2, d)
+ ch(A(E) ® 2 A2 E¢ — Ec ® Ec
+ Ec). g . (3.54)
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Proof. When dim M = 23, then Q(V™ g, d, ) is a modular form over SL(2, Z) with
the weight 12, so

Q(V™, g.d,t) = 21 E4(x)’ + A2 Es(7)?, (3.55)
where A1, A, are degree 23 forms. By (3.25) and (3.26), we have

E4(t)® = 1 + 720 + 179280g% + - -+ , (3.56)
E¢(t)? = 1 — 1008q + 220752¢> + --- . (3.57)

When dim M = 23, direct computations show that

Q(V™ g.d.7) = [A(TM, V™) ch(A(M)) ch(A(E). g*F) d)
+ 81924(TM, V™) . ch(A(E), g2B), d)]®»
+ g{A(TM, V™)[ch(A(M) ® 2TcM) - ch(A(E), g2, d)
+ ch(A(M)) ch(A(E) ® (2 A? Ec — Ec ® Ec
+ EQ). g.d)] + 8192A(TM, V™)
[eh(TcM + A?TcM) ch(A(E), g2B. d)
+ch(A(E) ® 2 A% Ec — Ec ® Ec + Ec), g, d)[}®
+ G*{A@TM, V™) . [ch(A(M) @ QTcM + A2TcM + TeM
® TcM + S*TcM))
-ch(A(E), g2, d) 4 ch(A(M) ® 2TcM)
-ch(A(E) ® 2 A2 E¢ — E¢ ® Ec
+ Ec). g.d) + ch(A(M))
-ch(A(E) ® (AEc ® A*Ec +2 A* Ec
—2Ec ® A*Ec + 2Ec
® A2Ec — Ec ® Ec ® Ec
+ Ec + A?Ec). g.d)]
+ 8192A(TM, V™)[ch(A*TcM + A*TeM @ TcM + TcM
® TcM + S*TcM + TeM)
-ch(A(E), g2B) d) + ch(TcM
+ A2TecM) - ch(A(E) ® (2 A2 E¢
—Ec® Ec + Ec), g,d)
+ ch(A(E) ® (A2Ec ® A2E¢
+2A* Ec —2Ec ® A*Ec
+2Ec ® A2E¢ — E¢
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® Ec® Ec+ Ec

+ A2Ec), g, )} + ...
(3.58)

In (3.58), we compare the coefficients of 1, ¢, g2, and we get three equations about A1,
Az. By (3.55)—(3.58), we get Theorem 3.10. [ ]

Corollary 3.11. Suppose M is a 23-dimensional spin manifold without boundary. If
c3(E,g,d) =0, then

Ind(T ® (A(M) ® (2TcM + A’TcM + TcM ® TeM + S*TcM)
® (A(E). g% d) +2TcM & (2 A2 Ec — Ec
® Ec + Ec).g.d) + (A(E) ® (\?Ec ® A2Ec +2 A* Ec
—2Ec ® A*Ec + 2Ec ® AEc — Ec ® Ec
® Ec + Ec + A2E¢),g.d)))) =0 mod 16Z. (3.59)
3.2. Some modular forms and Witten genus in spin® manifolds

Let M be closed oriented spin® manifold and L be the complex line bundle associated to
the given spin® structure on M. Denote by ¢ = ¢1(L) the first Chern class of L. Also,
we use Lg for the notation of L, when it is viewed as an oriented real plane bundle. Let
O(TcM, Ly ® C) be the virtual complex vector bundle over M defined by

oo oo
OTcM. Ly ® ©) = (X) Sy (TeM) ® (R) Agn(Lr ® C)

n=1 m=1

oo o0
® @ A b (L ®C) ® § A st (Lg ® C).
Letdim M = 4k — 1 and y = —¥1c. Set

O(VM VL g d 1) = {ff(TM, V™) exp(%) ch(®(TecM, Ly ® C))

(4k—1)
-ch(Q(E),gQ(E),d,r)} . (3.60)

When ¢ =0, O(TcM) = @2, Sy (TC\M) be the Witten bundle over M. And
O(V™. g.d. 1) = {A(TM. V™) ch(O(TcM)) ch(Q(E), g2, d r)} 4~V

is called the Witten form in odd dimensions.
Then

2k—1

(4p)
A _ x]-9/(0, T) 91 (y» f) 92(.)/7 ‘L') 93()}’ ‘E)
OM,L,7) = (J]:[1 605 ( )) , (3.61)

91 (0, 7,’) 92(0, ‘L') 93(0, ‘L')



SL(2, Z) modular forms and Witten genus in odd dimensions 289

and
O(V™, VL g.d 1) = (0(M,L,7)-ch(Q(E),g2®), d, 1)) D, (3.62)

By equations (2.13)—(2.17), we have O (V™ VL ¢ d. v + 1) = Q(V™ VL ¢.d. 1)
and Q(VIM VL g d,—1) = :2kQ(V™, VL ¢.d, ) if 3pi(L) — p1(M) = 0 and
c3(E, g, d) = 0. So we get the following theorem.

Theorem 3.12. Letdim M = 4k — 1. If 3p1 (L) — p1y(M) = 0and c3(E, g,d) = 0, then
O(V™ VL ¢ d, t)isamodular form over SL(2,Z) with the weight 2k.

Remark. Suppose M is a (4k — 1)-dimensional spin manifold. If p;(M) = 0 and
c3(E,g,d) =0,then Q(V™ g, d, 1) is amodular form over SL(2,Z) with the weight 2k.

Direct computation show
B R c 4k—1
O(V™ VE g d.v) = [A(TM, v exp(z) ch(A(E),g“E),d)]

+ q{fT(TM, v exp(%)  [eh(TcM) ch(A(E), g2F) . d)

+ch@A? g ®C— (Lr® C) ® (Lg ® C)
+ Lr ® C) ch(A(E), g2B) d) + ch(A(E)

4k—1
® 2A* Ec— Ec® Ec + Ec),g,d)]}

+q2{/f(TM, VM exp(%)
[ch(S>TcM + TcM) - ch(A(E), g2*),d)
+ch(A2Lg@COANLRQ®C+2A* Lg® C
—2g@CONLR®C+2Lg & C
QN IRRC—IgRCRLRRVCRLg®C
+Lr® C+ A2Lg ® C)ch(A(E). g2B) d)
+ch(TcM ® 2 A2 Lp® C— (Lr ® C)
®(Lg®C) + Lg ® C)
ch(A(E), g2 d)) + ch@ A2 Lg ® C
~(Lr®O)®(Lg®C) + Lg ® C)
-ch(A(E) ® 2 A2 Ec — E¢ ® Ec + E¢).g.d)
+ch(A(E) ® (2 A% Ec — Ec ® Ec + Ec). g.d)
+ ch(A(E) @ (A2E¢ ® A2E¢ + 2 A* E¢c — 2E¢



J. Guan, Y. Wang, and H. Liu 290

® A*Ec +2Ec ® A2Ec — Ec
® Ec ® Ec + Ec
. 4k—1
+/\2EC)7g’d)]} + .-
(3.63)
When dim M = 7, then O(V™, VL g d, ) is a modular form over SL(2, Z)
with the weight 4 and Q(V™, VL, g, d, 1) = AE4(t). When dim M = 11, then we
obtain Q(V™ VL g d, 1) is a modular form over SL(2,Z) with the weight 6 and
O(V™ VL ¢ d,v) = AE¢(r). When dim M = 15, then Q(V™ VL ¢ d, 1) is amod-
ular form over SL(2, Z) with the weight 8 and Q(V™ VL g d, 1) = AE4(r)?. When
dim M =19, then Q (V™ VL g d, r)isamodular form over SL(2,Z) with the weight 10
and Q(V™™ VL g .d 1) = AE4(t)E¢(t). When dim M = 23, then Q(V™ VL g.d, 1)

is a modular form over SL(2, Z) with the weight 12 and Q(V™ VL g d 1) =
AME4(1)3 + A2 Es(7)?. So, we get the following theorem.

Theorem 3.13. Letdim M = 7. If3p;(L) — p1(M) = 0and c3(E, g,d) = 0, we have

{/I(TM, VM) exp(%) [ch(TcM +2 A2 Lg @ C — (Lg ® C)
® (Lr ® C) + Lr ® C) ch(A(E), g2®) d)

@)
+ ch(A(E) ® 2 A Ec — Ec ® Ec + Ec),g,d)]}

@)
- 240{E(TM, VM) exp(g) ch(A(E), g2®), d)} : (3.64)

{/’I\(TM, vy exp(%) [ch(Szm + YW + A2 LR R@CRA’Lg®C

F2A* IR ®C—-2lg ®COAN’LR®C+2Lg® C
N IRR®C—IgRCRLRRCRLgR®C+ Lg®C
+A2LR@CHTM @ 2A2 g ®C — (Lg ® C)
® (Lr ® C) + Ly ® 0)) - ch(A(E), g2 B, d)
+ch@A? Lg®C— (Lg®C)® (Lr ® C) + Lg ® O)
-ch(A(E) ® (2 A2 Ec — Ec ® Ec + Ec). g.d)
+ ch(A(E) ® 2 A Ec — Ec ® Ec + Ec), g.d)
+ ch(A(E) ® (A2Ec ® A2Ec +2 A* Ec —2E¢ ® A3 Ec
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+2Ec ® A’Ec — Ec ® Ec ® Ec + Ec
_ 7
+ A*Ec). g, d)]}

@)
- 2160{//1\(TM, VM) exp(%) ch(A(E), g2B), d)} . (3.65)

Corollary 3.14. Suppose M is a T-dimensional spin® manifold without boundary. If
c3(E,g,d) =0, then
Id(T ® (TcM +2 A Lg® C— (Lr ® C) ® (Lg ® C) + Lr ® C)
® (A(E). g2B) d) + (A(E) ® 2 A% E¢ — E¢
® Ec + E¢).g.d)) =0 mod240Z, (3.66)
Ind(T ® (S>TcM + TcM + AR @ CR® A2 LR @ C+2 A* Lg ® C
—2Ug Q@ CONIRRC+2LgR®CONIgQC—Lg®C
®IR®CROLR®C+Lg®C + A2Lr ® C + TcM
®(2ALg®C—(Lr®C)® (Lr®C) + Lr ® C))
® (AE).¢2F) d)+ 2" g ®C— (Lr®C)® (Lr® C) + Lr ® C)
® (A(E)® 2 A2 Ec — Ec ® Ec + Ec).g.d) + (A(E) ® (2 A% E¢
— Ec ® Ec + Ec).g.d) + (A(E) ® (N Ec ® A*Ec + 2 A* Ec
—2E¢ ® NE¢ + 2Ec ® A*E¢ — E¢ ® E¢ ® Ec
+ Ec + A%E¢).g.d))) =0 mod2160Z. (3.67)

Theorem 3.15. Letdim M = 11. If 3p1(L) — p1(M) = 0 and c¢3(E, g, d) = 0, we have
{/T(TM, v exp(g)[ch(n\M F2R2 R ®C—(Ir®C)® (Lr®C) + Lg ® C)
-ch(A(E), ¢2®),d) + ch(A(E) ® (2 A> E¢ — Ec

~ ~ (11)
® Ec + E¢). g,d)]}
~ c an
= —504{A(TM, vy exp(z) ch(A(E), g2, d)} , (3.68)

{X(TM, VM) exp(g)[ch(SzTc\M +TcM + N’ Lg @ C® A’Lg ® C

F2A R @C-2Lg @ COALR@C+2[x®C
QAN gRC-— IR RCRIRRCRLgR®C+ Lg®C
+ AL @C+TcM ® 2N Lg®C— (Lg ® C)
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® (Lg ® C) + Lg ® C)) - ch(A(E), g2, d)
+ch@A2 Lg®@C—(Lr®C)® (Lg ® C) + Lg ® C)
-ch(A(E) ® 2 A2 Ec — Ec ® Ec + Ec). g.d)
+ch(A(E) ® 2 A2 Ec — Ec ® Ec + Ec). g.d)
+ ch(A(E) ® (A2Ec ® A2Ec +2 A* E¢ —2E¢ ® A2 Ec
+2Ec ® A2Ec — Ec ® Ec ® Ec + Ec

~ an
+ /\zEc),g,d)]}
~ c an
= —16632{A(TM, VM) exp(z) ch(A(E), g2®), d)} . (3.69)

Corollary 3.16. Let M be an 11-dimensional spin® manifold without boundary. If
c3(E,g,d) =0, then
d(T¢ ® (TcM +2 A2 L ® C— (L ® C) ® (Lr ® C) + Lg & C)
® (A(E). g2, d) + (A(E) ® (2 A* Ec — Ec
® Ec + E¢).g.d))) =0 mod504Z, (3.70)
Ind(T & (S2TcM + TcM + A2Lg @ C® A2 g @ C+2A* [x ® C
—2Ur@CONLRDC+2gR®CONLg®C—Lg®C
QLR®CRLrR®C+Lg®C+ A’Lg ® C+ TcM
Q2N Ir®C—(Lr®C)®(Lx®C) + Lr ® C))
® (AE),g*® . d)+ QA g @C—(Ir®C) ® (Lg® C) + Lr ® C)
® (A(E)® 2 A* Ec — Ec ® Ec + Ec).g.d) + (A(E) ® 2 A* Ec — Ec
® Ec + Ec).g.d) + (A(E) ® (N2E¢ ® A2E¢ + 2 A* E¢ — 2E¢
® A*Ec +2Ec ® AEc — Ec ® Ec ® Ec + Ec
+ A2E¢).g.d)) =0 mod16632Z. (3.71)

Theorem 3.17. Letdim M = 15. If 3p;(L) — p1(M) = 0 and c3(E, g,d) = 0, we have

~ C — e e E—— E——
{A(TM, V™) exp(i)[ch(TcM +2A2 LR ®@C—(LR®C) ® (L ® C) + Lg ® C)
-ch(A(E), g2®) . d) + ch(A(E) ® (2 A2 Ec — Ec

I (15)
® Ec + Ec),g,d)]}

(15)
- 480{A(TM, 2L exp(%) ch(A(E), g2B), d)} : (3.72)
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{ff(TM, v eXp(g)[ch(Szfc\Al +TcM + 2L @ C®A2Lg® C

F2A* IR®C-2lg ®CRA’LR®C+2Lg ® C
QN Ig@C-Lr®CRLr®CR®Lg®C+Lg®C
+A2Lg ®C+TcM ® 2> Lg ® C— (Lg ® C)
® (Lr ® C) + Lg ® C)) - ch(A(E), g5 d)
+ch@QA2 g @ C— (Lr®C)® (Lg ® C) + Lg ® C)
-ch(A(E) ® 2 A2 Ec — Ec ® Ec + Ec). g.d)
+ch(A(E) ® 2 A Ec — Ec ® Ec + Ec). g.d)
+ch(A(E) ® (N*Ec ® A*Ec + 2 A* Ec —2Ec ® A*Ec
+2Ec ® A’Ec — Ec ® Ec ® Ec + Ec

. (15)
+ A?Ec). g, d)]}
~ c (15)
= 61920{A(TM, VM) exp(z) ch(A(E), g2®), d)} . (3.73)

Corollary 3.18. Let M be a 15-dimensional spin® manifold without boundary. If
c3(E,g,d) =0, then
Ind(7° ® (TcM +2 A2 L ® C— (L ® O) ® (Lx ® C) + Lr ® C)
® (A(E), g%, d) + (A(E) ® (2 A? Ec — Ec
® Ec + Ec).g.d))) =0 mod480Z, (3.74)
Ind(T ® (S2TcM + TcM + A2Lr @ C® A2 LR @ C+2A* [g ® C
—2Ug @CONIR®C+2lg®CRN LgRC—Lg®C
R®IR®CRLRO®C+Lg®C+ A2Lg ® C+ TcM
®(2ALg®C—(Lr®C) ® (Lr ® C) + Lr ® C))
® (AE), g® d)+ A g ®C—(Lx®C) ® (Lr ® C) + Lr ® C)
® (A(E)® 2 A* Ec — Ec ® Ec + E¢).g.d) + (A(E) ® (2 A% Ec
—E¢®Ec+ Eo),g.d) + (AE) ® (A2Ec ® A2Ec +2 A* Ec
—2Ec ® A*Ec + 2Ec @ A2 Ec — E¢ ® Ec ® Ec¢
+ Ec + A2E¢),g.d)) =0  mod 61920Z. (3.75)

Theorem 3.19. Letrdim M = 19. If 3p1(L) — p1(M) = 0and c3(E, g,d) = 0, we have

{/T(TM, v exp(g)[ch(@ +2A2[g®C—(Lp®C)® (Lg ® C) + Lr ® C)
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-ch(A(E), g2®).d) + ch(A(E) ® (2 A* Ec — Ec

_ _ (19)
® Ec + Ec),g,d)]}
. c (19)
= —264{A(TM, VM) exp(z) ch(A(E), g2, d)} , (3.76)

{fT(TM, v exp(g)[ch(szT?M +TeM + AN Lr @ C® A2Lg ® C

42A* IR ®C—2[g ®CR® A Lg®C+2g®C
N Ig®C-IrRCRLR@®CR®Lg®C+ Lp® C
+A2LR@CHTM®(2A2 L ® C— (Lg ® C)
® (Lr ® C) + Lg ® C)) - ch(A(E), g2 F) )
+ch2A? Lg®C—(Lp® C) ® (Lg ® C) + L ® C)
-ch(A(E) ® (2 A2 Ec — Ec ® Ec + Ec). g.d)
+ch(A(E) ® 2 A% Ec — Ec ® Ec + Ec).g.d)
+ ch(A(E) ® (A2Ec ® A2Ec +2 A* E¢ —2E¢ ® A2 Ec
+2Ec ® A2Ec — Ec ® Ec ® Ec + Ec

~ (19)
+ /\zEc),g,d)]}
R c (19)
- —117288{A(TM, VM) exp(i) ch(A(E), g2®), d)} . (3.77)

Corollary 3.20. Let M be a 19-dimensional spin® manifold without boundary. If
c3(E,g,d) =0, then
d(T° ® (TcM +2 A% L @ C— (Lr ® O) ® (Lr ® C) + Lr ® C)
® (A(E), ¢*®).d) + (A(E)® 2 A* Ec — Ec
® Ec + E¢).g.d)) =0 mod264Z, (3.78)
Ind(T & (S2TcM + TcM + A2Lr @ C® A2 LR @ C+2A* g ® C
2R ®COAN LR CH+2Lg®CONLg®C—Lg® C
QIR®CRLR®C+ Lg®C+ A2Lg @ C + TcM
®(2ALg®C—(Lr®C)® (Lr®C) + Lr ® C))
® (AE). 2P d)+ 22 [g®C— (Lr®C)® (L ® C) + Lg ® C)
® (A(E)® (2 A* Ec — Ec ® Ec + Ec).g.d) + (A(E) ® (2 A% Ec
—Ec®Ec+ E¢).g.d) + (AE) ® (N2 E¢ ® A2Ec + 2 A Ec
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—2Ec ® A*Ec + 2Ec ® A2Ec — Ec ® Ec ® Ec
+ E¢ 4+ A2E¢).g.d))) =0 mod 117288Z. (3.79)

Theorem 3.21. Let dim M = 23. If 3p1(L) — p1(M) = 0 and ¢3(E, g, d) = 0, we have
{ff(TM, \ALD) exp(g) [ch(S27:c\M + @ + Azm ® /\zm
F2M g ®C—2lg®COAN LR ®C+2Lg®C
N IRQC-IRRCRLRRCRLRRDC+Lg®C
+ A2 Lg®C+TcM ® 2 A2 Lp® C — (Lg ® C)
® (Lr ® C) + Lg ® 0)) - ch(A(E), g2 B, d)
+ch2 A2 Lg®C—(Lr®C)® (Lg ® C) + Lg ® O)
-ch(A(E) ® 2 A? Ec — Ec ® Ec + E¢). g.d)
+ ch(A(E) ® 2 A* Ec — Ec ® Ec + Ec). g.d)
+ ch(A(E) ® (N*Ec ® A2Ec +2 A* Ec —2Ec ® A*Ec
+2E¢ ® A*Ec — E¢ ® E¢ ® E¢ + E¢
@3)
+ AZI%),g,d)]}
— {196560[2(TM, VM) exp(g) ch(A(E), g2B), d)]

- 24{X(TM, vy exp(%) [ch(TcM +2 A% Lg ® C— (Lg ® C)

® (Lg ® C) 4+ Lg ® C) ch(A(E), 2P, d)
+ ch(A(E) ® (2 A2 E¢ — Ec

o @3)
® Ec + Ec), g,d)]}} . (3.80)

Corollary 3.22. Let M be a 23-dimensional spin® manifold without boundary. If
c3(E,g,d) =0, then

Ind(T ® ((S2TcM + TcM + AR @ CR® A2 LR @ C+2 A* Lg ® C
—2URr®CRNIRR®C+2Lg®CRON IR C—Lg® C
QILR®CRLR®C+ Lr®C+ A2Lg ® C + TcM
Q2N Ig®C—(Ir®C)® (Lr®C) + Lg ® C))
® (AE), g*B d)+ A g ®C— (L ®C) @ (Lr ® C) + Lg ® C)
® (A(E) ® 2A? Ec — Ec ® Ec + Ec).g.d) + (A(E) ® (2 A% Ec

_E¢c®Ec+ Eo),g.d) + (AE) ® (A2E¢ ® A2Ec +2 A% Ec
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—2Ec ® A*Ec + 2Ec ® A2Ec — Ec ® Ec ® Ec
+ Ec + A2E¢).g.d))) =0 mod?24Z. (3.81)

Let ®*(TcM, Lgr ® C) be the virtual complex vector bundle over M defined by

oo oo
O (TeM. Ly ® €) = Q) Sy (TeM) ® Q) A—gn(Lr ® C).

n=1 m=1

LetdimM =4k + land y = —2£nlc. Set

O(VM VL ¢ d, 1) = {/Y(TM, V™) exp(%) ch(®*(TcM, Ly ® C))

(4k+1)
-ch(Q(E),gQ(E),d,t)} (3.82)
Then
2k+1 (4p)
~ _ x;0'(0, 7) V=10(y.1)
oM. L) = {(11:[1 6(x;.7) )91(o,f)ez(o,f)93(o,z)} ’ 689
and
O(VM V6L g d v) = (O(M,L,7)-ch(Q(E),g2® d,1))@+D, (3.84)

Let p; denote the first Pontryagin class. By (2.13)—(2.17), we have Q(V™ VL ¢ d .t +
1) = Q(V™ VL g d, 7) and Q(VM, VE, g d, —1) = 1%k Q(V™ VL g, d, 1) if
p1(L) — p1(M) =0and c3(Ec, g, d) = 0. So we get the following theorem.

Theorem 3.23. Let dimM =4k + 1. If p1(L) — p1(M) = 0and c3(E, g,d) = 0, then
O(V™ VL ¢ d, t)isamodular form over SL(2,Z) with the weight 2k.

By Theorem 3.23, similar to Theorem 3.13 and Corollary 3.22, we can get the
following theorems.

Theorem 3.24. LetdimM = 7. If p1(L) — p1(M) = 0 and c3(E, g,d) = 0, we have
{/Y(TM, VMY exp(%) [ch(TcM — L ® C) ch(A(E), g2F),d)
. @
+ ch(A(E)® QA2 Ec — E¢ ® E¢ + E¢). g. d)]}
- c @
= 240{A(TM, V™M) exp(z) ch(A(E), g2®), d)} , (3.85)

{X(TM, vy exp(g)[ch(SZY:c\M +TcM + ALg® C—2Lg ® C + TcM
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® Lr ® C) ch(A(E), g2, d) + ch(TcM — Ly ® C)
-ch(A(E) ® 2 A2 Ec — Ec ® Ec + Ec). g.d)
+ ch(A(E) ® (N2 Ec ® A2Ec 4+ 2 A* Ec —2E¢
® A3Ec +2Ec ® A2Ec — Ec ® Ec ® Ec

)
+ Ec + AZEC),g,d)]}
- c )
= 2160{A(TM, VM) exp(z) ch(A(E), gA(E),d)} . (3.86)

Corollary 3.25. Suppose M is a 7-dimensional spin® manifold without boundary. If
c3(E,g,d) =0, then
d(T° ® (TcM — Ly ® C) ® (A(E). g**). d)

+(AE)® 2 A2 Ec— Ec ® Ec + Ec),g,d))) =0  mod 240Z,
(3.87)

Ind(T ® (S2TcM + TeM + A2Lr @ C—2Lx ® C + TcM ® Ly ® C)
® (A(E), %) d) + (TcM — Lr ® ) ® (A(E) ® (2 A Ec
—E¢®Ec+ E¢).g.d) + (A(E) ® (AN Ec ® A2E¢
+2A*Ec—2Ec ® A*Ec +2Ec ® A*Ec — Ec
® Ec ® Ec + Ec + A2E¢),g.d))) =0 mod2160Z. (3.88)

Theorem 3.26. Letdim M = 11. If py(L) — p1(M) = 0and c3(E, g,d) = 0, we have
{/Y(TM, VM) exp(%) [ch(TcM — Lg ® C) ch(A(E), g2®, d)
~ ~ ~ ~ (11)
+ ch(A(E) @ 2 A2 Ec — Ec ® Ec + E¢), g, d)]}
~ c (1
= —504{A(TM, V™) exp(z) ch(A(E), g2, d)} , (3.89)

{X(TM, vy exp(g)[ch(SZY:c\M +TcM + ALg® C—2Lg ® C + TcM

® Lg ® C) ch(A(E), g*®) d) + ch(TcM — Lg ® C)
-ch(A(E) ® 2 A2 Ec — Ec ® Ec + Ec). g.d)
+ ch(A(E) ® (N2Ec ® A2Ec + 2 A* E¢c —2E¢ ® A3 E¢
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+2Ec ® A’ Ec — Ec ® Ec ® Ec + Ec
_ (1n
2B )|
~ c (1n
- —16632{A(TM, VM) exp(z) ch(A(E), g2, d)} . (3.90)
Corollary 3.27. Let M be an 11-dimensional spin® manifold without boundary. If

c3(E,g,d) =0, then

Ind(T¢ ® (TcM — Lg ® C) ® (A(E), g2®) . d)

+(A(E)® QA2 Ec— Ec ® Ec + E¢).g.d))) =0 mod504Z,
(3.91)

d(T ® (S2TcM + TeM + A2Lr ® C— 2L ® C + TcM ® L ® C)
® (A(E), g2B) d) + (TeM — Lr ® C) ® (A(E) ® (2 A? E¢
— Ec ® Ec + E¢).g.d) + (A(E) ® (\*Ec ® A’ Ec
+2A*Ec —2Ec @ A*E¢ + 2Ec ® A2Ec — Ec ® Ec
® Ec + Ec + A2E¢). g.d))) =0 mod 16632Z. (3.92)

Theorem 3.28. Let dim M = 15.If py(L) — p1(M) = 0 and c3(E. g.d) = 0, we have
{E(TM, v exp(g) [ch(TcM — Lg ® C) ch(A(E), g2F), d)

(15)
+ch(A(E)® QA2 Ec — Ec ® Ec + E¢). g, d)]}

(15)
= 480{£(TM, VM) exp(%) ch(A(E), 2B, d)} : (3.93)

{/f(m, V) exp(g)[ch(szrcm L TeM + N IR @®C - 2ig ®C + TeM

® Lr ® C) ch(A(E), g2F) . d) + ch(TcM — Lg ® C)
-ch(A(E) ® 2 A2 Ec — Ec ® Ec + Ec), g,d)
+ ch(A(E) ® (N*Ec ® A?Ec + 2 A* Ec — 2Ec ® A*Ec
+2Ec®@ A2Ec — Ec ® Ec ® Ec + Ec

_ as)
+ A?Ec), g,d)]}

(15)
- 6192{2(TM, VM) exp(%) ch(A(E), gA(E),d)} : (3.94)
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Corollary 3.29. Let M be a 15-dimensional spin® manifold without boundary. If
c3(E,g,d) =0, then

Ind(T¢ ® (TcM — Lg ® C) ® (A(E). g2F). d)

+(A(E)® QA2 E¢c — Ec ® Ec + E¢).g.d))) =0 mod 480Z,
(3.95)

Ind(T ® ((S*TcM + TcM + A2Lg @ C—2Lg ® C + TcM ® Ly ® C)
® (A(E). 2B . d) + (TcM — Lr ® C) ® (A(E) ® (2 A? Ec
—E¢®Ec+ E¢).g.d) + (A(E) ® (N Ec ® A2E¢
+2A*Ec—2Ec ® AEc +2Ec ® A*Ec — Ec ® Ec
® Ec + Ec + A2Ec),g.d))) =0 mod 6192Z. (3.96)

Theorem 3.30. Let dimM = 19. If p1(L) — p1(M) = 0 and c3(E, g,d) = 0, we have
n ™ ¢ X A(E)
A(TM, V™) exp 7 [ch(TCM Lr ® C)ch(A(E), g ,d)
. 19)
+ ch(A(E) ® 2 A% Ec — Ec ® Ec + Ec). g. d)]}

(19)
- —264{A(TM, VM) exp(%) ch(A(E), g2B), d)} , (3.97)

{fT(TM, VM) exp(g)[ch(Szfc\Ad +TcM + AL ®C—2Lg ® C + TcM
® Lr ® C)ch(A(E), g2®) . d) + ch(TcM — Lr ® C)

-ch(A(E) ® 2 A? Ec — Ec ® Ec + Ec). g.d)

+ ch(A(E) ® (N2Ec ® A2Ec + 2 A* Ec —2Ec ® A2 Ec
+2Ec ® A’Ec — Ec ® Ec ® Ec + Ec

_ (19)
+ /\ZEC),g,d)]}
. ¢ (19)
= —117288{A(TM, VM) exp(i) ch(A(E), g2®), d)} . (3.98)

Corollary 3.31. Let M be a 19-dimensional spin® manifold without boundary. If
c3(E,g,d) =0, then
Ind(T° ® (TcM — Lr ® ©) ® (A(E), 2. d)

+(AE)® QA2 Ec— Ec ® Ec + E¢).g.d))) =0 mod264Z,
(3.99)

Ind(T ® (S>TcM + TcM + ALr ® C—2Lg ® C + TcM ® Ly ® C)
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® (A(E), 2B, d) + (TcM — Lr ® €) ® (A(E) ® (2 A* Ec
— Ec ® Ec + Ec). g.d) + (A(E) ® (N Ec ® A*Ec
+2A*YEc —2Ec @ A*Ec + 2Ec ® A2Ec — Ec ® Ec
® Ec + Ec + A2E¢),g.d))) =0 mod117288Z.  (3.100)

Theorem 3.32. Let dim M = 23. If p1(L) — p1y(M) = 0 and c3(E, g,d) = 0, we have
{g(m, Vi) exp(g)[ch(szfm +TeM + N IR ®C - 2Ug ®C + TeM

® Lgr ® C)ch(A(E), g2®) . d) + ch(TcM — Lg ® C)
-ch(A(E) ® 2 A2 Ec — Ec ® Ec + Ec). g.d)
+ ch(A(E) ® (AN2Ec ® A2Ec + 2 A* E¢ —2E¢ ® A3 E¢
+2Ec ® A’ Ec — Ec ® Ec ® Ec + Ec

N 23)
+ /\ZEC)v g, d)]}
= {196560[2(”4, VM) exp(%) ch(A(E), g2B), d)]

- 24{2(TM, Vi) exp(g) [ch(TcM — Ly ® ©) - ch(A(E). g*. d)

+ ch(A(E) ® 2 A2 E¢c — E¢

IO 23)
®Ec+Ec),g,d)]}} .
(3.101)

Corollary 3.33. Let M be a 23-dimensional spin® manifold without boundary. If
c3(E,g,d) =0, then

Ind(T ® (S>TcM + TeM + A2 Lr @ C—2Lg ® C + TcM ® Ly ® C)
® (A(E), 2B, d) + (TcM — Ly ® €) ® (A(E) ® (2 A? Ec
—E¢®Ec+ E¢).g.d) + (A(E) ® (\2E¢ ® A2E¢
+2A*YEc —2Ec @ A*Ec + 2Ec ® A2Ec — Ec ® Ec
® Ec + Ec + A2E¢).g.d))) =0 mod?24Z. (3.102)

4. Some modular forms and Witten genus over I'°(2), Ty(2), 'y
In this section, we will construct some modular forms over I'°(2), I'y(2), I'g in odd

dimensions. Furthermore, we calculate and derive some new cancellation formulas
for odd-dimensional spin manifolds and odd-dimensional spin® manifolds, respectively.
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Meanwhile, we will derive some divisibility results for the index of the Toeplitz operators
on spin manifolds and spin® manifolds.

4.1. Some modular forms and Witten genus over I'*(2), I'y(2), I'y in spin manifolds

Let M be a (4k — 1)-dimensional spin manifold. By (3.1)—(3.3) and (3.10)—(3.12), we can
construct the following forms:
Q1(V™, g, d,7) = {A(TM, V™) ch([A(M) & O1(TcM) + 25O (Tc M)
+2%K03(Tc M)
-ch(Q1(E), g2 ") d, )}(*kD), @.1)
02(V™ g.d. 1) = {A(TM, V™) ch([A(M) ® O1(TcM) + 22O, (TcM)
+2%03(Tc M)
-ch(Q2(E), g2 d, 1)} (#D), (4.2)
Q3(V™, g.d, 1) = {A(TM, V™) ch([A(M) & O1(TcM) + 25 Ox(Tc M)
+22k03(Tc M)
-ch(Q3(E), g2 ) d, )40, (4.3)

Following [10], we defined ch(Q; (E), g% ®E 4. 1)for j =1,2,3 as follows:

ch(Q; (E). VP 1) —ch(Q; (E). VE®) 1) = d ch(Q;(E). g2 B d. 1), (4.4)

where
. ] -
2% 1 01 (Ry/(47%), 7)
WO (E). «21E) 4 7y — — f Tr| g~ 'dg A ———"—1d 43
ch(Q1(E).g%"" . d.0) = —o— | Tr|g o (Ruf O, 0| Y
and for j = 2,3,
Lor 07 (Ry/(47%),7) ]
h(Q;(E), g% ®) d,v) = ——5 | Tr|g'dg l =2 Cldu. (46
ch(Q;(E). g D=5 )y M8 R, | 0

By [10, Proposition 2.2], we have if c3(E, g, d) = 0, then for any integer k >
1and j = 1,2,3, ch(Q;(E), g%®) d, 1)** =D are modular forms of weight 2k
over I'g(2), I'°(2) and Ty, respectively. By [10, Proposition 2.4, Theorem 2.6], we
understand that if c3(E, g, d) = 0, then for any integer kK > 1 and j = 1, 2, 3,
01(V™ g d, 0)@ =D 0, (V™ ¢ d )@ =D and 03(V™, g.d,r)**~D are modular
forms of weight 2k over I'y(2), I'°(2) and Ty, respectively.

Let p; denote the first Pontryagin class. If w is a differential form over M, we denote
by w**~1 its top degree component. Our main results include the following theorem.
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Theorem 4.1. Ifc3(E, g,d) = 0, then

(A(TM, V™) ch(A(M) + 2+1) ch(A(E), g2 E), d)} @D

1£]
— 25tk Z 2765p . .7

s=1

where each hg,1 < s < [I£

> ], is a canonical integral linear combination of

{A(TM) ch(A (M))ch(By (TcM, Ec)) + 2°X A(TM)ch(BZ (Te M, Ec))
+ 22K A(TM)ch(B2(Te M. Ec))}** D, 0<a <3,

and hy, hy are given by (4.16) and (4.17).
Proof. Let {£2m+/—1x; | 1 < j <k} be the Chern roots of Tc M. We have

01(V™™, g.d, 1)

_ 2x,6'(0,7) th (xpf) 92(x],r) b3(x;.7)
B {,- L 00k, T) (H 61(0.7) H 62(0,7) H 93(0,r)>

(4k—1)
-ch(Ql(E),gQ“E),d,r)} : (4.8)

02(V™.g.d.v)

2x,9 0,7) Gl(xj,r) Gz(xj,r) 03(x;, 1)
{l_[ 0(x;,7) (l_[ 0:(0,7) H 6,(0, 1) l_[ 93(0,1))

(4k—1)
~ch(Qa(E), g9 d, r)} : 4.9)

Moreover, we can show by direct computations that

01(V™, g.d.v) = [A(TM, V™) ch(A(M)) ch(A(E). g2, d)
+ 22K A(TM, V™) - ch(A(E), g2 B, d)]@k=D
+ q{ATM, V™) - [ch(A(M) ® 2TcM) - ch(A(E). g, d)
+ ch(A(M)) ch(A(E) ® Ec. g.d)] + 2%+1
L A(TM, V™) - [ch(TcM + A*TeM) ch(A(E). 2P, d)
+ ch(A(E) ® Ec. g, d)]} @D
+ ATV V™)eh(A(M) ® QTcM + A*TeM + TcM
® TcM + S2TcM))
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-ch(A(E), g2®) . d) + ch(A(M) ® 2TcM)
-ch(A(E) ® Ec.g.d) 4 ch(A(M))
-ch(A(E) ® (\2Ec + Ec). g.d)] + 22!
- A(TM, V™)[ch(A*TcM + A2TcM & TcM + TeM
® TcM + S*TcM + TeM)
-ch(A(E), g2, d) + ch(TcM + A2TcM)
.ch(A(E) ® Ec.g.d) + ch(A(E)

® (N2Ec + Ec), g, )} *D ...
(4.10)

0:,(V™. g.d.v) = —q>[A(TM, V™) ch(A(M)) ch(Ec, g. d)
+ 22K A(TM, V™) - ch(Ec. g. )]V
+ q[A(TM, V™) . ch(A(M)) ch(A2E¢, g.d)
+ 22k+1/T(TM, VTM) -ch(/\ZEVc, g, d)](4k—1)
— g {A@TM. V™) - [ch(A(M) ® 2TcM) ch(Ec. g.d)
+ ch A(M) ch(Ec + A3Ec, g.d)]
+ 22K+ A(TM, V™) [ch(TeM + A2TeM) ch(E¢, g. d)
+ ch(Ec + A3Ec, g, d)y D
+ 2 {A(TM, V™) - [ch(A(M) ® 2TcM) - ch(A*Ec. g.d)
T+ chAM)-ch(A*E¢ + Ec ® Ec, g.d)]
+ 22k+1/Y(TM, VTM)
-[eh(TeM + A2TeM) ch(A2Ec. g.d)
+ch(A*Ec + Ee ® Ec,g. )V 4., @.11)

and we can represent Q>(V™ g, d, 1) as

0>(V™, g, d,7) = A(TM, V™) ch(A(M))ch(B; (TcM, Ec))

+ 2% A(TM, V™)ch(BE(Tc M. Ec))

+ 22 A(TM, V™)ch(B3 (Tc M. E¢))

+ [A(TM, V™) ch(A (M))ch(B] (Tc M. Ec))
+ 22K A(TM, V™) ch(B?(Tc M, E¢))
+ 2% A(TM. V™)ch(B (Te M. Ec))lq*

+ [A(TM, V™) ch(A(M))ch(B} (Tc M. Ec))
+ 2% A(TM, V™)ch(B2(Tc M, Ec))
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+ 22K A(TM, V™)ch(B3(Tc M., Ec))lg
+ [A(TM, V™) ch(A(M))ch(B} (TcM. Ec))
+ 22K A(TM, V™)ch(B2(Tc M, Ec))
+ 22K A(TM, V™)Gh(B3(TeM. Ec)g? +--- . (4.12)

Let Pi(7) = O1(V™, g, d,t)* 1 and Po(v) = 02(V™, g, d, v)**~1. Similarly to the
computations in [13] and by [10, (2.26)] and the condition c3(E, g,d) = 0, we have

P, (_%) = 2% % py (o). (4.13)

Observe that at any point x € M, up to the volume form determined by the metric on
T.M, both P;(t), i = 1,2, can be viewed as a power series of q% with real Fourier
coefficients. By Lemma 2.2, we have

[5]

Py(v) = ho(882)F + h1(882)F2es + -+ + h[%](SSZ)k_Z[%]eZ : (4.14)

where each iy, 0 < s < [%], is a real multiple of the volume form at x. By (2.19), (4.13)
and (4.14), we get

k
Pi() = 2% [h0(881)k R85 26 4+ h[%](gsl)k—ﬁ%lg[lz]]. (4.15)

By comparing the constant term in (4.15), we get (4.7). By comparing the coefficients

of q%, j = 0 on both sides of (4.14), we can use the induction method to prove that

ho =0andeach h;, 1 <5 < [%], can be expressed through a canonical integral linear

combination of

{A(TM) ch(A(M))ch(BL(TcM, Ec)) + 22K A(TM)ch(B2(Tc M, Ec))
+ 2% A(TM)ch(B2(TeM. Ec))}** D, 0<a <s.

By (4.11), (4.12) and comparing the coefficient of q% of (4.14), we get

hy = (=) 2[A(TM, V™) ch(A(M))ch(B] (Tc M. Ec))
+ 22 A(TM, V™)ch(B3(Tc M, Ec))
+ 22k A(TM, V™)ch(B3 (T M, E¢))] 4k
= (¥ A@TM. V™) ch(A(M)) ch(Ec. g, d)
+ 22K+ A(TM, V™) ch(E¢, g. d)]“* . (4.16)
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By (4.11), (4.12) and comparing the coefficient of g of (4.14), we get
ha = (=1)**[A(TM, V™) ch(A(M))ch(B} (TcM, Ec))

+ 22K A(TM, V™)ch(B2(Tc M, E¢))
+ 22K A(TM, V™)ch(B3 (Te M. Ec))|#F~)

— 8 —24(k —2)(=1)“]hy

= (—~D)**[A(TM, V™) ch(A(M)) ch(A*Ec. g.d)

+ 22k+1ff(TM, vy ch(AZE;,g, d)](4k—1)

— [24(k — 2) + 8(=D)*[A(TM, V™) ch(A(M)) ch(E¢, g.d)

+ 22+ (TM, V™) ch(E¢, g, d)]|“*D.  (4.17)

The proof is completed. ]

Corollary 4.2. Let M be a (4k — 1)-dimensional spin manifold. If c3(E, g,d) = 0, then

[£]
Id(T ® (AMM) + 2571 @ (A(E), g2B,d)) = 254K Y 2 6p,, (4.18)
s=0

where each hg, 1 <5 < [%] is a canonical integral linear combination of

Ind(T ® (A(M) ® (BL(TcM, E¢)) +2%F ® (BX(Tc M. Ec))
+ 2% ® (BJ(TcM. Ec)))). (4.19)

Corollary 4.3. Let M be a (4k — 1)-dimensional spin manifold and c3(E, g,d) = 0. If k
is even, then

Ind(T ® (A(M) + 2°t1) @ (A(E), g2®,d)) =0 (mod2% %), (4.20)
If k is odd, then
Ind(T ® (A(M) + 251 @ (A(E). g2®),d)) =0 (modﬁ“—zk). (4.21)
Corollary 4.4. Let M be an 11-dimensional spin manifold. If c3(E, g,d) = 0, then
{A(TM, V™) ch(A(M) + 27) ch(A(E), g2 B, d)yD
= 22 3LA(TM, V™) ch(A(M) + 27) ch(Ee, g, d)} V. (4.22)
Corollary 4.5. Let M be a 15-dimensional spin manifold. If c3(E, g,d) = 0, then
{A(TM, V™) ch(A(M) + 2°) ch(A(E), g2 B d)y(19
= —13 x 22 S{A(TM, V™) ch(A (M) + 2°) ch(Ec, g, d)}(1®
+ 23 BLATM, V™) ch(A(M) + 2°) ch(A2Ee, g, d) 1D, (4.23)
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By [4, (5.22)], we have for I <5 < [£],

(88)F 2563 = 2kKO5[1 4 (24k — 645)q + (288k2 — 1536ks + 204852

4.24
+ 5125 — 264k)q? + O(¢>)]. (424

By (4.10), we are comparing the coefficients of ¢ in (4.15). Then we get the following
theorem.

Theorem 4.6. Ifc3(E, g,d) =0, then
{A(TM, V™)[ch(A(M) ® 2Tc M) ch(A(E), g2, d) + ch(A(M))
ch(A(E) ® Ec. g, d)] + 22X A(TM, V™)
[eh(TeM + A2TcM) ch(A(E), 28, d) + ch(A(E) ® Ec, g, d))]
— 24k[A(TM, V™) ch(A(M) + 22k ch(A(E), g2 B, d)]}@k—D

4]
= 236N o6y, (4.25)

s=1

Corollary 4.7. Let M be a (4k — 1)-dimensional spin manifold and c3(E, g,d) = 0. If k
is even, then

Ind(T ® (AM) ® QTcM ® (A(E), g2, d) + (A(E) ® Ec, g.d)) + 2211
® (TcM + A*TcM) @ (A(E), g2 d) + (A(E) ® Ec, g, d))))
— 24k Ind(T ® (A(M) + 22T ® (A(E), 2B d))
=0 (mod222%+6) (4.26)
If k is odd, then
Ind(T ® (A(M) ® QTcM ® (A(E), g2 . d) + (A(E) ® Ec. g.d)) + 22K+1
® (TeM + A*TeM) ® (A(E).g%5).d) + (A(E) ® Ec.g.d)))
— 24k Ind(T ® (A(M) + 2%t @ (A(E), g2B) d))
=0 (mod22 2%+, (4.27)
Corollary 4.8. Let M be an 11-dimensional spin manifold. If c3(E, g,d) = 0, then
{A(TM, V™)[ch(A(M) ® 2Tc M) ch(A(E), g2, d) + ch(A(M))
-ch(A(E) ® Ec.g.d)] + 27 A(TM, V™)
[eh(TeM + A2TcM) ch(A(E), 2%, d) + ch(A(E) ® Ec, g, d)]
— T2[A(TM, V™) ch(A(M) + 27) ch(A(E), g2B), d)]} D
— 253 A(TM, V™) ch(A (M) + 27) ch(Ec, g, d)} 1D, (4.28)
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Corollary 4.9. Let M be a 15-dimensional spin manifold. If c3(E, g, d) = 0, then
{A(TM, V™)[ch(A(M) ® 2TcM) ch(A(E), g2®), d) + ch(A(M))
.ch(A(E) ® Ec.g.d)] + 2° A(TM, V™)
[ch(TcM + A2TcM) ch(A(E), g2, d) + ch(A(E) ® Ec. g,d)]
— 96[A(TM, V™) ch(A(M) + 2°) ch(A(E), g2 B, )]} 19
= 9 x 22 P20 A(TM, V™) ch(A (M) + 2°) ch(Ec. g. d)} 1>
— 25N A(TM, V™) ch(A(M) + 2°) ch(A2E¢. g. d)} 1. (4.29)

By (4.10), we compare the coefficients of g2 in (4.15). Then we get the following
theorem.

Theorem 4.10. Ifc3(E, g,d) = 0, then

{A(TM, V™) [ch(A(M) ® QTcM + A2TcM + TcM & TeM + S*TeM))
- ch(A(E), g2®) d) + ch(A(M) ® 2TcM) ch(A(E) ® Ec¢. g.d)
+ ch(A(M)) - ch(A(E) ® (\2E¢ + E¢). g.d)] + 22K+ A(TM, V™)
[h(A*TeM + A2TeM & TeM + TcM & TeM + S*TeM + TeM)
-ch(A(E), g2 d) 4 ch(TcM + N*TcM) ch(A(E) ® Ec. g.d)
+ ch(A(E) ® (AN2E¢ + E¢). 8. d)]
+ (288k2 + 72k)[A(TM, V™) - ch(A (M) + 2% *+1) ch(A(E), g2F), d)
— (24k — 8){A(TM, V™) . [ch(A(M) ® 2TcM) ch(A(E), g2 ®) . d)
+ ch(A(M)) ch(A(E) ® Ec, g, d)]
+ 22KV A(TM, V™) [ch(TcM + A2TcM) ch(A(E), g2, d)
+ ch(A(E) ® Ec, g.d)]} 4+

%]
= 23RN 2965y, (4.30)

s=1

Corollary 4.11. Let M be a (4k — 1)-dimensional spin manifold and c3(E, g,d) = 0.
If k is even, then

Ind(T ® (AM) ® (2TcM + A2TcM + TeM ® TeM + S2TeM)
® (A(E). g2 ") d) + 2TcM ® (A(E) ® Ec.g.d)
+ (A(E) ® (N2E¢ + E¢). g.d)) + 22k+1
® (A*TcM + N2TcM ® TcM + TeM @ TeM + S*TeM + TeM)
® (A(E), g2F) . d) + (TcM + N2TcM) ® (A(E) ® Ec. g.d)
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+ (A(E) ® (\2Ec + Ec). g.d)))) + (288k? + 72k)
JInd(T @ (A(M) + 22K+ @ (A(E), g2B) . d)) — (24k — 8)
Ind(T ® (AM) ® RTcM & (A(E). g2®) . d) + (A(E) ® Ec. g.d))
+ 2241 @ (TcM + A2TcM) ® (A(E), g2, d)
+ (A(E) ® Ec. g.d))))
=0 (mod2% 2k+11) 4.31)
If k is odd, then
Ind(T ® (AM) ® (2TcM + A2TcM + TeM ® TeM + S2TeM)
® (A(E). g2F) d) +2TcM ® (A(E) ® Ec. g.d)
+ (A(E) ® (NEc + Ec). g.d)) + 22!
® (A*TcM + A*TcM & TeM + TeM ® TeM + S*TeM + TeM)
® (A(E),g2F) d) + (TcM + N2TcM) ® (A(E) ® Ec.g.d)
+ (A(E) ® (M Ec + Ec). g.d)))) + (288k> + 72k)
‘Ind(T ® (A(M) + 2% @ (A(E), g2®), d)) — (24k —8)
Ind(T ® (A(M) ® QTcM ® (A(E), g2 d) + (A(E) ® Ec. g.d))
+ 2% @ (TcM + A2TcM) ® (A(E). g%B). d)
+(A(E) ® Ec.g.d))))
=0 (mod2? 2k+14) 4.32)
Corollary 4.12. Let M be an 11-dimensional spin manifold. If c3(E, g,d) = 0, then
{A(TM, V™) [ch(A(M) ® QTcM + A2TcM + TeM ® TeM + S2TeM))
-ch(A(E), g2®) d) + ch(A(M) ® 2TcM) ch(A(E) ® E¢.g.d)
+ ch(A(M)) ch(A(E) ® (\2Ec + Ec). g.d)] + 2" A(TM. V™)
[eh(A*TeM + A2TeM ® TeM + TeM ® TeM + S*TeM + TeM)
-ch(A(E), g2 F) . d) + ch(TcM + A*TcM) ch(A(E) ® Ec. g.d)
+ ch(A(E) ® (A*Ec + Ec). g.d)]
+ 2808[A(TM, V™) ch(A(M) + 27) ch(A(E), g2 B d)]
— 64{A(TM, V™)[ch(A(M) ® 2Tc¢M) ch(A(E), g2®), d)
+ ch(A(M)) ch(A(E) ® Ec. g.d)]
+ 27 A(TM, V™) [ch(TcM + A2TcM) - ch(A(E), g2®)  d)
+ ch(A(E) ® Ec. g.d)]}} "V
= 22 T8 LA(TM, V™) ch(A(M) + 2°) ch(Eg, g, d)} 1D, (4.33)
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Corollary 4.13. Let M be an 15-dimensional spin manifold. If c3(E, g,d) = 0O, then
{A(TM, V™)[ch(A(M) ® QTcM + A2TcM + TeM ® TeM + S*TeM))
-ch(A(E), g2 d) + ch(A(M) ® 2TcM) - ch(A(E) ® Ec.g.d)
+ ch(A(M)) ch(A(E) ® (N Ec + Ec). g.d)] + 2° A(TM. V™)
[eh(A*TeM + A2TcM ® TeM + TeM ® TeM + S*TeM + TeM)
. ch(A(E), 2B d) + ch(TcM + A*TeM) ch(A(E) ® Ec. g.d)
+ ch(A(E) ® (A*Ec + Ec). g.d)]
+ 4896[A(TM, V™) ch(A(M) + 2°) ch(A(E), g2®) d))
— 88{A(TM, V™) [ch(A(M) ® 2TcM) ch(A(E), g2F), d)
+ ch(A(M)) ch(A(E) ® Ec. g.d)] + 2° A(TM, V™)
[eh(TeM + A*TcM) ch(A(E), g2B). d)
+ ch(A(E) ® Ec. g.d)]}}"
= —7 x 22 F8LA(TM, V™) ch(A (M) + 2°) ch(Ec, g, d)} 1>
+ 22 LA(TM, V™) ch(A(M) + 2°) ch(A2Ec, g. d)} 12, (4.34)

4.2. Some modular forms and Witten genus over I'°(2), T'9(2), I'g in spin®
manifolds

Let M be closed oriented spin® manifold and L be the complex line bundle associated to
the given spin® structure on M. Denote by ¢ = c¢1(L) the first Chern class of L. Also,
we use Lg for the notation of L, when it is viewed as an oriented real plane bundle. Let
O(TcM, Ly ® C) be the virtual complex vector bundle over M defined by

oo oo
O(TcM. Ly ® €) = (X) Sg (TeM) ® Q) Agn(Lr ® ©)

n=1 m=1
oo P o0 P
O 1 IrBO®QA 1 (Lr®C).
r=1 s=1
Letdim M = 4k — 1 and y = —¥—Lc. Set
O1(VM VL g d 1) = {/Y(TM, VM) exp(g) ch(®(TcM, Lg ® C))
(4k—1)
-ch(Q1(E).g2'®) 4, r)} . (4.35)

0,(VM VL ¢ d 1) = {/Y(TM, VM) exp(%)ch(@(TcM, Lg ® C))

(4k—1)
Cch(Q2(E), g2 B d, r>} . 4.36)
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03(VM VL ¢ d 1) = {ff(TM, vy exp(%) ch(®(TcM, Ly ® C))

(4k—1)
-ch(Qs(E),gQS(E),d,r)} . (4.37)

Then

21k_—[1 x;0'(0,7) (91()’» 7) 02(y, ) 03(y, T)))

5 oM ol _
&V ’g’d’f)_{( 6(x;,7) \61(0,7) 6,(0,7) 65(0,7)

j=1

(4k—1)
-ch(Qi(E),gQ"(E),d,r)} L 1<i<3 (439

Let Pi(1) = 01(V™M, VL, g.d, 1)*1, Py(v) = 02(V™, VL g.d, 1)*~1. By (2.13)-
(2.17) and 3p1 (L) — p1(M) = 0, then P;(7) is a modular form of weight 2k over ['¢(2),
where P, (1) is a modular form of weight 2k over I'°(2). Moreover, the following identity
holds:

P, (_%) = 2% % By (o). (4.39)

We can show by direct computations that
B R c (4k—1)
0\(VM Vi g d 1) = |:A(TM, vy exp(z) ch(A(E), g2, d)}

+ q{/’l\(TM, viMy exp(%)
[eh(TcM +2A? Lg ® C— (Lg ® C) ® (L ® C)
+ Lr ® C) ch(A(E), g2 F) d)

. (4k—1)
+ ch(A(E) ® Ec, g, d)]}

+q2{f’1\(TM, VTM)-exp(%)

[ch(S?TcM + TcM + 2 A* Ly ® C— (Lg ® O)
®(Lr®C)+ g ®C) & TcM + A2 Lg ® C
N Lr®@CH+2A* [g®C—2Lg®C
QN ILRQCH+2g®CRONLg®C
—Ir®CRIr®CR®Ir®C+Ig®C
+ A2Lr ® O)ch(A(E), g, d)

+ch(TeM +2 A2 g ® C — (Lg ® C)
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® (Lg ® C) + Lg ® C) ch(A(E) ® Ec, g,d)

_ _ (4k—1)
+ ch(A(E) ® (N Ec + Ec). g, d)]} +--
(4.40)

R c ~ (4k—1)
q2 |: (TM, V™) exp(z) ch(Ec, g, d)]

0,(VM VL g d 1) =
(4k—-1)
[A VTM)exp( )ch(AzEC, g,d)]
~ai{d

(TM, V™) exp(%)

Ch(TcM +2 A2 Lg ® C
+ Ly ® C) ch(Ec,g, d)

(Lr®C) ® (Lr ® C)

_ _ (4k—1)
+ch(Ec + A*Ec, g, d)]}
qz{g(TM, viMy. exp(%)
[ch(TcM +2 A2 Lg @ C— (Lr ® C) ® (Lr ® C)
+ Lr ® C)ch(A?Ec. g.d)
~ ~ ~ (4k—1)
+ch(/\4EC+EC®Ec,g,d)]} 4.
(4.41)

Playing the same game as in the proof of Theorem 4.1, we obtain the following theorem

Theorem 4.14. Ifc3(E,g,d) = 0 and 3p1(L) — p1 (M) = 0, then

(4k—1)
{A(TM VM) exp(%) ch(A(E), g2®), d)} =227k 0%k, (442)
s=1

where each hg,1 < s < [%] is a canonical integral linear combination of

(4k—1)
{A(TM) exp( )ch(B (TeM, Lg ® C, EC))} , 0<ac<s.

Corollary 4.15. Let M be a (4k — 1)-dimensional spin® manifold. If c3(E, g,d) = 0 and

3p1(L) — p1(M) =0, then
53!

Id(T¢ ® (A(E), g2®),d)) = 23+ 3" 26y,
s=0

(4.43)
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where each hy, 1 < s < [%] is a canonical integral linear combination of
Ind(7° ® (Bo(TcM, Lg ® C. Ec))). (4.44)
and T€ is the spin® Toeplitz operator.

Corollary 4.16. Let M be an 11-dimensional spin® manifold. If c3(E, g, d) = 0 and
3p1(L) — p1 (M) =0, then

an
{A(TM, VM) exp(%) ch(A(E), g2B), d)}
N R c ~ an
= 22_3{A(TM, V™) exp(z) ch(Ec, g, d)} . (4.45)

Corollary 4.17. Let M be a 15-dimensional spin® manifold. If c3(E, g, d) = 0 and
3p1(L) — p1(M) =0, then

(15)
{/I(TM, VM) exp(f) ch(A(E), g2B), d)}

[\

15)
— _13x z’zv—s{A(TM, VM) exp(%) ch(Ee, g, d)}
N R ¢ ~ (15)
+ 22_8{A(TM, VM) exp(i) ch(A%Ec, g, d)} ) (4.46)

By comparing the coefficients of g, g2 in (4.59), we obtain the following theorem.

Theorem 4.18. If c3(E,g,d) = 0and 3p1(L) — p1(M) = 0, then

{/T(TM, VM) exp(%)[ch(fc\M +2A2 g ®C—(Lr®C)® (Lr ® C) + Lr ® C)
-ch(A(E), g2B) d) + ch(A(E) ® Ec. g, d)]
(4k—1)
— 24k[/f(TM, VM) exp(%) ch(A(E), g2B), d)”

£
— _p5+k+6 Z 5275,

s=1

(4.47)
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Corollary 4.19. Let M be a (4k — 1)-dimensional spin® manifold. If c3(E, g,d) = 0 and
3p1 (L) — pl(M) =0, then

Ind(T¢ ® (TcM +2 A2 Lg @ C— (Lr @ C) @ (L ® C) + L ® C)
® (A(E), g2®) . d) + (A(E) ® Ec, g,d)))
— 24k Ind(T¢ ® (A(E), g2F), d))

£]
= 23 HH6 N =65y, (4.48)

s=1

Corollary 4.20. Let M be an 11-dimensional spin® manifold. If ¢3(E, g, d) = 0 and
3p1(L) — p1(M) =0, then

(i 7™ exo($ )ien(Teht +24° B C— (8O 8 (B0 + L& )
-ch(A(E), g2 d) + ch(A(E) ® Ec. g.d)]

an
- 72[2(71\4, VM) exp(%) ch(A(E), g2B), d)}}

_ an
= —2g+3{A(TM, vy exp(%) ch(Ec, g, d)} )
(4.49)

Corollary 4.21. Let M be a 15-dimensional spin® manifold. If c3(E, g,d) = 0 and
3p1(L) — p1(M) = 0, then

{/T(TM, v exp(%)[ch(fc\M +2A°Lg®C— (L ®C) ® (Lk ® C) + Lg ® C)

-ch(A(E). g2®).d) + ch(A(E) ® Ec.g.d)]
(15)
— 96[A(TM, vIiMy exp(%) ch(A(E), g2®), d)i|}
N . ¢ — (15)
=9x 22+2{A(TM, vy exp(z) ch(Ec, g, d)}

. (1)
_o%1 {A(TM, VM) exp(%) ch(A2Ee, g, d)} . (4.50)
Theorem 4.22. Ifc3(E,g,d) = 0and 3p1(L) — p1 (M) = 0, then

{/Y(TM, vy exp(g)[cmszm M+ QA RBC— (@0 @ (In@C)

+Ig®C)®TcM + N2 Lg ® C
@AM IRRC+2A* [R®C—2lg ®CR® A Lg®C
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+2lrR@CONIRRC-LrR®CRLRRCR®Lr® C
+ Ir ® C+ A%Lg ® C) ch(A(E), g2F) d)
+ch(TeM +2 A2 Ix @ C— (Lg ® C) ® (L ® C)
+ Lr ® C)ch(A(E) ® Ec. g.d)
+ ch(A(E) ® (\*Ec + Ec). g.d)]

+ (288k? 4 72k) - [/I(TM, VM) exp(%) ch(A(E), g2, d)} — (24k — 8)

: {/T(TM, V™). eXp(g)[ch(fc\M 12/ g @C—(Lr®C)® (Lg ® C)
+ Lr ® C)ch(A(E), g2F), d)

. (4k—1)
+ ch(A(E) ® Ec. g, d)]}}

[£]
— oYkt ZS22_6shx. 4.51)

s=1

Corollary 4.23. Let M be an (4k — 1)-dimensional spin® manifold. If c3(E, g,d) = 0
and 3p1(L) — p1(M) = 0, then
Ind(T° ® ((STcM + TcM + 2 A2 Lk ® C— (Le ® O) ® (L ® C) + Lr ® ©)
®TcM + N2 Lg@COANLg®@C+2A* [g®C—-2lg&C
N IR ®C+2g@CONRgRC- g RCRLRRCOLg®C
+Lr®C+ A’Lg ® O) ® (A(E), g%, d)
+(TeM +2A2 Lg@C—(Lr ®C) ® (Lg ® C) + Lg ® C)
® (A(E) ® Ec, g,d) + (A(E) ® (A Ec + Ec), g.d)))
+ (288k2 4 72k) Ind(T° @ (A(E), g2B) . d)) — (24k — 8)
Ind(T° ® (TcM +2 A2 [ ® C— (L ® O) ® (Lr ® C) + Lr ® C)
® (A(E), g%, d) + (A(E) ® Ec.g.d)))
[£1

2
— _p ¥ tk+11 ZSZZ_GShs- (4.52)

s=1
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Corollary 4.24. Let M be an 11-dimensional spin® manifold. If c3(E, g,d) = 0 and
3p1 (L) — pl(M) =0, then

{X(TM, VM) exp(%)[eh(Szfc\M +TcM + 2N g ®C—(Lr®C) ® (Lg ® C)

+IR®C)®TcM + A2Lg & C
AN LR®C+2A* " [g®C+ Lg®C—2Lg & C
AN R®C+2lg ®CROAN [g®C—Lg®C
®Ir®C®Lr® C+ A’Lg ® C) - ch(A(E), g2, d)
+ch(TeM +2 A2 g @ C— (Lr ® O) ® (Lg ® C)
+ Lr ® C)ch(A(E) ® Ec.g.d)
+ch(A(E) ® (A’ Ec + Ec). g.d)]

+ 2808 [/T(TM, VM) exp(%) -ch(A(E), g2®), d)} — 64

: {MM, VM) exp(g) [ch(TcM +2 A2 Lg @ C— (Lr ® C) ® (Lg ® C)
+Lr ® C) - ch(A(E), g2B), d)

~ an
+ ch(A(E) ® Ec,g,d)]}}

(11)
- Z%S{A(TM, ) exp(g) ch(Ec. g. d)} :
(4.53)

Corollary 4.25. Let M be a 15-dimensional spin® manifold. If c3(E, g, d) = 0 and
3p1(L) — p1 (M) =0, then

{&TM, VM) exp(g)[ch(szfm +TcM+Q2AN g @C—(Lr®C) ® (Lg ® C)

+Lr®C)®TcM + A2Lg ® C
QAN LR ®C+2A* [gRC—-2lg@CR A Lg®C
+2lr@CONLRR®C-Lr®CR®LR®C®Lr®C
+Lr ® C+ A2Lg ® C)ch(A(E). 2B d)
+ch(TeM +2 A2 g ®C—(Lg® C) ® (Lg ® C)
+ Lr ® C) - ch(A(E) ® Ec. g.d)
+ ch(A(E) ® (A*Ec + Ec). g.d)]

+ 4896[A(TM, V™) exp(%) -ch(A(E), g2®) d)] — 88
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: {E(TM, VM) exp(g) [ch(TeM +2 A2 [r ® C— (Lg ® C) ® (Lg ® C)
+Lr ® C) - ch(A(E), g**) d)
. (15)
+ ch(A(E) ® Ec. g, d)]}}
N N c _ (15)
=-7x 22+8{A(TM, VM exp(i) ch(Ec, g, d)}
N R c ~ (15)
+ 22+5{A(TM, vIMy exp(z) ch(A%Ec, g, d)} . (4.54)

Letdim M = 4k + 1 and y = —¥=L¢. Set

0,(V™, VL,g, d,t) = {//I\(TM, VM) exp(g) ch(®*(TcM, Ly ® C))

(4k+1)
'Ch(Ql(E)’gQI(E)»d»T)} , (4.55)
0,(VM VL ¢ d 1) = {/T(TM, VM) exp(%) ch(®*(TecM, Lg ® C))
4k+1
-ch(Q(E). g2 ®) 4, r)} : (4.56)
03(VM VL ¢ d. 1) = {/T(TM, VM) exp(%)ch(@)*(TcM, Lg ® C))
(4k+1)
ch(Q5(E), g2 d, r)} , (457)

where

o0 o0
O*(TcM. L ® €) = (X) S (TcM) @ R) A—gn(Lr ® C)
n=1 m=1

is the virtual complex vector bundle over M.
Then

2%k+1 g,
0;(VM VL g d 1) = {{( I x; 6 (077)) V=10(y.1) }

i1 B(xj,t) ) 0:1(0,7)62(0,7)65(0, 7)

(4k+1)
-ch(Qi(E),gQ(E),d,r)} L 1<i<3. (458

Let Pi(1) = Q; (VM VL g, d, 1)* 1 Py(x) = Q; (V™M VL g.d, v)*+1 By (2.13)-
(2.17) and py(L) — p1 (M) = 0, then P;(7) is a modular form of weight 2k over I'y(2),



SL(2, Z) modular forms and Witten genus in odd dimensions 317

where P, (7) is a modular form of weight 2k over I'°(2). Moreover, the following identity
holds:

— 1 _
P, (——) — 2% 2% Py(1). (4.59)
T
We can show by direct computations that

01 (V™ VE g.d 1)

~ - c AE) (4k+1)
= | A(TM, V™) exp > ch(A(E), g ,d)

+4q {/T(TM, VM) exp(g) [ch(TcM — Ly ® C) - ch(A(E), g2, d)

~ (4k+1)
+ch(A(E) ® Ec, g, d)]}

+ 2[R T exp( 5 ) (ST + T + L@ C— LB C

+TcM ® Ly ® C) - ch(A(E), g2, d)
+ ch(TeM — Lg ® C - ch(A(E) ® E¢, g.d)
+ ch(A(E) ® (A2E¢

}(4k+1)

Q_z(vTMﬂ VL’ g? d? T)

_ (4k+1)
=—¢2 [A(TM, V) exp(g) ch(Ee, g, d)}

~ c . (4k+1)
+ q|:A(TM, VM) exp(z) ch(A%Ec, g, d):|

g} {E(TM, V) eXp(%)[Ch(TC\M R ®0)-ch(Ee. g.d)

_ _ (4k+1)
+ch(Ec + A3Ec, g, d)]}

+ qz{g(m, vy exp(g)[ch@ _IR®C) - ch(\Fe.g.d)

(4k+1)
} b

+ch(A*Ec + Ec ® Ec, g, d)]
(4.61)

Playing the same game as in the proof of Theorem 4.1, we obtain the following theorem.
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Theorem 4.26. If c3(E, g,d) = 0and p1(L) — p1(M) = 0, then

— 5 +k > 2 %h,  (462)

s=1

R c (4k+1) (5]
{A(TM, V™M) exp(z) ch(A(E), gA(E), d)}

where each hg,1 <5 < [%] is a canonical integral linear combination of

N (4k+1)
{A(TM) exp(%)ch(Ba(TcM, L ®C, Ec))} , 0O<a<s.

Corollary 4.27. Let M be a (4k + 1)-dimensional spin® manifold. If c3(E, g,d) = 0 and
pi(L) — p1(M) =0, then

(4]
Id(T¢ ® (A(E), g2®),d)) = 23+ 3" 26, (4.63)
s=0
where each hg, 1 < s < [%], is a canonical integral linear combination of
Ind(T¢ ® (Bu(TcM, Lg ® C, E¢))). (4.64)
Corollary 4.28. Let M be a 13-dimensional spin® manifold. If c3(E, g, d) = 0 and
p1(L) — p1(M) =0, then
~ c (13)
{A(TM, VM) exp(z) ch(A(E), g2®), d)}

. (13)
- 2§—3{A(TM, VM) exp(%) ch(Ec, g, d)} . (4.65)

Corollary 4.29. Let M be a 17-dimensional spin® manifold. If c3(E, g, d) = 0 and
Pi(E) + pi1(L) — p1(M) = 0, then

an
{A(TM, VM) exp(%) ch(A(E), g2B), d)}
v ~ c N 17)
=—13 x 22_5{A(TM, VM) exp(z) ch(Ec, g, d)}
(a7

+ 2¥8{£(TM, VM) exp(%) ch(A?E¢, g, d)} . (4.66)

By comparing the coefficients of ¢, g2 in (4.59), we obtain the following theorem.
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Theorem 4.30. [fc3(E,g,d) = 0and p1(L) — p1(M) = 0, then
(.97 exp( ) en(Tet - L@ O eh(a(E). 0, )
+ ch(A(E) ® Ec.g.d)]
N ¢ (4k+1)
- 24k[A(TM, VM) exp(z) ch(A(E), g2®), d)“

4]
= 23 k6N go6sy, (4.67)

s=1

Corollary 4.31. Let M be a (4k + 1)-dimensional spin® manifold. If c3(E, g,d) = 0 and
pl(L) — pl(M) =0, then

Ind(T¢ ® (TcM — Lg ® C) ® (A(E), g2E) d) + (A(E) ® Ec, g.d)))
— 24k Ind(T° ® (A(E), g2, d))

5]
= 23O N 6oy, (4.68)

s=1

Corollary 4.32. Let M be a 13-dimensional spin® manifold. If c3(E, g, d) = 0 and
p1(L) — p1(M) = O, then

{E(TM, VM) exp(g) [ch(TeM — Le ® ) ch(A(E), g%, d)
+ ch(A(E) ® Ec. g.d)]

(13)
- 72[£(TM, VM) exp(%) ch(A(E), 2B, d)]}

(13)
- —21§+3{A(TM, VM) exp(%) ch(Ee, g, d)} . (4.69)

Corollary 4.33. Let M be a 17-dimensional spin® manifold. If c3(E, g,d) = 0 and
p1(L) — p1(M) = 0, then

{fT(TM, v eXP(%) [ch(TcM — Ly ® C) ch(A(E), g2, d)

+ch(A(E) ® Ec. g.d)]
R c 17
- 96[A(TM, V™) exp(z) ch(A(E), g2®), d)]}
N N c _ 17)
=9x 22+2{A(TM, v exp(z) ch(Ec, g, d)}

_ an
_o%-! {A(TM, V™M) exp(%) ch(A%Ec, g, d)} ) (4.70)
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Theorem 4.34. If c3(E, g,d) = 0and p1(L) — p1(M) = 0, then

{/RTM, vy exp(g)[ch«sw oM+ N In®C @ C ot Tol

® Lr ® C)ch(A(E), 2B, d) + ch(TcM — Lg ® C)
-ch(A(E) ® Ec.g.d) + ch(A(E) ® (A2E¢ + E¢). g.d))]

+ (288Kk2 + 72k) [/T(TM, VM) exp(%) ch(A(E), g2, d)} — (24k —8)

: {ff(TM, Vit eXP(%)[ch(T}:W — Lg ® C) - ch(A(E). g2®) a)

. (4k—1)
+ch(A(E) ® Ec, g. d)]}}

[£]
= 23 HkFIL N 26y, 4.71)

s=1

Corollary 4.35. Let M be a (4k + 1)-dimensional spin® manifold. If c3(E, g,d) = 0 and
pi(L) — p1(M) =0, then
Ind(T¢ ® (S?TcM + TcM + N*Lg ® C— Lr ® C + TcM ® Lg ® C)
® (A(E),2F) d) + (TcM — Ly ® C) ® (A(E) ® Ec. g.d)
+ (A(E) ® (N Ec + Ec). g.d)))
+ (288k2 + 72k) Ind(T°¢ ® (A(E), g2F) d))
— 24k —8)Ind(T° ® (TcM — Ly ® C) ® (A(E), g*B), d)
+(A(E) ® Ec.g.d)))

151
— _p ¥ +k+11 2522_6shs~ (4.72)

s=1

Corollary 4.36. Let M be a 13-dimensional spin® manifold. If c3(E, g, d) = 0 and
p1(L) — p1(M) = 0, then

{zmw, y) exp(g)[ch«szfm ToM 4+ NI ®C - [ ®C ol

® Lr ® C)ch(A(E), g2B) . d) + ch(TcM — Lr ® C)
-ch(A(E) ® Ec, g,d) + ch(A(E) ® (A2 Ec + Ec), g.d))]

+ 2808 [/T(TM, VM) exp(g) ch(A(E), g2®), d)}
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- 64{2(TM, VM) exp(%) [ch(TcM — Lg ® C) - ch(A(E), g2®)  d)
_ (13)
+eh(a(B)® Be.g. )}
N N c N (13)
= 2z+8{A(TM, VM exp(z) ch(Ec, g, d)} ) 4.73)

Corollary 4.37. Let M be a 17-dimensional spin® manifold. If ¢c3(E, g, d) = 0 and
p1(L) — p1(M) =0, then

{ff(TM, VMY exp(%) [ch((S2TcM + TeM + A2Lx ® C— Lg ® C + TcM

® Lr ® C)ch(A(E), g2E) d) + ch(TeM — Lg ® C)
-ch(A(E) ® Ec, g,d) + ch(A(E) ® (\2Ec + Ec). g, d))]

+ 4896|:/T(TM, VM) exp(%) ch(A(E), g2B), d)}

-8 AT, V™) exp( § )Tt — L@ ©) - ch(s (), 2. )
. a7
+en(a(6) @ B )|
v R c . a7
=-T7x 22+8{A(TM, vIiMy exp(z) ch(Ec, g, d)}
N R c . a7
+ 2z+5{A(TM, VM) exp(i) ch(A?Ec, g, d)} )
(4.74)
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