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SL.2;Z/ modular forms and Witten genus
in odd dimensions

Jianyun Guan, Yong Wang, and Haiming Liu

Abstract. Using SL.2;Z/ modular forms introduced in Liu (1996) and Chen–Han–Zhang (2011),
we construct some modular forms over SL.2;Z/ and some modular forms over �0.2/ and �0.2/
in odd dimensions. In parallel, we obtain some new cancellation formulas for odd-dimensional
spin manifolds and odd-dimensional spinc manifolds, respectively. As corollaries, we get some
divisibility results of index of the Toeplitz operators on spin manifolds and spinc manifolds.
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1. Introduction

In [1], Alvarez-Gaumé and Witten discovered a formula that represents the beautiful
relationship between the top components of the Hirzebruch yL-form and yA-form of a
12-dimensional smooth Riemannian manifold. This formula is called the “miraculous can-
cellation” formula for gravitational anomalies. In [13], Liu established higher-dimensional
“miraculous cancellation” formulas for .8k C 4/-dimensional Riemannian manifolds by
developing modular invariance properties of characteristic forms. These formulas can be
used to deduce some divisibility results. In [11,12], Han and Zhang established some more
general cancellation formulas that involve a complex line bundle over each .8k C 4/-
dimensional smooth Riemannian manifold. This formula was applied to spinc manifolds,
then an analytic Ochanine congruence formula was derived. In [17], Wang obtained some
new anomaly cancellation formulas by studying the modular invariance of some char-
acteristic forms. This formula was applied to spin manifolds and spinc manifolds, then
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some results on divisibilities on spin manifolds and spinc manifolds were derived. More-
over, Han, Liu and Zhang, using the Eisenstein series, derived a more general cancellation
formula [8]. In [9], the authors showed that both of the Green–Schwarz anomaly factoriza-
tion formula for the gauge group E8 � E8 and the Horava–Witten anomaly factorization
formula for the gauge group E8 could be derived through modular forms of weight 14.
This answered a question of J. H. Schwarz. They also established generalizations of these
decomposition formulas and obtained a new Horava–Witten type decomposition formula
on 12-dimensional manifolds. In [7], Han, Huang, Liu and Zhang introduced a modu-
lar form of weight 14 over SL.2; Z/ and a modular form of weight 10 over SL.2; Z/,
and they got some interesting anomaly cancellation formulas on 12-dimensional mani-
folds. In [18, 19], Wang obtained some new anomaly cancellation formulas by studying
some SL.2;Z/ modular forms. Some divisibility results of the index of the twisted Dirac
operator were obtained.

In [14], Liu introduced a modular form of a 4k-dimensional spin manifold with a
weight of 2k. In [5], Chen, Han and Zhang defined an integral modular form of weight 2k
for a 4k-dimensional spinc manifold and an integral modular form of weight 2k for a
.4k C 2/-dimensional spinc manifold. A natural question is whether we can get some
interesting cancellation formulas and more results on divisibilities in odd dimensions.
In [15,16], Liu and Wang go through studying modular invariance properties of some char-
acteristic forms to get some new anomaly cancellation formulas on .4k � 1/-dimensional
manifolds. And they derive some results on divisibilities on .4k � 1/-dimensional spin
manifolds and congruences on .4k � 1/-dimensional spinc manifolds. Inspired by this,
we introduce some modular forms of weight 2k over SL.2;Z/ and some modular forms
of weight 2k over �0.2/ and �0.2/ in odd dimensions, respectively, through the SL.2;Z/
modular forms introduced in [14] and [5]. In parallel, we derive some new anomaly can-
cellation formulas and some divisibility results over spin manifolds and spinc manifolds
in odd dimensions.

The structure of this paper is briefly described below: In Section 2, we introduce
some definitions and basic concepts that we will use in the paper. In Section 3, we
prove some generalized cancellation formulas over SL.2;Z/ in odd dimensions. Finally,
in Section 4, we obtain some generalized cancellation formulas over �0.2/ and �0.2/ in
odd dimensions.

2. Characteristic forms and modular forms

The purpose of this section is to review the necessary knowledge on characteristic forms
and modular forms that we are going to use.

2.1. Characteristic forms

Let M be a Riemannian manifold. Let rTM be the associated Levi-Civita connection
on TM and RTM D .rTM/2 be the curvature of rTM. Let yA.TM;rTM/ and yL.TM;rTM/ be
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the Hirzebruch characteristic forms defined, respectively, by (cf. [20])

yA.TM;rTM/ D det
1
2

 p
�1
4�

RTM

sinh
�p
�1
4�

RTM
�!; (2.1)

yL.TM;rTM/ D det
1
2

 p
�1
2�

RTM

tanh
�p
�1
4�

RTM
�!: (2.2)

Let E, F be two Hermitian vector bundles over M carrying Hermitian connection
rE ;rF , respectively. Let RE D .rE /2 (resp. RF D .rF /2) be the curvature of rE

(resp. rF ). If we set the formal difference G D E � F , then G carries an induced
Hermitian connection rG in an obvious sense. We define the associated Chern character
form as

ch.G;rG/ D Tr
�

exp
�p
�1

2�
RE

��
� Tr

�
exp

�p
�1

2�
RF

��
: (2.3)

For any complex number t , let

^t .E/ D CjM C tE C t2 ^2 .E/C � � � ; St .E/ D CjM C tE C t2S2.E/C � � �

denote, respectively, the total exterior and symmetric powers ofE, which live inK.M/JtK.
The following relations between these operations hold:

St .E/ D
1

^�t .E/
; ^t .E � F / D

^t .E/

^t .F /
: (2.4)

Moreover, if ¹!iº; ¹!0j º are formal Chern roots for Hermitian vector bundles E; F ,
respectively, then

ch.^t .E// D
Y
i

.1C e!i t /: (2.5)

Then we have the following formulas for Chern character forms:

ch.St .E// D
1Q

i .1 � e
!i t /

; ch.^t .E � F // D
Q
i .1C e

!i t /Q
j .1C e

!0j t /
: (2.6)

If W is a real Euclidean vector bundle over M carrying a Euclidean connection rW , then
its complexification WC D W ˝ C is a complex vector bundle over M carrying a canon-
ical induced Hermitian metric from that of W , as well as a Hermitian connection rWC

induced from rW . If E is a vector bundle (complex or real) over M , set zE D E � dimE
in K.M/ or KO.M/.
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2.2. Some properties of the Jacobi theta functions and modular forms

We first recall that the four Jacobi theta functions are defined as follows (cf. [3]):

�.v; �/ D 2q
1
8 sin.�v/

1Y
jD1
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.1 � qj /

�
1 � e2�

p
�1vqj

��
1 � e�2�

p
�1vqj

��
; (2.7)
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where q D e2�
p
�1� with � 2 H, the upper half complex plane. Let

� 0.0; �/ D
@�.v; �/

@v

ˇ̌̌
vD0

: (2.11)

Then the following Jacobi identity (cf. [3]) holds:

� 0.0; �/ D ��1.0; �/�2.0; �/�3.0; �/: (2.12)

Denote
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²�
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³
the modular group. Let S D

�
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1 0

�
; T D

�
1 1
0 1

�
be the two generators of SL.2;Z/. They

act on H by S� D �1
�
; T � D � C 1. One has the following transformation laws of theta

functions under the actions of S and T (cf. [3]):
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Definition 2.1. A modular form over � , a subgroup of SL.2; Z/, is a holomorphic
function f .�/ on H such that

f .g�/ WD f

�
a� C b

c� C d

�
D �.g/.c� C d/kf .�/ 8g D

�
a b

c d

�
2 �; (2.18)

where � W � ! C? is a character of � , and k is called the weight of f .
Let

�0.2/ D

²�
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�
2 SL.2;Z/ j c � 0 .mod 2/

³
;

�0.2/ D

²�
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c d

�
2 SL.2;Z/ j b � 0 .mod 2/

³
be the two modular subgroups of SL.2;Z/. It is known that the generators of �0.2/ are
T; ST 2ST , and the generators of �0.2/ are STS; T 2STS (cf. [3]).

If � is a modular subgroup, let MR.�/ denote the ring of modular forms over �
with real Fourier coefficients. Writing �j D �j .0; �/; 1 � j � 3, we introduce six explicit
modular forms (cf. [13]):
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They have the following Fourier expansions in q
1
2 :

ı1.�/ D
1

4
C 6q C � � � ; "1.�/ D
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16
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8
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1
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8
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1
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1
2 C � � � ;

where the “� � �” terms are the higher degree terms, all of which have integral coefficients.
They also satisfy the transformation laws:

ı2

�
�
1

�

�
D �2ı1.�/; "2

�
�
1

�

�
D �4"1.�/; (2.19)

ı2.� C 1/ D ı3.�/; "2.� C 1/ D "3.�/: (2.20)

Lemma 2.2 ([13]). Let ı1.�/ (resp. "1.�/) be a modular form of weight 2 (resp. 4) over
�0.2/, ı2.�/ (resp. "2.�/) is a modular form of weight 2 (resp. 4) over �0.2/, while
ı3.�/ (resp. "3.�/) is a modular form of weight 2 (resp. 4) over �� .2/, and moreover,
MR.�

0.2// D RŒı2.�/; "2.�/�.
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3. Some modular forms and Witten genus over SL.2 ;Z/ in odd
dimensions

In this section, we will construct some modular forms over SL.2; Z/ in odd dimen-
sions. Furthermore, we calculate and derive some new cancellation formulas for
odd-dimensional spin manifolds and odd-dimensional spinc manifolds, respectively.
Meanwhile, we will derive some divisibility results of index of the Toeplitz operators
on spin manifolds and spinc manifolds.

3.1. Some modular forms and Witten genus in spin manifolds

Let M be a .4k � 1/-dimensional spin manifold and 4.M/ be the spinor bundle. Let
ATCM D TCM � dimM . Set

‚1.TCM/ D

1O
nD1

Sqn.ATCM/˝

1O
mD1

^qm.ATCM/; (3.1)

‚2.TCM/ D

1O
nD1

Sqn.ATCM/˝

1O
mD1

^
�q

m� 12
.ATCM/; (3.2)

‚3.TCM/ D

1O
nD1

Sqn.ATCM/˝

1O
mD1

^
q
m� 12

.ATCM/: (3.3)

We recall the odd Chern character of a smooth map g from M to the general linear
group GL.N;C/ with N a positive integer (see [20]). Let d denote a trivial connection
on CN jM . We will denote by cg.M; Œg�/ the cohomology class associated to the closed
n-form

cn.CN jM ; g; d/ D
�

1

2�
p
�1

� .nC1/
2

TrŒ.g�1dg/n�: (3.4)

The odd Chern character form ch.CN jM ; g; d/ associated to g and d by definition is

ch.CN jM ; g; d/ D
1X
nD1

nŠ

.2nC 1/Š
c2nC1..CN jM ; g; d//: (3.5)

Let the connection ru on the trivial bundle CN jM be defined by

ru D .1 � u/d C ug
�1
� d � g; u 2 Œ0; 1�: (3.6)

Then we have

d ch.CN jM ; g; d/ D ch.CN jM ; d / � ch.CN jM ; g�1 � d � g/: (3.7)

Now let g W M ! SO.N /, and we assume that N is even and large enough. Let E
denote the trivial real vector bundle of rank N over M . We equip E with the canonical
trivial metric and trivial connection d . Set

ru D d C ug
�1dg; u 2 Œ0; 1�:
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Let Ru be the curvature of ru, then

Ru D .u
2
� u/.g�1dg/2: (3.8)

We also consider the complexification of E, and g extends to a unitary automorphism
of EC. The connection ru extends to a Hermitian connection on EC with curvature still
given by (3.6). Let �.E/ be the spinor bundle of E, which is a trivial Hermitian bundle
of rank 2

N
2 . We assume that g has a lift to the spin group Spin.N / W g� WM ! Spin.N /.

So g� can be viewed as an automorphism of �.E/ preserving the Hermitian metric. We
lift d on E to be a trivial Hermitian connection d� on �.E/, then

r
�
u D .1 � u/d

�
C u.g�/�1 � d� � g�; u 2 Œ0; 1� (3.9)

lifts ru on E to �.E/. Let Qj .E/; j D 1; 2; 3 be the virtual bundles defined as follows:

Q1.E/ D 4.E/˝

1O
nD1

^qn.fEC/; (3.10)

Q2.E/ D

1O
nD1

^
�q

n� 12
.fEC/; (3.11)

Q3.E/ D

1O
nD1

^
q
n� 12

.fEC/: (3.12)

Let g onE have a lift gQ.E/ onQ.E/ and ru have a lift rQ.E/u onQ.E/. Following [10],
we defined ch.Q.E/; gQ.E/; d; �/ as follows:

ch.Q.E/;rQ.E/0 ; �/ � ch.Q.E/;rQ.E/1 ; �/ D �d ch.Q.E/; gQ.E/; d; �/; (3.13)

where
Q.E/ D Q1.E/˝Q2.E/˝Q3.E/;

and

ch.Q.E/; gQ.E/; d; �/ D �
2
N
2

8�2

Z 1

0

TrŒg�1dg.A/�du; (3.14)

with

A D
� 01.Ru=.4�

2/; �/

�1.Ru=.4�2/; �/
C
� 02.Ru=.4�

2/; �/

�2.Ru=.4�2/; �/
C
� 03.Ru=.4�

2/; �/

�3.Ru=.4�2/; �/
:

By [10, Proposition 2.2], it follows that if c3.EC; g; d/ D 0, then for any integer
r � 1, we obtain ch.Q.E/; gQ.E/; d; � C 1/.4r�1/ D ch.Q.E/; gQ.E/; d; �/.4r�1/ and
ch
�
Q.E/; gQ.E/; d; �1

�

�.4r�1/
D �2r ch.Q.E/; gQ.E/; d; �/.4r�1/. Therefore, we can

deduce ch.Q.E/; gQ.E/; d; �/.4r�1/ are modular forms of weight 2r over SL.2;Z/. Let

Q.rTM; g; d; �/ D ¹ yA.TM;rTM/ ch.Œ4.M/˝‚1.TCM/C 22k‚2.TCM/

C 22k‚3.TCM/�/ ch.Q.E/; gQ.E/; d; �/º.4k�1/:
(3.15)
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Let g W M ! SO.N / and N is even and large enough. Let E denote the trivial real
vector bundle of rank N over M . We have the following theorem.

Theorem 3.1. Let dimM D 4k � 1. Suppose g has a lift to the spin group Spin.N / W
g� WM ! Spin.N /. If c3.E; g; d/ D 0, then for any integer p; r � 1;Q.rTM; g; d; �/ is
a modular form over SL.2;Z/ with the weight 2p C 2r D 2k.

Proof. Let

Q.M; �/ D ¹ yA.TM;rTM/ ch.Œ4.M/˝‚1.TCM/

C 22k‚2.TCM/C 22k‚3.TCM/�/º.4p/; (3.16)

then we have

Q.rTM; g; d; �/ D Q.M; �/ � ch.Q.E/; gQ.E/; d; �/.4r�1/: (3.17)

Let ¹˙2�
p
�1xj º; .1 � j � 2k � 1/ be the formal Chern roots for TCM , then we have

yA.TM;rTM/ ch.4.M// ch.‚1.TCM// D

2k�1Y
jD1

2xj �
0.0; �/

�.xj ; �/

�1.xj ; �/

�1.0; �/
; (3.18)

yA.TM;rTM/ ch.22k‚2.TCM// D

2k�1Y
jD1

2xj �
0.0; �/

�.xj ; �/

�2.xj ; �/

�2.0; �/
; (3.19)

yA.TM;rTM/ ch.22k‚3.TCM// D

2k�1Y
jD1

2xj �
0.0; �/

�.xj ; �/

�3.xj ; �/

�3.0; �/
: (3.20)

So we have

Q.M; �/ D

 
2k�1Y
jD1

2xj �
0.0; �/

�.xj ; �/

�

 
2k�1Y
jD1

�1.xj ; �/

�1.0; �/
C

2k�1Y
jD1

�2.xj ; �/

�2.0; �/
C

2k�1Y
jD1

�3.xj ; �/

�3.0; �/

!!.4p/
: (3.21)

By [10, Proposition 2.2], and (3.16)–(3.21), we have

Q.rTM; g; d; � C 1/ D Q.M; �/ � ch.Q.E/; gQ.E/; d; �/.4r�1/ D Q.rTM; g; d; �/

and

Q

�
r

TM; g; d;�
1

�

�
D �2pQ.M; �/ � �2r ch.Q.E/; gQ.E/; d; �/.4r�1/

D �2kQ.rTM; g; d; �/;

so Q.rTM; g; d; �/ is a modular form over SL.2;Z/ with the weight 2p C 2r D 2k.



SL.2;Z/ modular forms and Witten genus in odd dimensions 277

Remark. In Theorem 3.1, g has a lift to the spin group Spin.N / W g� W M ! Spin.N /,
which is satisfied whenM is simply connected and c3.E;g; d/D 0 if H3.M;R/D 0. For
more specific details, see [10].

Remark. All the conclusions given later hold true under this condition that g has a lift to
the spin group Spin.N / and will not be elaborated here.

Set˝
Q.rTM; g; d; �/; ŒM �

˛
D � Ind.T ˝ .4.M/˝‚1.TCM/C 22d‚2.TCM/

C 22d‚3.TCM//˝ .Q.E/; gQ.E/;d //; (3.22)

where Ind.T ˝ � � � / denotes the index of the Toeplitz operator. Clearly, ‚1.TCM/ ˝

Q.E/;‚2.TCM/˝Q.E/ and‚2.TCM/˝Q.E/ admit formal Fourier expansion in q
1
2

as

‚1.TCM/˝Q.E/ D B10 .TCM;EC/C B
1
1 .TCM;EC/q C B

1
2 .TCM;EC/q

2
C � � � ;

‚2.TCM/˝Q.E/ D B20 .TCM;EC/C B
2
1 .TCM;EC/q

1
2 C B22 .TCM;EC/q C � � � ;

‚3.TCM/˝Q.E/ D B30 .TCM;EC/C B
3
1 .TCM;EC/q

1
2 C B32 .TCM;EC/q C � � � ;

where the B ij are elements in the semi-group formally generated by Hermitian vector
bundles over M . Moreover, they carry canonically induced Hermitian connections. If

B ij .TCM;E/ D B
i
j;1.TCM/˝ B ij;2.E/;

we let ech.B ij .TCM;E// D ch.B ij;1.TCM// ch.B ij;2.E/; g
B ij;2.E/; d /:

If ! is a differential form over M , we denote by !.4k�1/ its top degree component.
Our main results include the following theorem.

Theorem 3.2. When dimM D 7 and c3.E; g; d/ D 0, we have

¹ yA.TM;rTM/Œch.4.M/˝ 2ATCM/ ch.4.E/; g4.E/; d /

C ch.4.M// ch.�.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/�

C 32 yA.TM;rTM/Œch.ATCM C^
2ATCM/ ch.4.E/; g4.E/; d /

C ch.�.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/�º
.7/

D 240Œ yA.TM;rTM/ ch.4.M// ch.4.E/; g4.E/; d /

C 32 yA.TM;rTM/ ch.4.E/; g4.E/; d /�; (3.23)

¹ yA.TM;rTM/Œch.4.M/˝ .2ATCM C^
2ATCM CATCM ˝ATCM C S

2ATCM//

� ch.4.E/; g4.E/; d /C ch.4.M/˝ 2ATCM/ ch.4.E/˝ .2 ^2 fEC
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� fEC ˝ fEC C fEC/; g; d/C ch.4.M// ch.4.E/˝ .^2fEC

˝^
2fEC C 2 ^

4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC

˝ fEC ˝ fEC C fEC C^
2fEC/; g; d/�

C 32 yA.TM;rTM/Œch.^4ATCM C^
2ATCM ˝ATCM CATCM ˝ATCM

C S2ATCM CATCM/ ch.4.E/; g4.E/; d /

C ch.ATCM C^
2ATCM/ � ch.4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC ˝^
3fEC

C 2fEC ˝^
2fEC � fEC ˝ fEC ˝ fEC

C fEC C^
2fEC/; g; d/�º

.7/

D 2160Œ yA.TM;rTM/ ch.4.M// ch.4.E/; g4.E/; d /

C 32 yA.TM;rTM/ ch.4.E/; g4.E/; d /�: (3.24)

Proof. It is well known that modular forms over SL.2;Z/ can be expressed as polynomials
of the Eisenstein series E4.�/ and E6.�/, where

E4.�/ D 1C 240q C 2160q
2
C 6720q3 C � � � ; (3.25)

E6.�/ D 1 � 504q � 16632q
2
� 122976q3 C � � � : (3.26)

Their weights are 4 and 6, respectively. When dimM D 7, then Q.rTM; g; d; �/ is a
modular form over SL.2;Z/ with the weight 4. By (3.1)–(3.3) and (3.10)–(3.12), we have

‚1.TCM/ D 1C 2qATCM C q
2.2ATCM C^

2ATCM CATCM

˝ATCM C S
2ATCM/CO.q3/; (3.27)

‚2.TCM/ D 1 � q
1
2ATCM C q.ATCM C^

2ATCM/

� q
3
2 .^3ATCM CATCM CATCM ˝ATCM/

C q2.^4ATCM C^
2ATCM ˝ATCM CATCM ˝ATCM

C S2ATCM CATCM/CO
�
q
5
2
�
; (3.28)

‚3.TCM/ D 1C q
1
2ATCM C q.ATCM C^

2ATCM/

C q
3
2 .^3ATCM CATCM CATCM ˝ATCM/

C q2.^4ATCM C^
2ATCM ˝ATCM CATCM ˝ATCM

C S2ATCM CATCM/CO
�
q
5
2
�
; (3.29)

Q.E/ D ch.4.E/; g4.E/; d /C q ch.4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/C q
2 ch.4.E/˝ .^2fEC ˝^

2fEC
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C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC

˝ fEC ˝ fEC C fEC C^
2fEC/; g; d/C � � � ; (3.30)

so

Q.rTM; g; d; �/ D Œ yA.TM;rTM/ ch.4.M// ch.4.E/; g4.E/; d /

C 22kC1 yA.TM;rTM/ � ch.4.E/; g4.E/; d /�.4k�1/

C q¹ yA.TM;rTM/Œch.4.M/˝ 2ATCM/ � ch.4.E/; g4.E/; d /

C ch.4.M// ch.4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/�C 2
2kC1 yA.TM;rTM/Œch.ATCM

C^
2ATCM/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/�º
.4k�1/

C q2¹ yA.TM;rTM/ � Œch.4.M/˝ .2ATCM C^
2ATCM

CATCM ˝ATCM C S
2ATCM// ch.4.E/; g4.E/; d /

C ch.4.M/˝ 2ATCM/ ch.4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/C ch.4.M//

� ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC ˝^
3fEC

C 2fEC ˝^
2fEC � fEC ˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/�

C 22kC1 yA.TM;rTM/Œch.^4ATCM C^
2ATCM ˝ATCM

CATCM ˝ATCM C S
2ATCM CATCM/ ch.4.E/; g4.E/; d /

C ch.ATCM C^
2ATCM/ ch.4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/C ch.4.E/˝ .^2fEC ˝^
2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC

� fEC ˝ fEC ˝ fEC C fEC C^
2fEC/; g; d/�º

.4k�1/
C � � � :

(3.31)

When dimM D 7, then Q.rTM; g; d; �/ must be a multiple of

E4.�/ D 1C 240q C 2160q
2
C 6720q3 C � � � :

By (3.25) and (3.31), we compare the coefficients of 1, q, q2. We get Theorem 3.2.
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Corollary 3.3. Let M be a 7-dimensional spin manifold without boundary. Suppose M
is simply connected and H3.M;R/ D 0, then

Ind.T ˝ .4.M/˝ 2ATCM ˝ .4.E/; g
4.E/; d /C4.M/ ch.�.E/

˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/// � 0 mod 16Z; (3.32)

Ind.T ˝ .4.M/˝ ..2ATCM C^
2ATCM CATCM ˝ATCM C S

2ATCM/

˝ .4.E/; g4.E/; d /C 2ATCM ˝ ..2 ^
2 fEC

� fEC ˝ fEC C fEC/; g; d/C .4.E/˝ .^
2fEC ˝^

2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC

� fEC ˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d//// � 0 mod 16Z: (3.33)

Remark. In the even-dimensional case, Rocklin’s theorem says that on the 4-dimensional
spin closed manifold, Ind.d C ı/C D �.M/ � 0.mod 16/, where d C ı is the signature
operator and �.M/ is the signature. Ochanine’s theorem says that on the .8k C 4/-
dimensional spin manifold, Ind.d C ı/C D �.M/ � 0.mod 16/. If M is an .8k C 4/-
dimensional closed spin manifold, then the twisted signature Sig.M; T / is divisible
by 256. If M is an 8k-dimensional closed spin manifold, then Sig.M; T / is divisible
by 2048. If M is an .8k C 4/-dimensional closed spin manifold, when dimM D 4, the
twisted signature Sig.M; T ˝ T / is divisible by 256 � 7; when dimM D 8k C 4; k � 1,
the twisted signature Sig.M; T ˝ T / is divisible by 256 (resp. [4]), where T is the tan-
gent bundle. So Index mod 16 is very meaningful. So in the case of odd-dimensional spin
manifolds, our Corollaries 3.3 and 3.5 may be considered as the analogy of the above
theorems.

Theorem 3.4. When dimM D 11 and c3.E; g; d/ D 0, we have

¹ yA.TM;rTM/Œch.4.M/˝ 2ATCM/ ch.4.E/; g4.E/; d /

C ch.4.M// ch.�.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/�

C 128 yA.TM;rTM/Œch.ATCM C^
2ATCM/ ch.4.E/; g4.E/; d /

C ch.�.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/�º
.11/

D �504Œ yA.TM;rTM/ ch.4.M// ch.4.E/; g4.E/; d /

C 128 yA.TM;rTM/ ch.4.E/; g4.E/; d /�; (3.34)

¹ yA.TM;rTM/Œch.4.M/˝ .2ATCM C^
2ATCM CATCM ˝ATCM C S

2ATCM//

� ch.4.E/; g4.E/; d /C ch.4.M/˝ 2ATCM/ ch.4.E/

˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.M// ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC ˝^
3fEC

C 2fEC ˝^
2fEC � fEC ˝ fEC ˝ fEC C fEC C^

2fEC/; g; d/�
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C 128 � yA.TM;rTM/Œch.^4ATCM C^
2ATCM ˝ATCM CATCM

˝ATCM C S
2ATCM CATCM/ ch.4.E/; g4.E/; d /

C ch.ATCM C^
2ATCM/ ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC ˝^
3fEC

C 2fEC ˝^
2fEC � fEC ˝ fEC ˝ fEC C fEC C^

2fEC/; g; d/�º
.11/

D �16632Œ yA.TM;rTM/ ch.4.M// ch.4.E/; g4.E/; d /

C 128 yA.TM;rTM/ ch.4.E/; g4.E/; d /�: (3.35)

Proof. When dimM D 11, then Q.rTM; g; d; �/ is a modular form over SL.2;Z/ with
the weight 6, so

Q.rTM; g; d; �/ D �E6.�/; (3.36)

where � is degree 11 forms. When dimM D 11, direct computations show that

Q.rTM; g; d; �/ D Œ yA.TM;rTM/ ch.4.M// ch.4.E/; g4.E/; d /

C 128 yA.TM;rTM/ � ch.4.E/; g4.E/; d /�.11/

C q¹ yA.TM;rTM/Œch.4.M/˝ 2ATCM/ � ch.4.E/; g4.E/; d /

C ch.4.M// ch.4.E/˝ .2^2 fEC�fEC˝fECCfEC/; g; d/�

C 128 yA.TM;rTM/Œch.ATCM C^
2ATCM/ � ch.4.E/; g4.E/; d /

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/�º
.11/

C q2¹ yA.TM;rTM/ � Œch.4.M/˝ .2ATCM C^
2ATCM CATCM

˝ATCM CS
2ATCM// ch.4.E/; g4.E/; d /C ch.4.M/

˝ 2ATCM/ ch.4.E/˝ .2^2 fEC�fEC˝fECCfEC/;g;d/

C ch.4.M// ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC

� 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC ˝ fEC

C fEC C^
2fEC/; g; d/�C 128 yA.TM;rTM/

� Œch.^4ATCM C^
2ATCM ˝ATCM CATCM

˝ATCM C S
2ATCM CATCM/ � ch.4.E/; g4.E/; d /

C ch.ATCM C^
2ATCM/ � ch.4.E/

˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC

˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC ˝ fEC

C fEC C^
2fEC/; g; d/�º

.11/
C � � � : (3.37)

In (3.36), we compare the coefficients of (3.36), and we get three equations about �.
By (3.26), (3.36) and (3.37), we get Theorem 3.4.



J. Guan, Y. Wang, and H. Liu 282

Corollary 3.5. LetM be an 11-dimensional spin manifold without boundary. SupposeM
is simply connected and H3.M;R/ D 0, then

Ind.T ˝ .4.M/˝ 2ATCM ˝ .4.E/; g
4.E/; d /

C4.M/ ch.�.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/// � 0 mod 8Z;
(3.38)

Ind.T ˝ .4.M/˝ ..2ATCM C^
2ATCM CATCM ˝ATCM C S

2ATCM/

˝ .4.E/; g4.E/; d /C 2ATCM ˝ ..2 ^
2 fEC � fEC ˝ fEC

C fEC/; g; d/C .4.E/˝ .^
2fEC ˝^

2fEC C 2 ^
4 fEC

� 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC

˝ fEC C fEC C^
2fEC/; g; d//// � 0 mod 8Z: (3.39)

Theorem 3.6. When dimM D 15 and c3.E; g; d/ D 0, we have

¹ yA.TM;rTM/Œch.4.M/˝ 2ATCM/ ch.4.E/; g4.E/; d /

C ch.4.M// ch.�.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/�

C 512 yA.TM;rTM/Œch.ATCM C^
2ATCM/ ch.4.E/; g4.E/; d /

C ch.�.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/�º
.15/

D 480Œ yA.TM;rTM/ ch.4.M// ch.4.E/; g4.E/; d /

C 512 yA.TM;rTM/ ch.4.E/; g4.E/; d /�; (3.40)

¹ yA.TM;rTM/Œch.4.M/˝ .2ATCM C^
2ATCM CATCM ˝ATCM C S

2ATCM//

� ch.4.E/; g4.E/; d /C ch.4.M/˝ 2ATCM/ ch.4.E/˝ .2 ^2 fEC

� fEC ˝ fEC C fEC/; g; d/C ch.4.M// ch.4.E/˝ .^2fEC ˝^
2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC ˝ fEC

C fEC C^
2fEC/; g; d/�

C 512 yA.TM;rTM/Œch.^4ATCM C^
2ATCM ˝ATCM CATCM ˝ATCM

C S2ATCM CATCM/ � ch.4.E/; g4.E/; d /

C ch.ATCM C^
2ATCM/ ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC

C fEC/; g; d/C ch.4.E/˝ .^2fEC ˝^
2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC

� fEC ˝ fEC ˝ fEC C fEC C^
2fEC/; g; d/�º

.15/

D 61920Œ yA.TM;rTM/ ch.4.M// ch.4.E/; g4.E/; d /

C 512 yA.TM;rTM/ ch.4.E/; g4.E/; d /�: (3.41)
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Proof. When dimM D 15, then Q.rTM; g; d; �/ is a modular form over SL.2;Z/ with
the weight 8, so

Q.rTM; g; d; �/ D �E4.�/
2; (3.42)

where � is degree 15 forms. By (3.25), we have

E4.�/
2
D 1C 480q C 61920q2 C � � � : (3.43)

When dimM D 15, direct computations show that

Q.rTM; g; d; �/ D Œ yA.TM;rTM/ ch.4.M// ch.4.E/; g4.E/; d /

C 512 yA.TM;rTM/ � ch.4.E/; g4.E/; d /�.15/

C q¹ yA.TM;rTM/Œch.4.M/˝ 2ATCM/ � ch.4.E/; g4.E/; d /

C ch.4.M// ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC

C fEC/; g; d/�C 512 yA.TM;rTM/

� Œch.ATCM C^
2ATCM/ � ch.4.E/; g4.E/; d /

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/�º
.15/

C q2¹ yA.TM;rTM/Œch.4.M/˝ .2ATCM C^
2ATCM CATCM

˝ATCM C S
2ATCM//

� ch.4.E/; g4.E/; d /C ch.4.M/˝ 2ATCM/

� ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC

C fEC/; g; d/C ch.4.M//

� ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC

� 2fEC ˝^
3fEC C 2fEC ˝^

2fEC

� fEC ˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/�

C 512 yA.TM;rTM/Œch.^4ATCM C^
2ATCM ˝ATCM CATCM

˝ATCM C S
2ATCM CATCM/

� ch.4.E/; g4.E/; d /C ch.ATCM

C^
2ATCM/ � ch.4.E/˝ .2 ^2 fEC

� fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC

˝^
2fEC � fEC ˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/�º

.15/
C � � � :

(3.44)
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By (3.42)–(3.44), we compare the coefficients of 1, q, q2. We get Theorem 3.6.

Corollary 3.7. Suppose M is a 15-dimensional spin manifold without boundary. If
c3.E; g; d/ D 0, then

Ind.T ˝ .4.M/˝ 2ATCM ˝ .4.E/; g
4.E/; d /

C4.M/ ch.�.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/// � 0 mod 32Z;
(3.45)

Ind.T ˝ .4.M/˝ ..2ATCM C^
2ATCM CATCM ˝ATCM C S

2ATCM/

˝ .4.E/; g4.E/; d /C 2ATCM ˝ ..2 ^
2 fEC � fEC

˝ fEC C fEC/; g; d/C .4.E/˝ .^
2fEC ˝^

2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC

˝ fEC ˝ fEC C fEC C^
2fEC/; g; d//// � 0 mod 32Z:

(3.46)

Theorem 3.8. When dimM D 19 and c3.E; g; d/ D 0, we have

¹ yA.TM;rTM/Œch.4.M/˝ 2ATCM/ ch.4.E/; g4.E/; d /

C ch.4.M// ch.�.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/�

C 2048 yA.TM;rTM/Œch.ATCM C^
2ATCM/ ch.4.E/; g4.E/; d /

C ch.�.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/�º
.19/

D �264Œ yA.TM;rTM/ ch.4.M// ch.4.E/; g4.E/; d /

C 2048 yA.TM;rTM/ ch.4.E/; g4.E/; d /�; (3.47)

¹ yA.TM;rTM/Œch.4.M/˝ .2ATCM C^
2ATCM CATCM ˝ATCM C S

2ATCM//

� ch.4.E/; g4.E/; d /C ch.4.M/˝ 2ATCM/ ch.4.E/˝ .2 ^2 fEC

� fEC ˝ fEC C fEC/; g; d/C ch.4.M// ch.4.E/˝ .^2fEC ˝^
2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC ˝ fEC

C fEC C^
2fEC/; g; d/�

C 2048 yA.TM;rTM/Œch.^4ATCM C^
2ATCM ˝ATCM CATCM ˝ATCM

C S2ATCM CATCM/ ch.4.E/; g4.E/; d /

C ch.ATCM C^
2ATCM/ � ch.4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/C ch.4.E/˝ .^2fEC ˝^
2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC

� fEC ˝ fEC ˝ fEC C fEC C^
2fEC/; g; d/�º

.19/

D �117288Œ yA.TM;rTM/ ch.4.M// ch.4.E/; g4.E/; d /

C 2048 yA.TM;rTM/ ch.4.E/; g4.E/; d /�: (3.48)



SL.2;Z/ modular forms and Witten genus in odd dimensions 285

Proof. When dimM D 19, then Q.rTM; g; d; �/ is a modular form over SL.2;Z/ with
the weight 10, so

Q.rTM; g; d; �/ D �E4.�/E6.�/; (3.49)

where � is degree 19 forms. By (3.25) and (3.26), we have

E4.�/E6.�/ D 1 � 264q � 117288q
2
C � � � : (3.50)

When dimM D 19, direct computations show that

Q.rTM; g; d; �/ D Œ yA.TM;rTM/ ch.4.M// ch.4.E/; g4.E/; d /

C 2048 yA.TM;rTM/ � ch.4.E/; g4.E/; d /�.19/

C q¹ yA.TM;rTM/Œch.4.M/˝ 2ATCM/ � ch.4.E/; g4.E/; d /

C ch.4.M// ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC

C fEC/; g; d/�C 2048 yA.TM;rTM/

� Œch.ATCM C^
2ATCM/ � ch.4.E/; g4.E/; d /

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/�º
.19/

C q2¹ yA.TM;rTM/ � Œch.4.M/˝ .2ATCM C^
2ATCM CATCM

˝ATCM C S
2ATCM//

� ch.4.E/; g4.E/; d /C ch.4.M/˝ 2ATCM/

� ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC

C fEC/; g; d/C ch.4.M//

� ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC

� 2fEC ˝^
3fEC C 2fEC

˝^
2fEC � fEC ˝ fEC ˝ fEC

C fEC C^
2fEC/; g; d/�

C 2048 yA.TM;rTM/Œch.^4ATCM C^
2ATCM ˝ATCM CATCM

˝ATCM C S
2ATCM CATCM/

� ch.4.E/; g4.E/; d /C ch.ATCM

C^
2ATCM/ � ch.4.E/˝ .2 ^2 fEC

� fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC

C 2fEC ˝^
2fEC � fEC

˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/�º

.19/
C � � � :

(3.51)
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By (3.49)–(3.51), we compare the coefficients of 1, q, q2. We get Theorem 3.8.

Corollary 3.9. Suppose M is a 19-dimensional spin manifold without boundary. If
c3.E; g; d/ D 0, then

Ind.T ˝ .4.M/˝ 2ATCM ˝ .4.E/; g
4.E/; d /

C4.M/ ch.�.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/// � 0 mod 8Z;
(3.52)

Ind.T ˝ .4.M/˝ ..2ATCM C^
2ATCM CATCM ˝ATCM C S

2ATCM/

˝ .4.E/; g4.E/; d /C 2ATCM ˝ ..2 ^
2 fEC � fEC ˝ fEC

C fEC/; g; d/C .4.E/˝ .^
2fEC ˝^

2fEC C 2 ^
4 fEC

� 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC ˝ fEC

C fEC C^
2fEC/; g; d///C/ � 0 mod 8Z: (3.53)

Theorem 3.10. When dimM D 23 and c3.E; g; d/ D 0, we have

¹ yA.TM;rTM/Œch.4.M/˝ .2ATCM C^
2ATCM CATCM ˝ATCM C S

2ATCM//

� ch.4.E/; g4.E/; d /C ch.4.M/˝ 2ATCM/ ch.4.E/˝ .2 ^2 fEC

� fEC ˝ fEC C fEC/; g; d/C ch.4.M// ch.4.E/˝ .^2fEC ˝^
2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC ˝ fEC

C fEC C^
2fEC/; g; d/�

C 8192 yA.TM;rTM/Œch.^4ATCM C^
2ATCM ˝ATCM CATCM ˝ATCM

C S2ATCM CATCM/ ch.4.E/; g4.E/; d /

C ch.ATCM C^
2ATCM/ ch.4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/C ch.4.E/˝ .^2fEC ˝^
2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC

� fEC ˝ fEC ˝ fEC C fEC C^
2fEC/; g; d/�º

.23/

D ¹196560Œ yA.TM;rTM/ ch.4.M// ch.4.E/; g4.E/; d /

C 8192 yA.TM;rTM/ ch.4.E/; g4.E/; d /�

� 24¹ yA.TM;rTM/ � Œch.4.M/˝ 2ATCM/ ch.4.E/; g4.E/; d /

C ch.4.M// ch.�.E/˝ .2 ^2 fEC � fEC ˝ fEC

C fEC/; g; d/�

C 8192 yA.TM;rTM/ � Œch.ATCM C^
2ATCM/ ch.4.E/; g4.E/; d /

C ch.�.E/˝ .2 ^2 fEC � fEC ˝ fEC

C fEC/; g; d/�ºº
.23/: (3.54)
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Proof. When dimM D 23, then Q.rTM; g; d; �/ is a modular form over SL.2;Z/ with
the weight 12, so

Q.rTM; g; d; �/ D �1E4.�/
3
C �2E6.�/

2; (3.55)

where �1, �2 are degree 23 forms. By (3.25) and (3.26), we have

E4.�/
3
D 1C 720q C 179280q2 C � � � ; (3.56)

E6.�/
2
D 1 � 1008q C 220752q2 C � � � : (3.57)

When dimM D 23, direct computations show that

Q.rTM; g; d; �/ D Œ yA.TM;rTM/ ch.4.M// ch.4.E/; g4.E/; d /

C 8192 yA.TM;rTM/ � ch.4.E/; g4.E/; d /�.23/

C q¹ yA.TM;rTM/Œch.4.M/˝ 2ATCM/ � ch.4.E/; g4.E/; d /

C ch.4.M// ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC

C fEC/; g; d/�C 8192 yA.TM;rTM/

� Œch.ATCM C^
2ATCM/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/�º
.23/

C q2¹ yA.TM;rTM/ � Œch.4.M/˝ .2ATCM C^
2ATCM CATCM

˝ATCM C S
2ATCM//

� ch.4.E/; g4.E/; d /C ch.4.M/˝ 2ATCM/

� ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC

C fEC/; g; d/C ch.4.M//

� ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC

� 2fEC ˝^
3fEC C 2fEC

˝^
2fEC � fEC ˝ fEC ˝ fEC

C fEC C^
2fEC/; g; d/�

C 8192 yA.TM;rTM/Œch.^4ATCM C^
2ATCM ˝ATCM CATCM

˝ATCM C S
2ATCM CATCM/

� ch.4.E/; g4.E/; d /C ch.ATCM

C^
2ATCM/ � ch.4.E/˝ .2^2 fEC

� fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC

C 2fEC ˝^
2fEC � fEC
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˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/�º

.23/
C � � � :

(3.58)

In (3.58), we compare the coefficients of 1, q, q2, and we get three equations about �1,
�2. By (3.55)–(3.58), we get Theorem 3.10.

Corollary 3.11. Suppose M is a 23-dimensional spin manifold without boundary. If
c3.E; g; d/ D 0, then

Ind.T ˝ .4.M/˝ ..2ATCM C^
2ATCM CATCM ˝ATCM C S

2ATCM/

˝ .4.E/; g4.E/; d /C 2ATCM ˝ ..2 ^
2 fEC � fEC

˝ fEC C fEC/; g; d/C .4.E/˝ .^
2fEC ˝^

2fEC C 2 ^
4 fEC

� 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC

˝ fEC C fEC C^
2fEC/; g; d//// � 0 mod 16Z: (3.59)

3.2. Some modular forms and Witten genus in spinc manifolds

Let M be closed oriented spinc manifold and L be the complex line bundle associated to
the given spinc structure on M . Denote by c D c1.L/ the first Chern class of L. Also,
we use LR for the notation of L, when it is viewed as an oriented real plane bundle. Let
‚.TCM;LR ˝ C/ be the virtual complex vector bundle over M defined by

‚.TCM;LR ˝ C/ D
1O
nD1

Sqn.ATCM/˝

1O
mD1

^qm.BLR ˝ C/

˝

1O
rD1

^
�q

r� 12
.BLR ˝ C/˝

1O
sD1

^
q
s� 12
.BLR ˝ C/:

Let dimM D 4k � 1 and y D �
p
�1
2�

c. Set

zQ.rTM;rL; g; d; �/ D

²
yA.TM;rTM/ exp

�
c

2

�
ch.‚.TCM;LR ˝ C//

� ch.Q.E/; gQ.E/; d; �/
³.4k�1/

: (3.60)

When c D 0, ‚.TCM/ D
N1
nD1 Sqn.

ATCM/ be the Witten bundle over M . And

zQ.rTM; g; d; �/ D ¹ yA.TM;rTM/ ch.‚.TCM// ch.Q.E/; gQ.E/; d; �/º.4k�1/

is called the Witten form in odd dimensions.
Then

zQ.M;L; �/ D

 
2k�1Y
jD1

xj �
0.0; �/

�.xj ; �/

�
�1.y; �/

�1.0; �/

�2.y; �/

�2.0; �/

�3.y; �/

�3.0; �/

�!.4p/
; (3.61)
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and

zQ.rTM;rL; g; d; �/ D . zQ.M;L; �/ � ch.Q.E/; gQ.E/; d; �//.4k�1/: (3.62)

By equations (2.13)–(2.17), we have zQ.rTM;rL; g; d; � C 1/D zQ.rTM;rL; g; d; �/

and zQ.rTM; rL; g; d; �1
�
/ D �2k zQ.rTM; rL; g; d; �/ if 3p1.L/ � p1.M/ D 0 and

c3.E; g; d/ D 0. So we get the following theorem.

Theorem 3.12. Let dimM D 4k � 1. If 3p1.L/� p1.M/D 0 and c3.E; g; d/D 0, then
zQ.rTM;rL; g; d; �/ is a modular form over SL.2;Z/ with the weight 2k.

Remark. Suppose M is a .4k � 1/-dimensional spin manifold. If p1.M/ D 0 and
c3.E;g;d/D 0, then zQ.rTM;g;d; �/ is a modular form over SL.2;Z/with the weight 2k.

Direct computation show

zQ.rTM;rL; g; d; �/ D

�
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

�4k�1
C q

²
yA.TM;rTM/ exp

�
c

2

�
�
�
ch.ATCM/ ch.4.E/; g4.E/; d /

C ch.2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/

C BLR ˝ C/ ch.4.E/; g4.E/; d /C ch.4.E/

˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/
�³4k�1

C q2
²
yA.TM;rTM/ exp

�
c

2

�
�
�
ch.S2ATCM CATCM/ � ch.4.E/; g4.E/; d /

C ch.^2 BLR ˝ C˝^2 BLR ˝ CC 2 ^4 BLR ˝ C

� 2BLR ˝ C˝^3 BLR ˝ CC 2BLR ˝ C

˝^
2 BLR ˝ C � BLR ˝ C˝ BLR ˝ C˝ BLR ˝ C

C BLR ˝ CC^2 BLR ˝ C/ ch.4.E/; g4.E/; d /

C ch.ATCM ˝ .2 ^
2 BLR ˝ C � .BLR ˝ C/

˝ .BLR ˝ C/C BLR ˝ C/

� ch.4.E/; g4.E/; d //C ch.2 ^2 BLR ˝ C

� .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/
� ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC
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˝^
3fEC C 2fEC ˝^

2fEC � fEC

˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/

�³4k�1
C � � � :

(3.63)

When dim M D 7, then zQ.rTM; rL; g; d; �/ is a modular form over SL.2; Z/
with the weight 4 and zQ.rTM; rL; g; d; �/ D �E4.�/. When dimM D 11, then we
obtain zQ.rTM; rL; g; d; �/ is a modular form over SL.2; Z/ with the weight 6 and
zQ.rTM;rL; g; d; �/ D �E6.�/. When dimM D 15, then zQ.rTM;rL; g; d; �/ is a mod-

ular form over SL.2;Z/ with the weight 8 and zQ.rTM;rL; g; d; �/ D �E4.�/
2. When

dimM D 19, then zQ.rTM;rL;g;d;�/ is a modular form over SL.2;Z/with the weight 10
and zQ.rTM;rL; g; d; �/D �E4.�/E6.�/. When dimM D 23, then zQ.rTM;rL; g; d; �/

is a modular form over SL.2; Z/ with the weight 12 and zQ.rTM; rL; g; d; �/ D

�1E4.�/
3 C �2E6.�/

2. So, we get the following theorem.

Theorem 3.13. Let dimM D 7. If 3p1.L/ � p1.M/ D 0 and c3.E; g; d/ D 0, we have²
yA.TM;rTM/ exp

�
c

2

��
ch.ATCM C 2 ^

2 BLR ˝ C � .BLR ˝ C/

˝ .BLR ˝ C/C BLR ˝ C/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/
�³.7/

D 240

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.7/
; (3.64)²

yA.TM;rTM/ exp
�
c

2

��
ch.S2ATCM CATCM C^

2 BLR ˝ C˝^2 BLR ˝ C

C 2 ^4 BLR ˝ C � 2BLR ˝ C˝^3 BLR ˝ CC 2BLR ˝ C

˝^
2 BLR ˝ C � BLR ˝ C˝ BLR ˝ C˝ BLR ˝ CC BLR ˝ C

C^
2 BLR ˝ CCATCM ˝ .2 ^

2 BLR ˝ C � .BLR ˝ C/

˝ .BLR ˝ C/C BLR ˝ C// � ch.4.E/; g4.E/; d /

C ch.2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/
� ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC ˝^
3fEC
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C 2fEC ˝^
2fEC � fEC ˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/

�³.7/
D 2160

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.7/
: (3.65)

Corollary 3.14. Suppose M is a 7-dimensional spinc manifold without boundary. If
c3.E; g; d/ D 0, then

Ind.T c ˝ ..ATCM C 2 ^
2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/

˝ .4.E/; g4.E/; d /C .4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/// � 0 mod 240Z; (3.66)

Ind.T ˝ ..S2ATCM CATCM C^
2 BLR ˝ C˝^2 BLR ˝ CC 2 ^4 BLR ˝ C

� 2BLR ˝ C˝^3 BLR ˝ CC 2BLR ˝ C˝^2 BLR ˝ C � BLR ˝ C

˝ BLR ˝ C˝ BLR ˝ CC BLR ˝ CC^2 BLR ˝ CCATCM

˝ .2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C//

˝ .4.E/; g4.E/; d /C .2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/
˝ .4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/C .4.E/˝ .2 ^

2 fEC

� fEC ˝ fEC C fEC/; g; d/C .4.E/˝ .^
2fEC ˝^

2fEC C 2 ^
4 fEC

� 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC ˝ fEC

C fEC C^
2fEC/; g; d/// � 0 mod 2160Z: (3.67)

Theorem 3.15. Let dimM D 11. If 3p1.L/� p1.M/ D 0 and c3.E; g; d/ D 0, we have²
yA.TM;rTM/ exp

�
c

2

��
ch.ATCM C 2 ^

2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/

� ch.4.E/; g4.E/; d /C ch.4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/
�³.11/

D �504

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.11/
; (3.68)²

yA.TM;rTM/ exp
�
c

2

��
ch.S2ATCM CATCM C^

2 BLR ˝ C˝^2 BLR ˝ C

C 2 ^4 BLR ˝ C � 2BLR ˝ C˝^3 BLR ˝ CC 2BLR ˝ C

˝^
2 BLR ˝ C � BLR ˝ C˝ BLR ˝ C˝ BLR ˝ CC BLR ˝ C

C^
2 BLR ˝ CCATCM ˝ .2 ^

2 BLR ˝ C � .BLR ˝ C/
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˝ .BLR ˝ C/C BLR ˝ C// � ch.4.E/; g4.E/; d /

C ch.2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/
� ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC ˝^
3fEC

C 2fEC ˝^
2fEC � fEC ˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/

�³.11/
D �16632

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.11/
: (3.69)

Corollary 3.16. Let M be an 11-dimensional spinc manifold without boundary. If
c3.E; g; d/ D 0, then

Ind.T c ˝ ..ATCM C 2 ^
2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/

˝ .4.E/; g4.E/; d /C .4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/// � 0 mod 504Z; (3.70)

Ind.T ˝ ..S2ATCM CATCM C^
2 BLR ˝ C˝^2 BLR ˝ CC 2 ^4 BLR ˝ C

� 2BLR ˝ C˝^3 BLR ˝ CC 2BLR ˝ C˝^2 BLR ˝ C � BLR ˝ C

˝ BLR ˝ C˝ BLR ˝ CC BLR ˝ CC^2 BLR ˝ CCATCM

˝ .2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C//

˝ .4.E/; g4.E/; d /C .2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/
˝ .4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/C .4.E/˝ .2 ^

2 fEC � fEC

˝ fEC C fEC/; g; d/C .4.E/˝ .^
2fEC ˝^

2fEC C 2 ^
4 fEC � 2fEC

˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/// � 0 mod 16632Z: (3.71)

Theorem 3.17. Let dimM D 15. If 3p1.L/� p1.M/ D 0 and c3.E; g; d/ D 0, we have²
yA.TM;rTM/ exp

�
c

2

��
ch.ATCM C 2 ^

2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/

� ch.4.E/; g4.E/; d /C ch.4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/
�³.15/

D 480

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.15/
; (3.72)
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yA.TM;rTM/ exp

�
c

2

��
ch.S2ATCM CATCM C^

2 BLR ˝ C˝^2 BLR ˝ C

C 2 ^4 BLR ˝ C � 2BLR ˝ C˝^3 BLR ˝ CC 2BLR ˝ C

˝^
2 BLR ˝ C � BLR ˝ C˝ BLR ˝ C˝ BLR ˝ CC BLR ˝ C

C^
2 BLR ˝ CCATCM ˝ .2 ^

2 BLR ˝ C � .BLR ˝ C/

˝ .BLR ˝ C/C BLR ˝ C// � ch.4.E/; g4.E/; d /

C ch.2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/
� ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC ˝^
3fEC

C 2fEC ˝^
2fEC � fEC ˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/

�³.15/
D 61920

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.15/
: (3.73)

Corollary 3.18. Let M be a 15-dimensional spinc manifold without boundary. If
c3.E; g; d/ D 0, then

Ind.T c ˝ ..ATCM C 2 ^
2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/

˝ .4.E/; g4.E/; d /C .4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/// � 0 mod 480Z; (3.74)

Ind.T ˝ ..S2ATCM CATCM C^
2 BLR ˝ C˝^2 BLR ˝ CC 2 ^4 BLR ˝ C

� 2BLR ˝ C˝^3 BLR ˝ CC 2BLR ˝ C˝^2 BLR ˝ C � BLR ˝ C

˝ BLR ˝ C˝ BLR ˝ CC BLR ˝ CC^2 BLR ˝ CCATCM

˝ .2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C//

˝ .4.E/; g4.E/; d /C .2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/
˝ .4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/C .4.E/˝ .2 ^

2 fEC

� fEC ˝ fEC C fEC/; g; d/C .4.E/˝ .^
2fEC ˝^

2fEC C 2 ^
4 fEC

� 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC ˝ fEC

C fEC C^
2fEC/; g; d/// � 0 mod 61920Z: (3.75)

Theorem 3.19. Let dimM D 19. If 3p1.L/� p1.M/ D 0 and c3.E; g; d/ D 0, we have²
yA.TM;rTM/ exp

�
c

2

��
ch.ATCM C 2 ^

2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/
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� ch.4.E/; g4.E/; d /C ch.4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/
�³.19/

D �264

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.19/
; (3.76)²

yA.TM;rTM/ exp
�
c

2

��
ch.S2ATCM CATCM C^

2 BLR ˝ C˝^2 BLR ˝ C

C 2 ^4 BLR ˝ C � 2BLR ˝ C˝^3 BLR ˝ CC 2BLR ˝ C

˝^
2 BLR ˝ C � BLR ˝ C˝ BLR ˝ C˝ BLR ˝ CC BLR ˝ C

C^
2 BLR ˝ CCATCM ˝ .2 ^

2 BLR ˝ C � .BLR ˝ C/

˝ .BLR ˝ C/C BLR ˝ C// � ch.4.E/; g4.E/; d /

C ch.2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/
� ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC ˝^
3fEC

C 2fEC ˝^
2fEC � fEC ˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/

�³.19/
D �117288

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.19/
: (3.77)

Corollary 3.20. Let M be a 19-dimensional spinc manifold without boundary. If
c3.E; g; d/ D 0, then

Ind.T c ˝ ..ATCM C 2 ^
2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/

˝ .4.E/; g4.E/; d /C .4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/// � 0 mod 264Z; (3.78)

Ind.T ˝ ..S2ATCM CATCM C^
2 BLR ˝ C˝^2 BLR ˝ CC 2 ^4 BLR ˝ C

� 2BLR ˝ C˝^3 BLR ˝ CC 2BLR ˝ C˝^2 BLR ˝ C � BLR ˝ C

˝ BLR ˝ C˝ BLR ˝ CC BLR ˝ CC^2 BLR ˝ CCATCM

˝ .2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C//

˝ .4.E/; g4.E/; d /C .2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/
˝ .4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/C .4.E/˝ .2 ^

2 fEC

� fEC ˝ fEC C fEC/; g; d/C .4.E/˝ .^
2fEC ˝^

2fEC C 2 ^
4 fEC
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� 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC ˝ fEC

C fEC C^
2fEC/; g; d/// � 0 mod 117288Z: (3.79)

Theorem 3.21. Let dimM D 23. If 3p1.L/� p1.M/ D 0 and c3.E; g; d/ D 0, we have²
yA.TM;rTM/ exp

�
c

2

��
ch.S2ATCM CATCM C^

2 BLR ˝ C˝^2 BLR ˝ C

C 2 ^4 BLR ˝ C � 2BLR ˝ C˝^3 BLR ˝ CC 2BLR ˝ C

˝^
2 BLR ˝ C � BLR ˝ C˝ BLR ˝ C˝ BLR ˝ CC BLR ˝ C

C^
2 BLR ˝ CCATCM ˝ .2 ^

2 BLR ˝ C � .BLR ˝ C/

˝ .BLR ˝ C/C BLR ˝ C// � ch.4.E/; g4.E/; d /

C ch.2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/
� ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC ˝^
3fEC

C 2fEC ˝^
2fEC � fEC ˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/

�³.23/
D

²
196560Œ yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /�

� 24

²
yA.TM;rTM/ exp

�
c

2

��
ch.ATCM C 2 ^

2 BLR ˝ C � .BLR ˝ C/

˝ .BLR ˝ C/C BLR ˝ C/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/
�³³.23/

: (3.80)

Corollary 3.22. Let M be a 23-dimensional spinc manifold without boundary. If
c3.E; g; d/ D 0, then

Ind.T ˝ ..S2ATCM CATCM C^
2 BLR ˝ C˝^2 BLR ˝ CC 2 ^4 BLR ˝ C

� 2BLR ˝ C˝^3 BLR ˝ CC 2BLR ˝ C˝^2 BLR ˝ C � BLR ˝ C

˝ BLR ˝ C˝ BLR ˝ CC BLR ˝ CC^2 BLR ˝ CCATCM

˝ .2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C//

˝ .4.E/; g4.E/; d /C .2 ^2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/
˝ .4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/C .4.E/˝ .2 ^

2 fEC

� fEC ˝ fEC C fEC/; g; d/C .4.E/˝ .^
2fEC ˝^

2fEC C 2 ^
4 fEC
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� 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC ˝ fEC

C fEC C^
2fEC/; g; d/// � 0 mod 24Z: (3.81)

Let ‚�.TCM;LR ˝ C/ be the virtual complex vector bundle over M defined by

‚�.TCM;LR ˝ C/ D
1O
nD1

Sqn.ATCM/˝

1O
mD1

^�qm.BLR ˝ C/:

Let dimM D 4k C 1 and y D �
p
�1
2�

c. Set

xQ.rTM;rL; g; d; �/ D

²
yA.TM;rTM/ exp

�
c

2

�
ch.‚�.TCM;LR ˝ C//

� ch.Q.E/; gQ.E/; d; �/
³.4kC1/

: (3.82)

Then

xQ.M;L; �/ D

´ 
2kC1Y
jD1

xj �
0.0; �/

�.xj ; �/

! p
�1�.y; �/

�1.0; �/�2.0; �/�3.0; �/

µ.4p/
; (3.83)

and

xQ.rTM;rL; g; d; �/ D . xQ.M;L; �/ � ch.Q.E/; gQ.E/; d; �//.4kC1/: (3.84)

Let p1 denote the first Pontryagin class. By (2.13)–(2.17), we have xQ.rTM;rL; g; d; � C

1/ D xQ.rTM; rL; g; d; �/ and xQ
�
rTM; rL; g; d; �1

�

�
D �2k xQ.rTM; rL; g; d; �/ if

p1.L/ � p1.M/ D 0 and c3.EC; g; d/ D 0. So we get the following theorem.

Theorem 3.23. Let dimM D 4k C 1. If p1.L/� p1.M/ D 0 and c3.E; g; d/ D 0, then
xQ.rTM;rL; g; d; �/ is a modular form over SL.2;Z/ with the weight 2k.

By Theorem 3.23, similar to Theorem 3.13 and Corollary 3.22, we can get the
following theorems.

Theorem 3.24. Let dimM D 7. If p1.L/ � p1.M/ D 0 and c3.E; g; d/ D 0, we have²
yA.TM;rTM/ exp

�
c

2

��
ch.ATCM � BLR ˝ C/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/
�³.7/

D 240

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.7/
; (3.85)²

yA.TM;rTM/ exp
�
c

2

��
ch.S2ATCM CATCM C^

2 BLR ˝ C � 2BLR ˝ CCATCM
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˝ BLR ˝ C/ ch.4.E/; g4.E/; d /C ch.ATCM � BLR ˝ C/
� ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC

˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC ˝ fEC

C fEC C^
2fEC/; g; d/

�³.7/
D 2160

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.7/
: (3.86)

Corollary 3.25. Suppose M is a 7-dimensional spinc manifold without boundary. If
c3.E; g; d/ D 0, then

Ind.T c ˝ ..ATCM � BLR ˝ C/˝ .4.E/; g4.E/; d /
C .4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/// � 0 mod 240Z;

(3.87)

Ind.T ˝ ..S2ATCM CATCM C^
2 BLR ˝ C � 2BLR ˝ CCATCM ˝ BLR ˝ C/

˝ .4.E/; g4.E/; d /C .ATCM � BLR ˝ C/˝ .4.E/˝ .2 ^2 fEC

� fEC ˝ fEC C fEC/; g; d/C .4.E/˝ .^
2fEC ˝^

2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC

˝ fEC ˝ fEC C fEC C^
2fEC/; g; d/// � 0 mod 2160Z: (3.88)

Theorem 3.26. Let dimM D 11. If p1.L/ � p1.M/ D 0 and c3.E; g; d/ D 0, we have²
yA.TM;rTM/ exp

�
c

2

��
ch.ATCM � BLR ˝ C/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/
�³.11/

D �504

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.11/
; (3.89)²

yA.TM;rTM/ exp
�
c

2

��
ch.S2ATCM CATCM C^

2 BLR ˝ C � 2BLR ˝ CCATCM

˝ BLR ˝ C/ ch.4.E/; g4.E/; d /C ch.ATCM � BLR ˝ C/
� ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC ˝^
3fEC
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C 2fEC ˝^
2fEC � fEC ˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/

�³.11/
D �16632

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.11/
: (3.90)

Corollary 3.27. Let M be an 11-dimensional spinc manifold without boundary. If
c3.E; g; d/ D 0, then

Ind.T c ˝ ..ATCM � BLR ˝ C/˝ .4.E/; g4.E/; d /
C .4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/// � 0 mod 504Z;

(3.91)

Ind.T ˝ ..S2ATCM CATCM C^
2 BLR ˝ C � 2BLR ˝ CCATCM ˝ BLR ˝ C/

˝ .4.E/; g4.E/; d /C .ATCM � BLR ˝ C/˝ .4.E/˝ .2 ^2 fEC

� fEC ˝ fEC C fEC/; g; d/C .4.E/˝ .^
2fEC ˝^

2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC

˝ fEC C fEC C^
2fEC/; g; d/// � 0 mod 16632Z: (3.92)

Theorem 3.28. Let dimM D 15. If p1.L/ � p1.M/ D 0 and c3.E; g; d/ D 0, we have²
yA.TM;rTM/ exp

�
c

2

��
ch.ATCM � BLR ˝ C/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/
�³.15/

D 480

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.15/
; (3.93)²

yA.TM;rTM/ exp
�
c

2

��
ch.S2ATCM CATCM C^

2 BLR ˝ C � 2BLR ˝ CCATCM

˝ BLR ˝ C/ ch.4.E/; g4.E/; d /C ch.ATCM � BLR ˝ C/
� ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC ˝^
3fEC

C 2fEC ˝^
2fEC � fEC ˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/

�³.15/
D 6192

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.15/
: (3.94)
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Corollary 3.29. Let M be a 15-dimensional spinc manifold without boundary. If
c3.E; g; d/ D 0, then

Ind.T c ˝ ..ATCM � BLR ˝ C/˝ .4.E/; g4.E/; d /
C .4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/// � 0 mod 480Z;

(3.95)

Ind.T ˝ ..S2ATCM CATCM C^
2 BLR ˝ C � 2BLR ˝ CCATCM ˝ BLR ˝ C/

˝ .4.E/; g4.E/; d /C .ATCM � BLR ˝ C/˝ .4.E/˝ .2 ^2 fEC

� fEC ˝ fEC C fEC/; g; d/C .4.E/˝ .^
2fEC ˝^

2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC

˝ fEC C fEC C^
2fEC/; g; d/// � 0 mod 6192Z: (3.96)

Theorem 3.30. Let dimM D 19. If p1.L/ � p1.M/ D 0 and c3.E; g; d/ D 0, we have²
yA.TM;rTM/ exp

�
c

2

��
ch.ATCM � BLR ˝ C/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/
�³.19/

D �264

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.19/
; (3.97)²

yA.TM;rTM/ exp
�
c

2

��
ch.S2ATCM CATCM C^

2 BLR ˝ C � 2BLR ˝ CCATCM

˝ BLR ˝ C/ ch.4.E/; g4.E/; d /C ch.ATCM � BLR ˝ C/
� ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC ˝^
3fEC

C 2fEC ˝^
2fEC � fEC ˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/

�³.19/
D �117288

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.19/
: (3.98)

Corollary 3.31. Let M be a 19-dimensional spinc manifold without boundary. If
c3.E; g; d/ D 0, then

Ind.T c ˝ ..ATCM � BLR ˝ C/˝ .4.E/; g4.E/; d /
C .4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/// � 0 mod 264Z;

(3.99)

Ind.T ˝ ..S2ATCM CATCM C^
2 BLR ˝ C � 2BLR ˝ CCATCM ˝ BLR ˝ C/
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˝ .4.E/; g4.E/; d /C .ATCM � BLR ˝ C/˝ .4.E/˝ .2 ^2 fEC

� fEC ˝ fEC C fEC/; g; d/C .4.E/˝ .^
2fEC ˝^

2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC

˝ fEC C fEC C^
2fEC/; g; d/// � 0 mod 117288Z: (3.100)

Theorem 3.32. Let dimM D 23. If p1.L/ � p1.M/ D 0 and c3.E; g; d/ D 0, we have²
yA.TM;rTM/ exp

�
c

2

��
ch.S2ATCM CATCM C^

2 BLR ˝ C � 2BLR ˝ CCATCM

˝ BLR ˝ C/ ch.4.E/; g4.E/; d /C ch.ATCM � BLR ˝ C/
� ch.4.E/˝ .2 ^2 fEC � fEC ˝ fEC C fEC/; g; d/

C ch.4.E/˝ .^2fEC ˝^
2fEC C 2 ^

4 fEC � 2fEC ˝^
3fEC

C 2fEC ˝^
2fEC � fEC ˝ fEC ˝ fEC C fEC

C^
2fEC/; g; d/

�³.23/
D

²
196560

�
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

�
� 24

²
yA.TM;rTM/ exp

�
c

2

��
ch.ATCM � BLR ˝ C/ � ch.4.E/; g4.E/; d /

C ch.4.E/˝ .2 ^2 fEC � fEC

˝ fEC C fEC/; g; d/
�³³.23/

:

(3.101)

Corollary 3.33. Let M be a 23-dimensional spinc manifold without boundary. If
c3.E; g; d/ D 0, then

Ind.T ˝ ..S2ATCM CATCM C^
2 BLR ˝ C � 2BLR ˝ CCATCM ˝ BLR ˝ C/

˝ .4.E/; g4.E/; d /C .ATCM � BLR ˝ C/˝ .4.E/˝ .2 ^2 fEC

� fEC ˝ fEC C fEC/; g; d/C .4.E/˝ .^
2fEC ˝^

2fEC

C 2 ^4 fEC � 2fEC ˝^
3fEC C 2fEC ˝^

2fEC � fEC ˝ fEC

˝ fEC C fEC C^
2fEC/; g; d/// � 0 mod 24Z: (3.102)

4. Some modular forms and Witten genus over �0.2/; �0.2/; ��

In this section, we will construct some modular forms over �0.2/; �0.2/; �� in odd
dimensions. Furthermore, we calculate and derive some new cancellation formulas
for odd-dimensional spin manifolds and odd-dimensional spinc manifolds, respectively.
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Meanwhile, we will derive some divisibility results for the index of the Toeplitz operators
on spin manifolds and spinc manifolds.

4.1. Some modular forms and Witten genus over �0.2/; �0.2/; �� in spin manifolds

LetM be a .4k � 1/-dimensional spin manifold. By (3.1)–(3.3) and (3.10)–(3.12), we can
construct the following forms:

Q1.r
TM; g; d; �/ D ¹ yA.TM;rTM/ ch.Œ4.M/˝‚1.TCM/C 22k‚2.TCM/

C 22k‚3.TCM/�/

� ch.Q1.E/; gQ1.E/; d; �/º.4k�1/; (4.1)

Q2.r
TM; g; d; �/ D ¹ yA.TM;rTM/ ch.Œ4.M/˝‚1.TCM/C 22k‚2.TCM/

C 22k‚3.TCM/�/

� ch.Q2.E/; gQ2.E/; d; �/º.4k�1/; (4.2)

Q3.r
TM; g; d; �/ D ¹ yA.TM;rTM/ ch.Œ4.M/˝‚1.TCM/C 22k‚2.TCM/

C 22k‚3.TCM/�/

� ch.Q3.E/; gQ3.E/; d; �/º.4k�1/: (4.3)

Following [10], we defined ch.Qj .E/; gQj .E/; d; �/ for j D 1; 2; 3 as follows:

ch.Qj .E/;r
Qj .E/

0 ; �/ � ch.Qj .E/;r
Qj .E/

1 ; �/ D d ch.Qj .E/; gQj .E/; d; �/; (4.4)

where

ch.Q1.E/; gQ1.E/; d; �/ D �
2
N
2

8�2

Z 1

0

Tr
�
g�1dg

� 01.Ru=.4�
2/; �/

�1.Ru=.4�2/; �/

�
du; (4.5)

and for j D 2; 3,

ch.Qj .E/; gQj .E/; d; �/ D �
1

8�2

Z 1

0

Tr
�
g�1dg

� 0j .Ru=.4�
2/; �/

�j .Ru=.4�2/; �/

�
du: (4.6)

By [10, Proposition 2.2], we have if c3.E; g; d/ D 0, then for any integer k �
1 and j D 1; 2; 3, ch.Qj .E/; gQj .E/; d; �/.4k�1/ are modular forms of weight 2k
over �0.2/, �0.2/ and �� , respectively. By [10, Proposition 2.4, Theorem 2.6], we
understand that if c3.E; g; d/ D 0, then for any integer k � 1 and j D 1; 2; 3,
Q1.r

TM; g; d; �/.4k�1/; Q2.r
TM; g; d; �/.4k�1/ andQ3.rTM; g; d; �/.4k�1/ are modular

forms of weight 2k over �0.2/, �0.2/ and �� , respectively.
Let p1 denote the first Pontryagin class. If ! is a differential form over M , we denote

by !4k�1 its top degree component. Our main results include the following theorem.
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Theorem 4.1. If c3.E; g; d/ D 0, then

¹ yA.TM;rTM/ ch.4.M/C 2kC1/ ch.4.E/; g4.E/; d /º.4k�1/

D 2
N
2 Ck

Œ k2 �X
sD1

2�6shs; (4.7)

where each hs; 1 � s �
�
k
2

�
, is a canonical integral linear combination of

¹ yA.TM/ ch.4.M//ech.B1˛.TCM;EC//C 2
2k yA.TM/ech.B2˛.TCM;EC//

C 22k yA.TM/ech.B3˛.TCM;EC//º
.4k�1/; 0 � ˛ � s;

and h1, h2 are given by (4.16) and (4.17).

Proof. Let ¹˙2�
p
�1xj j 1 � j � kº be the Chern roots of TCM . We have

Q1.r
TM; g; d; �/

D

´
2kY
jD1

2xj �
0.0; �/

�.xj ; �/

 
2kY
jD1

�1.xj ; �/

�1.0; �/
C

2kY
jD1

�2.xj ; �/

�2.0; �/
C

2kY
jD1

�3.xj ; �/

�3.0; �/

!

� ch.Q1.E/; gQ1.E/; d; �/

µ.4k�1/
; (4.8)

Q2.r
TM; g; d; �/

D

´
2kY
jD1

2xj �
0.0; �/

�.xj ; �/

 
2kY
jD1

�1.xj ; �/

�1.0; �/
C

2kY
jD1

�2.xj ; �/

�2.0; �/
C

2kY
jD1

�3.xj ; �/

�3.0; �/

!

� ch.Q2.E/; gQ1.E/; d; �/

µ.4k�1/
: (4.9)

Moreover, we can show by direct computations that

Q1.r
TM; g; d; �/ D Œ yA.TM;rTM/ ch.4.M// ch.4.E/; g4.E/; d /

C 22kC1 yA.TM;rTM/ � ch.4.E/; g4.E/; d /�.4k�1/

C q¹ yA.TM;rTM/ � Œch.4.M/˝ 2ATCM/ � ch.4.E/; g4.E/; d /

C ch.4.M// ch.4.E/˝ fEC; g; d/�C 2
2kC1

� yA.TM;rTM/ � Œch.ATCM C^
2ATCM/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ fEC; g; d/�º
.4k�1/

C q2¹ yA.TM;rTM/Œch.4.M/˝ .2ATCM C^
2ATCM CATCM

˝ATCM C S
2ATCM//
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� ch.4.E/; g4.E/; d /C ch.4.M/˝ 2ATCM/

� ch.4.E/˝ fEC; g; d/C ch.4.M//

� ch.4.E/˝ .^2fEC C fEC/; g; d/�C 2
2kC1

� yA.TM;rTM/Œch.^4ATCM C^
2ATCM ˝ATCM CATCM

˝ATCM C S
2ATCM CATCM/

� ch.4.E/; g4.E/; d /C ch.ATCM C^
2ATCM/

� ch.4.E/˝ fEC; g; d/C ch.4.E/

˝ .^2fEC C fEC/; g; d/�º
.4k�1/

C � � � ;

(4.10)

Q2.r
TM; g; d; �/ D �q

1
2 Œ yA.TM;rTM/ ch.4.M// ch.fEC; g; d/

C 22kC1 yA.TM;rTM/ � ch.fEC; g; d/�
.4k�1/

C qŒ yA.TM;rTM/ � ch.4.M// ch.^2fEC; g; d/

C 22kC1 yA.TM;rTM/ � ch.^2fEC; g; d/�
.4k�1/

� q
3
2 ¹ yA.TM;rTM/ � Œch.4.M/˝ 2ATCM/ ch.fEC; g; d/

C ch4.M/ ch.fEC C^
3fEC; g; d/�

C 22kC1 yA.TM;rTM/Œch.ATCM C^
2ATCM/ ch.fEC; g; d/

C ch.fEC C^
3fEC; g; d/�º

.4k�1/

C q2¹ yA.TM;rTM/ � Œch.4.M/˝ 2ATCM/ � ch.^2fEC; g; d/

C ch4.M/ � ch.^4fEC C fEC ˝ fEC; g; d/�

C 22kC1 yA.TM;rTM/

� Œch.ATCM C^
2ATCM/ ch.^2fEC; g; d/

C ch.^4fEC C fEC ˝ fEC; g; d/�º
.4k�1/

C � � � ; (4.11)

and we can represent Q2.rTM; g; d; �/ as

Q2.r
TM; g; d; �/ D yA.TM;rTM/ ch.4.M//ech.B10 .TCM;EC//

C 22k yA.TM;rTM/ech.B20 .TCM;EC//

C 22k yA.TM;rTM/ech.B30 .TCM;EC//

C Œ yA.TM;rTM/ ch.4.M//ech.B11 .TCM;EC//

C 22k yA.TM;rTM/ech.B21 .TCM;EC//

C 22k yA.TM;rTM/ech.B31 .TCM;EC//�q
1
2

C Œ yA.TM;rTM/ ch.4.M//ech.B12 .TCM;EC//

C 22k yA.TM;rTM/ech.B22 .TCM;EC//
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C 22k yA.TM;rTM/ech.B32 .TCM;EC//�q

C Œ yA.TM;rTM/ ch.4.M//ech.B13 .TCM;EC//

C 22k yA.TM;rTM/ech.B23 .TCM;EC//

C 22k yA.TM;rTM/ech.B33 .TCM;EC//�q
3
2 C � � � : (4.12)

Let P1.�/ D Q1.rTM; g; d; �/4k�1 and P2.�/ D Q2.rTM; g; d; �/4k�1. Similarly to the
computations in [13] and by [10, (2.26)] and the condition c3.E; g; d/ D 0, we have

P1

�
�
1

�

�
D 2

N
2 �2kP2.�/: (4.13)

Observe that at any point x 2 M , up to the volume form determined by the metric on
TxM , both Pi .�/; i D 1; 2, can be viewed as a power series of q

1
2 with real Fourier

coefficients. By Lemma 2.2, we have

P2.�/ D h0.8ı2/
k
C h1.8ı2/

k�2"2 C � � � C hŒ k2 �
.8ı2/

k�2Œ k2 �"
Œ k2 �

2 ; (4.14)

where each hs; 0 � s �
�
k
2

�
, is a real multiple of the volume form at x. By (2.19), (4.13)

and (4.14), we get

P1.�/ D 2
N
2

h
h0.8ı1/

k
C h1.8ı1/

k�2"1 C � � � C hŒ k2 �
.8ı1/

k�2Œ k2 �"
Œ k2 �

1

i
: (4.15)

By comparing the constant term in (4.15), we get (4.7). By comparing the coefficients
of q

j
2 , j � 0 on both sides of (4.14), we can use the induction method to prove that

h0 D 0 and each hs; 1 � s �
�
k
2

�
, can be expressed through a canonical integral linear

combination of

¹ yA.TM/ ch.4.M//ech.B1˛.TCM;EC//C 2
2k yA.TM/ech.B2˛.TCM;EC//

C 22k yA.TM/ech.B3˛.TCM;EC//º
.4k�1/; 0 � ˛ � s:

By (4.11), (4.12) and comparing the coefficient of q
1
2 of (4.14), we get

h1 D .�1/
k�2Œ yA.TM;rTM/ ch.4.M//ech.B11 .TCM;EC//

C 22k yA.TM;rTM/ech.B21 .TCM;EC//

C 22k yA.TM;rTM/ech.B31 .TCM;EC//�
.4k�1/

D .�1/k�1Œ yA.TM;rTM/ ch.4.M// ch.fEC; g; d/

C 22kC1 yA.TM;rTM/ ch.fEC; g; d/�
.4k�1/: (4.16)
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By (4.11), (4.12) and comparing the coefficient of q of (4.14), we get

h2 D .�1/
k�4Œ yA.TM;rTM/ ch.4.M//ech.B12 .TCM;EC//

C 22k yA.TM;rTM/ech.B22 .TCM;EC//

C 22k yA.TM;rTM/ech.B32 .TCM;EC//�
.4k�1/

� Œ8 � 24.k � 2/.�1/d �h1

D .�1/k�4Œ yA.TM;rTM/ ch.4.M// ch.^2fEC; g; d/

C 22kC1 yA.TM;rTM/ ch.^2fEC; g; d/�
.4k�1/

� Œ24.k � 2/C 8.�1/k�1�Œ yA.TM;rTM/ ch.4.M// ch.fEC; g; d/

C 22kC1 yA.TM;rTM/ ch.fEC; g; d/�
.4k�1/: (4.17)

The proof is completed.

Corollary 4.2. Let M be a .4k � 1/-dimensional spin manifold. If c3.E; g; d/ D 0, then

Ind.T ˝ .4.M/C 2kC1/˝ .4.E/; g4.E/; d // D �2
N
2 Ck

Œ k2 �X
sD0

2�6shs; (4.18)

where each hs , 1 � s �
�
k
2

�
, is a canonical integral linear combination of

Ind.T ˝ .4.M/˝ .B1˛.TCM;EC//C 2
2k
˝ .B2˛.TCM;EC//

C 22k ˝ .B3˛.TCM;EC////: (4.19)

Corollary 4.3. LetM be a .4k � 1/-dimensional spin manifold and c3.E;g; d/D 0. If k
is even, then

Ind.T ˝ .4.M/C 2kC1/˝ .4.E/; g4.E/; d // � 0
�
mod 2

N
2 �2k

�
; (4.20)

If k is odd, then

Ind.T ˝ .4.M/C 2kC1/˝ .4.E/; g4.E/; d // � 0
�
mod 2

N
2 C3�2k

�
: (4.21)

Corollary 4.4. Let M be an 11-dimensional spin manifold. If c3.E; g; d/ D 0, then

¹ yA.TM;rTM/ ch.4.M/C 27/ ch.4.E/; g4.E/; d /º.11/

D 2
N
2 �3¹ yA.TM;rTM/ ch.4.M/C 27/ ch.fEC; g; d/º

.11/: (4.22)

Corollary 4.5. Let M be a 15-dimensional spin manifold. If c3.E; g; d/ D 0, then

¹ yA.TM;rTM/ ch.4.M/C 29/ ch.4.E/; g4.E/; d /º.15/

D �13 � 2
N
2 �5¹ yA.TM;rTM/ ch.4.M/C 29/ ch.fEC; g; d/º

.15/

C 2
N
2 �8¹ yA.TM;rTM/ ch.4.M/C 29/ ch.^2fEC; g; d/º

.15/: (4.23)
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By [4, (5.22)], we have for 1 � s �
�
k
2

�
,

.8ı1/
k�2s"s1 D 2

k�6sŒ1C .24k � 64s/q C .288k2 � 1536ks C 2048s2

C 512s � 264k/q2 CO.q3/�:
(4.24)

By (4.10), we are comparing the coefficients of q in (4.15). Then we get the following
theorem.

Theorem 4.6. If c3.E; g; d/ D 0, then

¹ yA.TM;rTM/Œch.4.M/˝ 2ATCM/ ch.4.E/; g4.E/; d /C ch.4.M//

� ch.4.E/˝ fEC; g; d/�C 2
2kC1 yA.TM;rTM/

� Œch.ATCM C^
2ATCM/ ch.4.E/; g4.E/; d /C ch.4.E/˝ fEC; g; d/�

� 24kŒ yA.TM;rTM/ ch.4.M/C 22kC1/ ch.4.E/; g4.E/; d /�º.4k�1/

D �2
N
2 CkC6

Œ k2 �X
sD1

s2�6shs : (4.25)

Corollary 4.7. LetM be a .4k � 1/-dimensional spin manifold and c3.E;g; d/D 0. If k
is even, then

Ind.T ˝ .4.M/˝ .2ATCM ˝ .4.E/; g
4.E/; d /C .4.E/˝ fEC; g; d//C 2

2kC1

˝ ..ATCM C^
2ATCM/˝ .4.E/; g4.E/; d /C .4.E/˝ fEC; g; d////

� 24k Ind.T ˝ .4.M/C 22kC1/˝ .4.E/; g4.E/; d //

� 0 .mod 2
N
2 �2kC6/; (4.26)

If k is odd, then

Ind.T ˝ .4.M/˝ .2ATCM ˝ .4.E/; g
4.E/; d /C .4.E/˝ fEC; g; d//C 2

2kC1

˝ ..ATCM C^
2ATCM/˝ .4.E/; g4.E/; d /C .4.E/˝ fEC; g; d////

� 24k Ind.T ˝ .4.M/C 22kC1/˝ .4.E/; g4.E/; d //

� 0 .mod 2
N
2 �2kC9/: (4.27)

Corollary 4.8. Let M be an 11-dimensional spin manifold. If c3.E; g; d/ D 0, then

¹ yA.TM;rTM/Œch.4.M/˝ 2ATCM/ ch.4.E/; g4.E/; d /C ch.4.M//

� ch.4.E/˝ fEC; g; d/�C 2
7 yA.TM;rTM/

� Œch.ATCM C^
2ATCM/ ch.4.E/; g4.E/; d /C ch.4.E/˝ fEC; g; d/�

� 72Œ yA.TM;rTM/ ch.4.M/C 27/ ch.4.E/; g4.E/; d /�º.11/

D �2
N
2 C3¹ yA.TM;rTM/ ch.4.M/C 27/ ch.fEC; g; d/º

.11/: (4.28)
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Corollary 4.9. Let M be a 15-dimensional spin manifold. If c3.E; g; d/ D 0, then

¹ yA.TM;rTM/Œch.4.M/˝ 2ATCM/ ch.4.E/; g4.E/; d /C ch.4.M//

� ch.4.E/˝ fEC; g; d/�C 2
9 yA.TM;rTM/

� Œch.ATCM C^
2ATCM/ ch.4.E/; g4.E/; d /C ch.4.E/˝ fEC; g; d/�

� 96Œ yA.TM;rTM/ ch.4.M/C 29/ ch.4.E/; g4.E/; d /�º.15/

D 9 � 2
N
2 C2¹ yA.TM;rTM/ ch.4.M/C 29/ ch.fEC; g; d/º

.15/

� 2
N
2 �1¹ yA.TM;rTM/ ch.4.M/C 29/ ch.^2fEC; g; d/º

.15/: (4.29)

By (4.10), we compare the coefficients of q2 in (4.15). Then we get the following
theorem.

Theorem 4.10. If c3.E; g; d/ D 0, then

¹ yA.TM;rTM/Œch.4.M/˝ .2ATCM C^
2ATCM CATCM ˝ATCM C S

2ATCM//

� ch.4.E/; g4.E/; d /C ch.4.M/˝ 2ATCM/ ch.4.E/˝ fEC; g; d/

C ch.4.M// � ch.4.E/˝ .^2fEC C fEC/; g; d/�C 2
2kC1 yA.TM;rTM/

� Œch.^4ATCM C^
2ATCM ˝ATCM CATCM ˝ATCM C S

2ATCM CATCM/

� ch.4.E/; g4.E/; d /C ch.ATCM C^
2ATCM/ ch.4.E/˝ fEC; g; d/

C ch.4.E/˝ .^2fEC C fEC/; g; d/�

C .288k2 C 72k/Œ yA.TM;rTM/ � ch.4.M/C 22kC1/ ch.4.E/; g4.E/; d /�

� .24k � 8/¹ yA.TM;rTM/ � Œch.4.M/˝ 2ATCM/ ch.4.E/; g4.E/; d /

C ch.4.M// ch.4.E/˝ fEC; g; d/�

C 22kC1 yA.TM;rTM/Œch.ATCM C^
2ATCM/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ fEC; g; d/�ºº
.4k�1/

D 2
N
2 CkC11

Œ k2 �X
sD1

s22�6shs : (4.30)

Corollary 4.11. Let M be a .4k � 1/-dimensional spin manifold and c3.E; g; d/ D 0.
If k is even, then

Ind.T ˝ .4.M/˝ ..2ATCM C^
2ATCM CATCM ˝ATCM C S

2ATCM/

˝ .4.E/; g4.E/; d /C 2ATCM ˝ .4.E/˝ fEC; g; d/

C .4.E/˝ .^2fEC C fEC/; g; d//C 2
2kC1

˝ ..^4ATCM C^
2ATCM ˝ATCM CATCM ˝ATCM C S

2ATCM CATCM/

˝ .4.E/; g4.E/; d /C .ATCM C^
2ATCM/˝ .4.E/˝ fEC; g; d/
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C .4.E/˝ .^2fEC C fEC/; g; d////C .288k
2
C 72k/

� Ind.T ˝ .4.M/C 22kC1/˝ .4.E/; g4.E/; d // � .24k � 8/

� Ind.T ˝ .4.M/˝ .2ATCM ˝ .4.E/; g
4.E/; d /C .4.E/˝ fEC; g; d//

C 22kC1 ˝ ..ATCM C^
2ATCM/˝ .4.E/; g4.E/; d /

C .4.E/˝ fEC; g; d////

� 0 .mod 2
N
2 �2kC11/: (4.31)

If k is odd, then

Ind.T ˝ .4.M/˝ ..2ATCM C^
2ATCM CATCM ˝ATCM C S

2ATCM/

˝ .4.E/; g4.E/; d /C 2ATCM ˝ .4.E/˝ fEC; g; d/

C .4.E/˝ .^2fEC C fEC/; g; d//C 2
2kC1

˝ ..^4ATCM C^
2ATCM ˝ATCM CATCM ˝ATCM C S

2ATCM CATCM/

˝ .4.E/; g4.E/; d /C .ATCM C^
2ATCM/˝ .4.E/˝ fEC; g; d/

C .4.E/˝ .^2fEC C fEC/; g; d////C .288k
2
C 72k/

� Ind.T ˝ .4.M/C 22kC1/˝ .4.E/; g4.E/; d // � .24k � 8/

� Ind.T ˝ .4.M/˝ .2ATCM ˝ .4.E/; g
4.E/; d /C .4.E/˝ fEC; g; d//

C 22kC1 ˝ ..ATCM C^
2ATCM/˝ .4.E/; g4.E/; d /

C .4.E/˝ fEC; g; d////

� 0 .mod 2
N
2 �2kC14/: (4.32)

Corollary 4.12. Let M be an 11-dimensional spin manifold. If c3.E; g; d/ D 0, then

¹ yA.TM;rTM/Œch.4.M/˝ .2ATCM C^
2ATCM CATCM ˝ATCM C S

2ATCM//

� ch.4.E/; g4.E/; d /C ch.4.M/˝ 2ATCM/ ch.4.E/˝ fEC; g; d/

C ch.4.M// ch.4.E/˝ .^2fEC C fEC/; g; d/�C 2
7 yA.TM;rTM/

� Œch.^4ATCM C^
2ATCM ˝ATCM CATCM ˝ATCM C S

2ATCM CATCM/

� ch.4.E/; g4.E/; d /C ch.ATCM C^
2ATCM/ ch.4.E/˝ fEC; g; d/

C ch.4.E/˝ .^2fEC C fEC/; g; d/�

C 2808Œ yA.TM;rTM/ ch.4.M/C 27/ ch.4.E/; g4.E/; d /�

� 64¹ yA.TM;rTM/Œch.4.M/˝ 2ATCM/ ch.4.E/; g4.E/; d /

C ch.4.M// ch.4.E/˝ fEC; g; d/�

C 27 yA.TM;rTM/Œch.ATCM C^
2ATCM/ � ch.4.E/; g4.E/; d /

C ch.4.E/˝ fEC; g; d/�ºº
.11/

D 2
N
2 C8¹ yA.TM;rTM/ ch.4.M/C 29/ ch.fEC; g; d/º

.11/: (4.33)



SL.2;Z/ modular forms and Witten genus in odd dimensions 309

Corollary 4.13. Let M be an 15-dimensional spin manifold. If c3.E; g; d/ D 0, then

¹ yA.TM;rTM/Œch.4.M/˝ .2ATCM C^
2ATCM CATCM ˝ATCM C S

2ATCM//

� ch.4.E/; g4.E/; d /C ch.4.M/˝ 2ATCM/ � ch.4.E/˝ fEC; g; d/

C ch.4.M// ch.4.E/˝ .^2fEC C fEC/; g; d/�C 2
9 yA.TM;rTM/

� Œch.^4ATCM C^
2ATCM ˝ATCM CATCM ˝ATCM C S

2ATCM CATCM/

� ch.4.E/; g4.E/; d /C ch.ATCM C^
2ATCM/ ch.4.E/˝ fEC; g; d/

C ch.4.E/˝ .^2fEC C fEC/; g; d/�

C 4896Œ yA.TM;rTM/ ch.4.M/C 29/ ch.4.E/; g4.E/; d /�

� 88¹ yA.TM;rTM/Œch.4.M/˝ 2ATCM/ ch.4.E/; g4.E/; d /

C ch.4.M// ch.4.E/˝ fEC; g; d/�C 2
9 yA.TM;rTM/

� Œch.ATCM C^
2ATCM/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ fEC; g; d/�ºº
.15/

D �7 � 2
N
2 C8¹ yA.TM;rTM/ ch.4.M/C 29/ ch.fEC; g; d/º

.15/

C 2
N
2 C5¹ yA.TM;rTM/ ch.4.M/C 29/ ch.^2fEC; g; d/º

.15/: (4.34)

4.2. Some modular forms and Witten genus over �0.2/; �0.2/; �� in spinc

manifolds

Let M be closed oriented spinc manifold and L be the complex line bundle associated to
the given spinc structure on M . Denote by c D c1.L/ the first Chern class of L. Also,
we use LR for the notation of L, when it is viewed as an oriented real plane bundle. Let
‚.TCM;LR ˝ C/ be the virtual complex vector bundle over M defined by

‚.TCM;LR ˝ C/ D
1O
nD1

Sqn.ATCM/˝

1O
mD1

^qm.BLR ˝ C/

˝

1O
rD1

^
�q

r� 12
.BLR ˝ C/˝

1O
sD1

^
q
s� 12
.BLR ˝ C/:

Let dimM D 4k � 1 and y D �
p
�1
2�

c. Set

zQ1.r
TM;rL; g; d; �/ D

²
yA.TM;rTM/ exp

�
c

2

�
ch.‚.TCM;LR ˝ C//

� ch.Q1.E/; gQ1.E/; d; �/
³.4k�1/

: (4.35)

zQ2.r
TM;rL; g; d; �/ D

²
yA.TM;rTM/ exp

�
c

2

�
ch.‚.TCM;LR ˝ C//

� ch.Q2.E/; gQ2.E/; d; �/
³.4k�1/

: (4.36)



J. Guan, Y. Wang, and H. Liu 310

zQ3.r
TM;rL; g; d; �/ D

²
yA.TM;rTM/ exp

�
c

2

�
ch.‚.TCM;LR ˝ C//

� ch.Q3.E/; gQ3.E/; d; �/
³.4k�1/

: (4.37)

Then

zQi .r
TM;rL; g; d; �/ D

´� 2k�1Y
jD1

xj �
0.0; �/

�.xj ; �/

�
�1.y; �/

�1.0; �/

�2.y; �/

�2.0; �/

�3.y; �/

�3.0; �/

��

� ch.Qi .E/; gQi .E/; d; �/

µ.4k�1/
; 1 � i � 3: (4.38)

Let zP1.�/D zQ1.r
TM;rL; g; d; �/4k�1, zP2.�/D zQ2.r

TM;rL; g; d; �/4k�1. By (2.13)–
(2.17) and 3p1.L/� p1.M/ D 0, then zP1.�/ is a modular form of weight 2k over �0.2/,
where zP2.�/ is a modular form of weight 2k over �0.2/. Moreover, the following identity
holds:

zP1

�
�
1

�

�
D 2

N
2 �2k zP2.�/: (4.39)

We can show by direct computations that

zQ1.r
TM;rL; g; d; �/ D

�
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

�.4k�1/
C q

²
yA.TM;rTM/ exp

�
c

2

�
�
�
ch.ATCM C 2 ^

2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/

C BLR ˝ C/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ fEC; g; d/
�³.4k�1/

C q2
²
yA.TM;rTM/ � exp

�
c

2

�
�
�
ch.S2ATCM CATCM C .2 ^

2 BLR ˝ C � .BLR ˝ C/

˝ .BLR ˝ C/C BLR ˝ C/˝ATCM C^
2 BLR ˝ C

˝^
2 BLR ˝ CC 2 ^4 BLR ˝ C � 2BLR ˝ C

˝^
3 BLR ˝ CC 2BLR ˝ C˝^2 BLR ˝ C

� BLR ˝ C˝ BLR ˝ C˝ BLR ˝ CC BLR ˝ C

C^
2 BLR ˝ C/ ch.4.E/; g4.E/; d /

C ch.ATCM C 2 ^
2 BLR ˝ C � .BLR ˝ C/



SL.2;Z/ modular forms and Witten genus in odd dimensions 311

˝ .BLR ˝ C/C BLR ˝ C/ ch.4.E/˝ fEC; g; d/

C ch.4.E/˝ .^2fEC C fEC/; g; d/
�³.4k�1/

C � � � ;

(4.40)

zQ2.r
TM;rL; g; d; �/ D �q

1
2

�
yA.TM;rTM/ exp

�
c

2

�
ch.fEC; g; d/

�.4k�1/
C q

�
yA.TM;rTM/ exp

�
c

2

�
ch.^2fEC; g; d/

�.4k�1/
� q

3
2

²
yA.TM;rTM/ exp

�
c

2

�
� Œch.ATCM C 2 ^

2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/

C BLR ˝ C/ ch.fEC; g; d/

C ch.fEC C^
3fEC; g; d/�

³.4k�1/
C q2

²
yA.TM;rTM/ � exp

�
c

2

�
�
�
ch.ATCM C 2 ^

2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/

C BLR ˝ C/ ch.^2fEC; g; d/

C ch.^4fEC C fEC ˝ fEC; g; d/
�³.4k�1/

C � � � :

(4.41)

Playing the same game as in the proof of Theorem 4.1, we obtain the following theorem.

Theorem 4.14. If c3.E; g; d/ D 0 and 3p1.L/ � p1.M/ D 0, then²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.4k�1/
D 2

N
2 Ck

Œ k2 �X
sD1

2�6shs; (4.42)

where each hs; 1 � s �
�
k
2

�
, is a canonical integral linear combination of²

yA.TM/ exp
�
c

2

�ech.B˛.TCM;LR ˝ C; EC//

³.4k�1/
; 0 � ˛ � s:

Corollary 4.15. LetM be a .4k � 1/-dimensional spinc manifold. If c3.E;g;d/D 0 and
3p1.L/ � p1.M/ D 0, then

Ind.T c ˝ .4.E/; g4.E/; d // D �2
N
2 Ck

Œ k2 �X
sD0

2�6shs; (4.43)
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where each hs , 1 � s �
�
k
2

�
, is a canonical integral linear combination of

Ind.T c ˝ . zB˛.TCM;LR ˝ C; EC///; (4.44)

and T c is the spinc Toeplitz operator.

Corollary 4.16. Let M be an 11-dimensional spinc manifold. If c3.E; g; d/ D 0 and
3p1.L/ � p1.M/ D 0, then²

yA.TM;rTM/ exp
�
c

2

�
ch.4.E/; g4.E/; d /

³.11/
D 2

N
2 �3

²
yA.TM;rTM/ exp

�
c

2

�
ch.fEC; g; d/

³.11/
: (4.45)

Corollary 4.17. Let M be a 15-dimensional spinc manifold. If c3.E; g; d/ D 0 and
3p1.L/ � p1.M/ D 0, then²

yA.TM;rTM/ exp
�
c

2

�
ch.4.E/; g4.E/; d /

³.15/
D �13 � 2

N
2 �5

²
yA.TM;rTM/ exp

�
c

2

�
ch.fEC; g; d/

³.15/
C 2

N
2 �8

²
yA.TM;rTM/ exp

�
c

2

�
ch.^2fEC; g; d/

³.15/
: (4.46)

By comparing the coefficients of q, q2 in (4.59), we obtain the following theorem.

Theorem 4.18. If c3.E; g; d/ D 0 and 3p1.L/ � p1.M/ D 0, then²
yA.TM;rTM/ exp

�
c

2

�
Œch.ATCM C 2 ^

2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/

� ch.4.E/; g4.E/; d /C ch.4.E/˝ fEC; g; d/�

� 24k

�
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

�³.4k�1/
D �2

N
2 CkC6

Œ k2 �X
sD1

s2�6shs :

(4.47)
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Corollary 4.19. LetM be a .4k � 1/-dimensional spinc manifold. If c3.E;g;d/D 0 and
3p1.L/ � p1.M/ D 0, then

Ind.T c ˝ ..ATCM C 2 ^
2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/

˝ .4.E/; g4.E/; d /C .4.E/˝ fEC; g; d///

� 24k Ind.T c ˝ .4.E/; g4.E/; d //

D 2
N
2 CkC6

Œ k2 �X
sD1

s2�6shs : (4.48)

Corollary 4.20. Let M be an 11-dimensional spinc manifold. If c3.E; g; d/ D 0 and
3p1.L/ � p1.M/ D 0, then²
yA.TM;rTM/ exp

�
c

2

�
Œch.ATCM C 2 ^

2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/

� ch.4.E/; g4.E/; d /C ch.4.E/˝ fEC; g; d/�

� 72

�
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

�³.11/
D �2

N
2 C3

²
yA.TM;rTM/ exp

�
c

2

�
ch.fEC; g; d/

³.11/
:

(4.49)

Corollary 4.21. Let M be a 15-dimensional spinc manifold. If c3.E; g; d/ D 0 and
3p1.L/ � p1.M/ D 0, then²
yA.TM;rTM/ exp

�
c

2

�
Œch.ATCM C 2 ^

2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/

� ch.4.E/; g4.E/; d /C ch.4.E/˝ fEC; g; d/�

� 96

�
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

�³.15/
D 9 � 2

N
2 C2

²
yA.TM;rTM/ exp

�
c

2

�
ch.fEC; g; d/

³.15/
� 2

N
2 �1

²
yA.TM;rTM/ exp

�
c

2

�
ch.^2fEC; g; d/

³.15/
: (4.50)

Theorem 4.22. If c3.E; g; d/ D 0 and 3p1.L/ � p1.M/ D 0, then²
yA.TM;rTM/ exp

�
c

2

�
Œch.S2ATCM CATCM C .2 ^

2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/

C BLR ˝ C/˝ATCM C^
2 BLR ˝ C

˝^
2 BLR ˝ CC 2 ^4 BLR ˝ C � 2BLR ˝ C˝^3 BLR ˝ C
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C 2BLR ˝ C˝^2 BLR ˝ C � BLR ˝ C˝ BLR ˝ C˝ BLR ˝ C

C BLR ˝ CC^2 BLR ˝ C/ ch.4.E/; g4.E/; d /

C ch.ATCM C 2 ^
2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/

C BLR ˝ C/ ch.4.E/˝ fEC; g; d/

C ch.4.E/˝ .^2fEC C fEC/; g; d/�

C .288k2 C 72k/ �

�
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

�
� .24k � 8/

�

²
yA.TM;rTM/ � exp

�
c

2

�
Œch.ATCM C 2 ^

2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/

C BLR ˝ C/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ fEC; g; d/�

³³.4k�1/
D 2

N
2 CkC11

Œ k2 �X
sD1

s22�6shs : (4.51)

Corollary 4.23. Let M be an .4k � 1/-dimensional spinc manifold. If c3.E; g; d/ D 0
and 3p1.L/ � p1.M/ D 0, then

Ind.T c ˝ ..S2ATCM CATCM C .2 ^
2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/

˝ATCM C^
2 BLR ˝ C˝^2 BLR ˝ CC 2 ^4 BLR ˝ C � 2BLR ˝ C

˝^
3 BLR ˝ CC 2BLR ˝ C˝^2 BLR ˝ C � BLR ˝ C˝ BLR ˝ C˝ BLR ˝ C

C BLR ˝ CC^2 BLR ˝ C/˝ .4.E/; g4.E/; d /

C .ATCM C 2 ^
2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/

˝ .4.E/˝ fEC; g; d/C .4.E/˝ .^
2fEC C fEC/; g; d///

C .288k2 C 72k/ Ind.T c ˝ .4.E/; g4.E/; d // � .24k � 8/

� Ind.T c ˝ ..ATCM C 2 ^
2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/C BLR ˝ C/

˝ .4.E/; g4.E/; d /C .4.E/˝ fEC; g; d///

D �2
N
2 CkC11

Œ k2 �X
sD1

s22�6shs : (4.52)
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Corollary 4.24. Let M be an 11-dimensional spinc manifold. If c3.E; g; d/ D 0 and
3p1.L/ � p1.M/ D 0, then²
yA.TM;rTM/ exp

�
c

2

�
Œch.S2ATCM CATCM C .2 ^

2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/

C BLR ˝ C/˝ATCM C^
2 BLR ˝ C

˝^
2 BLR ˝ CC 2 ^4 BLR ˝ CC BLR ˝ C � 2BLR ˝ C

˝^
3 BLR ˝ CC 2BLR ˝ C˝^2 BLR ˝ C � BLR ˝ C

˝ BLR ˝ C˝ BLR ˝ CC^2 BLR ˝ C/ � ch.4.E/; g4.E/; d /

C ch.ATCM C 2 ^
2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/

C BLR ˝ C/ ch.4.E/˝ fEC; g; d/

C ch.4.E/˝ .^2fEC C fEC/; g; d/�

C 2808

�
yA.TM;rTM/ exp

�
c

2

�
� ch.4.E/; g4.E/; d /

�
� 64

�

²
yA.TM;rTM/ exp

�
c

2

�
Œch.ATCM C 2 ^

2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/

C BLR ˝ C/ � ch.4.E/; g4.E/; d /

C ch.4.E/˝ fEC; g; d/�

³³.11/
D 2

N
2 C8

²
yA.TM;rTM/ exp

�
c

2

�
ch.fEC; g; d/

³.11/
:

(4.53)

Corollary 4.25. Let M be a 15-dimensional spinc manifold. If c3.E; g; d/ D 0 and
3p1.L/ � p1.M/ D 0, then²
yA.TM;rTM/ exp

�
c

2

�
Œch.S2ATCM CATCM C .2 ^

2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/

C BLR ˝ C/˝ATCM C^
2 BLR ˝ C

˝^
2 BLR ˝ CC 2 ^4 BLR ˝ C � 2BLR ˝ C˝^3 BLR ˝ C

C 2BLR ˝ C˝^2 BLR ˝ C � BLR ˝ C˝ BLR ˝ C˝ BLR ˝ C

C BLR ˝ CC^2 BLR ˝ C/ ch.4.E/; g4.E/; d /

C ch.ATCM C 2 ^
2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/

C BLR ˝ C/ � ch.4.E/˝ fEC; g; d/

C ch.4.E/˝ .^2fEC C fEC/; g; d/�

C 4896Œ yA.TM;rTM/ exp
�
c

2

�
� ch.4.E/; g4.E/; d /� � 88
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�

²
yA.TM;rTM/ exp

�
c

2

�
Œch.ATCM C 2 ^

2 BLR ˝ C � .BLR ˝ C/˝ .BLR ˝ C/

C BLR ˝ C/ � ch.4.E/; g4.E/; d /

C ch.4.E/˝ fEC; g; d/�

³³.15/
D �7 � 2

N
2 C8

²
yA.TM;rTM/ exp

�
c

2

�
ch.fEC; g; d/

³.15/
C 2

N
2 C5

²
yA.TM;rTM/ exp

�
c

2

�
ch.^2fEC; g; d/

³.15/
: (4.54)

Let dimM D 4k C 1 and y D �
p
�1
2�

c. Set

xQ1.r
TM;rL; g; d; �/ D

²
yA.TM;rTM/ exp

�
c

2

�
ch.‚�.TCM;LR ˝ C//

� ch.Q1.E/; gQ1.E/; d; �/
³.4kC1/

; (4.55)

xQ2.r
TM;rL; g; d; �/ D

²
yA.TM;rTM/ exp

�
c

2

�
ch.‚�.TCM;LR ˝ C//

� ch.Q2.E/; gQ2.E/; d; �/
³4kC1

; (4.56)

xQ3.r
TM;rL; g; d; �/ D

²
yA.TM;rTM/ exp

�
c

2

�
ch.‚�.TCM;LR ˝ C//

� ch.Q3.E/; gQ3.E/; d; �/
³.4kC1/

; (4.57)

where

‚�.TCM;LR ˝ C/ D
1O
nD1

Sqn.ATCM/˝

1O
mD1

^�qm.BLR ˝ C/

is the virtual complex vector bundle over M .
Then

xQi .r
TM;rL; g; d; �/ D

´²� 2kC1Y
jD1

xj �
0.0; �/

�.xj ; �/

� p
�1�.y; �/

�1.0; �/�2.0; �/�3.0; �/

³

� ch.Qi .E/; gQ.E/; d; �/

µ.4kC1/
; 1 � i � 3: (4.58)

Let xP1.�/ D xQi .rTM;rL; g; d; �/4kC1, xP2.�/ D xQi .rTM;rL; g; d; �/4kC1. By (2.13)–
(2.17) and p1.L/ � p1.M/ D 0, then xP1.�/ is a modular form of weight 2k over �0.2/,
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where xP2.�/ is a modular form of weight 2k over �0.2/. Moreover, the following identity
holds:

xP1

�
�
1

�

�
D 2

N
2 �2k xP2.�/: (4.59)

We can show by direct computations that

xQ1.r
TM;rL; g; d; �/

D

�
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

�.4kC1/
C q

²
yA.TM;rTM/ exp

�
c

2

�
Œch.ATCM � BLR ˝ C/ � ch.4.E/; g4.E/; d /

C ch.4.E/˝ fEC; g; d/�

³.4kC1/
C q2

²
yA.TM;rTM/ exp

�
c

2

�
Œch.S2ATCM CATCM C^

2 BLR ˝ C � BLR ˝ C

CATCM ˝ BLR ˝ C/ � ch.4.E/; g4.E/; d /

C ch.ATCM � BLR ˝ C � ch.4.E/˝ fEC; g; d/

C ch.4.E/˝ .^2fEC

C fEC/; g; d//�

³.4kC1/
C � � � ; (4.60)

xQ2.r
TM;rL; g; d; �/

D �q
1
2

�
yA.TM;rTM/ exp

�
c

2

�
ch.fEC; g; d/

�.4kC1/
C q

�
yA.TM;rTM/ exp

�
c

2

�
ch.^2fEC; g; d/

�.4kC1/
� q

3
2

²
yA.TM;rTM/ exp

�
c

2

�
Œch.ATCM � BLR ˝ C/ � ch.fEC; g; d/

C ch.fEC C^
3fEC; g; d/�

³.4kC1/
C q2

²
yA.TM;rTM/ exp

�
c

2

�
Œch.ATCM � BLR ˝ C/ � ch.^2fEC; g; d/

C ch.^4fEC C fEC ˝ fEC; g; d/�

³.4kC1/
C � � � :

(4.61)

Playing the same game as in the proof of Theorem 4.1, we obtain the following theorem.
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Theorem 4.26. If c3.E; g; d/ D 0 and p1.L/ � p1.M/ D 0, then

²
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

³.4kC1/
D 2

N
2 Ck

Œ k2 �X
sD1

2�6shs; (4.62)

where each hs; 1 � s �
�
k
2

�
, is a canonical integral linear combination of²

yA.TM/ exp
�
c

2

�ech.B˛.TCM;LR ˝ C; EC//

³.4kC1/
; 0 � ˛ � s:

Corollary 4.27. LetM be a .4kC 1/-dimensional spinc manifold. If c3.E;g;d/D 0 and
p1.L/ � p1.M/ D 0, then

Ind.T c ˝ .4.E/; g4.E/; d // D �2
N
2 Ck

Œ k2 �X
sD0

2�6shs; (4.63)

where each hs , 1 � s �
�
k
2

�
, is a canonical integral linear combination of

Ind.T c ˝ . xB˛.TCM;LR ˝ C; EC///: (4.64)

Corollary 4.28. Let M be a 13-dimensional spinc manifold. If c3.E; g; d/ D 0 and
p1.L/ � p1.M/ D 0, then²

yA.TM;rTM/ exp
�
c

2

�
ch.4.E/; g4.E/; d /

³.13/
D 2

N
2 �3

²
yA.TM;rTM/ exp

�
c

2

�
ch.fEC; g; d/

³.13/
: (4.65)

Corollary 4.29. Let M be a 17-dimensional spinc manifold. If c3.E; g; d/ D 0 and
p1.E/C p1.L/ � p1.M/ D 0, then²

yA.TM;rTM/ exp
�
c

2

�
ch.4.E/; g4.E/; d /

³.17/
D �13 � 2

N
2 �5

²
yA.TM;rTM/ exp

�
c

2

�
ch.fEC; g; d/

³.17/
C 2

N
2 �8

²
yA.TM;rTM/ exp

�
c

2

�
ch.^2fEC; g; d/

³.17/
: (4.66)

By comparing the coefficients of q, q2 in (4.59), we obtain the following theorem.
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Theorem 4.30. If c3.E; g; d/ D 0 and p1.L/ � p1.M/ D 0, then²
yA.TM;rTM/ exp

�
c

2

�
Œch.ATCM � BLR ˝ C/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ fEC; g; d/�

� 24k

�
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

�³.4kC1/
D �2

N
2 CkC6

Œ k2 �X
sD1

s2�6shs : (4.67)

Corollary 4.31. LetM be a .4kC 1/-dimensional spinc manifold. If c3.E;g;d/D 0 and
p1.L/ � p1.M/ D 0, then

Ind.T c ˝ ..ATCM � BLR ˝ C/˝ .4.E/; g4.E/; d /C .4.E/˝ fEC; g; d///

� 24k Ind.T c ˝ .4.E/; g4.E/; d //

D 2
N
2 CkC6

Œ k2 �X
sD1

s2�6shs : (4.68)

Corollary 4.32. Let M be a 13-dimensional spinc manifold. If c3.E; g; d/ D 0 and
p1.L/ � p1.M/ D 0, then²

yA.TM;rTM/ exp
�
c

2

�
Œch.ATCM � BLR ˝ C/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ fEC; g; d/�

� 72

�
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

�³.13/
D �2

N
2 C3

²
yA.TM;rTM/ exp

�
c

2

�
ch.fEC; g; d/

³.13/
: (4.69)

Corollary 4.33. Let M be a 17-dimensional spinc manifold. If c3.E; g; d/ D 0 and
p1.L/ � p1.M/ D 0, then²

yA.TM;rTM/ exp
�
c

2

�
Œch.ATCM � BLR ˝ C/ ch.4.E/; g4.E/; d /

C ch.4.E/˝ fEC; g; d/�

� 96

�
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

�³.17/
D 9 � 2

N
2 C2

²
yA.TM;rTM/ exp

�
c

2

�
ch.fEC; g; d/

³.17/
� 2

N
2 �1

²
yA.TM;rTM/ exp

�
c

2

�
ch.^2fEC; g; d/

³.17/
: (4.70)
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Theorem 4.34. If c3.E; g; d/ D 0 and p1.L/ � p1.M/ D 0, then²
yA.TM;rTM/ exp

�
c

2

�
Œch..S2ATCM CATCM C^

2 BLR ˝ C � BLR ˝ CCATCM

˝ BLR ˝ C/ ch.4.E/; g4.E/; d /C ch.ATCM � BLR ˝ C/
� ch.4.E/˝ fEC; g; d/C ch.4.E/˝ .^2fEC C fEC/; g; d//�

C .288k2 C 72k/

�
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

�
� .24k � 8/

�

²
yA.TM;rTM/ exp

�
c

2

�
Œch.ATCM � BLR ˝ C/ � ch.4.E/; g4.E/; d /

C ch.4.E/˝ fEC; g; d/�

³³.4k�1/
D 2

N
2 CkC11

Œ k2 �X
sD1

s22�6shs : (4.71)

Corollary 4.35. LetM be a .4kC 1/-dimensional spinc manifold. If c3.E;g;d/D 0 and
p1.L/ � p1.M/ D 0, then

Ind.T c ˝ ..S2ATCM CATCM C^
2 BLR ˝ C � BLR ˝ CCATCM ˝ BLR ˝ C/

˝ .4.E/; g4.E/; d /C .ATCM � BLR ˝ C/˝ .4.E/˝ fEC; g; d/

C .4.E/˝ .^2fEC C fEC/; g; d///

C .288k2 C 72k/ Ind.T c ˝ .4.E/; g4.E/; d //

� .24k � 8/ Ind.T c ˝ ..ATCM � BLR ˝ C/˝ .4.E/; g4.E/; d /
C .4.E/˝ fEC; g; d///

D �2
N
2 CkC11

Œ k2 �X
sD1

s22�6shs : (4.72)

Corollary 4.36. Let M be a 13-dimensional spinc manifold. If c3.E; g; d/ D 0 and
p1.L/ � p1.M/ D 0, then²
yA.TM;rTM/ exp

�
c

2

�
Œch..S2ATCM CATCM C^

2 BLR ˝ C � BLR ˝ CCATCM

˝ BLR ˝ C/ ch.4.E/; g4.E/; d /C ch.ATCM � BLR ˝ C/
� ch.4.E/˝ fEC; g; d/C ch.4.E/˝ .^2fEC C fEC/; g; d//�

C 2808

�
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

�
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� 64

²
yA.TM;rTM/ exp

�
c

2

�
Œch.ATCM � BLR ˝ C/ � ch.4.E/; g4.E/; d /

C ch.4.E/˝ fEC; g; d/�

³³.13/
D 2

N
2 C8

²
yA.TM;rTM/ exp

�
c

2

�
ch.fEC; g; d/

³.13/
: (4.73)

Corollary 4.37. Let M be a 17-dimensional spinc manifold. If c3.E; g; d/ D 0 and
p1.L/ � p1.M/ D 0, then²
yA.TM;rTM/ exp

�
c

2

�
Œch..S2ATCM CATCM C^

2 BLR ˝ C � BLR ˝ CCATCM

˝ BLR ˝ C/ ch.4.E/; g4.E/; d /C ch.ATCM � BLR ˝ C/
� ch.4.E/˝ fEC; g; d/C ch.4.E/˝ .^2fEC C fEC/; g; d//�

C 4896

�
yA.TM;rTM/ exp

�
c

2

�
ch.4.E/; g4.E/; d /

�
� 88

²
yA.TM;rTM/ exp

�
c

2

�
Œch.ATCM � BLR ˝ C/ � ch.4.E/; g4.E/; d /

C ch.4.E/˝ fEC; g; d/�

³³.17/
D �7 � 2

N
2 C8

²
yA.TM;rTM/ exp

�
c

2

�
ch.fEC; g; d/

³.17/
C 2

N
2 C5

²
yA.TM;rTM/ exp

�
c

2

�
ch.^2fEC; g; d/

³.17/
:

(4.74)
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