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Invariants and automorphisms for slice regular functions
Cinzia Bisi and Jorg Winkelmann

Abstract. Let A be one of the following Clifford algebras: R, =~ H or R3. For the algebra A, the
automorphism group Aut(A) and its invariants are well known. In this paper, we will describe the
invariants of the automorphism group of the algebra of slice regular functions over A.

1. Introduction

The theory of slice regular functions was introduced by Gentili and Struppa in two seminal
papers in 2006 [20] and in [21]: they used the fact that VI € Sy = {J e H | J? = —1}
the real subalgebra C; generated by 1 and / is isomorphic to C and they decomposed the
algebra H into a “book-structure” via these complex “slices”:

H = U Cy.

IeSyy

On an open set Q C H, they defined a differentiable function f: Q2 — H to be (Cullen
or) slice regular if, for each I € S, the restriction of f to Q; = Q N Cy is a holomorphic
function from Q7 to H, both endowed with the complex structure defined by left multi-
plication with 7. This definition covers all functions given by convergent power series of

> d"an

neNy

the form

with {a, }nen, C H.

Later on, the approach introduced by Ghiloni and Perotti in 2011 [22], for an alterna-
tive x-algebra A over R, makes use of the complexified algebra A @ C denoted by Ac.

Let us denote its elements as a + b, where a,b € A and ¢ is to be considered as the
imaginary unit of C.

For any slice regular function, and for any / € Sy, the restriction f: C; — H can be
lifted through the map ¢;: He — H, ¢7 (a+tb):=a+ 1D and it turns out that the lift does
not depend on /. In other words, there exists a holomorphic function F: C = Rc — Hc
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which makes the following diagram commutative for all / € Sg:

CL)HC

o e

H—L»H

After the first definitions were given, the theory of slice regular functions knew a big
development, see, among the others, the following references [1,4—13,19].

Non-commutative associative division algebras admit many automorphisms, because
xy is an automorphism for every invertible element y.

The “essential” properties of a number or a function should not be changed by auto-
morphisms.

In the case of the algebras under consideration here, there is an antiinvolution x +— X
which commutes with all automorphisms. As a consequence, N(x) = xx and Tr(x) =
x + X are invariant under automorphisms. In fact, for A = H, we have the equivalence

Xy

N(z) =N(w) and Tr(z) =Tr(w) < I¢ € Aut(A4) : ¢(z) = w.

(Here, ¢ is an automorphism of A as an R-algebra.)

This raises the question whether a similar correspondence holds not only for the ele-
ments in the algebra, but also for slice-regular functions of this algebra.

As it turns out, essentially this is true, but only via the associated stem functions and
up to a condition on the multiplicity with which values in the center of Ac are assumed.
To state the latter condition, in Section 6.2, we introduce the notion of a “central divisor”
cdiv.

More precisely, the conjugation x — X on the algebra A defines a conjugation on the
space of slice-regular functions which allows the definition of Tr and N as before.

This conjugation corresponds to a conjugation on the associated space of stem func-
tions F : C - AQRrC defined as

FC:zw (F(2)),

where (¢®w) is defined as g®(w) (with ¢ € A, w € C). Again, conjugation induces Tr
and N as
Te(F):z— (F + F°)(z), N(F):zr (F(2)(F°(2)).

With these definitions, the correspondence between regular functions and stem func-
tions is compatible with conjugation. As a consequence, if F is the stem function for f,
then F¢ is the stem function for f¢. Moreover, N(F'), respectively, Tr(F'), are the stem
functions for N( f), respectively, Tr( f).

As it turns out, essentially, N(F'), Tr(F'), and cdiv(F) (or, equivalently, N( f), Tr( f),
and cdiv( f)) characterize F' (equivalently, f) up to replacing F with z > ¢(z)(F(z))
for some holomorphic map ¢ from C to the automorphism group of the complex algebra
A®RC.
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Here, cdiv is an additional invariant which we introduce in Section 6.2 for slice regular
functions which are not slice preserving.

In this paper, we describe the group of automorphisms of the algebra of slice regular
functions with values in H and R; >~ H & H.!

Our main theorem is the following.

Theorem 1.1. Let H denote the algebra of quaternions, He = HrC, G = Aut(H) =~
SO(3,R), G¢c = Aut(H¢) = SO(3,C). Let D C C be a symmetric domain and let Qp C
H denote the corresponding axially symmetric domain.

Let f,h : Qp — H be slice regular functions and let F, H : D — Hc denote the
corresponding stem functions.

(a) Assume that neither f nor h are slice preserving. Then, the following are equiv-
alent:

(1)  f and h have the same invariants cdiv, Tr, N,
(i1) F and H have the same invariants cdiv, Tr, N,

(iii) cdiv(F) = cdiv(H) and for every z € D, there exists a € Aut(Hc) = Gc
such that F(z) = a(H(z2)),

(iv) there is a holomorphic map ¢ : D — G¢ such that
F(z) = ¢(z)(H(z)) VzeD,

(V) there is a holomorphic map a : D — M. such that
F(z) =a(z)"' - H() - a(z).

(b) Assume that f is slice preserving. Then, the following are equivalent:
®» f=h
(i) F =H,
(iii) for every z € D, there exists an element o € Aut(Hc) = G such that
F(z) = a(H(2),

(iv) thereis a holomorphic map ¢ : D — G¢ suchthat F(z)=¢(z)(H(z))Vz €
D’

(V) there is a holomorphic map a : D — H such that
F(z) =a(z)"' - H() - a(z).

Remark. The notion of a “central divisor” is defined only if the function is not slice
preserving. This is similar to the ordinary complex situation where the divisor of a holo-
morphic function is defined only if it is not constantly zero.

'In a forthcoming paper, we will investigate other algebras as well.
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Theorem 1.1 is proved in Section 18.

We also derive a corresponding result for the Clifford algebra R3 (which as R-algebra
is isomorphic to H & H) (Theorem 8.1).

Quaternions can be used to describe orthogonal complex structures (OCS) on 4-di-
mensional Euclidean space, since their imaginary units parametrize automorphisms of
R* = C2. An injective slice regular function on a symmetric slice domain of H minus
the reals defines a new OCS via the push-forward of the standard one. It would be very
interesting in the authors’ opinion to understand if slice regular functions that are in the
same orbit, by the action of automorphisms as explained in this paper, induce the same
OCS or isomorphic OCS [18].

1.1. Related work

In [2], Altavilla, de Fabritiis investigated equivalence relations for semi-regular functions.

These semi-regular functions are locally *-quotient of slice regular functions and cor-
respond to meromorphic functions in complex analysis.

Semi-regular functions have the advantage that they are always invertible unless they
are zero-divisors. This eases the use of linear algebra.

In [2], it is proved that for any two semi-regular functions f and g the following
properties are equivalent.

* Tr(f) =Tr(g) and N(f) = N(g).
* There is a semi-regular function & with A % f « h™* = g.
* The “Sylvester-operator” Sy,_g : X = f * X — x * g is not invertible.

In comparison, we obtain a stronger conclusion (namely, conjugation by a regular
function instead by a function which is only semi-regular), but for this we need an addi-
tional assumption, namely, equality not only of trace Tr and norm N, but also of the
“central divisor” cdiv which we introduce in Section 6.2. See Section 4 for an instruc-
tive example.

2. Preparations

Here, we collect basic facts and notions needed for our main result. First, we discuss
conjugation, norm and trace, then types of domains, then slice regular functions and stem
functions, followed by investigating conjugation, norm and trace for function algebras.

2.1. Conjugation, norm and trace

Let A be an alternative R-algebra with 1, and let x — X be an antiinvolution, i.e., an R-
linear map such that Xy = (y) - (¥) and (x¥) = x for all x, y € A. (An R-algebra with an
antiinvolution is often called x-algebra.)

’In this article, we are mainly concerned with the algebra of quaternions and R =~ H & H, but we
would also like to prepare for a future article on other R-algebras.
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Definition 2.1. Given an R-algebra A with antiinvolution x — X, we define

Trace: Tr(x) = x + X,

Norm: N(x) = xX.

Consider
C={xed:x=x}
We assume that C is central and associates with all other elements, i.e.,
VeeC,x,ye A:cx =xc and c(xy) = (cx)y.

It is easy to verify that C is a subalgebra (under these assumptions, i.e., if C is assumed
to be central).
Lemma 2.2. Under the above assumptions, the following properties hold:

(1) VxeR:x =x,

2) Vx e A:N(x), Tri(x) e C ={yeAd:y =y}

(B) Vx e A:xx = xx,

(4) Vx € A:N(x) = N(x),

(5) Vx,y € A:N(xy) = N(x)N(»).
Proof. (1) Observe that

=11 = 1=1-1=1-1=1.

By R-linearity of the antiinvolution, this yields Vx € R : x = x.

(2) This follows from

(Tr(x)) =x 4+ x =X +x = Tr(x)
and
(N(x)) = (xx) = (x)x = xx = N(x).

(3) x + X is central; hence, x (x + X) = (x + X)x which implies x> + xX = x? + ¥x,
and consequently, xX = Xx.

@NE) = (®)F) = (O)x = x(¥) = N().

(5) If A is associative, we argue as follows:

N(xy) = (xy)(xy) = xy(yX)
= x(yy)x = xX(yy) = N(x)N(y).
For the general case, we observe that x, X, y, y are all contained in the C-algebra Ay gen-
erated by x and y (note that x + X,y + y € C). Artin’s theorem (see [27, Theorem 3.1])
implies that A is associative. Thus, all the calculations in the above sequence of equations

take place within an associative algebra, namely, A¢ and the proof is therefore still valid,
even if A itself is not associative, but only alternative. [
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2.2. Relation with notions in linear algebra and number theory

The norm and trace as considered here for the algebra of quaternions are closely related
to notions in linear algebra and number theory.

The algebra H is a central simple R-algebra with HQrC =~ Mat(2 x 2, C).

In the theory of central simple algebras (see, e.g., [24, Chapter 29]), one considers
reduced traces T'rd and reduced norms Nrd defined as Tr(¢ (x)), respectively, det(¢ (x))
for x € H, where ¢ denotes the embedding of H into Mat(2 x 2, C) via the natural embed-
ding H C H®grC composed with an isomorphism H®rC = Mat(2 x 2, C).

There is also a connection with notions of norm and trace in algebraic number theory.

If A= C and x + x€ is complex conjugation, then Tr and N defined as here agree
with the number-theoretical notions Tr and N for the Galois field extension C /R.

2.3. Stem functions

A stem function is a (usually holomorphic) function F defined on a symmetric domain’
D in C with values in Ac = AQgC satisfying F(z) = F(Z) where we use the complex
conjugation on AQRC.

For a stem function F, we define (F¢)(z) = (F(2))¢, i.e., we apply quaternionic
conjugation pointwise. Thus, we obtain a conjugation on the algebra of stem functions
defined on a domain D C C. As before, we define norm and trace and obtain

N(F)(z) = (FF)(2) = (F(2))(F(2)) = (F(2))(F(2))° = N(F(2))

and
(Tr F)(z) = (F + F)(2) = F(2) + (F(2))° = Tr(F(2)).

Globally defined slice regular functions are given as globally convergent power series
+o00o
f@) =) ¢ a.
k=0

In this case,
+o0

(f)Ng) =D q a;.
k=0
The space of slice regular functions on an axially symmetric domain forms an asso-
ciative R-algebra with the *-product as multiplication.
Hence,

(Tef)=/f+f° and N(f) =[x f“.

Immediately from the construction, we obtain the following proposition.

3D C C is called symmetriciffz € D <= Z € D.
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Proposition 2.3. Let [ be a slice function and F its associated stem function. Then,
N(F), Tr(F) and F€ are the stem functions associated to N(f), Tr(f), and f°.

Remark. In general, we have £¢(q) # f(q). Only for real points g € R we have f¢(q) =
f (), and consequently, (N f)(q) = N(f(g)) and (Tr f)(g) = Tr(f(q)).

2.4. Compatibility

Recall that conjugation for slice regular functions is not just pointwise conjugation of the
function values.
Therefore, in general,

(Tr f)(@) # Tr(f(q)). (N f)(g) # N(f(g))

Let B be a R-sub algebra of an R algebra A equipped with an antiinvolution which
preserves B.

Then, for x € B, the notions Tr(x) and N(x) defined with respect to this antiinvolution
are the same regardless whether we regard x as an element of B or as an element of A.

As a consequence, we have the following:

» for x € H the notions N(x), Tr(x) agree independent of whether we consider x in H
orin Hc,

e for an element x € H the notions N(x), Tr(x) agree whether we regard x in H or as a
constant slice regular function with value x.

2.5. Other notions

For x € H, the term % Tr(x) is often called real part of x, sometimes denoted by xg, and
N(x) is also called the symmetrization of x and denoted by x*.

3. An example

Warning. The conditions of the main Theorem 1.1 do not imply that, for any ¢ € H, we
can find an element o € Aut(H) such that f(g) = a(g(q)).

Example 3.1. Let f(¢) = I, and let g(q) = cos(q)I + sin(q)J; i.e.,

+o00 k k
_ 2 (=1) 21 (=D
g(q)—kg;)(q @it T4 (2k+1)!J)’

where I, J are any two orthogonal imaginary units in [Hl with K = I1J.
We recall the classical identities

sin(it) = i sinh(¢), cos(it) = cosh(t) Vi €R.
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For ¢t € R, we deduce that

gJ) =cos(tJ)I + sin(tJ)J
. 2
cosh(z)I + sinh(¢) \J’_/
=1

= cosh(¢)] — sinh(¢).

In particular, the “real part” % Tr(g(tJ)) is non-zero if sinh(z) # 0, i.e., if ¢ # 0. Hence,
for t € R*, we have
Tr(g(tJ)) # 0 = Tr(I) = Te(f(t))).

Since Tr(¢(g)) = Tr(g) for every ¢ € H and every automorphism ¢ of H, it follows that
there is no automorphism of H mapping g(¢J) to f(tJ) = I.
On the other hand, we have

g°(q) = —cos(q)I —sin(q)J
—
(g * g°)(q) = —(cos(q)I + sin(g)J) * (cos(g)] + sin(g)J)

= —(cosz(q) _12 + sin(g)? _Jz + sin(g) cos(q) (IJ + JI) )

=1 -1 =0
= (cos(q) +sin*(@) ) = 1= f * f©
N————
=1
and
g(q) + g°(q) = cos(q)I + sin(q)J + —cos(q)I —sin(q)J =0

g(q) g(q)
=1+(I1)= f(@+ f(q) VYqeH

Thus, Tr(f) = Tr(g) = 0 and N(f) = N(g) = 1. The stem functions F,G : C —
H®C associated to f and g are

F(iz)=1®I, G(z) =cos(z)®I + sin(z)®J.

Since sin?(z) + cos?(z) = 1 ¥z € C, both F and G avoid the center RQC of HRC.
Hence, the central divisors cdiv(F) and cdiv(G) (as defined in Section 6.2) are both
empty. Therefore, we have verified that in this example

Tr(f) =Tr(g). N(f) =N(g), cdiv(f) = cdiv(g).

but for some g € H there is no ¢ € Aut(H) with

f@) = ¢(g(q)).
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On the other hand, our main result implies that there exists a holomorphic map ¢ : C —
Aut(Hc) such that the corresponding stem functions F and G satisfy F(z) = ¢(2)(G(2)).
References [2, 3] pointed out that there exists a slice regular function 4 such that f *
h = h *x g. This implies that
h™*x fxh=g,

where £ is slice regular, but 2~* is possibly only semi-regular.

In contrast, our result implies the existence of such a slice regular function i which is
invertible in the sense that 2~ is likewise slice regular, and not only semi-regular.

To give an explicit example, let

H(z) = cos(z/2) — K sin(z/2).
Then,

H(z) ' F(z) - H(z) = (COS (%) + K sin (%)) -1 - (COS (%) — Ksin (%))

= Jcosz + Jsinz = G(z).

4. Another example

Consider the stem functions
Fz)=1+41zJ + %ZZK,
1
G(z) = (1 + 522)1.
We have
Tr(F) = Tr(G) = 0,
N(F)=N(G) =1+2z2+ %z“,
cdiv(F) = {}, cdiv(G) = 1{~/2i} + 1{—+/2i},

where F and G are not equivalent in our sense because cdiv(F) # cdiv(G). Therefore,
there does not exist a stem function H : C — H such that both H and H ~1 are holo-
morphic and

F=H'-G-H.

In contrast, Altavilla and de Fabritiis do not need a condition on cdiv for their results
in [2, 3]. Hence, their results imply that there exists a meromorphic stem function H with

F=H'-G-H.
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Indeed, an explicit calculation shows that
12+ 32%) + Jz + 322K
124 +322 44

1 1
H(z) = 1(2 + Ezz) +Jz 432K HT'@) =

is such a function.

5. More preparations

5.1. The Clifford algebra R3

The Clifford algebra R 3 may be realized as the associative R-algebra generated by ey, €3,
and e3 with the relations

ejkx +exj =28k, J.ke{l,2,3},
where § is the Kronecker symbol and e;; = e; - ex;i.e.,
1 ifj =k,
Sjk = L
0 ifj #k.

It contains the idempotents w4, w— satisfying wyw— = 0, namely,

1 1
w4 = 5(616263 +1), o= 5(6’1@263 —1).
This yields a direct sum decomposition of R3
Ry, = w+H (S5 C()_H,

where H =~ R, is embedded in R3 as the subalgebra generated by ey, e>.
See, e.g., [17] and [23, Chapter V] for more details on Clifford algebras.

5.2. Invariants for R3

For more clarity in this paragraph, we use Ny, respectively, Try in order to denote the
norm and trace for a given algebra A.

The Clifford algebra R 3 is isomorphic (as R-algebra with an anti-involution which we
call conjugation) to H & H.

As a consequence, we have

NRr;(¢91,92) = Nuen(g1,92) = (Nu(q1),Nu(g2)),
Trr,(91,q2) = Traen (1. 92) = (Trr(g1). Trr(g2))
forqy,q, e H @ H = R;.

Similarly for the complexified algebra R3®rC = H¢ @ Hc and the corresponding
function algebras.
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Caveat. Since (z, w) + (w, z) is an automorphism of H & H (see Section 11), these
functions N, Tr are not invariants. They are only invariants up to changing the order of
the two components; i.e., they are invariants for the connected component Aut’ (H @ H)
which equals Aut(H) x Aut(H) acting component-wise on A = H & H.

5.3. Slice preserving functions

Proposition 5.1. Let A = H, and let f : A — A be a slice regular function with stem
Sfunction F : C — Ac. Then, the following are equivalent:

M f=re

(2) F=F°,

(3) F(C) Cc RRRC C A®RC = Ac,

4) f(Cp)cCrforalll €S ={qeA:q*>=—1}(withC; =R + IR).

Definition 5.2. If one (hence all) of these properties are fulfilled, f is called “slice pre-
serving”.

Proof. These equivalences are well known. (iv) <= (iii) follows from representation
formula (i) <= (ii) <= (iii) by construction of ( )°. [ ]

5.4. Slice regular functions for A = R3

In [22], slice regular functions are considered for real alternative algebras, e.g., Clifford
algebras. For generalities on Clifford algebras, see, e.g., [23, Chapter V].

A quadratic cone Q4 C A is defined such that every g € Q4 is contained in the image
of some R-algebra homomorphism from C to A. While Q4 = A for A = H, we have
Q4 # A for the Clifford algebra A = R3 =~ H @ H. More precisely, (see [22])

Q4 =RU{x € A:Tr(x),N(x) € R, 4N(x) > Tr(x)}
= {x € A:Tr(x),N(x) € R}
= {(¢1.92) € H® H : Tru(q1) = Tra(92). Nu(q1) = Nu(q2)}.
(For A = R3, the condition 4 N(x) > Tr(x)? is automatically satisfied for every ele-

ment x € A \ R with N(x), Tr(x) € R.)
Given a symmetric domain D C C, there is the “circularization”

Qp ={(x+yHy.x + yHy) :x,y € R, Hy, Hy € Su.x + yi € D}

(with Sg = {J € H : J2 = —1}). Bvidently, Qp C Qa.
But due to the special direct sum nature of R3, we may regard a larger set, namely,

Wp = {(x1 +yiHy,x2+y2Hy) 1 Hi € Sp,x;,y; e R,xj +yjie DVj e {1,2}}.

5.1

Note that Qp = Q4 N Wp. Thus, Q2 p relates to Wp like the quadratic cone Q 4 to the
whole algebra A = R3.
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Slice regular functions. As defined in [22] they are certain functions defined on the cone
Q4. It is shown in [22] that these slice regular functions correspond to holomorphic stem
functions, i.e., holomorphic functions F : D — Ac such that F(z) = F(Z) Vz € C.

We remark that there is a natural way to extend a function f : Qp — Rj to a function
f : WD — R3.

Namely, we use the decomposition R 2 H & H to represent f as f = (f1, f2) with
fi : Qp — H and define

f (1 + y1Hy, x2 + yaHa)
= (fix1 + y1Hi, x1 + y1H2), falx2 + y2Hi,x2 + y2 H>)).

In this way, the algebra of slice regular functions on 2 p can be identified with a certain
algebra of functions on Wp.

Let us now discuss the special case of globally defined functions (i.e., D = C, Qp =
QA, and WD = A= R3.)

In this case, stem functions are holomorphic functions with values in Ac which are
defined on the whole of C. Such a holomorphic function may be defined by a convergent
power series Z:ﬁ% z*a; with ax € A. (A priori, ay € Ac for a holomorphic function
F : C — Ac, but the condition F(z) = F(Z) ensures that ax € A.)

Such a power series may also be regarded as power series in a variable in A4; in this
case, it defines a function f : A— A. (Itis easily show that it is again globally convergent.)

Thus, there are bijective correspondences between the following classes of functions.

o Slice regular functions f : Q4 — A as defined in [22].

» Entire functions, i.e., functions f : A — A which are defined by globally convergent
power series 129 g ay (ax € A).

o Stem functions, i.e., holomorphic functions F' : C — Ac with F(z) = F(2).

In particular, slice regular functions f : Q4 — A extend naturally to functions f :
A — A defined by globally convergent power series.

Thus, for the special case of the Clifford algebra Rj, there is no need to restrict the
domain of definition to (subdomains of) the quadratic cone Q4.

Let D, Qp, Wp be as in the preceding subsection.

We described above how to associate a function f :Wp - A~ H & H to a given
function f : Qp — A.

6. Central divisors

6.1. Divisors for vector-valued functions

Normally, divisors are defined for holomorphic functions with values in C. Here, we
extend this notion to holomorphic maps from Riemann surfaces to higher-dimensional
complex vector spaces.
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Definition 6.1. Let f : X — V' = C” be a holomorphic map from a Riemann surface X
to a complex vector space V' = C”. Assume that f is not identically zero.

The divisor of f is the divisor corresponding to the pull back of the ideal sheaf of the
origin; i.e., for f = (f1,..., fa), fi : X — C, we have div(f) = }_,cx mp{p}, where
m,, denotes the minimum of the multiplicities mult, ( f;).

6.2. Central divisor for stem functions

In [11, Definition 3.1], we introduced the notion of a slice divisor. Here, we will need a
different notion of divisor.

Namely, we need a notion of divisor which measures how far the function is from being
slice-preserving. This we call “central divisor”. Here, we define it for the quaternion case.

Definition 6.2. Let Z =~ C be the center of Hc, D C C a symmetric domain, and F :
D — Ac aholomorphic map. Assume F(D) ¢ Z.

The central divisor cdiv(F') is defined as the divisor (in the sense of Definition 6.1) of
the map from D to Hc/Z induced by F.

Let (1,1, j, k) be the standard basis of H|, and let W @ g C denote the complex vector
subspace of H¢ generated by i®1, j®1, k®1.

Then, Hc may be represented as the vector space direct sum H¢ = Z & WQRrC,
where Z = C denotes the center. And we can decompose F : D — Hc as F = (F', F"):
D — Z x(W ®grC) and the central divisor cdiv(F') equals ZPGD np{p}, where n, denotes
the vanishing order of F"” at p.

Let F = (F', F") be a stem function for a slice function f. Then, f is slice-preserving
if F” = 0 (Definition 5.2).

Hence, the assumption that f is not slice preserving implies that F” does not vanish
identically and we therefore may define cdiv(F') as above.

Example 6.3. Consider F : C — H®grC defined as
F(z) =1®z 4+ i®z*(z — 1) + j®z°(z — 1)%.

Then,
cdiv(F) =2-{0} + 1-{1}.

Caveat. These central divisors do not satisfy the usual functoriality.

Example 6.4. Let
F(z)y=1+4iz, G@)=1+4j1+2).

Then, cdiv(F) = 1-{0} and cdiv(G) = 1 - {—1}, but
cdiv(FG) =cdiv(l +iz + j(z+ 1)+ k(z + 1)z)

is empty. Thus,
cdiv(FG) # cdiv(F) + cdiv(G).
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6.3. Central divisor for slice functions

We simply define the central divisor for a given slice regular function as the central divisor
of the corresponding stem function (as defined in Definition 6.2).

6.4. Central divisors for R3

The central divisor cdiv of a slice regular function f : R3 — R3 is defined via the stem
function F. Given a stem function F : D — A¢c =~ Hc¢ @ Hc, we define

cdiv(F) = (cdiv Fy, cdiv F»),

where F, F> are the components of the stem function F with respect to the decomposition
of R3 into a direct sum of two copies of H.

What we need is to treat R3 consequently as product; i.e., we regard slice regular
functions from (a domain in) R3 to R3 as a pair of the quaternionic slice regular functions
and define the “central divisor” of a slice regular function f = (fi; f2) as

cdiv(f) = cdiv(f1: f2) = (cdiv(f1), cdiv(f2)).

7. Strategy

Let A be a R-algebra, Ac = A®RC its complexification and G¢ the automorphism group
of the complex algebra Ac.

For certain* holomorphic maps F, H : C — Ac, we want to show the following state-
ment.

If; for every x € C, there exists an element g € G¢ such that F(x) = g(H(x)), then
there exists a holomorphic map ¢ : C — G¢ with F(x) = ¢(x)(H(x)) Vx.

This amounts to find a section for a certain projection map, namely, 7 : V — C with

V ={(x,g) €CxGc : F(x) = g(H(x))}

and
w(x,g) = x.
First, we discuss the locus where F and H assume zero as value.
Outside this zero locus D, i.e., restricted to Vp = 71 (C\ D), the map 7 has some
nice properties if A = H:
(1) all m-fibers are of the same dimension, homogeneous, and moreover, biholomor-
phic to a Lie subgroup of G¢,

(2) there are everywhere local holomorphic sections.

4«Stem functions”.
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Moreover, for A = Hi, there is a Zariski open subset 2 in C on which x is a locally
holomorphically trivial fiber bundle with C* as fiber.

We show that there exists a global holomorphic section on £2.

We will use strongly that the generic isotropy group (i.e., C*) is both commutative
and one-dimensional.

8. Main result for R;

Theorem 8.1. Let D C C be a symmetric domain, 2p C Rj as defined above (see (5.1)),
fih 1 Qp — Ry slice regular functions as defined above.

Let F, H : D — Ac be the associated stem functions.

Let Gg denote the connected component of the neutral element of the group of C-
algebra automorphisms of Ac = R3®RrC, ie., Gc = Aut(Hc) x Aut(Hc).

Let N, Tr, and cdiv be defined as in Section 5.2. Then, the following are equivalent.

(1) There exists a holomorphic map ¢ : D — G¢ with
F(z) =¢(z2)(H(z)) VYzeD.
(2) There exists a holomorphic map o : D — Ac* =~ Hg x Hg with
F(z) = a(z)(H(z))(a(z))"! VYzeD.
(3) cdiv(F) = cdiv(H), Tr(F) = Tr(H), and N(F) = N(H).

Proof. Using A = H & H and G(% =~ Aut(Hc) x Aut(Hc), the equivalence of the exis-
tence of such amap ¢ : D — G¢ with the condition

cdiv(F) = cdiv(H), Ti(F)=Tr(H), N(F)=N(H)

follows from the respective result for quaternions (Theorem 1.1, proved in Section 18). m

9. Local equivalence

Assumptions 9.1. Let G be a connected complex Lie group acting holomorphically on a
complex manifold X such that all the orbits have the same dimension d.
Let
FH:- A={zeC:|z]<l} > X

be holomorphic maps such that for every z € A there exists an element g € G (depending
on z, not necessarily unique) with F'(z) = g - H(z).
Let
V={z.8)€e AxG:F(z) =g -H(2)}.
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Lemma 9.2. Under the above assumption 9.1, for every t € A there is a biholomorphic
map between the fiber
Vi={(z,g)eV:z=t}

and the isotropy group
Gray=1{g € G :g-F(t) = F()}.
Proof. Fix t € A and choose a point (¢, go) € V;. Note that
F(t) = go- H(t)

because (t,g9) € V; C V.
We define a map
¢ Gray — Vi
as
£(g) = (1.8 go)

We claim that this is a biholomorphic map from G to V;. First, we verify that
{(g)eV;. Indeed, F(t)=go - H(t) (as seen above) and g - F'(t) = F (¢) because g€ G ().
Combining these facts implies that

F(1)=g-g0-H1t) = ¢(g) =(t,880) €V,
~—————
F()
where ¢ is obviously injective. Let us check surjectivity. Let (¢, p) € V;. Then, F(t) =

p - H(t). Recall that
F(t) = go- H(1).

It follows that

(P-ga VF(t) = (p-gy")go- H(t) = pH(t) = F(1).
Hence,
78" €Gre.

We claim that
¢(p-go') = (t.p).

Indeed,
(p-go') =(t.(p-g5') - go) = (1. p).
Therefore,
¢ Gray — Vi
is biholomorphic. ]

Lemma 9.3. Under the above Assumption 9.1, V is smooth.
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Proof. Consider
Z:={(z,x,x):z€e A, x € X}

Note that Z is a submanifold of A x X x X.
Define

P:AXG—>AxXxX, ¢(z,8)=(z F(z),g-H(2))

and observe that V = ¢~ 1(Z).

In order to verify the smoothness of V, it suffices to show that D¢ has everywhere the
same rank.

Let (x, g) € A x G and consider

Dox,g) i Tix,) (A X G) = Ty(x,0)(A X X x X).

‘We observe that
T(x,g)(A X G) = (T A) x Lie(G).

From ¢(z, g) = (z, F(z), g(H(2))), we infer that
(v,w) eker D¢y o) C (TxA) xLie(G) <= v=0, wekerD{forl:gr g(H(z)).

Here, { : G — X is the orbit map g + g(H(z)). Standard theory of transformation groups
implies that w € ker D¢ iff w € Tg G = Lie(G) is contained in the Lie subalgebra of the
isotropy group of the G-action at g(H (z)).

By assumption, all the G-orbits in X have the same dimension d, Hence, every isotropy
group is of dimension dim(G) — d. It follows that

dimker D¢, ¢ =dim(G) —d Vz,g.
Thus, ¢ is a map of constant rank and V' = ¢~!(Z) is smooth. |

Proposition 9.4. Under the above assumptions, there exist 0 < r < 1 and a holomorphic
map
oA ={z:)z|<r} > G

such that
F(z) = ¢(2)(H(z)) VzeA,.

Proof. Let go € G such that F(0) = go(H(0)). We may replace H(z) by the function
H (z) = go(H(2)). In this way, we see that there is no loss of generality in assuming
F(0) = H(0).

We may replace G by its universal covering and therefore assume that G is simply-
connected. Then, we can use the fact that every simply-connected complex Lie group is a
Stein manifold (see [25]). Hence, we may assume that G is a Stein manifold.

Recall that

V={(z.¢ €AxG:F(z)=g(H(2))}.
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Let w : V — A be the natural projection and V; = 7! (¢) (fort € A). Due to Lemma 9.2,
there is a bijective map from V; to the isotropy group of the G-action at F(¢). Since
all the G-orbits are assumed to have the same dimension d, each isotropy group has the
dimension dim(G) — d. Therefore, all the fibers of 7 : V' — A have the same dimension
(namely, dim(G) — d).

Due to Lemma 9.3, the complex space V' is smooth.

We consider the relative symmetric product S V; i.e., S{V is the quotient of

{(z:v1,...,um) € AX V™ 7(v;) =z, Vi}

under the natural action of the symmetric group S, permuting the components of V.
V' may be embedded into S}' V' diagonally as

VBv=(z,g)|£>[(z;v,...,v)]€S'A"V.

Note that V' is Stein as a closed analytic subspace of the Stein manifold A x G. It follows
that
{zivi,...,om) € AX V™ i r(v;) =z Vi)

is likewise Stein. Thus, S}V is the quotient of a Stein space by a finite group (namely,
Sm). Hence, S Z’ V is Stein and therefore admits an embedding j : S Z” V < CV for some
N € N. Recall that S}V is a quotient of a subspace of A x V™ by a S,,-action which is
trivial on the first factor A. The natural projection from A x V'™ onto its first factor thus
yields a natural map p : SYV — A.

Now, we define an embedding £ : SV — A x CN as

§rw i (p(w), j(w)).

We obtain a commutative diagram

\8—>SZ’V———>AX(CN

LP lm

A

S
D> — <

Here,
pry : A x cV > A

is the projection to the first factor.

Because V' is smooth (see Lemma 9.3), the “tubular neighbourhood theorem” (see [16,
Theorem 3.3.3]) implies the existence of a holomorphic retraction of an open neighbor-
hood W of ¥ = £(§(V)) in A x C¥ onto Y.

This can be done in a relative way, over A, cf. [15, Lemma 3.3], [16, Theorem 3.3.4].
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Thus, there is a holomorphic map p : W — Y with p|y =idy and pr, (w) =pr, (o(w))
forallw e W
EGV) ==Y = W <L, AxCV

X l /
A
Let C be a (local) smooth complex curve in V' through the point (0, e) which is not

contained in the fiber Vy = 71_1(0). Now, C N Vy is a discrete subset of C. Hence, by
shrinking C, we may assume that with

C NV = {(0,e)}.

Now, m|c : C — A is a non-constant holomorphic map between one-dimensional
complex manifolds.

By one-dimensional complex analysis, after appropriately shrinking A and C, the
projection map from C onto A is a finite ramified covering of some degree m € N.

Thus, we obtain a local multisection; i.e., there is an open neighborhood A’ of 0 in A
and a closed analytic subset C’ C w~!(A’) such that |¢/ : C’ — A’ is a finite ramified
covering. Let m denote the degree of 7 |c-.

To each point € A’ we associate the finite space 7 ~!(¢) N C’. This is a finite subspace
of 771(t) C V of degree m which is mapped by 7 into one single point of A. Such a
finite subset corresponds to a point in the relative symmetric product S%*V. Therefore,
our multisection yields a section s : A" — STV

We recall that we assumed C N Vy = {(0, ¢)}. Hence,

5(0) = §(0,e) = £(s(0)) e Y C W.

Now, W is open, and (£ 0 5)(0) € W.Let A” = (£ o 5)" (W).
We compose & o5 : A” — W with the holomorphic retraction

p:W =Y =E@6(V)).

Since £ 0§ : V — Y is an isomorphism, there is a unique holomorphic map o : A” — V
satisfying
§ofdoo =pokos,
namely, o0 = (§08) lopofos.
By construction, this map o is a section of 7 : ¥V — A on A”, i.e., a holomorphic map
o0:AN' - Vwithmoo(z) =zVze A
Recall that V' is defined as

V= {(Z,g) eAXxG:F(z)= g(H(z))}.
Therefore, a section o is given as

o:z (z,9(2)),
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where ¢ : A” — G is a map which fulfills
F(z) = ¢(2)(H(z)) VYzeA.
This yields the statement of the proposition if we choose r € (0, 1) suchthat A, C A”. m

Remark. Itis essential to assume that all the orbits have the same dimension. For example,
let G = C*acton X = C as usual, let F(z) = z2 and H(z) = z3. Then, Vz, 31 € G :

Az3 = z2, but there is no holomorphic function ¢ : A — G with ¢(z)z3 = z2.

10. Automorphisms of quaternions

10.1. Automorphisms of H

We will need the following classical result (see, e.g., [14, Section 6.8]). It is based on the
fact that H is a central simple R-algebra and the Skolem—Noether theorem (see, e.g., [24,
Section 29]) which states that every automorphism of a central simple algebra is inner.

Proposition 10.1. Every ring automorphism of the R-algebra of quaternions H is already
an R-algebra automorphism (thus, R-linear and continuous) and preserves the scalar
product on H defined as

1 _ _
<x,y>= E(xy + yX).

Let G be the group of ring automorphisms of H.

Then, G is isomorphic to SO(3,R), acting trivially on the center R and by the standard
action of SO(3,R) on R3, the orthogonal complement W of R, if we identify W with R3
using the standard basis i, j, k of W.

For g € H, let G4 be its isotropy group, i.e., G, = {g € G = Aut(H) : g(¢q) = g}
Then, G = Gy, if q is in the center R of H and G, =~ S' =~ SO(2,R) for g & R.

Remark. We have G¢ = PSL,(C) =~ SO(3, C) acting on a three-dimensional vector
space preserving a non-degenerate bilinear form. This representation must be isomorphic
to the adjoint representation of PSL; (C) on its Lie algebra Lie(PSL, (C)) which preserves
the Killing form Kill(x, y) = Trace(ad(x)ad(y)). Let v € Lie(PSL,(C)) \ {0}. Then,
Kill(v, v) = 0 if the one-parameter subgroup exp(vC) is unipotent, while exp(vC) = C*
if Kill(v, v) # 0. The isotropy group of G¢ at v € Lie(G¢) is the centralizer of exp(vC).
For G¢c = PSL,(C) and v # 0, this is always exp(vC) itself. Hence, the isotropy group
of G¢ acting on Lie(G¢) at an element v # 0 is isomorphic to C* if

Kill(v, v) # 0

and isomorphic to C if Kill(v,v) = 0. Similarly for G¢ acting on W ®grC, replacing
Kill(, )by B(, ).

As a consequence, one obtains the following corollary.
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Corollary 10.2. Let p,q € H \ {0}. Then, the following conditions are equivalent.

* N(p) =N(g) and Tr(p) = Tr(q),
o There is an R-algebra automorphism ¢ of H such that ¢ (p) = q.

11. Automorphisms of R; = H @ H

IR 3 denotes the Clifford algebra associated to R3 endowed with a positive definite quadratic
form. As an R-algebra, R3 =~ H @ H. This direct sum structure allows an easy determi-
nation of the automorphism group of R3.

11.1. Algebraic preparation

Lemma 11.1. Let R be a (possibly non-commutative) ring with 1 and without zero-
divisors. Then, every ring automorphism of A = R @ R is either of the form

(x.y) = (@), ¥(y). ¢.¥ € Aut(R)

or

(X, 9) = (). ¢(x)), ¢,V € Aut(R)

Proof. Since R has no zero-divisors, the only idempotents are 0 and 1, i.e.,
{x e R:x*=x}={0,1}.
As a consequence, we have
I ={z=(x,y) e RxR:z*> =z} ={0,1} x {0, 1}.

Every ring automorphism o of A must stabilize / and fix 0 = (0,0) and 1 = (1, 1). Hence,
either « fixes (0, 1) and (1, 0) or

0, 1) (1,00 3 (0,1).

In the first case, « stabilizes both (0,1)A = {0} x R and (1,0)4 = R x {0}, which implies

that a(x, y) = (¢(x), ¥ (y)) for some ¢, ¢ € Aut(R).
Similarly, in the second case,

(x,y) = (W (). ¢(x))
for some ¢, ¥ € Aut(R). |

11.2. Description of Aut(R3)

As a consequence of Lemma 11.1 and the description of the automorphisms of H, we
obtain the following proposition.
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Proposition 11.2. The automorphism group of the Clifford algebra Rz =~ H & H is gen-
erated by (z,w) — (w, z) and SO(3,R) x SO(3, R) where SO(3, R) acts as the group of
all orientation preserving orthogonal linear transformations of the imaginary parts of the
factors of the product H x H.

The automorphism group of the complex algebra R3QC is generated by (z, w)
(w, z) and SO(3,C) x SO(3, C).

11.3. Isotropy groups

Using the above description of the full automorphism group and the product structure
R3 =~ H & H, it is easy to determine the isotropy groups of an element (¢1, ¢2).

* The isotropy group contains all automorphisms of the form

¢ (x1,x2) = (1(x1), P2(x2))
with
¢i € Aut(H) and ¢;(q;) =q; (@ €{1,2}).

» If there is an automorphism « € Aut(H) with @(q;1) = g2, then the isotropy group
contains in addition all automorphisms of the form ¢ : (x1, x2) > (¢1(x2), P2(x1))
with ¢; € Aut(H) and

(q1.92) = ($1(q2). $2(q1))-

In view of @(g1) = ¢2, the above equation is equivalent to
(a0 ¢1)(g2) = alq1) = g2,
@ oda)(g) =a " (q2) = 1.

Therefore, a o ¢p; must be in the isotropy group of g, and a~! o ¢, in the isotropy
group of q;.

12. Orbits in the complexified algebra

The proposition below is principally applied to the situation, where
A~H and A=RaV

as vector space, V being the subspace of totally imaginary elements.
In fact, we have seen that in this case Aut(A) acts trivially on R and by orthogonal
transformations on V' such that every sphere centered at the origin in V' is one orbit.

Proposition 12.1. Let V = R”, and let G be a connected real Lie group acting by orthog-
onal linear transformations on 'V such that the unit sphere S = {v € R" : ||v|| = 1} isa
G-orbit.
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Let Vo = VQRC, and let B denote the C-bilinear form on V¢ extending the standard
Euclidean scalar product on V.= R".

Let G¢ be the smallest complex Lie subgroup of GL(Vc) containing G. Then, the
Gc-orbits in V¢ are the following:

e H={veVc:B,v)=A}forA eC*
* Ho={veVc:B(vv)=0}\{0}
« {0}

Proof. First, we observe that B(, ) is invariant under the G¢-action because G acts by
orthogonal transformations.

Since G acts transitively on S and G acts linearly on V', the G-orbits in V' are precisely
{0} and the spheres S, = {v € V :||v|| =r} (r > 0).

Letv=u+ww € Ve,u,w e V.Ifv #0, then (u, w) # (0,0). If u # 0, then the
projection onto the real part yields a map from the G-orbit through v onto a sphere in R”,
which implies that the real tangent space of Gv contains at least n — 1 C-linearly inde-
pendent tangent vectors. It follows that the G¢-orbit through v is of complex dimension
>n—1.

On the other hand, the complex hypersurfaces

C,={velVc:Bw,v)=A1}

are irreducible, complex (n — 1)-dimensional and G¢-invariant. This implies the asser-
tion. ]

Corollary 12.2. Let A be a finite-dimensional R-algebra with R as center. Let A=R dV
as vector space and let G be a real Lie group acting trivially on R and by orthogonal
linear transformations on V. Assume that G acts transitively on the unit sphere of V.

Let G be the smallest complex Lie subgroup of GL(AQRC) containing G. Then, all
the Gc-orbits in (VQRC) \ {0} are complex hypersurfaces. In particular, they all have
the same dimension.

Corollary 12.3. Under the assumptions of Corollary 12.2 for every point g € (V®rC) \
{0}, the isotropy group 1 of the G¢-action at q satisfies

dimc I + dimg V — 1 = dimc(Gc).
In particular, we have dimc (1) = 1 for A =~ H.

Proof. The G¢-orbit through ¢ is a complex hypersurface (Corollary 12.2). Hence, its
complex dimension equals dimc (V ®rC) — 1, and therefore,

dimc (Gc) = dime I + dimc(V@RrC) — 1.

Now, dimg (V) = dimc (V ®rC). This yields the assertion. L]
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Corollary 12.4. Under the same assumptions, there is a Zariski open subset, namely,

Q C AQRC £ C @ (VORC) defined as @ = {q - £(q) = (x,v), B(v, v) # O} such that
all the isotropy groups of G¢ at points in 2 are conjugate.

Proof. By assumption, A = R @ V as vector space, and correspondingly,

AQRC = C & (VRRrC).
———

Ve

With respect to this vector space sum decomposition, we define
Q={r+v:reC,velc, B #0}.
Due to Proposition 12.1, the G¢-orbit through a given point x = r + v € Q is
{r+w,we Ve, Bw,w) = B(v.v)}.

The isotropy groups in the same orbit are clearly conjugate. Letx =7 + v,y =s +w € Q
(with r,s € C, v, w € V) be in different orbits. Choose A € C* such that B(w, w) =
B(Av, Av). Now, the isotropy group at r + v agrees with the isotropy group at A(r + v) =
Ar + Av because the group action is linear. Since G¢ acts trivially on the center C of
A®RrC, the isotropy groups at Ar + Av and s 4+ Av coincide. Finally, due to B(w, w) =
B(Av, Av) the elements s + Av and s + w are in the same G¢-orbit. Consequently, their
isotropy groups are conjugate. Combined, these facts imply that the isotropy groups at
r 4+ v and s + w are conjugate. |

Corollary 12.5. Let A = H and Ac = AQRC and let p,q € Ac \ {0}. Then, the follow-
ing properties are equivalent:

(1) Tr(p) = Tr(g) and N(p) = N(q),
(2) there is an automorphism ¢ € Aut(Ac) such that ¢(p) = q.

Proof. By construction, we have N(x) = x(x¢) = B(x,x) forall x € Ac and x %tr(x)
equals the projection of x to C with respect to the direct sum decomposition

Ac=CoW.

Let p=p' +p’,qg=q +q" with p’,q' € C, p”,q" € W. Since Aut(Ac) acts
trivially on C and by linear, B-preserving transformations on W, (ii) implies that p’ = ¢’
and B(p”, p”) = B(¢”,q") which in turn implies Tr(p) = Tr(q), N(p) = N(q).

Conversely,

(Tr(p) = Tr(q)) A (N(p) =N(q)) = (p' =4¢) A (BQ".p") = B(q".q")).

and the latter condition implies 3¢ € Aut(Ac) : ¢(p) = ¢ due to Proposition 12.1. =
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13. Constructing an auxiliary vector field

Proposition 13.1. Let G be a complex Lie group acting holomorphically on a complex
manifold X . Assume that all isotropy groups are connected and one-dimensional.
Let Z be a non-compact Riemann surface. Let C, F : Z — X be holomorphic maps,
and let
V={@g1)eGxZ:g-C(t)=F()}.

Let w . V — Z be the natural projection map w(g,t) = t.

Then, there is an integrable holomorphic vector field X on V such that for everyt € Z
the associated flow (one-parameter-group) stabilizes V; = w~'({t}) and coincides with
the action of the isotropy group

Grp) = {gEGZg-F(l‘)zF(l‘)}
onVy (with g : (h,t) — (gh,t)).

Proof. We define a line bundle on Z by associating to each point p € Z the Lie algebra
of

{geG:g-C(p)=C(p)).

On a non-compact Riemann surface, every holomorphic line bundle is trivial. Thus, we
obtain X as any nowhere vanishing section of this trivial holomorphic line bundle. ]

14. Reduction to the case Tr = 0

Lemma 14.1. Let Ac be a C-algebra with an antiinvolution ( )¢ such that Z = {x €
Ac : x = x¢} is central in Ac. Let G¢ be a complex Lie group acting by C-algebra
homomorphisms on Ac such that the Z is fixed pointwise. Let D be a domain in C. Let
F,H : D — Ac be holomorphic maps. Assume that N(F) = N(H ) and Tr(F) = Tr(H)
(with Te(F) = F + F€ and N(F) = FF°€).

Define F= %(F — F¢) and H = %(H — HF). Then, the following statements hold.

(1) Te(F) = 0 = Tr(H).

(2) N(F) = N(H).

(3) There exists a holomorphic map ¢ : D — G¢ with F = ¢(H) if and only if there

exists a holomorphic map ¢ : D — G¢ with F = ¢(I:I)

Proof. (1) We have
~ 1 1
Tr(F) = zTr(F—F") = E(F—i—FC—(FC + F)=0

and similarly, Tr(ﬁ )=0.
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(2) Let Fy = 3 Tr(F) and Ho = 1 Tr(H). Then, F§ = Fo and H§ = Hy. Observe
that Fy and Hj are central in Ac.
By construction,

F=Fy+F, H=Hy+H, F‘=-F, H‘°=-H.
We obtain
N(F) = N(Fo + F) = (Fo + F) - (F§ + (F)°)
= (Fo+ F)-(Fo— F)
= F} — FoF + FFy— (F)?
=F; - FFy + FFy — (F)? because F is central
= Fg —(F)?

i(Tr(F))z +N(F).
Similarly, we obtain
N(H) = i(Tr(H))z + N(H).
In combination with N(F) = N(H) and Tr(F') = Tr(H), this yields N(ﬁ) = N(ﬁ).
(3) Note that the image of Tr : Ac — Ac is contained in the center of Ac which is

pointwise stabilized by the G¢ -action. It follows that for every holomorphic map ¢ : D —
Ac, we have

F(z)=¢(z)(H(z)) VzeD
Fo(z) + F(2) = ¢(2)(Ho(2)) +¢(2)(H (2))
&ﬁf—./
=Ho(z)=Fo(z)

F(z) = ¢(2)(H(2)). n

15. Vanishing orders

Proposition 15.1. Let X be a non-compact Riemann surface and V a vector space and
let f,g : X — V be holomorphic maps which do not vanish identically.

Assume that f, g have the same divisor (as defined in Definition 6.1). Then, there exist
a holomorphic function h : X — C and holomorphic maps f~, g: X — V\ {0} such that

f=hf g=hg

Proof. Recall that on a non-compact Riemann surface every divisor is a principal divisor,
i.e., the divisor of a holomorphic function.
We choose a holomorphic function 4 on X with

div(h) = div(g) = div(f)
and define f = f/h, & = g/h. .
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Lemma 15.2. Let X be a Riemann surface, V a vector space,and f : X -V, ¢ : X —
GL(V) holomorphic maps. Assume that f is not vanishing identically.
Define g(z) = ¢p(z)(f(2)). Then, f and g have the same divisor.

Proof. Letdiv(f) =Y, mp{p}. Then, forevery p € X andi € {1,...,n}, the germ of
fi at p is a divisible by Z,',n” , where z,, is a local coordinate with z,(p) = 0. Since ¢ (p)
is linear, the components g; likewise have germs at p which are divisible by Z;,"” . Hence,

div(g) > div(f).
The same arguments show that also div( f) > div(g), since

f(2) =) (=)

for y
$(2) = (@(2) 7"
Thus, div(f) = div(g). L]

16. Some cohomology

We need the lemma below as a preparation for the proof of Proposition 16.2.

Lemma 16.1. Let X be a Riemann surface, D C X a discrete subsetand tg: P — X \ D
an unramified 2 : 1-covering. Then, Ty extends to a ramified covering T : X' — X, iLe., we
have a commutative diagram:

P—X

[ I

X\D —— X

Proof. Letg € D,and lety : U — A be a coordinate chart with ¢ (¢) =0,U N D ={q}.

An unramified 2 : 1 covering over A* = A \ {0} is either a product or given by a group
homomorphism p : 71 (A*) — Z/27Z. There is only one non-trivial group homomorphism
from Z =~ 71 (A*) to Z/27.

Hence, either tq restricts on U* = U \ {gq} to a direct product U* x Z /27 (in which
case 7 trivially extends through ¢), or we can identify the restriction to U™ as the only
non-trivial 2 : 1-covering, which can be realized as z > z2 as a map from A* to A*. Thus,
we obtain the following commutative diagram:

‘L’_I(U*) ~ A*

ll'o lz»—>zz

U — ¥ 5 A*
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Now, the covering map z > z2 obviously extends from an unramified covering A* —

A* to a ramified covering A — A.
Performing this procedure around every point of D, we obtain the desired extension.
|

Proposition 16.2. Let X be a non-compact Riemann surface, D a discrete subset, S a
sheaf which is locally isomorphic to Z (the sheaf of locally constant Z-valued functions)
on X \ D. Let

0—>8—->0x >A—>0 (16.1)

be a short exact sequence of Ox module sheaves. Then, H' (X, 4) = {0} and H*(X,S) =
{0}.

Proof. X is Stein; hence, H* (X, ®) = 0 for k > 0. Therefore, the long exact cohomology
sequence associated to the above sequence of sheaves (16.1) implies

HY(X, A) = H*(X.,S).
Let Sp be the sheaf on X defined by

0 ifUND# ),

Solll) = {S(U) ifUND = {.

Then, we have a short exact sequence
0—>8—>8S—>F =0, (16.2)

where % is a skyscraper sheaf supported on D. Thus, H¥ (X, ) = 0 for k > 0. Conse-
quently, the long exact cohomology sequence associated to (16.2) implies

H?(X,S) = H*(X, S).

By construction, Sy is a sheaf on X \ D locally isomorphic to Z. (Z, +) admits only
one non-trivial automorphism, namely, n — —n. Hence, we may regard Sg as the sheaf
of sections in a locally trivial fiber bundle B — X \ D with structure group Z /27 and
typical fiber Z. We consider the sub-bundle P with typical fiber {41, —1}. Such a bundle
is an unramified 2: 1-covering 79 : P — X \ D. It extends to a ramified 2: 1-covering
7 : X’ = X by adding one point above each point of D.

We consider the natural sheaf homomorphism Zy — t+Zy, givenby f — f ot. We
define a sheaf homomorphism « from 74.Zy, to Sy as follows: given a Z-valued function
fon{—1,+41}, let

d=1f1)— f(=DI

and associate

w [d it f() = f(-1),
“)= {—d if £(1) < f(=1).



Invariants and automorphisms for slice regular functions 353

This yields a short exact sequence of sheaves
0> Zy = Ly — So — 0.

We note that outside D the covering map t is locally biholomorphic, while for a point
p € D, the preimage of a small neighborhood of p in X will be a small neighborhood of
= 1(p) in X’ and will be contractible, since X’ is a complex space.

It follows that the higher direct image sheaves R7t.Z (q > 0) are trivial. We consider
the Leray spectral sequence for the sheaf Z on X’ and the map 7 : X' — X:

HPY(X',Z) = EPT < EYY = H?(X, Rt Z).
Since R97.Z = 0Vq > 0, this spectral sequence degenerates. Therefore,
H*(X,1,2) ~ H*(X',2) ~ H* (X', 7).

Since X’ and X are non-compact Riemann surfaces, we have H*(X’,Z) = H*(X,Z) =0
for k > 2, and therefore,

o> HX(X',Z) - H*(X.So) > H*(X,Z) — ---
S——— N——
=0 =0

Therefore,
HY (X, A) = H*(X,8) = H*(X, §y) = {0}. "

17. Automorphisms and conjugacy

For H and Hc, every R-(respectively, C-) algebra automorphism ¢ is inner, i.e., given by
conjugation with an element: 3¢ : ¢ : x — gxg~!. Conversely, for every ¢ € H (respec-
tively, ¢ € Hc) conjugation by ¢ defines an automorphism. This automorphism is trivial
if and only if ¢ is in the center.

Therefore, we have a short exact sequence of Lie groups.

1> C* > HLS Ge - 1 (17.1)
with £(g) : x > gxg™ L.
In particular, G¢ = Hg /C*, which implies that H is a C*-principal bundle over
Gc (see, e.g., [26, Proposition 13.25]).

Proposition 17.1. Let D be an open subset in C and let ¢ : D — G¢ be a holomorphic
map. Then, there exists a holomorphic map ¢ : D — HE with¢ = ¢ o .

Proof. Due to (17.1), we have a C*-principal bundle on G¢ which we may pull back via
¢ to obtain a C*-principal bundle on D. But D is a (not necessarily connected) Stein Rie-
mann surface, and therefore, every C*-principal bundle on D is holomorphically trivial.
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Thus, it admits a section. Such a section corresponds to a lifting as follows:

He

p—2*  Ge

18. Proof of the main theorem

We are now in a position to prove our main Theorem 1.1.
First, we prove the most difficult part of Theorem 1.1, which is the following.

Theorem 18.1. Let A = H and Ac = AQRC.

Let D C C be a domain which is invariant under conjugation.

Let F, H : D — Ac \ {0} be holomorphic maps such that F(Z) = F(z), H(Z) = H(z),
Tr(F) = Tr(H) = 0, N(F) = N(H).® Then, there exists a holomorphic map ¢ : D — G¢
such that

¢(z)(F(z)) = H(z) Vz € D.

Proof. Throughout the proof, we will use the fact that D is a non-compact Riemann sur-
face.

Note that we assume Tr(F) = Tr(H ) = 0. It follows that the images F (D), H(D) are
contained in W QprC.

Thus, we may regard F and H as holomorphic maps from D to (W®grC) \ {0} =
(WerC) N (Ac \ {0}).

From our assumption on F and H, we deduce that for every ¢ € D there is an element
g € G¢ with H(t) = g(F(t)) (Corollary 12.5).

The case where both F' and H are constant is trivial. Hence, we may assume that at
least one of the two maps is not constant. Without loss of generality, F' is not constant.

We define

V ={(a,z) € Gc x D : F(z) = aH(z)}.

The isotropy groups for the G¢-action on (W ®@grC) \ {0} have all the same dimension
(namely, 1 if A = H) due to Corollary 12.3.

Therefore, we may apply Proposition 9.4. It follows that for every p € D there is an
open neighborhood U of p in D and a holomorphic map y : U — G¢ with

F(z)=v(z)H(z) Vzel.

SWe need no condition on cdiv because the assumptions Tr(F) = Tr(H) = 0 and F(D), H(D) C
Ac \ {0} imply that cdiv(F) and cdiv(H) are empty.
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Thanks to Proposition 13.1, we obtain a vector field which gives us a one-parameter
group acting transitively on the fibers of V' — D; i.e., there is an action

w:(C,H)xV >V

We define 4 as the sheaf on D of holomorphic maps ¢ from D to G¢ such that £(¢)
is contained in the isotropy group

Gray =1{g € G:g(F(1) = F(1)}

for every .

Due to Proposition 13.1, we may identify + with a sheaf of fiber-preserving automor-
phisms; namely, for an open subset U C D, we define A(U) as the set of biholomorphic
self maps of 71 (U) which may be written as

e 2 X = (g (r(x)). x)

for some holomorphic function ¢ € @ (U).
The map associating 7¢ to { defines a morphism of sheaves on D. Let § denote its
kernel. Then, we have a short exact sequence of sheaves

¢
058>0 " 4o

where § may be regarded as the sheaf of those holomorphic functions ¢ for which p((t))
equals the identity map on the fiber 71 (¢).

Generically, the isotropy group of G¢ at a point in Ac is isomorphic to C*. Elsewhere,
the isotropy group is C. Hence, the sheaf S is locally isomorphic to Z on an open subset
Q of D and trivial on the complement D \ 2.

Next, we want to show that H!(D, #4) = {0}.

If Q is empty, then § is trivial, and consequently, /4 = . This implies H'(D, A) =
{0} because D is Stein.

Thus, we may assume that €2 is not empty. Then, €2 is Zariski open and dense and its
complement D \ € is discrete. Then, H'(D, A) = 0 follows from Proposition 16.2.

We choose an open cover (U;); of D with holomorphic maps v; : U; — G¢ such that

F(z) =v;i(z)H(z) VzelU;.

(This is possible thanks to Proposition 9.4.)
On each intersection U;; = U; N U}, we have

F(z) =4i(z)H(z) and F(z) = y;(2)H(z).

implying that
def

Vii(z) = Y (2) o (Yi(z)) ™!

is contained in the isotropy group at F(z).
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Thus, ¥;; defines a 1-cocycle of . Since H'(D, #) = 0, this cocycle is a coboundary;
i.e., there are ¢; € T'(U;, +) with ¥;; = ¢; (¢;) L.
Therefore,

Vi(2) (W (2) 7" = i (2) = i (2)(p(2) 7!
= ¥i(2) = i (2)(¢; (2) " (¥ (2))
= (¢ ()i (2) = (¢ (2) " (¥ (2)).
It follows that
P (z) = (¢i(2) "W (2)

is well defined. Since F(z) = v;(z)H(z) and ¢;(z) is in the isotropy group of G¢ at
F(z), we infer

F(z) = ¢(2)H(2).
This completes the proof. |
Proof of Theorem 1.1. First, we deal with the case where neither f nor 4 is slice preserv-
ing.
We proceed as follows:
(i) — (i) —= (iii)

I~

(v) <— (iv)

(i) = (v):
By assumption, we have Tr(F') = Tr(H). Define
il 1 c (7 1 c
F=—-(F-F°, H=-(H-H".
2 2
Evidently, Tr(ﬁ ) =Tr(ﬁ )=0. Moreover, N(F)=N(H ) in combination with Lemma 14.1
implies that N(F) = N(H).

With respect to the decomposition Ac = Z & WgrC the map F, respectively, H is
just the second component of F, respectively, H. By the definition of the central divisor
(introduced in Section 6.2) this implies that cdiv(F) = cdiv(F) and cdiv(H) = cdiv(H).

Since cdiv(F) = cdiv(H), it follows that there are holomorphic maps F, H : D —
Ac \ {0} and A : D — C such that

F=\F, H=21H
(Proposition 15.1). Observe that

0="Tr(F)=ATr(F), N(F)=A*N(F),
0="Tr(H) =ATr(H), N(H)=A>N(H),
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and that A does not vanish identically because f and h are not slice preserving. Hence,
Tr(F) = 0 = Tr(H) and N(F) = N(H ), and Theorem 18.1 implies that there is a holo-
morphic map ¢ : D — G such that

¢(2)(F(2))=H(z) YzeD,

which in turn implies
¢(2)(F(z))=H(z) VzeD

because G¢ acts linearly, F=hFand H=hH. Finally,
¢(z)(F(z)) = H(z) VzeD

follows via Lemma 14.1.

(iv) = (iii): the implication (iv) = cdiv(F) = cdiv(H) is due to Lemma 15.2, the
other assertion is obvious.

For (iii) <= (ii), see Corollary 12.5.

For (i) <= (ii), see Proposition 2.3 and Section 6.2.

(v) = (iv): every o € HE defines an automorphism of H¢ via ¢ — aga~!. This
defines a natural map from Hg to G¢. Composition with this map yields the desired
implication.

(iv) = (v) follows from Proposition 17.1.

This finishes the proof for case (a). Let us deal now with the case (b); i.e., we assume
that f is slice preserving.

(i) <= (ii) is due to the correspondence between slice regular functions and stem
functions.

(i) = (v) = (iv) = (iii) is trivial.

(ili) = (ii): because f is slice preserving, all the values of F are contained in the
center Z = C of Hc. But G¢ fixes the center pointwise. Hence, the statement is proved.
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