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Serre’s theorem for coherent sheaves via Auslander’s
techniques

Henning Krause

Abstract. For an abelian category and a distinguished object with a graded endomorphism ring a
necessary and sufficient criterion is given so that the category is equivalent to the abelian quotient
of the category of finitely presented graded modules modulo the Serre subcategory of finite length
modules. A particular example is the category of coherent sheaves on a projective variety, following
a theorem of Serre from 1955. The proof uses Auslander’s theory of coherent functors, and there
are no noetherian assumptions. A theorem of Lenzing for representations of hereditary algebras is
given as an application.

1. Introduction

Serre’s theorem relating coherent sheaves on a projective variety to graded modules over
some appropriate graded ring is a cornerstone of non-commutative geometry, for instance,
by the non-commutative analogue of this theorem due to Artin and Zhang [1, 21]. In
this note, we revisit the theory, motivated by work of Lenzing which introduces for any
finite dimensional hereditary algebra of infinite representation type a category of coher-
ent sheaves [15]. The corresponding graded ring is the preprojective algebra [7], which
appeared already in work of Gel’fand and Ponomarev [9] as well as in work of Dlab and
Ringel [8]. The novel aspect of the present work is a new formulation and proof of the ana-
logue of Serre’s theorem which is based on Auslander’s theory of coherent functors [3].
In particular, we do not impose any noetherian assumptions. This is necessary because the
preprojective algebra is noetherian only when the corresponding hereditary algebra is of
tame representation type [6, 7].

2. An analogue of Serre’s theorem

We formulate the analogue of Serre’s theorem in the setting of Krull-Schmidt categories.
Let € be an additive category that is Krull-Schmidt. Thus, any object X admits a finite

decomposition
X =P x
i
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such that each X; is indecomposable with a local endomorphism ring. The radical Rad €
of € is the ideal given by subgroups

Rad(X,Y) CHom(X.Y) (X.Y €¥€)

consisting of all morphisms X — Y such that for any pair of decompositions X = @, X;
andY = P ; ¥; into indecomposable objects no component X; — Y; is an isomorphism.
Let Rad® € denote the ideal of all morphisms in € and for n > 0, we set Rad"tle€ =
(Rad €)(Rad" €). We say that the length of a morphism X — Y is bounded by n if all
morphisms X’ — Y from Rad” € factor through X — Y.

For a Z-graded ring A = €D, .7 An, we consider the category GrMod A of Z-graded
right A-modules. Let grmod A denote the full subcategory of finitely presented modules
and grproj A denote the full subcategory of finitely generated projective modules. We
write grmod,, A for the full subcategory of all finite length modules and always assume
grmod, A € grmod A; this is automatic if the ring is right noetherian.

We say that a graded ring A is right coherent if grmod A is an abelian category, and
A is semiperfect if grproj A is Krull-Schmidt. These properties hold, for instance, when
A is a right noetherian algebra over a field such that each homogeneous component A, is
finite dimensional; see [2, 1 1] for the Krull-Schmidt property.

Theorem 2.1. Let (A, C,0) be a triple consisting of an abelian category A, a distin-
guished object C, and an equivalence o: A —> . Suppose that Hom(C,c"C) = 0 for
all n < 0 and that the graded ring

A= @Hom(C,a"C)
n>0
is right coherent and semiperfect with grmod, A C grmod A. Then, the assignment
X > Tu(X) := P Hom(C.0"X) (X € A)
nez
admits a partial left adjoint T: grmod A — A, which is right exact and determined by
T(A) = C. The functor T is exact and induces an equivalence

(grmod A)/(grmod, A) = A

if and only if the full subcategory € C A consisting of all direct summands of finite direct
sums of objects 6" C with n € Z satisfies the following statements.

(A1) Every object X € A admits an epimorphism C — X with C € €, which can be
chosen in Rad € when X € €.

(A2) A morphism in € has finite length if it is an epimorphism in A.

Fix a triple (4, C, 0) as above. The algebra A = @nzo Ay, is the orbit algebra of C
with multiplication given by xy = (69x) o y for x € A, and y € A,. The assignment
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X T« (X) yields an equivalence € = grproj A and T: grmod A — o is the right exact
functor extending
grproj A = € < .

Thus, we have the following diagram:

grmod A —— GrMod 4
R /
A

where [y corestricts to a right adjoint of 7" if and only if € C # is contravariantly finite so
that I' (X)) is a finitely presented A-module for each X € +4; see Remark 3.7. Nonetheless,
we have for all X € grmod 4 and Y € 4 the adjointness isomorphism

Homy (T'(X),Y) = Homy (X, T« (Y)).

The conditions (A1)—(A2) express the ‘ampleness’ of the pair (C, o). The prototypical
example is a theorem of Serre [21], and we refer to [1, 18] for non-commutative analogues.

Example 2.2 (Serre). Consider the projective variety P”(K) given by an algebraically
closed field K and an integer r > 1. Let coh P"(K) denote the category of coherent
sheaves on P (K). The assignment

F > Tu(F) = @) Hom(0, F(n))

nezZ

yields a functor coh P”(K) — grmod A to the category of graded modules over the orbit
algebra of the structure sheaf

A = P Hom(0,0(n)) = Klto. ....1].

n>0

Taking a module M to its associated sheaf M provides a left adjoint functor, which is
exact and annihilates all modules of finite length. In [21, no. 65], it is shown that the
canonical morphism I‘Iﬂ?) — J is an isomorphism, while kernel and cokernel of the
canonical morphism M — Ty (M ) are of finite length. An equivalent statement is that
M + M induces an equivalence

(grmod A)/(grmody A) = coh X.

Let us comment on the notions ‘finite length’ and ‘torsion’ for graded modules because
it is common to work modulo the category of torsion modules in the context of Serre’s
theorem.

Remark 2.3. Let A = @nzo A, be a graded ring, and suppose that the ring Ag = A/A>1
is semisimple. Then, a graded A-module M has finite length if and only if M is finitely



H. Krause 212

generated and torsion, so M, = 0 for n > 0. To see this, fix a finitely generated module
M and consider the sequence

o> M/Msy —> M/Msy —> M/Mso —> M/Ms_; — -,

which stabilises in the right direction since M is finitely generated. It stabilises in both
directions if and only if M has finite length, since each subquotient has finite length (using
the assumption grmody, A € grmod A so that each subquotient is finitely generated over
Aop).

3. A relative Auslander formula

The proof of the analogue of Serre’s theorem is based on a relative version of Auslander’s
formula; it is established in this section and may be of independent interest. For instance,
the Gabriel-Popescu theorem for Grothendieck categories is another result that can be
explained in terms of this Auslander formula.
Let € be an additive category. Following Auslander [3] an additive functor F': €°P —
Ab into the category of abelian groups is called finitely presented or coherent if it admits
a presentation
Hom(—, X) - Hom(—,Y) - F — 0. 3.D

In that case, X — Y is called the presenting morphism. Let mod € denote the category
of finitely presented functors €°° — Ab. The assignment X — Hom(—, X) yields the
fully faithful Yoneda functor € — mod €. We collect some basic facts from [3] which
will be used throughout without further reference. These properties reflect the fact that
€ — mod € is nothing but the completion of € under finite colimits.

A morphism X — Y is a weak kernel of a morphism Y — Z if the induced sequence
Hom(C, X) — Hom(C, Y) — Hom(C, Z) is exact for all objects C.

Lemma 3.1. For an additive category € we have the following.

(1) The category mod € is additive and every morphism has a cokernel; it is abelian
iff every morphism in € has a weak kernel.

(2) The Yoneda functor € — mod € admits an exact left adjoint if € is abelian.

(3) An additive functor € — 4 into a category with cokernels extends to a right exact
functor mod € — A.

(4) An additive functor f:€ — D extends to a right exact functor f*:mod € —
mod D, and f* is fully faithful if and only if f is fully faithful.

Proof. See [3] or [12, Sections 2.1-2.3]. [

Example 3.2. For a graded ring A the inclusion grproj A — grmod A induces an equival-
ence mod(grproj A) = grmod A.
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Let + be an abelian category. A functor F' € mod 4 with presentation (3.1) is called
effaceable if it belongs to the kernel of the left adjoint of the Yoneda functor 4 — mod +.
An equivalent condition is that the presenting morphism ¢: X — Y is an epimorphism
because the left adjoint preserves cokernels, so it sends F' = Coker Hom(—, ¢) to Coker ¢.
We write eff A for the full subcategory of effaceable functors and note that it is a Serre
subcategory of mod .

Proposition 3.3 (Auslander). The right exact functor mod A — A extending the identity
A — A is exact and induces an equivalence

(mod A)/(eff A) = A. [

This result from [3] is also known as Auslander’s formula [16]. We need the following
relative version. Let i : € — 4 denote the inclusion of a full additive subcategory. We view
the induced functor i *: mod € — mod 4 as an inclusion and set

eff(+4, €) := mod € N eff A.

The subcategory € generates A if every object X € 4 admits an epimorphism C — X
with C € €.

Proposition 3.4. Let A be an abelian category and € C A a full additive subcategory
such that mod € is abelian. Then, € generates A if and only if the right exact functor
mod € — A extending the inclusion € — A is exact and induces an equivalence

(mod €)/(eff(A, €)) = A.

Proof. We write the right exact functor mod € — A as composite

mod € l—> mod A —> A

with i * induced by the inclusion i: € — #. The functor i * is fully faithful, and it is exact
when any weak kernel sequence in € is exact in #. The latter property follows when €
generates 4. Moreover, the condition that € generates is equivalent to the property of
mod € — 4 to be essentially surjective.

Now, suppose that € generates +4. Then, the exact functor i * induces a functor

(mod €)/ (eff(A, €)) — (mod A)/(eff A)

by the definition of eff(+4, €). The morphisms in the localised categories are computed
via a calculus of fractions. From this, it follows that the functor is fully faithful when
the following cofinality condition holds: Every F € mod 4 admits a morphism F’ — F
such that F/ € mod € and the image under mod A —> +4 is an isomorphism; cf. [12,
Lemma 1.2.5]. For this cofinality, see Lemma 3.5 below, and it remains to compose this
functor with the equivalence (mod A)/(eff A) = A. |
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Lemma 3.5. Let A be an abelian category and € C A a full additive subcategory such
that mod € is abelian and € generates 4. Then, every F € mod A admits a morphism
F’ — F such that F' € mod € and the image under mod A —» A is an isomorphism.

Proof. Let X — Y be the morphism presenting F'. We find objects C;, D; in € and
morphisms such that the following diagram in A commutes and has exact rows:

C 1/>C0 > X > 0
Lol
D, > Do > Y > 0

This induces the following commutative diagram with exact rows in mod #:

Coker Hom(—, y) —— CokerHom(—,§) —— F/ —— 0

| | |

Hom(—, X) ——— Hom(—,7Y) > F > 0

The top row lies in mod €. By construction, the vertical morphisms on the left and in the
middle are mapped to isomorphisms under mod #4 —> . It follows that F’ — F has the
desired properties. ]

Remark 3.6. One may think of the relative Auslander formula as a variation of Popescu—
Gabriel theorem [19] which says, for a Grothendieck category + and a generator G that
the left adjoint of Hom(G, —): A — Mod A with A = End(G) induces an equivalence

(Mod A)/£ = A

for some appropriate localising subcategory £ € Mod A. In fact, we may take for € C A
the full subcategory all coproducts of copies of G. Then, the colimit preserving composite
Mod A — mod € — A that identifies A with G induces equivalences

(Mod A)/&£ = (mod €)/(eff(A, €)) = A.

Remark 3.7. For a full additive subcategory € C # the right exact functor mod € — A
admits a right adjoint if and only if the subcategory € is contravariantly finite, so each
object X € 4 admits a morphism 7: C — X such that C € € and each morphism C’ — X
with C’ € € factors through 7. This condition means that Hom(—, X )| belongs to mod €
for all X € A, so X + Hom(—, X)|¢ provides the right adjoint.

4. Serre’s theorem via Auslander’s techniques

We use the relative Auslander formula from Proposition 3.4 to prove Theorem 2.1. We
need some preparations and fix an additive category € that is Krull-Schmidt. Let mody €
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denote the category of all additive functors €°° — Ab that are of finite length. For an
object X € € set
Sy = Hom(—, X)/Rad(—, X).

We note that Sy is simple when End(X) is local, and
Sy =~ @ SXi
i

for any finite decomposition X = €p; X;.

Given an indecomposable object X, a radical morphism X’ — X is called right almost
split if all radical morphisms terminating at X factor through X’ — X. Simple func-
tors and their connection to almost split morphisms are discussed in great detail in [4,
Chapter II]. In our context, the following is needed.

Lemma 4.1. Let € be a Krull-Schmidt category. Then, mody € C mod € holds if and
only if every indecomposable object in € admits a right almost split morphism.

Proof. A functor F: €°° — Ab is simple if and only if F' = Sx for some indecomposable
object X € €; see [4, Proposition II.1.8]. Here, one uses that € is Krull-Schmidt. On the
other hand, for an indecomposable object X € € there exists a right almost split morphism
X’ — X if and only if Sy belongs to mod €, because a right almost split morphism
X’ — X amounts to an epimorphism Hom(—, X’) — Rad(—, X). (]

Lemma 4.2. Let € be a Krull-Schmidt category such that mod € is abelian and mody € C
mod €. A functor F € mod € with presentation (3.1) belongs to modg € if and only if the
morphism X — Y in € has finite length.

Proof. We write rad F for the intersection of all maximal subobjects of F and set
rad"™! F = rad(rad” F) foralln > 0.

For Hy = Hom(—, X), observe that rad” Hy = Rad”(—, X) for all n > 0; see [4, Pro-
position II.1.8]. Thus, the presentation of F induces an epimorphism Sy — F/(rad F).
Then, the radical filtration

.Crad®F Crad' FCrad® F = F
lies in mod € and each subquotient
(rad" F)/(rad"*! F)

has finite length. It follows that F has finite length if and only if rad” F = 0 for n >> 0.
The presenting morphism X — Y has by definition length at most n if and only if the
epimorphism Hy — F factors through Hy — Hy /(rad” Hy). On the other hand, Hy —
F maps rad” Hy onto rad” F, and therefore, it factors through Hy — Hy /(rad” Hy) if
and only if rad” F = 0. L]
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Lemma 4.3. Let A be an abelian category and € C A a full additive subcategory. Sup-
pose that mod € is abelian and that modp € € mod €. Then, the right exact functor
mod € — A extending the inclusion € — A is exact and induces an equivalence

(mod €)/(mody €) = A
if and only if € generates A and mody € = eff(A, €).
Proof. The assertion is an immediate consequence of Proposition 3.4. ]
We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We recall the equivalences
€ = grprojA and mod€ = grmod A.

Our assumption grmod, A € grmod A implies that every indecomposable object in €
admits a right almost split morphism; see Lemma 4.1.

Now, we apply Lemma 4.3 and need to show that conditions (A1)—(A2) in The-
orem 2.1 are equivalent to the conditions in Lemma 4.3. This is clear for the first pair
of conditions expressing the fact that € is generating +. It follows from Lemma 4.2 that
(A2) holds if and only if

eff(A, €) = mod € Neff A C mody €.

For the other inclusion, it suffices that all simple objects in mod € belong to eff(A, €).
This means that for every indecomposable X € € the right almost split morphism X’ —
X is an epimorphism. But this is precisely the extra condition in (A1) that there is an
epimorphism X’ — X inRad €. (]

5. Hereditary algebras

Let K be a field and A be a hereditary finite dimensional K-algebra. This means that
Ext’y (—, —)=0 for all n > 1. We consider the category mod A of finitely presented A-
modules. This category admits a canonical decomposition. For an additive category € we
use the notation € = \/; €; and call this a decomposition when each €; is a full additive
subcategory such that each object in € can be written as a coproduct | [; C; with C; € €;
forall i, and €; N (\/j;éi ‘€j) =0 foralli.

Assume that A is connected and of infinite representation type. Then, there is a decom-
position

modA =P VRVI,

where & denotes the full subcategory of preprojective A-modules, R denotes the full
subcategory of regular A-modules, and I denotes the full subcategory of postinjective
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A-modules [5, VIII]. Because 4 = mod A is a hereditary abelian category we have a
decomposition of the bounded derived category

D°(A) = \/ Aln],
nezZ
where 4A[n] denotes the full subcategory of complexes with cohomology concentrated in
degree —n. Note that this category has Serre duality which extends the Auslander—Reiten
duality for ». Thus, there is a functor 7: D?(A) = DP(s4) such that for all objects X, Y
there is a natural isomorphism

D Hom(X, Y[1]) = Hom(Y, tX),

where D = Homg (—, K); see [12] for details.
In [15], Lenzing proposes a geometric approach and introduces the following full
additive subcategory:

H = I[-1] v £[0] v R[0] € D°(mod A).

He shows that J is a hereditary abelian category with Serre duality given by Auslander—
Reiten translate t: ¢/ = J. One way of seeing this is that the torsion pair (I, £ Vv R)
for # induces a t-structure on DP(s4) such that J identifies with its heart [10]. Moreover,
A € P[0] is a tilting object and RHom(A, —) provides a triangle equivalence

D°(#) = D°(mod A).
The preprojective algebra of A is the orbit algebra

II:= @Hom(A, TT"A),

n>0

and the following theorem is implicit in Lenzing’s geometric treatment of hereditary
algebras; cf. [15, Theorem 4.10]. We deduce this from Theorem 2.1. Note that IT is noeth-
erian if and only if A is of tame type [6, 7].

Theorem 5.1. For a connected hereditary algebra A of infinite representation type, the
assignment
X~ @Hom(A, "X)
neZ
induces an equivalence
H = (grmod IT)/(grmod,, IT).

Proof. We set 0 = v~ and the distinguished object is C = A. We need to check the
conditions in Theorem 2.1 for the triple (#, C, o) and note that € = I[—1] v L[0].
The preprojective algebra IT is semiperfect since each homogeneous component is finite
dimensional over a field. The algebra is right coherent because the category € has kernels.
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Here, one uses that mod € = grmod I1. Serre duality for J¢ provides for each indecom-
posable X € € an almost split sequence 0 > X — X’ — X — 0 [20, Theorem 1.3.3]. By
the definition of an almost split sequence, the morphism X’ — X is right almost split. The
condition (A1) is clear because we have for each regular module X € R[0] an epimorph-
ism X’ — X from a projective module X’ € $£[0]. For an indecomposable object X € €
one uses the right-hand morphism X’ — X from the corresponding almost split sequence.
To check (A2) consider an epimorphism ¥ — Z in € which yields an exact sequence
0— X - Y — Z — 0. We may apply a power of t and assume that the sequence lies in
I[—1]. Consider the induced exact sequence

0 — Hom(—, X) — Hom(—, Y) — Hom(—, Z) — Ext'(—, X)

in mod €. We need to show that all morphisms Z’ — Z from Rad” € factor through ¥ —
Z for n >> 0. For this, it suffices to show Rad” € annihilates the functor Ext' (—, X)| zj_1]
for n > 0, because Hom(P, Z) = 0 for all P € P[0]. We have

D Hom(t~ X, —) = Ext! (—, X)

and from this, the claim follows, because for any postinjective A-module M we have that
Rad”(M,—) = 0forn > 0inmod A. L]

When passing to derived categories, we have the following immediate consequence;
see also [17, Corollary 5.4].

Corollary 5.2. The quotient functor grmod I[1 — H# induces a triangle equivalence
D ((grmod IT)/(grmod,, IT)) = D°(#) = D*(mod A). [

The following example connects the results of Serre and Lenzing; see [15, Proposi-
tion 6.3].

Example 5.3. Consider the Kronecker algebra A = [ ] In that case, # identifies
with the category of coherent sheaves on the projective hne P!, More precisely, the cat-
egory coh P! admits a tilting object T = Op1 @ Op1(1) such that End(T') = A. Then, the
functor RHom(7, —) yields a triangle equivalence

D°(coh P!) = D(mod A),

which restricts to an equivalence coh P! = #. Note that this identifies the twist F > F(2)
with X — o0X. We have

R:=K[x,y] = @HOI’H(O]pl,OPI(}’I)),

n>0

Ran  Rop-— 1
= @ Ropnt1 Ron I°

n>0

and therefore,
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The assignment

@Mn = @(MZn ® Mazn—1)

nez nez

provides an equivalence grmod R = grmod IT which identifies the equivalence from
Serre’s theorem in Example 2.2 with the equivalence in Theorem 5.1, though their twisting
objects are different (Op1 in coh P! versus A in #).

The example suggests that there are other and arguably better choices for a distin-
guished object C € # and a twist o: H = J (different from C = A and 0 = 77), in
particular, when A is a tame hereditary algebra; see [13, 14] for a detailed discussion.
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