
J. Noncommut. Geom. 20 (2026), 221–267
DOI 10.4171/JNCG/626

© 2025 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Veronese subalgebras and Veronese morphisms for a class
of Yang–Baxter algebras

Tatiana Gateva-Ivanova

Abstract. We study d -Veronese subalgebras A.d/ of Yang–Baxter algebras AX D A.k; X; r/
related to finite nondegenerate involutive set-theoretic solutions .X; r/ of the Yang–Baxter equation,
where k is a field and d � 2 is an integer. We find an explicit presentation of the d -Veronese A.d/ in
terms of one-generators and quadratic relations. We introduce the notion of a d -Veronese solution
.Y; rY /, canonically associated to .X; r/ and use its Yang–Baxter algebra AY D A.k; Y; rY / to
define a Veronese morphism vn;d W AY ! AX . We prove that the image of vn;d is the d -Veronese
subalgebra A.d/ and find explicitly a minimal set of generators for its kernel. The results agree with
their classical analogues in the commutative case. We show that the Yang–Baxter algebra A.k;X; r/
is a PBW algebra if and only if .X; r/ is a square-free solution. In this case, the d -Veronese A.d/ is
also a PBW algebra.

1. Introduction

It was established in the last three decades that solutions of the linear braid or Yang–Baxter
equation (YBE)

r12r23r12 D r23r12r23

on a vector space of the form V ˝3 lead to remarkable algebraic structures. Here r W
V ˝ V ! V ˝ V , r12 D r ˝ id, r23 D id˝ r is a linear automorphism and structures
include coquasitriangular bialgebras A.r/, their quantum group (Hopf algebra) quotients,
quantum planes and associated objects, at least in the case of specific standard solutions;
see [25, 32]. On the other hand, the variety of all solutions on vector spaces of a given
dimension has remained rather elusive in any degree of generality. It was proposed by
V.G. Drinfeld [6], to consider the same equations in the category of sets, and in this setting
numerous results were found. It is clear that a set-theoretic solution extends to a linear one,
but more important than this is that set-theoretic solutions lead to their own remarkable
algebraic and combinatoric structures, only somewhat analogous to quantum group con-
structions. In the present paper, we continue our systematic study of set-theoretic solutions
based on the associated quadratic algebras and monoids that they generate.
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The study of noncommutative algebras defined by quadratic relations as examples
of quantum noncommutative spaces has received considerable impetus from the seminal
work of Faddeev, Reshetikhin, and Takhtajan [8], where the authors considered general
deformations of quantum groups and spaces arising from an R-matrix, and from Manin’s
programme for noncommutative geometry [27]. The quadratic algebras related to set-
theoretic solutions of the Yang–Baxter equation studied here can be considered as special
quantum noncommutative spaces important for both noncommutative algebra and non-
commutative algebraic geometry, as they provide a rich source of examples of interesting
associative algebras and noncommutative spaces some of which are Artin–Schelter regular
algebras. Our work is motivated by the relevance of those algebras for noncommutative
geometry, especially in relation to the theory of quantum groups, and inspired by the
interpretation of morphisms between noncommutative algebras as “maps between non-
commutative spaces”. In [18, 21] and the present paper, we consider noncommutative
analogues of the Veronese and Segre embeddings, two fundamental maps that play pivotal
roles not only in classical algebraic geometry but also in applications to other fields of
mathematics.

In this paper, “a solution of YBE”, or shortly, “a solution” means “a nondegenerate
involutive set-theoretic solution of YBE”; see Definition 2.5.

The Yang–Baxter algebras AX DA.k;X;r/ related to solutions .X;r/ of finite order n
will play a central role in the paper. It was proven in [15,22] that the quadratic algebra AX
of every finite solution .X; r/ of YBE has remarkable algebraic, homological, and com-
binatorial properties. In general, the algebra AX is noncommutative and in most cases it
is not even a Poincaré–Birkhoff–Witt (PBW) algebra, but it preserves various good prop-
erties of the commutative polynomial ring kŒx1; : : : ; xn�: AX has finite global dimension
and polynomial growth, and it is Cohen–Macaulay, Koszul, and a Noetherian domain.

There are close relations between various combinatorial properties of the solu-
tion .X; r/ and the properties of the corresponding Yang–Baxter algebra AX ; see, for
example, [12,13,15,17,20,33,34]. In the special case when .X; r/ is a finite nondegener-
ate involutive square-free quadratic set whose quadratic algebra AX D A.k; X; r/ has a
k-basis of PBW type, the conditions “A is an Artin–Schelter regular algebra” and “.X; r/
is a solution of YBE” are equivalent; see details in Section 3. The study of Artin–Schelter
regular algebras is a central problem for noncommutative algebraic geometry.

A first stage of noncommutative geometry on quadratic algebras AX D A.k; X; r/
was proposed in [20, Section 6], where the quantum spaces under investigation are Yang–
Baxter algebras A.k;X; r/ associated to multipermutation (square-free) solutions of level
two. In [2], a class of quadratic PBW algebras called “noncommutative projective spaces”
were investigated, and analogues of Veronese and Segre morphisms between noncom-
mutative projective spaces were introduced and studied. It is natural to formulate similar
problems for the class of Yang–Baxter algebras A D A.k;X; r/ related to finite solutions
.X; r/, but to find reasonable solutions of these problems is a nontrivial task. In contrast
to [2], where the “noncommutative projective spaces” under investigation have almost
commutative quadratic relations which form Gröbner bases, and the main results follow



Veronese subalgebras and Veronese morphisms for a class of Yang–Baxter algebras 223

naturally from the theory of noncommutative Gröbner bases, the Yang–Baxter algebras
A D A.k; X; r/ have complicated quadratic relations, which in most cases do not form
Gröbner bases. These relations remain complicated even when A is a PBW algebra, so we
need more sophisticated arguments and techniques; see, for example, [18].

In the present paper, we consider the following problems.

Problems 1.1. Suppose .X; r/ is a finite solution of YBE with jX j D n, and A D

A.k; X; r/ is its Yang–Baxter algebra.

(1) Find necessary and sufficient conditions on .X; r/ such that there exists an enu-
meration X D ¹x1; : : : ; xnº, so that A is a PBW algebra with a set of PBW
generators x1; : : : ; xn.

(2) Let d � 2 be an integer. Find a presentation of the d -Veronese subalgebra A.d/

of its Yang–Baxter algebra A in terms of one-generators and quadratic relations.

(3) Introduce analogues of Veronese maps for the class of Yang–Baxter algebras of
finite solutions of YBE.

(4) Answer questions (2) and (3) in the special case when .X; r/ is a square-free
solution.

Our main results are Theorems 3.8, 4.13, and 5.4 which solve completely prob-
lems (1), (2), and (3). We give a complete answer to (4) in Section 6.

The paper is organised as follows. In Section 2, we recall basic definitions and
facts used throughout the paper. In Section 3, we consider the Yang–Baxter algebra
AX D A.k; X; r/ of a finite nondegenerate solution .X; r/. We fix the main settings
and conventions and recall some of the most important properties of the Yang–Baxter
algebras AX used throughout the paper. The main result of the section is Theorem 3.8
which shows that the Yang–Baxter algebra A.k;X; r/ is PBW with respect to some proper
enumeration ofX iff the solution .X; r/ is square-free. Proposition 3.9 gives more inform-
ation on a special case of PBW quadratic algebras. A natural open question arises at end
the section; see Question 3.10. In Section 4, we study the d -Veronese subalgebra A.d/

of A D A.k; X; r/. We use the fact that the algebra A and its Veronese subalgebras
are intimately connected with the braided monoid S.X; r/. To solve the main problem,
we introduce successively three finite isomorphic solutions associated naturally to .X; r/
and involved in the proof of our results. The first and the most natural of the three is
the monomial d -Veronese solution .Sd ; rd / associated with .X; r/. It is a finite solution
induced from the graded braided monoid .S; rS / which depends only on the map r and
on d . The monomial d -Veronese solution is intimately connected with the d -Veronese
subalgebra A.d/ and its quadratic relations, but it is not convenient for an explicit descrip-
tion of the relations. This solution is needed to define the normalised d -Veronese solution
.Nd ; �d / isomorphic to .Sd ; rd /; see Definition 4.10. The solution .Nd ; �d / is central
for the proof of the main result (Theorem 4.13). In Section 5, we introduce and study
analogues of Veronese maps between Yang–Baxter algebras of finite solutions and prove
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Theorem 5.4. In Section 6, we consider two special cases of solutions. We pay special
attention to Yang–Baxter algebras A D A.k; X; r/ of square-free solutions .X; r/ and
their Veronese subalgebras. In this case, A is a binomial skew polynomial ring and the set
of ordered monomials (terms) in n variables forms an explicit k-basis of A. Theorem 4.13
implies a more precise result in this case: Corollary 6.3 shows that the d -Veronese A.d/ is
a PBW algebra, where the terms of length d ordered lexicographically are its PBW gener-
ators and its relations given explicitly form a quadratic Gröbner basis. An important result
in this section is Theorem 6.4 which shows that if .X; r/ is a finite square-free solution
and d � 2 is an integer, then the monomial d -Veronese solution .Sd ; rd / is square-free if
and only if .X; r/ is a trivial solution. This implies that the notion of Veronese morphisms
introduced for the class of Yang–Baxter algebras of finite solutions cannot be restric-
ted to the subclass of Yang–Baxter algebras associated to finite square-free solutions. In
Section 7, we present two examples which illustrate the results of the paper.

2. Preliminaries

Let X be a non-empty set, and let k be a field. We denote by hXi the free monoid gen-
erated by X , where the unit is the empty word denoted by 1, and by khXi the unital free
associative k-algebra generated by X . For a non-empty set F � khXi, .F / denotes the
two-sided ideal of khXi generated by F . When the set X is finite, with jX j D n, and
ordered, we write X D ¹x1; : : : ; xnº and fix the degree-lexicographic order < on hXi,
where x1 < � � � < xn. As usual, N denotes the set of all positive integers, and N0 is the set
of all non-negative integers.

We shall consider associative graded k-algebras. SupposeAD
L
m2N0

Am is a graded
k-algebra such that A0 D k, ApAq � ApCq; p; q 2 N0 and such that A is finitely gener-
ated by elements of positive degree. Recall that its Hilbert function is hA.m/ D dimAm
and its Hilbert series is the formal series HA.t/ D

P
m2N0

hA.m/t
m. In particular, the

algebra kŒX� of commutative polynomials satisfies

hkŒX�.d/ D

�
nC d � 1

d

�
D

�
nC d � 1

n � 1

�
and HkŒX� D

1

.1 � t /n
: (2.1)

We shall use the natural grading by length on the free associative algebra khXi. For
m � 1, Xm will denote the set of all words of length m in hXi, where the length of
u D xi1 � � � xim 2 X

m will be denoted by juj D m. Then

hXi D
G
m2N0

Xm; X0 D ¹1º and XkXm � XkCm;

so the free monoid hXi is naturally graded by length.
Similarly, the free associative algebra khXi is also graded by length:

khXi D
M
m2N0

khXim; where khXim D kXm:
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A polynomial f 2 khXi is homogeneous of degree m if f 2 kXm. We denote by

T D T .X/ WD ¹x˛11 � � � x
˛n
n 2 hXi j ˛i 2 N0; i 2 ¹0; : : : ; nºº (2.2)

the set of ordered monomials (terms) in hXi and by

Td D T .X/d WD

²
x
˛1
1 � � � x

˛n
n 2 T j

nX
iD1

˛i D d

³
the set of ordered monomials of length d .

2.1. Gröbner bases for ideals in the free associative algebra

We shall remind some basics of noncommutative Gröbner bases theory which we use
throughout in the paper. In this subsection X D ¹x1; : : : ; xnº, we fix the degree-
lexicographic order< on the free monoid hXi extending x1 < x2 < � � �< xn (we refer to it
as “deg-lex ordering”). Suppose f 2 khXi is a nonzero polynomial. Its leading monomial
with respect to the deg-lex order < will be denoted by LM.f /. One has LM.f / D u if
f D cuC

P
1�i�m ciui , where c; ci 2 k, c ¤ 0, and u > ui in hXi for all i 2 ¹1; : : : ;mº.

Given a set F � khXi of noncommutative polynomials, we consider the set of leading
monomials LM.F / D ¹LM.f / j f 2 F º. A monomial u 2 hXi is normal modulo F if
it does not contain any of the monomials LM.f / as a subword. The set of all normal
monomials modulo F is denoted by N.F /.

Let I be a two-sided graded ideal in KhXi and let Im D I \ kXm. We shall assume
that I is generated by homogeneous polynomials of degree � 2 and I D

L
m�2 Im.

Then the quotient algebra A D khXi=I is finitely generated and inherits its grading
A D

L
m2N0

Am from khXi. We shall work with the so-called normal k-basis of A.
We say that a monomial u 2 hXi is normal modulo I if it is normal modulo LM.I /. We
set N.I / WD N.LM.I //. In particular, the free monoid hXi splits as a disjoint union

hXi D N.I / t LM.I /: (2.3)

The free associative algebra khXi splits as a direct sum of k-vector subspaces

khXi ' SpankN.I /˚ I;

and there is an isomorphism of vector spaces A ' SpankN.I /.
It follows that every f 2 khXi can be written uniquely as f D f0 C h, where

f0 2 kN.I / and h 2 I . The element f0 is called the normal form of f (modulo I ) and
denoted by Nor.f /. We define

N.I /m D ¹u 2 N.I / j u has length mº:

In particular, N.I /1 D X;N.I /0 D 1. Then Am ' SpankN.I /m for every m 2 N0.
A subset G � I of monic polynomials is a Gröbner basis of I (with respect to the

order <) if
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(1) G generates I as a two-sided ideal, and

(2) for every f 2 I there exists g 2 G such that LM.g/ is a subword of LM.f /, that
is, LM.f / D aLM.g/b for some a; b 2 hXi.

A Gröbner basis G of I is reduced if (i) the set G n ¹f º is not a Gröbner basis of I ,
whenever f 2 G; (ii) each f 2 G is a linear combination of normal monomials modulo
G n ¹f º.

It is well known that every ideal I of khXi has a unique reduced Gröbner basis
G0 D G0.I / with respect to <. However, G0 may be infinite. For more details, we refer
the reader to [23, 28, 29].

The set of leading monomials of the reduced Gröbner basis G0 D G0.I /

W D ¹LM.f / j f 2 G0.I /º (2.4)

is the set of obstructions for A D khXi=I , in the sense of Anick [1]. There are equalities
of sets N.I / D N.G0/ D N.W /. We shall use the set of obstructions for the proof of
Theorem 3.8.

Bergman’s Diamond Lemma [5, Theorem 1.2] implies the following.

Remark 2.1. Let G � khXi be a set of noncommutative polynomials. Let I D .G/ and
let A D khXi=I . Then the following conditions are equivalent.

(1) The set G is a Gröbner basis of I .

(2) Every element f 2 khXi has a unique normal form modulo G, denoted by
NorG.f /.

(3) There is an equality N.G/ D N.I /, so there is an isomorphism of vector spaces

khXi ' I ˚ kN.G/:

(4) The image ofN.G/ inA is a k-basis ofA. In this case,A can be identified with the
k-vector space kN.G/, made a k-algebra by the multiplication a � b WD Nor.ab/.

In this paper, we focus on a class of quadratic finitely presented algebras A associated
with set-theoretic nondegenerate involutive solutions .X; r/ of finite order n. Following
Yuri Manin [26], we call them Yang–Baxter algebras.

2.2. Quadratic algebras

A quadratic algebra is an associative graded algebra A D
L
i�0 Ai over a ground field k

determined by a vector space of generators V D A1 and a subspace of homogeneous
quadratic relations R D R.A/ � V ˝ V . We assume that A is finitely generated, so
dimA1 <1. Thus A D T .V /=.R/ inherits its grading from the tensor algebra T .V /.

Following the classical tradition (and a recent trend), we take a combinatorial approach
to study A. The properties of A will be read off a presentation A D khXi=.</, where by
convention X is a fixed finite set of generators of degree 1, jX j D n, and .</ is the
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two-sided ideal of relations, generated by a finite set < of homogeneous polynomials of
degree 2. In particular, A1 D V D SpankX .

Definition 2.2. A quadratic algebra A is a PBW type algebra or shortly a PBW algebra
if there exists an enumeration X D ¹x1; : : : ; xnº of X such that the quadratic relations <
form a (noncommutative) Gröbner basis with respect to the deg-lex order < on hXi. In
this case, the set of normal monomials (mod <) forms a k-basis of A called a PBW basis
and x1; : : : ; xn (taken exactly with this enumeration) are called PBW generators of A.

PBW algebras were introduced by Priddy [31]. The PBW basis is a generalisation of
the classical PBW basis for the universal enveloping of a finite-dimensional Lie algebra.
PBW algebras form an important class of Koszul algebras. The interested reader can find
information on quadratic algebras and, in particular, on Koszul algebras and PBW algeb-
ras in [30]. A special class of PBW algebras important for this paper are the binomial skew
polynomial rings introduced and studied by the author in [10, 11].

Definition 2.3 ([10, 11]). A binomial skew polynomial ring is a quadratic algebra A D
khx1; : : : ; xni=.<0/ with precisely

�
n
2

�
defining relations

<0 D ¹'j i D xjxi � cijxi 0xj 0 j 1 � i < j � nº (2.5)

such that

(a) for every pair i; j; 1 � i < j � n, the relation xjxi � cijxi 0xj 0 2 <0 satisfies
j > i 0, i 0 < j 0; cij 2 k�;

(b) every ordered monomial xixj , with 1 � i < j � n occurs (as a second term) in
some relation in <0;

(c) <0 is the reduced Gröbner basis of the two-sided ideal .<0/, with respect to the
deg-lex order < on hXi; or equivalently,

(c0) the set of terms T D ¹x˛11 � � � x
˛n
n 2 hXi j ˛i 2 N0; i 2 ¹1; : : : ; nºº projects to a

k-basis of A.

The equivalence of (c) and (c0) follows from the Diamond Lemma; see Remark 2.1.

It is clear that each binomial skew polynomial ring A is a PBW algebra with a set of
PBW generators x1; : : : ; xn. It was proven in [22] that A defines via its relations a square-
free solution of the Yang–Baxter equation. Conversely, if .X; r/ is a finite square-free
solution, then there exists an enumeration X D ¹x1; x2; : : : ; xnº such that the Yang–
Baxter algebra A.k; X; r/ is a binomial skew polynomial ring; this follows from results
of Rump [33] (see also details in [12]).

Example 2.4. Let A D khx1; x2; x3; x4i=.<0/, where

<0 D ¹x4x2 � x1x3; x4x1 � x2x3; x3x2 � x1x4; x3x1 � x2x4;

x4x3 � x3x4; x2x1 � x1x2º:
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The algebra A is a binomial skew polynomial ring. It is a PBW algebra with PBW gen-
erators X D ¹x1; x2; x3; x4º. The relations of A define in a natural way a solution of
YBE.

2.3. Set-theoretic solutions of the Yang–Baxter equation and their Yang–Baxter
algebras

The notion of a quadratic set was introduced in [12], see also [19], as a set-theoretic
analogue of a quadratic algebra.

Definition 2.5 ([12]). Let X be a non-empty set (possibly infinite), and let r W X �X !
X �X be a bijective map. In this case, we use notation .X; r/ and refer to it as a quadratic
set. The image of .x; y/ under r is written as

r.x; y/ D .xy; xy/:

This formula defines a “left action” L WX �X !X and a “right action” R WX �X !X

on X as: Lx.y/ D
xy, Ry.x/ D x

y for all x; y 2 X . (i) .X; r/ is nondegenerate, if the
maps Lx and Rx are bijective for each x 2 X . (ii) .X; r/ is involutive if r2 D idX�X .
(iii) .X; r/ is square-free if r.x; x/ D .x; x/ for all x 2 X . (iv) .X; r/ is a set-theoretic
solution of the Yang–Baxter equation (YBE) if the braid relation

r12r23r12 D r23r12r23

holds in X � X � X , where r12 D r � idX , and r23 D idX � r . In this case, we refer to
.X; r/ also as a braided set. (v) A braided set .X; r/with r involutive is called a symmetric
set. (vi) A nondegenerate symmetric set is called simply a solution.

We say that .X; r/ is the trivial solution on X if r.x; y/ D .y; x/ for all x; y 2 X .

Remark 2.6 ([7]). Let .X; r/ be a quadratic set. Then r obeys the YBE, that is, .X; r/ is
a braided set, iff the following three conditions hold for all x; y; z 2 X :

l1: x.yz/ D
xy.x

y

z/; r1: .xy/z D .x
yz/y

z

; lr3: .xy/.
xy z/
D
.x
yz/.yz/:

The map r is involutive iff

inv:
xy.xy/ D x; and .xy/x

y

D y:

Convention 2.7. In this paper, “a solution of YBE” or simply “a solution” means “a
nondegenerate symmetric set” .X; r/, where X is a set of arbitrary cardinality.

As a notational tool, we shall identify the sets X�m of ordered m-tuples, m � 2,
and Xm, the set of all monomials of length m in the free monoid hXi. We shall use also
notation �r.x;y/ WD xy. Sometimes for simplicity we shall write r.xy/ instead of r.x;y/.
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Definition 2.8 ([12, 19]). To each quadratic set .X; r/ we associate canonically algebraic
objects generated by X and with quadratic relations < D <.r/ naturally determined as

xy D y0x0 2 <.r/ iff r.x; y/ D .y0; x0/ and .x; y/ ¤ .y0; x0/ hold in X �X:

The monoid S D S.X; r/ D hX I <.r/i with a set of generators X and a set of defining
relations<.r/ is called the monoid associated with .X; r/. The groupG DG.X; r/DGX
associated with .X; r/ is defined analogously. For an arbitrary fixed field k, the k-algebra
associated with .X; r/ is defined as

A D A.k; X; r/ D khXi=.<A/ ' khX I <.r/i;
where <A D ¹xy � y

0x0 j xy D y0x0 2 <.r/º:

Clearly, A is a quadratic algebra generated by X and with defining relations <A, which
is isomorphic to the monoid algebra kS.X; r/.

When .X; r/ is a solution of YBE, the algebra A is called a Yang–Baxter algebra [26],
or shortly a YB algebra.

Suppose .X; r/ is a finite quadratic set. Then A D A.k; X; r/ is a connected graded
k-algebra (naturally graded by length), A D

L
i�0 Ai , where A0 D k, and each graded

component Ai is finite-dimensional. Moreover, the associated monoid S D S.X; r/ is
naturally graded by length:

S D
G
i�0

Si ; where S0 D 1; S1 D X; Si D ¹u 2 S j juj D iº; Si :Sj � SiCj : (2.6)

In the sequel, by “a graded monoid S”, we shall mean that S is generated by S1 D X

and graded by length. The grading of S induces a canonical grading of its monoid algebra
kS.X; r/. The isomorphism AŠ kS.X; r/ agrees with the canonical gradings, so there is
an isomorphism of vector spaces Am Š Spank Sm.

If .X; r/ is a nondegenerate involutive quadratic set of finite order jX j D n, then,
by [14, Proposition 2.3], the set < consists of precisely

�
n
2

�
quadratic relations. In this

case, the associated algebra A D A.k; X; r/ satisfies dim A2 D
�
nC1
2

�
.

Definition-Notation 2.9 ([17]). Suppose .X; r/ is an involutive quadratic set. Then the
cyclic group hri D ¹1; rº acts on the set X2 and splits it into disjoint r-orbits ¹xy; r.xy/º,
where xy 2X2. An r-orbit ¹xy; r.xy/º is nontrivial if xy ¤ r.xy/. The element xy 2X2

is an r-fixed point if r.xy/ D xy. The set of r-fixed points in X2 will be denoted by
F .X; r/:

F .X; r/ D ¹xy 2 X2 j r.xy/ D xyº: (2.7)

The following useful corollary is a consequence of [17, Lemma 3.7].

Corollary 2.10. Let .X; r/ be a solution of YBE of finite order jX j D n, and let A D

A.k;X;r/ be its Yang–Baxter algebra. (1) There are exactly n fixed points F DF .X;r/D
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¹x1y1; : : : ; xnynº � X
2, so jF .X; r/j D jX j D n. In the special case, when .X; r/ is a

square-free solution, one has F .X; r/D�2 D ¹xx j x 2 Xº, the diagonal of X2. (2) The
number of nontrivial r-orbits is exactly

�
n
2

�
. Each such an orbit has two distinct elements:

xy and r.xy/, where xy; r.xy/ 2 X2. (3) The set X2 splits into
�
nC1
2

�
r-orbits. For

xy; zt 2 X2, there is an equality xy D zt in A iff zt 2 ¹xy; r.xy/º. (4) In particular, A

has exactly
�
n
2

�
defining relations (each relation corresponds to a nontrivial r-orbit).

Remark 2.11 ([13]). Let .X; r/ be an involutive quadratic set, and let S D S.X; r/ be the
associated monoid.

(i) By definition, two monomialsw;w0 2 hXi are equal in S iffw can be transformed
to w0 by a finite sequence of replacements each of the form

axyb �! ar.xy/b; where x; y 2 X; a; b 2 hXi:

Clearly, every such replacement preserves monomial length, which therefore des-
cends to S.X; r/. Furthermore, replacements coming from the defining relations
are possible only on monomials of length� 2, henceX � S.X; r/ is an inclusion.
For monomials of length 2, xy D zt holds in S.X; r/ iff zt 2 ¹xy; r.xy/º.

(ii) It is convenient for each m � 2 to refer to the subgroup Dm D Dm.r/ of the
symmetric group Sym.Xm/ generated concretely by the maps

r i iC1 W Xm �! Xm; r i iC1 D idX i�1 � r � idXm�i�1 ; i D 1; : : : ; m � 1: (2.8)

One can also consider the free groups

Dm.r/ D grhr
i iC1
j i D 1; : : : ; m � 1i;

where the r i iC1 are treated as abstract symbols, as well as various quotients
depending on the further type of r of interest. These free groups and their quotients
act on Xm via the actual maps r i iC1, so that the image of Dm.r/ in Sym.Xm/
is Dm.r/. In particular, D2.r/ D hri � Sym.X2/ is the cyclic group generated
by r . It follows straightforwardly from part (i) thatw;w0 2 hXi are equal as words
in S.X; r/ iff they have the same length, saym, and belong to the same orbit ODm

of Dm.r/ in Xm. In this case, the equality w D w0 holds in S.X; r/ and in the
algebra A.k; X; r/.
An effective part of our combinatorial approach is the exploration of the action of
the group D2.r/ D hri on X2 and the properties of the corresponding orbits. In
the literature, a D2.r/-orbit O inX2 is often called “an r-orbit”, and we shall use
this terminology.

In notation and assumption as above, let .X; r/ be a finite quadratic set with S D
S.X; r/ graded by length. Then the order of the graded component Sm equals the number
of Dm.r/-orbits in Xm.
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3. The Yang–Baxter algebra A.k; X; r/ of a finite nondegenerate
symmetric set .X; r/

It was proven through the years that the Yang–Baxter algebras A.k; X; r/ correspond-
ing to finite nondegenerate symmetric sets have remarkable algebraic and homological
properties. They are noncommutative, but have many of the “good” properties of the com-
mutative polynomial ring kŒx1; : : : ; xn�; see Remarks 3.1 and 3.5 and Theorem 3.8. This
motivates us to look for more analogues coming from commutative algebra and algebraic
geometry.

3.1. Basic facts about the YB algebras A.k; X; r/ of finite solutions .X; r/

The following remark observes the importance of finite square-free solutions and their
close relations to Artin–Schelter regularity. The results are extracted from [13,15,22,33].

Remark 3.1. Suppose .X; r/ is a square-free nondegenerate and involutive quadratic
set of order n. Let A D A.k; X; r/ be the associated quadratic algebra. The following
conditions are equivalent.

(1) A is an Artin–Schelter regular PBW algebra.

(2) .X; r/ is a solution of YBE.

(3) There exists an enumeration X D ¹x1; x2; : : : ; xnº such that A is a binomial skew
polynomial algebra.

The implication (1) ) (3) follows from [15, Theorem 1.2]. (3) ) (1) is proven
in [13, Theorem B] (see also [22]). (3) ) (2) is proven in [22, Theorem 1.1]. The
implication (2) ) (3) was conjectured by the author and proven by Rump; see [33,
Theorem 1].

Remark 3.2. Note that among all Yang–Baxter algebras A D A.k; X; r/ of finite solu-
tions studied in this paper, the only PBW algebras are those corresponding to square-
free solutions .X; r/. This follows from Theorem 3.8 which will be proven in the next
subsection.

Artin–Schelter regular algebras (or shortly AS regular algebras) were introduced and
studied first in [3]. The study of AS regular algebras, their classification, and finding new
classes of such algebras is one of the central problems in noncommutative geometry.

Convention 3.3. Let .X; r/ be a finite solution of YBE of order n, and let ADA.k;X; r/
be the associated Yang–Baxter algebra.

(a) If .X; r/ is square-free, we fix an enumeration such that X D ¹x1; : : : ; xnº is a set
of PBW generators of A. In this case, A is a binomial skew polynomial ring; see
Definition 2.3.
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(b) If .X; r/ is not square-free, we fix an arbitrary enumeration X D ¹x1; : : : ; xnº
on X .

In each of the cases (a) and (b), we extend the fixed enumeration on X to the deg-
lex order < on hXi. By convention, the Yang–Baxter algebra A D AX D A.k; X; r/ is
presented as

A DA.k; X; r/ D khXi=.<A/ ' khX I <.r/i;
where <A D ¹xy � y

0x0 j xy > y0x0; and r.xy/ D y0x0º: (3.1)

Consider the two-sided ideal I D .<A/ of khXi, let G D G.I / be the unique reduced
Gröbner basis of I with respect to <. Here we do not need an explicit description of
the reduced Gröbner basis G of I , but we need some details. In the case (a), one has
G D <A. It follows from Remark 3.2 that in the case (b) the set of relations <A is not a
Gröbner basis of I , but <A ¤ G. Moreover, the shape of the relations <A and standard
techniques from noncommutative Gröbner bases theory imply that the Gröbner basis G is
finite, or countably infinite, and consists of homogeneous binomials fj D uj � vj , where
LM.fj / D uj > vj , and uj ; vj 2 Xm, for some m � 2. The set of all normal monomials
modulo I is denoted by N . As we mentioned above, N D N .I / D N .G/. An element
f 2 khXi is in normal form (modulo I ) if f 2 Spank N . The free monoid hXi splits as
a disjoint union hXi D N t LM.I /. The free associative algebra khXi splits as a direct
sum of k-vector subspaces khXi ' Spank N ˚ I , and there is an isomorphism of vector
spaces A ' Spank N . As usual, we denote

Nd D ¹u 2 N j u has length dº: (3.2)

Then Ad ' Spank Nd for every d 2 N0. According to Corollary 3.6, dim Ad D jNd j D�
nCd�1
d

�
8d � 0. Note that since the set of relations <A is a finite set of homogeneous

polynomials, the elements of the reduced Gröbner basis G D G.I / of degree � d can be
found effectively (using the standard strategy for constructing a Gröbner basis), and there-
fore the set of normal monomials Nd can be found inductively for d D 1; 2; 3; : : : (Here
we do not need an explicit description of the reduced Gröbner basis G of I .) It follows
from Bergman’s Diamond Lemma [5, Theorem 1.2] that if we consider the space kN

endowed with multiplication defined by

f � g WD Nor.fg/ for every f; g 2 kN ;

then .kN ; �/ has a well-defined structure of a graded algebra, and there is an isomorphism
of graded algebras

A D A.k; X; r/ Š .kN ; �/; so A D
M
d2N0

Ad Š
M
d2N0

kNd :

By convention, we shall often identify the algebra A with .kN ; �/. In the case (a) when
.X; r/ is square-free, the set of normal monomials is exactly T (the set of ordered terms
in X ), so A is identified with .kT ; �/ and S.X; r/ is identified with .T ; �/.
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We shall recall more properties of the Yang–Baxter algebras which will be used in
the sequel, but first we need the following lemma which is involved in our interpretation
of [22, Theorem 1.3] as presented in Remark 3.5.

Lemma 3.4. Every nondegenerate involutive quadratic set .X; r/ satisfies the following
condition (Ore condition).

Given a; b 2 X , there exist unique c; d 2 X such that r.ca/ D db.

Furthermore, if a D b, then c D d:
(3.3)

In particular, r is 2-cancellative.

Proof. Let .X; r/ be a nondegenerate involutive quadratic set (not necessarily finite). Let
a; b 2 X . We have to find unique pair c; d such that r.c; a/ D .d; b/. By the nondegener-
acy, there is unique c 2 X such that ca D b. Let d D ca, then r.c; a/D .ca; ca/D .d; b/,
as desired. It also follows from the nondegeneracy that the pair c; d with this property is
unique. Assume now that a D b. The equality r.c; a/ D .d; a/ implies .ca; ca/ D .d; a/,
so ca D a. But r is involutive, thus .c; a/ D r.d; a/ D .da; da/, and therefore da D a. It
follows that ca D da, and, by the nondegeneracy, c D d .

The following facts are a compilation of results from [22] and are true for every finite
solution of YBE.

Remark 3.5. Suppose .X; r/ is a finite solution of YBE of order n, X D ¹x1; : : : ; xnº.
Let S D S.X; r/ be the associated Yang–Baxter monoid, and let A D A.k; X; r/ be the
associated Yang–Baxter algebra. Then the following conditions hold.

(1) (A modified version of [22, Theorem 1.3])
The monoid S is a semigroup of I -type, that is, there is a bijective map v WU 7! S ,
where U is the free n-generated abelian monoid U D Œu1; : : : ; un� such that
v.1/ D 1, and such that

¹v.u1a/; : : : ; v.una/º D ¹x1v.a/; : : : ; xnv.a/º for all a 2 U:

(2) The Hilbert series of A is HA.t/ D 1=.1 � t /
n.

(3) (a) A has finite global dimension and polynomial growth; (b) A is Koszul;
(c) A is left and right Noetherian; (d) A satisfies the Auslander condition and
is Cohen–Macaulay; and (e) A is finite over its centre [22, Theorem 1.4].

(4) A is a domain, and in particular the monoid S is cancellative [22, Corollary 1.5].

For convenience of the reader we shall make a brief observation. Note first that the
hypothesis of Remark 3.5 is satisfied by arbitrary finite solution of YBE .X; r/ which is
not necessarily square-free, and, in general, the algebra A D A.k; X; r/ is not a binomial
skew polynomial ring, or equivalently, A is not a PBW algebra.
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Next observe that part (1) of Remark 3.5 is a modification of the original second
part of [22, Theorem 1.3] which states (in our terminology): “Suppose that .X; r/ is a
finite solution of YBE of order n which satisfies the condition (3.3). Then the monoid
S.X; r/ is of I -type”. However, under the hypothesis of Remark 3.5, Lemma 3.4 implies
the necessary condition (3.3).

The following corollary is straightforward from Remark 3.5 (1) and will be used
throughout the paper.

Corollary 3.6. In notation and conventions as above. Let .X; r/ be a solution of YBE of
finite order n. Then for every integer d � 1, there are equalities

dim Ad D

�
nC d � 1

d

�
D

�
nC d � 1

n � 1

�
D jNd j: (3.4)

3.2. Every finite solution .X; r/ whose Yang–Baxter algebra A.k; X; r/ is PBW
is square-free

In this subsection, we give an answer to Problems 1.1 (1).
Suppose .X; r/ is a finite solution of YBE whose Yang–Baxter algebraADA.k;X; r/

is PBW, where X D ¹x1; x2; : : : ; xnº is a set of PBW generators. Then A D khXi=.<A/,
where the set of (quadratic) defining relations <A of A coincides with the reduced
Gröbner basis of the ideal .<A/ modulo the deg-lex order on hXi. The cardinality of <A

is exactly
�
n
2

�
; see Corollary 2.10. Recall that the set of leading monomials

W D ¹LM.f / j f 2 <Aº (3.5)

is called the set of obstructions for A, in the sense of Anick [1].

Lemma 3.7. Suppose .X; r/ is a solution of YBE of order n and that its Yang–Baxter
algebra A DA.k;X; r/ is PBW, where X D ¹x1; x2; : : : ; xnº is a set of PBW generators.
Then there exists a permutation

y1 D xs1 ; y2 D xs2 ; : : : ; yn D xsn of x1; x2; : : : ; xn

such that the following conditions hold.

(1) The set of obstructionsW D ¹LM.f / j f 2 <Aº consists of
�
n
2

�
monomials given

below
W D ¹yjyi j 1 � i < j � nº: (3.6)

(2) The normal k-basis of A modulo I D .<A/ is the set

N D ¹y˛11 y
˛2
2 � � �y

˛n
n j ˛i � 0 for 1 � i � nº: (3.7)

Proof. Let W be the set of obstructions defined via (3.5), and let AW be the associated
monomial algebra defined as

AW WD khXi=.W /: (3.8)
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It is well known that a word u 2 hXi is normal modulo I D .<A/ iff u is normal modulo
the set of obstructions W . Therefore, the two algebras A and AW share the same normal
k-basis N D N .I / D N .W / and their Hilbert series are equal. By Remark 3.5 part (2),
the Hilbert series of A is HA.t/ D 1=.1 � t /

n; therefore,

HAW .t/ D HA.t/ D 1=.1 � t /
n: (3.9)

Thus the Hilbert series of AW satisfies condition (5) of [15, Theorem 3.7, p. 2163], and it
follows from the theorem that there exists a permutation y1 D xs1 ; y2 D xs2 ; : : : ; yn D xsn
of the generators x1;x2; : : : ;xn such that the set of obstructionsW satisfies (3.6). The Dia-
mond Lemma [5] and the explicit description of the obstruction setW given in (3.6) imply
that the set of normal words N D N .I / D N .W / is described in (3.7).

Observe that if the permutation given in the lemma is not trivial, then there is an
inversion, that is, a pair i; j with i < j and yj < yi .

Theorem 3.8. Suppose .X; r/ is a solution of YBE of order n, and A D A.k; X; r/
is its Yang–Baxter algebra. Then A is a PBW algebra with a set of PBW generators
X D ¹x1; x2; : : : ; xnº (enumerated properly) if and only if .X; r/ is a square-free solution.

Proof. If .X; r/ is square-free, then there exists an enumeration X D ¹x1; : : : ; xnº, so
that A is a binomial skew polynomial ring in the sense of [11], and therefore A is PBW.
This was a conjecture of the author which was proven later by Rump [33, Theorem 1].

Assume now that .X; r/ is a finite solution of order n whose Yang–Baxter algebra
A D A.k; X; r/ is PBW, where X D ¹x1; x2; : : : ; xnº is a set of PBW generators. We
have to show that .X; r/ is square-free, that is, r.x; x/ D .x; x/ for all x 2 X .

It follows from our assumptions that in the presentation A D khXi=.<A/ the set
of (quadratic) defining relations <A of A is the reduced Gröbner basis of the ideal
.<A/ modulo the deg-lex order on hXi. By Lemma 3.7, there exists a permutation
y1 D xs1 ; y2 D xs2 ; : : : ; yn D xsn of x1; x2; : : : ; xn such that the obstruction set W D
¹LM.f / j f 2 <Aº satisfies (3.6), and the set of normal monomials N described in (3.7)
is a PBW basis of A.

We use some properties of .X; r/ and the relations of A listed below.
(i) The solution .X; r/ is 2-cancellative. This follows from Lemma 3.4. (ii) There

are exactly n fixed points xy 2 X2 with r.x; y/ D .x; y/ and the set <A consists of
exactly

�
n
2

�
relations. This follows from Corollary 2.10. (iii) Every monomial of the shape

yjyi ; 1� i < j � n is the leading monomial of some polynomial 'j i 2<A. (It is possible
that yj < yi for some j > i .)

Therefore, the algebra A has a presentation

A D khx1; : : : ; xni=.<A/

with precisely
�
n
2

�
defining relations

<A D ¹'j i D yjyi � uij j 1 � i < j � nº (3.10)
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such that

(1) For every pair i; j; 1 � i < j � n, the monomial uij satisfies uij D yi 0yj 0 ,
where i 0 � j 0 and yj > yi 0 (since LM.'j i / D yjyi > yi 0yj 0 , and since .X; r/
is 2-cancellative).

(2) Each monomial yiyj with 1 � i � j � n occurs at most once in <A (since r is a
bijective map).

(3) <A is the reduced Gröbner basis of the two-sided ideal .<A/, with respect to the
degree-lexicographic order < on hXi.

In terms of the relations <A, our claim that r.x; x/ D .x; x/, for all x 2 X , is equivalent
to

uij ¤ xx; where x 2 X and 1 � i < j � n: (3.11)

So far we know that .X; r/ has exactly n fixed points, and each monomial yjyi ; 1 � i <
j � n is not a fixed point. Therefore, it will be enough to show that a monomial yiyj ,
with 1 � i < j � n, cannot be a fixed point.

Assume on the contrary that r.yi ; yj / D .yi ; yj / for some 1 � i < j � n. We claim
that in this case <A contains two relations of the shape

ypyq � yjyj ; where p > q; yp > yj : (3.12a)

ysyt � yiyi ; where s > t; ys > yi : (3.12b)

Consider the increasing chain of left ideals of A

I1 � I2 � � � � � Ik � � � � ;

where for k � 1, Ik is the left ideal

Ik D A.yiyj ; yiy
2
j ; : : : ; yiy

k
j /:

By [22, Theorem 1.4], see also Remark 3.5 (3), the algebra A is left Noetherian, hence
there exists k > 1 such that Ik�1 D Ik D IkC1 D � � �, and therefore yiykj 2 Ik�1. This
implies

w � .yiy
c
j / D yiy

k
j 2 N for some c; 1 � c � k � 1;

and some w 2 N ; jwj D k � c: (3.13)

It follows from (3.13) that the monomial v0 D yiykj can be obtained from the monomial
w.yiy

c
j / by applying a finite sequence of replacements (reductions) in hXi. More

precisely, there exists a sequence of monomials

v0 D yiy
k
j ; v1; : : : ; vt�1; vt D w.yiy

c
j / 2 hXi

and replacements

vt ! vt�1 ! � � � ! v1 ! v0 D yiy
k
j 2 N ; (3.14)



Veronese subalgebras and Veronese morphisms for a class of Yang–Baxter algebras 237

where each replacement comes from some quadratic relation fpq D ypyq � uqp in (3.10)
and has the shape

aŒypyq�b ! a.uqp/b; where n � p > q � 1; a; b 2 hXi:

We have assumed that yiyj is a fixed point, so it cannot occur in a relation in (3.10). Thus
the rightmost replacement in (3.14) is of the form

u1 D yiyj � � �yj Œypyq� � � �yj ! yiyj � � �yj .uqp/ � � �yj D yiyj � � �yj .yjyj / � � �yj D v0;

where p; q is a pair with 1 � q < p � n, uqp D yjyj and yp > yj . In other words, the
set <A contains a relation of type (a) ypyq � xjxj where p > q; yq > yj .

Analogous argument proves the existence of a relation of type (b) in (3.12). This time
we consider an increasing chain of right ideals I1 � I2 � � � � � Ik � � � �, where Ik is the
right ideal Ik D .yiyj ; y2i yj ; : : : ; y

k
i yj /A and apply the right Noetherian property of A.

Consider now the subset of fixed points

F0.X; r/ D ¹yiyj 2 X
2 such that i < j and r.yi ; yj / D .yi ; yj /º;

which by our assumption is not empty. Then F0.X; r/ has cardinality m � 1 and <A

contains at least mC 1 (distinct) relations of the type

ypyq � xx; where x 2 X;p > q and yp > x: (3.15)

The set N2 of normal monomials of length 2 contains
�
n
2

�
elements of the shape ysyt ; 1 �

s < t � n, and we have assumed that m of them are fixed. Then there are
�
n
2

�
� m dis-

tinct monomials yiyj 2 N2; 1 � i < j � n which are not fixed. Each of these monomials
occurs in exactly one relation

ysyt � yiyj ; where r.ys; yt / D .yi ; yj /; s > t; ys > yi :

Thus<A contains
�
n
2

�
�m distinct square-free relations and at leastmC 1 relations which

contain squares as in (3.15). Therefore, the set of relations has cardinality

j<Aj �

�
n

2

�
�mCmC 1 >

�
n

2

�
which is a contradiction.

We have shown that a monomial yiyj with 1 � i < j � n cannot be a fixed point, and
therefore it occurs in a relation in <A. But .X; r/ has exactly n fixed points, so these are
the elements of the diagonal ofX2, xixi ;1� i � n. It follows that .X;r/ is square-free.

Proposition 3.9. Let .X; r/ be a finite nondegenerate involutive quadratic set, and
let A D A.k; X; r/ D khXi=.<A/ be its quadratic algebra. Assume that there is an
enumeration X D ¹x1; x2; : : : ; xnº of X such that the set

N D ¹x˛11 x
˛2
2 � � � x

˛n
n j ˛i � 0 for 1 � i � nº
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is a normal k-basis of A modulo the ideal I D .<A/. Then A D A.k; X; r/ is a PBW
algebra, where X D ¹x1; x2; : : : ; xnº is a set of PBW generators of A and the set of
relations R0 is a quadratic Gröbner basis of the two-sided ideal .<A/. The following
conditions are equivalent.

(1) The algebra A is left and right Noetherian.

(2) The quadratic set .X; r/ is square-free.

(3) .X; r/ is a solution of YBE.

(4) A is a binomial skew polynomial ring in the sense of [11].

Proof. The quadratic set .X; r/ and the relations of A satisfy conditions similar to those
listed in the proof of Theorem 3.8. More precisely: (i) .X; r/ is 2-cancellative. This fol-
lows from Lemma 3.4. (ii) There are exactly n fixed points xy 2X2 with r.x;y/D .x;y/.
This follows from Corollary 2.10. (iii) It follows from the hypothesis that every monomial
of the shape xjxi ; 1 � i < j � n is not in the normal k-basis N , and therefore it is the
highest monomial of some polynomial 'j i 2 <A. According to [14, Proposition 2.3], if
.X; r/ is a nondegenerate involutive quadratic set of order n, then the set <A consists of
exactly

�
n
2

�
relations. Therefore, the algebra A has a presentation

A D khx1; : : : ; xni=.<A/

with precisely
�
n
2

�
defining relations

<A D ¹'j i D xjxi � xi 0xj 0 j 1 � i < j � nº (3.16)

such that

(a) For every pair i; j; 1 � i < j � n, one has i 0 � j 0, and j > i 0 (since LM.'j i / D

xjxi > xi 0xj 0 , and since .X; r/ is 2-cancellative).

(b) Each ordered monomial (term) of length 2 occurs at most once in <A (since r is
a bijective map).

(c) <A is the reduced Gröbner basis of the two-sided ideal .<A/, with respect to the
deg-lex order < on hXi, or equivalently the overlaps xkxjxi with k > j > i do
not give rise to new relations in A.

We shall prove now the equivalence of the conditions (1) through (4). (1)) (2). The proof
is analogous to the proof of Theorem 3.8. It is enough to show that a monomial xixj with
1 � i < j � n cannot be a fixed point. Assuming the contrary, and applying an argument
similar to the proof of Theorem 3.8, in which we involve the left and right Noetherian
properties of A, we get a contradiction. Thus every monomial xixj with 1 � i < j � n
occurs in a relation in <A. At the same time, the monomials xjxi with 1 � i < j � n are
also involved in the relations<A, hence they are not fixed points. But .X; r/ has exactly n
fixed points, so these are the elements of the diagonal of X2, xixi ; 1 � i � n. It follows
that .X; r/ is square-free. (2)) (4). If .X; r/ is square-free, then the relations <A given
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in (3.16) are exactly the defining relations of a binomial skew polynomial ring. Moreover,
by the hypothesis of the proposition, condition (d0) in Definition 2.3 is in force; therefore,
all conditions in Definition 2.3 hold, and A is a skew polynomial ring with binomial rela-
tions in the sense of [11]. The implication (4)) (3) follows from [22, Theorem 1.1]. The
implication (3)) (1) follows from [22, Theorem 1.4]; see also Remark 3.5 (3).

We end the section with the following general question.

Question 3.10. (1) Suppose .X; r/ is a finite nondegenerate involutive solution of
order n. Determine conditions on .X; r/ which imply that the Yang–Baxter algebra
ADA.k;X; r/D khXi=.<A/ is standard finitely presented (or shortly, an s.f.p. algebra)
with respect to some appropriate enumeration X D ¹x1; : : : ; xnº of X . In other words, the
two-sided ideal I D .<A/ of khXi has a finite reduced Gröbner basis with respect to the
deg-lex order < on hXi. (2) Classify all solutions whose Yang–Baxter algebras are s.f.p.
(3) Find examples of finite nondegenerate involutive solutions .X; r/ whose Yang–Baxter
algebra is not s.f.p. with respect to any enumeration of X , or prove that such solutions do
not exist.

The Yang–Baxter algebra ADA.k;X; r/ of the solution .X; r/ in Example 7.2 is not
PBW, but it is standard finitely presented with respect to any enumeration of X .

4. The d-Veronese subalgebra A.d/ of the Yang–Baxter algebra
A.k; X; r/, its generators and relations

In this section, .X; r/ is a finite solution of YBE, and d � 2 is an integer. We shall study
the d -Veronese subalgebras A.d/ of the Yang–Baxter algebra A D A.k; X; r/. This is
an algebraic construction which mirrors the Veronese embedding. Results on Veronese
subalgebras of noncommutative graded algebras appeared first in [9] and [4]. Our main
reference here is [30, Section 3.2]. We shall prove Theorem 4.13 which presents the
d -Veronese subalgebra A.d/ in terms of generators and quadratic relations.

4.1. Veronese subalgebras of graded algebras

We recall first some basic definitions and facts about Veronese subalgebras of general
graded algebras.

Definition 4.1. Let A D
L
m2N0

Am be a graded k-algebra. For any integer d � 1, the
d -Veronese subalgebra of A is the graded algebra

A.d/ D
M
m2N0

Amd :
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By definition, the algebra A.d/ is a subalgebra of A. However, the embedding is not a
graded algebra morphism. The Hilbert function of A.d/ satisfies

hA.d/.m/ D dim.A.d//m D dim.Amd / D hA.md/:

It follows from [30, Proposition 2.2, Chapter 3] that if A is a one-generated, quad-
ratic, Koszul algebra, then its Veronese subalgebras are also one-generated, quadratic, and
Koszul.

Corollary 4.2. Let .X; r/ be a solution of order n, let A D A.k; X; r/ be its Yang–
Baxter algebra, and let d � 2 be an integer. Then the d -Veronese subalgebra A.d/ is
one-generated, quadratic, and Koszul.

Proof. If .X; r/ is a solution of order n, then, by definition, the Yang–Baxter algebra AD

A.k;X; r/ is one-generated and quadratic. Moreover, A is Koszul; see Remark 3.5. It fol-
lows straightforwardly from [30, Proposition 2.2, Chapter 3] that A.d/ is one-generated,
quadratic, and Koszul.

We shall prove in the next section that A.d/ is a left and a right Noetherian domain.
In the assumptions of Corollary 4.2, it is clear that the d-Veronese subalgebra A.d/

satisfies
A.d/

D

M
m2N0

Amd Š
M
m2N0

kNmd : (4.1)

Moreover, the normal monomials w 2 Nd of length d are degree one generators of A.d/,
and by Corollary 3.6 there are equalities

jNd j D dim Ad D

�
nC d � 1

d

�
:

We set

N D

�
nC d � 1

d

�
(4.2)

and order the elements of Nd lexicographically:

Nd WD ¹w1 < w2 < � � � < wN º: (4.3)

The d -Veronese A.d/ is a quadratic algebra with one-generatorsw1;w2; : : : ;wN . We shall
find a minimal set of quadratic relations for A.d/, each of which is a linear combination of
productswiwj for some i; j 2 ¹1; : : : ;N º. The relations are intimately connected with the
properties of the Yang–Baxter monoid S.X; r/. As a first step, we shall introduce a finite
nondegenerate symmetric set .Sd ; rd / induced in a natural way by the braided monoid
S.X; r/.
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4.2. The braided monoid S D S.X; r/ D .S; rS / of a braided set .X; r/

Matched pairs of monoids, M3-monoids, and braided monoids in a most general setting
were studied in [19], where the interested reader can find the necessary definitions and the
original results. Here we extract only some facts which will be used in the paper.

Fact 4.3 ([19, Theorems 3.6 and 3.14]). Let .X; r/ be a braided set, and let S D S.X; r/
be its Yang–Baxter monoid. Then

(1) The left and the right actions . /ı W X � X ! X , and ı. / W X � X ! X defined
via r can be extended in a unique way to a left and a right action

. /
ı W S � S �! S; .a; b/ 7! ab; and ı

. /
W S � S �! S; .a; b/ 7! ab

which make S a strong graded M3-monoid. In particular, the following equalities
hold in S for all a; b; u; v 2 S .

ML 0W a1 D 1; 1u D uI MR 0W 1u D 1; a1 D a

ML 1W .ab/u D a.bu/; MR 1W a.uv/ D .au/v

ML 2W a.u:v/ D .au/.a
u
v/; MR 2W .a:b/u D .a

bu/.bu/

M 3W uvuv D uv:

(4.4)

These actions define a bijective map

rS W S � S �! S � S; rS .u; v/ WD .
uv; uv/

which obeys the Yang–Baxter equation, so .S; rS / is a braided monoid. In partic-
ular, .S; rS / is a set-theoretic solution of YBE, and the associated bijective map
rS restricts to r .

(2) The following conditions hold.

(a) .S; rS / is a graded braided monoid, that is, the actions agree with the grading
(by length) of S :

j
auj D juj D juaj 8 a; u 2 S: (4.5)

(b) .S; rS / is nondegenerate iff .X; r/ is nondegenerate.

(c) .S; rS / is involutive iff .X; r/ is involutive.

(d) .S; rS / is square-free iff .X; r/ is a trivial solution.

Let .X; r/ be a nondegenerate symmetric set, and let .S; rS / be the associated graded
braided monoid, where we consider the natural grading by length given in (2.6):

S D
G
d2N0

Sd ; S0 D ¹1º; S1 D X; and SkSm � SkCm:

Each of the graded components Sd ; d � 1, is rS -invariant. Consider the restriction
rd D .rS /jSd�Sd , where rd is the map rd W Sd � Sd ! Sd � Sd .
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Corollary 4.4. Let .X; r/ be a solution of YBE. Then the following conditions hold.

(1) For every positive integer d � 1, .Sd ; rd / is a solution of YBE (a nondegenerate
symmetric set). Moreover, if .X; r/ is of finite order n, then .Sd ; rd / is a finite
solution of YBE of order

jSd j D

�
nC d � 1

d

�
D N: (4.6)

(2) The number of fixed points is jF .Sd ; rd /j D N .

Definition 4.5. We call .Sd ; rd / the monomial d -Veronese solution associated with
.X; r/.

The monomial d -Veronese solution .Sd ; rd / depends only on the map r and on the
integer d ; it is invariant with respect to the enumeration of X . Although .Sd ; rd / is intim-
ately connected with the d -Veronese subalgebra A.d/ and its quadratic relations, this
solution is not convenient for an explicit description of the relations. Its rich structure
inherited from the braiding in .S; rS / is used in the proof of Theorem 6.4. The solution
.Sd ; rd / induces in a natural way an isomorphic solution .Nd ; �d /, and the fact that Nd is
ordered lexicographically makes this solution convenient for our description of the rela-
tions of A.d/. Note that the set Nd , as a subset of the set of normal monomials N , depends
on the initial enumeration of X . We shall construct .Nd ; �d / below.

Remark 4.6. The d -Veronese solution .Sd ; rd / is closely related to a recently introduced
notion of cabling for involutive solutions (see [24]), where the “cabling” operations on
solutions are used to obtain new results on decomposability of solutions and a concep-
tual interpretation of the Dehornoy class. In fact, for every d � 2, the so-called “d -cabled
solution” rd is a very particular subsolution of the d -Veronese solution .Sd ; rd /.

Remark 4.7. Given the monomials a D a1a2 � � � ap 2 X
p and b D b1b2 � � � bq 2 X

q ,
we can find effectively the monomials ab 2 Xq and ab 2 Xp . Indeed, as in [19], we use
condition (4.4) to extend the left and the right actions inductively:

c.b1b2 � � � bq/ D .
cb1/.

cb1b2/ � � � .
.c
.b1 ���bq�1//bq/ for all c 2 X

.a1a2���ap/b D a1..a2���ap/b/:
(4.7)

We proceed similarly with the right action.

Lemma 4.8. Notation as in Remark 2.11. Suppose a; a1 2 Xp; a1 2 ODp
.a/, and b; b1 2

Xq; b1 2 ODq
.b/,

(1) The following are equalities of words in the free monoid hXi:

Nor.a1b1/ D Nor.ab/; Nor.a1b1/ D Nor.ab/: (4.8)

In particular, if a;a1 2Xp and b; b1 2Xq , the equalities aD a1 in S and b D b1
in S imply that a1b1 D ab and ab11 D a

b hold in S .
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(2) The following are equalities in the monoid S :

ab D abab D Nor.ab/Nor.ab/: (4.9)

Proof. By Remark 2.11, there is an equality a D a1 in S iff a1 2 ODp
.a/; in this case,

ODp
.a/DODp

.a1/. At the same time, aD a1 in S iff Nor.a1/DNor.a/ as words inXp;
in particular, Nor.a/ 2 ODp

.a/. Similarly, b1 D b in S iff b1 2 ODq
.b/, and in this case

Nor.b/D Nor.b1/ 2ODq
.b/. Part (1) follows from the properties of the actions in .S; rS /

studied in [19, Proposition 3.11]. (2) .S; rS / is an M3-braided monoid (see Fact 4.3), so
condition M3 implies the first equality in (4.9). Now (4.8) implies the second equality
in (4.9).

Definition-Notation 4.9. In notation and conventions as above. Let d � 1 be an integer.
Suppose .X; r/ is a solution of order n, A D A.k; X; r/ is the associated Yang–Baxter
algebra, and .S; rS / is the associated braided monoid. By convention, we identify A with
.kN ; �/ and S with .N ; �/. Define a left “action” and a right “action” on Nd as follows:

F W Nd �Nd �! Nd ; a F b WD Nor.ab/ 2 Nd 8a; b 2 Nd

G W Nd �Nd �! Nd ; a G b WD Nor.ab/ 2 Nd 8a; b 2 Nd :
(4.10)

It follows from Lemma 4.8 (1) that the two actions are well defined.
Define the map

�d W Nd �Nd �! Nd �Nd ; �d .a; b/ WD .a F b; a G b/: (4.11)

For simplicity of notation (when there is no ambiguity), we shall often write .Nd ; �/,
where � D �d .

Definition 4.10. We call .Nd ; �d / the normalised d -Veronese solution associated with
.X; r/.

Proposition 4.11. In assumption and notation as above.

(1) Let �d W Nd �Nd ! Nd �Nd be the map defined as �d .a; b/ D .a F b; a G b/.
Then .Nd ; �d / is a solution of YBE of order jNd j D

�
nCd�1
d

�
D N .

(2) .Nd ; �d / and .Sd ; rd / are isomorphic solutions of YBE.

Proof. (1) By Corollary 4.4, .Sd ; rd / is a nondegenerate symmetric set, that is, a solution
of YBE. Thus, by Remark 2.6, the left and the right actions associated with .Sd ; rd / satisfy
conditions l1, r1, lr3, and inv. Consider the actions F and G on Nd , given in Definition-
Notation 4.9. It follows from (4.10) and Lemma 4.8 that these actions also satisfy l1, r1,
lr3, and inv. Therefore, by Remark 2.6 again, �d obeys YBE and is involutive, so .Nd ;�d /

is a symmetric set. Moreover, the nondegeneracy of .Sd ; rd / implies that .Nd ; �d / is
nondegenerate. By Corollary 3.4, there are equalities jNd j D jSd j D

�
nCd�1
d

�
D N .
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(2) We shall prove that the map Nor W Sd ! Nd ; u 7! Nor.u/ is an isomorphism of
solutions. It is clear that the map is bijective. We have to show that Nor is a homomorphism
of solutions, that is,

.Nor�Nor/ ı rd D �d ı .Nor�Nor/: (4.12)

Let .u; v/ 2 Sd � Sd , then the equalities u D Nor.u/ and v D Nor.v/ hold in Sd , so

Nor.uv/ D Nor.Nor.u/Nor.v//; Nor.uv/ D Nor.Nor.u/Nor.v//

which together with (4.10) imply

.Nor�Nor/ ı rd .u; v/ D Nor�Nor.uv; uv/ D .Nor.uv/;Nor.uv//

D .Nor.u/ F Nor.v/;Nor.u/ G Nor.v// D �d .Nor.u/;Nor.v//:

This proves (4.12).

Let us consider the monomials in Nd are ordered lexicographically, Nd WD ¹w1 <

w2 < � � � < wN º (see (4.3)), and we shall use this order throughout the paper.

Proposition 4.12. In assumption and notation as above. Let .Nd ; �d / be the norm-
alised d -Veronese solution; see Definition 4.10. Then the Yang–Baxter algebra B D

A.k;Nd ; �d / is generated by the set Nd and has
�
N
2

�
quadratic defining relations given

below:

< D ¹fj i D wjwi � wi 0wj 0 j 1 � i; j � n; where �d .wj ; wi / D .wi 0 ; wj 0/;

and wj > wi 0 holds in hXiº: (4.13)

Moreover,

(i) There is a 1-to-1 correspondence between the set of relations < and the set of
nontrivial �d -orbits in Nd �Nd .

(ii) For every pair .a;b/ 2 .Nd �Nd / nF .Nd ; �d /, the monomial ab occurs exactly
once in <.

(iii) Every relation fj i has leading monomial LM.fj i / D wjwi .

Proof. For simplicity of notation we set �d D �. It is clear that there is a 1-to-1 corres-
pondence between the set of relations of the algebra B and the set of nontrivial orbits of
the map �.

By definition, each nontrivial relation of the Yang–Baxter algebra B corresponds to a
nontrivial orbit of �, and vice versa. Say

O D ¹.wj ; wi /; �.wj ; wi / D .wi 0 ; wj 0/º D ¹.wi 0 ; wj 0/; �.wi 0 ; wj 0/ D .wj ; wi /º;

and without loss of generality we may assume that the relation is

wjwi � wi 0wj 0 ; where wjwi > wi 0wj 0 :
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By Lemma 4.8 (2), the equalitywjwi Dwi 0wj 0 holds in S . The monoid S D S.X;r/ is
cancellative (see Remark 3.5), hence an assumption that wj D wi 0 would imply wi D wj 0 ,
a contradiction. Therefore, wj > wi 0 .

Conversely, if ��.wj ; wi / D wi 0wj 0 and wj > wi 0 , then fj i is a (nontrivial) relation
of the algebra B D B.k;Nd ; �d /. Clearly, wj > wi 0 implies wjwi > wi 0wj 0 in hXi, so
LM.fj i / D wjwi , and the number of relations gj i is exactly

�
N
2

�
.

4.3. The d-Veronese A.d/ presented in terms of generators and relations

According to Convention 3.3 and using the notation as above, the following result
describes the d -Veronese A.d/ of the Yang–Baxter algebra A in terms of one-generators
and quadratic relations.

Theorem 4.13. Let d � 2 be an integer. Let .X; r/ be a finite solution of YBE, where
X D ¹x1; : : : ; xnº, let A D A.k; X; r/ be its Yang–Baxter algebra, and let .Nd ; �/ be the
normalised d -Veronese solution from Definition 4.10, where Nd D ¹w1; : : : ; wN º is the
set of normal monomials of length d ordered lexicographically.

The d -Veronese subalgebra A.d/ � A is a quadratic algebra with N D
�
nCd�1
d

�
one-generators, namely the set Nd of normal monomials of length d , subject to N 2 ��
nC2d�1
n�1

�
linearly independent quadratic relations R described below.

(1) The relations R split into two disjoint subsets R D Ra [Rb , as follows.

(a) The set Ra contains
�
N
2

�
relations corresponding to the nontrivial �-orbits:

Ra D ¹fj i D wjwi � wi 0wj 0 j 1 � i; j � n; where �.wj ; wi / D .wi 0 ; wj 0/;

and wj > wi 0 holds in hXiº: (4.14)

Each monomial wiwj such that .wi ; wj / is in a nontrivial �-orbit occurs
exactly once in Ra. Every relation fj i has leading monomial LM.fj i / D

wjwi .

(b) The set Rb contains
�
NC1
2

�
�
�
nC2d�1
n�1

�
relations:

Rb D ¹gij D wiwj � wi0wj0 j 1� i ;j �n;where ��.wi ;wj /�wiwj ;wi0 ;wj0 2Nd ;

and wiwj > Nor.wiwj / D wi0wj0 2 N2d

is the normal form of wiwj º:
(4.15)

In particular, LM.gij / D wiwj > wi0wj0 .

(2) The d-Veronese subalgebra A.d/ has a second set of linearly independent quad-
ratic relations, R1, which splits into two disjoint subsets R1 D R1a [ Rb as
follows.

(a) The set R1a is a reduced version of Ra and contains exactly
�
N
2

�
relations:

R1a D ¹gj i D wjwi � wi 00wj 00 j 1 � i; j � n; where ��.wj ; wi / < wjwi ;

and wi 00wj 00 D Nor.wjwi / 2 N2d º: (4.16)
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In particular, LM.gj i / D wjwi > wi 00wj 00 2 N2d .

(b) The set Rb is given in (4.15).

(3) The two sets of relations R and R1 are equivalent: R, R1.

Proof. We start with a general observation. By Convention 3.3, we identify the algebra A

with .kN ; �/. We know that the d -Veronese subalgebra A.d/ is one-generated and
quadratic; see Corollary 4.2. By (4.1),

A.d/
D

M
m2N0

Amd Š

M
m2N0

kNmd :

So A
.d/
1 D kNd and the ordered monomialsw 2Nd of length d are degree one generators

of A.d/. There are equalities

dim Ad D jNd j D

�
nC d � 1

d

�
D N:

Moreover,

dim.A.d//2 D dim.A2d / D dim.kN2d / D jN2d j D

�
nC 2d � 1

n � 1

�
:

We want to find a finite presentation in terms of generators and relations

A.d/
D khw1; : : : ; wN i=.R/;

where the two-sided (graded) ideal I D .R/ is generated by linearly independent
homogeneous relations R of degree 2 in the variables wi , so I2 D SpankR.

(1) We compare dimensions to find the number of quadratic linearly independent
relations for the d -Veronese A.d/. The equality of vectors spaces

khw1; : : : ; wN i D I ˚
� M
m2N0

kNmd

�
implies an equality for the graded components

.khw1; : : : ; wN i/2 D I2 ˚ kN2d :

Hence if R is a set of linearly independent quadratic relations defining A.d/,
that is, R generates the ideal of relations I D .R/, there must be an equality
jRj C dim A

.d/
2 D N

2, so

jRj D N 2
�

�
nC 2d � 1

n � 1

�
: (4.17)

(2) We shall prove that the set of quadratic polynomials R D Ra [Rb given above
consists of relations of A.d/; it has order jRj D N 2 �

�
nC2d�1
n�1

�
and is linearly

independent.
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(a) Observe that there is a 1-to-1 correspondence between the polynomials fj i 2
Ra and the set on nontrivial �-orbits in Nd � Nd , and therefore Ra has
exactly

�
N
2

�
elements. The �-orbits in Nd � Nd are disjoint, and therefore

every monomialwiwj , with 1� i; j �N , such that .wi ;wj / is in a nontrivial
�-orbit occurs exactly once in some polynomial f 2 Ra. We claim that Ra

consists of relations of A.d/. Consider an element fj i Dwjwi �wi 0wj 0 2Ra.
It is obvious that fj i is not identically zero in khw1; : : : ; wN i. We have to
show that wjwi �wi 0wj 0 D 0, or equivalently, wjwi D wi 0wj 0 holds in A.d/.
But A.d/ is a subalgebra of the Yang–Baxter algebra A which is isomorphic
to the monoid algebra kS . Thus it will be enough to prove that

wjwi D wi 0wj 0 is an equality in S: (4.18)

Note that N is a subset of hXi and a D b in N is equivalent to a; b 2 N and
aD b as words in hXi. Clearly, each equality of words in hXi holds also in S .
By assumption,

�.wj ; wi / D .wi 0 ; wj 0/ holds in Nd �Nd : (4.19)

By Definition-Notation 4.9 (see (4.10) and (4.11)), one has

�.wj ; wi / D .Nor.wjwi /;Nor.wwij //; in Nd �Nd ; (4.20)

and comparing (4.19) with (4.20), we obtain that

Nor.wjwi / D wi 0 and Nor.wwij / D wj 0

are equalities of words in Nd � X
d : (4.21)

The equality u D Nor.u/ (the normal form of u, modulo the ideal I ) holds
in S and in A for every u 2 hXi; therefore, the following are equalities in S :

Nor.wjwi / D wjwi ; Nor.wwij / D w
wi
j

.Nor.wjwi //.Nor.wwij // D .wjwi /.w
wi
j /:

(4.22)

Now (4.21) and (4.22) imply that

wi 0wj 0 D .
wjwi /.w

wi
j / holds in S: (4.23)

But S is an M3-braided monoid, so by condition (4.4) M3, the following is an
equality in S :

wjwi D .
wjwi /.w

wi
j /: (4.24)

This together with (4.23) imply the desired equality wjwi D wi 0wj 0 in S . It
follows that fj i D wjwi �wi 0wj 0 is identically 0 in A and therefore in A.d/.
Clearly, for fj i D wjwi � wi 0wj 0 , the inequality wj > wi 0 implies that
wjwi > wi 0wj 0 as elements of hXi, so the leading monomial of every relation
fj i 2 Ra is LM.fj i / D wjwi .
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(b) Next we consider the elements gij D wiwj �wi0wj0 2Rb . These are homo-
geneous polynomials of degree 2d . It follows from their description that
wiwj >Nor.wiwj /Dwi0wj0 , so their leading monomials satisfy LM.gij /D

wiwj .
Moreover, the description of Rb implies that there is a 1-to-1 correspondence
between the polynomials in Rb and the set of all �-orbits O which do not
contain elements .a; b/ 2 Nd � Nd such that ab is in normal form, that is,
ab 2 N2d .
If O is such an orbit, then O D ¹.wi ; wj /; �.wi ; wj /º, where ��.wi ; wj / �
wiwj and wiwj is not in normal form. (In particular, O can be a one-element
orbit.) Clearly, wiwj D Nor.wiwj / is an identity in A (and in .kN ; �/). The
normal form Nor.wiwj / is a monomial of length 2d , so it can be written as a
product Nor.wiwj / D wi0wj0 , where wi0 ; wj0 2 Nd . It follows that

gij D wiwj � wi0wj0 D 0

is an identity in A (and in .kN ; �/). Conversely, it follows from the description
of Rb that each relation gij D wiwj �wi0wj0 2Rb determines uniquely the
�-orbit O D ¹.wi ; wj /; �.wi ; wj /º with the above properties. Note that each
.a; b/ 2 Nd � Nd such that ab 2 N2d belongs to exactly one orbit, so the
number of such orbits equals the cardinality

jN2d j D

�
nC 2d � 1

n � 1

�
:

The number of all �-orbits in Nd � Nd (including the one-element orbits)
is
�
NC1
2

�
. Therefore, for the (distinct) elements gij D wiwj � wi0wj0 2 Rb ,

the number of disjoint �-orbits which “produce” distinct leading monomials
wiwj is exactly�

N C 1

2

�
�

�
nC 2d � 1

n � 1

�
D jRbj: (4.25)

The sets Ra and Rb are disjoint, since ¹LM.f / j f 2 Raº \ ¹LM.g/ j g 2 Rbº D ;.
Therefore, there are equalities:

jRj D jRaj C jRbj D

�
N

2

�
C

��
N C 1

2

�
�

�
nC 2d � 1

n � 1

��
D N 2

�

�
nC 2d � 1

n � 1

�
; (4.26)

so the set R has exactly the desired number of relations given in (4.17). It remains to show
that R consists of linearly independent elements of khXi.

Lemma 4.14. Under the hypothesis of Theorem 4.13, the set of polynomials R � khXi
is linearly independent.
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Proof. It is well known that the set of all words in hXi forms a basis of khXi (con-
sidered as a vector space); in particular, every finite set of distinct words in hXi is linearly
independent. All words occurring in R are elements of X2d , but some of them occur
in more than one relation, for example, every wiwj , which is not a fixed point of �
but is the leading monomial of gij 2 Rb , occurs also as a second term of a polynomial
fpq Dwpwq �wiwj 2Ra, where ��.wi ;wj /Dwpwq >wiwj . We shall prove the lemma
in three steps.

(1) The set of polynomials Ra � khXi is linearly independent.
Notice that the polynomials in Ra are in 1-to-1 correspondence with the nontrivial
�-orbits in Nd �Nd : each polynomial fj i Dwjwi �wi 0wj 0 2Ra is formed out of
the two monomials in the nontrivial �-orbit ¹.wj ;wi /; .wi 0 ;wj 0/D �.wj ;wi /º. But
the �-orbits are disjoint, hence each monomial �.a; b/ with .a; b/¤ �.a; b/ occurs
exactly once in Ra. Present each f 2Ra as f D uf � vf , where uf D LM.f /.
Then a linear relation

0 D
X
f 2Ra

f̨ f D
X
f 2Ra

f̨ .uf � vf /; where all f̨ 2 k

involves only pairwise distinct monomials inX2d , and therefore it must be trivial:
f̨ D 0 8f 2 Ra. It follows that Ra is linearly independent.

(2) The set Rb � khXi is linearly independent.
Assume the contrary. Present each element of Rb as g D ug � vg 2 Rb , where
ug �LM.g/. Then there exists a nontrivial linear relation for the elements of Rb:X

g2Rb

ˇgg D
X
g2Rb

ˇg.ug � vg/ D 0 with ˇg 2 k: (4.27)

Let gij be the polynomial with ˇij D ˇgij ¤ 0 whose leading monomial is the
highest among all leading monomials of polynomials g 2 Rb , with ˇg ¤ 0. So
we have

LM.gij / D wiwj > LM.g/ for all g 2 Rb; g ¤ gij ; where ˇg ¤ 0:

We use (4.27) to yield the following equality in khXi:

wiwj D wi0wj0 �
X

g2Rb ;LM.g/<wiwj

ˇg

ˇij
.ug � vg/:

Observe that the right-hand side of this equality is a linear combination of
monomials strictly smaller than wiwj , which is impossible. It follows that the
set Rb � khXi is linearly independent.

(3) The set R � khXi is linearly independent. For simplicity of notation (as before),
we present every f 2 Ra and every g 2 Rb as

f D uf � vf ; where uf D LM.f / > vf ; gD ug � vg ; where ug D LM.g/ > vg :
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Assume the polynomials in R satisfy a linear relationX
f 2Ra

f̨ f C
X
g2Rb

ˇgg D 0; where for all f 2 Ra; g 2 Rb; f̨ ; ˇg 2 k: (4.28)

This gives the following equality in the free associative algebra khXi:

S1 D
X
f 2Ra

f̨ uf D
X
f 2Ra

f̨ vf �
X
g2Rb

ˇgg D S2: (4.29)

The element S1 D
P
f 2Ra f̨ uf is in the space U D Span B1, where B1 D

¹LM.f / j f 2 Raº is linearly independent.
The element

S2 D
X
f 2Ra

f̨ vf �
X
g2Rb

ˇgg

on the right-hand side of the equality is in the space V D SpanB , where

B D ¹vf j f 2 Raº [ ¹ug ; vg j g 2 Rbº:

Take a subset B2 � B which forms a basis of V . Note that B1 \ B D ;, hence
B1 \ B2 D ;. Moreover, each of the sets B1 and B2 consists of pairwise dis-
tinct and therefore linearly independent monomials, and it is easy to show that
U \ V D 0. Thus the equality (4.29) with S1 D S2 2 U \ V D 0 implies a linear
relation

S1 D
X
f 2Ra

f̨ uf D 0;

for the set of leading monomials uf D LM.f /; f 2 Ra which are pairwise dis-
tinct and therefore linearly independent. It follows that f̨ D 0 for all f 2 Ra.
This together with (4.28) implies the linear relationX

g2Rb

ˇgg D 0;

and since by (2) Rb is linearly independent, we get again ˇg D 0 8 g 2 Rb . It
follows that the linear relation (4.28) must be trivial, and therefore R is a linearly
independent set of polynomials.

It is now easy to see that R is a set of defining relation for the d -Veronese
subalgebra A.d/.

We know that A.d/ is a quadratic algebra whose one-generators are the monomials
w1; : : : ; wN , that is, its ideal of relations I is generated by homogeneous polynomi-
als of degree 2 in the wi ’s. Consider the ideal J D .R/ of the free associative algebra
khw1; : : : ; wN i. We have proven that each element of R is a relation of A.d/; therefore,
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J � I . To show that J is the ideal of relations of A.d/, it will be enough to verify that
there is an isomorphism of vector spaces:

.R/2 ˚ .A
.d//2 D .khw1; : : : ; wN i/2;

or equivalently,

dim Spank RC dim.A.d//2 D dim.khw1; : : : ; wN i/2:

We have shown that R is linearly independent, so dim Spank RD jRj DN 2 �
�
nC2d�1
n�1

�
;

see (4.26). On the other hand, dim.A.d//2 D dim A2d D
�
nC2d�1
n�1

�
; see Corollary 3.6.

Therefore,

dim Spank RC dim.A.d//2 D N
2
�

�
nC 2d � 1

n � 1

�
C

�
nC 2d � 1

n � 1

�
D N 2

D dim.khw1; : : : ; wN i/2;

as desired. It follows that R is a set of defining relations for the Veronese subalgebra A.d/.
We have proven part (1) of the theorem.

Analogous argument proves part (2). Note that the polynomials of R1a are reduced
from Ra using Rb . It is not difficult to prove the equivalence R, R1.

5. Veronese maps

In this section, we shall introduce an analogue of Veronese maps between quantum
spaces (Yang–Baxter algebras) associated to finite solutions of YBE. We keep the nota-
tion and all conventions from the previous sections. As usual, .X; r/ is a finite solution
of order n, A D A.k; X; r/ is the associated Yang–Baxter algebra, where we fix an enu-
meration, X D ¹x1; : : : ; xnº as in Convention 3.3, d � 2 is an integer, N D

�
nCd�1
d

�
,

and Nd D ¹w1 < w2 < � � � < wN º is the set of all normal monomials of length d in Xd

ordered lexicographically, as in (4.3).

5.1. The d-Veronese solution of YBE associated to a finite solution .X; r/

We have shown that the braided monoid .S; rS / associated to .X; r/ induces the normal-
ised d -Veronese solution .Nd ; �d / of order N D

�
nCd�1
d

�
; see Definition 4.10. We shall

use this construction to introduce the notion of a d -Veronese solution of YBE associated
to .X; r/, denoted by .Y; rY /.

Definition-Notation 5.1. In notation as above. Let .X; r/ be a finite solution, X D
¹x1; : : : ; xnº, let Nd D ¹w1 < w2 < � � � < wN º be the set of normal monomials of
length d , and let .Nd ; �/ D .Nd ; �d / be the normalised d -Veronese solution. Let Y D
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¹y1; y2; : : : ; yN º be an abstract set and consider the quadratic set .Y; rY /, where the map
rY W Y � Y ! Y � Y is defined as

rY .yj ; yi / WD .yi 0 ; yj 0/ iff �.wj ; wi / D .wi 0 ; wj 0/; 1 � i; j; i 0; j 0 � n: (5.1)

It is straightforward that .Y; rY / is a solution of YBE (a nondegenerate symmetric set)
of order N isomorphic to .Nd ; �d /. We shall refer to it as the d -Veronese solution of YBE
associated to .X; r/.

By Corollary 2.10, the set Y � Y splits into
�
N
2

�
two-element rY -orbits and N

one-element rY -orbits.
As usual, we consider the degree-lexicographic ordering on the free monoid hYN i

extending y1 < y2 < � � �< yN . The Yang–Baxter algebra AY DA.k; Y; rY /' khY I RY i

has exactly
�
N
2

�
quadratic relations which can be written explicitly as

RY D ¹
j i D yjyi � yi 0yj 0 j 1 � i; j � N; rY .yj ; yi / D .yi 0 ; yj 0/;

where yjyi > yi 0yj 0 holds in hYN iº: (5.2)

Each relation corresponds to a nontrivial rY -orbit. The leading monomials satisfy
LM.
j i / D yjyi > yi 0yj 0 .

5.2. The Veronese map vn;d and its kernel

We recall that in algebraic geometry a d -Veronese morphism means an algebra homo-
morphism B ! A with image A.d/, where B is a graded algebra of the same type
as A.

Lemma 5.2. In notation as above. Let .X; r/ be a solution of order n, AX D A.k; X; r/,
let d � 2 be an integer, and letN D

�
nCd�1
d

�
. Suppose .Y;rY / is the associated d -Veronese

solution, Y D ¹y1; : : : ; yN º, and AY D A.k; Y; rY / is the corresponding Yang–Baxter
algebra.

The assignment
y1 7! w1; y2 7! w2; : : : ; yN 7! wN

extends to an algebra homomorphism vn;d WAY !AX . The image of the map vn;d is the
d-Veronese subalgebra A

.d/
X .

Proof. Naturally we set vn;d .yi1 � � �yip / WD wi1 � � �wip for all words yi1 � � �yip 2 hY i and
then extend this map linearly. Note that for each polynomial 
j i 2 RY , one has

vn;d .
j i / D fj i 2 Ra;

where the set Ra is a part of the relations of A
.d/
X given in (4.14). Indeed, let 
j i 2 RY ,

so 
j i D yjyi � yi 0yj 0 , where .yi 0 ; yj 0/ D rY .yj ; yi /, and yjyi > yi 0yj 0 ; see (5.1). Then

vn;d .
j i / D vn;d .yjyi � yi 0yj 0/

D wjwi � wi 0wj 0 ; where .wi 0 ; wj 0/ D �.wj ; wi /; and wjwi > wi 0wj 0

D fj i 2 Ra:
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We have shown that fj i equals identically 0 in AX , so the map vn;d agrees with the rela-
tions of the algebra AX . It follows that vn;d WAY !AX is a well-defined homomorphism
of algebras.

The image of vn;d is the subalgebra of AX generated by the normal monomials Nd ,
which by Theorem 4.13 is exactly the d -Veronese subalgebra A

.d/
X .

Definition 5.3. We call the map vn;d from Lemma 5.2 the .n; d/-Veronese map.

Theorem 5.4. In assumption and notation as above. Let .X; r/ be a solution of order n,
with X D ¹x1; : : : ; xnº, let AX DA.k;X; r/ be its Yang–Baxter algebra. Let d � 2 be an
integer, N D

�
nCd�1
d

�
, and suppose that .Y; rY / is the associated d -Veronese solution of

YBE with corresponding Yang–Baxter algebra AY D A.k; Y; rY /. Let vn;d W AY ! AX
be the .n; d/-Veronese map (homomorphism of algebras) extending the assignment

y1 7! w1; y2 7! w2; : : : ; yN 7! wN :

Then the following conditions hold.

(1) The image of vn;d is the d-Veronese subalgebra A
.d/
X of AX .

(2) The kernel K WD ker.vn;d / of the Veronese map is generated by the set of�
NC1
2

�
�
�
nC2d�1
n�1

�
linearly independent quadratic binomials:

R.K/D ¹
ij D yiyj � yi0yj0 j 1 � i; j � n; where gij D wiwj �wi0wj0 2Rbº: (5.3)

In particular, the leading monomial of each 
ij satisfies

LM.
ij / D yiyj > yi0yj0 :

Proof. Part (1) follows from Lemma 5.2.
Part (2). We have to verify that the set R.K/ generates K.
By direct computation, one shows that for every 
ij 2 R.K/ one has

vn;d .
ij /.y1; : : : ; yN / D gij .w1; : : : ; wn/ 2 RbI

in fact, vn;d induces a 1-to-1 map R.K/! Rb . It follows that

jR.K/j D jRbj D

�
N C 1

2

�
�

�
nC 2d � 1

n � 1

�
: (5.4)

Moreover, vn;d .R.K// DRb , the set of relations of the d-Veronese A
.d/
X given in (4.15),

so R.K/ � K.
The Yang–Baxter algebra AY is a quadratic algebra with N generators and

�
N
2

�
defining quadratic relations which are linearly independent, so

dim.AY /2 D N
2
�

�
N

2

�
D

�
N C 1

2

�
:



T. Gateva-Ivanova 254

By the first isomorphism theorem .AY =K/2 Š .A
.d/
X /2 D .AX /2d , hence

dim.AY /2 D dim.K/2 C dim.AX /2d :

We know that dim.AX /2d D jN2d j D
�
nC2d�1
n�1

�
, hence�

N C 1

2

�
D dim.K/2 C

�
nC 2d � 1

n � 1

�
:

This together with (5.4) implies that

dim.K/2 D
�
N C 1

2

�
�

�
nC 2d � 1

n � 1

�
D jR.K/j:

The set R.K/ is linearly independent, since vn;d .R.K// D Rb , and by Lemma 4.14
the set Rb is linearly independent. This together with the equality jR.K/j D dim.K/2
implies that the set R.K/ is a basis of the graded component K2, so K2 D kR.K/. But
the ideal K is generated by homogeneous polynomials of degree 2, and therefore

K D .K2/ D .R.K//: (5.5)

We have proven that R.K/ is a minimal set of generators for the kernel K.

Corollary 5.5. Let .X; r/ be a solution of order n, let ADA.k;X; r/ be its Yang–Baxter
algebra, and let d � 2 be an integer. Then the d -Veronese subalgebra A.d/ is a left and a
right Noetherian domain.

Proof. The d -Veronese A.d/ is a subalgebra of A which is a domain (see Remark 3.5),
and therefore A.d/ is a domain. By Theorem 5.4, A.d/ is a homomorphic image of the
Yang–Baxter algebra AY D A.k; Y; rY /, where .Y; rY / is the d -Veronese solution asso-
ciated with .X; r/. The algebra AY is Noetherian, since .Y; rY / is a finite solution of YBE
(see Remark 3.5), so A.d/ is a left and a right Noetherian domain.

Remark 5.6. In [21], we study the Yang–Baxter algebras A.k; X; r/ of finite left nonde-
generate idempotent solutions .X; r/. In contrast with the results of the present paper, [21,
Theorem 3.5], proves that every Yang–Baxter algebra A D A.k; X; r/ of a finite left
nondegenerate idempotent solution is PBW. Moreover, in this case for each integer d , the
d -Veronese subalgebra A.d/ is also PBW and can be identified with the YB algebra of
the d -Veronese solution .Sd ; rd /; see [21, Theorems 6.2 and 6.8]. In this case, for every
integer d � 2, the Veronese map vn;d is injective, while in the involutive case it has a large
kernel.

6. Special cases

6.1. Veronese subalgebras of the Yang–Baxter algebra of a square-free solution

In this subsection, .X; r/ is a finite square-free solution of YBE of order n, and d � 2 is
an integer. We keep the conventions and notation from the previous sections. We apply
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Remark 3.1 and fix an appropriate enumeration X D ¹x1; : : : ; xnº such that the Yang–
Baxter algebra A D A.k; X; r/ is a binomial skew polynomial ring. More precisely, A is
a PBW algebra A D khx1; : : : ; xni=.<A/, where

<A D ¹'j i D xjxi � xi 0xj 0 j 1 � i < j � nº (6.1)

is such that for every pair i; j; 1 � i < j � n, the relation 'j i D xjxi � xi 0xj 0 2 <A sat-
isfies j > i 0, i 0 < j 0 and every term xixj ; 1 � i < j � n occurs in some relation in <A.
In particular,

LM.'j i / D xjxi ; 1 � i < j � n: (6.2)

The set <A is a quadratic Gröbner basis of the ideal I D .<A/ with respect to the
degree-lexicographic ordering < on hXi. It follows from the shape of the elements of
the Gröbner basis <A and (6.2) that the set N D N .I / of normal monomials modulo
I D .<A/ coincides with the set T of ordered monomials (terms) in X :

N D T D T .X/ D ¹x˛11 � � � x
˛n
n 2 hXi j ˛i 2 N0; i 2 ¹0; : : : ; nºº: (6.3)

All definitions, notation, and results from Sections 4 and 5 are valid, but they can be reph-
rased in more explicit terms replacing the abstract sets N DN .I /, Nd , and N2d , respect-
ively, with the explicit set of ordered monomials T D T .X/, Td , and T2d . In this case,
we consider the space kT endowed with multiplication defined by f � g WD Nor<A

.fg/

for every f; g 2 kT . Then there is an isomorphism of graded algebras

A D A.k; Xn; r/ Š .kT ; �/; (6.4)

and we identify the PBW algebra A with .kT ; �/. Similarly, the Yang–Baxter monoid
S.X; r/ is identified with .T ; �/.

We order the elements of Td lexicographically, so

Td D ¹w1 D .x1/
d < w2 D .x1/

d�1x2 < � � � < wN D .xn/
d
º;

where N D
�
nC d � 1

d

�
: (6.5)

The normalised d -Veronese solution (see Definition 4.10) is denoted by .Td ; �/ D

.Td ; �d /. The d -Veronese subalgebra A.d/ is a quadratic algebra (one)-generated by
w1; w2; : : : ; wN .

Now [30, Proposition 4.3, Chapter 4] imply the following corollary.

Corollary 6.1. In notation as above, the d -Veronese A.d/ is a quadratic PBW algebra
with PBW generators the terms of length d , w1; w2; : : : ; wN , ordered lexicographically;
see (6.5).

For the class of finite square-free solutions .X; r/, Theorem 4.13 and especially the
description of the set Rb become more precise.
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Remark 6.2. If wi D xi1 � � � xid ; wj D xj1 � � � xjd 2 Td , the product wiwj is the leading
monomial of an element gij 2 Rb if and only if id > j1 and ��.wi ; wj / � wiwj .

Corollary 6.3. Let .X; r/ be a finite square-free solution of order n, letX D ¹x1; : : : ; xnº
be enumerated so that the algebra A D A.k; Xn; r/ is a binomial skew polynomial ring,
let d � 2 be an integer, and N D

�
nCd�1
d

�
. Let .Td ; �/ be the normalised d -Veronese

solution.
The d -Veronese subalgebra A.d/ � A is a quadratic PBW algebra

A.d/ Š khw1; : : : ; wN i=.R/;

with PBW generators Td D ¹w1; : : : ; wN º, and N 2 �
�
nC2d�1
n�1

�
linearly independent

quadratic relations R. The relations R split into two disjoint subsets R D Ra [ Rb ,
described below.

(1) The set Ra contains
�
N
2

�
relations corresponding to the nontrivial �-orbits in

Td � Td :

Ra D ¹fj i D wjwi � wi 0wj 0 j 1 � i; j � n; where �.wj ; wi / D .wi 0 ; wj 0/;

and wj > wi 0 holds in hXiº: (6.6)

Each monomial wiwj such that .wi ; wj / is in a nontrivial �-orbit occurs exactly
once in Ra. Every relation fj i has leading monomial LM.fj i / D wjwi .

(2) The set Rb contains
�
NC1
2

�
�
�
nC2d�1
n�1

�
relations

Rb D ¹gij D wiwj � wi0wj0 j 1 � i; j � n; where wi D xi1 � � � xid ;

wj D xj1 � � � xjd 2 Td ; id > j1

and ��.wi ; wj / � wiwj ; wi0 ; wj0 2 Td

are such that Nor.wiwj / D wi0wj0 2 T2d º: (6.7)

In particular, LM.gij / D wiwj > wi0wj0 .

The relations R form a Gröbner basis of the ideal .R/ of the free associative algebra
khw1; : : : ; wni.

For a square-free solution .X; r/ and .Td ; �d / as above, the d -Veronese solu-
tion .Y; rY /, associated to .X; r/, is defined in Definition-Notation 5.1. One has Y D
¹y1; y2; : : : ; yN º, and the map rY W Y � Y ! Y � Y is determined by

rY .yj ; yi / WD .yi 0 ; yj 0/ iff �.wj ; wi / D .wi 0 ; wj 0/; 1 � i; j; i 0; j 0 � n: (6.8)

By definition, .Y; rY / is isomorphic to the solution .Td ; �d /. Its Yang–Baxter algebra
AY D A.k; Y; rY / is needed to define the .n; d/ Veronese homomorphism vn;d W AY !

AX extending the assignment

y1 7! w1; y2 7! w2; : : : ; yN 7! wN :
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Theorem 5.4 shows that the image of vn;d is the d -Veronese subalgebra A.d/ and
determines a minimal set of generators of its kernel.

The finite square-free solutions .X; r/ form an important subclass of the class of all
finite solutions; see, for example, [15]. Moreover, Theorem 3.8 shows that the Yang–
Baxter algebra A.k;X; r/ of a finite solution .X; r/ is a PBW algebra if and only if .X; r/
is square-free. So it is natural to ask “can we define an analogue of Veronese morphisms
between Yang–Baxter algebras of square-free solutions?” We shall prove that it is not
possible to restrict the definition of Veronese maps introduced for Yang–Baxter algebras
of finite solutions to the subclass of Yang–Baxter algebras of finite square-free solutions.
Indeed, if we assume that .X; r/ is square-free, then the algebra AY involved in the defini-
tion of the map vn;d is associated with the d -Veronese solution .Y; rY /, which, in general,
is not square-free; see Corollary 6.5.

To prove the following result, we work with the monomial d -Veronese solution
.Sd ; rd / keeping in mind that it has special “hidden” properties induced by the braided
monoid .S; rS /.

Theorem 6.4. Let d � 2 be an integer. Suppose .X; r/ is a finite square-free solution of
order n � 2, .S; rS / is the associated braided monoid, and .Sd ; rd / is the monomial d -
Veronese solution induced by .S; rS /; see Definition 4.5. Then .Sd ; rd / is a square-free
solution if and only if .X; r/ is a trivial solution.

Proof. Assume that .Sd ; rd / is a square-free solution. We shall prove that .X;r/ is a trivial
solution.

Observe that if .Z; rZ/ is a solution, then (i) .Z; rZ/ is square-free if and only if

zz D z for all z 2 Z

and (ii) .Z; rZ/ is the trivial solution if and only if

yx D x for all x; y 2 Z:

Let x; y 2 X; x ¤ y and consider the monomial a D xd�1y 2 Sd . Our assumption
that .Sd ; rd / is square-free implies that aa D a holds in Sd , and therefore in S . Now
Remark 2.11 implies the words a and aa (considered as elements of Xd ) belong to the
orbit O D ODm

.a/ of aD xd�1y inXd . We analyse the orbit O D O.xd�1y/ to find that
it contains two types of elements:

u D .x
d�1

y/b; where b D .xd�1/
y
2 Xd�1; (6.9)

and
v D xic; where 1 � i � d � 1 and c 2 Xd�i : (6.10)

A reader who is familiar with the techniques and properties of square-free solutions such
as “cyclic conditions” and condition “lri” may compute that b D .xd�1/

y
D .xy/d�1 and
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c D .x
d�i�1

y/.xy/d�i�1, but these details are not used in our proof. We use condition
ML2 (see (4.4)) to yield the following equality in S :

aa D .xd�1y/.xd�1y/ D .x
d�1yx/..x

d�1y/xx/ � � � ..x
d�1y/x

d�1

y/ D !: (6.11)

The assumption aa D a implies that word !, considered as an element of Xd , is in the
orbit O of a, and therefore two cases are possible.

Case 1. The following is an equality of words in Xd :

! D .x
d�1yx/..x

d�1y/xx/ � � � ..x
d�1y/x

d�1

y/ D .x
d�1

y/b; b 2 Xd�1:

Then there is an equality of elements of X :

.xd�1y/x D xd�1y: (6.12)

Now we use condition ML1 (see (4.4)) to obtain

.xd�1y/x D .xd�1/.yx/

which together with (6.12) gives

.xd�1/.yx/ D .xd�1/y: (6.13)

The nondegeneracy implies that yx D y. At the same time yy D y, since .X; r/ is square-
free, and using the nondegeneracy again one gets x D y, a contradiction. It follows that
Case 1 is impossible, whenever x ¤ y.

Case 2. The following is an equality of words in Xd :

! D .x
d�1yx/..x

d�1y/xx/ � � � ..x
d�1y/x

k�1

y/ D xic; where 1 � i � d � 1; c 2 Xd�i :

Then
.xd�1y/x D x: (6.14)

At the same time, the equality xx D x and condition ML1 imply xd�1x D x, which
together with (6.14) and ML1 (again) gives

xd�1x D .xd�1y/x D xd�1.yx/:

Thus, by the nondegeneracy, yx D x. We have shown that yx D x for all x;y 2X;y ¤ x.
But .X; r/ is square-free, so yy D y for all y 2 X . It follows that yx D x holds for all
x; y 2 X , and therefore .X; r/ is the trivial solution.

By construction, the (abstract) d -Veronese solution .Y; rY / associated to .X; r/ is iso-
morphic to the normalised d -Veronese solution .Td ; �d /, and therefore it is isomorphic to
the solution .Sd ; rd /. Theorem 6.4 implies straightforwardly the following corollary.
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Corollary 6.5. Let d � 2 be an integer, suppose .X; r/ is a square-free solution of finite
order. Then the d -Veronese solution .Y; rY / is square-free if and only if .X; r/ is a trivial
solution.

Remark 6.6. It follows from Corollary 6.5 that the notion of Veronese morphisms intro-
duced for the class of Yang–Baxter algebras of finite solutions of YBE cannot be restricted
to the subclass of Yang–Baxter algebras associated to finite square-free solutions.

6.2. Involutive permutation solutions

Recall that a symmetric set .X; r/ is an involutive permutation solution of Lyubashenko
(or shortly a permutation solution) if there exists a permutation f 2 Sym.X/ such that
r.x; y/ D .f .y/; f �1.x//. In this case, we shall write .X; f; r/; see [6] and [16, p. 691].

Proposition 6.7. Suppose .X; f; r/ is an involutive permutation solution of finite order n
defined as r.x; y/ D .f .y/; f �1.x//, where f is a permutation of X , and let A be the
associated Yang–Baxter algebra.

(1) For every integer d � 2, the monomial d -Veronese solution .Sd ; rd / is an
involutive permutation solution.

(2) If the permutation f has order m, then for every integer d divisible by m the d -
Veronese subalgebra A.d/ of A is a quotient of the commutative polynomial ring
kŒy1; y2; : : : ; yN �, where N D

�
nCd�1
d

�
.

Proof. (1) Let q � 2 be an integer. The condition ML1 in (4.4) implies that

at D f q.t/ and ta D f �q.t/ D .f �1/q.t/

for all monomials a 2 Sq and all t 2 X: (6.15)

Moreover, since S is a graded braided monoid, the monomials a, ba, and ab have the same
length; therefore,

at D ab t D f q.t/; ta D t
ba
D f �q.t/ for all a 2 Sq b 2 S and all t 2 X: (6.16)

It follows then from (4.4) ML2 that S acts on itself (on the left and on the right) as
automorphisms. In particular, for a; t1t2 � � � td 2 Sd , one has

a.t1t2 � � � td / D .
at1/.

at2/ � � � .
atd / D f

d .t1/f
d .t2/ � � � f

d .td /:

.t1t2 � � � td /
a
D .t1

a/.t2
a/ � � � .td

a/ D f �d .t1/f
�d .t2/ � � � f

�d .td /:
(6.17)

Therefore, .Sd ; rd / is a permutation solution, .Sd ; fd ; rd /, where the permutation
fd 2 Sym.Sd / is expressed as fd .t2t2 � � � td / WD f d .t1/f

d .t2/ � � � f
d .td /. One has

f �1
d
.t2t2 � � � td / WD f

�d .t1/f
�d .t2/ � � � f

�d .td /.
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(2) Assume now that d D km for some integer k � 1, then f d D idX . It will be enough
to prove that the monomial d -Veronese solution .Sd ; rd / is the trivial solution. It follows
from (6.17) that if a 2 Sd , then

a.t1t2 � � � td / D t1t2 � � � td ; where ti 2 X; 1 � i � n: (6.18)

This implies ab D b for all a; b 2 Sd . Similarly, ab D a for all a; b 2 Sd . It follows
that .Sd ; rd / is the trivial solution. But the associated d -Veronese solution .Y; rY / is iso-
morphic to .Sd ; rd /, hence .Y; rY / is also a trivial solution, and therefore its Yang–Baxter
algebra A.k; Y; rY / is the commutative polynomial ring kŒy1; y2; : : : ; yN �. It follows
from Theorem 5.4 that the d -Veronese subalgebra A.d/ is isomorphic to the quotient
kŒy1; y2; : : : ; yN �=.K/, where K is the kernel of the Veronese map vn;d .

Question 6.8. In notation as above. Suppose .X; f; r/ is an involutive permutation solu-
tion of finite order n, where f is a permutation ofX of orderm, and let A be the associated
Yang–Baxter algebra. By Proposition 6.7 part (2), for every integer d divisible by m,
the d -Veronese subalgebra A.d/ of A is a quotient of the commutative polynomial ring
kŒy1; y2; : : : ; yN �, whereN D

�
nCd�1
d

�
. Is it true that in this case A.d/ is a PBW algebra?

Example 7.2 gives an affirmative answer in a very particular case.

Remark 6.9. In [21, Section 5], we consider finite permutation idempotent solutions
.X; rf / and their Yang–Baxter algebras A D A.k; X; rf /. It is proven that in this case
all Yang–Baxter algebras A D A.k; X; rf / are PBW, and any two such algebras are iso-
morphic. Moreover, for every integer d , the Veronese subalgebra A.d/ is PBW, and there
is an isomorphism A.d/ ' A.

7. Examples

We shall present two examples which illustrate the results of the paper. We use the notation
of the previous sections.

Example 7.1. Let n D 3, consider the solution .X; r/, where

X D ¹x1; x2; x3º;

r.x3; x1/ D .x2; x3/; r.x2; x3/ D .x3; x1/;

r.x3; x2/ D .x1; x3/; r.x1; x3/ D .x3; x2/;

r.x2; x1/ D .x1; x2/; r.x1; x2/ D .x2; x1/;

r.xi ; xi / D .xi ; xi /; 1 � i � 3:

Then

A.k; X; r/ D khXi=.<A/; where <A D ¹x3x2 � x1x3; x3x1 � x2x3; x2x1 � x1x2º:



Veronese subalgebras and Veronese morphisms for a class of Yang–Baxter algebras 261

The algebra A D A.k; X; r/ is a PBW algebra with PBW generators X D ¹x1; x2; x3º; in
fact, it is a binomial skew polynomial algebra.

We first give an explicit presentation of the 2-Veronese A.2/ in terms of generators and
quadratic relations. In this case, N D

�
3C1
2

�
D 6 and the 2-Veronese subalgebra A.2/ is

generated by T2, the terms of length 2 in khx1; x2; x3i. These are all normal (modulo<A)
monomials of length 2 ordered lexicographically:

T2 D ¹w1 D x1x1; w2 D x1x2; w3 D x1x3; w4 D x2x2; w5 D x2x3; w6 D x3x3º: (7.1)

Determine the normalised 2-Veronese solution .T2; �2/ D .T2; �/, where �.a; b/ D
.Nor.ab/;Nor.ab//. An explicit description of � is given below:

.x3x3; wi / ! .wi ; x3x3/; 1 � i � 5;

.x2x3; x2x3/ ! .x1x3; x1x3/; .x2x3; x2x2/ ! .x1x1; x2x3/;

.x2x3; x1x2/ ! .x1x2; x2x3/; .x2x3; x1x1/ ! .x2x2; x2x3/;

.x2x2; x1x3/ ! .x1x3; x1x1/; .x2x2; x1x2/ ! .x1x2; x2x2/;

.x2x2; x1x1/ ! .x1x1; x2x2/; .x1x3; x2x2/ ! .x1x1; x1x3/;

.x1x3; x1x2/ ! .x1x2; x1x3/; .x1x2; x1x1/ ! .x1x1; x1x2/:

(7.2)

The fixed points F D F .T2; �2/ are the monomials ab determined by the one-element
orbits of �, where one has .a; b/ D .ab; ab/. There are exactly six fixed points:

F D ¹w1w1 D .x1x1/.x1x1/ 2 T4; w4w4 D .x2x2/.x2x2/ 2 T4;

w6w6 D .x3x3/.x3x3/ 2 T4; w2w2 D .x1x2/.x1x2/ … T4;

w3w5 D .x1x3/.x2x3/ … T4; w5w3 D .x2x3/.x1x3/ … T4º: (7.3)

There are exactly 15 D
�
N
2

�
nontrivial �-orbits in T2 � T2 determined by (7.2). These

orbits imply the following equalities in A.2/:

.x3x3/wi D wi .x3x3/ 2 T4; 1 � i � 5;

.x2x3/.x2x3/ D .x1x3/.x1x3/ … T4; .x2x3/.x2x2/ D .x1x1/.x2x3/ 2 T4;

.x2x3/.x1x2/ D .x1x2/.x2x3/ 2 T4; .x2x3/.x1x1/ D .x2x2; x2x3/ 2 T4;

.x2x2/.x1x3/ D .x1x3/.x1x1/ … T4; .x2x2/.x1x2/ D .x1x2/.x2x2/ 2 T4;

.x2x2/.x1x1/ D .x1x1/.x2x2/ 2 T4; .x1x3/.x2x2/ D .x1x1/.x1x3/ 2 T4;

.x1x3/.x1x2/ D .x1x2/.x1x3/ … T4; .x1x2/.x1x1/ D .x1x1/.x1x2/ 2 T4:

(7.4)

Note that for every pair .wi ; wj / 2 T2 � T2 n F , the monomial wiwj occurs exactly once
in (7.4).

Six additional quadratic relations of A.2/ arise from (7.3) and (7.4), and the obvious
equality a D Nor.a/ 2 T , which hold in A.2/ for every a 2 X2. In this case, we simply
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pick up all monomials which occur in (7.3) or (7.4) but are not in T4 and equalise each of
them with its normal form. This way we get the six relations which determine Rb:

.x1x2/.x1x2/ D .x1x1/.x2x2/; .x1x3/.x2x3/ D .x1x1/.x3x3/;

.x2x3/.x1x3/ D .x2x2/.x3x3/; .x1x3/.x1x3/ D .x1x2/.x3x3/;

.x2x2/.x1x3/ D .x1x2/.x2x3/; .x1x2/.x1x3/ D .x1x1/.x2x3/:

(7.5)

The 2-Veronese algebra A.2/ has 6 generators w1; : : : ; w6 written explicitly in (7.1),
and a set of 21 relations presented as a disjoint union R D Ra [Rb described below.

(1) The relations Ra are:

w6wi � wiw6; wiw6 2 T4; 1 � i � 5;

w5w5 � w3w3; w3w3 … T4; w5w4 � w1w5; w1w5 2 T4;

w5w2 � w2w5; w2w5 2 T4; w5w1 � w4w5; w4w5 2 T4;

w4w3 � w3w1; w3w1 … T4; w4w2 � w2w4; w2w4 2 T4;

w4w1 � w1w4; w1w4 2 T4; w3w4 � w1w3; w1w3 2 T4;

w3w2 � w2w3; w2w3 … T4; w2w1 � w1w2; w1w2 2 T4:

(7.6)

(2) The relations Rb are:

w2w2 � w1w4; w3w5 � w1w6; w5w3 � w4w6;

w3w3 � w2w6; w3w1 � w2w5; w2w3 � w1w5:
(7.7)

The elements of Rb correspond to the generators of the kernel of the Veronese map.
(1a) The relations Ra1 are:

w6wi � wiw6; wiw6 2 T4; 1 � i � 5;

w5w5 � w2w6; w2w6 2 T4; w5w4 � w1w5; w1w5 2 T4;

w5w2 � w2w5; w2w5 2 T4; w5w1 � w4w5; w4w5 2 T4;

w4w3 � w2w5; w2w5 2 T4; w4w2 � w2w4; 2 T4;

w4w1 � w1w4; w1w4 2 T4; w3w4 � w1w3; w1w3 2 T4;

w3w2 � w1w5; w1w5 2 T4; w2w1 D w1w2; w1w2 2 T4:

(7.8)

Thus the 2-Veronese A.2/ of the algebra A is a quadratic algebra presented as

A.2/
' khw1; : : : ; w6i=.R/ ' khw1; : : : ; w6i=.R1/;

where R D Ra [Rb and R1 D Ra1 [Rb .
The 2-Veronese subalgebra A.2/ in our example is a PBW algebra.
The associated 2-Veronese solution of YBE .Y; rY / can be found straightforwardly:

one has Y D ¹y1; y2; y3; y4; y5; y6º and rY .yi ; yj /D .yk ; yl / iff �2.wi ;wj /D .wk ;wl /,
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1 � i; j; k; l � 6. The solution .Y; rY / is nondegenerate and involutive, but it is not a
square-free solution. The corresponding Yang–Baxter algebra is

AY D .k; Y; rY / D khy1; y2; y3; y4; y5; y6i=.</;

where < is the set of quadratic relations given below:

y6yi � yiy6; 1 � i � 5; y5y5 � y3y3;

y5y4 � y1y5; y5y1 � y4y5; y5y2 � y2y5;

y4y3 � y3y1; y4y2 � y2y4; y4y1 � y1y4;

y3y4 � y1y3; y3y2 � y2y3; y2y1 D y1y2:

(7.9)

Note that < is not a Gröbner basis of the ideal .</ (with respect to the degree-
lexicographic ordering on hY i). For example, the overlap y5y4y3 implies the new relation
y5y3y1 � y1y5y3 which is in the ideal .</ but cannot be reduced using (7.9). There are
more such overlaps.

The Veronese map
vn;2 W AY ! AX

is the algebra homomorphism extending the assignment y1 7!w1;y2 7!w2; : : : ;y6 7!w6.
Its image is the 2-Veronese, A.2/. The kernel K of the map vn;2 is generated by the set<1
of polynomials given below:

y2y2 � y1y4; y3y5 � y1y6; y5y3 � y4y6;

y3y3 � y2y6; y4y3 � y2y5; y2y3 � y1y5:
(7.10)

Denote by J the two-sided ideal J D .<[<1/ of khY i. A direct computation shows
that the set < [ <1 is a (quadratic) Gröbner basis of J . The 2-Veronese subalgebra A.2/

of A D AX is isomorphic to the quotient khY i=J , hence it is a PBW algebra.
The following example is an illustration of Proposition 6.7.

Example 7.2. Let n D 2, consider the solution .X; r/, where

X D ¹x1; x2º;

r.x2; x2/ D .x1; x1/; r.x1; x1/ D .x2; x2/;

r.x2; x1/ D .x2; x1/; r.x1; x2/ D .x1; x2/:

This is a permutation solution .X; f; r/, where f is the transposition f D .x1x2/. One
has

A.k; X; r/ D khx1; x2i=.<A/; where <A D ¹x2x2 � x1x1º:

The set <A is not a Gröbner basis of I D .<A/ with respect to the deg-lex ordering
induced by any of the choices x1 < x2, or x2 < x1. We keep the convention x1 < x2 and
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apply standard computation to find that the reduced Gröbner basis of I (with respect to
the deg-lex ordering) is

G D ¹f1 D x2x2 � x1x1; f2 D x2x1x1 � x1x1x2º:

Then
N D N .I / D ¹x˛1 .x2x1/

ˇx"2 j " 2 ¹0; 1º and ˛; ˇ 2 N0º:

It is easy to find an explicit presentation of the 2-Veronese A.2/ in terms of
one-generators and quadratic relations. The normal monomials of length 2

N2 D ¹w1 D x1x1; w2 D x1x2; w3 D x2x1º

form a set of one-generators of A.2/.
One has

N4 D ¹x
4
1 ; x

3
1x2; x

2
1x2x1; x1x2x1x2; x2x1x2x1º:

Next we determine the normalised d -Veronese solution .N2; �/, where �.a; b/ D
.Nor.ab/;Nor.ab//. One has

.xixj /xk D xk ; x
.xixj /

k
D xk for all i; j; k 2 ¹1; 2º

wiwj D wj ; w
wi
j D wj 8i; j 2 ¹1; 2; 3º:

Thus .N2; �/ is the trivial solution on the set N2:

�.wj ; wi / D .wi ; wj /; 1 � i; j � 3:

In this case, the three fixed points are normal monomials:

F D ¹w1w1 D .x1x1/.x1x1/ 2 N4; w2w2 D .x1x2/.x1x2/ 2 N4;

w3w3 D .x2x1/.x2x1/ 2 N4º:

The set of relations is R D Ra [Rb . Here Ra consists of the relations:

g32 D w3w2 � w2w3; equivalently; .x2x1/.x1x2/ D .x1x2/.x2x1/ … N4;

g31 D w3w1 � w1w3; equivalently; .x2x1/.x1x1/ D .x1x1/.x2x1/ 2 N4;

g21 D w2w1 � w1w2; equivalently; .x1x2/.x1x1/ D .x1x1/.x1x2/ 2 N4:

(7.11)

The unique word not in normal form which participates in Ra isw2w3 D .x1x2/.x2x1/ …
N4, the second term of the relation g32 in (7.11). By finding its normal form, we shall
determine the unique relation in Rb . One has

Nor.w2w3/ D Nor.x1x2/.x2x1/ D Nor.x1.x2x2/x1/ D x1x1x1x1 D w1w1;

hence
Rb D ¹g23 D w2w3 � w1w1º: (7.12)
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It follows that

A.2/
' khw1; w2; w3i=.R/; where R D ¹w3w2 � w2w3; w3w1 � w1w3;

w2w1 � w1w2; w2w3 � w1w1º:

In our notation, the second set R1 consisting of equivalent relation is:

R1 D ¹w3w2 � w1w1; w3w1 � w1w3; w2w1 � w1w2; w2w3 � w1w1º;

and A.2/ ' khw1; w2; w3i=.R1/. It is easy to see that the set R is a (minimal) Gröbner
basis of the two-sided ideal I D .R/ of khw1; w2w3i, with respect to the degree-
lexicographic order on hw1; w2; w3i, while the set R1 is the reduced Gröbner basis of the
ideal I . Thus the 2-Veronese subalgebra A.2/ in this example is a PBW algebra. As expec-
ted, the 2-Veronese A.2/ is a commutative algebra isomorphic to kŒw1; w2; w3�=.w2w3 �
w1w1/.

The associated 2-Veronese solution of YBE .Y; rY / is the trivial solution on the
set Y D ¹y1; y2; y3º, rY .yj ; yi / D .yi ; yj / for all 1 � i; j � 3. The corresponding
Yang–Baxter algebra AY is

AY D .k; Y; rY / D khy1; y2; y3i=.y3y2 � y2y3; y3y1 � y1y3; y2y1 � y1y2/
' kŒy1; y2; y3�:

Obviously, AY is PBW. The Veronese map

vn;2 W AY ! AX

is the algebra homomorphism extending the assignment y1 7! w1; y2 7! w2; y3 7! w3.
Its image is the d -Veronese A.2/, and its kernel K is generated by the polynomial
y2y3 � y1y1.
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