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Veronese subalgebras and Veronese morphisms for a class
of Yang—Baxter algebras

Tatiana Gateva-Ivanova

Abstract. We study d-Veronese subalgebras A of Yang-Baxter algebras Ay = A(k, X, r)
related to finite nondegenerate involutive set-theoretic solutions (X, r) of the Yang—Baxter equation,
where k is a field and d > 2 is an integer. We find an explicit presentation of the d -Veronese A@ in
terms of one-generators and quadratic relations. We introduce the notion of a d -Veronese solution
(Y, ry), canonically associated to (X, r) and use its Yang—Baxter algebra Ay = A(k, Y, ry) to
define a Veronese morphism v, 4 : /Ay — sx. We prove that the image of v, 4 is the d-Veronese
subalgebra A@) and find explicitly a minimal set of generators for its kernel. The results agree with
their classical analogues in the commutative case. We show that the Yang—Baxter algebra A(K, X, r)
is a PBW algebra if and only if (X, r) is a square-free solution. In this case, the d-Veronese A(?) is
also a PBW algebra.

1. Introduction

It was established in the last three decades that solutions of the linear braid or Yang—Baxter
equation (YBE)

r12r23r12 — r23r12r23

on a vector space of the form V' ®3 lead to remarkable algebraic structures. Here r :
VeV VeV, r'?2=r®id r?® =id ® r is a linear automorphism and structures
include coquasitriangular bialgebras A(r), their quantum group (Hopf algebra) quotients,
quantum planes and associated objects, at least in the case of specific standard solutions;
see [25,32]. On the other hand, the variety of all solutions on vector spaces of a given
dimension has remained rather elusive in any degree of generality. It was proposed by
V.G. Drinfeld [6], to consider the same equations in the category of sets, and in this setting
numerous results were found. It is clear that a set-theoretic solution extends to a linear one,
but more important than this is that set-theoretic solutions lead to their own remarkable
algebraic and combinatoric structures, only somewhat analogous to quantum group con-
structions. In the present paper, we continue our systematic study of set-theoretic solutions
based on the associated quadratic algebras and monoids that they generate.
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The study of noncommutative algebras defined by quadratic relations as examples
of quantum noncommutative spaces has received considerable impetus from the seminal
work of Faddeev, Reshetikhin, and Takhtajan [8], where the authors considered general
deformations of quantum groups and spaces arising from an R-matrix, and from Manin’s
programme for noncommutative geometry [27]. The quadratic algebras related to set-
theoretic solutions of the Yang—Baxter equation studied here can be considered as special
quantum noncommutative spaces important for both noncommutative algebra and non-
commutative algebraic geometry, as they provide a rich source of examples of interesting
associative algebras and noncommutative spaces some of which are Artin—Schelter regular
algebras. Our work is motivated by the relevance of those algebras for noncommutative
geometry, especially in relation to the theory of quantum groups, and inspired by the
interpretation of morphisms between noncommutative algebras as “maps between non-
commutative spaces”. In [18,21] and the present paper, we consider noncommutative
analogues of the Veronese and Segre embeddings, two fundamental maps that play pivotal
roles not only in classical algebraic geometry but also in applications to other fields of
mathematics.

In this paper, “a solution of YBE”, or shortly, “a solution” means “a nondegenerate
involutive set-theoretic solution of YBE”’; see Definition 2.5.

The Yang—Baxter algebras Ay = (K, X, r) related to solutions (X, r) of finite order n
will play a central role in the paper. It was proven in [15,22] that the quadratic algebra Ay
of every finite solution (X, r) of YBE has remarkable algebraic, homological, and com-
binatorial properties. In general, the algebra 4y is noncommutative and in most cases it
is not even a Poincaré-Birkhoff—Witt (PBW) algebra, but it preserves various good prop-
erties of the commutative polynomial ring k[x1, ..., x,]: #Ax has finite global dimension
and polynomial growth, and it is Cohen—Macaulay, Koszul, and a Noetherian domain.

There are close relations between various combinatorial properties of the solu-
tion (X, r) and the properties of the corresponding Yang—Baxter algebra #Ayx; see, for
example, [12,13,15,17,20,33,34]. In the special case when (X, r) is a finite nondegener-
ate involutive square-free quadratic set whose quadratic algebra Ay = A(k, X, r) has a
k-basis of PBW type, the conditions “s is an Artin—Schelter regular algebra” and “(X,r)
is a solution of YBE” are equivalent; see details in Section 3. The study of Artin—Schelter
regular algebras is a central problem for noncommutative algebraic geometry.

A first stage of noncommutative geometry on quadratic algebras Ay = A(k, X, r)
was proposed in [20, Section 6], where the quantum spaces under investigation are Yang—
Baxter algebras A (k, X, r) associated to multipermutation (square-free) solutions of level
two. In [2], a class of quadratic PBW algebras called “noncommutative projective spaces”
were investigated, and analogues of Veronese and Segre morphisms between noncom-
mutative projective spaces were introduced and studied. It is natural to formulate similar
problems for the class of Yang—Baxter algebras A = (K, X, r) related to finite solutions
(X, r), but to find reasonable solutions of these problems is a nontrivial task. In contrast
to [2], where the “noncommutative projective spaces” under investigation have almost
commutative quadratic relations which form Grobner bases, and the main results follow
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naturally from the theory of noncommutative Grobner bases, the Yang—Baxter algebras
A = A(k, X, r) have complicated quadratic relations, which in most cases do not form
Grobner bases. These relations remain complicated even when 4 is a PBW algebra, so we
need more sophisticated arguments and techniques; see, for example, [18].

In the present paper, we consider the following problems.

Problems 1.1. Suppose (X, r) is a finite solution of YBE with |X| = n, and A =
A(k, X, r) is its Yang—Baxter algebra.

(1) Find necessary and sufficient conditions on (X, r) such that there exists an enu-
meration X = {xi,..., X,}, so that A is a PBW algebra with a set of PBW
generators xi, ..., Xp.

(2) Let d > 2 be an integer. Find a presentation of the d-Veronese subalgebra ()
of its Yang—Baxter algebra + in terms of one-generators and quadratic relations.

(3) Introduce analogues of Veronese maps for the class of Yang—Baxter algebras of
finite solutions of YBE.

(4) Answer questions (2) and (3) in the special case when (X, r) is a square-free
solution.

Our main results are Theorems 3.8, 4.13, and 5.4 which solve completely prob-
lems (1), (2), and (3). We give a complete answer to (4) in Section 6.

The paper is organised as follows. In Section 2, we recall basic definitions and
facts used throughout the paper. In Section 3, we consider the Yang-Baxter algebra
Axy = A(k, X, r) of a finite nondegenerate solution (X, r). We fix the main settings
and conventions and recall some of the most important properties of the Yang—Baxter
algebras 4y used throughout the paper. The main result of the section is Theorem 3.8
which shows that the Yang—Baxter algebra 4 (k, X, r) is PBW with respect to some proper
enumeration of X iff the solution (X, r) is square-free. Proposition 3.9 gives more inform-
ation on a special case of PBW quadratic algebras. A natural open question arises at end
the section; see Question 3.10. In Section 4, we study the d-Veronese subalgebra A
of A = A(Kk, X, r). We use the fact that the algebra »A and its Veronese subalgebras
are intimately connected with the braided monoid S(X, r). To solve the main problem,
we introduce successively three finite isomorphic solutions associated naturally to (X, r)
and involved in the proof of our results. The first and the most natural of the three is
the monomial d-Veronese solution (Sz, rg) associated with (X, r). It is a finite solution
induced from the graded braided monoid (S, rg) which depends only on the map r and
on d. The monomial d-Veronese solution is intimately connected with the d-Veronese
subalgebra ) and its quadratic relations, but it is not convenient for an explicit descrip-
tion of the relations. This solution is needed to define the normalised d -Veronese solution
(Mg, pg) isomorphic to (Sg, r4); see Definition 4.10. The solution (N, pz) is central
for the proof of the main result (Theorem 4.13). In Section 5, we introduce and study
analogues of Veronese maps between Yang—Baxter algebras of finite solutions and prove
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Theorem 5.4. In Section 6, we consider two special cases of solutions. We pay special
attention to Yang—Baxter algebras A = A(K, X, r) of square-free solutions (X, r) and
their Veronese subalgebras. In this case, +4 is a binomial skew polynomial ring and the set
of ordered monomials (terms) in n variables forms an explicit k-basis of #. Theorem 4.13
implies a more precise result in this case: Corollary 6.3 shows that the d -Veronese A@) is
a PBW algebra, where the terms of length d ordered lexicographically are its PBW gener-
ators and its relations given explicitly form a quadratic Grobner basis. An important result
in this section is Theorem 6.4 which shows that if (X, r) is a finite square-free solution
and d > 2 is an integer, then the monomial d -Veronese solution (Sy, rg) is square-free if
and only if (X, r) is a trivial solution. This implies that the notion of Veronese morphisms
introduced for the class of Yang—Baxter algebras of finite solutions cannot be restric-
ted to the subclass of Yang—Baxter algebras associated to finite square-free solutions. In
Section 7, we present two examples which illustrate the results of the paper.

2. Preliminaries

Let X be a non-empty set, and let k be a field. We denote by (X) the free monoid gen-
erated by X, where the unit is the empty word denoted by 1, and by k(X) the unital free
associative k-algebra generated by X. For a non-empty set F' C k(X), (F) denotes the
two-sided ideal of k(X) generated by F. When the set X is finite, with |X| = n, and
ordered, we write X = {x1,..., x,} and fix the degree-lexicographic order < on (X),
where x; < --- < x,. As usual, N denotes the set of all positive integers, and Ny is the set
of all non-negative integers.

We shall consider associative graded k-algebras. Suppose A = D),y o Am is a graded
k-algebra such that A9 =k, 4,4, € Ap+4, p.q € Np and such that 4 is finitely gener-
ated by elements of positive degree. Recall that its Hilbert function is h4(m) = dim A4,,
and its Hilbert series is the formal series H4(f) = ZmeNO h4(m)t™. In particular, the
algebra K[ X] of commutative polynomials satisfies

n+d-—1 n+d-—1
hk[X](d)Z( J ):( n—1 ) and Hyx) =

1
T 2.1)

We shall use the natural grading by length on the free associative algebra k(X). For

m > 1, X™ will denote the set of all words of length m in (X), where the length of
u = Xxj, -+ Xj, € X™ will be denoted by |u| = m. Then

(X)=| | xm. Xx°={1} and XxFxmcxkim
meNy

so the free monoid (X)) is naturally graded by length.
Similarly, the free associative algebra k(X is also graded by length:

k(X) = P k(X)m. wherek(X), =kX".

meNy



Veronese subalgebras and Veronese morphisms for a class of Yang—Baxter algebras 225

A polynomial f € k(X) is homogeneous of degree m if f € kX™. We denote by
T=7X):={x]"x% €(X)|ai € Ng, i €{0,...,n}} (2.2)

the set of ordered monomials (terms) in (X') and by

n
Ty =T (X)g = {x;’“ xB e T |y oy = d}

i=1

the set of ordered monomials of length d.

2.1. Grobner bases for ideals in the free associative algebra

We shall remind some basics of noncommutative Grobner bases theory which we use
throughout in the paper. In this subsection X = {xq, ..., x,}, we fix the degree-
lexicographic order < on the free monoid (X ) extending x; < x, < --- < X, (we refer to it
as “deg-lex ordering”). Suppose f € k(X is a nonzero polynomial. Its leading monomial
with respect to the deg-lex order < will be denoted by LM( f). One has LM(f) = u if
S =cu+ jomcitti,wherec,c; €k, ¢ #0,andu > u; in (X) foralli € {1,...,m}.
Given a set F _g_k(X )} of noncommutative polynomials, we consider the set of leading
monomials LM(F) = {LM(f) | f € F}. A monomial u € (X) is normal modulo F if
it does not contain any of the monomials LM( f) as a subword. The set of all normal
monomials modulo F is denoted by N(F).

Let / be a two-sided graded ideal in K(X) and let [,,, = I N kX™. We shall assume
that I is generated by homogeneous polynomials of degree > 2 and I = €D,,~, Im.
Then the quotient algebra A = k(X)/I is finitely generated and inherits its g;ading
A = Dpen, Am from k(X ). We shall work with the so-called normal k-basis of A.
We say that a monomial u € (X) is normal modulo I if it is normal modulo LM(/). We
set N(/) := N(LM(/)). In particular, the free monoid (X ) splits as a disjoint union

(X)=N{)UuLM(I). 2.3)
The free associative algebra k(X ') splits as a direct sum of k-vector subspaces
k(X) ~ Span, N(I) & I,

and there is an isomorphism of vector spaces A ~ Span, N(I).

It follows that every f € k(X) can be written uniquely as f = fo + h, where
fo € KN(I) and h € I. The element f is called the normal form of f (modulo I) and
denoted by Nor( /). We define

N(I), = {u € N(I) | u has length m}.

In particular, N(/); = X, N({)o = 1. Then A,, ~ Span, N(I), for every m € Ny.
A subset G C I of monic polynomials is a Grobner basis of I (with respect to the
order <) if
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(1) G generates I as a two-sided ideal, and

(2) forevery f € I there exists g € G such that LM(g) is a subword of LM( f), that

is, LM(f) = aLM(g)b for some a,b € (X).
A Grobner basis G of [ is reduced if (i) the set G \ {f} is not a Grobner basis of /,
whenever f € G; (ii) each f € G is a linear combination of normal monomials modulo

G\{f}

It is well known that every ideal / of k(X ) has a unique reduced Grobner basis
Go = Go(I) with respect to <. However, Gy may be infinite. For more details, we refer
the reader to [23,28,29].

The set of leading monomials of the reduced Grobner basis Go = Go(1)

W ={LM(f) | f € Go(I)} 24

is the set of obstructions for A = K(X) /I, in the sense of Anick [1]. There are equalities
of sets N(I) = N(Gy) = N(W). We shall use the set of obstructions for the proof of
Theorem 3.8.

Bergman’s Diamond Lemma [5, Theorem 1.2] implies the following.

Remark 2.1. Let G C k(X) be a set of noncommutative polynomials. Let / = (G) and
let A = k(X)/I. Then the following conditions are equivalent.

(1) The set G is a Grobner basis of 1.

(2) Every element f € k(X) has a unique normal form modulo G, denoted by
Norg (f).
(3) There is an equality N(G) = N(I), so there is an isomorphism of vector spaces

k(X) ~ I @kN(G).

(4) The image of N(G) in A is a k-basis of A. In this case, A can be identified with the
k-vector space KN (G), made a k-algebra by the multiplication a « b := Nor(ab).

In this paper, we focus on a class of quadratic finitely presented algebras A associated
with set-theoretic nondegenerate involutive solutions (X, r) of finite order n. Following
Yuri Manin [26], we call them Yang—Baxter algebras.

2.2. Quadratic algebras

A quadratic algebra is an associative graded algebra A = ;. A; over a ground field k
determined by a vector space of generators V = A; and a_subspace of homogeneous
quadratic relations R = R(A) C V ® V. We assume that A is finitely generated, so
dim A; < oo. Thus A = T'(V)/(R) inherits its grading from the tensor algebra 7'(V).
Following the classical tradition (and a recent trend), we take a combinatorial approach
to study A. The properties of A will be read off a presentation A = k(X)/(:N), where by
convention X is a fixed finite set of generators of degree 1, |X| = n, and (N) is the
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two-sided ideal of relations, generated by a finite set it of homogeneous polynomials of
degree 2. In particular, A; = V' = Span, X.

Definition 2.2. A quadratic algebra A is a PBW type algebra or shortly a PBW algebra
if there exists an enumeration X = {xi,..., x,} of X such that the quadratic relations N
form a (noncommutative) Grobner basis with respect to the deg-lex order < on (X). In
this case, the set of normal monomials (mod ) forms a k-basis of A called a PBW basis
and xp, ..., x, (taken exactly with this enumeration) are called PBW generators of A.

PBW algebras were introduced by Priddy [31]. The PBW basis is a generalisation of
the classical PBW basis for the universal enveloping of a finite-dimensional Lie algebra.
PBW algebras form an important class of Koszul algebras. The interested reader can find
information on quadratic algebras and, in particular, on Koszul algebras and PBW algeb-
ras in [30]. A special class of PBW algebras important for this paper are the binomial skew
polynomial rings introduced and studied by the author in [10, 11].

Definition 2.3 ([10, 11]). A binomial skew polynomial ring is a quadratic algebra A =
k(x1,...,xn)/ (M) with precisely (;) defining relations

No = {ji = xjx;i —cijxpxp |1 <i <j <n} (2.5)

such that
(a) for every pairi, j, 1 <i < j < n, the relation x;x; — ¢;jx;:xjs € Ny satisfies
j > i/,i/ < j/,C,'j S kx;
(b) every ordered monomial x;x;, with 1 <i < j < n occurs (as a second term) in
some relation in Hy;

(c) Ny is the reduced Grobner basis of the two-sided ideal (!g), with respect to the
deg-lex order < on (X); or equivalently,

(c)) the setof terms T = {x7" ---x;" € (X) | &; € Ng,i € {l1,...,n}} projects to a
k-basis of 4.

The equivalence of (c) and (c’) follows from the Diamond Lemma; see Remark 2.1.

It is clear that each binomial skew polynomial ring A is a PBW algebra with a set of
PBW generators x1, ..., X,. It was proven in [22] that A defines via its relations a square-
free solution of the Yang-Baxter equation. Conversely, if (X, r) is a finite square-free
solution, then there exists an enumeration X = {x1, X2, ..., X5} such that the Yang—
Baxter algebra 4 (K, X, ) is a binomial skew polynomial ring; this follows from results
of Rump [33] (see also details in [12]).

Example 2.4. Let A = k(x1, x2, x3, x4)/(Mo), where

Ro = {xax2 — X1X3, XaX1 — X2X3, X3X2 — X1X4, X3X1 — X2X4,

X4X3 — X3X4, X2X1 — X]Xz}.
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The algebra A is a binomial skew polynomial ring. It is a PBW algebra with PBW gen-
erators X = {x1, X2, X3, X4}. The relations of A define in a natural way a solution of
YBE.

2.3. Set-theoretic solutions of the Yang-Baxter equation and their Yang-Baxter
algebras

The notion of a quadratic set was introduced in [12], see also [19], as a set-theoretic
analogue of a quadratic algebra.

Definition 2.5 ([12]). Let X be a non-empty set (possibly infinite), and letr : X x X —
X x X be abijective map. In this case, we use notation (X, ) and refer to it as a quadratic
set. The image of (x, y) under r is written as

r(x,y) = (y.x%).

This formula defines a “left action” £ : X x X — X and a “right action” R : X x X — X
on X as: £,(y) =y, Ry(x) = x” forall x,y € X. (i) (X, r) is nondegenerate, if the
maps £, and R, are bijective for each x € X. (ii) (X, r) is involutive if r?> = idyxx.
(iii) (X, r) is square-free if r(x,x) = (x, x) for all x € X. (iv) (X, r) is a set-theoretic
solution of the Yang—Baxter equation (YBE) if the braid relation

r12r23r12 — r23r12r23

holds in X x X x X, where r'?2 = r x idy, and r23 = idy x r. In this case, we refer to
(X, r) also as a braided set. (v) A braided set (X, r) with r involutive is called a symmetric
set. (vi) A nondegenerate symmetric set is called simply a solution.

We say that (X, r) is the trivial solution on X if r(x,y) = (y,x) forall x, y € X.

Remark 2.6 ([7]). Let (X, r) be a quadratic set. Then r obeys the YBE, that is, (X, r) is
a braided set, iff the following three conditions hold for all x, y,z € X:

X z xV z
: 502 ="z, k@) =@, w3k oD =000,
The map r is involutive iff
inv: Y(x’)=x, and (*y)* =y.

Convention 2.7. In this paper, “a solution of YBE” or simply “a solution” means “a
nondegenerate symmetric set” (X, r), where X is a set of arbitrary cardinality.

As a notational tool, we shall identify the sets X*™ of ordered m-tuples, m > 2,
and X™, the set of all monomials of length m in the free monoid (X). We shall use also
notation -r(x, y) := xy. Sometimes for simplicity we shall write r (xy) instead of r(x, y).
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Definition 2.8 ([12, 19]). To each quadratic set (X, r) we associate canonically algebraic
objects generated by X and with quadratic relations R = N (r) naturally determined as

xy=y'x e R(@r) iffr(x,y)=('.x") and (x,y)# (y'.x") holdin X x X.

The monoid S = S(X,r) = (X; R(r)) with a set of generators X and a set of defining
relations N(r) is called the monoid associated with (X, r). The group G = G(X,r) = Gx
associated with (X, r) is defined analogously. For an arbitrary fixed field Kk, the k-algebra
associated with (X, r) is defined as

A= AKX, r) =K(X)/(N4) > k(X N(0)),
where Wy = {xy — y'x’ | xy = y'x’" € R(r)).

Clearly, « is a quadratic algebra generated by X and with defining relations 9 4, which
is isomorphic to the monoid algebra kS (X, r).

When (X, r) is a solution of YBE, the algebra +4 is called a Yang—Baxter algebra [26],
or shortly a YB algebra.

Suppose (X, r) is a finite quadratic set. Then A = A(Kk, X, r) is a connected graded
k-algebra (naturally graded by length), A = €D, #i, where ¢ = k, and each graded
component «A; is finite-dimensional. Moreover, the associated monoid § = S(X,r) is
naturally graded by length:

S = I_lS,‘, where So = 1, S1 = X, Si = {u es | |u| =i}, Si.Sj - Si.:,_j. (2.6)

i>0

In the sequel, by “a graded monoid S, we shall mean that S is generated by S; = X
and graded by length. The grading of S induces a canonical grading of its monoid algebra
kS (X, r). The isomorphism 4 2 kS (X, r) agrees with the canonical gradings, so there is
an isomorphism of vector spaces A, = Spany Sy,.

If (X, r) is a nondegenerate involutive quadratic set of finite order |X| = n, then,
by [14, Proposition 2.3], the set )i consists of precisely (;) quadratic relations. In this

case, the associated algebra A = A(k, X, r) satisfies dim A, = ("';1)

Definition-Notation 2.9 ([17]). Suppose (X, r) is an involutive quadratic set. Then the
cyclic group (r) = {1, r} acts on the set X2 and splits it into disjoint r-orbits {xy,r(xy)},
where xy € X2. An r-orbit {xy, r(xy)} is nontrivial if xy # r(xy). The element xy € X?
is an r-fixed point if r(xy) = xy. The set of r-fixed points in X2 will be denoted by
F(X,r):

F(X,r)={xy e X?|r(xy)=xy}. 2.7)

The following useful corollary is a consequence of [17, Lemma 3.7].

Corollary 2.10. Let (X, r) be a solution of YBE of finite order |X| = n, and let A =
Ak, X,r) be its Yang—Baxter algebra. (1) There are exactly n fixed points ¥ = F (X,r) =
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{X1V1+.- .. XnYn} C X2, 50 |F (X, r)| = | X| = n. In the special case, when (X,r) is a
square-free solution, one has ¥ (X,r) = Ay = {xx | x € X}, the diagonal of X?. (2) The
number of nontrivial r-orbits is exactly (g) Each such an orbit has two distinct elements:
xy and r(xy), where xy,r(xy) € X2. (3) The set X? splits into (";1) r-orbits. For
xy,zt € X2, there is an equality xy = zt in 4 iff zt € {xy,r(xy)}. (4) In particular, A

has exactly (;) defining relations (each relation corresponds to a nontrivial r-orbit).

Remark 2.11 ([13]). Let (X, r) be an involutive quadratic set, and let S = S(X, r) be the
associated monoid.

(i) By definition, two monomials w, w’ € (X) are equal in S iff w can be transformed
to w’ by a finite sequence of replacements each of the form

axyb — ar(xy)b, wherex,y € X, a,b € (X).

Clearly, every such replacement preserves monomial length, which therefore des-
cends to S(X, r). Furthermore, replacements coming from the defining relations
are possible only on monomials of length > 2, hence X C S(X, r) is an inclusion.
For monomials of length 2, xy = zt holds in S(X, r) iff zt € {xy,r(xy)}.

(i) It is convenient for each m > 2 to refer to the subgroup D,, = D, (r) of the
symmetric group Sym(X") generated concretely by the maps

P xm s x™m o P —dyio xor X idymeic, i=1,...,m—1. (2.8)
One can also consider the free groups

Om(r) = (r'" T [i=1.....m—1),

where the 71 are treated as abstract symbols, as well as various quotients
depending on the further type of r of interest. These free groups and their quotients
act on X™ via the actual maps 1, so that the image of D,,(r) in Sym(X™)
is Dy, (r). In particular, Do(r) = (r) C Sym(X?) is the cyclic group generated
by r. It follows straightforwardly from part (i) that w, w’ € (X) are equal as words
in S(X, r) iff they have the same length, say m, and belong to the same orbit O g,
of Dy, (r) in X™. In this case, the equality w = w’ holds in S(X, r) and in the
algebra A(k, X, r).
An effective part of our combinatorial approach is the exploration of the action of
the group D,(r) = (r) on X2 and the properties of the corresponding orbits. In
the literature, a D, (r)-orbit O in X 2 is often called “an r-orbir’, and we shall use
this terminology.

In notation and assumption as above, let (X, r) be a finite quadratic set with S =
S(X, r) graded by length. Then the order of the graded component S,, equals the number
of Dy, (r)-orbits in X™.
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3. The Yang-Baxter algebra «A (k, X, r) of a finite nondegenerate
symmetric set (X, r)

It was proven through the years that the Yang—Baxter algebras 4A(k, X, r) correspond-
ing to finite nondegenerate symmetric sets have remarkable algebraic and homological
properties. They are noncommutative, but have many of the “good” properties of the com-
mutative polynomial ring K[xy, ..., x,]; see Remarks 3.1 and 3.5 and Theorem 3.8. This
motivates us to look for more analogues coming from commutative algebra and algebraic
geometry.

3.1. Basic facts about the YB algebras A (k, X, r) of finite solutions (X, r)

The following remark observes the importance of finite square-free solutions and their
close relations to Artin—Schelter regularity. The results are extracted from [13, 15,22,33].

Remark 3.1. Suppose (X, r) is a square-free nondegenerate and involutive quadratic
set of order n. Let A = A(k, X, r) be the associated quadratic algebra. The following
conditions are equivalent.

(1) o+ is an Artin—Schelter regular PBW algebra.
(2) (X,r)is asolution of YBE.

(3) There exists an enumeration X = {x1, X2, ..., X, } such that +4 is a binomial skew
polynomial algebra.

The implication (1) = (3) follows from [15, Theorem 1.2]. (3) = (1) is proven
in [13, Theorem B] (see also [22]). (3) = (2) is proven in [22, Theorem 1.1]. The
implication (2) = (3) was conjectured by the author and proven by Rump; see [33,
Theorem 1].

Remark 3.2. Note that among all Yang—Baxter algebras 4 = A(K, X, r) of finite solu-
tions studied in this paper, the only PBW algebras are those corresponding to square-
free solutions (X, r). This follows from Theorem 3.8 which will be proven in the next
subsection.

Artin—Schelter regular algebras (or shortly AS regular algebras) were introduced and
studied first in [3]. The study of AS regular algebras, their classification, and finding new
classes of such algebras is one of the central problems in noncommutative geometry.

Convention 3.3. Let (X, r) be a finite solution of YBE of order 7, and let A = A(k, X, r)
be the associated Yang—Baxter algebra.
(a) If (X, r) is square-free, we fix an enumeration such that X = {xq,...,x,}is a set

of PBW generators of +4. In this case, # is a binomial skew polynomial ring; see
Definition 2.3.
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(b) If (X, r) is not square-free, we fix an arbitrary enumeration X = {x,..., X,}
on X.

In each of the cases (a) and (b), we extend the fixed enumeration on X to the deg-
lex order < on (X). By convention, the Yang—Baxter algebra A4 = Ay = A(k, X, r) is
presented as

A= A X, r) = K(X)/ () ~ k(X:R(r)),
where Wy = {xy — y'x’ | xy > y'x’, and r(xy) = y'x'}. 3.1

Consider the two-sided ideal 1 = (M 4) of k(X), let G = G(I) be the unique reduced
Grobner basis of I with respect to <. Here we do not need an explicit description of
the reduced Grobner basis G of 7, but we need some details. In the case (a), one has
G = N 4. It follows from Remark 3.2 that in the case (b) the set of relations ) 4 is not a
Grobner basis of 1, but i 4 & G. Moreover, the shape of the relations N 4 and standard
techniques from noncommutative Grobner bases theory imply that the Grobner basis G is
finite, or countably infinite, and consists of homogeneous binomials f; = u; — vj, where
LM(f;) =uj > v;,and u;,v; € X™, for some m > 2. The set of all normal monomials
modulo / is denoted by V. As we mentioned above, N = N (/) = N (G). An element
f € k(X) is in normal form (modulo /) if f € Span, . The free monoid (X) splits as
a disjoint union (X) = N U LM([/). The free associative algebra k(X splits as a direct
sum of k-vector subspaces k(X) ~ Span, N & I, and there is an isomorphism of vector
spaces 4 ~ Span, N . As usual, we denote

Ng = {u € N | u has length d}. (3.2)

Then 44 =~ Spany Ny for every d € Ny. According to Corollary 3.6, dim Ay = |Ny| =
(" +3_1) Vd > 0. Note that since the set of relations 4 is a finite set of homogeneous
polynomials, the elements of the reduced Grobner basis G = G(I) of degree < d can be
found effectively (using the standard strategy for constructing a Grobner basis), and there-
fore the set of normal monomials Ny can be found inductively ford = 1,2, 3, ... (Here
we do not need an explicit description of the reduced Grobner basis G of 7.) It follows
from Bergman’s Diamond Lemma [5, Theorem 1.2] that if we consider the space kN

endowed with multiplication defined by

f eg:=Nor(fg) forevery f,g € kN,

then (K.V, ¢) has a well-defined structure of a graded algebra, and there is an isomorphism
of graded algebras

A=AKX.r) = K~N.2), soh= P As = P kM.
dENo dGNo

By convention, we shall often identify the algebra 4 with (kN , e). In the case (a) when
(X, r) is square-free, the set of normal monomials is exactly 7 (the set of ordered terms
in X), so » is identified with (k7", ) and S(X, r) is identified with (77, e).
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We shall recall more properties of the Yang—Baxter algebras which will be used in
the sequel, but first we need the following lemma which is involved in our interpretation
of [22, Theorem 1.3] as presented in Remark 3.5.

Lemma 3.4. Every nondegenerate involutive quadratic set (X, r) satisfies the following
condition (Ore condition).

Given a,b € X, there exist unique c,d € X such that r(ca) = db. (33)
Furthermore, ifa = b, thenc = d. .

In particular, r is 2-cancellative.

Proof. Let (X, r) be a nondegenerate involutive quadratic set (not necessarily finite). Let
a,b € X. We have to find unique pair ¢, d such that r(c,a) = (d, b). By the nondegener-
acy, there is unique ¢ € X such that ¢ = b. Letd = “a, thenr(c,a) = (‘a,c?®) = (d,b),
as desired. It also follows from the nondegeneracy that the pair ¢, d with this property is
unique. Assume now that @ = b. The equality r(c, a) = (d, a) implies (‘a, c?) = (d, a),
s0 ¢? = a. But r is involutive, thus (c,a) = r(d,a) = (Ya,d?), and therefore d% = a. It
follows that c¢ = d*¢, and, by the nondegeneracy, ¢ = d. [

The following facts are a compilation of results from [22] and are true for every finite
solution of YBE.

Remark 3.5. Suppose (X, r) is a finite solution of YBE of order n, X = {x1,..., x,}.
Let S = S(X, r) be the associated Yang—Baxter monoid, and let A = A(k, X, r) be the
associated Yang—Baxter algebra. Then the following conditions hold.
(1) (A modified version of [22, Theorem 1.3])
The monoid S is a semigroup of [ -type, that is, there is a bijective map v : U + S,

where U is the free n-generated abelian monoid U = [uq, ..., u,] such that
v(1) = 1, and such that

{v(uia),...,v(uya)} = {xv(a),...,xpv(a)} foralla € U.

(2) The Hilbert series of A is Hy(t) = 1/(1 —1)".
(3) (a) #A has finite global dimension and polynomial growth; (b) +4 is Koszul;

(c) #A is left and right Noetherian; (d) 4 satisfies the Auslander condition and
is Cohen—Macaulay; and (e) A is finite over its centre [22, Theorem 1.4].

(4) 4 is a domain, and in particular the monoid S is cancellative [22, Corollary 1.5].

For convenience of the reader we shall make a brief observation. Note first that the
hypothesis of Remark 3.5 is satisfied by arbitrary finite solution of YBE (X, r) which is
not necessarily square-free, and, in general, the algebra A = A(k, X, r) is not a binomial
skew polynomial ring, or equivalently, +4 is not a PBW algebra.
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Next observe that part (1) of Remark 3.5 is a modification of the original second
part of [22, Theorem 1.3] which states (in our terminology): “Suppose that (X, r) is a
finite solution of YBE of order n which satisfies the condition (3.3). Then the monoid
S(X,r) is of I-type”. However, under the hypothesis of Remark 3.5, Lemma 3.4 implies
the necessary condition (3.3).

The following corollary is straightforward from Remark 3.5 (1) and will be used
throughout the paper.

Corollary 3.6. In notation and conventions as above. Let (X, r) be a solution of YBE of
finite order n. Then for every integer d > 1, there are equalities

dimAd:(n+j_l)=(n+d1_l)=|Nd|. (3.4)
n_

3.2. Every finite solution (X, r) whose Yang-Baxter algebra A (k, X, r) is PBW
is square-free

In this subsection, we give an answer to Problems 1.1 (1).

Suppose (X, r) is a finite solution of YBE whose Yang—Baxter algebra A = A(k, X, r)
is PBW, where X = {x1,x3,...,X,} is a set of PBW generators. Then A = k(X )/(N 4),
where the set of (quadratic) defining relations 94 of 4 coincides with the reduced
Grobner basis of the ideal (N 4) modulo the deg-lex order on (X ). The cardinality of 9 4
is exactly (g), see Corollary 2.10. Recall that the set of leading monomials

W ={LM(f) | f € Ra} (3.5)

is called the set of obstructions for 4, in the sense of Anick [1].

Lemma 3.7. Suppose (X, r) is a solution of YBE of order n and that its Yang—Baxter
algebra A = Ak, X, 1) is PBW, where X = {x1,X2,...,Xy} is a set of PBW generators.
Then there exists a permutation

V1 =Xg, Y2 = Xgps.., Yn = Xg, Of X1,X2,...,%Xp

such that the following conditions hold.

(1) The set of obstructions W = {LM(f) | f € R4} consists of (g) monomials given
below
W={yjyill<i<j=n} (3.6)

(2) The normal k-basis of A modulo I = (N 4) is the set
N = {y¥y% ... y% | q; > 0for1 <i <n). (3.7)

Proof. Let W be the set of obstructions defined via (3.5), and let Aw be the associated
monomial algebra defined as
Aw = K(X)/(W). (3.8)
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It is well known that a word u € (X') is normal modulo / = (N 4) iff u is normal modulo
the set of obstructions W. Therefore, the two algebras + and Ay share the same normal
k-basis N = N (I) = N (W) and their Hilbert series are equal. By Remark 3.5 part (2),
the Hilbert series of 4 is Hy(t) = 1/(1 —t)"; therefore,

Hay (1) = Ha(t) = 1/(1 1) (3.9)

Thus the Hilbert series of Ay satisfies condition (5) of [15, Theorem 3.7, p. 2163], and it
follows from the theorem that there exists a permutation y; = Xxg,, Y2 = Xg,, ..., Vn = Xs,
of the generators x1, X2, . . ., X, such that the set of obstructions W satisfies (3.6). The Dia-
mond Lemma [5] and the explicit description of the obstruction set W given in (3.6) imply
that the set of normal words N = N () = N (W) is described in (3.7). [ ]

Observe that if the permutation given in the lemma is not trivial, then there is an
inversion, that is, a pair i, j withi < j and y; < y;.

Theorem 3.8. Suppose (X, r) is a solution of YBE of order n, and A = Ak, X, r)
is its Yang—Baxter algebra. Then A is a PBW algebra with a set of PBW generators
X ={x1,x2,...,Xn} (enumerated properly) if and only if (X, r) is a square-free solution.

Proof. 1If (X, r) is square-free, then there exists an enumeration X = {x1,..., x5}, SO
that »4 is a binomial skew polynomial ring in the sense of [11], and therefore 4 is PBW.
This was a conjecture of the author which was proven later by Rump [33, Theorem 1].

Assume now that (X, r) is a finite solution of order n whose Yang—Baxter algebra
A = Ak, X, r) is PBW, where X = {x1, x2,...,Xx,} is a set of PBW generators. We
have to show that (X, r) is square-free, that is, r(x, x) = (x, x) forall x € X.

It follows from our assumptions that in the presentation 4 = k(X)/(N.4) the set
of (quadratic) defining relations 94 of # is the reduced Grobner basis of the ideal
(M4) modulo the deg-lex order on (X). By Lemma 3.7, there exists a permutation
V1 = X5, Y2 = X5y, ..., Yn = X5, of X1,X2,..., X, such that the obstruction set W =
{LM(f) | f € R4} satisfies (3.6), and the set of normal monomials N described in (3.7)
is a PBW basis of +A.

We use some properties of (X, r) and the relations of 4 listed below.

(i) The solution (X, r) is 2-cancellative. This follows from Lemma 3.4. (ii) There
are exactly n fixed points xy € X2 with r(x, y) = (x, y) and the set 0 4 consists of
exactly (g) relations. This follows from Corollary 2.10. (iii) Every monomial of the shape
yjyi, 1 <i < j <nis the leading monomial of some polynomial ¢;; € N 4. (Itis possible
that y; < y; for some j >1i.)

Therefore, the algebra +4 has a presentation

A=Kk(x1,...,x:)/(N4)
with precisely (;) defining relations

R ={@ji =yjyi—uij |1 <i <j<n} (3.10)
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such that

(1) For every pair i, j, 1 <i < j < n, the monomial u;; satisfies u;; = yy y;,
where i’ < j’ and y; > yi (since LM(gj;) = yjyi > yiryjs, and since (X, r)
is 2-cancellative).

(2) Each monomial y;y; with 1 <i < j <n occurs at most once in ) 4 (since r is a
bijective map).

(3) N4 is the reduced Gribner basis of the two-sided ideal (N 4), with respect to the
degree-lexicographic order < on (X).

In terms of the relations R 4, our claim that r(x, x) = (x, x), for all x € X, is equivalent
to
uj; #xx, wherex e Xandl<i <j <n. (3.11)

So far we know that (X, r) has exactly » fixed points, and each monomial y;y;,1 <i <
J < nis not a fixed point. Therefore, it will be enough to show that a monomial y; y;,
with 1 <i < j < n, cannot be a fixed point.

Assume on the contrary that 7 (y;, ;) = (yi, ;) for some 1 <i < j < n. We claim
that in this case N 4 contains two relations of the shape

YpYq —YjYj, Wwhere p>gq, y, > y;. (3.12a)
YsYt — YiYi, Wheres > ¢, yg > y;. (3.12b)

Consider the increasing chain of left ideals of A
hehc Sl
where for k > 1, I, is the left ideal
I = A(ViYj Yiyie o2 Yiyy).

By [22, Theorem 1.4], see also Remark 3.5 (3), the algebra A is left Noetherian, hence
there exists k > 1 such that Iy = Iy = I4q = ---, and therefore y,-y]’-c € Ir—1. This
implies
w-(yiy;) = y,-y]l-c eN forsomec,1 <c<k-1,
and some w € N, |lw| = k —c. (3.13)

It follows from (3.13) that the monomial vy = y; y;‘ can be obtained from the monomial
w(yiy;) by applying a finite sequence of replacements (reductions) in (X). More
precisely, there exists a sequence of monomials

v():yiy]]‘csvlv"-vvl—ls vt:w(ylyjc)e(x)
and replacements

v,—>v,_1—>---—>v1—>v0:yiy]]~‘6¢/\/, (3.14)
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where each replacement comes from some quadratic relation f,q = ypyq — Ugp in (3.10)
and has the shape

alypyqlb — a(ugp)b, wheren>p>qg=>1,a,be (X).

We have assumed that y; y; is a fixed point, so it cannot occur in a relation in (3.10). Thus
the rightmost replacement in (3.14) is of the form

ur = yiyj-Yilvpygl--yi = yiyj--yiugp)---y;i = yiyj - yi(y;yj) -+ y; = vo,

where p,q is a pair with 1 < g < p <n, uy, = y;yj and y, > y;. In other words, the
set N 4 contains a relation of type (a) y,y, — xjx; where p > g, y, > yj.

Analogous argument proves the existence of a relation of type (b) in (3.12). This time
we consider an increasing chain of rightideals /1 C I, C --- C I C ---, where I is the
right ideal Iy = (yiyj, Y2 yj.-- -, y{‘yj),,\, and apply the right Noetherian property of .

Consider now the subset of fixed points

Fo(X.r) = {yiy; € X* such thati < j and r(yi.y;) = (i, )},

which by our assumption is not empty. Then (X, r) has cardinality m > 1 and 9 4
contains at least m + 1 (distinct) relations of the type

YpYq —xx, wherex € X,p >gandy, > x. (3.15)

The set N, of normal monomials of length 2 contains (g) elements of the shape ysy;, 1 <
s <t < n, and we have assumed that m of them are fixed. Then there are (g) — m dis-
tinct monomials y; y; € M, 1 <i < j < n which are not fixed. Each of these monomials

occurs in exactly one relation

VsVt — YiVj, Wwherer(ys,ye) = (yi,yj), § >, ys > yi.

Thus 9 4 contains (Z) — m distinct square-free relations and at least m + 1 relations which
contain squares as in (3.15). Therefore, the set of relations has cardinality

Rl > (Z) -—m+m+1> (Z)
which is a contradiction.

‘We have shown that a monomial y; y; with 1 <i < j < n cannot be a fixed point, and
therefore it occurs in a relation in 9 4. But (X, r) has exactly n fixed points, so these are
the elements of the diagonal of X 2, x;x;, 1 <i <n.Itfollows that (X,r)issquare-free. =

Proposition 3.9. Let (X, r) be a finite nondegenerate involutive quadratic set, and
let A = Ak, X,r) = k(X)/(R4) be its quadratic algebra. Assume that there is an
enumeration X = {x1,X2,...,Xn} of X such that the set

N ={x{'x?2 x5 |y =0for1 <i <n}
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is a normal k-basis of A modulo the ideal I = (R 4). Then A = Ak, X, r) is a PBW
algebra, where X = {x1,x2,...,Xx,} is a set of PBW generators of A and the set of
relations Ry is a quadratic Grébner basis of the two-sided ideal (R 4). The following
conditions are equivalent.

(1) The algebra A is left and right Noetherian.
(2) The quadratic set (X, 1) is square-free.
(3) (X, r) is a solution of YBE.

(4) A is a binomial skew polynomial ring in the sense of [11].

Proof. The quadratic set (X, r) and the relations of 4 satisfy conditions similar to those
listed in the proof of Theorem 3.8. More precisely: (i) (X, r) is 2-cancellative. This fol-
lows from Lemma 3.4. (ii) There are exactly # fixed points xy € X2 with r(x, y) = (x, ).
This follows from Corollary 2.10. (iii) It follows from the hypothesis that every monomial
of the shape x;jx;, 1 <i < j < n is not in the normal k-basis -V, and therefore it is the
highest monomial of some polynomial ¢;; € 3 4. According to [14, Proposition 2.3], if
(X, r) is a nondegenerate involutive quadratic set of order n, then the set )i 4 consists of
exactly (g) relations. Therefore, the algebra 4 has a presentation

A=k(x1,...,x,)/(Ny)
with precisely (g) defining relations
fRA = {(pji = XjXi — Xi’Xj | 1<i <j < I’l} (3.16)

such that
(a) Forevery pairi, j, 1 <i < j <n,onehasi’ < j’, and j > i’ (since LM(yp;;) =
Xjx; > xjx;, and since (X, r) is 2-cancellative).
(b) Each ordered monomial (term) of length 2 occurs at most once in $h 4 (since r is
a bijective map).

(c) My is the reduced Grobner basis of the two-sided ideal (N 4 ), with respect to the
deg-lex order < on (X), or equivalently the overlaps xxx;x; with k > j > i do
not give rise to new relations in .

We shall prove now the equivalence of the conditions (1) through (4). (1) = (2). The proof
is analogous to the proof of Theorem 3.8. It is enough to show that a monomial x;x; with
1 <i < j < n cannot be a fixed point. Assuming the contrary, and applying an argument
similar to the proof of Theorem 3.8, in which we involve the left and right Noetherian
properties of #, we get a contradiction. Thus every monomial x;x; with1 <i < j <n
occurs in a relation in N 4. At the same time, the monomials x;x; with 1 <i < j <n are
also involved in the relations N 4, hence they are not fixed points. But (X, r) has exactly n
fixed points, so these are the elements of the diagonal of X 2 xix;, 1 <i <n. It follows
that (X, r) is square-free. (2) = (4). If (X, r) is square-free, then the relations % 4 given



Veronese subalgebras and Veronese morphisms for a class of Yang—Baxter algebras 239

in (3.16) are exactly the defining relations of a binomial skew polynomial ring. Moreover,
by the hypothesis of the proposition, condition (d’) in Definition 2.3 is in force; therefore,
all conditions in Definition 2.3 hold, and +# is a skew polynomial ring with binomial rela-
tions in the sense of [11]. The implication (4) = (3) follows from [22, Theorem 1.1]. The
implication (3) = (1) follows from [22, Theorem 1.4]; see also Remark 3.5 (3). [ ]

We end the section with the following general question.

Question 3.10. (1) Suppose (X, r) is a finite nondegenerate involutive solution of
order n. Determine conditions on (X, r) which imply that the Yang—Baxter algebra
A = Ak, X,r) = k(X)/(N4) is standard finitely presented (or shortly, an s.f.p. algebra)
with respect to some appropriate enumeration X = {xy, ..., x,} of X. In other words, the
two-sided ideal 1 = (N 4) of k(X) has a finite reduced Grobner basis with respect to the
deg-lex order < on (X). (2) Classify all solutions whose Yang—Baxter algebras are s.f.p.
(3) Find examples of finite nondegenerate involutive solutions (X, r) whose Yang—Baxter
algebra is not s.f.p. with respect to any enumeration of X, or prove that such solutions do
not exist.

The Yang—Baxter algebra A = A(k, X, r) of the solution (X, r) in Example 7.2 is not
PBW, but it is standard finitely presented with respect to any enumeration of X.

4. The d-Veronese subalgebra 4 of the Yang—Baxter algebra
Ak, X, r), its generators and relations

In this section, (X, r) is a finite solution of YBE, and d > 2 is an integer. We shall study
the d-Veronese subalgebras 4@ of the Yang—Baxter algebra A = (K, X, r). This is
an algebraic construction which mirrors the Veronese embedding. Results on Veronese
subalgebras of noncommutative graded algebras appeared first in [9] and [4]. Our main
reference here is [30, Section 3.2]. We shall prove Theorem 4.13 which presents the
d-Veronese subalgebra #4 @) in terms of generators and quadratic relations.

4.1. Veronese subalgebras of graded algebras

We recall first some basic definitions and facts about Veronese subalgebras of general
graded algebras.

Definition 4.1. Let A = @mGNO Ay, be a graded k-algebra. For any integer d > 1, the
d-Veronese subalgebra of A is the graded algebra

AD = EB Amd.-

meNy
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By definition, the algebra A9 is a subalgebra of A. However, the embedding is not a
graded algebra morphism. The Hilbert function of A satisfies

gy (m) = dim(A9D),, = dim(Ag) = ha(md).

It follows from [30, Proposition 2.2, Chapter 3] that if A is a one-generated, quad-
ratic, Koszul algebra, then its Veronese subalgebras are also one-generated, quadratic, and
Koszul.

Corollary 4.2. Let (X, r) be a solution of order n, let A = A(k, X, r) be its Yang—
Baxter algebra, and let d > 2 be an integer. Then the d-Veronese subalgebra 4@ is
one-generated, quadratic, and Koszul.

Proof. 1f (X, r) is a solution of order n, then, by definition, the Yang—Baxter algebra 4 =
A(K, X, r) is one-generated and quadratic. Moreover, # is Koszul; see Remark 3.5. It fol-
lows straightforwardly from [30, Proposition 2.2, Chapter 3] that A(?) is one-generated,
quadratic, and Koszul. ]

We shall prove in the next section that A(?) is a left and a right Noetherian domain.
In the assumptions of Corollary 4.2, it is clear that the d-Veronese subalgebra )

satisfies
AD = B Apa = @ kN 4.1)
meNg meNg

Moreover, the normal monomials w € Ny of length d are degree one generators of A,
and by Corollary 3.6 there are equalities

d—1
|Nd|:dimAd:(n+ )

d
We set
N = n+d-—1 42)
= i .
and order the elements of Ny lexicographically:
Ng ={wy <wy <---<wpy}. 4.3)
The d-Veronese 4@ is a quadratic algebra with one-generators wy, ws, . .., wy. We shall
find a minimal set of quadratic relations for A@ _each of which is a linear combination of
products w; w; for some i, j € {1,..., N}. The relations are intimately connected with the

properties of the Yang—Baxter monoid S(X, r). As a first step, we shall introduce a finite
nondegenerate symmetric set (Sy, r4) induced in a natural way by the braided monoid
S(X,r).



Veronese subalgebras and Veronese morphisms for a class of Yang—Baxter algebras 241

4.2. The braided monoid S = S(X, r) = (S5, rs) of a braided set (X, r)

Matched pairs of monoids, M3-monoids, and braided monoids in a most general setting
were studied in [19], where the interested reader can find the necessary definitions and the
original results. Here we extract only some facts which will be used in the paper.

Fact 4.3 ([19, Theorems 3.6 and 3.14]). Let (X, r) be a braided set, and let S = S(X,r)
be its Yang—Baxter monoid. Then

(1) The left and the right actions Oo: X xX — X,and 00 : X x X — X defined
via r can be extended in a unique way to a left and a right action

O6:85x8 — 8. (a,b) = *b, and oV:8xS—8, (a,b)r—>ab

which make S a strong graded M3-monoid. In particular, the following equalities
holdin S foralla,b,u,v € S.

MLO: “1=1, 'w=u; MRO: 1*=1, al=a

ML 1: @)y = a(by), MR I: a™) = (a¥%)? 44
ML 2: “4(u.v) = (“u)(¢"v), MR 2: (a.b)* = (ab”)(b”) (44)
M3  *ypu? = uv.

These actions define a bijective map
rs :SxS—8SxS8, rsu,v):="v,u")

which obeys the Yang—Baxter equation, so (S, rs) is a braided monoid. In partic-
ular, (S, rg) is a set-theoretic solution of YBE, and the associated bijective map
rs restricts to r.

(2) The following conditions hold.
(a) (S,rs) is a graded braided monoid, that is, the actions agree with the grading
(by length) of S:
|“ul = |u| = [u%| VYa,uces. 4.5)

(b) (S, rs) is nondegenerate iff (X, r) is nondegenerate.
(¢) (S, rs) is involutive iff (X, r) is involutive.

(d) (S, rg) is square-free iff (X, r) is a trivial solution.

Let (X, r) be a nondegenerate symmetric set, and let (S, rg) be the associated graded
braided monoid, where we consider the natural grading by length given in (2.6):

S=1]Ss So={1}. Si=X. and SiSm S Skim-
deNy

Each of the graded components Sy, d > 1, is rg-invariant. Consider the restriction
rq = (rs)|s,xs,» where rg isthemap rg : Sg X Sg — Sq x Sg.
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Corollary 4.4. Let (X, r) be a solution of YBE. Then the following conditions hold.

(1) For every positive integer d > 1, (S4,rq) is a solution of YBE (a nondegenerate
symmetric set). Moreover, if (X, r) is of finite order n, then (Sgz,rg) is a finite
solution of YBE of order

d—1
1S4] = (”+d )=N. (4.6)

(2) The number of fixed points is |¥ (Sq,rq)| = N.

Definition 4.5. We call (S;, ry) the monomial d-Veronese solution associated with
(X,r).

The monomial d-Veronese solution (Sy, r4) depends only on the map r and on the
integer d; it is invariant with respect to the enumeration of X. Although (S;, rz) is intim-
ately connected with the d-Veronese subalgebra A and its quadratic relations, this
solution is not convenient for an explicit description of the relations. Its rich structure
inherited from the braiding in (S, rg) is used in the proof of Theorem 6.4. The solution
(S4, rq) induces in a natural way an isomorphic solution (Ny, pg), and the fact that Ny is
ordered lexicographically makes this solution convenient for our description of the rela-
tions of 4@, Note that the set Ny, as a subset of the set of normal monomials N, depends
on the initial enumeration of X. We shall construct (Ny, pz) below.

Remark 4.6. The d-Veronese solution (Sz, rg) is closely related to a recently introduced
notion of cabling for involutive solutions (see [24]), where the “cabling” operations on
solutions are used to obtain new results on decomposability of solutions and a concep-
tual interpretation of the Dehornoy class. In fact, for every d > 2, the so-called “d-cabled

solution” r¢ is a very particular subsolution of the d-Veronese solution (Sg, r4).

Remark 4.7. Given the monomials a = aja---a, € X? and b = biby -+ by € X9,
we can find effectively the monomials 45 € X7 and ab € X?.Indeed, as in [19], we use
condition (4.4) to extend the left and the right actions inductively:

(by-b

(byby-bg) = (b)) by)--- (€ b,y foralle € X

4.7
(arazap)p — a1 ((a2"'ap)b)'

We proceed similarly with the right action.

Lemma 4.8. Notation as in Remark 2.11. Suppose a,a; € X?,a; € (9501, (a), and b, b, €
X1,by € O, (b),

(1) The following are equalities of words in the free monoid (X ):
Nor(?'by) = Nor(*b), Nor(a;”) = Nor(a?). (4.8)

In particular, ifa,a; € X? and b, by € X4, the equalitiesa = ay in S and b = by
in S imply that “'b; = %b and all’1 =ab holdin S.
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(2) The following are equalities in the monoid S :
ab = ?ba® = Nor(®b) Nor(a?). (4.9)

Proof. By Remark 2.11, there is an equality a = a; in S iff a; € (91)p (a); in this case,
O9p,(a) = Op,(a1). At the same time, @ = a; in § iff Nor(a;) = Nor(a) as words in X 7;
in particular, Nor(a) € Op,(a). Similarly, by = b in S iff by € Op,(b), and in this case
Nor(b) = Nor(b1) € O, (b). Part (1) follows from the properties of the actions in (S, rs)
studied in [19, Proposition 3.11]. (2) (S, rg) is an M3-braided monoid (see Fact 4.3), so
condition M3 implies the first equality in (4.9). Now (4.8) implies the second equality
in (4.9). [

Definition-Notation 4.9. In notation and conventions as above. Let d > 1 be an integer.
Suppose (X, r) is a solution of order n, A = A(k, X, r) is the associated Yang—Baxter
algebra, and (S, rg) is the associated braided monoid. By convention, we identify + with
(kN ,¢) and S with (N, ¢). Define a left “action” and a right “action” on N; as follows:

DZdVdXJVd—></Vd, al>b:=N0r(“b)€Nd Va,beNd

b (4.10)
4 Ng X Ng —> Ny, a<b:=Nor(a’) e Ny Va,be N.
It follows from Lemma 4.8 (1) that the two actions are well defined.
Define the map
Pd - Ng X Ng —> Ng X Ng, pgla,b):=(a>b,a<b). 4.11)

For simplicity of notation (when there is no ambiguity), we shall often write (N, p),
where p = pg.

Definition 4.10. We call (Ny, pg) the normalised d-Veronese solution associated with
(X,r).

Proposition 4.11. In assumption and notation as above.

(1) Let pg : Ng x Ng — Ny x Ny be the map defined as py(a,b) = (a > b,a < b).
Then (Ny, pa) is a solution of YBE of order | Ny | = ("+:il_1) = N.

2) (Ng, pa) and (Sgq,rg) are isomorphic solutions of YBE.

Proof. (1) By Corollary 4.4, (S4, rq) is a nondegenerate symmetric set, that is, a solution
of YBE. Thus, by Remark 2.6, the left and the right actions associated with (S, ry) satisfy
conditions 11, r1, Ir3, and inv. Consider the actions > and < on Ny, given in Definition-
Notation 4.9. It follows from (4.10) and Lemma 4.8 that these actions also satisfy 11, r1,
Ir3, and inv. Therefore, by Remark 2.6 again, p; obeys YBE and is involutive, so (Ng, pg)
is a symmetric set. Moreover, the nondegeneracy of (Sy, ry) implies that (Ng, pg) is

nondegenerate. By Corollary 3.4, there are equalities |Ny| = |S4| = ("+;,171) =N.
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(2) We shall prove that the map Nor : Sy — Ny, u — Nor(u) is an isomorphism of
solutions. It is clear that the map is bijective. We have to show that Nor is a homomorphism
of solutions, that is,

(Nor x Nor) o rg = pg o (Nor x Nor). (4.12)

Let (u,v) € Sg x Sg, then the equalities ¥ = Nor(u) and v = Nor(v) hold in Sy, so
Nor(*v) = Nor("®Nor(v)), Nor(u’) = Nor(Nor(u) ™)
which together with (4.10) imply

(Nor x Nor) o rg (1, v) = Nor x Nor(*v,u") = (Nor(*v), Nor(u"))
= (Nor(u) > Nor(v), Nor(u) < Nor(v)) = pg (Nor(u), Nor(v)).

This proves (4.12). ]

Let us consider the monomials in Ny are ordered lexicographically, Ny := {w; <
Wy < --- < wy} (see (4.3)), and we shall use this order throughout the paper.

Proposition 4.12. In assumption and notation as above. Let (Nj, pg) be the norm-
alised d-Veronese solution; see Definition 4.10. Then the Yang—Baxter algebra B =
Ak, Ny, pq) is generated by the set Ny and has (1;’) quadratic defining relations given
below:
N ={fji =wjw; —wypw;s |1 <i,j <n, where pg(wj, w;) = (w;r, w;),
and w; > w; holds in (X)}. (4.13)

Moreover,

(i) There is a 1-to-1 correspondence between the set of relations R and the set of
nontrivial pg-orbits in Ng X Ny.

(ii) Forevery pair (a,b) € (Ng X Ng) \ F (N4, pg), the monomial ab occurs exactly
once in N.

(iii) Every relation f;; has leading monomial LM( f;;) = wjw;.

Proof. For simplicity of notation we set pg; = p. It is clear that there is a 1-to-1 corres-
pondence between the set of relations of the algebra B and the set of nontrivial orbits of
the map p.

By definition, each nontrivial relation of the Yang—Baxter algebra B corresponds to a
nontrivial orbit of p, and vice versa. Say

0 = {(wj, wi), p(wj, wi) = (Wi, wjr)} = {(wir, wjr), p(wir, wjr) = (Wj, wi)},
and without loss of generality we may assume that the relation is

w;w; —wyw;s, where wjw; > wyw;.
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By Lemma 4.8 (2), the equality w; w; = w;sw; holds in §. The monoid S = §(X,r) is
cancellative (see Remark 3.5), hence an assumption that w; = w;s would imply w; = w;,
a contradiction. Therefore, w; > wj/.

Conversely, if -p(w;, w;) = wyw;s and w; > wy, then f;; is a (nontrivial) relation
of the algebra B = B(k, Nz, pg). Clearly, w; > w;s implies w;jw; > wywj/ in (X), so
LM( f;;) = w;w;, and the number of relations g;; is exactly (1;]) ]

4.3. The d-Veronese + (@) presented in terms of generators and relations

According to Convention 3.3 and using the notation as above, the following result
describes the d-Veronese A of the Yang—Baxter algebra + in terms of one-generators
and quadratic relations.

Theorem 4.13. Let d > 2 be an integer. Let (X, r) be a finite solution of YBE, where
X ={x1,...,xn}, let A = A(k, X, 1) be its Yang—Baxter algebra, and let (Ng, p) be the
normalised d-Veronese solution from Definition 4.10, where Ny = {wq, ..., wnN} is the
set of normal monomials of length d ordered lexicographically.

The d-Veronese subalgebra A C A is a quadratic algebra with N = ("J”di_l)
one-generators, namely the set Ny of normal monomials of length d, subject to N* —
(n+nz_dl—1) linearly independent quadratic relations R described below.

(1) The relations R split into two disjoint subsets R = R, U Ry, as follows.

(a) The set R, contains ([;’

) relations corresponding to the nontrivial p-orbits:
Re ={fji = wjw; —wpw;r |1 <, j <n, where p(w;, w;) = (wir, wj),
and w; > w;s holds in (X)}. (4.14)
Each monomial w;w; such that (w;, w;) is in a nontrivial p-orbit occurs
exactly once in R4. Every relation fj; has leading monomial LM( fj;) =
w;j wi.
(b) The set Ry, contains (N ; 1) — (":2_“’1_1) relations:
Rp ={gij = wiwj —w;,wj, | 1 <i,j <n, where-p(w;,w;) > w; w; Wiy, Wj, € Ny,
and w;w; > Nor(w; w;) = wi,wj, € Nag
is the normal form of w; w; }.
(4.15)
In particular, LM(g;;) = w;w; > Wi Wj,.
(2) The d-Veronese subalgebra 4@ has a second set of linearly independent quad-
ratic relations, Ry, which splits into two disjoint subsets R1 = R1, U Rp as
follows.

(a) The set Ry, is areduced version of R, and contains exactly (1;] ) relations:

Ria =1{gji = wjw; —wirwjr |1 < i, j <n, where -p(wj, w;) < wjw;,
and w;rwj» = Nor(wjw;) € NMag}. (4.16)
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In particular, LM(g;;) = wjw; > winw;» € Nog.
(b) The set Ry, is given in (4.15).
(3) The two sets of relations R and R are equivalent: R < R;.
Proof. We start with a general observation. By Convention 3.3, we identify the algebra 4

with (kV,s). We know that the d-Veronese subalgebra A is one-generated and
quadratic; see Corollary 4.2. By (4.1),

AD = B Ana = P kNma.

meNy meNy

So Agd) = kN; and the ordered monomials w € Ny of length d are degree one generators
of 4@ There are equalities

d—1
dim Ay = | Ny = (”+d ) —N.
Moreover,

dim(AD), = dim(Azg) = dim(kNag) = [Nag| = (

n+2d-—1
n—1 '

We want to find a finite presentation in terms of generators and relations
AD = K(wi,...,wn)/(R),
where the two-sided (graded) ideal / = (R) is generated by linearly independent

homogeneous relations R of degree 2 in the variables w;, so I = Span, R.

(1) We compare dimensions to find the number of quadratic linearly independent
relations for the d-Veronese A(?). The equality of vectors spaces

k{wy,...,wy) = 169( @ kde)
meNy

implies an equality for the graded components
(k(wl, ey LUN))Z = 12 D k:de.

Hence if R is a set of linearly independent quadratic relations defining 4@,
that is, R generates the ideal of relations / = (R), there must be an equality
IR| + dim AY = N2, 50

IR| = N? — (”+2dl_l). (4.17)
n_

(2) We shall prove that the set of quadratic polynomials R = R, U R} given above
consists of relations of 4(@; it has order |R| = N2 — (”'tf_dl_l) and is linearly
independent.
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(a) Observe that there is a 1-to-1 correspondence between the polynomials fj; €
R, and the set on nontrivial p-orbits in N; x Ny, and therefore R, has
exactly (1;] ) elements. The p-orbits in Ny x N; are disjoint, and therefore
every monomial w; w;, with 1 <i, j < N, such that (w;, wj) 18 in a nontrivial
p-orbit occurs exactly once in some polynomial f € R,. We claim that R,
consists of relations of 4. Consider an element fii =wjw; —wpwj € Rg.
It is obvious that f}; is not identically zero in k(wy, ..., wx). We have to
show that w;w; — w;w; = 0, or equivalently, w;w; = w;w;s holds in A,
But 4@ is a subalgebra of the Yang—Baxter algebra 4 which is isomorphic
to the monoid algebra kS. Thus it will be enough to prove that

w;w; = wirwjs is an equality in S. (4.18)

Note that .V is a subset of (X) and a = b in N is equivalent to a,b € N and
a = b as words in (X ). Clearly, each equality of words in {(X') holds alsoin S.
By assumption,

p(w;j, w;) = (w;r,wjr) holdsin Nz x Ny. (4.19)
By Definition-Notation 4.9 (see (4.10) and (4.11)), one has
p(w;, w;) = (Nor(™/w;), Nor(w;™)), in Ng x Ny, (4.20)
and comparing (4.19) with (4.20), we obtain that
Nor(*/w;) = wy and  Nor(w”) = w;r
are equalities of words in Ny C X d. 4.21)

The equality ¥ = Nor(u) (the normal form of u, modulo the ideal /) holds
in S and in 4 for every u € (X); therefore, the following are equalities in S:

Nor(“/w;) = “w;, Nor(w;”) = w}”

, . _ . ’ (4.22)
(Nor (™ w;))(Nor(w!™)) = (“w;)(w).
Now (4.21) and (4.22) imply that
wirwyr = (Yw;)(w;") holds in S. (4.23)

But S is an M3-braided monoid, so by condition (4.4) M3, the following is an
equality in S:
wjw; = (Y wi)(w,wi) (4.24)

This together with (4.23) imply the desired equality w;w; = wyw;r in S. It
follows that fj; = w;w; — w;:w;- is identically 0 in 4 and therefore in A@).
Clearly, for f;; = w;w; — wywjs, the inequality w; > w; implies that
w; w; > wyw; as elements of (X), so the leading monomial of every relation
fii € Rais LM(fj;) = wjw;.
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(b) Next we consider the elements g;; = w; w; — w;,wj, € Rp. These are homo-
geneous polynomials of degree 2d. It follows from their description that
w; w; > Nor(w; w;) = w;,wj,, so their leading monomials satisfy LM(g;;) =
Wi W;j .

Moreover, the description of R} implies that there is a 1-to-1 correspondence
between the polynomials in RRp and the set of all p-orbits @ which do not
contain elements (a,b) € N; x Ny such that ab is in normal form, that is,
ab € MNog.

If O is such an orbit, then @ = {(w;, w;), p(w;, w;)}, where -p(w;, w;) >
w; w;j and w; w; is not in normal form. (In particular, @ can be a one-element
orbit.) Clearly, w; w; = Nor(w;w;) is an identity in + (and in (KN, #)). The
normal form Nor(w; w;) is a monomial of length 2d, so it can be written as a
product Nor(w; w;) = w;,wj,, where w;,, wj, € Ng. It follows that

g,'j = w,-wj — w,-owjo =0

is an identity in #4 (and in (KV, »)). Conversely, it follows from the description
of R}, that each relation g;; = w; w; — w;,wj, € Kp determines uniquely the
p-orbit @ = {(w;, w;), p(w;, w;)} with the above properties. Note that each
(a,b) € Ny x Ny such that ab € N,; belongs to exactly one orbit, so the
number of such orbits equals the cardinality

n+2d-—1
¥l = ( )
n—1
The number of all p-orbits in Ny x Ny (including the one-element orbits)

is (N ;' 1). Therefore, for the (distinct) elements g;; = w; w; — w;,wj, € Rp,

the number of disjoint p-orbits which “produce” distinct leading monomials
w; w; is exactly

(N;l)—(n+2d_l)=|ﬂb|. 4.25)
n—1

The sets R, and R, are disjoint, since {LM(f) | f € R} N{LM(g) | g € Rp} = 0.
Therefore, there are equalities:

- (1)) ()

_ N2 (n +2d—1)’ 4.26)
n—1

so the set R has exactly the desired number of relations given in (4.17). It remains to show

that R consists of linearly independent elements of k{X).

Lemma 4.14. Under the hypothesis of Theorem 4.13, the set of polynomials R C k(X)
is linearly independent.
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Proof. Tt is well known that the set of all words in (X) forms a basis of k(X) (con-
sidered as a vector space); in particular, every finite set of distinct words in (X) is linearly
independent. All words occurring in R are elements of X2¢, but some of them occur
in more than one relation, for example, every w;w;, which is not a fixed point of p

but is the leading monomial of g;; € Rj, occurs also as a second term of a polynomial

Jpg = WpWg — w;w; € Ry, where -p(w;, w;j) = wpwy > w; w;. We shall prove the lemma
in three steps.

ey

(@)

3

The set of polynomials R, C k{X) is linearly independent.

Notice that the polynomials in R, are in 1-to-1 correspondence with the nontrivial
p-orbits in Ny x Ny: each polynomial f;; = w;w; —w;yrw;» € R, is formed out of
the two monomials in the nontrivial p-orbit {(w;, w;), (w;", w;7) = p(w;, w;)}. But
the p-orbits are disjoint, hence each monomial -(a, b) with (a, b) # p(a, b) occurs
exactly once in R,. Present each f € R, as f = uy — vy, where uy = LM(f).
Then a linear relation

0= Z ar [ = Z ar(uy —vp), whereallay € k
SfeRa SERa

involves only pairwise distinct monomials in X 24, and therefore it must be trivial:
ar =0V f € R,. It follows that R, is linearly independent.

The set Rp C k(X) is linearly independent.
Assume the contrary. Present each element of Ry as g = ug — vg € Rp, where
ug —LM(g). Then there exists a nontrivial linear relation for the elements of R:

Z Beg = Z Bg(ug —vg) =0 with B, € k. (4.27)
ZERy gERy

Let g;; be the polynomial with B;; = B, # 0 whose leading monomial is the
highest among all leading monomials of polynomials g € Rj, with Bz # 0. So
we have

LM(g;j) = wiw; > LM(g) forall g € Rp, g # gij. where Bz # 0.

We use (4.27) to yield the following equality in k(X ):

—wy— Y Pe . _
W Wj = Wiy W), = (ug — vg).
ZERY,LM(g)<w; w; g

Observe that the right-hand side of this equality is a linear combination of
monomials strictly smaller than w;w;, which is impossible. It follows that the
set Rp C k(X) is linearly independent.

The set R C k(X is linearly independent. For simplicity of notation (as before),
we present every f € R, and every g € Ry as

f=ur—vy, whereur =LM(f)>vs, g=ugz—vg, whereug,=LM(g)>v,.



T. Gateva-Ivanova 250

Assume the polynomials in R satisfy a linear relation

Z ar f + Z Bgg =0, whereforall f € Ry, g€ Ryp, ap,Bg €k, (4.28)
fER 8ER

This gives the following equality in the free associative algebra k(X ):

S = Z Uy = Z afvy — Z Beg = S>. (4.29)

SER fER, ZERy

The element S; = Zfeﬁa aruy is in the space U = Span B, where By =
{LM(f) | f € Rq} is linearly independent.

The element
S2= D arvr— ) Beg
fER, gERY

on the right-hand side of the equality is in the space V' = Span B, where
B={vr|f €RatU{ug,vg| g€ Rp}

Take a subset B, C B which forms a basis of V. Note that By N B = J, hence
B; N B, = @. Moreover, each of the sets B; and B; consists of pairwise dis-
tinct and therefore linearly independent monomials, and it is easy to show that
U NV = 0. Thus the equality (4.29) with §; = S, € U NV = 0 implies a linear
relation
S1 = Z aruy =0,
feRa

for the set of leading monomials uy = LM(f), f € R, which are pairwise dis-
tinct and therefore linearly independent. It follows that oy = 0 for all f € R,.
This together with (4.28) implies the linear relation

Z Beg =0,

gERp

and since by (2) R} is linearly independent, we get again B, =0V g € Rp. It
follows that the linear relation (4.28) must be trivial, and therefore R is a linearly
independent set of polynomials. ]

It is now easy to see that R is a set of defining relation for the d-Veronese
subalgebra A@.

We know that 4@ is a quadratic algebra whose one-generators are the monomials
wi, ..., WN, that is, its ideal of relations / is generated by homogeneous polynomi-
als of degree 2 in the w;’s. Consider the ideal J = (R) of the free associative algebra
k(wi, ..., wy). We have proven that each element of R is a relation of A); therefore,
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J C I. To show that J is the ideal of relations of ,A)(d), it will be enough to verify that
there is an isomorphism of vector spaces:

(R)2 & (A D)z = (k(wy,..., w2,
or equivalently,
dim Spany, R + dim(A“)), = dim(k(w, ..., wx))2.

We have shown that (R is linearly independent, so dim Span, R = |R| = N2 — ("+2d_1);

n—1
see (4.26). On the other hand, dim(A@)), = dim A,y = ("tlz_dl_l); see Corollary 3.6.
Therefore,
2d — 1 2d — 1
dim Spany R + dim(A@), = N2 — (” + 1 ) N (” + 1 )
n— n—

=N?= dim(k{wy, ..., wxy))2,

as desired. It follows that (R is a set of defining relations for the Veronese subalgebra A (4.
We have proven part (1) of the theorem.

Analogous argument proves part (2). Note that the polynomials of R;, are reduced
from R, using Rp. It is not difficult to prove the equivalence R < R;. |

5. Veronese maps

In this section, we shall introduce an analogue of Veronese maps between quantum
spaces (Yang—Baxter algebras) associated to finite solutions of YBE. We keep the nota-
tion and all conventions from the previous sections. As usual, (X, r) is a finite solution
of order n, A = A(k, X, r) is the associated Yang—Baxter algebra, where we fix an enu-
meration, X = {x1,..., x,} as in Convention 3.3, d > 2 is an integer, N = ("+3_1),
and Ny = {w; < wy < --- < wy} is the set of all normal monomials of length d in x4

ordered lexicographically, as in (4.3).

5.1. The d-Veronese solution of YBE associated to a finite solution (X, r)

We have shown that the braided monoid (S, rg) associated to (X, r) induces the normal-
ised d-Veronese solution (N, pg) of order N = (”+3_1); see Definition 4.10. We shall
use this construction to introduce the notion of a d-Veronese solution of YBE associated
to (X, r), denoted by (Y, ry).

Definition-Notation 5.1. In notation as above. Let (X, r) be a finite solution, X =
{xX1, ..., xn}, let Ny ={w; < wy <--- < wy} be the set of normal monomials of
length d, and let (N, p) = (Ny, pg) be the normalised d-Veronese solution. Let ¥ =
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{¥1,¥2,...,yN} be an abstract set and consider the quadratic set (Y, ry), where the map
ry : Y xY — Y xY isdefined as

ry (yj.yi) = (yir,yjy) iff p(wj,w) = (wi,wyr), 1<i,j,i',j ' <n. (5.1)
It is straightforward that (Y, ry) is a solution of YBE (a nondegenerate symmetric set)

of order N isomorphic to (N, pg). We shall refer to it as the d -Veronese solution of YBE
associated to (X, r).

By Corollary 2.10, the set ¥ x Y splits into (g’ ) two-element ry-orbits and N
one-element ry -orbits.

As usual, we consider the degree-lexicographic ordering on the free monoid (Yy)
extending y; < y» <--- < yn. The Yang-Baxter algebra Ay = A(K,Y,ry) >~ k(Y; Ry)
has exactly (g’ ) quadratic relations which can be written explicitly as

Ry =yji = yjyi —yirypr |1 =i, j < N,ry vy, yi) = (ir, 1),
where y; y; > y;ry;s holds in (Yn)}. (5.2)
Each relation corresponds to a nontrivial ry-orbit. The leading monomials satisfy
LM(yji) = yjyi > yiryjr-

5.2. The Veronese map v, 4 and its kernel

We recall that in algebraic geometry a d-Veronese morphism means an algebra homo-
morphism B — A with image A, where B is a graded algebra of the same type
as A.

Lemma 5.2. In notation as above. Let (X, r) be a solution of order n, Ay = Ak, X,r),
let d > 2 be an integer, and let N = (" +j_l). Suppose (Y, ry) is the associated d -Veronese
solution, Y = {y1,...,yn}, and Ay = Ak, Y, ry) is the corresponding Yang—Baxter
algebra.

The assignment

Y1 »—>w1,y2|—>w2,...,be—>wN

extends to an algebra homomorphism v, 4 : Ay — syx. The image of the map v,, 4 is the
(d)
d-Veronese subalgebra Ay .

Proof. Naturally we set vy, g (yi; -+ Yi,) := wj, -+ w;, for all words y;, ---y;, € (Y) and
then extend this map linearly. Note that for each polynomial y;; € Ry, one has

Vn,a(vji) = fji € Ras
where the set R, is a part of the relations of ,A)g(d) given in (4.14). Indeed, let y;; € Ry,
SO Yji = Yjyi — Yiry;s, where (yir, ¥jr) = ry(¥;, i), and y; y; > yiry;7; see (5.1). Then

Un,d (Vji) = Un.a(¥jyi = yiryjr)
wjw; —wywjr, where (w;r, wjr) = p(wj, w;), and wjw; > wirw,
fji € J{a.
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We have shown that f;; equals identically O in #y, so the map v, 4 agrees with the rela-
tions of the algebra Ay . It follows that v, 4 : Ay — sAyx is a well-defined homomorphism
of algebras.

The image of v, 4 is the subalgebra of Ay generated by the normal monomials N,
which by Theorem 4.13 is exactly the d-Veronese subalgebra A;d). ]

Definition 5.3. We call the map v,, 4 from Lemma 5.2 the (n, d)-Veronese map.

Theorem 5.4. In assumption and notation as above. Let (X, r) be a solution of order n,

with X = {x1,...,xn}, let Ax = Ak, X, r) be its Yang—Baxter algebra. Let d > 2 be an

integer, N = ("+3_1), and suppose that (Y, ry) is the associated d-Veronese solution of

YBE with corresponding Yang—Baxter algebra Ay = A(k,Y,ry). Let v, g : Ay — Ay
be the (n, d)-Veronese map (homomorphism of algebras) extending the assignment

Vi = Wi, y2 = Wa,..., YN B> WN.

Then the following conditions hold.
(1) The image of v, q is the d-Veronese subalgebra Ag) of Ax.
(2) The kernel & := ker(v, q) of the Veronese map is generated by the set of

(N ; 1) - ("‘;z_dl_l) linearly independent quadratic binomials:

RK) ={yij = yiyj — VieVjo | 1 £i,j < n, where g;; = wiw; — wjwj, € Rp}. (5.3)
In particular, the leading monomial of each y;; satisfies
LM(yij) = yiyj > YioYjo-

Proof. Part (1) follows from Lemma 5.2.
Part (2). We have to verify that the set R(&K) generates K.
By direct computation, one shows that for every y;; € R(&) one has

Vnd (Vi) (Y15  YN) = &ij (W1, ..., wy) € Rp;

in fact, v, 4 induces a 1-to-1 map R(K) — Rp. It follows that

N +1 2d —1
meol =1l = (V) ("), 54

Moreover, v, 4 (R(K)) = Rp, the set of relations of the d-Veronese A&d) given in (4.15),
so R(K) C K.

The Yang-Baxter algebra 4y is a quadratic algebra with N generators and (2’ )
defining quadratic relations which are linearly independent, so

dim(Ay), = N2 — (Z) - (N; 1).
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By the first isomorphism theorem (Ay /K), = (Ag))z = (sAyx )24, hence
dim(Ay), = dim(K), + dim(Ax)24.

We know that dim(Ay)og = [Myg| = ("J;Z_dl_]), hence

N +1 2d —1

) Cdim), 1 (" .
2 n—1

This together with (5.4) implies that
. N +1 n+2d-—1
dim(K)2 = - = [R(R)].
2 -1
The set R(K) is linearly independent, since v, 4 (R(K)) = Rp, and by Lemma 4.14
the set R is linearly independent. This together with the equality |R(K)| = dim(&K),

implies that the set R(K) is a basis of the graded component &,, so &, = kR(K). But
the ideal K is generated by homogeneous polynomials of degree 2, and therefore

R = (K2) = (R(R)). (5.5
We have proven that R(&K) is a minimal set of generators for the kernel K. |

Corollary 5.5. Let (X, r) be a solution of order n, let A = Al(k, X, r) be its Yang—Baxter
algebra, and let d > 2 be an integer. Then the d -Veronese subalgebra A@ is a left and a
right Noetherian domain.

Proof. The d-Veronese A@ is a subalgebra of 4 which is a domain (see Remark 3.5),
and therefore 4@ is a domain. By Theorem 5.4, A is a homomorphic image of the
Yang—Baxter algebra Ay = A(k, Y, ry), where (Y, ry) is the d-Veronese solution asso-
ciated with (X, r). The algebra Ay is Noetherian, since (Y, ry) is a finite solution of YBE
(see Remark 3.5), so A@ is aleft and a right Noetherian domain. [

Remark 5.6. In [21], we study the Yang—Baxter algebras 4 (K, X, r) of finite left nonde-
generate idempotent solutions (X, r). In contrast with the results of the present paper, [21,
Theorem 3.5], proves that every Yang—Baxter algebra 4 = A(k, X, r) of a finite left
nondegenerate idempotent solution is PBW. Moreover, in this case for each integer d, the
d-Veronese subalgebra +4(? is also PBW and can be identified with the YB algebra of
the d-Veronese solution (S;, rg); see [21, Theorems 6.2 and 6.8]. In this case, for every
integer d > 2, the Veronese map vy, 4 is injective, while in the involutive case it has a large
kernel.

6. Special cases

6.1. Veronese subalgebras of the Yang—Baxter algebra of a square-free solution

In this subsection, (X, r) is a finite square-free solution of YBE of order n, and d > 2 is
an integer. We keep the conventions and notation from the previous sections. We apply
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Remark 3.1 and fix an appropriate enumeration X = {xy, ..., x,} such that the Yang—
Baxter algebra A = A(k, X, r) is a binomial skew polynomial ring. More precisely, +4 is
a PBW algebra A = k(xq,...,x,)/(N4), where

Noa =Agji = xjx; —xpx |1 <i <j <nj} (6.1)

is such that for every pair i, j, 1 <i < j < n, the relation ¢;; = x;x; — xyx;jr € N 4 sat-
isfies j > i’,i’ < j’ and every term x;x;,1 <i < j < n occurs in some relation in R 4.
In particular,

LM((pji) =xjxi, 1<i<j=n. (6.2)

The set R 4 is a quadratic Grobner basis of the ideal 1 = (9 4) with respect to the
degree-lexicographic ordering < on (X). It follows from the shape of the elements of
the Grobner basis N 4 and (6.2) that the set &' = N (/) of normal monomials modulo
I = (M 4) coincides with the set 7 of ordered monomials (terms) in X :

N=T=T(X)={x7"x"e(X) | € No, i €{0,...,n}}. (6.3)

n

All definitions, notation, and results from Sections 4 and 5 are valid, but they can be reph-
rased in more explicit terms replacing the abstract sets N = N (I), Ny, and N, 4, respect-
ively, with the explicit set of ordered monomials T = 7 (X), 7y, and J4. In this case,
we consider the space k7~ endowed with multiplication defined by f g := Norg , (fg)
for every f, g € KT . Then there is an isomorphism of graded algebras

A = AK, X, 1) = (KT, ), 6.4)

and we identify the PBW algebra « with (K77, ¢). Similarly, the Yang—Baxter monoid
S(X, r) is identified with (77, ).
We order the elements of 7 lexicographically, so

Ta ={wr = ()9 <wy = (x1) oy <o+ <wy = (x0)9),
n+d-— 1)

J (6.5)

where N = (
The normalised d-Veronese solution (see Definition 4.10) is denoted by (7, p) =
(T4. pa). The d-Veronese subalgebra A(?) is a quadratic algebra (one)-generated by
w1, W2,...,WN.
Now [30, Proposition 4.3, Chapter 4] imply the following corollary.

Corollary 6.1. In notation as above, the d-Veronese A is a quadratic PBW algebra
with PBW generators the terms of length d, wy, wa, ..., wy, ordered lexicographically;
see (6.5).

For the class of finite square-free solutions (X, r), Theorem 4.13 and especially the
description of the set R; become more precise.
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Remark 6.2. If w; = x;, -+ x;,, w; = Xj, ---xj, € Ty, the product w; w; is the leading
monomial of an element g;; € R}, if and only if iz > j; and -p(w;, w;) > w;w;.

Corollary 6.3. Let (X, r) be a finite square-free solution of order n, let X = {x1,...,Xn}
be enumerated so that the algebra A = Ak, X, r) is a binomial skew polynomial ring,
let d > 2 be an integer, and N = ("+3_1). Let (T4, p) be the normalised d-Veronese
solution.

The d-Veronese subalgebra 4@ C 4 is a quadratic PBW algebra

AD = k(wy,..., wy)/(R).
with PBW generators T3 = {wi, ..., wy), and N? — (n+;12_(11—1) linearly independent
quadratic relations R. The relations R split into two disjoint subsets R = Rgz U Rp,
described below.

(1) The set R, contains (1;]) relations corresponding to the nontrivial p-orbits in
TaxTyg:
Ra ={fii =wjw; —wprw;r |1 <i,j <n, where p(wj, w;) = (w;ir, wj),
and w; > w; holds in (X)}. (6.6)

Each monomial w; w; such that (w;, w;) is in a nontrivial p-orbit occurs exactly
once in Rq. Every relation f;; has leading monomial LM( f;;) = w; w;.

(2) The set Ry contains (N;H) — ("+2d_1) relations

n—1
Rp = {8ij = wiw; —w;wj, |1 <i,j <n, where w; = x;, -+ Xi,,
wj = Xj -+ Xj, € Tg,ig > ji
and -p(w;, wj) > w;w;, Wi, Wj, € Tz
are such that Nor(w; w;j) = w;,wj, € T24}. 6.7)
In particular, LM(g;;) = w;wj > Wi, Wj,.
The relations R form a Gréobner basis of the ideal (R) of the free associative algebra

k{wy, ..., wp).

For a square-free solution (X, r) and (93, pg) as above, the d-Veronese solu-
tion (Y, ry), associated to (X, r), is defined in Definition-Notation 5.1. One has ¥ =
{¥1,y2,...,yN},andthemap ry : Y x Y — Y x Y is determined by

ry (v, yi) = iy yjr)  Aff p(w;, wi) = (wir,wyr), 1<i,j,i',j ' <n. (6.8)

By definition, (Y, ry) is isomorphic to the solution (7, pg). Its Yang—Baxter algebra
Ay = A(Kk, Y, ry) is needed to define the (1, d) Veronese homomorphism v, 4 : Ay —
Ay extending the assignment

V1 = Wi, y2 = Wa,..., YN B> WN.



Veronese subalgebras and Veronese morphisms for a class of Yang—Baxter algebras 257

Theorem 5.4 shows that the image of v, 4 is the d-Veronese subalgebra A@D and
determines a minimal set of generators of its kernel.

The finite square-free solutions (X, r) form an important subclass of the class of all
finite solutions; see, for example, [15]. Moreover, Theorem 3.8 shows that the Yang—
Baxter algebra A(k, X, r) of a finite solution (X, r) is a PBW algebra if and only if (X, r)
is square-free. So it is natural to ask “can we define an analogue of Veronese morphisms
between Yang—Baxter algebras of square-free solutions?” We shall prove that it is not
possible to restrict the definition of Veronese maps introduced for Yang—Baxter algebras
of finite solutions to the subclass of Yang—Baxter algebras of finite square-free solutions.
Indeed, if we assume that (X, r) is square-free, then the algebra Ay involved in the defini-
tion of the map vy, 4 is associated with the d-Veronese solution (Y, ry), which, in general,
is not square-free; see Corollary 6.5.

To prove the following result, we work with the monomial d-Veronese solution
(S4, rq) keeping in mind that it has special “hidden” properties induced by the braided
monoid (S, rg).

Theorem 6.4. Let d > 2 be an integer. Suppose (X, r) is a finite square-free solution of
order n > 2, (S, rys) is the associated braided monoid, and (S;,rg) is the monomial d -
Veronese solution induced by (S, rs); see Definition 4.5. Then (Sg,rg) is a square-free
solution if and only if (X, r) is a trivial solution.

Proof. Assume that (S;,ry) is a square-free solution. We shall prove that (X, r) is a trivial
solution.
Observe that if (Z, rz) is a solution, then (i) (Z, rz) is square-free if and only if

fz=7z forallze Z
and (ii) (Z, rz) is the trivial solution if and only if

Yx=x foralx,yeZ.

Let x,y € X, x # y and consider the monomial ¢ = x4~y € S;. Our assumption

that (S, rg) is square-free implies that “a = a holds in S;, and therefore in S. Now
Remark 2.11 implies the words a and “a (considered as elements of X?) belong to the
orbit @ = Op, (a) of a = x?~'y in X¢. We analyse the orbit @ = @(x¢~'y) to find that
it contains two types of elements:

d—1

u=C y)b, whereb = (xd_l)y e x4-1, (6.9)

and
v=xc, wherel <i<d—1landce X9, (6.10)

A reader who is familiar with the techniques and properties of square-free solutions such
as “cyclic conditions” and condition “Iri” may compute that b = (xd_l)y = (x¥)?"!and
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i

c = (xd_ B y)(x?)?71=1 but these details are not used in our proof. We use condition
ML2 (see (4.4)) to yield the following equality in S:

ta = Gy = ¢ @ T ) 20 e

The assumption “a = a implies that word w, considered as an element of X d, is in the
orbit O of a, and therefore two cases are possible.

Case 1. The following is an equality of words in X¢:
o = (DO () = ¢, e xd,

Then there is an equality of elements of X:

d-1

(edly)y - xdt (6.12)

Now we use condition ML1 (see (4.4)) to obtain

(xd*ly)x — (xd*l)(yx)

which together with (6.12) gives

(xdfl)(yx) — (xd*‘)y. (6.13)
The nondegeneracy implies that ¥ x = y. At the same time ¥y = y, since (X, r) is square-
free, and using the nondegeneracy again one gets x = y, a contradiction. It follows that
Case 1 is impossible, whenever x # y.

Case 2. The following is an equality of words in X¢:
_ v TN 21 . .
w:(xd 1yx)((xd ') x)---((xd ') y) = x'c, wherel <i<d—1,ce X%,

Then
d—
G = (6.14)

At the same time, the equality *x = x and condition ML1 imply XMy = x, which
together with (6.14) and ML1 (again) gives

Thus, by the nondegeneracy, ” x = x. We have shown that ”x = x forall x,y € X,y # x.
But (X, r) is square-free, so Yy = y for all y € X. It follows that ”x = x holds for all
x,y € X, and therefore (X, r) is the trivial solution. ]

By construction, the (abstract) d -Veronese solution (Y, ry) associated to (X, r) is iso-
morphic to the normalised d -Veronese solution (7, pg), and therefore it is isomorphic to
the solution (Sg, r4). Theorem 6.4 implies straightforwardly the following corollary.
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Corollary 6.5. Let d > 2 be an integer, suppose (X, r) is a square-free solution of finite
order. Then the d-Veronese solution (Y, ry) is square-free if and only if (X, r) is a trivial
solution.

Remark 6.6. It follows from Corollary 6.5 that the notion of Veronese morphisms intro-
duced for the class of Yang—Baxter algebras of finite solutions of YBE cannot be restricted
to the subclass of Yang—Baxter algebras associated to finite square-free solutions.

6.2. Involutive permutation solutions

Recall that a symmetric set (X, ) is an involutive permutation solution of Lyubashenko
(or shortly a permutation solution) if there exists a permutation f € Sym(X) such that
r(x,y) = (f(»), f~1(x)). In this case, we shall write (X, f,r); see [6] and [16, p. 691].

Proposition 6.7. Suppose (X, f,r) is an involutive permutation solution of finite order n
defined as r(x,y) = (f(y), f "1 (x)), where f is a permutation of X, and let 4 be the

associated Yang—Banxter algebra.

(1) For every integer d > 2, the monomial d-Veronese solution (Sq,rq) is an
involutive permutation solution.

(2) If the permutation f has order m, then for every integer d divisible by m the d-

Veronese subalgebra AY) of A is a quotient of the commutative polynomial ring
k[yi.y2.....yn], where N = ("+j_l).

Proof. (1) Let g > 2 be an integer. The condition ML1 in (4.4) implies that

“t=f9) and 1*=f7U00) = (fTHI0)

for all monomials @ € S; and all 7 € X. (6.15)

Moreover, since S is a graded braided monoid, the monomials a, b4, and a® have the same
length; therefore,

ap =’y = £9(1), 19={""= f79(t) forallae S,beSandallteX. (6.16)

It follows then from (4.4) ML2 that S acts on itself (on the left and on the right) as
automorphisms. In particular, for a, t1¢, -- -t € S;, one has

Utitz---12) = (1) 1) - Cta) = A0 [P (02) -+ [ (ta).
(titz---12)" = (1) (R - (a®) = [~ @) [~ (0) - ().
Therefore, (Sg, r4) is a permutation solution, (Sy, f4, rq), where the permutation

f1 € Sym(Sy) is expressed as fy(tatz -+~ tg) = f(t1) f4(t2) --- f¥(t7). One has
fil - 1q) = f~40) ) - f71a).

(6.17)
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(2) Assume now that d = km for some integer k > 1, then f¢ = idy. It will be enough
to prove that the monomial d-Veronese solution (Sy, rg) is the trivial solution. It follows
from (6.17) that if @ € S;, then

“(tyty---ty) = tity---tg, wheret; € X, 1 <i <n. (6.18)

This implies b = b for all a, b € S;. Similarly, a® =aforalla,b e S, . It follows
that (Sg, rg) is the trivial solution. But the associated d-Veronese solution (Y, ry) is iso-
morphic to (Sy, r4), hence (Y, ry) is also a trivial solution, and therefore its Yang—Baxter

algebra A(k, Y, ry) is the commutative polynomial ring K[y1, y2, ..., yn]. It follows
from Theorem 5.4 that the d-Veronese subalgebra 4@ is isomorphic to the quotient
k[y1,y2,...,yn]/(R), where K is the kernel of the Veronese map v, 4. |

Question 6.8. In notation as above. Suppose (X, f, r) is an involutive permutation solu-
tion of finite order n, where f is a permutation of X of order m, and let 4 be the associated
Yang-Baxter algebra. By Proposition 6.7 part (2), for every integer d divisible by m,
the d-Veronese subalgebra 4 of 4 is a quotient of the commutative polynomial ring

k[y1,y2,...,VN], where N = ("Jrj*l). Is it true that in this case A@ is a PBW algebra?

Example 7.2 gives an affirmative answer in a very particular case.

Remark 6.9. In [21, Section 5], we consider finite permutation idempotent solutions
(X, rr) and their Yang-Baxter algebras A = A(K, X, rr). It is proven that in this case
all Yang-Baxter algebras 4 = A(k, X, rr) are PBW, and any two such algebras are iso-
morphic. Moreover, for every integer d, the Veronese subalgebra #4@) is PBW, and there
is an isomorphism 4@ ~ A,

7. Examples

We shall present two examples which illustrate the results of the paper. We use the notation
of the previous sections.

Example 7.1. Let n = 3, consider the solution (X, 7), where

X = {x1,x2,x3},

r(xs, x1) = (x2,x3), r(xz, x3) = (x3, x1),
r(x3, x2) = (x1,x3), r(x1,x3) = (x3,x2),
r(xz, x1) = (x1,x2), r(xy, x2) = (x2, x1),
r(xi, xi) = (xi, Xi), 1<i=<3

Then

AK, X, r) =Kk(X)/(N4), where Ny = {x3x2 — X1X3, X3X] — X2X3, X2X] — X1X2}.
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The algebra A = A(k, X, r) is a PBW algebra with PBW generators X = {x1, x2, x3}; in
fact, it is a binomial skew polynomial algebra.

We first give an explicit presentation of the 2-Veronese +4?) in terms of generators and
quadratic relations. In this case, N = (*}') = 6 and the 2-Veronese subalgebra 4 is
generated by 7>, the terms of length 2 in k{x1, x5, x3). These are all normal (modulo N 4)

monomials of length 2 ordered lexicographically:
T2 ={wy = x1x1, w2 = X1X2, W3 = X1 X3, W4 = X2X2, W5 = X2X3, We = X3x3}. (7.1)

Determine the normalised 2-Veronese solution (73, p2) = (72, p), where p(a, b) =
(Nor(?b), Nor(a®)). An explicit description of p is given below:

(x3x3, w;) <— (W;, X3X3), 1<i<S5,

(v2x3, X2x3) <—> (x1X3, X1X3), (v2x3, X2x2) <—> (x1X1, X2X3),

(x2x3, X1x2) <—> (x1X2, X2X3), (x2x3, x1x1) <—> (x2X2, X2X3), (72)
(x2x2, x1x3) <—> (x1X3, X1X1), (x2x2, X1x2) <—> (X1X2, X2X2),
(x2x2,x1x1) <—> (X1X1,X2X2), (x1x3, X2Xx2) <—> (X1X1, X1X3),

(x1x3, X1x2) <—> (x1X2, X1X3), (x1x2,x1x1) <—> (x1X1, X1X2).

The fixed points ¥ = ¥ (73, p,) are the monomials ab determined by the one-element
orbits of p, where one has (a, b) = (?b, a?). There are exactly six fixed points:

F ={wiw; = (x1x1)(x1x1) € T3, wawy = (x2x2)(x2X2) € Tg,
weWs = (¥3X3)(X3X3) € Tg, wawz = (X1x2)(x1X2) ¢ T3,

waws = (X1x3)(x2x3) € T4, wsw3 = (X2x3)(x1x3) & T4}. (7.3)

There are exactly 15 = (1;/ ) nontrivial p-orbits in 3 x T, determined by (7.2). These
orbits imply the following equalities in A®:

(x3x3)w; = w;(x3x3) € Tg, 1 <i<s5,

(x2x3)(x2x3) = (X1x3)(x1X3) ¢ T4, (x2x3)(x2x2) = (x1X1)(x2X3) € Ta,
(x2x3)(x1x2) = (x1x2)(x2x3) € Ta,  (x2x3)(x1X1) = (x2X2,x2x3) € T3, 7.4)
(x2x2)(x1x3) = (x1x3)(x1x1) € Ta,  (x2x2)(X1X2) = (X1x2)(*x2x2) € T4,
(x2x2)(x1x1) = (x1x1)(x2x2) € Ta,  (x1x3)(x2x2) = (x1x1)(x1x3) € Ta,
(x1x3)(x1x2) = (x1x2)(x1x3) € T2, (x1x2)(x1x1) = (X1X1)(X1x2) € T30

-~

Note that for every pair (w;, w;) € 75 x 75 \ ¥, the monomial w;w; occurs exactly once
in (7.4).
Six additional quadratic relations of A®@ arise from (7.3) and (7.4), and the obvious

equality @ = Nor(a) € T, which hold in A® for every a € X?2. In this case, we simply
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pick up all monomials which occur in (7.3) or (7.4) but are not in 74 and equalise each of
them with its normal form. This way we get the six relations which determine Rj:

(x1x3)(x2x3) = (x1x1)(x3X3),
(x1x3)(x1x3) = (X1x2)(x3X3), (7.5)

(X]Xz)(xlx_v,) = (X]X])(X2X3).

(x1x2)(x1x2) = (x1x1)(X2X2),
(x2x3)(x1x3) = (x2x2)(x3x3),

(x2x2)(x1x3) = (x1x2)(x2X3),

The 2-Veronese algebra 43 has 6 generators wy, ..., we written explicitly in (7.1),
and a set of 21 relations presented as a disjoint union R = R, U R} described below.

(1) The relations R, are:

WeW; — W; We, Wi We € T4,
WsWs — w3ws, wiws ¢ Ta,

WsWp — WaWs, WaWs € Ty,

1<i <5,
-
W5Wq4 — W1 W5, W1W5 € Jyg,

WsW1 — WaWs, WaWs € Tg,

(1.6)
waws — wawy, waw; ¢ Ta, WaWp — WaWs, WrWs € Ty,
WaW1 — W1 W4, W W4 € Tg, W3W4 — WW3, W w3 € Tg,
W3Wz — Wow3, Waws ¢ Tg, Wawi — WiW2, W Wa € Tg.
(2) The relations Ry are:
WaWy — WiWs,  W3Ws — WiWe,  WsW3 — Wals, a7

W3W3 — Wa2We, w3w; — W2 Ws, W2W3 — W1 Ws.

The elements of R correspond to the generators of the kernel of the Veronese map.
(1a) The relations R, are:

WeW; — W; We, W; We € T4, 1 <i =<5,

WsWs — WaWse, Warle € T4, WsW4 — W W5, W1Ws € Ty,

WsWp — WaWs, WaWs € Ty, WsW1 — WaWs, WaWs € Ty,

(7.8)

W4W3 — WaWs, WaWs € Ty, W4W2 — Wawy, € T,

WaW1 — W1 Ws, W1W4 € Ty, W3wWs — WiW3, Wiw3 € Ty,

W3W2 — Wi Ws, WiWs € Tg, W1 = WiW2, Wiwa € Tg.

Thus the 2-Veronese #A® of the algebra 4 is a quadratic algebra presented as

AP ~ K(wy, ..., we)/(R) ~ K(wy, ..., we)/(R1),

where R = R, U Rp and R1 = Ra1 U Rp.

The 2-Veronese subalgebra A® in our example is a PBW algebra.

The associated 2-Veronese solution of YBE (Y, ry) can be found straightforwardly:
onehas ¥ = {y1.y2.y3.y4.ys. e} and ry (yi. yj) = (k. y1) iff pa(wi, wj) = (wg, wy),
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1 <1, j,k,I <6. The solution (Y, ry) is nondegenerate and involutive, but it is not a
square-free solution. The corresponding Yang—Baxter algebra is

Ay = (K, Y, ry) =K(y1,y2, Y3, Y4, Y5, ¥6)/ (N),

where N is the set of quadratic relations given below:

Y6Yi — ViYe, l<i=<5, Y5Ys5 — Y33,
V5Y4 — V1)s, Y5Y1— Ya)s, V5Y2 = )2)5,
Yays — Y3y, Yay2 — y2Y4, Yayi1 — Jyi1)a,
y3ya — yi1ys3, y3y2 — y2ys3, Ya2y1r = yi)a.

(7.9)

Note that N is not a Grobner basis of the ideal (N) (with respect to the degree-
lexicographic ordering on (Y')). For example, the overlap ysy4y3 implies the new relation
Y5Y3Y1 — Y1Y5y3 which is in the ideal (!t) but cannot be reduced using (7.9). There are
more such overlaps.
The Veronese map
Upp Ay — Ay

is the algebra homomorphism extending the assignment y; > wy, y2 = W3, ..., Y6 = We.
Its image is the 2-Veronese, #4?. The kernel K of the map VUp,2 18 generated by the set iy
of polynomials given below:

Y2Y2 —Vi1)a, Y3)Ys — Vi1)es Y5Y3 — Yale,
Y3y3 — Y2Ye., Yays — y2)ys, Y2y3 — yi1)s.

(7.10)

Denote by J the two-sided ideal J = (9t U %i1) of kK(Y'). A direct computation shows
that the set t U R is a (quadratic) Grobner basis of J. The 2-Veronese subalgebra A®
of A = Ay is isomorphic to the quotient k(Y')/J, hence it is a PBW algebra.

The following example is an illustration of Proposition 6.7.

Example 7.2. Let n = 2, consider the solution (X, ), where

X = {Xl,X2},
r(x2,x2) = (x1,X1), r(x1,x1) = (x2,x2),
r(xz,x1) = (x2,x1), r(x1,x2) = (x1,x2).

This is a permutation solution (X, f,r), where f is the transposition f = (x1x3). One
has
Ak, X,r) =k(x1,x2)/(Ry), where Ry = {x2x2 — x1x1}.

The set 9N 4 is not a Grobner basis of I = (M 4) with respect to the deg-lex ordering
induced by any of the choices x; < x,, or x5 < x;. We keep the convention x; < x, and
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apply standard computation to find that the reduced Grobner basis of I (with respect to
the deg-lex ordering) is
G = {f1 = x2x2 — x1X1, f2 = X2X1X1 — X1X1X2}.
Then
N=N) = {x¥(x2x1)Px5 | e € {0, 1} and &, B € No}.
It is easy to find an explicit presentation of the 2-Veronese #4 in terms of
one-generators and quadratic relations. The normal monomials of length 2

Mo = {w1 = x1X1, W2 = X1X2, W3 = X2X1}

form a set of one-generators of A?.
One has

Ny = {xT, ¥} x2, XTX2X1, X1X2X1 X2, X2X1X2X1}.
Next we determine the normalised d-Veronese solution (N, p), where p(a, b) =
(Nor(?b), Nor(a?)). One has
%) e = X, x](cxixj) = Xg foralli, j, k € {1,2}
Yiw; = wy, w}”" = w; Vi, j e{1,2,3}.

Thus (N2, p) is the trivial solution on the set N;:
p(wj, w;) = (w;,wy), 1=, j <3,
In this case, the three fixed points are normal monomials:

F = {w1w1 = (xlxl)(xlxl) (S e/V4, WorWyp = (X]Xz)(xl)Cz) S N4,
w3ws3 = (xel)()szl) € N4}
The set of relations is R = R, U Rp. Here R, consists of the relations:
832 = W3wy — wows, equivalently, (x2x1)(x1x2) = (X1Xx2)(X2Xx1) & N4,

g31 = W3w; — wiws, equivalently, ()C2X1)(X1xl) = (xlxl)(xle) € e/V4, (711)

g21 = waw; — wiwy, equivalently, (x1x2)(x1x1) = (x1x1)(x1X2) € Ny.

The unique word not in normal form which participates in R, is wow3s = (x1x2)(x2x1) ¢
M, the second term of the relation g3, in (7.11). By finding its normal form, we shall
determine the unique relation in . One has

Nor(waw3) = Nor(x1x2)(x2x1) = Nor(xy(x2x2)X1) = X1x1X1X1 = wiwy,

hence
Rp = {g23 = waw3 — wiwy}. (7.12)
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It follows that

AP ~ k(wy, wa, w3)/(R), where R = {w3w; — waws, w3w; — wiws,

WaWp — Wi, Waw3 — WiWi ).
In our notation, the second set R consisting of equivalent relation is:
Ri = {wswz — wiwi, W3W — WW3, WaWw — W1W2, WaW3 — WiW1},

and A® ~ k(w;, wy, w3)/(Ry). It is easy to see that the set R is a (minimal) Grébner
basis of the two-sided ideal I = (R) of k(wi, wows), with respect to the degree-
lexicographic order on (w1, w,, w3), while the set R is the reduced Grobner basis of the
ideal . Thus the 2-Veronese subalgebra 4?) in this example is a PBW algebra. As expec-
ted, the 2-Veronese A® is a commutative algebra isomorphic to k[wy, wa, w3]/(waw3 —
wlwl).

The associated 2-Veronese solution of YBE (Y, ry) is the trivial solution on the
set Y = {y1,y2,y3}, ry (¥, »i) = (y;, y;) for all 1 <i, j < 3. The corresponding
Yang—Baxter algebra Ay is

Ay = (K, Y, ry) = K(y1, 2, ¥3)/(¥3y2 — y2Y3, ¥3¥1 — Y13, Y2V1 — Y1)2)
~ K[y1, y2, y3)]

Obviously, Ay is PBW. The Veronese map
Up2: QAY — AX

is the algebra homomorphism extending the assignment y; +— wy, Y2 > Wz, y3 > W3.
Its image is the d-Veronese 4, and its kernel & is generated by the polynomial

y2y3 — yiJ)i1.
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