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Twisted tensor products of field algebras

Ezio Vasselli

Abstract. Let A be a C*-algebra, h a Hilbert space, and Ch the CAR algebra over h. We construct
a twisted tensor product of A by Ch such that the two factors are not necessarily one in the relative
commutant of the other. The resulting C*-algebra may be regarded as a generalized CAR algebra
constructed over a suitable Hilbert A-bimodule. As an application, we exhibit a class of fixed-time
models where a free Dirac field (giving rise to the Ch factor) in general is not relatively local to a
free scalar field (which yields the A factor). In some of the models, gauge-invariant combinations
of the two (not relatively local) fields form a local observable net.

1. Introduction

In quantum field theory, a common way to construct a field system is to perform the tensor
product of Fock spaces and define for each factor the corresponding free field. This method
is used in both exactly solvable models and perturbative theory, as a preliminary step to
perform Wick or time-ordered products and get the corresponding Wightman or Green
functions. At the algebraic level, the typical construction is given by the spatial tensor
product F

:
D Ch ˝A, where Ch is the CAR algebra over a Hilbert space h (generalized

free Fermi field) and A is a CCR algebra (generalized free bosonic field).
The starting point of the present paper is the remark that we may regard F as the

C*-algebra generated by a Fermi field  intended in a broader sense, defined in terms
of creation and annihilation operators living in a fermionic Fock bimodule F�.h/. Here,
h
:
D h˝A is the free Hilbert bimodule carrying the trivial left action uniquely determined

by the relations wA D Aw, w 2 h, A 2A. Adopting this point of view, A appears as part
of the target space for the “non-commutative anticommutator function” of  .

This suggests a strategy to escape from tensor products and possibly produce interest-
ing models. The idea is that of considering Hilbert bimodules carrying a non-trivial left
action, with the aim of constructing field systems where the bosonic components do not
necessarily commute with the fermionic ones. This is what happens, for example, in QED,
where (in positive gauges) charged fields cannot be relatively local to the electromagnetic
field [12].

The aim of the present paper is to provide an algebraic machinery to construct field
C*-algebras having the above-mentioned property. We start by reviewing generic Hilbert
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bimodules, their Fock bimodules, and the corresponding GNS Hilbert spaces obtained by
applying states of A; see Section 2. On these spaces, there are well-defined annihilation
and creation operators, and the “zero particle space” is the GNS space of A instead of C
as in usual Fock space. Annihilation operators—while they perform the usual operation of
annihilating states defined by h—modify (without annihilating) states in the GNS space
of A. Thus, in the present paper, the term annihilation operator should be intended in this
broader sense.

To define fermionic spaces, one should introduce a permutation symmetry on Fock
bimodules. Since in general this is an impossible task, we focus on free Hilbert bimod-
ules for which it is possible to define a permutation symmetry in the obvious way; see
Section 3. This does not necessarily lead to the trivial construction F D Ch ˝A because
the crucial property to avoid it is non-triviality of the left A-action. Having defined our
fermionic Fock space, we face the fact that antisymmetry

f ˝� g D �g ˝� f; f; g 2 h; (1.1)

does not hold in full generality. The reason relies on commutation properties of A: namely,
there are suitable support C*-subalgebras A.f /;A.g/ of A, and a sufficient condition
for (1.1) holding true is that

ŒA.f /;A.g/� D 0

together with the fact that the left A.g/-action on f is trivial and analogously for A.f /

on g; see Remark 3.5. In this case, we say that f and g are mutually free.
Another consequence of the fact that we are dealing with Hilbert modules rather than

Hilbert spaces is given by the non-stability of the fermionic Fock module both under the
action of creation operators and the left A-action. Both these problems are solved by
considering a particular class of left A-actions that we call G -twists, where G is a group
of unitary generators of A (Lemma 3.6). G -twists are given by group morphisms u W G !
U.h/ that are used to perturb the trivial left A-action; see Definition 3.2. We exhibit two
classes of C*-algebras that naturally admit G -twists: the first is given by Weyl algebras
(giving rise to generalized free bosonic fields) (Example 3.3); the second, Example 3.4, is
the universal C*-algebra of the electromagnetic field [8].

Finally, in Section 4, we construct our generalized CAR algebra having as input the
free module h and the twist u; see Theorem 4.3. Adding as a third ingredient a suitable
conjugation � acting on h, we obtain what we call a Dirac triple over A, from which we
construct a Dirac field (4.11) and the corresponding field algebra (4.13). It is this field
algebra that defines the desired twisted tensor product of A by Ch.

As an application, we exhibit a family of models in a fixed-time formulation, depend-
ing on a tempered distribution � 2 � 0.R3/ that defines the twist. In our models, a free
Dirac field (generating the C*-algebra Ch) and a free scalar field (generating a Weyl C*-
algebra W ) give rise to the following situations: (1) Ch and W do not commute but are
relatively local (when � is the Dirac delta); (2) Ch and W are not relatively local (for
� having support with non-empty interior); (3) W is not relatively local to Ch but is in
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the commutant of the fixed-point algebra of Ch under the gauge action (when � is the
Lebesgue measure).

A discussion of our results, work in progress, and perspectives are given in the final
section 5.

In the following points, we fix some conventions:

• Throughout the present paper, A will denote a C*-algebra with unit 1 and �.A/ its
state space. Unless otherwise stated, Hilbert space representations and *-morphisms
are assumed to be non-degenerate (hence unital).

• We reserve Euler Fraktur fonts for Hilbert modules, related objects (h, B.h/, F.h/,
and so on), and objects defined starting from Hilbert modules (for example, the Hilbert
spaces h! for ! 2 �.A/). Instead, unless otherwise stated, the calligraphic font is used
for Hilbert spaces (H ) and C*-algebras (A, B.H /, . . .). As an exception to this rule,
we adopt a lowercase bold font for “one-particle Hilbert spaces”, which therefore are
denoted by h.

• Free Hilbert modules usually appear in literature with the notation h D h˝A, where
h is a Hilbert space. To use the symbol ˝ without ambiguities, in the sequel up to
rare exceptions, we will write h˝A � hA and v ˝ A � vA for v 2 h and A 2 A.
The symbol˝ will be used for the internal tensor product of Hilbert bimodules or the
Hilbert space tensor product.

• For generic elements of h D hA, we will often use the notation of implicit sum for
repeated indices,

P
i viAi � viAi . The sum may be infinite, and in this case, our

notation should be understood in terms of norm convergence in h.

2. Fock spaces over C*-algebras

In the present section, we collect some standard facts on Hilbert bimodules that we present
in a form suitable for our purposes. References are Blackadar’s book [5] and the papers
[2, 15, 16, 18] for GNS-representations and Fock bimodules, respectively. For the use
of Hilbert bimodules in mathematical physics, see [1, 3, 4, 10, 11, 17, 18] and the recent
review [2].

Hilbert modules. A (right Hilbert) A-module is a complex vector space h carrying a
right A-module action and endowed with a A-valued, strictly positive, and right A-linear
scalar product h�; �i, which induces the norm kh�; �ik under which h is a Banach space. It is
worth noting that then

Ahf; gi D .hg; f iA�/� D .hg; fA�i/� D hfA�; gi

for all f; g 2 h, A 2 A. An A-module h defines the C*-algebra B.h/ of linear operators
T W h! h such that there is T � 2 B.h/ with hT �f; gi D hf; Tgi, f; g 2 h. This implies
that T 2 B.h/ is right A-linear, i.e., T .fA/ D .Tf /A, and bounded. The C*-algebra of
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compact operators is given by the closed ideal K.h/ � B.h/ generated by the elementary
operators jf ihgjh :

D f hg; hi, h 2 h. We say that h is a Hilbert A-bimodule whenever
there is a *-morphism � W A! B.h/, called the left action. (Hilbert bimodules are also
known as C*-correspondences [2].) In the present paper, we will assume that � is faithful
and non-degenerate, and following a standard notation, we will write

Af � �.A/f; 8f 2 h; A 2 A:

Let ! 2 �.A/ be a state. Then, hf; gi!
:
D !.hf; gi/ is a scalar product and defines the

Hilbert space h! whose elements f ! 2 h! are defined in correspondence with f 2 h. We
have the representation

�! W B.h/! B.h!/; T !f !
:
D .Tf /! : (2.1)

The argument to prove that (2.1) is well defined is standard, so we give just a sketch. Let
T 2 B.h/ and v 2 h such that v! D 0, i.e., hv; vi! D 0; then, kT k2 � T �T is a positive
element of B.h/ and this implies that hv; .kT k2 � T �T /vi 2 A is positive for any v 2 h.
As a consequence,

0 D kT k2hv; vi! � hv; T
�T vi! D hT v; T vi! � 0;

implying .T v/! D 0, and T ! is a well-defined linear operator on B.h!/ with norm �
kT k. Note that (2.1) restricts to the representation of the left A-action

�! W A! B.h!/; A!f !
:
D .Af /! : (2.2)

We call (2.1) and (2.2) the GNS-representations induced by !.

Example 2.1. We set h :
D A with right (left) A-module action given by right (left) mul-

tiplication and scalar product hf; gi :D f �g, f; g 2 h. If ! 2 �.A/, then it is readily seen
that (2.2) is the GNS representation in the usual sense. For future use, we write v!A to
indicate the GNS vector corresponding to A 2 A so that kv!A k

2 D !.A�A/.

Example 2.2. Let h :
D hA denote the free right Hilbert A-module, with right action

vB
:
Dw˝AB and scalar product hv;v0i :DA�A0hw;w0i, where v :Dw˝A, v0 :Dw0˝A0,

w;w0 2 h, A;A0; B 2 A. If � W A! B.h/ ' B.h/˝A is a *-morphism, then we have
the left A-action Af :

D �.A/f . Given ! 2 �.A/, the Hilbert space h! is isomorphic to
h˝ h! , where h! is the GNS space of !.

The Fock bimodule. Let n 2 N and h denote a Hilbert bimodule. We consider the tensor
product of complex vector spaces hˇn, which we endow with the scalar product

hv;wi
:
D hvn; hvn�1; h� � � hv1; w1i � � �iwn�1iwni; (2.3)

where v :D v1˝ � � � ˝ vn andw are in hˇn. Note that the term hvn�1; : : : ;wn�1i appearing
in the previous expression belongs to A, so it makes sense to consider its left action onwn,
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and analogously for the nested terms hvn�k ; : : : ;wn�ki, k D 2; : : : ; n� 1. The completion
obtained by (2.3) is denoted by hn and is called the internal n-fold tensor product: it is
endowed with the A-module actions

Av
:
D Av1 ˝ � � � ˝ vn; vA

:
D v1 ˝ � � � ˝ vnA;

and therefore, it forms a Hilbert A-bimodule. By construction, it turns out

� � � ˝ vk ˝ AvkC1 ˝ � � � D � � � ˝ vkA˝ vkC1 ˝ � � � ; 8A 2 A:

Remark 2.3. A delicate point of the tensor product of Hilbert bimodules is that an ele-
mentary tensor v 2 hˇn may have norm zero even when the all the factors v1; : : : ; vn do
not. For example, if A D C.X/ is commutative, h is the module of sections of a vector
bundleE!X , andAf D fA is defined by pointwise multiplication for allA 2C.X/ and
f 2 h, then hv; vi D hv1; v1ihv2; v2i D 0 for v :

D v1 ˝ v2 and supp.v1/\ supp.v2/D ;.

The direct sum of Hilbert A-bimodules h; h0 is defined in the obvious way and yields
the A-bimodule h˚ h0. Thus, we define the Fock A-bimodule

F.h/
:
D

1M
nD0

hn;

with h0
:
D A and h1

:
D h; any v 2 F.h/ is a sequence v D ¹vn 2 hnº. Let now f 2 h,

n � 1, and v :
D v1 ˝ � � � ˝ vn 2 hn. We set

hf jv
:
D hf; v1iv2 ˝ � � � ˝ vn;

obtaining a right A-linear operator hf j W hn ! hn�1. We define the annihilation operator

.a.f /v/n�1
:
D
p
n hf jvn; n � 1;

with domain Dom.a.f // :D F#.h/
:
D ¹v 2 F.h/ W 9

P
n nhv

n; vni 2 Aº. Next, we define
the creation operator ´

.a�.f /v/nC1
:
D
p
nC 1 f ˝ vn; n � 1;

.a�.f /v/1
:
D f v0; n D 0;

for v 2 Dom.a�.f // :D F#.h/. Note that v0 2A, so the expression f v0 2 h makes sense.
Moreover, if vn D 0 for all n� 1, then a.f /v D 0 so that AD h0 is in the kernel of a.f /.
We have

a.f /a�.g/ D .nC 1/hf; gi; a�.g/a.f / D ng ˝ hf j; f; g 2 h:

The above notation suggests that a�.f / is the adjoint of a.f /, and, actually, for elemen-
tary tensors v 2 hn, w 2 hn�1, we have

hv; a�.f /wi D
p
n hv; f ˝ wi

D
p
n hv2 ˝ � � � ˝ vn; hv1; f iwi

D
p
n hhf; v1iv2 ˝ � � � ˝ vn; wi

D ha.f /v; wi:
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Thus, a�.f / behaves as the adjoint of a.f / on the common domain F#.h/. Note that
a�.f / and a.f / are unbounded; thus, we should be careful when we use the term adjoint.
Yet, since we are interested in the fermionic case where it will be shown that the creation
and annihilation operators are bounded, we prefer to not discuss this point here.

Hilbert spaces in Hilbert modules. A Hilbert space in h is given by a closed vector
subspace h � h such that hw;w0i 2 C1, 8w;w0 2 h. The proof of the following result is
trivial; therefore, it is omitted.

Lemma 2.4. Let h � h be a Hilbert space. Then, there is an injective linear mapping
F .h/! F.h/ preserving the scalar product, where F .h/ is the Fock space in the usual
sense.

GNS-Hilbert spaces of the Fock bimodule. Let now ! 2 �.A/ and hn;! denote the
Hilbert space obtained by completion of hn under the scalar product h�; �i! . Moreover,
let F!.h/ denote the Hilbert space obtained by the analogous completion of F.h/. Basic
properties of this Hilbert space are resumed in the following result.

Proposition 2.5. Let h be a Hilbert A-bimodule and ! 2 �.A/. With the above notation,
there is a decomposition

F!.h/ '

1M
nD0

hn;! : (2.4)

The component h0;! is the usual GNS Hilbert space of !, and there is a representation

y�! W A! B.F!.h//; y�! D
M
n

�n;! ; (2.5)

where each �n;! is defined as in (2.2) and

�0;! W A! B.h0;!/

is the usual GNS representation. Given a Hilbert space h � h, the closed vector subspace
of F!.h/ spanned by elements of the type .wA/! , w 2 hn, A 2 A, n 2 N, is a Hilbert
space isomorphic to F .h/˝ h0;! , where F .h/ is the Fock space in the usual sense so
that there is an embedding

� W F .h/˝ h0;! ! F!.h/; �.w ˝ v!A /
:
D .wA/! : (2.6)

Proof. The direct sum decomposition (2.4) is obvious. About h0;! , by definition, it is
given by the completion of h0 D A under the scalar product !.A�A0/, A; A0 2 A, so it
is the GNS-space of !. The decomposition (2.5) trivially follows by the previous points,
as well as the fact that �0;! is the GNS representation of !. Finally, the embedding (2.6)
follows by the fact that, given elementary tensors w;w0 2 hn, A;A0 2 A,

hwA;w0A0i D A�
Y
k

hwk ; w
0
kiA

0;
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having used the fact that

hwn; hwn�1; h� � � hw1; w
0
1i � � �iw

0
n�1iw

0
ni D

Y
k

hwk ; w
0
ki:

(Recall that hwk ; w0ki 2 C for all k).

Remark 2.6 (Non-Fock nature of F!.h/). We emphasize that in general hn;! is not the
n-fold tensor product .h!/˝n in the sense of Hilbert spaces, and as a consequence, F!.h/
is not the Fock space of h! . This is readily seen by comparing on elementary tensors
v;w 2 hn the scalar product obtained by (2.3),

hv! ; w!i
:
D hvn; hvn�1; h� � � hv1; w1i � � �iwn�1iwni!

with the scalar product of .h!/˝n,

hv! ; w!i0
:
D

Y
k

hvk ; wki! ;

the latter corresponding to the Fock space of h! .

Remark 2.7. Let h � h be a Hilbert space. Then, the embedding of F .h/ into F.h/

(Lemma 2.4) factorizes through the isometric mapping

F .h/ ' F .h/˝�! F!.h/; w ˝� 7! w! ;

where � 2 h0;! is the GNS-vector (“vacuum”) obtained by (2.6) for A � 1. Thus, F .h/

embeds in any GNS space F!.h/.

Creation and annihilation operators in F!.h/. Let f 2 h and n 2 N. Then, the map-
ping w 7! f ˝ w defines a right A-linear operator T .f / W hn ! hnC1, and since

hT .f /w; vi D hf ˝ w; vi D hw; hf; v1i.v2 ˝ � � � ˝ vn/i D hw; hf jvi;

we find that T .f / has adjoint T .f /� D hf j and, as a consequence, is bounded [5, Prop.
13.2.2]. (This also implies that hf j is bounded and adjointable.) Therefore, the argument
used to construct the representation (2.2) allows to define the linear operators

T .f /! W hn;! ! hnC1;! ; hf j! W hnC1;! ! hn;! :

Rescaling these operators by the
p
n factors in dependence of the order of the tensor

powers, we obtain the creation and annihilation operators

.a!.f /v!/n�1
:
D
p
nhf j!v! D

p
n.hf jv/! ;´

.a�;!.f /v!/nC1
:
D
p
nC 1.f ˝ vn/! ; n � 1;

.a�;!.f /v/1
:
D .f v0/! ; n D 0;
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where v! D ¹vn;!º is defined for v 2 F#.h/. Clearly, a�;!.f / is (contained in) the adjoint
of a!.f / in the sense of Hilbert spaces:

hw!;n�1; .a!.f /v!/n�1i! D
p
nhwn�1; hf; v1i.v2 ˝ � � � ˝ vn/i!

D
p
nhf ˝ wn�1; v1 ˝ � � � ˝ vni!

D h.a�;!.f /w!/n; v!i! :

Note that since a�.f / may have non-trivial kernel (Remark 2.3), the same is true for
a�;!.f /.

3. Twisted module actions and permutation symmetry

In the present section, we study the permutation symmetry on tensor powers of Hilbert
bimodules or, to be honest, the factors that in general prevent the realization of this prop-
erty. These factors are easily identified and are non-commutativity of A and the fact that in
general Af ¤ fA, A 2A, f 2 h. Anyway, even with the above limitations, we will give a
version of the fermionic Fock space for free Hilbert bimodules and define the correspond-
ing restrictions of the creation and annihilation operators. The tool used to perform these
constructions is the one of twist, namely, a “perturbation” of the trivial left A-module
action defined using a group of unitary generators of A. We remark that thanks to the
Kasparov stabilization theorem [5] the choice of considering only free bimodules is not a
severe requirement.

Let us now consider an elementary tensor vD v1˝ � � � ˝ vn 2 hn. Given a permutation
% 2 P .n/, we would like to define the operator

U%v
:
D v%.1/ ˝ � � � ˝ v%.n/: (3.1)

It is obvious that the above operator is well defined on the algebraic elementary tensors
v1 ˇ � � � ˇ vn; thus, the question is what happens when one applies the norm induced
by A. Here, we immediately encounter a problem, illustrated by the following example.
Consider a Hilbert bimodule h of the type Example 2.1 with h D A D O2, the Cuntz
algebra generated by mutually orthogonal isometries  1;  2; we take v1

:
D  1, v2

:
D  �2

and evaluate the scalar products

hv1 ˝ v2; v1 ˝ v2i D hv2; hv1; v1iv2i D  2 
�
1 1 

�
2 D  2 

�
2 ;

hv2 ˝ v1; v2 ˝ v1i D hv1; hv2; v2iv1i D  
�
1 2 

�
2 1 D 0:

This example shows that the above operators U% in general are ill-defined because they
map zero norm algebraic elementary tensors into tensors with norm ¤ 0. This also spoils
the preservation of compositions of permutations in (3.1). For example, given the flip
%.1/ D 2, %.2/ D 1, in the situation of the previous example, we find

kU%.v2 ˝ v1/k D kv1 ˝ v2k ¤ 0; U%U%.v1 ˝ v2/ D 0; U%%.v1 ˝ v2/ D v1 ˝ v2:
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Free modules. In the language adopted in the present paper, a Hilbert bimodule h is free
if, and only if, there is a Hilbert space h � h such that

h D hA
:
D closedspan¹wA W w 2 h; A 2 Aº: (3.2)

Lemma 3.1. Let h be a free Hilbert bimodule. Then, there is an isomorphism of right
Hilbert modules F.h/ ' F .h/A and, given a state ! 2 �.A/, there is an isomorphism
of Hilbert spaces F!.h/ ' F .h/˝ h0;! , where h0;! is the usual GNS Hilbert space. The
left A-module action � defines by evaluation the representation

�! W A! B.F .h/˝ h0;!/:

Proof. Let n 2N and v D v1˝ � � � ˝ vn 2 hn; then, by (3.2), we may write vi D wkAkIi ,
where ¹wkº is an orthonormal basis of h, AkIi

:
D hwk ; vi i 2A, and the (possibly infinite)

sum on the repeated index k is performed. Using the above decomposition, it is easily seen
that v 2 hnA and we conclude that hn � hnA. Since the opposite inclusion is obvious,
we have hn D hnA, and this proves that hn ' hnA implying F.h/ ' F .h/A. Thus,
F!.h/ ' F .h/˝ h0;! by Proposition 2.5.

We will see in the following sections that in general �!.A/ is not in the commutant of
B.F .h// in B.F .h/˝ h0;!/; moreover, operators of the type �!.A/,A2A, mix vectors
of F .h/ and h0;! in the sense that, given the GNS-vector � :

D v!1 2 h0;! , typically we
will find �!.A/.v˝�/D

P
k vk ˝ v

0
k

with vk ¤ v and v0
k
¤�. In contrast, let us define

the left A-module action:

A.wB/
:
D wAB; w 2 h; A; B 2 A: (3.3)

(In standard notation, A.w ˝ B/ :D w ˝ AB .) We call (3.3) the trivial left action. At
the level of Fock space, it does not induce a mixing because �.A/ D 1˝ A, and clearly,
�!.A/ and B.F .h// commute for any ! 2 �.A/.

Twists and left actions. The following notion concerns a class of left actions well be-
haved with respect to the permutation symmetry, obtained by twisting the trivial one by
means of a group action.

Definition 3.2. Let G � UA be a group generating A as C*-algebra and h D hA a free
bimodule. Then, the left A-action � is said to be G -twisted whenever there is a group
morphism u W G ! U.h/, which we call the G -twist, such that

�.
/w � 
w D .u
w/
; 8
 2 G ; w 2 h: (3.4)

We say that the G -twist is trivial whenever u is the trivial representation.

For reader’s convenience, we check the consistence of the previous definition by ver-
ifying that the r.h.s. of (3.4) defines an adjointable (and as a consequence A-linear and
bounded) operator. We write wA;w0A0 2 h for w;w0 2 h, A;A0 2 A and compute

hwA; 
w0A0i D A�hw; u
w
0
i
A0 D .
�A/�hu�
w;w

0
iA0 D h
�wA;w0A0i:
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(Note that hw; u
w0i 2 C.) Thus, (3.4) has adjoint 
� as expected. We remark that since
G generates A the left action � is determined by u. Despite that, umay have a kernel even
when � does not (as will be evident in the following example, where A can be simple).
Finally, we note that in the previous definition we did not assume strong continuity of
u, so in general, it is not a unitary representation; therefore, we say that u is a unitary
morphism.

Example 3.3 (Weyl algebras). Let � be a real vector space with a symplectic form �

and W denote the associated Weyl C*-algebra generated by unitary symbols Ws , s 2 � .
Let G � UW denote the group generated by Wse1=2i� for s 2 � and � 2 R. The Weyl
relations imply that an Abelian quotient of G is given by � as an additive group. Thus,
any unitary morphism uab W � ! U.h/ lifts to a morphism u W G ! U.h/ such that
u.Ws/u.Ws0/ D u.WsCs0/

1. We then consider the free Hilbert module h
:
D hW and set

W �
s .wB/

:
D .u.Ws/w/WsB , s 2 � , w 2 h, B 2 W , obtaining unitary operators W �

s 2

B.h/. Since

W �
s W

�
s0 wB D .u.Ws/u.Ws0/w/WsWs0B

D e1=2i�.s;s
0/.u.WsCs0/w/WsCs0B

D e1=2i�.s;s
0/W �

sCs0wB;

we have that W �
s fulfill the Weyl relations, so they define a *-morphism � W W ! B.h/

that by construction is a left W -action twisted by u.

Example 3.4 (The universal C*-algebra of the electromagnetic field). Let k 2 N and
Dk.R

4/ denote the vector space of smooth, compactly supported k-forms on R4 (with
Minkowski metric). Let C1.R4/�D1.R4/ be the subspace of 1-forms gD.g�/2D1.R4/
such that ıg :

D @�g
� D 0. Then, ıf :

D �2@�f
�� defines a 1-form ıf 2 C1.R4/ for any

f D .f ��/ 2 D2.R4/. With this notation, we define the C*-algebra A generated by the
group G of unitary symbols V.g/, g 2 C1.R4/, with relations

V.a1g/V.a2g/ D V..a1 C a2/g/; V .g/� D V.�g/; V .0/ D 1; (3.5)

V.ıf1/V .ıf2/ D V.ıf1 C ıf2/; suppf1 ? suppf2; (3.6)

ŒV .g1/; V .g2/�� 2 A \A0; suppg1 ? suppg2; (3.7)

where a1; a2 2 R. In the above expressions, we used the symbol ? to indicate spacelike
separation, whilst ŒU;V ��

:
D UV U �V � is the group commutator and A\A0 is the center

of A. Any Wightman field F.f /, f 2 D2.R4/, fulfilling the Maxwell equations, defines
a representation � of A such that �.V.ıf // D eiF .f / [8]. Note that since C1.R4/, as
an additive group, is a quotient of G under the map V.g/ 7! g, any unitary morphism
of C1.R4/ induces a unitary morphism of G . Let now u W C1.R4/ ! U.h/ be a uni-
tary morphism; we set h :

D hA and define V �.g/wA :
D .ugw/V.g/A, w 2 h, A 2 A.

1As a matter of fact, such unitary morphisms can be easily obtained, for example, by exponentials of
linear functionals � W � ! R.
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A straightforward check shows that the operators V �.g/ are in B.h/ and fulfil (3.5)–(3.7):
for example, by (3.6), we have

V �.ıf1/V
�.ıf2/wA D .uıf1uıf2w/V.ıf1/V .ıf2/A

D .uıf1Cıf2w/V.ıf1 C ıf2/A

D V �.ıf1 C ıf2/wA:

Thus, we have the left action � WA!B.h/, �.V.g//� V �.g/, which by construction is
G -twisted.

Permutation symmetry. Lemma 3.1 allows to define a permutation symmetry in the
obvious way by extending the one defined on F .h/:

U%.wA/
:
D w%A; % 2 P .n/; w 2 hn; n 2 N;

where w% 2 hn is the vector transformed under the usual permutation symmetry in Fock
space. Of course, to apply the previous definition, we must express a tensor of the type
v1 ˝ � � � ˝ vn, v1; : : : ; vn 2 h, in terms of tensors of the type .w1 ˝ � � � ˝wn/A, w1; : : : ;
wn 2 h, A 2A. By definition, U% is unitary on F.h/ in the sense of right Hilbert modules;
thus, we get the spectral projection P�

:
D
L
n P

n
� 2 B.F.h//, P n�

:
D .nŠ/�1

P
% "%U%,

where "% is the sign of % 2 P .n/. We write F�.h/
:
D P�F.h/; it is obvious that F�.h/ is a

right A-module, and that it is free with F�.h/' F�.h/˝A, where F�.h/ is the ordinary
fermionic Fock space. We have the decomposition

F�.h/
:
D

M
n�0

hn� '
M
n�0

.hn�A/;

where hn�
:
D P n�h

n, hn�
:
D P n�hn. Of course, h0� D A and h1� D h ' hA.

Remark 3.5 (The Pauli principle). In spite of the simplicity of our definition, some care
is needed to handle anti-symmetric tensors. For example, if f; g 2 h, then it is not ensured
that

P�.f ˝ g/ D �P�.g ˝ f /;

unless f and g belong to h. In particular, the Pauli principle

P�.f ˝ f / D 0; f 2 h;

does not hold in general, and a priori its validity is ensured only for f 2 h. A more general
class of examples for which the Pauli principle holds is the following. Given f 2 h, we
define the support

A.f /
:
D C �¹hv; f i 2 A W v 2 hº � A:

The support has the property that if f D fhAh, where ¹fhº � h is an orthonormal set and
Ah 2 A, then Ah D hfh; f i 2 A.f / for all h 2 N. Given f; g 2 h, we write

f ‰ g
:
, fB 0 D B 0f; gB D Bg; ŒB;B 0� D 0
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for all B 2 A.f /, B 0 2 A.g/. In this case, we say that f and g are mutually free, and we
find

P�.f ˝ g/ D P�.fh ˝ Ahg/ D P�.fh ˝ g/Ah

D P�.fh ˝ gk/A
0
kAh D �P�.gk ˝ fh/A

0
kAh

D �P�.gk ˝ fh/AhA
0
k D �P�.gk ˝ f /A

0
k

D �P�.g ˝ f /

so that
P�.f ˝ g/ D �P�.g ˝ f /; f ‰ g:

We conclude that validity of the Pauli principle is related to commutation properties of
A (locality, when A is the C*-algebra of a Haag–Kastler net) and properties of the left
A-action, that is, the eventuality that it is trivial on the involved vectors of h and elements
of A. Note that for f 2 h we have A.f / D C so that f; g 2 h implies f ‰ g.

Fermionic creation and annihilation operators. To define and handle fermionic cre-
ation and annihilation operators, we make some remarks on elementary tensors, using the
attention needed in the case of Hilbert bimodules.

We start by noting that we may arrange order n permutations by considering for any
k D 1; : : : ; n the set of those permutations that bring the k-th object at first position. Thus,
for any elementary tensor v D wA 2 hn, w 2 hn, A 2 A, we may write

v�
:
D P n�v D

1

n

nX
kD1

.�1/k�1wk ˝ w
.k/
� A 2 hn�; (3.8)

w.k/�
:
D � � � ˝� Owk ˝� � � � D

1

.n � 1/Š

X
%2Pn�1;k

"%w%.1/ ˝ � � � ˝ w%.n/ 2 hn�1� ;

where the notation Owk indicates thatwk does not appear in the tensor and Pn�1;k is under-
stood as the permutation group of the set ¹1; : : : ; nº n ¹kº; the term .�1/k�1 in (3.8) is
the sign of the transposition bringing wk at first position. The above expression makes
manifest that in general F�.h/ is not stable under the left A-action because the terms
Bwk D

P
i wiBik , Bik

:
D hwi ; Bwki 2 A typically belong to h and induce a mixing

in the tensor product. The point is that in general Bwk does not belong to h; thus,
we must perform the operations of the proof of Lemma 3.1 to get a tensor of the form
Bv� D

P
i w
0
iA
0
i with w0i 2 hn. It is after this operation that we can apply the projection

P n� and get P n�Bv� D
P
i w
0
i;�Ai .

In the sequel, we will write hı � h for the vector space spanned by (finite linear
combinations of) vectors of the type w
 , w 2 h, 
 2 G . By construction, hı is dense
in h.

We now establish some properties of anti-symmetric tensors in case of a G -twist. The
most important is that, in spite of the previous remark, the fermionic space is stable both
under the G -action and anti-symmetric tensor products by vectors in hı.
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Lemma 3.6 (Twists and permutation symmetry). Let h D hA be a free Hilbert bimodule
with G -twist

u W G ! U.h/:

Then, the following properties hold.

(1) For any 
 2 G �UA, it turns out 
hn� 2 h
n
� so that F�.h/ is stable under the left

module action by G .

(2) Let g D gi
i 2 hı with gi 2 h, 
i 2 G . Then, for any tensor w�A 2 hn� with

w�
:
D w1 ˝� � � � ˝� wn 2 hn�; A 2 A;

we have

P nC1� .g ˝ w�A/ D gi ˝� .u
iw1/˝� � � � ˝� .u
iwn/ � 
iA 2 hn�; (3.9)

so F�.h/ is stable under anti-symmetric tensor product by elements of hı.

(3) For g D gi
i 2 hı, it turns out

P nC1� .g ˝ w�A/ D
1

n

 
g ˝ w�A �

nX
kD1

.�1/k�1wk ˝ P
n
�.g ˝ w

.k/
� A/

!
:

(3.10)

Proof. Point 1. Let w�A 2 hn� with w D w1˝� � � � ˝� wn an elementary anti-symmetric
tensor. Then, for any permutation %, it turns out


w%.1/ ˝ � � � ˝ w%.n/ D .u
w%.1//˝ � � � ˝ .u
w%.n//
:

Thus, defining u�

:
D P n� � ˝

nu
 2 U.hn�/, we find that


w�A D .u
�

w�/
A

belongs to hn� as claimed.

Point 2. With the notation of the previous point, with g D gi
i , we have

g ˝ w�A D
X
%

"%gi ˝ 
iw%.1/ ˝ � � � ˝ w%.n/A

D

X
%

"%gi ˝ .u
iw%.1//˝ � � � ˝ .u
iw%.n//
iA

D gi ˝ .u
iw1/˝� � � � ˝� .u
iwn/ � 
iA:

Thus, using the fact that P n� is a right A-linear operator, we conclude that

P n�.g ˝ w�A/ D P
n
�.gi ˝ ..u
iw1/˝� � � � ˝� .u
iwn///
iA

D gi ˝� .u
iw1/˝� � � � ˝� .u
iwn/
iA:
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Point 3. We have, by applying (3.8) and (3.9),

P nC1� .g ˝ w�A/ D .gi ˝� u
�

i
w�/
iA

D 1=n

 
gi ˝ u

�

i
w� �

nX
kD1

.�1/k�1wk ˝ .gi ˝� u
�

i
w.k/� /

!

iA

D 1=n

 
gi
i ˝ w� �

nX
kD1

.�1/k�1wk ˝ .gi
i ˝� w
.k/
� /

!
A

D 1=n

 
g ˝ w� �

nX
kD1

.�1/k�1wk ˝ .g ˝� w
.k/
� /

!
A:

Now, by (3.8), given f 2 h, we have

hf jv� D
1

n

X
k

.˙1/k�1hf;wkiw
.k/
� A 2 hn�1I (3.11)

thus, in general, we cannot say that hf jv� 2 hn�1� . Yet, we have the following property.

Lemma 3.7. Assume that there is a G -twist on h and let f 2 hı. Then, hf jv� 2 hn�1� for
all v� D w�A 2 hn�, and F�.h/ is stable under the action of the operator hf j.

Proof. Starting from (3.11) and writing f D fi
i , fi 2 h, 
i 2 G , we find

hf jv� D 1=n
X
k

.˙1/k�1hfi ; wki

�
i w

.k/
� A

D 1=n
X
k

.˙1/k�1hfi ; wki.u
�

i
w1/˝� � � � ˝� .u

�

i
wn/


�
i A:

Since hfi ; wki 2 C, the last term belongs to hn�1� , as claimed.

The next computations will allow to evaluate the anti-commutation relations. By (3.10),
for f 2 h and g D gi
i 2 hı, we get

hf jP nC1� .g ˝ w�A/ D
1

n

 
hf; giw�A �

nX
kD1

.�1/k�1hf;wkiP
n
�.g ˝ w

.k/
� /A

!
(3.12)

and
P nC1� .g ˝ hf jw�A/ D

1

n

X
k

.�1/k�1P n�.g ˝ hf;wkiw
.k/
� /A: (3.13)

For the last equality, we note that due to the antisymmetrization operator P n� the factor
hf;wki 2A appears in i -th position of the involved elementary tensor for any i D 1; : : : ;n.
This implies that (3.13) may differ from the sum on the r.h.s. of (3.12) because in general
hf;wki cannot freely shift on the left of the involved elementary tensor.
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Let now P�
:
D
L
n P

n
� , where P 0� and P 1� are the identity. We introduce the notation

F#
�.h/

:
D F�.h/ \ F#.h/;

and for any f 2 hı define the fermionic annihilation and creation operators´
a�.f / W F

#
�.h/! F#

�.h/; a�.f /
:
D a.f / � F#

�.h/;

a��.f / W F
#
�.h/! F#

�.h/; a��.f /
:
D P�a

�.f / � F#
�.h/:

(3.14)

Note that the property

a�.f /F
#
�.h/ � F#

�.h/; a�.f / D P�a�.f /; 8f 2 hı; (3.15)

tacitly understood in (3.14) is a consequence of the hypothesis that there is a G -twist and
Lemma 3.7. Also, note that for the moment we do not know whether the fermionic creation
and annihilation operators are bounded; thus, in (3.14), we make use of the domain F#

�.h/.
In the following result, we give an interpretation of the twist u W G !U.h/ as an obstacle
to make the creation and annihilation operators commute with elements of A.

Lemma 3.8. Let v 2 h and 
 2 G . Then,


a��.v/ D a��.u
v/
 and 
a�.u
�

v/ D a�.v/
:

Proof. Let w�A 2 hn�, w� 2 hn�, A 2 A. By the argument of the proof of Lemma 3.6,
Point 1, we find


a��.v/w�A D 
P�.v ˝ w�/A D .u
v ˝� u
�

w�/
A

D a��.u
v/.u
�

w�/
A D a��.u
v/
w�A:

With an analogous argument, the claim about a�.v/ is proved.

Lemma 3.9. Let f 2 hı. Then, a��.f / is the adjoint of a�.f / over the domain F#
�.h/.

Proof. By applying (3.14) and (3.15), we find

hv; a�.f /v
0
i D hv; a.f /P�v

0
i D hP�a

�.f /v; v0i D ha��.f /v; v
0
i

for all v; v0 2 F#
�.h/. This proves the lemma.

Let ! 2 �.A/. We define F!�.h/ as the Hilbert space obtained by evaluation of F�.h/
over !. In the previous lines, we proved that a�.f / and a��.f / are well defined, A-linear
and one the adjoint of the other in the sense of Hilbert modules (on F#

�.h/); thus, by the
argument used to construct a!.f / and a�;!.f /, we define

a!�.f /; a�;!� .f /; f 2 hı;
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as the evaluations of a�.f / and a��.f / over !. The domain of these operators is clearly
given by F#;!

� .h/, defined by evaluation of vectors in F#
�.h/.

4. CARs and fermionic fields

In the present section, we study the anti-commutation relations that our fermionic cre-
ation and annihilation operators fulfill and define the corresponding Dirac field assuming
the presence of a suitable conjugation. We bring on the light some features that in general
prevent anti-commutators to be expressed only in terms of the given A-valued scalar prod-
uct and, primarily, make anti-commutators non-local in the sense that they do not vanish
even when the involved “spinors” are orthogonal. In fact, not surprisingly, to get anti-
commutators of the usual form besides orthogonality, we must require mutual freeness
Remark 3.5.

We proceed by maintaining the assumptions of the previous section so that h D hA

is free and there is a G -twist u W G ! U.h/, G � UA. Before computing our anti-
commutation relations, for convenience, we give a notion of mutual freeness explicitly
designed to handle vectors in hı. Let f D fi
i and g D gh
h 2 hı, with fi ; gh 2 h,

i ; 


0
h
2 G . We write f ‰ı g whenever for all i , h it turns out

Œ
i ; 

0
h� D 0; u
igh D gh; u
 0

h
fi D fi : (4.1)

Lemma 4.1. If f; g 2 hı and f ‰ı g, then f ‰ g.

Proof. As a preliminary step, we note that any generator hw; f i of A.f /, defined for
w 2 h, is a linear combination in ¹
iº, so A.f / is contained in the C*-algebra generated
by ¹
iº. Thus, the hypothesis f ‰ı g and (4.1) imply ŒA; B� D 0 for all A 2 A.f /,
B 2 A.g/; moreover, 
ig D .u
igh/
i


0
h
D .u
igh/


0
h

i D g
i , and analogously for f

and 
 0
h
. This implies f ‰ g, as claimed.

Anticommutators of creation operators. Let f ‰ı g 2 hı and v� D w�A 2 hn�, w� 2
hn�, A 2 A. Writing f D fi
i , g D gh
 0h, we find

a��.f /a
�
�.g/w�A D P

nC2
� .f ˝ P nC1� .g ˝ w�//A

D P nC2� .fi ˝ 
iP
nC1
� .gh ˝ u

0
hw�//


0
hA

D P nC2� .fi ˝ P
nC1
� .gh ˝ uiu

0
hw�//
i


0
hA

D �P nC2� .gh ˝ P
nC1
� .fi ˝ uiu

0
hw�//
i


0
hA

D �P nC2� .gh ˝ P
nC1
� .fi ˝ 
i


0
hw�//A

D �P nC2� .gh ˝ P
nC1
� .f ˝ 
 0hw�//A

D �P nC2� .g ˝ P nC1� .f ˝ w�//A

D �a��.g/a
�
�.f /w�A:



Twisted tensor products of field algebras 377

In the previous computation, for any n 2 N, we defined the anti-symmetric tensor powers
ui

:
D u.
i /

�, u0
h

:
D u.
 0

h
/� 2 U.hn�/; moreover, we used (3.9) and the fact that expres-

sions of the type P nC2� .fi ˝ P
nC1
� .gh ˝ uiu

0
h
w�// are ordinary anti-symmetric tensor

powers on Hilbert space, so the Pauli principle applies and the minus sign appears when
we exchange fi and gh. We conclude that

Œa��.f /; a
�
�.g/�C D 0; f ‰ı g 2 hı: (4.2)

Note that the need to assume f ‰ı g to make the above anti-commutators vanish is an
aspect of non-validity of the Pauli principle in full generality (Remark 3.5).

Anticommutators of annihilation operators. It should not be a surprise that passing
to the adjoint of (4.2) the anti-commutators of annihilation operators vanish. Anyway, it
is instructive to perform the explicit computations, both to understand the interplay of
elements of G with the relation‰ı and to keep in evidence details that may be useful to
approach (unbounded) bosonic annihilation operators.

We maintain the hypothesis f ‰ı g 2 hı and the notation for the orthonormal decom-
positions

f D fi
i ; g D gh

0
h:

As a first step, we further apply (3.8) and get

w� D
1

n.n � 1/

�X
k<h

.�1/kCh�1wk ˝ wh ˝ w
.h;k/
C

X
k>h

.�1/kChwh ˝ wk ˝ w
.h;k/

�
(4.3)

D
2

n.n � 1/

X
k<h

.�1/kCh�1.wk ˝� wh/˝ w
.h;k/; (4.4)

where

w.h;k/
:
D

´
� � � Owk ˝� � � � ˝� Owh � � � ; k < h;

� � � Owh ˝� � � � ˝� Owk � � � ; k > hI

in (4.3), we used the fact that for k < h the term wh needs a cyclic permutation with order
h � 2 to shift on the left of the tensor w1 ˝ � � � Owk � � � ˝ wn, whilst for k > h the order is
h � 1. Using elementary properties of symmetric tensors, we find

w.h;k/ D �w.k;h/; h ¤ k:

After these preparations, we get

hgjhf jv� D
2

n.n � 1/

X
k<h

.�1/kCh�1hf ˝ g;wk ˝� whiw
.h;k/A

D
2

n.n � 1/

X
k<h

.�1/kCh�1hf ˝ g;wk ˝� whiw
.h;k/A:
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We analyze in details the terms

hf ˝ g;wh ˝� wki D hgh

0
h; hfi
i ; whiwki � hgh


0
h; hfi
i ; wkiwhi

D 
 0h
�
hgh
i ; hfi ; whiwki � 


0
h
�
hgh
i ; hfi ; wkiwhi

D 
 0h
�

�i .hfi ; whihgh; wki � hfi ; wkihgh; whi/

D 
 0h
�

�i .hfi ; hgh; wkiwhi � hfi ; hgh; whiwki/

D hfi
i

0
h; hgh; wkiwhi � hfi
i


0
h; hgh; whiwki

D h
 0hf; hgh; wkiwhi � h

0
hf; hgh; whiwki

D hf; hg;wkiwhi � hf; hg;whiwki

D hg ˝ f;wk ˝ whi � hg ˝ f;wh ˝ wki

D �hg ˝ f;wh ˝� wki

and conclude that .hgjhf j C hf jhgj/v� D 0, obtaining

Œa�.f /; a�.g/�C D 0; f ‰ı g 2 hı: (4.5)

Mixed Anticommutators. Finally, we analyze the anti-commutators Œa�.f /; a��.g/�C.
At a first stage, we consider f; g 2 hı without further hypothesis, and vectors of the type
v�Dw�A2 h

n
�, withw�Dw1˝� � � � ˝� wn 2hn�,A2A; then, using (3.12) and (3.13),

respectively, we compute

a�.f /a
�
�.g/v� D hf; giv� �

X
k

.�1/k�1hf;wkiP
n
�.g ˝ w

.k/
� /A; (4.6)

a��.g/a�.f /v� D
X
k

.�1/k�1P n�.ghf;wki ˝ w
.k/
� /A: (4.7)

A quick look at the previous equalities is sufficient to realize that the terms

hf;wkiP
n
�.g ˝ w

.k/
� /A; P n�.ghf;wki ˝ w

.k/
� /A (4.8)

may prevent the realization of the anti-commutation relations that one could expect. In
fact, whilst in the case A D C, they eliminate each other leaving only the term hf; giv�
present; in general, they could differ because the scalar products hf; wki are not free to
shift through the elementary tensors. Thus, we adopt the usual hypothesis f ‰ı g and
analyze the terms in (4.8) in more detail.

As a first step, we write as usual f D fi
i , g D gh
 0h and, to be concise, we write
ui

:
D u
i , u

0
h

:
D u
 0

h
2 U.h/, hf; wki D 
�i zik 2 A.f / with zik

:
D hfi ; wki 2 C. With

this notation, the hypothesis f ‰ı g implies

Œ
i ; 

0
h� D Œ


�
i ; 


0
h� D 0

so that
Œui ; u

0
h� D Œu

�
i ; u
0
h� D 0:
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For the first expression in (4.8), we compute

hf;wkiP
n
�.g ˝ w

.k/
� /A

D .n � 1/Š�1
X

%2Pn�1;k

"%

�
i zikP

n
�.gh


0
h ˝ w%.1/ ˝ � � � ˝ w%.n//A

D .n � 1/Š�1
X

%2Pn�1;k

"%

�
i zikP

n
�.gh ˝ u

0
hw%.1/ ˝ � � � ˝ u

0
hw%.n//


0
hA:

The term P n�.gh ˝ u
0
h
w%.1/ ˝ � � � ˝ u

0
h
w%.n// is a linear combination of terms of the type

"�u
0
hw��.l/ ˝ � � �gh � � � ˝ u

0
hw��.m/


0
hA;

where � is any permutation of the terms in the argument of P n� and gh appears in position
�.1/. Applying the operators hf;wki D 
�i zik , we get terms of the type

"�

�
i ziku

0
hw��.l/ ˝ � � �gh � � � ˝ u

0
hw��.m/


0
hA

D "�u
�
i u
0
hw��.l/ ˝ � � � 


�
i gh


0
h � � � ˝ w��.m/zikA

D "�u
�
i u
0
hw��.l/ ˝ � � � 


�
i g � � � ˝ w��.m/zikA

D "�u
�
i u
0
hw��.l/ ˝ � � �g


�
i � � � ˝ w��.m/zikA

D "�u
�
i u
0
hw��.l/ ˝ � � �gh � � � ˝ u

0
hu
�
i w��.m/zik
h


�
i A

D "�u
�
i u
0
hw��.l/ ˝ � � �gh � � � ˝ u

�
i u
0
hw��.m/zik


�
i 
hA:

In conclusion,

hf;wkiP
n
�.g ˝ w

.k/
� /A

D .n � 1/Š�1
X
%;�

"%"�u
�
i u
0
hw��.l/ ˝ � � �gh � � � ˝ u

�
i u
0
hw��.m/zik


�
i 
hA:

Finally, we evaluate the second term in (4.8),

P n�.ghf;wki ˝ w
.k/
� /A

D .n � 1/Š�1
X

%2Pn�1;k

"%P
n
�.gh


0
h

�
i zik ˝ w%.1/ ˝ � � � ˝ w%.n//A

D .n � 1/Š�1
X

%2Pn�1;k

"%P
n
�.gh


�
i 

0
hzik ˝ w%.1/ ˝ � � � ˝ w%.n//A

D .n � 1/Š�1
X

%2Pn�1;k

"%P
n
�.gh ˝ u

�
i u
0
hw%.1/ ˝ � � � ˝ u

�
i u
0
hw%.n//zik


�
i 

0
hA

D .n � 1/Š�1
X
%;�

"%"�u
�
i u
0
hw%.1/ ˝ � � �gh � � � ˝ u

�
i u
0
hw%.n/zik


�
i 

0
hA;

concluding that

hf;wkiP
n
�.g ˝ w

.k/
� /A D P n�.ghf;wki ˝ w

.k/
� /A
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actually conspire to obtain, starting from (4.6) and (4.7), the anti-commutation relations

Œa�.f /; a
�
�.g/�C D hf; giv�; f ‰ı g 2 hı: (4.9)

Norm and generalized CARs. As a particular case, we now consider f;g 2h that clearly
implies f ‰ı g; moreover, we have hf;wi 2 C for all w 2 h; thus, the undesirable terms
in (4.9) vanish. As a consequence, we find

Œa�.f /; a
�
�.g/�C D hf; gi 2 C; Œa��.f /; a

�
�.g/�C D 0; f; g 2 h:

Now, a�.f / and a��.g/ act like the usual annihilation and creation operators when re-
stricted to the Fock space F�.h/ � F�.h/: we denote the corresponding restrictions by
a�.f /, a��.g/ (without bold font), and note that ka�.f /k D ka��.f /k D kf k [7, Vol. 2,
Prop. 5.2.2]. Given w� 2 F�.h/, A 2 A, by right A-linearity, we have

a�.f /.w�A/ D .a�.f /w�/A; a
�
�.f /.w�A/ D .a

�
�.f /w�/A; f 2 h

so that

kha�.f /.w�A/; a�.f /.w�A/ik D kA
�
hw�; a

�
�.f /a�.f /w�iAk

� kf k2kA�hw�; w�iAk

D kf k2kw�Ak
2;

having used the fact that kf k2 � a��.f /a�.f / is a positive operator on F�.h/. Thus, we
find

ka�.f /k D ka
�
�.f /k D kf k

for all f 2 h. We use this property to prove the following, more general, result.

Lemma 4.2. Let f 2 hı. Then, a�.f / and a��.f / are bounded.

Proof. We start proving our assertion for the annihilation operator. Given f D fi
i , fi 2
h, 
i 2 G (finite sum), for the usual elementary tensors w�A 2 hn�, we compute

a�.f /w�A D a�.fi
i /w�A

D
1
p
n

X
k

.�1/k�1
�i hfi ; wkiw
.k/
� A

D

X
i


�i a�.fi /w�A:

The previous relations say that a�.f / is the sum of the operators 
�i a�.fi /, where 
�i
are regarded as unitary operators on h and a�.fi / are, by the previous remarks, bounded.
Thus, we conclude that a�.f / is bounded for f (finite) linear combination in hı.

In the following result, we give a synthesis of (4.2), (4.5), (4.9), and Lemma 4.2.
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Theorem 4.3. Let h D hA be a free Hilbert A-bimodule with twist u W G ! U.h/, G �

UA. Then, for any f; g 2 hı, the creation and annihilation operators are bounded right
A-module operators on F�.h/, and the following properties hold.

(1) If f ‰ı g, then

Œa�.f /; a�.g/�C D Œa
�
�.f /; a

�
�.g/�C D 0;

and
Œa�.f /; a

�
�.g/�C D hf; gi 2 A:

(2) If f; g 2 h, then the previous anti-commutation relations hold with hf; gi 2 C.

Dirac fields. Let U�.h/ denote the set of anti-unitary operators on h, and let � D �� 2
U�.h/ be a conjugation such that

Œ�; u
 � D 0; 8
 2 G � UA: (4.10)

Setting �.vA/ :D .�v/A�, v 2 h, A 2 A, we extend � to the vector space spanned by
elementary tensors in h, obtaining a densely defined anti-linear map. Note that in particular
�.v
/D .�v/
�, so � is defined on hı. In the following result, we check the compatibility
of � with the mutual freeness relation (4.1).

Lemma 4.4. The following properties hold:

(1) A.f / D A.�f / for all f 2 hı;

(2) If f; g 2 hı and f ‰ g, then hf; �gi D hg; �f i;

(3) Let f ‰ı g; then, f ‰ı �g, �g ‰ı f , and �f ‰ı �g.

Proof. (1) We can write f DwiAi with ¹wiº an orthogonal base in h andAi
:
D hwi ; f i 2

A: this implies that A.f / is generated by the set ¹Aiº. On the other hand, �f D �.wi /A�i ,
where also ¹�wiº is a base of h, implying that A.�f / is generated by ¹A�i º. Thus, A.f /D

A.�f /, as claimed.
(2) Writing g D vhBh, vh 2 h, Bh 2 A.g/, we get

hf; �gi D A�i B
�
h hwi ; �vhi D B

�
hA
�
i hvh; �wi i D hvhBh; .�wi /A

�
i i D hg; �f i;

having used the fact that f ‰ g implies ŒAi ; Bh� D 0.
(3) We write f D fi
i , g D gh
 0h and check that f ‰ı �g:

.�g/
i D �.gh

0
h/
i

D .�gh/
i

0
h
�

D 
i .u
�

i
�gh/


0
h
�

D 
i .�u
�

i
gh/


0
h
�

D 
i .�gh/

0
h
�

D 
i .�g/:

The other cases are verified in an analogous way, so the lemma is proved.
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A Dirac triple over A, written as .h; u; �/, is given by a free Hilbert A-bimodule
h D hA with G -twist u and a conjugation � 2 U�.h/ fulfilling (4.10). The (self-dual)
Dirac field associated with .h; u; �/ is defined by

y .f /
:
D

1
p
2
.a��.f /C a�.�f //; f 2 hı � h: (4.11)

It yields operators y .f / 2 B.F�.h//, and by Lemma 3.9, we have

y �.f / D y .�f /: (4.12)

By applying Lemma 3.8, Theorem 4.3, and Lemma 4.4, we obtain´
Œ y .f /; y .g/�C D h�f; gi 2 A; f ‰ı g 2 hı;


 y .w/ D y .u
w/
; w 2 h; 
 2 G � UA:
(4.13)

We denote the C*-algebra generated by the operators y .f /;
 2B.F�.h//, f 2 hı, 
 2 G ,
by Fh;u;� , and call it the field C*-algebra of .h; u; �/. By construction, Fh;u;� contains
�.A/ and the CAR algebra Ch and fulfills the relations (4.12) and (4.13)2. Any state
! 2 �.A/ induces a Hilbert space representation of Fh;u;� , defined as in (2.5). We remark
that at the abstract level at which we worked no topology has been defined on hı; thus, no
continuity property is required for y .f / at varying of f 2 hı.

A class of fixed-time models. We briefly present a family of models for the notion of
Dirac triple and the associated Dirac field. A more detailed exposition of these and other
models is postponed to a future publication.

We start by considering the symplectic space � given by pairs of compactly supported
test functions s D .s0; s1/ 2 �.R3/˚ �.R3/, with symplectic form

�.s; s0/
:
D

Z
.s1s

0
0 � s0s

0
1/

(Lebesgue measure) and the associated Weyl C*-algebra W . It is readily seen that W is
the C*-algebra associated to the restriction at a fixed time of the free scalar field, with

W.s/ D ei.�.s0/C
P�.s1//:

Here, the field �.s0/ and its conjugate P�.s1/, s0; s1 2 �.R3/, are the initial conditions
at time t0 of the free scalar field [6, §8.4.A]. As explained in Example 3.3, any unitary
morphism of � as an additive group yields a unitary morphism of the group G generated
by Weyl unitaries and phases.

2Relations similar to (4.13) appeared in [13,14] in the special case where A is a Weyl algebra describ-
ing suitable asymptotic configurations of the electromagnetic field. Whilst we use the C*-norm induced by
our Fock bimodule, the C*-algebra of the above reference is endowed with a maximal C*-norm, which is
non-trivial because a (non-separable) representation is exhibited.
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We then consider the Hilbert spaces hC
:
D L2.R3;C4/, h�

:
D L2.R3;C4;�/, where

C4;� is the conjugate space, and define h
:
D hC ˚ h� with conjugation

� 2 U�.h/; �.wC ˚ Nw�/
:
D w� ˚ NwC:

(Here, Nw is the conjugate map Nw.w0/ :D hw;w0i defined by w 2 hC.) Given a tempered
distribution � 2 � 0.R3/, we consider the unitary morphism

u� W � ! U.h/; u�;s.wC ˚ Nw�/
:
D e�i�?s0wC ˚ e

i�?s0 Nw�; w 2 h;

where � ? s0 2 C1.R3/ is the convolution. (Note that s1 does not come into play.) It is
then clear that � fulfills (4.10).

We are now in condition to form the free Hilbert bimodule h D hW carrying the
twisting defined by u� ; we have h D hC ˚ h� with obvious meaning of the symbols, and
any .h; u� ; �/ is a Dirac triple over W . With this input, we have the self-dual Dirac field
y .h/, h2 hı, from which for convenience we extract the electron field .f / :D y .f ˚ 0/,
f 2 hC;ı, fulfilling the relations´

Œ �.f /;  .g/�C D hf; gi 2 W ; f ‰ı g 2 hC;ı;

W.s/ .w/ D  .e�i�?s0w/W.s/; w 2 hC; s 2 � :
(4.14)

We denote the associated field C*-algebra by F� . It is endowed with the gauge action

ˇ W U.1/! aut F� ; ˇz. .f //
:
D Nz .f /:

Now, given f D fiW.si / 2 hC;ı, fi 2 hC, si 2 � , we define the support supp.f / � R3

as the union of the “fermionic” and “bosonic” supports

supp .f /
:
D

[
i

supp.wi /; suppW .f /
:
D

[
i

supp.si /

and introduce the C*-algebras F� .A/ generated by those .f / having support in the open
set A � R3. There are two subnets Ch and W of F� , the first defined by the operators
 .w/, w 2 hC, and the second given by the unitaries W.s/, s 2 � : the two subnets are
defined by the free Dirac field and the free scalar field, respectively. In particular,

Œ .w/;  .w0/�C D Œ 
�.w1/;  .w2/�C D 0 (4.15)

for all w;w0 2 hC and w1; w2 2 hC such that supp.w1/\ supp.w2/ D ;. We discuss the
field net F� for several choices of � 2 � 0.R3/.

(1) � is the Dirac delta at the origin. In this case, � ? s0 D s0 and the unitaries W.s/
induce by adjoint action the local gauge transformations

 .w/!  .e�is0w/:

If supp.w/\ supp.s0/D;, then u�;swDw and Œ .w/;W.s/�D 0. Therefore, the subnets
Ch and W are relatively local, that is, Ch.A/ � W.B/0 for A \ B D ;, and F� is local
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in the sense that it fulfills normal commutation relations. For A \ B ¤ ;, the second of
(4.14) in general holds with u�;sw ¤ w and ŒW.s/;  .w/� ¤ 0. A sufficient condition to
having f ‰ı g is suppa.f /\ suppb.g/D; for all combinations in a;b D ;W different
from a D b D  : in this case,

Œ �.f /;  .g/�C D
X
ij

hfi ; gj iW.s
0
j � si / 2 W ; (4.16)

having written g D gjW.s0j /. If f , g are not mutually free, then terms of the type (4.6)–
(4.7), which are not in W , appear in the corresponding anticommutator.

(2) � has support with a non-empty interior and contained in the 3-ballBr , r 2 .0;1�.
In this case, supp.� ? s0/ � supp.s0/C Br . We may have u�;sw D e�i�?s0w ¤ w even
for supp.s/ \ supp.w/ D ;, and

W.s/ .w/ D  .e�i�?s0w/W.s/

implying that in general Ch and W are not relatively local. If f; g 2 hC;ı, then a sufficient
condition to having f ‰ı g is that .suppa.f /CBr /\ .suppb.g/CBr /D ; for .a; b/¤
. ;  /; in that case, (4.16) holds. Again, terms of the type (4.6)–(4.7) appear for f; g not
mutually free.

(2.1) � is the fundamental solution of the Poisson equation [9, §9.4]. In this case,

.� ? s0/.x/ D
1

4�

Z
1

jx � yj
s0.y/d

3y

in general has non-compact support and is non-constant (for example, take s0
a non-negative bump function supported around the origin). W is not relatively
local both to Ch and the fixed-point subnet C

ˇ
h

; in particular,

W.s/ .w1/ 
�.w2/ D  .e

�i�?s0w1/ 
�.ei�?s0w2/W.s/

even when supp.s/ is disjoint from the supports of w1; w2.

(2.2) � is the Lebesgue measure. In this case,

.� ? s0/.x/ D

Z
s0.x � y/d3y D �hs0i

:
D �

Z
s0

is constant and
W.s/ .w/ D eihs0i .w/W.s/ (4.17)

for all s 2 � and w 2 hC. The above equality has a twofold interpretation. The
first is that the Weyl unitaries W.s/ induce the global gauge transformations
eihs0i on the charged fields  .w/. The second is that the operators  .w/ inter-
twine the identity and the automorphism ˛ 2 aut W , ˛.W.s// :D e�ihs0iW.s/ so
that (4.17) becomes

˛.W.s// .w/ D  .w/W.s/: (4.18)
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The net F� is not local; in fact, Ch.A/ and W.B/ are never one in the commutant
of the other. Yet, by (4.17), we have that W is in the commutant of C

ˇ
h

and
Ch is in the commutant of the subalgebra W0 generated by test functions s
with hs0i D 0. A local, gauge-invariant subnet A of F� is the one generated by
operators of the type As;w1;w2

:
D  .w1/W.s/ 

�.w2/, w1; w2 2 hC; s 2 � ; in
fact,

ŒAs;w1;w2 ; As0;w 01;w
0
2
� D 0

for .supp.s/ [ supp.w1/ [ supp.w2// \ .supp.s0/ [ supp.w01/ [ supp.w02// D
;, having used (4.15), (4.17) and ŒW.s/; W.s0/� D 0. Note that A is local both
to C

ˇ
h

and W .

5. Conclusions

In the present paper, we presented a construction based on Hilbert bimodules, in which
the spatial tensor product of a CAR algebra by a C*-algebra is replaced with a twisted
product. This allows to construct field systems with non-trivial commutation relations, as
in (4.14) and (4.18). The technical obstacles concerning tensor products and (the absence
of) permutation symmetry in Hilbert bimodules have been overcome by introducing the
notion of twist, which yields a class of left actions for which these drawbacks are under
control3.

The models presented in the previous section are elementary, yet they pose questions
that in our opinion deserve to be discussed. For example, the model (1) exhibits Weyl
unitaries that induce local gauge transformations; thus, in regular representations of W ,
we expect to find bosonic fields assuming the role usually played by the zero components
of the Dirac current [19, §4.6.1] or the “longitudinal photon field” in Gupta–Bleuer gauge
[19, §7.3.2]. In the model (2.1), � is related to electrostatic potentials and not surprisingly
it poses the problem of extracting a local observable subnet from which the initial (non-
local) field net should be reconstructed. In this regard, the model (2.2) provides a simple
illustration of the fact that this problem can be successfully solved in specific situations.

As a final remark, we point out that the physical understanding of the notion of twist is
a topic that has not been discussed in the present paper, in which we used this object as a
mathematical input. The correct interpretation should be obtained by a deeper discussion
of our models, especially in regular representations of W [21]. In this regard, working in
a fixed-time régime allows to avoid complications and easily produce examples, yet our
aim is to construct and discuss models in Minkowski space, entering in this way in an
explicitly relativistic scenario [20].

3We remark that the same technique may be used to construct bosonic Fock bimodules and the cor-
responding fields: in such a scenario, the construction in [17] would be analogous to a bosonic Fock
A-bimodule, with A the finite d -dimensional Weyl algebra, h D L2.Rd /, and h D hA endowed with
the trivial left action in the sense of the present paper.
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