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The spectral density of the scattering matrix

of the magnetic Schrödinger operator for high energies
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Abstract. The scattering matrix of the Schrödinger operator with smooth short-range electric
and magnetic potentials is considered. The asymptotic density of the eigenvalues of this
scattering matrix in the high energy regime is determined. An explicit formula for this density
is given. This formula involves only the magnetic vector-potential.
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1. Main result and discussion

1.1. Main result. Consider the Schrödinger operator

H D .ir C A/2 C V in L2.Rd /; d � 2I

here V W R
d ! R is an electric potential and A D .A1; : : : ; Ad / W R

d ! R
d is a

magnetic vector-potential. We assume that both V and A are infinitely differentiable
and satisfy the estimates

j@˛V.x/j � C˛hxi���j˛j; j@˛A.x/j � C˛hxi���j˛j; � > 1; (1.1)

for all multi-indices ˛; here hxi D .1C jxj2/1=2. LetH0 D ��; we denote by S.k/
the scattering matrix associated with the pair H;H0 at the energy � D k2 > 0. We
recall the precise definition of the scattering matrix in Section 2.1; here we only note
that S.k/ is a unitary operator in L2.Sd�1/ and the operator S.k/ � I is compact
(see e.g. [21] and [20]). Thus, the spectrum of S.k/ consists of eigenvalues on the
unit circle T ; all eigenvalues (apart from possibly 1) have finite multiplicities and
can accumulate only to 1. Our aim is to describe the asymptotic behavior of these
eigenvalues as k ! 1.

If A � 0, one has

kS.k/ � Ik D O.k�1/; k ! 1 .A � 0/; (1.2)
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and so the eigenvalues of S.k/ are located on an arc near 1 of length O.k�1/. The
large energy asymptotics of S.k/ in this case is given by the Born approximation, see
e.g. [21], Chapter 8; this makes the analysis of S.k/ rather explicit. In [6], using the
Born approximation, we have determined the large energy asymptotic density of the
spectrum of S.k/ for A � 0; we will say more about this in the next subsection.

WhenA 6� 0, the situation is radically different: as k ! 1, the norm kS.k/�Ik
does not tend to zero and the Born approximation is no longer valid. The high energy
asymptotic expansion of the scattering amplitude (= the integral kernel of S.k/� I )
for the magnetic Schrödinger operator was obtained (through a very difficult proof)
in [19]. Our main result below is a spectral consequence of [19].

We need some notation. For any ! 2 S
d�1, let ƒ! � R

d be the hyperplane
passing through the origin and orthogonal to !:

ƒ! D fx 2 R
d W hx; !i D 0g:

We equip both S
d�1 andƒ! with the standard .d�1/-dimensional Lebesgue measure.

We set

M.!; �/ D
Z 1

�1

hA.t! C �/; !idt; ! 2 S
d�1; � 2 R

d : (1.3)

Our main result is as follows.

Theorem 1.1. Let V , A satisfy (1.1). Then for any function ' 2 C.T / that vanishes

in a neighborhood of the point 1,

lim
k!1

k�dC1 Tr '.S.k// D .2�/�dC1

Z

Sd�1

Z

ƒ!

'.eiM.!;�//d�d!: (1.4)

Under the assumptions of Theorem 1.1, the operator '.S.k// has a finite rank,
and so the trace in the left hand side exists; also, the integrand in the right hand side
vanishes for all sufficiently large j�j, and so the integral is absolutely convergent.

The interesting feature of formula (1.4) is that its right hand side does not depend

on the electric potential V ; see the discussion at the end of Section 1.3.

1.2. Discussion

Weak convergence of measures. Theorem 1.1 can be rephrased in terms of weak
convergence of the eigenvalue counting measures. Let us denote the eigenvalues of
S.k/ by ei�n.k/, where n 2 N and �n.k/ 2 Œ��; �/; as usual, the eigenvalues are
counted with multiplicities taken into account. Let � � T n f1g be any open arc
separated away from 1; we set

�k.�/ D #fn 2 N W ei�n.k/ 2 �g; k > 0; (1.5)

�.�/ D .2�/�dC1

Z

Sd�1

Z

…!.�/

d�d!; …!.�/ D f� 2 ƒ! W eiM.!;�/ 2 �g;

(1.6)
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where # represents the number of elements in a set. The measures �k , � can be
alternatively defined by requiring that

Tr '.S.k// D
Z

T

'.z/d�k.z/; (1.7)

.2�/�dC1

Z

Sd�1

Z

ƒ!

'.eiM.!;�//d�d! D
Z

T

'.z/d�.z/; (1.8)

for any continuous function ' on T vanishing in a neighborhood of 1. With this
notation, Theorem 1.1 can be rephrased as the weak convergence

k�dC1�k �! �; k ! 1:

The measure � may be singular at 1, i.e. �.T n f1g/ may be infinite, but
Z

T

jz � 1j`d�.z/ < C1; ` > .d � 1/=.� � 1/: (1.9)

Relation (1.9) follows from the elementary estimate on M.!; �/ which is a direct
consequence of (1.1):

jM.!; �/j � C.A/.1C j�j/1��; ! 2 S
d�1; � 2 ƒ! : (1.10)

The case A � 0. In this case, the limiting measure � vanishes, and in order to
obtain non-trivial asymptotics of �k , the problem requires an appropriate rescaling.
By (1.2), the spectrum of S.k/ consists of eigenvalues which lie on an arc of length
O.k�1/ around 1. This suggests the following rescaled version of the problem: for
an interval ı � R n f0g separated away from zero, set

Q�k.ı/ D #fn 2 N W k�n.k/ 2 ıg:

Then it turns out (see [6]) that

k�dC1 Q�k �! Q� weakly as k ! 1; (1.11)

where the measure Q� is defined as follows. Let

X.!; �/ D �1
2

Z 1

�1

V.t! C �/dt; ! 2 S
d�1; � 2 ƒ!I (1.12)

then

Q�.ı/ D .2�/�dC1

Z

Sd�1

Z

z…!.�/

d�d!; z…!.�/ D f� 2 ƒ! W X.!; �/ 2 ıg;

where ı � Rnf0g.
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Two and three dimensional cases. Let us discuss assumptions (1.1) in dimensions
d D 2; 3. In dimension d D 3, a magnetic vector-potential A satisfying (1.1) can
be constructed for any smooth magnetic field B W R

3 ! R
3 (B D curlA) such that

divB D 0 and
j@˛B.x/j � C˛hxi���1�j˛j; � > 1: (1.13)

In dimension d D 2, the magnetic field B W R
2 ! R, in addition to (1.13), must

satisfy the zero flux condition

ˆ D
Z

R2

B.x/dx D 0; B.x/ D @A2

@x1

� @A1

@x2

: (1.14)

See e.g. [20], Section 5.1, for the details of this construction both for d D 2 and
d D 3.

The zero flux condition is unavoidable in the following sense. LetB W R
2 ! R be

such that it satisfies the estimates (1.13) but the fluxˆ 6D 0. Then any magnetic vector-
potential A.x/ for this field will necessarily fail to be short-range (i.e. (1.1) fails) but
one can construct A.x/ (the “transversal gauge”) with the behavior jA.x/j � jxj�1

as jxj ! 1. In this case the scattering theory forH0,H can still be constructed, but
the difference S.k/ � I will not be compact, see [20] for a detailed discussion and
a description of the essential spectrum of S.k/. A particularly well known example
of this is the Aharonov–Bohm effect [2]. Thus, in this case the measure �k cannot
even be defined and the question of the spectral asymptotics of the scattering matrix
cannot be approached in the same way as in Theorem 1.1.

Gauge invariance. The scattering matrix is gauge invariant in the class of short-
range magnetic vector-potentials. More precisely, if

zA.x/ D A.x/C r'.x/; where '.x/ �! 0 as jxj ! 1; (1.15)

then the scattering matrix zS.k/ associated with the pair zH D .ir C zA/2 C V ,
H0 D ��, coincides with S.k/. See [13] and [20] for further details and for an
interesting discussion of examples when S.k/ is not gauge invariant (when '.x/
is homogeneous in jxj of order zero). An inspection shows that M.!; �/ is gauge
invariant under the gauge transformations of the class (1.15).

Related work. Although the study of various aspects of asymptotic distribution
of eigenvalues of differential operators has become a well-developed industry, very
little attention in mathematical literature has been devoted to analogous questions
for the scattering matrix. There has been, of course, much work on the “average”
characteristics of the scattering matrix S.k/: on the scattering phase arg det S.k/ and
on the total scattering cross section; but the study of the distribution of individual
eigenvalues of S.k/ has been less popular. We are only aware of mathematical
works [11], [4], [5], [22], and [7] on this subject. In [11], the asymptotic behavior



Spectral density of the scattering matrix 521

of the phases �n.k/ was determined for a fixed k and n ! 1 for potentials V with
compact support and A � 0. In [4], the same problem was considered in the case of
potentials V with a power asymptotics at infinity. In [5], this question was studied
in the presence of a periodic background potential. In [22], the spacing between the
phases �n.k/ was studied in a rather special model of scattering on manifolds.

In [7], a semiclassical asymptotics of phase shifts is considered for the Schrödinger
operator with a spherical symmetric potential and equidistribution of these phase shifts
is proven.

In the physics community, the question of asymptotic distribution of eigenvalues
of the scattering matrix has been addressed; see e.g. the works by U. Smilansky and
his collaborators [9] on the eigenvalue statistics of S.k/ for obstacle scattering.

The limiting measure � arises via integration over straight lines, i.e. over the
trajectories of the free dynamics, see (1.3). Similar asymptotic formulas are known in
other problems, involving the discrete spectrum of differential and pseudodifferential
operators; see [18], [16], [17], and [12].

1.3. Key steps of the proof of Theorem 1.1. Our proof is heavily based on the
results of [19]. In [19], D. Yafaev suggested a high energy asymptotic expansion for
the integral kernel of the scattering matrix S.k/. This expansion is constructed via
approximate scattering solutions to the stationary Schrödinger equation

Hu D k2u:

We recall this construction in Section 2. Using Yafaev’s expansion, it is easy to
represent the scattering matrix S.k/ (modulo a negligible error) as a semiclassical
pseudodifferential operator (‰DO) on the sphere with the semiclassical parameter
h D k�1 and the principal symbol eiM.!;�/. This representation is already present, in
a somewhat different form, in [19]; we re-derive it in Section 2 in the form convenient
for our purposes (see Lemma 2.5). After this, using the standard pseudodifferential
techniques, we prove (see Lemma 3.1) the asymptotic formula

lim
k!1

k�dC1 Tr.S.k/ � I /`1.S.k/� � I /`2

D .2�/�dC1

Z

Sd�1

Z

ƒ!

.eiM.!;�/ � I /`1.e�iM.!;�/ � I /`2d�d!
(1.16)

for any integers `1 � 0, `2 � 0 such that the sum `1 C `2 is sufficiently large.
From here it is easy to derive the main result by an application of the Weierstrass
approximation theorem; this is done in Section 3.

The difference between the caseA � 0 and the general case can be understood as
follows. As mentioned above, the scattering matrix can be approximated by a ‰DO
on the sphere with a symbol which depends on k. The leading term of the asymptotic
expansion of this symbol in powers of k�1 is eiM.!;�/ (if A 6� 0); this term involves
only the magnetic vector potential A. The electric potential turns up only in the next
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term of the expansion, which (if A � 0) has the form ik�1X.!; �/, see (1.12). Of
course, this is related to the fact that the magnetic potential is a coefficient of the
differential operator of the order 1, whereas the electric potential is a perturbation of
the order 0.

2. The scattering matrix as a ‰DO on the sphere.

2.1. The scattering matrix. Let us briefly recall the definition of the scattering
matrix; for the details, we refer to any textbook on scattering theory, e.g. [21]. It is
one of the fundamental facts of scattering theory that under the conditions (1.1), the
wave operators

W˙ D s-lim
t!˙1

eitH e�itH0

exist and are complete. The scattering operator S D W �
CW� is unitary in L2.Rd /

and commutes with H0. Let F W L2.Rd / ! L2..0;1/IL2.Sd�1// be the unitary
operator

.F u/.k; !/ D 1p
2
k.d�2/=2 Ou.k!/; k > 0; ! 2 S

d�1;

where Ou is the usual (unitary) Fourier transform of u. The operator F diagonalises
H0, i.e.

.FH0u/.k; !/ D k2.F u/.k; !/; u 2 C1
0 .Rd /:

The commutation relation SH0 D H0S implies that F also diagonalises S, i.e.

.FSu/.k; �/ D S.k/.Fu/.k; �/;

where S.k/ W L2.Sd�1/ ! L2.Sd�1/ is the unitary operator known as the (on-shell)
scattering matrix.

2.2. Pseudodifferential operators on the sphere. For every! 2 S
d�1, we identify

the cotangent space T �
! S

d�1 with the plane ƒ! D fx 2 R
d W hx; !i D 0g in a

standard way. For a symbol � 2 C1
0 .T �

S
d�1/ and a semiclassical parameter h 2

.0; 1/, the semiclassical ‰DO OphŒ�� in L2.Sd�1/ is defined via its integral kernel

OphŒ��.!; !
0/ D .2�h/�dC1

Z

ƒ!

e�ih!�!0;�i=h�.!; �/d�; (2.1)

where !; !0 2 Sd�1. This definition can be extended in a standard way to symbols
� satisfying

j@˛
� @

ˇ
!�.!; �/j � C˛ˇ h�i�m�j˛j; ! 2 S

d�1; � 2 ƒ! ; (2.2)
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for some m 2 R and all multi-indices ˛; ˇ. We will only be interested in the case
m > 0; then by the Calderon–Villancourt theorem (see e.g. [15]) combined with a
scaling argument, OphŒ�� is bounded and

sup
0<h<1

kOphŒ��k � C.�/: (2.3)

Next, if � satisfies (2.2) with m > d � 1, then (see e.g. [14] and [8]) OphŒ�� is trace
class and its trace can be computed by integrating the kernel (2.1) over the diagonal:

Tr.OphŒ��/ D .2�h/�dC1

Z

Sd�1

Z

ƒ!

�.!; �/d�d!: (2.4)

We will also be interested in symbols that depend on h. Form > 0, let �
m be the

class ofC1-smooth symbols � D �.!; �; h/, h 2 .0; 1/, satisfying the estimate (2.2)
uniformly in h 2 .0; 1/ for all multi-indices ˛; ˇ. We will need a standard statement
about the leading term spectral asymptotics of a semiclassical ‰DO:

Proposition 2.1. Letm > 0and let� 2 �
m be a symbol that admits the representation

� D �0 C h�1 (2.5)

with �0; �1 2 �
m and �0 independent of h. Then for any non-negative integers `1,

`2 such that `1 C `2 >
d�1

m
, the operator .OphŒ��/

`1..OphŒ��/
�/`2 belongs to the

trace class and

lim
h!C0

.2�h/d�1 Tr..OphŒ��/
`1..OphŒ��/

�/`2/

D
Z

Sd�1

Z

ƒ!

�0.!; �/
`1�0.!; �/`2d�d!:

(2.6)

Sketch of proof. First suppose that m > d � 1 and `1 D 1, `2 D 0. Then OphŒ�� is
trace class and the asymptotics (2.6) follow by substituting the representation (2.5)
into (2.4). In the general case, using local coordinates on the sphere, iterating a
standard composition formula for ‰DO in L2.Rd�1/, and using the formula for the
symbol of the adjoint operator, we obtain that for any N > 0,

.OphŒ��/
`1..OphŒ��/

�/`2 D OphŒ~�CRN .h/;

where

(i) the symbol ~ 2 �
m`1Cm`2 can be represented as

~ D ~0 C h~
.N /
1

with ~0; ~
.N /
1 2 �

m`1Cm`2 , ~0 is independent of h and

~0.!; �/ D �0.!; �/
`1�0.!; �/`2I
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(ii) RN .h/ is an operator with the integral kernel in CN .Sd�1 � S
d�1/ and the

CN -norm of RN .h/ is O.hN / as h ! 0.

This reduces the problem to the case `1 D 1, `2 D 0.

Remark. In the situation we are interested in, the representation (2.5) arises as a
corollary of the asymptotic expansion

� �
1

X

j D0

hj�j ; �j 2 �
m;

but we are only interested in the first term of this expansion.

In our construction, the ‰DO will be defined in terms of their amplitudes rather
than their symbols. Thus, we need a statement which is standard in the ‰DO theory
(see e.g. [14]).

Proposition 2.2. Let m > 0, and let b D b.!; !0; �; h/ be a smooth function of the

variables .!; �/ 2 T �
S

d�1, !0 2 S
d�1 and h 2 .0; 1/. Assume that b satisfies the

estimates

j@˛
� @

ˇ
!@



!0b.!; !

0; �; h/j � C˛ˇ
 h�i�m�j˛j (2.7)

for all multi-indices ˛; ˇ; 
 uniformly in h 2 .0; 1/ . Then for any N > 0, the

operator with the integral kernel

.2�h/�dC1

Z

ƒ!

e�ih!�!0;�i=hb.!; !0; �; h/d� (2.8)

can be represented as OphŒ��CRN .h/, where the following conditions are met:

(i) the symbol � can be written as � D �0 C h�1 with �0; �1 2 �
m and

�0.!; �; h/ D b.!; !; �; h/:

(ii) the operatorRN .h/ has the integral kernel inCN .Sd�1 �S
d�1/withCN-norm

satisfying O.hN / as h ! 0.

2.3. Approximate solutions to the Schrödinger equation. Here we recall the con-
struction of approximate solutions to the Schrödinger equationHu D k2u from [19].
The solutions u are sought as functions

u D u.x; p/; x 2 R
d ; p 2 R

d ; jpj D k:

We denote Op D pjpj�1 2 S
d�1. Substituting the ansatz

u.x; p/ D ei‚.x;p/v.x; p/
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into the Schrödinger equation Hu D k2u, by a standard procedure (see e.g. [10],
Section 7) we obtain the eikonal equation

jr‚.x/ � A.x/j2 C V.x/ D k2

for the phase function ‚ and the transport equation

�2ihr‚;rvi C 2ihA;rvi ��v C .�i�‚C i divA/v D 0

for the amplitude function v. The approximate solution to the eikonal equation is
constructed as

‚˙.x; p/ D hx; pi C '˙.x; Op/; (2.9)

'˙.x; Op/ D �
Z 1

0

hA.x ˙ t Op/; Opidt: (2.10)

Next, for a given N 2 N, the approximate solution v.N /
˙ to the transport equation is

constructed as

v
.N /
˙ .x; p/ D

N
X

nD0

.2ik/�nv.˙/
n .x; Op/; (2.11)

where v.˙/
0 .x; Op/ � 1 and the coefficients v.˙/

n are determined via an explicit iterative
procedure:

v
.˙/
nC1.x; Op/ D �

Z 1

0

f .˙/
n .x ˙ t Op; Op/dt;

where

f .˙/
n D 2ihA�r'˙;rv.˙/

n i��v.˙/
n C .jr'˙j2 �2hA;r'˙iCV1 � i�'˙/v

.˙/
n ;

and
V1 D V C jAj2 C i divA:

The functions '˙ and v.N /
˙ solve the eikonal and transport equations up to error

terms that can be explicitly controlled; we do not need the precise statement here,
see [19] for the details. Here we need '˙ and v.N /

˙ simply as “building blocks” for
the approximation to the scattering amplitude, which is given in the next subsection.

When considering the functions '˙ and v.˙/
n , we will always exclude a conical

neighborhood of the direction Ox D � Op (for the sign “C”) or Ox D Op (for the sign “�”).
Outside these neighborhoods, the functions '˙ and v.˙/

n , n � 1, decay at infinity in
the x-variable. More precisely, the following statement is proven in [19].

Proposition 2.3. [19] Let assumption (1.1) hold and let x 2 Rd , ! 2 Sd�1 be such

that ˙h Ox; !i � �1 C " for some " > 0. Then the functions '˙ and v
.˙/
n , n � 1,
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satisfy the estimates

j@˛
x@

ˇ
!'˙.x; !/j � C˛ˇ hxi1���j˛j; (2.12)

j@˛
x@

ˇ
!v

.˙/
n .x; !/j � C˛ˇ hxi�n�j˛j; (2.13)

for all multi-indices ˛; ˇ.

We will write

u
.N /
˙ .x; p/ D u˙.x; p/ D ei‚˙.x;p/v

.N /
˙ .x; p/: (2.14)

2.4. Approximation for the scattering amplitude. Here we recall the approxima-
tion to the scattering amplitude obtained in [19]. It is known (see e.g. [1]) that off
the diagonal ! D !0, the integral kernel s.!; !0I k/ of the scattering matrix S.k/ is
a C1-smooth function of !; !0 2 S

d�1 and it tends to zero faster than any power
of k�1 as k ! 1. Thus, it suffices to describe the structure of s.!; !0I k/ in a
neighborhood of the diagonal ! D !0. Fix some ı 2 .0; 1/; for an arbitrary point
!0 2 S

d�1, let �.!0/ � S
d�1 be the conical neighborhood of !0 given by

�.!0/ D f! 2 S
d�1 W h!; !0i > ıg: (2.15)

Let u˙ be as in (2.14). We set

@!0
u D hru; !0i;

where the gradient of u D u.x; p/ is taken in the x variable. For !; !0 2 �.!0/,
define

s
.N /
0 .!; !0I k/ D �i�kd�2.2�/�d

�
� Z

ƒ!0

Œu
.N /
C .x; k!/.@!0

u.N /
� /.x; k!0/

� .@!0
u

.N /
C /.x; k!/u.N /

� .x; k!0/�dx�

� 2i

Z

ƒ!0

hA.x/; !0iu.N /
C .x; k!/u.N /

� .x; k!0/dx

�

:

(2.16)

The integrals in (2.16) do not converge absolutely and should be understood as os-
cillatory integrals. In other words, (2.16) should be understood as a distribution on
�.!0/ ��.!0/.

Proposition 2.4. [19] For any q 2 N there exists N D N.q/ 2 N such that for any

!0 2 S
d�1, the kernel

Qs.N /.!; !0I k/ D s.!; !0I k/ � s.N /
0 .!; !0I k/

belongs to the class C q.�.!0/ ��.!0//, and its C q-norm is O.k�q/ as k ! 1.
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2.5. The scattering matrix as a ‰DO on the sphere. Below we represent the
scattering matrix S.k/ as a semiclassical ‰DO on the sphere. The semiclassical
parameter is h D k�1. The idea to represent the scattering matrix as a ‰DO on the
sphere goes back to [4]. The statements almost identical to Lemma 2.5 can be found
in [19], Propositions 6.1 and 6.4, and [21], Section 8.4, but for technical reasons
these statements are not sufficient for our purposes. A related work (but written from
a very different viewpoint) is [3], where the scattering matrix is represented as a
Fourier integral operator corresponding to the classical scattering relation.

Lemma 2.5. Let assumptions (1.1) hold, and letm D minf1; ��1g. For any q 2 N,

the scattering matrix can be written as

S.k/ D I C Opk�1 Œ��CRq.k/; (2.17)

where

(i) the symbol � can be represented as

� D �0 C k�1�1; (2.18)

with �0; �1 2 �
m and

�0.!; �/ D exp.iM.!; �// � 1I (2.19)

(ii) the operator Rq.k/ has an integral kernel in the class C q.Sd�1 � S
d�1/ and

its C q-norm is O.k�q/ as k ! 1.

Proof. 1) Let  1;  2 2 C1.Sd�1/ be functions with disjoint supports. Then
 1S.k/ 2 has a C1-smooth integral kernel which decays faster than any power
of k�1 as k ! 1, see e.g. [1]. The same comment applies to  1 Opk�1 Œa� 2 with
a 2 �

m. This shows that using a sufficiently fine partition of unity on the sphere,
one easily reduces the problem to approximating the integral kernel of S.k/ locally
in any conical neighborhood �.!0/, see (2.15). Thus, we can use Proposition 2.4.

2) Let us rearrange the integrand in (2.16). Denote

w˙.x; p/ D ei'˙.x; Op/v
.N /
˙ .x; p/; (2.20)

Qw˙.x; p/ D kei'˙.x; Op/.v
.N /
˙ .x; p/ � 1/; (2.21)

so that from (2.14),

u˙.x; k!/ D eikhx;!iw˙.x; k!/

D eikhx;!i.ei'˙.x;!/ C k�1 Qw˙.x; k!//;

.@!0
u˙/.x; k!/ D eikhx;!iŒikh!0; !iei'˙.x;!/

C ih!0; !i Qw˙.x; k!/C .@!0
w˙/.x; k!/�:
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Now some elementary algebra shows that formula (2.16) can be rewritten as

s
.N /
0 .!; !0I k/ D

� k

2�

�d�1
Z

ƒ!0

e�ikh!�!0;xia.!; !0; x/dx; (2.22)

where

a.!; !0; x/ D 1

2
h!0; ! C !0i exp.i'�.x; !

0/ � i'C.x; !//C k�1a1.!; !
0; x/;

(2.23)
and

2a1.!; !
0; x/ D h!; !0i.e�i'C.x;!/ Qw�.x; k!

0/C QwC.x; k!/w�.x; k!
0//

C h!0; !0i.ei'�.x;!0/ QwC.x; k!/C wC.x; k!/ Qw�.x; k!
0//

C i.@!0
wC/.x; k!/w�.x; k!

0/ � iwC.x; k!/.@!0
w�/.x; k!

0/

� 2hA.x/; !0iwC.x; k!/w�.x; k!
0/:

(2.24)

Note that the choice a.!; !0; x/ D 1
2
h! C !0; !0i in (2.22) yields a ı-function

on the sphere. Thus, we can write

s
.N /
0 .!; !0I k/ � ı.! � !0/

D
� k

2�

�d�1
Z

ƒ!0

e�ikh!�!0;xi.a0 C k�1a1/.!; !
0; x/dx;

(2.25)

where

a0.!; !
0; x/ D 1

2
h!0; ! C !0i.exp.i'�.x; !

0/ � i'C.x; !//� 1/: (2.26)

3) Let us change variables in the integral (2.25). Instead of integrating over
x 2 ƒ!0

, we shall integrate over � 2 ƒ! , where

x D � � h�; !0i
h! C !0; !0i.! C !0/: (2.27)

Recall that !; !0 2 �.!0/, and so the denominator in (2.27) does not vanish. An
inspection shows that

hx; ! � !0i D h�; ! � !0i:
Thus, we obtain

s
.N /
0 .!; !0I k/ � ı.! � !0/

D
� k

2�

�d�1
Z

ƒ!

e�ikh!�!0;�ib.!; !0; �/d�;
(2.28)
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where b D b0 C k�1b1 with

bj .!; !
0; �/ D J.!; !0/aj .!; !

0; x.�// (2.29)

and J.!; !0/ denotes the Jacobian of the linear map (2.27) considered as a map from
ƒ! toƒ!0

. It is easy to see that J.!; !0/ is a smooth function of !; !0 2 �.!0/ and

J.!; !/ D h!; !0i�1: (2.30)

4) The right hand side of (2.28) is a semiclassical ‰DO with the amplitude b and
a semiclassical parameter h D k�1, see (2.8). In order to complete the proof, by
Proposition 2.2 if suffices to check the estimates

j@˛
x@

ˇ
!@



!0bj .!; !

0; �/j � C˛ˇ
h�i�m�j˛j; (2.31)

for j D 0; 1 and all multi-indices ˛; ˇ; 
 uniformly over k � 1, and to check the
identity

b0.!; !; �/ D exp.iM.!; �//� 1: (2.32)

Let us first check (2.32). Recalling the definition (1.3) ofM and the definition (2.10)
of '˙, we get

M.!; �/ D '�.�; !/ � 'C.�; !/:

From this and (2.26), (2.29) and (2.30), we obtain

b0.!; !; �/ D J.!; !/a0.!; !; x.�// D exp.iM.!; x.�/// � 1;
where x.�/ is the linear map (2.27). Next, by the definition of the map x.�/, for
! D !0 it takes the form x.�/ D �C c!, and by the definition of the functionM we
have

M.!; � C c!/ D M.!; �/:

Thus, we obtain (2.32).

5) It remains to check that the estimates (2.31) are satisfied. This is essentially a
consequence of Proposition 2.3; let us check this. Recalling that m D minf1; �� 1g
and using the estimates (2.12) and (2.13), we obtain

j@˛
x@

ˇ
!'˙.x; !/j � C˛ˇ hxi�m�j˛j;

j@˛
x@

ˇ
! Qw˙.x; k!/j � C˛ˇ hxi�m�j˛j;

j@˛
x@

ˇ
!.@!0

w˙/.x; k!/j � C˛ˇ hxi�m�j˛j;

j@˛
x@

ˇ
!w˙.x; k!/j � C˛ˇ hxi�j˛j;

where all the estimates are uniform in k � 1. It follows that a0 and a1, defined
by (2.26) and (2.24), respectively, satisfy

j@˛
x@

ˇ
!@



!0aj .!; !

0; x/j � C˛ˇ hxi�m�j˛j (2.33)

uniformly in k � 1. Now from (2.27), (2.29), and (2.33) by an elementary calculation
we obtain (2.31).
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3. Proof of Theorem 1.1

3.1. The case of a monomial '

Lemma 3.1. Assume the hypothesis of Theorem 1.1. Then for any integers `1 � 0,

`2 � 0 such that `1 C`2 > .d�1/=m,m D minf1; ��1g, asymptotic formula (1.16)
holds true.

Proof. By Lemma 2.5, we have

.S.k/ � I /`1.S.k/� � I /`2 D .Opk�1 Œ��CRq.k//
`1..Opk�1 Œ��/

� CRq.k/
�/`2 ;

(3.1)
where � , Rq.k/ are as described in Lemma 2.5. Expanding the brackets in (3.1), we
obtain

.S.k/ � I /`1.S.k/� � I /`2 D .Opk�1 Œ��/
`1..Opk�1 Œ��/

�/`2 CQq.k/; (3.2)

whereQq.k/ is the sum of the products of operators, to be estimated below. For the
first term in the right hand side in (3.2), by Proposition 2.1, we have

lim
k!1

� k

2�

��dC1

Tr..Opk�1 Œ��/
`1..Opk�1 Œ��/

�/`2/

D
Z

Sd�1

Z

ƒ!

.eiM.!;�/ � 1/`1.e�iM.!;�/ � 1/`2d�d!:

Let us check that by a suitable choice of q one can ensure that the error term TrQq.k/

remains bounded as k ! 1; this will certainly yield the desired asymptotics (1.16).
Recall that by Lemma 2.5, the operator Rq.k/ has an integral kernel in the class
C q.Sd�1 � S

d�1/ and its C q-norm is O.k�q/ as k ! 1. Thus, by choosing q
sufficiently large, we can make sure that the estimate (k�k1 is the trace norm)

kRq.k/k1 D O.1/; k ! 1; (3.3)

holds true. Next, using the estimates

jTr.AB/j � kAkkBk1 and kCk � kCk1

and recalling that Qq.k/ arose as a remainder term in the expansion of the brackets
in the left hand side of (3.1), we obtain

jTr.Qq.k//j � C.`1; `2/ max
1�j �`1C`2

fkRq.k/kj
1 ; kOpk�1 Œ��k`1C`2�j g: (3.4)

By (2.3), we have
kOpk�1 Œ��k D O.1/; k ! 1:

Combining the last inequality with (3.3), we obtain that Tr.Qq.k// is bounded as
k ! 1, as required.
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3.2. Application of the Weierstrass approximation theorem

Lemma 3.2. Let `0 be an even natural number and let �, �k (k � 1) be � -finite

measures on T n f1g such that

Z

T

jz � 1j`0d�.z/ < 1;

Z

T

jz � 1j`0d�k.z/ < 1; (3.5)

for all k. Suppose that for all integers `1 � 0, `2 � 0 such that `1 C `2 � `0, the

relation

lim
k!1

Z

T

.z � 1/`1. Nz � 1/`2d�k.z/ D
Z

T

.z � 1/`1. Nz � 1/`2d�.z/ (3.6)

holds true. Then for any ' 2 C.T / such that '.z/jz � 1j�`0 is continuous on T , the

relation

lim
k!1

Z

T

'.z/d�k.z/ D
Z

T

'.z/d�.z/: (3.7)

holds true.

Proof. Applying the Weierstrass approximation theorem to '.z/jz � 1j�`0 , for any
" > 0 we obtain a polynomial '0.z/ in z, Nz such that

j'.z/jz � 1j�`0 � '0.z/j � "; z 2 T :

Let us define '˙.z/ D .Re '0.z/˙ "/jz � 1j`0 , then it follows from the above that

'�.z/ � Re '.z/ � 'C.z/; z 2 T ; (3.8)

'C.z/ � '�.z/ D 2"jz � 1j`0 : (3.9)

By the construction of '˙, it can be represented as a polynomial in w D z � 1,
Nw D Nz � 1 involving only products w`1 Nw`2 with `1 C `2 � `0. Thus, by (3.8)

and (3.9) we can write
Z

T

'�.z/d�.z/ �
Z

T

Re '.z/d�.z/ �
Z

T

'C.z/d�.z/; (3.10)

Z

T

'�.z/d�k.z/ �
Z

T

Re '.z/d�k.z/ �
Z

T

'C.z/d�k.z/; (3.11)

Z

T

'C.z/d�.z/ �
Z

T

'�.z/d�.z/ D 2"

Z

T

jz � 1j`0d�.z/; (3.12)

where all integrals are absolutely convergent by (3.5). Now we can use (3.6) to pass
to the limit in (3.11). Using (3.10) and (3.12) and denoting by C the value of the
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integral in the right hand side of (3.12), we obtain

lim sup
k!1

Z

T

Re '.z/d�k.z/ �
Z

T

'C.z/d�.z/ �
Z

T

Re '.z/d�.z/C 2"C;

lim inf
k!1

Z

T

Re '.z/d�k.z/ �
Z

T

'�.z/d�.z/ �
Z

T

Re '.z/d�.z/ � 2"C:

Since " > 0 may be taken arbitrary small, this yields

lim
k!1

Z

T

Re '.z/d�k.z/ D
Z

T

Re '.z/d�.z/:

Since the same argument can be applied to the imaginary part of ', we obtain the
required statement.

3.3. Proof of Theorem 1.1. Recall that the measures �k and � are defined in (1.5)
and (1.6). By (1.7), (1.8), the conclusion of Lemma 3.1 can be written as

lim
k!1

k�dC1

Z

T

.z � 1/`1. Nz � 1/`2d�k.z/ D
Z

T

.z � 1/`1. Nz � 1/`2d�.z/:

Now it remains to apply Lemma 3.2 with �k D k�dC1�k and � D �.
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