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Elliptic Functions According to
Eisenstein and Kronecker: An Update
Newly found notes of lectures by Kronecker on the work of Eisenstein

Pierre Charollois (Université Paris 6, France) and Robert Sczech (Rutgers University, Newark, USA)

This article introduces a set of recently discovered lecture
notes from the last course of Leopold Kronecker, delivered
a few weeks before his death in December 1891. The notes,
written by F. von Dalwigk, elaborate on the late recognition
by Kronecker of the importance of the “Eisenstein summation
process”, invented by the “companion of his youth” in order
to deal with conditionally convergent series that are known
today as Eisenstein series. We take this opportunity to give a
brief update of the well known book by André Weil (1976)
that brought these results of Eisenstein and Kronecker back
to light. We believe that Eisenstein’s approach to the theory
of elliptic functions was in fact a very important part of Kro-
necker’s planned proof of his visionary “Jugendtraum”.

1 Introduction

Born in 1823, Leopold Kronecker died in Berlin on 29 De-
cember 18911 at the age of 68, precisely 15 days after deliver-
ing the last lecture of his university course entitled “On ellip-
tic functions depending on two pairs of real variables”. This
historical information was gathered from recently discovered
lecture notes at the library of the University of Saarbrücken.
Before discussing the content and the author of these hand-
written notes, we wish to recall the circumstances of their
discovery. The original discovery is due to Professor Franz
Lemmermeyer, who started but did not finish the task of re-
typing the text written in old style German cursive handwrit-
ing. The manuscript then got lost during a library move. Being
interested to learn more about Kronecker’s work and gain in-
sight into his so-called “liebster Jugendtraum”, we decided to
enlist the help of Simone Schulze at the library in finding it.
After a search effort which lasted a few weeks, the complete
set of notes was finally found and the library even produced a
high quality digital copy, which is now available to the public
[Cw]. We thank Ms Schulze for her help and we also thank
Franz-Josef Rosselli, who undertook the effort to translate the
cursive German handwriting (prevailing in the 19th century)
into modern German typeface [Cw].

The manuscript was written by Friedrich von Dalwigk, a
graduate student at the time, who was just finishing his dis-
sertation on theta functions of many variables [vD]. Later,
von Dalwigk became a professor of applied mathematics at
the University of Marburg (1897–1923). Although the course
only consisted of six lectures (due to the premature death of
Kronecker), the whole manuscript is more than 120 pages,

1 According to the tombstone on his grave, Kronecker died on 23 Decem-
ber 1891.

Gotthold Eisenstein (1823–1852) and Leopold Kronecker (1823–1891)
(left to right)

with many appendices, partly written by von Dalwigk, relying
on published papers of Kronecker as well as unpublished pa-
pers from Kronecker’s “Nachlass”. Dalwigk explicitly men-
tions the word “Nachlass” in the manuscript. He is likely to
have had access to that specific document from his colleague
Hensel in Marburg, who was in possession of all the scientific
papers of Kronecker at the time. As we learned from Hasse
and Edwards [Ed], the personal papers of Kronecker were lost
in the chaotic events surrounding World War II. Most proba-
bly, they were destroyed by a fire caused by exploding muni-
tions in an old mine near Göttingen. That mine was used to
store some of the collections of the Göttingen Library in 1945.
This dramatic event is only part of the long-lasting spell put
on the posterity of Eisenstein’s ideas, as predicted by André
Weil in his essay [We1].

At any rate, the care and the amount of detail included in
the manuscript is extraordinary and leads us to think that it
was written with the ultimate intention to publish it as a book.

We know from a letter of Kronecker to his friend Georg
Cantor, who was the first president of the newly founded Ger-
man Mathematical Association (DMV) and who invited Kro-
necker to deliver the opening address at the first annual meet-
ing of the DMV in 1891, that Kronecker intended to talk at
that meeting about the “forgotten” work of Eisenstein. In that
letter, Kronecker apologises for not being able to attend the
meeting due to the death of his wife Fanni. It is very likely
that the lecture notes in question are an expanded version of
his intended talk.

Kronecker was indeed a great mathematician who made
fundamental contributions to algebra and number theory. We
mention here only his “Jugendtraum”, which, historically,
gave rise to class field theory and to Hilbert’s 12th prob-
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lem (the analytic generation of all abelian extensions of a
given number field), one of the great outstanding problems
in classical algebraic number theory. The celebrated conjec-
tures of Stark (published in a sequence of four papers during
the 1970s) offer a partial solution to a problem with ultimate
roots in the work of Kronecker and Eisenstein.

In passing, we wish to mention two standard references
about the work of Kronecker in number theory. The first chap-
ter of Siegel’s Lectures on Advanced Number Theory [Si] is
devoted to the so-called Kronecker limit formulas with ap-
plications (Kronecker’s solution of Pell’s equation). The sec-
ond reference is the book by André Weil [We2] on elliptic
functions according to Eisenstein and Kronecker. The lecture
notes under review can be roughly classified as an extension
and elaboration of the material discussed by Weil. Besides
resurrecting the ideas of Eisenstein from final oblivion, the
book of Weil is also a valuable source for many anecdotes
about Eisenstein and Kronecker. Our favourite anecdote is
the story that Kronecker, in the public defence of his PhD,
claimed that mathematics is both science and art; his friend
Eisenstein challenged him publicly by claiming that mathe-
matics is art only.

2 Kronecker and the work of Eisenstein

Except for a letter to Dedekind dated 15 March 1880, there
is no comprehensive statement of the Jugendtraum in the pa-
pers of Kronecker. In that letter, Kronecker reports on his re-
cent progress towards a proof of his conjecture (the Jugend-
traum) that all abelian extensions of an imaginary quadratic
field F are generated by division values of suitable elliptic
functions admitting complex multiplication by elements of F
together with the corresponding singular moduli, that is, the
values of the j-invariant of the corresponding elliptic curves.
He expresses hope of completing the proof soon. In closing,
he regrets having to postpone the problem of finding the ana-
logue of singular moduli for arbitrary complex number fields
(Hilbert’s 12th problem) until the case of imaginary quadratic
fields is completely resolved. Ten years later, in his lectures
on elliptic functions, he does not mention his work on the Ju-
gendtraum at all. Instead, he concentrates on reviewing and
generalising the work of Eisenstein.

In what follows, we wish to give a hypothetical expla-
nation of why the approach of Eisenstein may have been an
important step in Kronecker’s envisioned proof of his Jugend-
traum. Namely, we are going to carry out Kronecker’s pro-
gramme in the simpler setting of abelian extensions of the
field of rational numbers by modifying a basic example given
by Eisenstein in his great paper [Eis2].

Let u be a complex number that is not an integer. Then,
the coset Z + u ⊂ C \ Z does not contain the zero element so
all the terms of the series

φ(u) =
∑

m∈Z+u

1
m

are well defined but the series does not converge absolutely.
It is therefore necessary to specify an order of summation.

Following Eisenstein, we define

φ(u) = lim
t→+∞

∑
m∈Z+u,
|m|<t

1
m
=

1
u
+

∞∑
n=1

(
1

u + n
+

1
u − n

)

=
1
u
+

∞∑
n=1

2u
u2 − n2 .

The last series on the right converges absolutely. The function
φ is odd and 1-periodic, hence φ( 1

2 ) = 0. Next, we consider
the special value φ( 1

4 ) and we obtain

φ

(
1
4

)
=
∑

m∈Z+ 1
4

1
m
= 4

∑
�∈4Z+1

1
�

= 4
(
1 − 1

3
+

1
5
− 1

7
+

1
9
+ . . .

)
= 4
∫ 1

0

dx
1 + x2 = π.

We are now ready to derive the fundamental property of the
φ function, its addition formula. To this end, we let u, v,w be
three complex numbers, none of which is an integer, such that
u + v + w = 0. Then, the equation

p + q + r = 0 (1)

with p ∈ Z + u, q ∈ Z + v, r ∈ Z + w has infinitely many
solutions that can be obtained by letting p, q (or q, r or r, p)
run independently. Since pqr � 0, Equation (1) becomes

1
pq
+

1
qr
+

1
rp
= 0.

It is the starting point of Eisenstein’s method, which he learnt
from his high school teacher Schellbach, to average this ra-
tional identity over all solutions of Equation (1). Since the re-
sulting double series are conditionally convergent, we again
need to pay attention to the ordering of the series. To this end,
we choose three non-zero fixed real parameters α, β, γ such
that α + β + γ = 0. Then,

αp − βq = γq − αr = βr − γp,

which allows us to write∑
|αp−βq|<t

1
pq
+
∑

|γq−αr|<t

1
qr
+
∑

|βr−γp|<t

1
rp
= 0.

It is easy to see that each of these series converges absolutely
for every t > 0. In order to pass to the limit t → ∞, we need
the following lemma:

Lemma 2.1.

lim
t→∞


∑

|αp−βq|<t

1
pq

 = φ(u)φ(v) + π2 signα sign β.

For a generalisation and a proof of this lemma, we refer
to [Scz3, Th.2]. As a corollary, we obtain

φ(u)φ(v) + φ(v)φ(w) + φ(w)φ(u) = π2, (2)

which is the addition formula for the function φ. To prove (2)
without using Lemma 2.1, it is enough to show that the left
side is independent of u, v because the specialisation at u =
v = 1

4 ,w = −
1
2 provides the value π2. That was the approach

taken by Eisenstein in his original proof of (2).
To study arithmetic applications, we eliminate the period

π by introducing the function

c(u) =
φ(u)
φ(1/4)

=
φ(u)
π
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and its Cayley transform

e(u) =
c(u) + i
c(u) − i

.

The addition formula (2) immediately implies

e(u)e(v) = e(u + v).

From here, it follows that e(u) = e2πiu and c(u) = cot(πu).
Iterating the addition formula for the cotangent function, i.e.

c(u + v) =
c(u)c(v) − 1
c(u) + c(v)

,

we obtain the formula

c(nu) =
Un
(
c(u)
)

Vn
(
c(u)
) , n = 1, 2, 3, 4, . . . , (3)

with polynomials Un,Vn ∈ Z[t] given explicitly by

Un(t) = Re (t + i)n, Vn(t) = Im (t + i)n.

A formula of type (3) was called a “transformation formula”
in the 19th century. The elliptic analogues of (3) played a
prominent role in the work of Kronecker. Taking u ∈ Q with
denominator n > 1, we conclude that the numbers c(u) are
the roots of Vn(t) = 0, that is, c(u) is a real algebraic number
whenever u is a non-integral rational number. One can refine
this result and give a more precise proof:

Proposition 2.2. The number c(u) is an algebraic integer if
and only if n is not the power of an odd prime. If n = pk, with
an odd prime p and k > 0, then p c(u) is an algebraic integer.
Moreover, c(u) is a unit if and only if neither n nor n/2 is a
power of an odd prime.

Theorem 2.3 (Kronecker-Weber). The set of real numbers
c(Q \ Z) generates the real subfield of the maximal abelian
extension of Q.

Kronecker was interested in generalising these results to
the case of elliptic functions with period lattice being an ideal
in an imaginary quadratic field. One of the difficulties he faced
was that the addition formula for elliptic functions is in gen-
eral algebraic and not rational, as in the case of the cotangent
function. To the best of our knowledge, the proof of the Ju-
gendtraum as envisioned by Kronecker has never been com-
pleted.2 Except for the case of imaginary quadratic fields and
the case of the rational number field (both closely related
to the work of Kronecker), we do not even know whether
Hilbert’s 12th problem has a solution. This is partly related to
a classical theorem of Weierstrass asserting that every mero-
morphic function with algebraic addition law is either elliptic,
circular or rational.

Instead of the series defining φ(u), Kronecker preferred to
study the more general series

φ(u, ξ) =
∞∑

n=−∞

e(−nξ)
u + n

= 2πi
e(ξu)

e(u) − 1
, 0 < ξ < 1, (4)

where u is again a complex number that is not an integer. The
introduction of the second variable ξ is very natural and is
suggested by Fourier analysis. Note that the limiting case

lim
ξ→0
ξ>0

φ(u, ξ) = φ(u) − iπ

2 See the comment linked to interpretation (c) in [HH].

relates φ(u, ξ) to the Eisenstein function φ. The right side
of Equation (4) is essentially the generating function for the
Bernoulli polynomials. Expanding the left side into a power
series in u, one obtains the Fourier expansion of the Bernoulli
polynomials. The above proof of the addition formula for the
cotangent function applies to φ(u, ξ) as well and yields addi-
tion formulas for the Bernoulli polynomials. Due to the fac-
tor e(−nξ) in the numerator, the convergence of this series is
slightly better than that of the cotangent series but is still con-
ditional. A substantial part of the lecture notes is devoted to
the study of the elliptic analogue of (4), written in Kronecker’s
notation,

Ser (ξ, η, u, τ) = lim
N→+∞

lim
M→+∞

N∑
n=−N

M∑
m=−M

e(−mξ + nη)
u + nτ + m

, (5)

where ξ, η is a pair of real variables and τ is a point in the
upper half space. The complex variable u must be restricted to
the complement of the lattice Z+ τZ in C.Writing u = στ+ρ
as a linear combination of τ and 1 with real coefficients σ, ρ,
this series can be viewed as a function of two pairs of real
variables (ξ, η), (σ, ρ), the ones referred to in the title of the
lecture notes.

Various alternative ways to sum the conditionally conver-
gent series (5) are discussed in the manuscript. It is a remark-
able fact that, in all cases, the value obtained for the sum is
independent of the limiting process chosen. Kronecker’s main
result expresses these series in terms of Jacobi theta series. Let

ϑ(z, τ) =ϑ1(z, τ) =
∑

n∈Z+ 1
2

e
(

n2τ

2
+ n
(
z − 1

2

))

= 2 q
1
8 sin(πz)

∏
n≥1

(1 − qn)
(
1 − qne(z)

)(
1 − qne(−z)

)
,

with a complex variable z, a point τ in the upper half plane
and q = e(τ).

Theorem 2.4 (Kronecker). Suppose 0 < Im u < Im τ and
0 < ξ < 1. Then,

Ser (ξ, η, u, τ) = e(ξu)
ϑ′(0, τ)ϑ(u + η + ξτ, τ)
ϑ(u, τ)ϑ(η + ξτ, τ)

. (6)

This result is reminiscent of the so-called limit formula
of Kronecker, which is not discussed in the lecture notes but
deserves to be stated here: let τ, τ′ be two complex numbers
with Im τ > 0 and Im τ′ < 0 and let 0 ≤ ξ, η < 1 be two
real numbers, not both equal to zero. Writing u = η − ξτ, v =
η − ξτ′, the second limit formula is the identity

(τ − τ′)
2πi

∑
m,n

e(mξ + nη)
(mτ + n)(mτ′ + n)

= − log
ϑ(u, τ)ϑ(v,−τ′)
η(τ)η(−τ′) − πi (u − v)2

τ − τ′ , (7)

where η(τ) refers to the Dedekind eta function and the term
(m, n) = (0, 0) needs to be excluded from the sum. Again, con-
vergence is only conditional so a specific order of summation
as in (5) needs to be observed.

Historically, the notion of complex multiplication of ellip-
tic functions appeared for the first time in the work of Abel.
Pages 64–67 of Kronecker’s lecture notes are devoted to the
task of expressing the elliptic functions used by Abel in terms
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of the Kronecker series Ser(ξ, η, u, τ). This is perhaps one of
the highlights of the manuscript and deserves special atten-
tion. It is very likely that Kronecker’s conception of the Ju-
gendtraum was the result of a close study of the work of Abel.

3 Recent developments

It would be wise to leave the complete discussion of the
legacy of Eisenstein or Kronecker to serious historians. We
offer, instead, a brief survey of several recent developments
that feature Eisenstein’s summation process and Kronecker’s
Theorem 2.4 for the series Ser (ξ, η, u, τ)

Algebraicity and p-adic interpolation of
Eisenstein–Kronecker numbers
It was already observed by Weil in his 1976 book that the
combination of the methods of Eisenstein and Kronecker
gives direct access to Damerell’s classical result (1971) on
the algebraicity of values of L-functions attached to a Hecke
Grössencharakter of an imaginary quadratic field.

Weil also anticipated that their methods would extend to
the investigation of the p-adic properties of these algebraic
numbers. In the following 10 years, the works of Manin-
Vis̆ik, Katz and Yager among others provided the expected
p-adic interpolation of this family of special values. To give a
taste of the results in question, we wish to introduce a recent
work by Bannai-Kobayashi (2010), based on Kronecker’s se-
ries, that enables a similar construction.

Our first task is to connect the series Ser to a series that
includes an s-parameter pertaining to the style of Hecke. Let
τ be a complex number in the upper half plane and let A = Imτ

π

be the area of the fundamental domain of the lattice Λ = Z +
τZ divided by π. Let ψ be the character ψ(z) = e

z−z
A . For a ≥ 0

an integer, we introduce the Kronecker-Eisenstein series as

K∗a(z,w, s, τ) =
∗∑
λ∈Λ

(z + λ)a

|z + λ|2s ψ(zw), Re(s) > a/2 + 1,

where the ∗ means that the summation excludes λ = −z
if z ∈ Λ. It is a continuous function of the parameters
z ∈ C \ Λ, w ∈ C and it has meromorphic continuation to
the whole s-plane, with possible poles only at s = 0 (if a = 0
and z ∈ Λ) and s = 1 (if a = 0 and w ∈ Λ). Moreover, it sat-
isfies a functional equation relating the value at s to the value
at a + 1 − s.Write w = η + ξτ with real variables ξ, η and ab-
breviate the central value K∗1(z,w, 1, τ) by K(z,w) when there
is no ambiguity on the lattice. This specific function is related
to Kronecker’s series by the identity

K(z,w) = K∗1(z,w, 1, τ) = Ser (ξ, η, z, τ),

where w = η + ξτ, at least if z,w � Λ, using [We1, §5, p. 72].
In this new set of notations, Theorem 2.4 can be restated as

K(z,w) = ezw/A Θ(z,w),

where

Θ(z,w) =
ϑ′(0, τ)ϑ(z + w, τ)
ϑ(z, τ)ϑ(w, τ)

(8)

denotes the meromorphic function appearing as the ratio in
Equation (6). It will play a major role in the remainder of this
text so we name it the “Kronecker theta function”, in agree-
ment with the terminology in [BK].

Given a pair of integers a ≥ 0, b > 0 and z0,w0 ∈ C, the
Eisenstein–Kronecker numbers are defined as

e∗a,b(z0,w0, τ) = K∗a+b(z0,w0, b, τ).

When b > a + 2, these numbers include, in particular, the
values of the absolutely convergent partial Hecke L-series

e∗a,b(0, 0, τ) =
∑
λ∈Z+τZ

λ
a

λb ,

which should be considered as elliptic analogues of the
Bernoulli numbers. As such, the Eisenstein–Kronecker num-
bers can be packaged into a generating series that is the ellip-
tic analogue of the cotangent function and its relative φ(u, ξ).
To obtain the nice two-variables generating series, it is enough
to translate and slightly alter the Kronecker theta function in
order to define

Θz0,w0 (z,w) = e−
(z0+z)w0+wz0

A Θ(z0 + z,w0 + w).

Its Laurent expansion around z = w = 0 displays exactly the
collection of Eisenstein–Kronecker numbers.

Proposition 3.1. Fix z0,w0 ∈ C.We have the following Lau-
rent expansion near z = w = 0 :

Θz0,w0 (z,w) = ψ(w0z0)
δ(z0)

z
+
δ(w0)

w

+
∑

a≥0,b>0

(−1)a+b−1
e∗a,b(z0,w0, τ)

a!Aa zb−1wa, (9)

where δ(u) = 1 if u ∈ Λ and 0 otherwise.

If, in addition, τ is a CM point and z0,w0 are torsion points
over the lattice Λ then these coefficients are algebraic.

Theorem 3.2. Let Λ = Z + τZ be a lattice in C. Assume that
the complex torusC/Λ has complex multiplication by the ring
of integers of an imaginary quadratic field k, and possesses a
Weierstrass model E : y2 = 4x3 − g2x − g3 defined over a
number field F. Fix N > 1 an integer. For z0,w0, two complex
numbers such that Nz0,Nw0 ∈ Λ, the Laurent expansion in (9)
has coefficients in the number field F(E[4N2]). In particular,
the rescaled Eisenstein–Kronecker numbers

e∗a,b(z0,w0, τ)/Aa

are algebraic.

We refer to [BK], Th. 1 and Cor. 2.11 for the proofs. The
above construction enables Bannai and Kobayashi to recover
Damerell’s result along the way.

Let p be a prime number. Bernoulli numbers and Bernoulli
polynomials satisfy a whole collection of congruences mod-
ulo powers of p, known as “Kummer congruences". These
congruences are incorporated in the construction of the Kubota-
Leopoldt p-adic zeta function ζp(s), s ∈ Zp, which interpo-
lates the values of the Riemann zeta function at negative inte-
gers, as given by the Bernoulli numbers.

Similarly, Eisenstein–Kronecker numbers satisfy a col-
lection of congruences that are the building blocks for the
construction of p-adic L-functions of two-variables. Since
Bannai-Kobayashi also have a generating series at their dis-
posal, they can interpolate the Eisenstein–Kronecker numbers
p-adically, not only when p splits in k, like in the work of Katz
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(ordinary case), but also when p is inert in k (supersingular
case).

It seems appropriate to remark in passing that in this p-
adic setting, the Kronecker limit formula (7) also has a coun-
terpart. It has been originally obtained by Katz (1976) and
proved to be crucial in the study of Euler systems attached to
elliptic units.

To complete this p-adic picture and set the stage for a re-
curring theme for sections to come, we would like to men-
tion a generalisation by Colmez-Schneps [CS] of the above
construction of Manin-Vis̆ik and Katz. Colmez and Schneps
consider the case where the Hecke character is attached to an
extension F of degree n over the imaginary quadratic field k
(the previous setting thus corresponds to n = 1). The field F
might not necessarily be a CM field. Building on the tech-
niques of [Co], they can construct a p-adic L-function for F
by interpolating the algebraic numbers arising from the Lau-
rent expansion of certain linear combinations of products of
n generating series of Kronecker’s type, each of them being
evaluated at torsion points over the lattice Λ. The juxtaposi-
tion of n copies of Proposition 3.1-Theorem 3.2 allows them
to bootstrap the case n = 1 to arbitrary n ≥ 1 using their
identity [CS, Eq. (31)].

Periods of Hecke eigenforms
Let (z0,w0) be a fixed pair of N-torsion points over the lat-
tice Λ. As functions of the τ variable, the modular forms
e∗a,b(z0,w0, τ) are Eisenstein series for the principal congru-
ence subgroup Γ(N). In particular, the Laurent expansion (9)
for the translated Kronecker theta function at z = w = 0 is a
generating series for Eisenstein series of increasing weight
and fixed level. Its decomposition under the action of the
Hecke algebra thus possesses only Eisenstein components.
From this perspective, interesting new phenomena start to ap-
pear when one considers a product of two Kronecker theta
functions.

Such a product encodes all period polynomials of modular
forms of all weights, at least in the level one case.3 This is the
content of the main result of Zagier’s paper [Za1], which we
now describe.

Let Mk be the C-vector space of modular forms of weight
k ≥ 4 on SL2(Z) and let Sk ⊂ Mk be the subspace of cusp
forms, equipped with the Petersson scalar product ( f , g) and
its basis of normalised Hecke eigenforms Bcusp

k . The period
polynomial attached to f ∈ S k is the polynomial of degree
≤ k − 2 defined by

r f (X) =
∫ i∞

0
f (τ)(τ − X)k−2dτ.

The Eichler-Shimura-Manin theory implies that the maps
f �→ rev

f and f �→ rod
f assigning to f the even and the odd

part of r f are both injective. Moreover, if f is a normalised
Hecke eigenform then the two-variables polynomial

Rf (X, Y) =
rev

f (X)rod
f (Y) + rod

f (X)rev
f (Y)

(2i)k−3( f , f )
∈ C[X, Y]

transforms under σ ∈ Gal(C/Q) as Rσ( f ) = σ(Rf ), so Rf has

3 A very recent preprint [CPZ] indicates that a similar result also holds for
arbitrary squarefree level.

coefficients in the number field generated by the Fourier co-
efficients of f . As a consequence, for each integer k > 0, the
finite sum

Ccusp
k (X, Y, τ) =

1
(k − 2)!

∑

f∈Bcusp
k

R f (X, Y) f (τ)

belongs to Q[X, Y][[q]]. Zagier starts to complete this cus-
pidal term by a contribution that arises from the Eisenstein
series in Mk, using the following convenient recipe. For any
even k > 0, let Bk be the usual k-th Bernoulli number and let

Ek(τ) = 1 − 2k
Bk

∑
m≥1

(∑
d|m

dk−1
)

qm

be the normalised weight k Eisenstein series for SL2(Z). Its
pair of period functions in X−1Q[X] is defined by the odd (and
even) rational fractions

rod
Ek

(X) =
k∑

h=0

Bh

h!
Bk−h

(k − h)!
Xh−1, rev

Ek
(X) = Xk−2 − 1

and they make up the contribution of Eisenstein series by the
rule

CEis
k (X, Y, τ) = −

(
rev

Ek
(X)rod

Ek
(Y) + rod

Ek
(X)rev

Ek
(Y)
)

Ek(τ).

The main identity of Zagier then establishes a remarkable
closed formula for the generating series

Cτ(X, Y, T ) =
(X + Y)(XY − 1)

X2Y2T 2 +

∞∑
k=2

(Ccusp
k +CEis

k )T k−2,

which factorises as a product of two Kronecker theta func-
tions:

Theorem 3.3 (Zagier [Za1]). In (XYT )−2Q[X, Y][[q, T ]], we
have

Cτ(X, Y, T ) = Θ(XT ′, YT ′)Θ(T ′,−XYT ′)/ω2, (10)

where ω = 2πi, T ′ = T/ω.

Equation (10) shows that complete information on Hecke
eigenforms of any desired weight for SL2(Z) and their period
polynomial is encoded in the Laurent expansion at T = 0 of
the right side. To further support that claim, Zagier explains
in the sequel paper [Za2] how to deduce from Equation (10)
an elementary proof of the Eichler-Selberg formula for traces
of Hecke operators on SL2(Z).

The period polynomials satisfy a collection of linear rela-
tions under the action of SL2(Z). These cocycle relations are
reflected using Equation (10) by relations satisfied by Kro-
necker’s theta functions, e.g., [Za1, p. 461]. A typical exam-
ple is

Cτ(X, Y, T ) +Cτ

(
1 − 1

X
, Y, T X

)
+Cτ

(
1

1 − X
, Y, T (1 − X)

)
= 0,

(11)
which is the counterpart of the classical relation for the period
polynomial

r f | 1 + U + U2 = 0, U =
(

1 −1
1 0

)
.

In the remainder of this paper, we explain how the method of
Eisenstein–Schellbach, when properly modulated, is the ade-
quate tool to produce systematically general (n − 1)-cocycle
relations for GLn(Z) involving products of n Kronecker theta
functions, including Equation (11) as a very special case.
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Trigonometric cocycles on GLn

Let 0 < a, b < 1 be rational numbers and x, y ∈ C \ Z be
complex parameters. We use the shorthand 0 < {t} < 1 for the
fractional part of a non-integral real number t. From a direct
computation or a mild generalisation of Lemma 2.1, one de-
duces the following relation, which amounts to the addition
formula for the function φ(u, ξ):

e(xa)e(yb)(
e(x) − 1

)(
e(y) − 1

) − e
(
(x + y)a

)
e
(
y{b − a})(

e(x + y) − 1
)(

e(y) − 1
)

− e
(
(x + y)b

)
e
(
x{a − b})(

e(x + y) − 1
)(

e(x) − 1
) = 0. (12)

As pointed out by the second author in [Scz2], this iden-
tity can naturally be recast in terms of the cohomology of
the group SL2(Z). The building blocks are products of two
copies of the trigonometric function φ(u, ξ). Given two pairs
u = (u1, u2) and ξ = (ξ1, ξ2)t, we set

Φ(u, ξ) = φ(u1, ξ1)φ(u2, ξ2).

To any matrix A =
(

a b
c d

)
∈ SL2(Z) is associated σ =

(
1 a
0 c

)
∈

M2(Z). If c � 0, we define

Ψ

(
a b
c d

)
(u, ξ) = sign(c)

∑
µ∈Z2/σZ2

Φ(uσ,σ−1(µ + ξ)).

If c = 0 then Ψ(A)(u, ξ) = 0 by definition. The next proposi-
tion stands for the case n = 2 of a more general (n−1)-cocycle
relation for the group GLn(Z) obtained in [Scz3, Cor. p. 598].

Proposition 3.4. Let A, B ∈ SL2(Z) be two matrices. For any
u in a dense open domain in C2 and any non-zero ξ ∈ Q2, the
following inhomogenous 1-cocycle relation holds:

Ψ(AB)(u, ξ) − Ψ(A)(u, ξ) − Ψ(B)(uA, A−1ξ) = 0.

The addition law (12) corresponds to the choice of matri-
ces A =

(
0 −1
1 0

)
and B =

(
1 1
−1 0

)
in this proposition.

The coefficients of the Laurent expansion at u = 0 of the
general (n−1)-cocycleΨ carry a great deal of arithmetic infor-
mation. According to the main result of [Scz3, Th. 1], the pair-
ing of Ψ with an (n − 1)-cycle, built out of the abelian group
generated by the fundamental units of a totally real number
field F of degree n, produces the values ζF(k) at non-positive
integers k of the Dedekind zeta function of F and thereby es-
tablishes their rationality. This provides a new proof, deeply
rooted in the Eisenstein–Schellbach method, of the Klingen–
Siegel rationality result.

An integral avatar of the cocycle Ψ was later introduced
by Charollois and Dasgupta to study the integrality proper-
ties of the values ζF(k), enabling them to deduce a new con-
struction of the p-adic L-functions of Cassou–Noguès and
Deligne–Ribet.

Combining their cohomological construction with the re-
cent work of Spiess, they also show in [CD] that the order of
vanishing of these p-adic L-functions at s = 0 is at least equal
to the expected one, as conjectured by Gross. This result was
already known from Wiles’ proof of the Iwasawa Main Con-
jecture.

On elliptic functions depending on four pairs of real
variables
Our goal in this last section is to propose a q-deformation of
the trigonometric cocycle Ψ to construct an elliptic cocycle,

where the role of the function φ(u, ξ) is now played by Kro-
necker’s theta function. It will make it clear that the trigono-
metric relations we have encountered so far are a specialisa-
tion of the elliptic ones when q→ 0, i.e. τ→ i∞.

Kronecker has not been given the opportunity to imple-
ment the Eisenstein–Schellbach method in his own elliptic
investigations. Let us now proceed by fixing τ in the upper
half-plane and first perform in Equation (12) the change of
variables

x← nτ + x,

y← n′τ + y.

We also aim to twist that equation by a pair of roots of unity
e(nr)e(n′s) with r, s ∈ Q and then sum over n, n′ ∈ Z. We
write x0 = aτ + r, y0 = bτ + s, q = e(τ) so that the real and
imaginary parts of x, x0, y, y0 make up four pairs of real vari-
ables. The first summand becomes

S := e(xa)e(yb)
∑

n,n′∈Z

e(nr)qnaqn′be(n′s)(
qne(x) − 1

)(
qn′e(y) − 1

) .

The assumption 0 < a < 1 ensures that 1 > |qa| > |q|, and
similarly for qb, so that this double series is absolutely con-
vergent. The sum S naturally splits as a product, whose value
is deduced from two consecutive uses of Kronecker’s Theo-
rem 2.4:

S = e(xa)e(yb)Θ(x, x0)Θ(y, y0).

A similar resummation process can be performed on the sec-
ond term and the third term of Equation (12). After simplifi-
cation by the common factor e(xa+yb), we obtain the identity

Θ(x, x0)Θ(y, y0) − Θ(x + y, x0)Θ(y, y0 − x0)
− Θ(x + y, y0)Θ(x, x0 − y0) = 0, (13)

which can be extended analytically to remove the restrictive
assumptions made on the parameters. Equation (13) is just an-
other form of the Riemann theta addition relation, also known
as the Fay trisecant identity. It simultaneously implies Equa-
tion (12) when τ→ i∞ and Equation (11) under the choice of
parameters x = XT ′, x0 = YT ′, y = −T ′, y0 = XYT ′.

More generally, the resummation of the trigonometric
(n − 1)-cocycle Ψ gives rise to an elliptic (n − 1)-cocycle that
we name the Eisenstein–Kronecker cocycle κ on GLn(Z).One
recovers Ψ from κ by letting τ → i∞. The coefficients of the
Laurent expansion of κ at zero now display modular forms,
essentially sums of products of n Eisenstein series of various
weights and levels, that are members of a compatible p-adic
family.

When paired with a (n − 1)-cycle built out of the funda-
mental units of a totally real number field F of degree n, the
elliptic cocycle κ produces a generating series for the pull-
backs of Hecke–Eisenstein series over the Hilbert modular
group SL2(OF), whose constant terms are the values ζF(k) at
negative integers k ≤ 0. These classical modular forms have
already played a prominent role in the original proof by Siegel
of the Klingen–Siegel theorem. More details on the construc-
tion of the Eisenstein–Kronecker cocycle κ and its properties
will be given in [Ch].
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