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Wrinkles and sealing

The mathematical meaning of wrinkle and its real-life mean-
ing are very similar, particularly when the word is used to
describe features on the surface of the sea. Luckily, I was ed-
ucated in sailing before learning advanced mathematics so I
spent a lot of time looking at wrinkles on the sea. After a long,
windless period, it is delightful to observe their birth and the
forms they take. Long after learning to sail, I read that these
forms bear great similarity to those predicted by R. Thom’s
singularity theory (see [15]). On one occasion, wrinkles ap-
peared and grew so abruptly that they clearly announced a
strong event; at the same time, the on-board radio issued gale
warnings for the forthcoming night. Soon the fog cleared, al-
lowing us to see an enormous cumulonimbus cloud, with its
white anvil thousands of metres high, indicating the presence
of fantastic thermodynamic machinery. Fortunately, this ex-
perience concluded safely.

Basics about wrinkles

Mathematical wrinkles are models for maps Rn → Rq, n ≥ q,
restricted to some explicit compact subset. The very primitive
wrinkle is the one-variable smooth function whose graph is
shown in Figure 1. That function f , defined on [a, b], has one
maximum and one minimum, both non-degenerate, meaning
that the second derivative does not vanish at these critical
points; one says that f is a Morse function. It is unique up
to reparametrisation of the domain and the range, which can
alter, for example, the distance between critical points and
critical values.

As f (a) > f (b), the maximum principle for real continu-
ous functions makes it impossible to deform f to a function
without critical points if we insist on keeping f unchanged
near the boundary points a and b. Indeed, there must exist a
maximum value greater than f (a) and a minimum value less
than f (b).
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Figure 1. The primitive wrinkle

Nevertheless, the differential d f can be deformed to a
non-vanishing differential 1-form, denoted Rd f , which co-
incides with d f near a and b. Of course, the corresponding
change in f would have to change the value at one endpoint,
say b. This Rd f is called the regularized differential of f . It
is unique up to deformation among the non-vanishing differ-
ential forms since the constraints near the endpoints define a
convex set. The name and notation are due to Y. Eliashberg
and N. Mishachev [2], the inventors of mathematical wrin-
kles.

Wrinkles and immersions

Historically, this first wrinkle (without its name) appeared
soon after S. Smale’s breakthrough of the sphere eversion
[14], a counter-intuitive phenomenon where it is possible to
turn a sphere inside out by allowing only self-intersections
but no pinching, that is, by moving the sphere through im-
mersions. The first person who figured out Smale’s result was
A. Shapiro (1961)1 (see, in chronological order, [11], [6] and
[9]). The eversion [11], of which Figure 2 shows one stage,
exhibits a lot of wrinkles.

Figure 2. Original drawing for a sphere eversion (courtesy of Anthony
Phillips)

1 Quoting the beginning of Francis & Morin’s article: “We dedicate this
article to the memory of Arnold Shapiro, who gave the first example of
how to turn the sphere inside out, but never published it.”
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Figure 3. Folded immersion of the 2-disc and one folded diameter

A natural question to ask is which immersions of the
(n − 1)-sphere into Rn extend to an immersion of the n-ball.
Apart from some obvious homotopy theoretical obstructions,
the problem remains open for n > 2. A complete (but diffi-
cult) answer in dimension 2 has been given by S. Blank (see
[12]).

In 1966, V. Poenaru [13] showed that relaxing the immer-
sion condition on the n-ball by allowing folds (such as, in lo-
cal coordinates, x �→ x2 in dimension one or (x, y) �→ (x2, y)
in dimension two) made the problem of extension easily solv-
able. For instance, focusing on n = 2 to make drawings possi-
ble, every immersion S 1 → R2 extends to a folded immersion
of the disc to the plane as in Figure 3. In this example, without
any fold line, there is no immersion of the disc extending the
given immersion. Indeed, the immersion of the disc if it ex-
ists must enter the unbounded component of the complement
of the given immersed boundary line. But the disc is com-
pact and any point of its image lying at a maximal distance
from the origin should be a critical point of the map, which is
therefore not an immersion.

This result translates a sort of flexibility in a sense pre-
cisely defined by M. Gromov in his seminal book [8]. The
fold lines that Poenaru introduces lie parallel to the bound-
ary in a collar neighbourhood in the source disc. Thus, a pair
of consecutive such fold lines may be thought of as a one-
parameter family of primitive wrinkles. In the example shown
in Figure 3, this family is made of folded diameters; one of the
diameters is shown.

Wrinkles and the h-principle

The efficiency of what have been called primitive wrinkles
above – mostly used in families – is already remarkable when
applied to immersions (see W. Thurston’s corrugations [16]).
Of course, if one aims to apply wrinkles to very general
classes of smooth mappings of manifolds, a more elaborate
model of wrinkles has to be used. Fortunately, this model,
which is global in essence, still involves the two local stable
singularities of mappings from plane to plane only, namely
the fold and the so-called cusp.

If the source and target are two-dimensional, a wrinkle
W consists, as in Figure 4, of a neighbourhood of a disc D
in the source, fibred in intervals over an interval I, with two
fibres tangent to the boundary ∂D at points c1 and c2, and a
smooth map w : W → R2. This map is fibred over an interval;
its singular locus consists of two cusps in c1 and c2 and of

w
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Figure 4. The lips wrinkle has cusps at c1 and c2

two fold lines, namely the two open arcs ∂D � {c1, c2} (see
Figure 4).

The image of the singular locus looks like lips, a famous
figure in Cerf’s analysis of pseudo-isotopies [1]. Using hori-
zontal coordinate y in [−1, 1] and x in the fibre over y,

w(y, x) =
(
y, fy(x)

)
,

where
(

fy(x)
)

y
is a 1-parameter family of primitive wrinkles

from birth to death as y traverses the interval [y(c1), y(c2)]. For
further extension to high dimension, one requires the symme-
try fy = f−y. By regularising the differential d fy smoothly in
y, we get a regularised differential:

Rdw : T(y,x)W → Tw(y,x)R
2.

The word regularisation translates the fact that the rank of
Rdw is maximal on all fibres of the tangent space TW. This
model extends to a wrinkle w with source and target of di-
mension q, simply by taking y ∈ Rq−1 and rotating the 2-
dimensional model about the axis y = 0. Then,

w(y, x) = (y, f|y|(x))

and the regularised differential still exists. Finally, one can
obtain a non-equidimensional model by enlarging the source
with an (n − q)-ball (with coordinate z) and taking the map

w(y, x, z) =
(
y, f|y|(x) + Q(z)

)
,

where Q is a non-degenerate quadratic form.
With these models at hand, a wrinkled map g : Mn →

Nq, n ≥ q, between (possibly closed) manifolds is a smooth
map that coincides with wrinkle models in finitely many dis-
joint balls in Mn and has maximal rank elsewhere. Eliashberg
& Mishachev [2] state the flexibility of wrinkled maps, in that
an h-principle in the sense of Gromov holds true for them.
To make this more precise, denote by T M and T N the re-
spective tangent spaces and consider the set W(M,N), formed
by the collection of wrinkled maps and completed by maps
with so-called embryos or unborn wrinkles. This set embeds
into the space of bundle epimorphisms Epi(T M, T N) by the
regularised differential operator Rd and this embedding is a
homotopy equivalence.

Applications and novelties

A spectacular application to pseudo-isotopy theory [3] is a
strong generalisation of a theorem by K. Igusa (1984) [7],
with no restriction on dimension. Namely, any family of
smooth functions { fu : M × ([0, 1], 0, 1) → ([0, 1], 0, 1)}u∈S k

contracts in the space of Morse functions with the same
boundary condition, completed by the embryos (functions
with one cubic singularity).
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More recently, Eliashberg & Mishachev with S. Galatius
[5] have shown that wrinkles apply in an area usually reserved
to homotopy theorists. The question is to compute the stable2

homology of the mapping class group of a Riemann surface.
Last but not least, thanks to the flexibility of a slightly

different object called a wrinkled embedding [4], we wit-
nessed an exceptional event: E. Murphy’s breakthrough in
high-dimensional contact topology [10]. Thanks to wrinkling
techniques (large zig-zags in front projections3), she discov-
ered the loose Legendrian embeddings into contact manifolds.
Such an embedding makes the ambient contact structure flex-
ible. The wrinkle story is clearly far from over.
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