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1 Universality in random systems

Universality in complex random systems is a striking con-
cept that has played a central role in the direction of re-
search within probability, mathematical physics and statisti-
cal mechanics. In this article, we will describe how a vari-
ety of physical systems and mathematical models, including
randomly growing interfaces, certain stochastic PDEs, traf-
fic models, paths in random environments and random matri-
ces, all demonstrate the same universal statistical behaviours
in their long-time/large-scale limit. These systems are said
to lie in the Kardar–Parisi–Zhang (KPZ) universality class.
Proof of universality within these classes of systems (except
for random matrices) has remained mostly elusive. Extensive
computer simulations, non-rigorous physical arguments and
heuristics, some laboratory experiments and limited mathe-
matically rigorous results provide important evidence for this
belief.

The last 15 years have seen a number of breakthroughs
in the discovery and analysis of a handful of special inte-
grable probability systems, which, due to enhanced algebraic
structure, admit many exact computations and, ultimately,
asymptotic analysis revealing the purportedly universal prop-
erties of the KPZ class. The structures present in these sys-
tems generally originate in representation theory (e.g., sym-
metric functions), quantum integrable systems (e.g. Bethe
ansatz) and algebraic combinatorics (e.g., RSK correspon-
dence) and the techniques in their asymptotic analysis gen-
erally involve Laplace’s method, Fredholm determinants or
Riemann-Hilbert problem asymptotics.

This article will focus on the phenomena associated with
the KPZ universality class [3] and highlight how certain in-
tegrable examples expand the scope of and refine the notion
of universality. We start by providing a brief introduction to
the Gaussian universality class and the integrable probabilis-
tic example of random coin flipping, as well as the random
deposition model. A small perturbation to the random depo-
sition model leads us to the ballistic deposition model and the
KPZ universality class. The ballistic deposition model fails to
be integrable; thus, to gain an understanding of its long-time
behaviour and that of the entire KPZ class, we turn to the cor-
ner growth model. The rest of the article focuses on various
sides of this rich model: its role as a random growth process,
its relation to the KPZ stochastic PDE, its interpretation in
terms of interacting particle systems and its relation to opti-
misation problems involving paths in random environments.
Along the way, we include some other generalisations of this
process whose integrability springs from the same sources.
We close the article by reflecting upon some open problems.

A survey of the KPZ universality class and all of the as-
sociated phenomena and methods developed or utilised in its
study is far too vast to be provided here. This article presents
only one of many stories and perspectives regarding this rich

area of study. To even provide a representative cross-section
of references is beyond this scope. Additionally, even though
we will discuss integrable examples, we will not describe
the algebraic structures and methods of asymptotic analy-
sis behind them (despite their obvious importance and inter-
est). Some recent references that review some of these struc-
tures include [2, 4, 8] and references therein. On the more
physics-oriented side, the collection of reviews and books
[1, 3, 5, 6, 7, 8, 9, 10] provides some idea of the scope of
the study of the KPZ universality class and the diverse areas
upon which it touches.

We start now by providing an overview of the general no-
tion of universality in the context of the simplest and histori-
cally first example – fair coin flipping and the Gaussian uni-
versality class.

2 Gaussian universality class

Flip a fair coin N times. Each string of outcomes (e.g., head,
tail, tail, tail, head) has an equal probability 2−N . Call H the
(random) number of heads and let P denote the probability
distribution for this sequence of coin flips. Counting shows
that

P
(
H = n

)
= 2−N

(
N
n

)
.

Since each flip is independent, the expected number of heads
is N/2. Bernoulli (1713) proved that H/N converges to 1/2 as
N goes to infinity. This was the first example of a law of large
numbers. Of course, this does not mean that if you flip the
coin 1000 times, you will see exactly 500 heads. Indeed, in N
coin flips one expects the number of heads to vary randomly
around the value N/2 in the scale

√
N. Moreover, for all x ∈

R,

lim
N→∞
P
(
H < 1

2 N + 1
2

√
N x
)
=

x∫

−∞

e−y2/2

√
2π

dy.

De Moivre (1738), Gauss (1809), Adrain (1809), and Laplace
(1812) all participated in the proof of this result. The limiting
distribution is known as the Gaussian (or sometimes normal
or bell curve) distribution.

A proof of this follows from asymptotics of n!, as derived
by de Moivre (1721) and named after Stirling (1729). Write

n! = Γ(n + 1) =

∞∫

0

e−ttndt = nn+1

∞∫

0

en f (z)dz,

where f (z) = log z− z and the last equality is from the change
of variables t = nz. The integral is dominated, as n grows, by
the maximal value of f (z) on the interval [0,∞). This occurs
at z = 1; thus, expanding f (z) ≈ −1 − (z−1)2

2 and plugging this
into the integral yields the final expansion

n! ≈ nn+1e−n
√

2π/n.
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This general route of writing exact formulas for probabilities
in terms of integrals and then performing asymptotics is quite
common to the analysis of integrable models in the KPZ uni-
versality class – though those formulas and analyses are con-
siderably more involved.

The universality of the Gaussian distribution was not
broadly demonstrated until work of Chebyshev, Markov and
Lyapunov around 1900. The central limit theorem (CLT)
showed that the exact nature of coin flipping is immaterial –
any sum of independent, identically distributed (iid) random
variables with finite mean and variance will demonstrate the
same limiting behaviour.

Theorem 2.1. Let X1, X2, . . . be iid random variables of finite
mean m and variance v. Then, for all x ∈ R,

lim
N→∞
P
( N∑

i=1

Xi < mN + v
√

Nx
)
=

x∫

−∞

e−y2/2

√
2π

dy.

Proofs of this result use different tools than the exact anal-
ysis of coin flipping and much of probability theory deals
with the study of Gaussian processes that arise through var-
ious generalisations of the CLT. The Gaussian distribution is
ubiquitous and, as it is the basis for much of classical statistics
and thermodynamics, it has had immense societal impact.

3 Random versus ballistic deposition

The random deposition model is one of the simplest (and least
realistic) models for a randomly growing one-dimensional in-
terface. Unit blocks fall independently and in parallel from
the sky above each site of Z according to exponentially dis-
tributed waiting times (see Figure 1). Recall that a random
variable X has an exponential distribution of rate λ > 0 (or
mean 1/λ) if P(X > x) = e−λx. Such random variables are
characterised by the memoryless property – conditioned on
the event that X > x, X − x still has the exponential distri-
bution of the same rate. Consequently, the random deposition
model is Markov – its future evolution only depends on the
present state (and not on its history).

The random deposition model is quite simple to analyse
since each column grows independently. Let h(t, x) record the
height above site x at time t and assume h(0, x) ≡ 0. Define
random waiting times wx,i to be the time for the i-th block in
column x to fall. For any n, the event h(t, x) < n is equivalent
to
∑n

i=1 wx,i > t. Since the wx,i are iid, the law of large numbers
and central limit theory apply here. Assuming λ = 1,

lim
t→∞

h(t, x)
t
= 1, and lim

t→∞

h(t, x) − t
t1/2 ⇒ N(x)

jointly over x ∈ Z, where
{
N(x)
}

x∈Z is a collection of iid stan-
dard Gaussian random variables. The top of Figure 2 shows a
simulation of the random deposition model. The linear growth
speed and lack of spatial correlation are quite evident. The
fluctuations of this model are said to be in the Gaussian uni-
versality class since they grow like t1/2, with Gaussian limit
law and trivial transversal correlation length scale t0. In gen-
eral, fluctuation and transversal correlation exponents, as well
as limiting distributions, constitute the description of a uni-
versality class and all models that match these limiting be-
haviours are said to lie in the same universality class.

(a) (b)

(c) (d)
Figure 1. (A) and (B) illustrate the random deposition model and (C)
and (D) illustrate the ballistic deposition model. In both cases, blocks fall
from above each site with independent, exponentially distributed wait-
ing times. In the first model, they land at the top of each column whereas
in the second model they stick to the first edge to which they become
incident.

While the Gaussian behaviour of this model is resilient
against changes in the distribution of the wx,i (owing to the
CLT), generic changes in the nature of the growth rules shat-
ter the Gaussian behaviour. The ballistic deposition (or sticky
block) model was introduced by Vold (1959) and, as one ex-
pects in real growing interfaces, displays spatial correlation.
As before, blocks fall according to iid exponential waiting
times; however, a block will now stick to the first edge against
which it becomes incident. This mechanism is illustrated in
Figure 1. This creates overhangs and we define the height
function h(t, x) as the maximal height above x that is occu-
pied by a box. How does this microscopic change manifest
itself over time?

It turns out that sticky blocks radically change the limit-
ing behaviour of this growth process. The bottom of Figure
2 records one simulation of the process. Seppäläinen (1999)
gave a proof that there is still an overall linear growth rate.
Moreover, by considering a lower bound by a width two sys-
tem, one can see that this velocity exceeds that of the random
deposition model. The exact value of this rate, however, re-
mains unknown.

The simulation in Figure 2 (as well as the longer time re-
sults displayed in Figure 3) also shows that the scale of fluc-
tuations of h(t, x) is smaller than in random deposition and
that the height function remains correlated transversally over
a long distance. There are exact conjectures for these fluctua-
tions. They are supposed to grow like t1/3 and demonstrate a
non-trivial correlation structure in a transversal scale of t2/3.
Additionally, precise predictions exist for the limiting dis-
tributions. Up to certain (presently undetermined) constants
c1, c2, the sequence of scaled heights c2t−1/3(h(t, 0) − c1t

)
should converge to the so-called Gaussian Orthogonal En-
semble (GOE) Tracy-Widom distributed random variable. The
Tracy-Widom distributions can be thought of as modern-day
bell curves and their names GOE or GUE (for Gaussian
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Figure 2. Simulation of random (top) versus ballistic (bottom) deposition
models driven by the same process of falling blocks. The ballistic model
grows much faster and has a smoother, more spatially correlated top
interface.

Unitary Ensemble) come from the random matrix ensembles
in which these distributions were first observed by Tracy-
Widom (1993, 1994).

Ballistic deposition does not seem to be an integrable
probabilistic system so where do these precise conjectures
come from? The exact predictions come from the analysis of
a few similar growth processes that just happen to be inte-
grable! Ballistic deposition shares certain features with these
models that are believed to be key for membership in the KPZ
class:
• Locality: height function change depends only on neigh-

bouring heights.
• Smoothing: large valleys are quickly filled in.
• Non-linear slope dependence: vertical effective growth

rate depends non-linearly on local slope.
• Space-time independent noise: growth is driven by

noise, which quickly decorrelates in space and time and
does not display heavy tails.

It should be made clear that a proof of the KPZ class be-
haviour for the ballistic deposition model is far beyond what
can be done mathematically (though simulations strongly
suggest that the above conjecture is true).

Figure 3. Simulation of random (left) versus ballistic (right) deposition
models driven by the same process of falling blocks and run for a long
time. The white and grey colours represent different epochs of time in
the simulation. The sizes of the boxes in both figures are the same.

4 Corner growth model

We come to the first example of an integrable probabilistic
system in the KPZ universality class – the corner growth
model. The randomly growing interface is modelled by a
height function h(t, x) that is continuous, piecewise linear and
composed of

√
2-length line increments of slope +1 or −1,

changing value at integer x. The height function evolves ac-
cording to the Markovian dynamics that each local minimum
of h (looking like ∨) turns into a local maximum (looking
like ∧) according to an exponentially distributed waiting time.
This happens independently for each minimum. This change
in height function can also be thought of as adding boxes (ro-
tated by 45◦). See Figures 4 and 5 for further illustration of
this model.

Wedge initial data means that h(0, x) = |x| while flat initial
data (as considered for ballistic deposition) means that h(0, x)
is given by a periodic saw-tooth function that goes between
heights 0 and 1. We will focus on wedge initial data. Rost
(1980) proved a law of large numbers for the growing inter-
face when time, space and the height function are scaled by
the same large parameter L.

(a) (b)

(c) (d)
Figure 4. Various possible ways that a local minimum can grow into a
local maximum.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 5. The corner growth model starts with an empty corner, as in (A).
There is only one local minimum (the large dot) and after an exponen-
tially distributed waiting time, this turns into a local maximum by filling
in the site above it with a block, as in (B). In (B), there are now two pos-
sible locations for growth (the two dots). Each one has an exponentially
distributed waiting time. (C) corresponds to the case when the left local
minimum grows before the right one. By the memoryless property of ex-
ponential random variables, once in state (C), we can think of choosing
new exponentially distributed waiting times for the possible growth des-
tinations. Continuing in a similar manner, we arrive at the evolution in
(D) through (H).

Theorem 4.1. For wedge initial data,

lim
L→∞

h(Lt, Lx)
L

= h(t, x) :=


t 1−(x/t)2

2 |x| < t,
|x| |x| ≥ t.

Figure 6 displays the result of a computer simulation
wherein the limiting parabolic shape is evident. The function
h is the unique viscosity solution to the Hamilton-Jacobi equa-
tion

∂

∂t
h(t, x) =

1
2

(
1 − ( ∂

∂x
h(t, x)

)2)
.

Figure 6. Simulation of the corner growth model. The top shows the
model after a medium amount of time and the bottom shows it after
a longer amount of time. The rough interface is the simulation while the
smooth curve is the limiting parabolic shape. The simulation curve has
vertical fluctuations of order t1/3 and decorrelates spatially on distances
of order t2/3.

This equation actually governs the evolution of the law of
large numbers from arbitrary initial data.

The fluctuations of this model around the law of large
numbers are what is believed to be universal. Figure 6 shows
that the interface fluctuates around its limiting shape on a
fairly small scale, with transversal correlation on a larger
scale. For ε > 0, define the scaled and centred height func-
tion

hε(t, x) := εbh(ε−zt, ε−1x) − ε
−1t
2
,

where the dynamic scaling exponent z = 3/2 and the fluctu-
ation exponent b = 1/2. These exponents are easily remem-
bered since they correspond with scaling time : space : fluctu-
ations like 3 : 2 : 1. These are the characteristic exponents for
the KPZ universality class. Johansson (1999) proved that for
fixed t, as ε → 0, the random variable hε(t, 0) converges to
a GUE Tracy-Widom distributed random variable (see Figure
7). Results for the related model of the longest increasing sub-
sequence in a random permutation were provided around the
same time by Baik-Deift-Johansson (1999). For that related
model, two years later, Prähofer-Spohn (2001) computed the
analogue to the joint distribution of hε(t, x) for fixed t and
varying x.

The entire scaled growth process hε(·, ·) should have a
limit as ε → 0 that would necessarily be a fixed point under
3 : 2 : 1 scaling. The existence of this limit (often called the
KPZ fixed point) remains conjectural. Still, much is known
about the properties this limit should enjoy. It should be a
stochastic process whose evolution depends on the limit of
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Figure 7. The density (top) and log of the density (bottom) of the GUE
Tracy-Widom distribution. Though the density appears to look like a
bell-curve (or Gaussian), this comparison is misleading. The mean and
variance of the distribution are approximately −1.77 and 0.81. The
tails of the density (as shown in terms of the log of the density in the
bottom plot) decay like e−c−|x|3 for x � 0 and like e−c+x3/2 for x � 0,
for certain positive constants c− and c+. The Gaussian density decays
like e−cx2 in both tails, with the constant c related to the variance.

the initial data under the same scaling. The one-point distri-
bution for general initial data, the multi-point and multi-time
distribution for wedge initial data and various aspects of its
continuity are all understood. Besides the existence of this
limit, what is missing is a useful characterisation of the KPZ
fixed point. Since the KPZ fixed point is believed to be the
universal scaling limit of all models in the KPZ universality
class and since corner growth enjoys the same key properties
as ballistic deposition, one is also led to the conjecture that
ballistic deposition scales to the same fixed point and hence
enjoys the same scalings and limiting distributions. The rea-
son why the GOE Tracy-Widom distribution came up in our
earlier discussion is that we were dealing with flat rather than
wedge initial data.

One test of the universality belief is to introduce partial
asymmetry into the corner growth model. Now we change lo-

cal minima into local maxima at rate p, and turn local maxima
into local minima at rate q (all waiting times are independent
and exponentially distributed, and p + q = 1). See 8 for an
illustration of this partially asymmetric corner growth model.
Tracy-Widom (2007-2009) showed that so long as p > q,
the same law of large numbers and fluctuation limit theorem
holds for the partially asymmetric model, provided that t is
replaced by t/(p − q). Since p − q represents the growth drift,
one simply has to speed up to compensate for this drift being
smaller.

Clearly, for p ≤ q, something different must occur than
for p > q. For p = q, the law of large numbers and fluctua-
tions change nature. The scaling of time : space : fluctuations
becomes 4 : 2 : 1 and the limiting process under these scal-
ings becomes the stochastic heat equation with additive white
noise. This is the Edwards-Wilkinson (EW) universality class,
which is described by the stochastic heat equation with ad-
ditive noise. For p < q, the process approaches a stationary
distribution where the probability of having k boxes added to
the empty wedge is proportional to (p/q)k.

So, we have observed that for any positive asymmetry the
growth model lies in the KPZ universality class while for zero
asymmetry it lies in the EW universality class. It is natural to
wonder whether by critically scaling parameters (i.e. p− q→
0), one might encounter a crossover regime between these two
universality classes. Indeed, this is the case and the crossover
is achieved by the KPZ equation that we now discuss.

5 The KPZ equation

The KPZ equation is written as

∂h
∂t

(t, x) = ν
∂2h
∂x2 (t, x) + 1

2λ
(∂h
∂x

(t, x)
)2
+
√

Dξ(t, x),

where ξ(t, x) is Gaussian space-time white noise, λ, ν ∈ R,
D > 0 and h(t, x) is a continuous function of time t ∈ R+
and space x ∈ R, taking values in R. Due to the white noise,
one expects x �→ h(t, x) to be only as regular as in Brownian
motion. Hence, the non-linearity does not a priori make any
sense (the derivative of Brownian motion has negative Hölder
regularity). Bertini-Cancrini (1995) provided the physically
relevant notion of solution (called the Hopf–Cole solution)
and showed how it arises from regularising the noise, solving
the (now well-posed) equation and then removing the noise
and subtracting a divergence.

The equation contains the four key features mentioned
earlier – the growth is local, depending on the Laplacian
(smoothing), the square of the gradient (non-linear slope de-
pendent growth) and white noise (space-time uncorrelated
noise). Kardar, Parisi and Zhang introduced their eponymous
equation and 3:2:1 scaling prediction in 1986 in an attempt
to understand the scaling behaviours of random interface
growth.

How might one see the 3:2:1 scaling from the KPZ equa-
tion? Define hε(t, x) = εbh(ε−zt, ε−1x); then, hε satisfies the
KPZ equation with scaled coefficients ε2−zν, ε2−z−b 1

2λ and
εb−

z
2+

1
2
√

D. It turns out that two-sided Brownian motion is
stationary for the KPZ equation; hence, any non-trivial scal-
ing must respect the Brownian scaling of the initial data and
thus have b = 1/2. Plugging this in, the only way to have
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no coefficient blow up to infinity and not to have every term
shrink to zero (as ε → 0) is to choose z = 3/2. This suggests
the plausibility of the 3:2:1 scaling. While this heuristic gives
the right scaling, it does not provide for the scaling limit. The
limit as ε → 0 of the equation (the inviscid Burgers equa-
tion where only the non-linearity survives) certainly does not
govern the limit of the solutions. It remains something of a
mystery as to exactly how to describe this limiting KPZ fixed
point. The above heuristic says nothing of the limiting distri-
bution of the solution to the KPZ equation and there does not
currently exist a simple way to see what this should be.

It took just under 25 years until Amir-Corwin-Quastel
(2010) rigorously proved that the KPZ equation is in the KPZ
universality class. That work also computed an exact formula
for the probability distribution of the solution to the KPZ
equation – marking the first instance of a non-linear stochas-
tic PDE for which this was accomplished. Tracy-Widom’s
work on the partially asymmetric corner growth model and
the work of Bertini-Giacomin (1997) relating that model to
the KPZ equation were the two main inputs in this develop-
ment. See [3] for further details regarding this, as well as the
simultaneous exact but non-rigorous steepest descent work of
Sasamoto-Spohn (2010), and non-rigorous replica approach
work of Calabrese-Le Doussal-Rosso (2010) and Dotsenko
(2010).

The proof that the KPZ equation is in the KPZ universal-
ity class was part of an ongoing flurry of activity surrounding
the KPZ universality class from a number of directions such
as integrable probability [4], experimental physics [10] and
stochastic PDEs. For instance, Bertini-Cancrini’s Hopf–Cole
solution relies upon a trick (the Hopf–Cole transform) that
linearises the KPZ equation. Hairer (2011), who had been
developing methods to make sense of classically ill-posed
stochastic PDEs, focused on the KPZ equation and developed
a direct notion of solution that agreed with the Hopf–Cole one
but did not require use of the Hopf–Cole transform trick. Still,
this does not say anything about the distribution of solutions
or their long-time scaling behaviours. Hairer’s KPZ work set
the stage for his development of regularity structures in 2013
– an approach to construction solutions of certain types of ill-
posed stochastic PDEs – work for which he was awarded a
Fields Medal.

6 Interacting particle systems

There is a direct mapping (see Figure 8) between the partially
asymmetric corner growth model and the partially asymmet-
ric simple exclusion process (generally abbreviated ASEP).
One can associate to every −1 slope line increment a particle
on the site of Z above which the increment sits, and to every
+1 slope line increment an empty site. The height function
then maps onto a configuration of particles and holes on Z,
with at most one particle per site. When a minimum of the
height function becomes a maximum, it corresponds to a par-
ticle jumping right by one into an empty site and, likewise,
when a maximum becomes a minimum, a particle jumps left
by one into an empty site. Wedge initial data for corner growth
corresponds to having all sites to the left of the origin initially
occupied and all to the right empty – this is often called step
initial data due to the step function in terms of particle den-

(a)

(b)
Figure 8. Mapping the partially asymmetric corner growth model to the
partially asymmetric simple exclusion process. In (A), the local minimum
grows into a local maximum. In terms of the particle process beneath it,
the minimum corresponds to a particle followed by a hole and the growth
corresponds to said particle jumping into the hole to its right. In (B), the
opposite is shown as the local maximum shrinks into a local minimum.
Correspondingly, there is a hole followed by a particle and the shrinking
results in the particle moving into the hole to its left.

sity. ASEP was introduced in biology literature in 1968 by
MacDonald-Gibbs-Pipkin as a model for RNA’s movement
during transcription. Soon after, it was independently intro-
duced within the probability literature in 1970 by Spitzer.

The earlier quoted results regarding corner growth imme-
diately imply that the number of particles to cross the origin
after a long time t demonstrates KPZ class fluctuation be-
haviour. KPZ universality would have that generic changes
to this model should not change the KPZ class fluctuations.
Unfortunately, such generic changes destroy the model’s in-
tegrable structure. There are a few integrable generalisations
discovered over the past five years that demonstrate some of
the resilience of the KPZ universality class against perturba-
tions.

TASEP (the totally asymmetric version of ASEP) is a very
basic model for traffic on a one-lane road in which cars (par-
ticles) move forward after exponential rate one waiting times,
provided the site is unoccupied. A more realistic model would
account for the fact that cars slow down as they approach
the one in front. The model of q-TASEP does just that (Fig-
ure 9). Particles jump right according to independent expo-
nential waiting times of rate 1 − qgap, where gap is the num-
ber of empty spaces to the next particle to the right. Here
q ∈ [0, 1) is a different parameter than in the ASEP, though
when q goes to zero, these dynamics become those of TASEP.

Another feature one might include in a more realistic traf-

gap = 4

rate = 1− qgap

Figure 9. The q-TASEP, whereby each particle jumps one to the right
after an exponentially distributed waiting time with rate given by 1−qgap.
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rate = 1− qgaprate = L

(a)

q4q2

(b)
Figure 10. The q-pushASEP. As shown in (A), particles jump right ac-
cording to the q-TASEP rates and left according to independent expo-
nentially distributed waiting times of rate L. When a left jump occurs,
it may trigger a cascade of left jumps. As shown in (B), the right-most
particle has just jumped left by one. The next particle (to its left) instan-
taneously jumps left by one with probability given by qgap, where gap
is the number of empty sites between the two particles before the left
jumps occurred (in this case gap = 4). If that next left jump is realised,
the cascade continues to the next-left particle according to the same rule,
otherwise it stops and no other particles jump left in that instant of time.

fic model is the cascade effect of braking. The q-pushASEP
includes this (Figure 10). Particles still jump right according
to q-TASEP rules; however, particles may now also jump left
after exponential rate L waiting times. When such a jump oc-
curs, it prompts the next particle to the left to likewise jump
left, with a probability given by qgap, where gap is the num-
ber of empty spaces between the original particle and its left
neighbour. If that jump occurs, it may likewise prompt the
next left particle to jump, and so on. Of course, braking is not
the same as jumping backwards; however, if one goes into a
moving frame, this left jump is like a deceleration. It turns
out that both of these models are solvable via the methods
of Macdonald processes as well as stochastic quantum inte-
grable systems and it has thus been proved that, just as for
ASEP, they demonstrate KPZ class fluctuation behaviour (see
the review [4]).

7 Paths in a random environment

There is yet another class of probabilistic systems related
to the corner growth model. Consider the totally asymmet-
ric version of this model, starting from wedge initial data.
An alternative way to track the evolving height function is
to record the time when a given box is grown. Using the la-
belling shown in Figure 11, let us call L(x, y) this time, for
x, y positive integers. A box (x, y) may grow once its parent
blocks (x− 1, y) and (x, y− 1) have both grown – though even
then it must wait for an independent exponential waiting time
that we denote by wx,y. Thus, L(x, y) satisfies the recursion

L(x, y) = max
(
L(x − 1, y), L(x, y − 1)

)
+ wx,y,

subject to boundary conditions L(x, 0) ≡ 0 and L(0, y) ≡ 0.
Iterating yields

L(x, y) = max
π

∑
(i, j)∈π

wi, j,

where the maximum is over all up-right and up-left lattice
paths between box (1, 1) and (x, y). This model is called
last passage percolation with exponential weights. Follow-
ing from the earlier corner growth model results, one readily
sees that for any positive real (x, y), for large t, L

(�xt�, �yt�)

w1,1

w2,1w1,2

w2,2 w3,1w1,3

w3,2 w4,1w1,4 w2,3

w4,2 w5,1

Figure 11. The relation between the corner growth model and last pas-
sage percolation with exponential weights. wi, j are the waiting times be-
tween when a box can grow and when it does grow. L(x,y) is the time
when box (x,y) grows.

demonstrates KPZ class fluctuations. A very compelling and
entirely open problem is to show that this type of behaviour
persists when the distribution of wi, j is no longer exponential.
The only other solvable case is that of geometric weights. A
certain limit of the geometric weights leads to maximising
the number of Poisson points along directed paths. Fixing the
total number of points, this becomes equivalent to finding the
longest increasing subsequence of a random permutation. The
KPZ class behaviour for this version of last passage percola-
tion was shown by Baik-Deift-Johansson (1999).

There is another related integrable model that can be
thought of as describing the optimal way to cross a large grid
with stop lights at intersections. Consider the first quadrant of
Z2 and to every vertex (x, y) assign waiting times to the edges
leaving the vertex rightwards and upwards. With a probabil-
ity of 1/2, the rightward edge has waiting time zero, while
the upward edge has waiting time given by exponential rate 1
random variables; otherwise, reverse the situation. The edge
waiting time represents the time needed to cross an intersec-
tion in the given direction (the walking time between lights
has been subtracted). The minimal passage time from (1, 1)
to (x, y) is given by

P(x, y) = min
π

∑
e∈π

we,

where π goes right or up in each step and ends on the vertical
line above (x, y) and we is the waiting time for edge e ∈ π.
From the origin, there will always be a path of zero waiting
time, whose spatial distribution is that of the graph of a sim-
ple symmetric random walk. Just following this path, one can
get very close to the diagonal x = y without waiting. On the
other hand, for x � y, getting to

(�xt�, �yt�) for large t re-
quires some amount of waiting. Barraquand-Corwin (2015)
demonstrated that as long as x � y, P

(�xt�, �yt�) demonstrates
KPZ class fluctuations. This should be true when π is re-
stricted to hit exactly (x, y), though that result has not yet been
proved. Achieving this optimal passage time requires some
level of omnipotence as you must be able to look forward be-
fore choosing your route. As such, it could be considered as a
benchmark against which to test various routing algorithms.

In addition to maximising or minimising path problems,
the KPZ universality class describes fluctuations of ‘positive
temperature’ versions of these models in which energetic or
probabilistic favouritism is assigned to paths based on the sum
of space-time random weights along its graph. One such sys-
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Figure 12. The random walk in a space-time random environment. For
each pair of up-left and up-right pointing edges leaving a vertex (y, s),
the width of the edges is given by uy,s and 1−uy,s, where uy,s are inde-
pendent uniform random variables on the interval [0,1]. A walker (the
grey highlighted path) then performs a random walk in this environ-
ment, jumping up-left or up-right from a vertex with probability equal
to the width of the edges.

tem is called directed polymers in random environment and
is the detropicalisation of LPP where one replaces the opera-
tions of (max,+) by (+,×) in the definition of L(x, y). Then,
the resulting (random) quantity is called the partition func-
tion for the model and its logarithm (the free energy) is con-
jectured for very general distributions on wi, j to show KPZ
class fluctuations. There is one known integrable example of
weights for which this has been proved – the inverse-gamma
distribution, introduced by Seppäläinen (2009) and proved in
the work of Corwin-O’Connell-Seppäläinen-Zygouras (2011)
and Borodin-Corwin-Remenik (2012).

The stop light system discussed above also has a positive
temperature lifting of which we will describe a special case
(see Figure 12 for an illustration). For each space-time ver-
tex (y, s), choose a random variable uy,s distributed uniformly
on the interval [0, 1]. Consider a random walk X(t) that starts
at (0, 0). If the random walk is in position y at time s then it
jumps to position y − 1 at time s + 1 with probability uy,s and
to position y + 1 with probability 1 − uy,s. With respect to the
same environment of u’s, consider N such random walks. The
fact that the environment is fixed causes them to follow cer-
tain high probability channels. This type of system is called
a random walk in a space-time random environment and the
behaviour of a single random walker is quite well understood.
Let us, instead, consider the maximum of N walkers in the
same environment M(t,N) = maxN

i=1 X(i)(t). For a given envi-
ronment, it is expected that M(t,N) will localise near a given
random environment dependent value. However, as the ran-
dom environment varies, this localisation value does as well
in such a way that for r ∈ (0, 1) and large t, M(t, ert) displays
KPZ class fluctuations.

8 Big problems

It took almost 200 years from the discovery of the Gaussian
distribution to the first proof of its universality (the central
limit theorem). So far, KPZ universality has withstood proof
for almost three decades and shows no signs of yielding.

Besides universality, there remain a number of other big
problems for which little to no progress has been made. All
of the systems and results discussed herein have been 1 + 1
dimensional, meaning that there is one time dimension and
one space dimension. In the context of random growth, it
makes perfect sense (and is quite important) to study surface
growth, i.e. 1 + 2 dimensional. In the isotropic case (where
the underlying growth mechanism is roughly symmetric with
respect to the two spatial dimensions), there are effectively
no mathematical results though numerical simulations sug-
gest that the 1/3 exponent in the t1/3 scaling for corner growth
should be replaced by an exponent of roughly 0.24. In the
anisotropic case there have been a few integrable examples
discovered that suggest very different (logarithmic scale) fluc-
tuations such as observed by Borodin-Ferrari (2008).

Finally, despite the tremendous success in employing
methods of integrable probability to expand and refine the
KPZ universality class, there still seems to be quite a lot of
room to grow and new integrable structures to employ. Within
the physics literature, there are a number of exciting new di-
rections in which the KPZ class has been pushed, including
out-of-equilibrium transform and energy transport with mul-
tiple conservation laws, front propagation equations, quan-
tum localisation with directed paths and biostatistics. What is
equally important is to understand what type of perturbations
break out of the KPZ class.

Given all of the rich mathematical predictions, one might
hope that experiments would have revealed KPZ class be-
haviour in nature. This is quite a challenge since determin-
ing scaling exponents and limiting fluctuations require im-
mense numbers of repetitions of experiments. However, there
have been a few startling experimental confirmations of these
behaviours in the context of liquid crystal growth, bacterial
colony growth, coffee stains and fire propagation (see [10]
and references therein). Truly, the study of the KPZ universal-
ity class demonstrates the unity of mathematics and physics
at its best.
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