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The interview took place in Oslo on 23 May 2016.

Professor Wiles, please accept our congratulations for 
having been selected as the Abel Prize Laureate for 
2016. To be honest, the two of us had expected this in-
terview to take place already several years ago!

You are famed not only among mathematicians, but 
also among the public at large for, and now we cite 
the Abel Committee: “the stunning proof of Fermat’s 
Last Theorem, by way of the Modularity Conjecture for 
elliptic curves, opening a new era in number theory”. 
This proof goes back to 1994, which means that you 
had to wait for more than 20 years before it earned you 
the Abel Prize. Nevertheless, you are the youngest Abel 
Prize Laureate so far. 

After you finished your proof of Fermat’s Last Theo-
rem you had to undergo a deluge of interviews, which 
makes our task difficult. How on earth are we to come 
up with questions that you have not answered several 
times before? Well, we will try to do our best. 

Fermat’s Last Theorem: A historical account

We have to start at the very beginning, with a citation 
in Latin: “…nullam in infinitum ultra quadratum po-
testatem in duos eiusdem nominis fas est dividere”, 
which means: “it is impossible to separate any power 
higher than the second into two like powers”. That is in 
modern mathematical jargon: The equation xn + yn = zn 
has no solution in natural numbers for n greater that 
two. And then it continues: “cujus rei demonstrationem 
mirabilem sane detexi. Hanc marginis exiguitas non 
caperet”, which means: “I have discovered a truly mar-
vellous proof of this, which this margin is too narrow to 
contain”. This remark was written in the year 1637 by 
the French lawyer and amateur mathematician Pierre 
de Fermat [1601–1665] in the margin of his copy of 
Diophantus’ Arithmetica. He certainly did not expect 
that it would keep mathematicians, professionals and 
amateurs alike, busy for centuries trying to unearth the 
proof. 

Could you please give us a short account of some 
of the attempts towards proving Fermat’s Last Theo-
rem up until the time you embarked on your successful 
journey? Furthermore, why was such a simple-minded 
question so attractive and why were attempts to prove 
it so productive in the development of number theory?  
The first serious attempt to solve it was presumably by 
Fermat himself. But unfortunately we know nothing 
about it except for what he explained about his proofs 
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in the specific cases of n = 3 and n = 4.1 That is, he showed 
that you can’t have the sum of two cubes be another 
cube, or the sum of two fourth powers being a fourth 
power. He did this by a beautiful method, which we call 
infinite descent. It was a new method of proof, or at least 
a new way of presenting proofs, in arithmetic. He ex-
plained this method to his colleagues in letters and he 
also wrote about it in his famous margin, which was big 
enough for some of it at least. After the marginal notes 
were published by Fermat’s son after his father’s death, 
it lay dormant for a while. Then it was picked up by Euler 
[1707–1783] and others who tried to find this truly mar-
vellous proof. And they failed. It became quite dramatic 
in the mid-19th century – various people thought they 
could solve it. There was a discussion concerning this in 
the French Academy – Lamé [1795–1870] claiming he 
was just about to prove it – and Cauchy [1789–1857] said 
he thought he could too, and so on. 

In fact it transpired that the German mathemati-
cian Kummer [1810–1893] had already written a pa-
per where he explained that the fundamental problem 
was what is known now as the fundamental theorem 
of arithmetic. In our normal number system any num-
ber can be factorized in essentially one way into prime 
factors. Take a number like 12; it is 2 times 2 times 3. 
There is no other way of breaking it up. But in trying 
to solve the Fermat problem you actually want to use 
systems of numbers where this uniqueness does not 

1 Strictly speaking Euler was the first to spell out a complete 
proof in the case p = 3. 
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hold. Every attempt that was made to solve the Fermat 
problem had stalled because of this failure of unique 
factorization. Kummer analysed this in incredible de-
tail. He came up with the most beautiful results, and the 
end product was that he could solve it for many, many 
cases. For example for n ≤ 100 he solved it for all primes 
except for 37, 59 and 67. But he did not finally solve it. 
His method was based on the idea that Fermat had in-
troduced – the method of infinite descent – but in these 
new number systems. 

The new number systems he was using spawned al-
gebraic number theory as we see it today. One tries to 
solve equations in these new systems of numbers instead 
of solving them with ordinary integers and rational num-
bers. Attempts in the style of Fermat carried on for a 
while but somewhat petered out in the twentieth cen-
tury. No one came up with a fundamentally new idea. In 
the second half of the twentieth century number theory 
moved on and considered other questions. Fermat’s 
problem was all but forgotten by the professionals.

Then in 1985, Gerhard Frey, a German mathemati-
cian, came up with a stunning new idea where he took 
a hypothetical solution to the Fermat problem and re-
wrote it so that it made what is called an elliptic curve. 
And he showed, or suggested, that this elliptic curve 
had very peculiar properties. He conjectured that you 
can’t really have such an elliptic curve. Building on 
this a year later an American mathematician, Kenneth 
Ribet, demonstrated, using this Frey curve, that any so-
lution of Fermat would contradict another well-known 
conjecture called the Modularity Conjecture. This con-
jecture had been proposed in a weak form by Taniy-
ama [1927–1958] and refined by Shimura, but the first 
real evidence for it came from André Weil [1906–1998] 
who made it possible to check this precise form of the 
Modularity Conjecture in some detail. And a lot of evi-
dence was amassed showing that this should certainly 
be true.  So at that point mathematicians could see: Yes, 
Fermat is going to be true. Moreover, there has to be a 
proof of it. 

What happened was that the Modularity Conjecture 
was a problem that mathematics could not just put to 
one side and go on for another five hundred years. It was 
a roadblock right in the middle of modern mathematics. 
It was a very, very central problem. As for Fermat you 
could just leave it aside and forget it almost forever. This 
Modularity Conjecture you could not forget. So at the 
point when I heard that Ribet had done this I knew that 
this problem could be solved and I was going to try. 

Concerning speculations about Fermat’s claimed proof: 
Do you think he had the same idea as Lamé, assuming, 
wrongly it turned out, that the cyclotomic integers have 
unique factorization?  
No, I don’t think so, though the idea might be in there 
somewhere. It is very hard to understand. André Weil 
wrote about this. All the other problems Fermat consid-
ered had to do with curves that were of genus zero or 
genus one. And suddenly he is writing down a curve that 
has higher genus. How is he going to think about it? 

When I was trying this myself as a teenager, I put my-
self in Fermat’s frame of mind because there was hardly 
anything else I could do. I was capable of understanding 
his mathematics from the 17th century, but probably not 
much beyond that. It seemed to me that everything he 
did came down to something about quadratic forms, and 
I thought that might be a way of trying to think about it. 
Of course, I never succeeded, but there is nothing else 
that suggests Fermat fell into this trap with unique fac-
torization. In fact, from the point of view of quadratic 
forms he understood that sometimes there was unique 
factorization and sometimes there was not. So he under-
stood that difference in his own context. I think it is un-
likely that that was the mistake. 

In the same book by André Weil that you referred to, 
titled “Number Theory: an approach through history 
from Hammurapi to Legendre”, it is mentioned that 
Fermat looked at the equation a cube minus a square 
equal to 2 [x3 – y2 = 2], and he showed that it has essen-
tially only one solution, namely x = 3 and y = ±5. André 
Weil speculates that Fermat at the time looked at the 
ring Z[–2], which does have unique factorization. 
Yes, he used unique factorization but the way he did 
it was in terms of quadratic forms. And I think he also 
looked at quadratic forms corresponding to Z[–6] 
where there is not unique factorization. So I think he 
understood. It was my impression when I thought about 
it that he understood the difference. 

A mathematical education

You were apparently interested in mathematical puzzles 
already as a quite young boy. Have you any thoughts 
about where this interest came from? Were you influ-
enced by anyone in particular?  
I just enjoyed mathematics when I was very young. At 
the age of ten I was looking through library shelves de-
voted to mathematics. I would pull out books and at one 
point I pulled out a book of E. T. Bell [1883–1960] titled 
“The Last Problem”, which on its cover describes the 
Fermat equation, the Wolfskehl Prize and the romantic 
history of the problem. I was completely captivated by it.

Were there other things that fascinated you in this book 
by Eric Temple Bell? 
It is entirely about that one equation, really. And it is 
actually quite wordy. So there is less mathematics in 
some sense than you might think. I think it was more the 
equation. Then, when I found this equation I looked for 
other elementary books on number theory and learned 
about congruences and solved congruences and so on, 
and looked at other things that Fermat did.

You did this work besides your ordinary school work? 
Yes, I don’t think my school work was too taxing from 
that point of view. 

Was it already clear for you at that time that you had 
an extraordinary mathematical talent? 
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I certainly had a mathematical aptitude and obviously 
loved to do mathematics, but I don’t think I felt that I 
was unique. In fact, I don’t believe I was in the school 
I attended. There were others who had just as strong a 
claim to be future mathematicians, and some of them 
have become mathematicians, too. 

Did you plan to study mathematics and to embark on a 
mathematical career already at that age? 
No, I don’t think I really understood you could spend 
your life doing mathematics. I think that only came later. 
But I certainly wanted to study it as long as I could. I’m 
sure that as far as my horizon extended it involved math-
ematics.

You started to study mathematics as a student at Ox-
ford in 1971. Can you tell us a little bit about how that 
worked out? Were there any particular teachers, any par-
ticular areas that were particularly important for you? 
Before I went to college, actually in high-school, one of 
my teachers had a PhD in number theory. He gave me a 
copy of Hardy and Wright’s An Introduction to the The-
ory of Numbers, and I also found a copy of Davenport’s 
The Higher Arithmetic. And these two books I found 
very, very inspiring in terms of number theory.

So you were on track before you started studying?  
Yes, I was on track before. In fact, to some extent I felt 
college was a distraction because I had to do all these 
other things, applied maths, logic and so on, and I just 
wanted to do number theory. You were not allowed to 
do number theory in your first year. And you could not 
really get down to it before your third year.  

But you were not interested in geometry, not as much as 
in algebra and number theory, anyway? 
No, I was primarily interested in algebra and number 
theory. I was happy to learn these other things, but I re-
ally was most excited about number theory. My teachers 
arranged for me to take extra classes in number theory, 
but there was not that much on offer. 

At one point I decided that I should put all the years 
of Latin I had done at school to good use and try to read 
some of Fermat in the original, but I found that was ac-
tually too hard. Even if you translated the Latin, the way 
they wrote in those days wasn’t in the algebraic symbols 
I was used to; so it was quite difficult.

It must have been a relief when you were done and came 
to Cambridge to start studying number theory for real, 
with John Coates as your supervisor?  
That’s right. I had a year, a preliminary year, in which 
I just studied a range of subjects, and then I could do a 
special paper. John Coates was not yet at Cambridge, but 
I think he helped me – maybe over the summer. Anyway, 
that summer I met him and started working with him 
right away, and that was just wonderful. The transition 
from undergraduate work, where you were just reading 
and studying, to research, that was the real break for me. 
It was just wonderful. 

Elliptic curves

We assume it was John Coates who initiated you to 
work on elliptic curves, and to Iwasawa theory? 
Absolutely. He had some wonderful ideas and was gen-
erous to share them with me.  

Did you tell John Coates that you were interested in the 
Fermat problem?  
Perhaps I did. I don’t remember. It is really true that 
there hadn’t been any new ideas since the 19th century. 
People were trying to refine the old methods, and, yes, 
there were refinements. But it didn’t look like these re-
finements and the solution were going to converge. It 
was just too hard that way. 

At the time you started to work with John Coates, you 
had no idea that these elliptic curves were going to be 
crucial for the solution of Fermat’s Last Theorem?  
No, it’s a wonderful coincidence. The strange thing is 
that, in a way, the two things that are most prominent in 
Fermat that we remember today are his work on elliptic 
curves and his famous last theorem. For example, this 
equation you mentioned, y2 + 2 = x3, is an elliptic curve. 
And the two strands came together in the proof.

Could you explain what an elliptic curve is and why 
elliptic curves are of interest in number theory?  
For a number theorist the life of elliptic curves started 
with Fermat as equations of the form y2 equals a cubic 
polynomial in x with rational coefficients. Then the prob-
lem is to find the rational solutions to such an equation. 
What Fermat noticed was the following: Sometimes you 
can start with one or even two rational solutions, and 
use them to generate infinitely many others. And yet 
sometimes there are no solutions. This latter situation 
occurs, for example, in the case n = 3 of Fermat’s Last 
Theorem, the equation being in fact an elliptic curve in 
disguise. Sometimes you can show there are no rational 
solutions. You could have infinitely many and you could 
have none.  This was already apparent to Fermat. 

In the early 19th century one studied these equations 
in complex numbers. Abel [1802–1829] himself came in 
at this point and studied elliptic functions and related 
these to elliptic curves, implying that elliptic curves have 
a group structure. They were very well understood in 
terms of doubly periodic functions in the early 19th cen-
tury. But that is what underlies the complex solutions, 
solutions to the equation in complex numbers. 

The solutions to the equation in rational numbers 
were studied by Poincaré [1854–1912]. What’s now 
known as the Mordell–Weil theorem was proved by 
Mordell [1888–1972] and then Weil in the 1920s, answer-
ing a question of Poincaré. In our setting it says that the 
K-rational points on an elliptic curve over a number 
field K, in particular for K equal to the rationals, form a 
finitely generated abelian group. That is, from Fermat’s 
language you can start with a finite number of solutions 
and using those generate all the solutions by what he 
called the chord-and-tangent process. 
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Birch and Swinnerton–Dyer, Tate–Shafarevich, 
Selmer…

By now you know the structure, it is a very beautiful al-
gebraic structure, the structure of a group, but that does 
not actually help you find the solutions. So no one re-
ally had any general methods for finding the solutions, 
until the conjectures of the 1960s, which emerged from 
the Birch and Swinnerton–Dyer Conjecture.  There are 
two aspects to it; one is somewhat analytic and one is in 
terms of what is called the Tate–Shafarevich group. Basi-
cally the Tate–Shafarevich group gives you the obstruc-
tion to an algorithm for finding the solutions.  And the 
Birch and Swinnerton–Dyer Conjecture tells you that 
there is actually an analytic method for analysing this 
so-called Tate–Shafarevich group. If you combine all this 
together, ultimately it should give you an algorithm for 
finding the solutions. 

You worked already on the Birch and Swinnerton–Dyer 
Conjecture when you were a graduate student together 
with John Coates?  
Yes, that is exactly what he proposed working on. We got 
the first result in certain special families of elliptic curves 
on this analytic link between the solutions and what is 
called the L-function of the elliptic curve.  

These were curves admitting complex multiplication? 
Exactly, these were the elliptic curves with complex mul-
tiplication. 

Was this the first general result concerning the Birch 
and Swinnerton–Dyer Conjecture? 
It was the first one that treated a family of cases rather 
than individual cases. There was a lot of numerical data 
for individual cases, but this was the first infinite family 
of cases. 

This was over the rational numbers? 
Yes. 

We should mention that the Birch and Swinnerton–
Dyer Conjecture is one of the Clay Millennium Prize 
Problems which would earn a person who solves it one 
million dollars.  
That’s right. I think it’s appealing, partly because it has 
its roots in Fermat’s work, just like the Fermat problem. 
It is another ‘elementary to state’ problem, concerned 
with equations – in this case of very low degree – which 
we can’t master and which Fermat initiated. I think it is 
a very appealing problem.  

Do you think it is within reach? In other words, do we 
have the necessary tools for somebody daring enough 
to attack it and succeed? Or do we have to wait for 
another three hundred years to see it solved? 
I don’t suppose it will take three hundred years, but 
I don’t think it is the easiest of the Millennium Prob-
lems. I think we are still lacking something. Whether the 
tools are all here now, I am not sure. They may be. There 

are always these speculations with these really difficult 
problems; it may be that the tools simply aren’t there. 

I don’t believe that anyone in the 19th century could 
have solved Fermat’s Last Theorem, certainly not in the 
way it was eventually solved. There was just too big a 
gap in mathematical history. You had to wait another 
hundred years for the right pieces to be in place. You can 
never be quite sure about these problems whether they 
are accessible to your time. That is really what makes 
them so challenging; if you had the intuition for what 
can be done now and what can’t be done now you would 
be a long way towards a solution! 

You mentioned the Tate–Shafarevich group and in that 
connection the Selmer group appears. Selmer [1920–
2006] was a Norwegian mathematician, and it was 
Cassels [1922–2015] who is responsible for naming 
this group the Selmer group. Could you say a few words 
about the Selmer group and how it is related to the 
Tate–Shafarevich group, even if it’s a little technical? 
It is technical, but I can probably explain the basic idea 
of what the Selmer group is. What you are trying to do 
is to find the rational solutions on an elliptic curve. The 
method is to take the rational points on the elliptic curve 
– suppose you have got some – and you generate field 
extensions from these. So when I say generate exten-
sions, I mean that you can take roots of those points on 
the elliptic curve. Just like taking the n’th root of 5 or the 
cube root of 2. You can do the same thing on an elliptic 
curve, you can take the n’th root of a point. These are all 
points which added to themselves n times gives you the 
point you started with. They generate certain extensions 
of the number field you started with, so in our case of the 
rational number field Q. 

You can put a lot of restrictions on those extensions. 
And the Selmer group is basically the smallest set of ex-
tensions you can get putting on all the obvious restric-
tions. 

Let me summarize this. You’ve got the group of 
points. They generate some extensions; that’s too big, 
you don’t want all extensions. You cut that down as much 
as you can using local criteria, using p-adic numbers; 
that’s called the Selmer group. And the difference es-
sentially between the group generated by the points and 
the Selmer group is the Tate–Shafarevich group. So the 
Tate–Shafarevich group gives you the error term if you 
like, in trying to get at the points via the Selmer group. 

Selmer’s paper, which Cassels refers to, studied the Dio-
phantine equation, 3x3 + 4y3 + 5z3 = 0 and similar ones. 
Selmer showed that it has just a trivial solution in the 
integers, while modulo n it has non-trivial solutions for 
all n. In particular, this curve has no rational points. 
Why did Cassels invoke Selmer’s name in naming the 
group?  
Yes, there are quite subtle relationships between these. 
What happens is you are actually looking at one ellip-
tic curve, which in this case would be x3 + y3 + 60z3 = 0. 
That is an elliptic curve, in disguise, if you like, and the 
Tate–Shafarevich group involves looking at other ones 
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like it, for example 3x3 + 4y3 + 5z3 = 0, which is a genus 
one curve, but which has no rational points. Its Jacobian 
is the original elliptic curve, x3 + y3 + 60z3 = 0. One way 
of describing the Tate–Shafarevich group is in terms of 
these curves that have genus one but don’t have rational 
points. And by assembling these together you can make 
the Tate–Shafarevich group, and that is reflected in the 
Selmer group. It is too intricate to explain in words but 
it is another point of view. I gave it in a more arithmetic 
terminology in terms of extensions. The more geometric 
terminology was in terms of these twisted forms. 

The Modularity Conjecture

What you proved in the end was a special case of what 
is now called the Modularity Conjecture. In order to 
explain this one has to start with modular forms, and 
how modular forms can be put in relation with elliptic 
curves. Could you give us some explanations? 
Yes; an elliptic curve (over the rationals) we have de-
scribed as an equation y2 = x3 + ax + b, where the a and 
b are assumed to be rational numbers. (There is also a 
condition that the discriminant should not vanish). As 
I said, at the beginning of the 19th century you could 
describe the complex solutions to this equation. You 
could describe these very nicely in terms of the Weier-
strass ℘-function, in terms of a special elliptic function. 
But what we want is actually a completely different 
uniformization of these elliptic curves which captures 
the fact that the a and b are rational numbers. It is a 
parametrization just for the rational elliptic curves. And 
because it captures the fact that it is defined over the ra-
tionals it gives you a much better hold on solutions over 
the rationals than the elliptic functions do. The latter re-
ally only sees the complex structure.

And the place it comes from are modular forms or 
modular curves. To describe modular functions first: we 
are used to functions which satisfy the relation of be-
ing invariant under translation. Every time we write 
down a Fourier series we have a function which is in-
variant under translation. Modular functions are ones 
which are invariant under the action of a much bigger 
group, usually a subgroup of SL2(Z). So, you would ask 
for a function f(z) in one complex variable, usually on 
the upper half plan, which satisfies f(z) is the same as 
f((az + b) / (cz + d)); or more generally, is that times a 
power of cz + d. 

These are called modular functions and were exten-
sively studied in the 19th century. Surprisingly they hold 
the key to the arithmetic of elliptic curves. Perhaps the 
simplest way to describe it is that because we have an ac-
tion of SL2(Z) on the upper half plane H – by the action 
z goes to (az + b) / (cz + d) – we can look at the quotient 
H modulo this action. You can then give the quotient the 
structure of a curve. In fact, it naturally gets the structure 
of a curve over the rational numbers.  

If you take a subgroup of SL2(Z), or more precisely 
what is called a congruence subgroup, defined by the 
c value being divisible by N, then you call the curve a 
modular curve of level N. The Modularity Conjecture 

asserts that every elliptic curve over the rationals is 
actually a quotient of one of these modular curves for 
some integer N. It gives you a uniformization of elliptic 
curves by these other entities, these modular curves. On 
the face of it, it might seem we are losing because this is 
a high genus curve, it is more complicated. But it actually 
has a lot more structure because it is a moduli space. 

And that is a very powerful tool? 
That is a very powerful tool, yes. You have function theo-
ry, you have deformation theory, geometric methods etc.  
You have a lot of tools to study it. 

Taniyama, the young Japanese mathematician who first 
conjectured or suggested these connections, his conjec-
ture was more vague, right? 
His conjecture was more vague. He didn’t pin it down to 
a function invariant under the modular group. I’ve for-
gotten exactly what he conjectured; it was invariant un-
der some kind of group, but I forget exactly which group 
he was predicting. But it was not as precise as the con-
gruence subgroups of the modular group. I think it was 
originally written in Japanese so it was not circulated 
as widely as it might have been. I believe it was part of 
notes compiled after a conference in Japan. 

It was an incredibly audacious conjecture at that time, 
wasn’t it? 
Apparently, yes.  

But then it gradually caught the attention of other 
mathematicians. You told us already about Gerhard 
Frey, who came up with a conjecture relating Fermat’s 
Last Theorem with the Modularity Conjecture. 
That’s right. Gerhard Frey showed that if you take a so-
lution to the Fermat problem, say ap + bp = cp, and you 
create the elliptic curve y2 = x (x – ap)(x + bp), then the 
discriminant of that curve would end up being a perfect 
p’th power.  And if you think about what that means as-
suming the Modularity Conjecture – you have to assume 
something a bit stronger as well (the so called epsilon 
conjecture of Serre) – then it forces this elliptic curve 
to have the level N that I spoke about to be equal to 
one, and hence the associated congruence subgroup is 
equal to SL2(Z). But H modulo SL2(Z) is a curve of ge-
nus zero. It has no elliptic curve quotient so it wasn’t 
there after all, and hence there can’t be a solution to the 
Fermat problem. 

The quest for a proof

That was the point of departure for your own work, 
with crucial further ingredients due to Serre and Ribet 
making this connection clear. May we briefly summa-
rize the story that then follows? It has been told by you 
many times, and it is the focus of a BBC-documentary. 

You had moved to the United States, first to Har-
vard, then to Princeton University, becoming a profes-
sor there. When you heard of Ribet’s result you devoted 
all your research time to prove the Modularity Con-
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jecture for semistable elliptic curves over the rationals. 
This work went on for seven years of really hard work 
in isolation. At the same time you were working as a 
professor in Princeton and you were raising small kids. 

A proof seems to be accomplished in 1993, and the 
development culminates in a series of three talks at the 
Isaac Newton Institute in Cambridge back in England, 
announcing your proof of Fermat’s Last Theorem. You 
are celebrated by your peer mathematicians. Even the 
world press takes an interest in your results, which hap-
pens very rarely for mathematical results. 

But then when your result is scrutinized by six ref-
erees for a highly prestigious journal, it turns out that 
there is a subtle gap in one of your arguments, and you 
are sent back to the drawing board. After a while you 
send for your former student, Richard Taylor, to come 
to Princeton to help you in your efforts. It takes a fur-
ther ten months of hard and frustrating work; we think 
we do not exaggerate by calling it a heroic effort under 
enormous pressure. Then in a sudden flash of insight 
you realize that you can combine some of your previous 
attempts with new results to circumvent the problem 
that had caused the gap. This turns out to be what you 
need in order to get the part of the Modularity Conjec-
ture that implied Fermat’s Last Theorem. 

What a relief that must have been! Would you like 
to give a few comments to this dramatic story? 
With regard to my own work when I became a profes-
sional mathematician working with Coates I realized 
I really had to stop working on Fermat because it was 
time-consuming and I could see that in the last hundred 
years almost nothing had been done. And I saw others, 
even very distinguished mathematicians, had come to 
grief on it. When Frey came out with this result, I was 
a bit sceptical that the Serre part of the conjecture was 
going to be true, but when Ribet proved it then, okay, 
this was it! 

And it was a long hard struggle. In some sense it is 
irresponsible to work on one problem to the exclusion 
of everything else, but this is the way I tend to do things. 
Whereas Fermat is very narrow, I mean it is just this one 
equation, whose solution may or may not help with any-
thing else, yet the setting of the modular conjecture was 
one of the big problems in number theory. It was a great 
thing to work on anyway, so it was just a tremendous 
opportunity. 

When you are working on something like this it takes 
many years to really build up the intuition to see what 
kinds of things you need and what kinds of things a solu-
tion will depend on. It’s something like discarding eve-
rything you can’t use and won’t work till your mind is so 
focused that even making a mistake, you’ve seen enough 
that you’ll find another way to the end. 

Funnily enough, concerning the mistake in the argu-
ment that I originally gave, people have worked on that 
aspect of the argument and quite recently they have ac-
tually shown that you can produce arguments very like 
that. In fact, in every neighbouring case arguments simi-
lar to the original method seem to work but there is this 
unique case that it doesn’t seem to work for, and there is 

not yet any real explanation for it. So the same kind of 
argument I was trying to use, using Euler systems and so 
on, has been made to work in every surrounding case but 
not the one I needed for Fermat. It’s really extraordinary. 

You once likened this quest for the proof of the Modu-
larity Theorem in terms of a journey through a dark 
unexplored mansion. Could you elaborate? 
I started off really in the dark. I had no prior insights 
how the Modularity Conjecture might work or how you 
might approach it. One of the troubles with this problem 
– it’s a little like the Riemann Hypothesis but perhaps 
even more so with this one – is you didn’t even know 
what branch of mathematics the answer would be com-
ing from. 

To start with, there are three ways of formulating the 
problem, one is geometric, one is arithmetic and one is 
analytic. And there were analysts – I would not under-
stand their techniques at all well – who were trying to 
make headway on this problem. 

I think I was a little lucky because my natural instinct 
was with the arithmetic approach and I went straight for 
the arithmetic route, but I could have been wrong. The 
only previously known cases where the Modularity Con-
jecture were known to hold were the cases of complex 
multiplication, and that proof is analytic, completely 
analytic. 

Partly out of necessity, I suppose, and partly because 
that’s what I knew, I went straight for an arithmetic ap-
proach. I found it very useful to think about it in a way 
that I had been studying in Iwasawa theory. With John 
Coates I had applied Iwasawa theory to elliptic curves. 
When I went to Harvard I learned about Barry Mazur’s 
work, where he had been studying the geometry of mod-
ular curves using a lot of the modern machinery. There 
were certain ideas and techniques I could draw on from 
that. I realized after a while I could actually use that to 
make a beginning – to find some kind of entry into the 
problem. 

Before you started on the Modularity Conjecture, you 
published a joint paper with Barry Mazur, proving 
the main theorem of Iwasawa Theory over the ration-
als. Can you please tell us what Iwasawa Theory is all 
about?
Iwasawa theory grew out of the work of Kummer on cy-
clotomic fields and his approach to Fermat’s Last The-
orem. He studied the arithmetic, and in particular the 
ideal class groups, of prime cyclotomic fields. Iwasawa’s 
idea was to consider the tower of cyclotomic fields ob-
tained by taking all p-power roots of unity at once. The 
main theorem of Iwasawa theory proves a relation bet-
ween the action of a generator of the Galois group on 
the p-primary class groups and the p-adic L-functions. 
It is analogous to the construction used in the study of 
curves over finite fields where the characteristic polyno-
mial of Frobenius is related to the zeta function.

And these tools turned out to be useful when you started 
to work on the Modularity Conjecture? 
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They did, they gave me a starting point. It wasn’t obvi-
ous at the time, but when I thought about it for a while 
I realized that there might be a way to start from there. 

Parallels to Abel’s work

We want to read you a quotation: “The ramparts are 
raised all around but, enclosed in its last redoubt, the 
problem defends itself desperately. Who will be the for-
tunate genius who will lead the assault upon it or force 
it to capitulate?” 
It must been E. T. Bell, I suppose? Is it?  

No, it’s not. It is actually a quote from the book “His-
toire des Mathématiques” by Jean-Étienne Montucla 
[1725–1799], written in the late 18th century. It is re-
ally the first book ever written on the history of math-
ematics. The quotation refers to the solvability or un-
solvability of the quintic equation by radicals. 

As you know Abel [1802–1829] proved the unsolv-
ability of the general quintic equation when he was 21 
years old. He worked in complete isolation, mathemati-
cally speaking, here in Oslo. Abel was obsessed, or at 
least extremely attracted, to this problem. He also got a 
false start. He thought he could prove that one could ac-
tually solve the quintic by radicals. Then he discovered 
his mistake and he finally found the unsolvability proof. 

Well, this problem was at that time almost 300 
years old and very famous. If we move fast forward 200 
years the same quotation could be used about the Fer-
mat problem, which was around 350 years old when 
you solved it. It is a very parallel story in many ways. 
Do you have comments? 
Yes. In some sense I do feel that Abel, and then Galois 
[1811–1832], were marking a transition in algebra from 
these equations which were solvable in some very sim-
ple way to equations which can’t be solved by radicals. 
But this is an algebraic break that came with the quintic. 
In some ways the whole trend in number theory now is 
the transition from basically abelian and possibly solv-
able extensions to insolvable extensions. How do we do 
the arithmetic of insolvable extensions? 

I believe the Modularity Conjecture was solved be-
cause we had moved on from this original abelian situa-
tion to a non-abelian situation, and we were developing 
tools, modularity and so on, which are fundamentally 
non-abelian tools. (I should say though that the proof 
got away mostly with using the solvable situation, not 
because it was more natural but because we have not 
solved the relevant problems in the general non-solva-
ble case).

It is the same transition in number theory that he was 
making in algebra, which provides the tools for solving 
this equation. So I think it is very parallel. 

There is an ironic twist with Abel and the Fermat Prob-
lem. When he was 21 years old, Abel came to Copen-
hagen to visit Professor Degen [1766–1825], who was 
the leading mathematician in Scandinavia at that time. 
Abel wrote a letter to his mentor in Oslo, Holmboe 

[1795–1850], stating three results about the Fermat 
equation without giving any proofs – one of them is not 
easy to prove, actually. This, of course, is just a curios-
ity today. 

But in the same letter he gives vent to his frustra-
tion, intimating that he can’t understand why he gets an 
equation of degree n2, and not n, when dividing the lem-
niscate arc in n equal pieces. It was only after returning 
to Oslo that he discovered the double periodicity of the 
lemniscate integral, and also of the general elliptic in-
tegral of the first kind. 

If one thinks about it, what he did on the Fermat 
equation turned out to be just a curiosity. But what he 
achieved on elliptic functions, and implicitly on el-
liptic curves, turned out later to be a relevant tool for 
solving it. Of course, Abel had no idea that this would 
have anything to do with arithmetic. So this story tells 
us that mathematics sometimes develops in mysterious 
ways.  
It certainly does, yes. 

Work styles

May we ask for some comments about work styles of 
mathematicians in general and also about your own? 
Freeman Dyson, a famous physicist and mathemati-
cian at IAS in Princeton, said in his Einstein lecture 
in 2008: “Some mathematicians are birds, others are 
frogs. Birds fly high in the air and survey broad vistas 
of mathematics out to the horizon. They delight in con-
cepts that unify our thinking and bring together diverse 
problems from different parts of the landscape. Frogs 
live in the mud below and see only the flowers that grow 
nearby. They delight in the details of particular objects 
and they solve problems one at a time”.  

Freeman Dyson didn’t say that birds were better 
than frogs, or the other way around. He considered 
himself a frog rather than a bird. 

When we are looking at your work, it seems rather 
difficult for us to decide where to place you in his clas-
sification scheme: among the birds, those who create 
theories, or among the frogs, those who solve problems. 
What is our own perception? 
Well, I don’t feel like either. I’m certainly not a bird – 
unifying different fields. I think of frogs as jumping a 
lot. I think I’m very, very focused. I don’t know what the 
animal analogy is, but I think I’m not a frog in the sense 
that I enjoy the nearby landscape. I’m very, very con-
centrated on the problem I happen to work on and I am 
very selective. And I find it very hard to even take my 
mind off it enough to look at any of the flowers around, 
so I don’t think that either of the descriptions quite fits. 

Based on your own experience could you describe the  
interplay between hard, concentrated and persevering 
work on the one side, and on the other side these sud-
den flashes of insights that seemingly come out of no-
where, often appearing in a more relaxed setting. Your 
mind must have worked unconsciously on the problem 
at hand, right? 
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I think what you do is that you get to a situation where 
you know a theory so well, and maybe even more than 
one theory, so that you have seen every angle and tried a 
lots of different routes. 

It is this tremendous amount of work in the prepara-
tory stage where you have to understand all the details, 
and maybe some examples, that is your essential launch 
pad. When you have developed all this, then you let the 
mind relax and then at some point – maybe when you go 
away and do something else for a little bit – you come 
back and suddenly it is all clear. Why did you not think 
of that? This is something the mind does for you. It is the 
flash of insight.

I remember – this is a trivial example in a non-math-
ematical setting – once someone showed me some script, 
it was some gothic script, and I couldn’t make head or 
tail of it. I was trying to understand a few letters, and I 
gave up. Then I came back half an hour later and I could 
read the whole thing. The mind somehow does this for 
you and we don’t quite know how, but we do know what 
we have to do to set up the conditions where it will hap-
pen. 

This is reminiscent of a story about Abel. While in Berlin 
he shared an apartment with some Norwegian friends, 
who were not mathematicians. One of his friends said 
that Abel typically woke up during the night, lighted a 
candle and wrote down ideas that he woke up with. Ap-
parently his mind was working while asleep. 
Yes, I do that except I don’t feel the need to write them 
down when I wake up with it because I know I will not 
forget it. But I am terrified if I have an idea when I am 
about to go to sleep that I would not wake up with that 
idea, so then I have to write it down. 

Are you thinking in terms of formulas or in terms of 
geometric pictures, or what? 
It is not really geometric. I think it is patterns, and I think 
it is just parallels between situations I have seen else-
where and the one I am facing now.  In a perfect world, 
what is it all pointing to, what are the ingredients that 
ought to go into this proof, what am I not using that I 
have still in my pocket? Sometimes it is just desperation. 
I assemble every piece of evidence I have and that’s all 
I’ve got. I have got to work with that and there is noth-
ing else. 

I often feel that doing mathematics is like being a 
squirrel and there are some nuts at the top of a very 
tall tree. But there are several trees and you don’t know 
which one. What you do is that you run up one and you 
think, no, it does not look good on this one, and you go 
down and up another one, and you spend your whole life 
just going up and down these trees but you’ve only got 
up to thirty feet. Now if someone told you the rest of the 
trees – it’s not in them, you have only one tree left, then 
you would just keep going until you found it. In some 
sense it is ruling out the wrong things that is really cru-
cial. And if you just believe in your intuition, and your 
intuition is correct, and you stick with your one tree then 
you will find it. 

Problems in mathematics

Felix Klein [1849–1925] once said: “Mathematics 
develops as old results are being understood and illu-
minated by new methods and insights. Proportionally 
with a better and deeper understanding new problems 
naturally arise.” And David Hilbert [1862–1943] 
stressed that “problems are the lifeblood of mathemat-
ics”. Do you agree? 
I certainly agree with Hilbert, yes. Good problems are 
the lifeblood of mathematics. I think you can see this 
clearly in number theory in the second half of the last 
century. For me personally obviously the Modular-
ity Conjecture, but also the whole Langlands Program 
and the Birch and Swinnerton–Dyer Conjecture: These 
problems give you a very clear focus on what we should 
try to achieve. We also have the Weil Conjectures on 
curves and varieties over finite fields and the Mordell 
Conjecture and so on. 

These problems somehow concentrate the mind and 
also simplify our goals in mathematics. Otherwise we 
can get very, very spread out and not sure what’s of value 
and what’s not of value. 

Do we have as good problems today as when Hilbert 
formulated his twenty-three problems in 1900? 
I think so, yes. 

Which one do you think is the most important problem 
today? And how does the Langlands program fit in?  
Well, I think the Langlands program is the broadest 
spectrum of problems related to my field. I think that 
the Riemann Hypothesis is the single greatest problem 
from the areas I understand. It is sometimes hard to say 
exactly why that is, but I do believe that solving it would 
actually help solve some of these other problems. And 
then of course I have a very personal attachment to the 
Birch and Swinnerton–Dyer Conjecture. 

Intuition can lead us astray sometimes. For example, 
Hilbert thought that the Riemann Hypothesis would be 
solved in his lifetime. There was another problem on his 
list, the 7th, that he never thought would be solved in 
his lifetime, but which was solved by Gelfond [1906–
1968] in 1934. So our intuition can be wrong. 
That is right. I’m not surprised that Hilbert felt that 
way. The Riemann Hypothesis has such a clear state-
ment and we have the analogue in the function field set-
ting. We understand why it is true there, and we feel we 
ought to be able to translate it. Of course, many people 
have tried and failed. But I would still myself expect it 
to be solved before the Birch and Swinnerton–Dyer 
Conjecture. 

Investing in mathematics

Let’s hope we’ll find out in our lifetimes! 
Classical mathematics has, roughly speaking, two 

sources: one of them coming from the physical sciences 
and the other one from, let’s for simplicity call it num-
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ber theoretical speculations, with number theory not 
associated to applications. 

That has changed. For example, your own field of 
elliptic curves has been applied to cryptography and 
security. People are making money with elliptic curves 
nowadays! On the other hand, many sciences apart 
from physics really take advantage and profit from 
mathematical thinking and mathematical results. Pro-
gress in industry nowadays often depends on math-
ematical modelling and optimization methods. Science 
and industry propose challenges to the mathematical 
world. 

In a sense, mathematics has become more applied 
than it ever was. One may ask whether this is a problem 
for pure mathematics. It appears that pure mathemat-
ics sometimes is put to the side lines, at least from the 
point of view of the funding agencies. Do you perceive 
this as a serious problem? 
Well, I think in comparison with the past one feels that 
mathematicians two, three hundred years ago were able 
to handle a much broader spectrum of mathematics, and 
a lot more of it touched applied mathematics than would 
a typical pure mathematician do nowadays. On the other 
hand that might be because we only remember the very 
best and most versatile mathematicians from the past.

I think it is always going to be a problem if funding 
agencies are short-sighted. If they want to see a result 
in three years then it is not going to work. It is hard to 
imagine a pure development and then the application all 
happening within three to five years. It is probably not 
going to happen. 

On the other hand, I don’t believe you can have a 
happily functioning applied maths world without the 
pure maths to back it up, providing the future and keep-
ing them on the straight and narrow. So it would be very 
foolish not to invest in pure mathematics. 

It is a bit like only investing in energy resources that 
you can see now. You have to invest in the future; you 
have to invest in fusion power or solar power or these 
other things. You don’t just use up what is there and then 
start worrying about it when it is gone. It is the same with 
mathematics, you can’t just use up the pure mathematics 
we have now and then start worrying about it when you 
need a pure result to generate your applications. 

Mathematical awards

You have already won a lot of prizes as a result of your 
achievements, culminating in proving Fermat’s Last 
Theorem. You have won the Rolf Schock Prize, given by 
the Swedish Academy, the Ostrowski Prize, which was 
given to you in Denmark, the Fermat Prize in France, 
the Wolf Prize in Israel, the Shaw Prize in Hong Kong 
– the prize that has been named the Nobel Prize of the 
East; and the list goes on, ending with the Abel Prize 
tomorrow. May we ask you whether you enjoy these 
awards and the accompanying celebrations?
I certainly love them, I have to say. I think they are a 
celebration of mathematics. I think with something like 
Fermat it is something people are happy to see in their 

lifetime. I would obviously be very happy to see the Rie-
mann Hypothesis solved. It is just exciting to see how 
it finally gets resolved and just to understand the end 
of the story. Because a lot of these stories we won’t live 
to see the end of. Each time we do see the end of such 
a story it is something we naturally will celebrate. For 
me I learned about the Fermat problem from this book 
of E. T. Bell and about the Wolfskehl Prize attached to 
it. The Wolfs kehl Prize was still there – only just I may 
say – I only had a few years left before the deadline for 
it expired. 

This gives us the lead to talk a little about that prize. 
The Wolfskehl Prize was founded in 1906 by Paul 
Wolfs kehl [1856–1906], who was a German physi-
cian with an interest in mathematics. He bequeathed 
one hundred thousand Reichmarks (equivalent to more 
than one million dollars in today’s money) to the first 
person to prove Fermat’s Last Theorem. The prize was, 
according to the testament, valid until September 13, 
2007, and you received it in 1997. By then, due in part 
to hyperinflation Germany suffered after World War I, 
the prize money had dwindled a lot. 
For me the amount of money was unimportant. It was 
the sentimental feeling attached to the Wolfskehl Prize 
that was important for me. 

Graduate students

You have had altogether twenty-one PhD-students and 
you have attracted very gifted students. Some of them 
are really outstanding. One of them, Manjul Bharga-
va, won the Fields medal in 2014. It must have been a 
pleasure to be advisor to such students?  
Yes, I don’t want to take too much credit for it. In the 
case of Manjul I suggested a problem to him but after 
that I had nothing much more to do. He was coming up 
with these absolutely marvellous discoveries. In some 
sense you get more credit if you have very gifted stu-
dents, but the truth is that very gifted students don’t re-
ally require that much help. 

What is the typical way for you of interacting with 
graduate students?  
Well, I think the hardest thing to learn as a graduate stu-
dent is that afterwards you need to carry on with the rest 
of your professional life; it’s hard to pick problems. And 
if you just assign a problem and they do it, in some sense 
that hasn’t given them terribly much. Okay, they solved 
that problem, but the hard thing is then to have to go off 
and find other problems! So I prefer it if we come to a 
decision on the problem together.  

I give them some initial idea and which area of math-
ematics to look at, having not quite focused on the prob-
lem. Then as they start working and become experts 
they can see a better way of pinning down what the right 
question is. And then they are part of the process of 
choosing the problem. I think that is a much better in-
vestment for their future. It doesn’t always work out that 
way, and sometimes the initial problem you give them 
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turns out to be the right thing. But usually it is not that 
way, and usually it’s a process to find the right problem. 

Hobbies and interests

We always end the Abel interviews by asking the laure-
ate what he enjoys doing when he doesn’t work with 
mathematics. What are your hobbies and interests out-
side of mathematics?  
Well, it varies at different times. When I was doing Fer-
mat, and being a father with young children, that combi-
nation was all-consuming. 

I like to read and I like various kinds of literature, 
novels, some biographies, it is fairly balanced. I don’t 
have any other focused obsessions. When I was in school 
I played on chess teams and bridge teams, but when I 
started to do serious mathematics I completely lost in-
terest in those. 

What about music; are you fond of music? 
I go and listen to concerts, but I am not myself actively 
playing anything. I enjoy listening to music, classical, 
preferably. 

Are you interested in other sciences apart from math-
ematics? 
I would say somewhat. These are things I do to relax, 
so I don’t like them to be too close to mathematics. If 
it is something like animal behaviour or astrophysics or 
something from a qualitative point of view, I certainly en-
joy learning about those. Likewise about what machines 
are capable of, and many other kinds of popular science, 
but I’m not going to spend my time learning the details 
of string theory. I’m too focused to be willing to do that. 
Not that I would not be interested, but this is my choice. 

We would like to thank you very much for this wonder-
ful interview. That is first of all on behalf of the two of 
us, but also on the behalf of the Norwegian, the Danish 
and the European Mathematical Society. 

Thank you so much! 
Thank you very much!

Martin Raussen is a professor with special responsibilities 
(mathematics) at Aalborg University, Denmark. Chris-
tian Skau is a professor of mathematics at the Norwegian 
University of Science and Technology at Trondheim. To-
gether, they have held interviews with all the Abel Laure-
ates since 2003.

From left to right: Sir Andrew Wiles, Martin Raussen and Christian 
Skau. (Photo: Eirik F. Baardsen, DNVA.)




