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Problems
Themistocles M. Rassias (National Technical University,

Athens, Greece)

I am not really doing research, just trying to cultivate myself.

Alexander Grothendieck (1928–2014)

With this opportunity, I would like to express my deepest thanks

to Professor Martin Raussen, who appointed me as a member of

the Editorial Board of the Newsletter of the EMS in charge of the

problem corner in 2005. I would also like to express my gratitude to

Professor Krzysztof Ciesielski for proposing in 2004 that I write an

article in the Newsletter of the EMS, which subsequently initiated

my communication with Martin Raussen, with whom I have had a

wonderful and productive collaboration. I note that editors gener-

ally serve for four years and I feel deeply honoured that my mem-

bership as the problem column editor has lasted for more than 10

years. Thus, I wish to express my sincere thanks to Professors Vi-

cente Munoz and Lucia Di Vizio, who served as Editors-in-Chief

after Martin Raussen; I continued to have a wonderful collaboration

with them.

The preparation of this column has been very stimulating and

a source of great pleasure. From the very beginning, the “Problem

Corner” has appeared in two issues per year (the March and Septem-

ber issues) with six proposed problems and two open problems. In

every subsequent issue in which the problem corner has appeared,

the solutions of the previous proposed problems have appeared to-

gether with the names of additional problem-solvers. In total, 170

problems have appeared in the problem column while I have served

as its editor. Mathematicians from all over the world have partici-

pated in this effort. Going through the issues of the Newsletter of

the EMS, one can see problems proposed or solved by mathemati-

cians from Australia, Canada, China, Denmark, England, Germany,

Greece, Hong-Kong, Iran, Ireland, India, Italy, Poland, Portugal, Ro-

mania, Russia, Sweden, Ukraine, USA and others.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.

163. Find all positive integers m and n such that the integer

am,n = 2 . . . 2︸︷︷︸
m time

5 . . . 5︸︷︷︸
n time

is a perfect square.

(Dorin Andrica, Babeş-Bolyai University,

Cluj-Napoca, Romania)

164. Prove that every power of 2015 can be written in the form
x2+y2

x−y
, with x and y positive integers.

(Dorin Andrica, Babeş-Bolyai University,

Cluj-Napoca, Romania)

165. Find the smallest positive integer k such that, for any n ≥ k,

every degree n polynomial f (x) over Z with leading coefficient 1

must be irreducible over Z if | f (x)| = 1 has not less than
[ n

2

]
+ 1

distinct integral roots.

(Wing-Sum Cheung, The University of Hong Kong,

Pokfulam, Hong Kong)
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166. Let f : R → R be monotonically increasing ( f not neces-

sarily continuous). If f (0) > 0 and f (100) < 100, show that there

exists x ∈ R such that f (x) = x.

(Wing-Sum Cheung, The University of Hong Kong,

Pokfulam, Hong Kong)

167. Show that, for any a, b > 0, we have

1

2

(
1 − min {a, b}

max {a, b}

)2
≤ b − a

a
− ln b + ln a ≤ 1

2

(
max {a, b}
min {a, b}

− 1

)2
.

(Silvestru Sever Dragomir, Victoria University,

Melbourne City, Australia)

168. Let f : I → C be an n-time differentiable function on the

interior I̊ of the interval I, and f (n), with n ≥ 1, be locally abso-

lutely continuous on I̊. Show that, for each distinct x, a, b ∈ I̊ and

for any λ ∈ R\ {0, 1}, we have the representation

f (x) = (1 − λ) f (a) + λ f (b)

+

n∑
k=1

1

k!

[
(1 − λ) f (k) (a) (x − a)k + (−1)k λ f (k) (b) (b − x)k

]

+ S n,λ (x, a, b) , (1)

where the remainder S n,λ (x, a, b) is given by

S n,λ (x, a, b)

:=
1

n!

[
(1 − λ)(x − a)n+1

∫ 1

0

f (n+1)((1 − s)a + sx
)

(1 − s)n ds

+ (−1)n+1 λ (b − x)n+1

∫ 1

0

f (n+1)((1 − s)x + sb
)
snds

]
. (2)

(Silvestru Sever Dragomir, Victoria University,

Melbourne City, Australia)

II Two new open problems

169
*. Find all functions f , g, h, k : R → R that satisfy the func-

tional equation

[
f (x) − f (y)

]
k (x + y) =

[
g(x) − g(y)

]
h (x + y) (3)

for all x, y ∈ R.

Remark. The above open problem appeared in the book of Sahoo

and Riedel (see Section 2.7, page 80 in [2]). In a recent paper,

Balogh, Ibrogimov and Mityagin [1] have given a partial solution

to this open problem.

References

[1] Z. M. Balogh, O. O. Ibrogimov and B. S. Mityagin, Func-
tional equations and the Cauchy mean value theorem, Aequat.

Math., (2016), DOI 10.1007/s00010-015-0395-6.
[2] P. K. Sahoo and T. Riedel, Mean Value Theorems and Func-

tional Equations, World Scientific, Singapore, 1998.

(Prasanna K. Sahoo, University of Louisville,

Louisville, USA)

170
*. Consider the operators

Pαn ( f , x) =

∞∑
k=0

vαn,k(x) f (k/n),

where

vαn,k(x) =

(
n + k − 1

k

)
1[n,−α]x[k,−α]

(1 + x)[n+k,−α]
, for x ∈ [0,∞),

and x[k,−α] = x(x + α) · · · (x + (k − 1)α). In the case α = 1/n, we

can write this in an alternative form as

v
1/n

n,k
(x) =

(
n + k − 1

k

)
(nx)k .(2n)!

2(n!)(nx + n)n+k

=
(n)k

k!
.

(nx)k .(2n)!

2(n!)(nx + n)n(nx + 2n)k

.

If we denote the m-th order moment by

Tn,m(x) =

∞∑
k=0

v
1/n

n,k
(x)

(
k

n

)m
(4)

then, by simple computation, we have Tn,0(x) = 1, Tn,1(x) = nx
n−1
.

Examine whether a recurrence relation can be obtained for Tn,m(x)

between the moments.

(Vijay Gupta, Netaji Subhas Institute of Technology,

New Delhi, India)

III Solutions

152. Let G be an arbitrary group written multiplicatively. Let

σ : G → G be an anti-homomorphism (i.e., σ(xy) = σ(y)σ(x) for

all x, y ∈ G) satisfying σ(σ(x)) = x for all x ∈ G. Let C be the

field of complex numbers.

(i) Find all functions f : G → C that satisfy the functional

equation

f (xy) + f
(
σ(y)x

)
= 2 f (x) (5)

for all x, y ∈ G.

(ii) Find all functions f : G → C that satisfy the functional

equation

f (xy) − f
(
xσ(y)

)
= 2 f (y) (6)

for all x, y ∈ G.

(iii) Find all functions f : G → C that satisfy the functional

equation

f
(
xσ(y)

)
= f (x) f (y) (7)

for all x, y ∈ G.

(Prasanna K. Sahoo, University of Louisville,

Louisville, USA)

Solution of problem 152 (i), (ii) and (iii). Let Hom(G,C) be the set of

all homomorphisms from group G to the additive group (C,+) of C

and Hom(G,C⋆) be the set of all homomorphisms from group G to

the multiplicative group of non-zero complex numbers C⋆. A func-

tion f : G → C is said to be σ-even if and only if f (σ(x)) = f (x)

for all x ∈ G. Similarly, a function f : G → C is said to be σ-odd if

and only if f (σ(x)) = − f (x) for all x ∈ G. A function f : G → C is

called a central function if and only if f (xy) = f (yx) for all x, y ∈ G.

First, we determine all central functions f : G → C satisfy-

ing functional equations (5) and (6) respectively. Then, we find all

functions f : G → C that satisfy functional equation (7).
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Solution of problem (i). The central solution of functional equation

(5) is of the form

f (x) = φ(x) + α, ∀ x ∈ G, (6)

where φ is a σ-odd function in Hom(G,C) and α ∈ C is an arbitrary

constant. The converse is also true.

It is easy to verify that f given by (6) satisfies (5). It is left to

show that (6) is the only solution of (5). Let a, b and c be three arbi-

trary elements in G. Letting x = ab and y = c in (5), we have

f (abc) + f
(
σ(c)ab

)
= 2 f (ab). (7)

Next, letting x = σ(c)a and y = b in (5), we obtain

f
(
σ(c)ab

)
+ f
(
σ(cb)a

)
= 2 f
(
σ(c)a

)
. (8)

Use of (7) in (8) yields

2 f (ab) − f (abc) + f
(
σ(cb)a

)
= 2 f
(
σ(c)a

)
. (9)

Using (5), we see that f (σ(cb)a) = 2 f (a) − f (acb) and f (σ(c)a) =

2 f (a) − f (ac). In view of these, equation (9) gives rise to

f (abc) + f (acb) = 2 f (ab) + 2 f (ac) − 2 f (a).

Letting a = e (the identity in group G), we have

f (bc) + f (cb) = 2 f (b) + 2 f (c) − 2 f (e).

Defining φ : G → C by φ(x) := f (x) − α, where α := f (e), the last

equation reduces to

φ(bc) + φ(cb) = 2φ(b) + 2φ(c).

Since f is central, φ is also central and hence we have φ ∈
Hom(G,C). From the definition of φ, we obtain f = φ + α. Us-

ing this form of f in equation (5), we have φ(σ(y))+ φ(y) = 0 for all

y ∈ G. Hence, φ is σ-odd.

Solution of problem (ii). If f : G → C is any central function that

satisfies functional equation (6) for all x, y ∈ G then f is a σ-odd

function in Hom(G,C). The converse is also true.

It is easy to check that any σ-odd homomorphism f from G to

C satisfies functional equation (6). Next, we show that it is the only

solution of (6). Let a, b and c be any three arbitrary elements in G.

With x = ab and y = c in (6), we get

f (abc) − f (abσ(c)) = 2 f (c). (10)

Next, substitute x = a and y = bσ(c) in (6) to obtain

f
(
abσ(c)

)
− f
(
acσ(b)

)
= 2 f
(
bσ(c)

)
. (11)

Adding (10) and (11), we see that

f (abc) − f
(
acσ(b)

)
= 2 f (c) + 2 f

(
bσ(c)

)
. (12)

Using (6), we get f
(
acσ(b)

)
= f (acb) − 2 f (b) and f (bσ(c)) =

f (bc) − 2 f (c). Hence, (12) can be rewritten as

2 f (bc) + f (acb) − f (abc) = 2 f (c) + 2 f (b).

Letting a = e in the last equation, we obtain f (bc) + f (cb) =

2 f (b) + 2 f (c) and, since f is central, we have f ∈ Hom(G,C).

Since f ∈ Hom(G,C), from equation (6) we have f (x) + f (y) −
f (x) − f (σ(y)) = 2 f (y), which proves that f is a σ-odd function in

Hom(G,C).

Remark 1. (a) Note that in (i) and (ii) the group G can be replaced by

a unital semigroup S .

(b) We have provided the solution of (i) and (ii) assuming f to be a

central function. Without this assumption on f , we do not know the

solutions of (i) and (ii).

Solution of problem (iii). Every function f : G → C that satisfies

functional equation (7) is either a zero function or a σ-even function

in Hom(G,C⋆). The converse of this is also true.

It is easy to verify that a zero function or every non-zero σ-even

function in Hom(G,C⋆) satisfies functional equation (7). Next, we

show that these are the only solutions of (7).

If f is a constant function then, from (7), we get f = 0 or

f = 1. If f = 1 then f ∈ Hom(G,C⋆). Further, this f is σ-even.

Next, assume that f is a non-constant function. For arbitrary ele-

ments a, b, c ∈ G, letting x = a and y = bσ(c) in (7), we have

f (acσ(b)) = f (a) f (bσ(c)). Using (5), the last equality can be rewrit-

ten as f (ac) f (b) = f (a) f (b) f (c). Thus, f (b)
[
f (ac) − f (a) f (c)

]
= 0.

Since f is non-constant, this implies that f (ac) = f (a) f (c). Hence,

f ∈ Hom(G,C⋆). Since f ∈ Hom(G,C⋆) and non-constant, we have

from (7) that f is σ-even.

Remark 2. Note that in (iii) the group G can also be replaced by a

unital semigroup. �

Notes.

1. John N. Daras, (pupil, Lyceum of Filothei, Athens, Greece) also

solved problems 131 and 142.

2. G. C. Greubel (Newport News, Virginia, USA) also solved prob-

lems 149, 153* and 154*.

155. Let f : I ⊂ R → R be a convex function on the interval I,

with a, b ∈ I̊ (interior of I), a < b and ν ∈ [0, 1] . Show that

(0 ≤)ν(1 − ν)(b − a)
[
f ′+((1 − ν)a + νb) − f ′−

(
(1 − ν)a + νb

)]
(8)

≤ (1 − ν) f (a) + ν f (b) − f
(
(1 − ν)a + νb

)
≤ ν(1 − ν)(b − a)

[
f ′−(b) − f ′+(a)

]
,

where f ′± are the lateral derivatives of the convex function f .

In particular, for any a, b > 0 and ν ∈ [0, 1] , show that the follow-

ing reverses of Young’s inequality are valid:

(0 ≤)(1 − ν)a + νb − a1−νbν ≤ ν(1 − ν)(a − b)(ln a − ln b) (9)

and

(1 ≤)
(1 − ν)a + νb

a1−νbν
≤ exp

[
4ν(1 − ν)

(
K
(a
b

)
− 1

)]
, (10)

where K is Kantorovich’s constant defined by

K(h) :=
(h + 1)2

4h
, h > 0. (11)

(Sever S. Dragomir, Victoria University,

Melbourne City, Australia)

Solution by the proposer. The case ν = 0 or ν = 1 reduces to equality

in (8).

Since f is convex on I, it follows that the function is differen-

tiable on I̊ except at a countable number of points, the lateral deriva-

tives f ′± exist at each point of I̊, they are increasing on I̊ and f ′− ≤ f ′+
on I̊.
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For any x, y ∈ I̊, we have, for the Lebesgue integral,

f (x) = f (y) +

� x

y

f ′ (s) ds

= f (y) + (x − y)

� 1

0

f ′
�
(1 − t)y + tx

�
dt. (12)

Assume that ν ∈ (0, 1) . By (12), we have

f
�
(1 − ν)a + νb

�

= f (a) + ν (b − a)

� 1

0

f ′
�
(1 − t)a + t

�
(1 − ν)a + νb

��
dt (13)

and

f
�
(1 − ν)a + νb

�

= f (b) − (1 − ν) (b − a)

� 1

0

f ′
�
(1 − t) b + t

�
(1 − ν)a + νb

��
dt.

(14)

If we multiply (13) by 1−ν, (14) by ν and add the obtained equalities

then we get

f
�
(1 − ν)a + νb

�
= (1 − ν) f (a) + ν f (b)

+ (1 − ν)ν(b − a)

� 1

0

f ′
�
(1 − t)a + t

�
(1 − ν)a + νb

��
dt

− (1 − ν) ν(b − a)

� 1

0

f ′
�

(1 − t) b + t
�
(1 − ν)a + νb

��
dt,

which is equivalent to

(1 − ν) f (a) + ν f (b) − f
�
(1 − ν)a + νb

�

= (1 − ν)ν(b − a)

×
� 1

0

�
f ′
�
(1 − t)b + t

�
(1 − ν)a + νb

��

− f ′
�
(1 − t)a + t

�
(1 − ν)a + νb

���
dt. (15)

This is an equality of interest in itself.

Since a < b and ν ∈ (0, 1) , we have (1 − ν) a + νb ∈ (a, b) and

(1 − t) a + t ((1 − ν) a + νb) ∈ [a, (1 − ν) a + νb]

while

(1 − t)b + t
�
(1 − ν)a + νb

�
∈
�
(1 − ν)a + νb, b

�

for any t ∈ [0, 1] .

By the monotonicity of the derivative, we have

f ′+
�
(1 − ν)a + νb

�
≤ f ′
�
(1 − t)b + t

�
(1 − ν)a + νb

��
≤ f ′−(b) (16)

and

f ′+(a) ≤ f ′
�
(1 − t)a + t

�
(1 − ν)a + νb

��
≤ f ′−((1 − ν)a + νb) (17)

for almost every t ∈ [0, 1] .

By integrating the inequalities (16) and (17), we get

f ′+((1 − ν)a + νb) ≤
� 1

0

f ′
�
(1 − t)b + t

�
(1 − ν)a + νb

��
dt ≤ f ′−(b)

and

f ′+(a) ≤
� 1

0

f ′
�
(1 − t)a + t

�
(1 − ν)a + νb

��
dt ≤ f ′−((1 − ν)a + νb),

which implies that

f ′+
�
(1 − ν)a + νb

�
− f ′−
�
(1 − ν)a + νb

�

≤
� 1

0

f ′
�
(1 − t)b + t

�
(1 − ν)a + νb

��
dt

−
� 1

0

f ′
�
(1 − t)a + t

�
(1 − ν)a + νb

��
dt

≤ f ′−(b) − f ′+(a).

Making use of equality (15), we obtain the desired result (8).

If the function f : I ⊂ R→ R is a differentiable convex function

on I̊ then, for any a, b ∈ I̊ and ν ∈ [0, 1] , we have

(0 ≤)(1 − ν) f (a) + ν f (b) − f
�
(1 − ν)a + νb

�
(18)

≤ ν(1 − ν)(b − a)
�
f ′(b) − f ′(a)

�
.

If we write inequality (18) for the convex function f : R → (0,∞),

f (x) = exp(x), then we have

(0 ≤)(1 − ν) exp(x) + ν exp(y) − exp
�
(1 − ν)x + νy

�
(19)

≤ ν(1 − ν)(x − y)
�
exp(x) − exp(y)

�

for any x, y ∈ R and ν ∈ [0, 1].

Let a, b > 0. If we take x = ln a, y = ln b in (19) then we get the

desired inequality (9).

Now, if we write inequality (18) for the convex function f :

(0,∞)→ R, f (x) = − ln x, then we get

(0 ≤) ln
�
(1 − ν)a + νb

�
− (1 − ν) ln a − ν ln b ≤ ν(1 − ν)

(b − a)2

ab
,

namely

ln

�
(1 − ν)a + νb

a1−νbν

�
≤ ν(1 − ν)

(b − a)2

ab
.

This is equivalent to the desired result (10). �

Also solved by Vincenzo Basco (Universita degli Studi di Roma

“Tor Vergata”, Italy), Soon-Mo Jung (Hongik University, Chochi-

won, Korea), Socratis Varelogiannis (National Technical University

of Athens, Greece)

156. Evaluate

lim
n→∞


(1 + 1

n2 )(1 + 2

n2 ) · · · (1 + n

n2 )
√

e


n

.

(Dorin Andrica, Babeş-Bolyai University of

Cluj-Napoca, Romania)

Solution by the proposer. Recall that

lim
x→0

ln(1 + x) − x

x2
= −

1

2
.

Hence, for every ε > 0, there is δ > 0 such that, for every real num-

ber x with |x| < δ, we have

−1

2
− ε < ln(1 + x) − x

x2
< −1

2
+ ε.

Choose an integer n0 such that, for n ≥ n0,

1

n
< δ.

Therefore, we have
k

n2
≤ n

n2
=

1

n
< δ,

implying, for n ≥ n0, that

−1

2
− ε <

ln(1 + k

n2 ) − k

n2

k2

n4

< −1

2
+ ε, k = 0, 1, . . . , n.
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Then,

−1

2
− ε <

�n
k=1[ln(1 + k

n2 ) − k

n2 ]
�n

k=1
k2

n4

< −1

2
+ ε.

Hence,

lim
n→∞

�n
k=1[ln(1 + k

n2 ) − k

n2 ]
�n

k=1
k2

n4

= −
1

2
. (20)

On the other hand, using the well-known formula

n�
k=1

k2

n4
=

n(n + 1)(2n + 1)

6n4
,

we have

lim
n→∞

n�
k=1

k2

n3
=

1

3

and from (20) we obtain

lim
n→∞

n ·
n�

k=1

�
ln(1 +

k

n2
) −

k

n2

�
= −

1

6
,

that is,

lim
n→∞

n ·
ln

n�
k=1

(1 +
k

n2
) − n + 1

2n

 = −
1

6
.

Hence,

lim
n→∞

ln
n�

k=1

(1 +
k

n2
)n − n + 1

2

 = −
1

6
.

It follows that

lim
n→∞

2 ln

n�
k=1

(1 +
k

n2
)n − n

 = 1 − 1

3
=

2

3

and we obtain

lim
n→∞

ln
n�

k=1

(1 +
k

n2
)n − ln(

√
e)

 =
1

3
.

The last relation is equivalent to

lim
n→∞


(1 + 1

n2 )(1 + 2

n2 ) · · · (1 + n

n2 )
√

e


n

=
3
√

e.

�

Also solved by Ulrich Abel (University of Applied Sciences, Fried-

berg, Germany), Vincenzo Basco (Universita degli Studi di Roma

“Tor Vergata”, Italy), Mihaly Bencze (Brasov, Romania), Albero

Bersani (Sapienza Universita di Roma, Italy), John N. Daras, (pupil,

Lyceum of Filothei, Athens, Greece), Jorge Mozo Fernandez, (Uni-

versidad de Valladolid, Spain), Soon-Mo Jung (Hongik University,

Chochiwon, Korea), Edward Omey (KU Leuven, Brussels, Belgium),

Angel Plaza (University of Las Palmas de Gran Canaria, Spain)

Socratis Varelogiannis (National Technical University of Athens,

Greece).

157. Let X be a compact space and f : X → X be continuous

and expansive, that is,

d
�
f (x), f (y)

�
≥ d(x, y) ∀ x, y ∈ X .

What can be said about the function f ?

(W. S. Cheung, University of Hong Kong,

Pokfulam, Hong Kong)

Solution by the proposer.

(i) Observe that f is clearly 1 − 1.

(ii) f −1 : f (X)→ X is continuous.

In fact, ∀ ε > 0, let δ := ε. Then,

d
�
f (x), f (y)

�
< δ⇒ d(x, y) ≤ d

�
f (x), f (y)

�
< δ = ε .

(iii) f is onto.

In fact, since X is compact and f is continuous, f (X) is com-

pact. If there exists x ∈ X \ f (X), we must have

d
�
x, f (X)

�
= some positive number d > 0 .

For any m, n ∈ N,

d ≤ d
�
x, f m(x)

�
≤ d
�
f (x), f m+1(x)

�
≤ · · · ≤ d

�
f n(x), f n+m(x)

�

and therefore
�
f n(x)
�

is a sequence in X without accumulation

point, which violates the assumption that X is compact.

Combining (i), (ii) and (iii), f is a homeomorphism. �

Also solved by Vincenzo Basco (Universita degli Studi di Roma “Tor

Vergata”, Italy), Mihaly Bencze (Brasov, Romania), Jorge Mozo Fer-

nandez (Universidad de Valladolid, Spain), Soon-Mo Jung (Hongik

University, Chochiwon, Korea), Socratis Varelogiannis (National

Technical University of Athens, Greece).

158. Find all differentiable functions f : R → R which satisfy

the equation

x f ′(x) + k f (−x) = x2 ∀ x ∈ R,

where k > 0 is an integer.

(Ovidiu Furdui, Technical University of Cluj-Napoca,

Cluj-Napoca, Romania)

Solution by the proposer. We prove that such functions are of the

following form:

f (x) =


x2

k+2
if k is even,

Cxk

2
+ x2

k+2
, C ∈ R if k is odd.

We replace x by −x and we have


x f ′(x) + k f (−x) = x2,

−x f ′(−x) + k f (x) = x2

and this implies, by subtraction, that

x
�
f ′(x) + f ′(−x)

�
+ k
�
f (−x) − f (x)

�
= 0.

Let g : R → R, g(x) = f (x) − f (−x). The previous equation implies

that

xg′(x) − kg(x) = 0, ∀ x ∈ R.
This implies that g(x) = Cxk , for all x ∈ R. It follows that

f (x) − f (−x) = Cxk, ∀ x ∈ R.

Replacing f (−x) = f (x) − Cxk in the initial differential equation, we

get that

x f ′(x) + k f (x) = Ckxk + x2.

We multiply this equation by xk−1 and we get that

�
xk f (x)

�′
= Ckx2k−1 + xk+1, ∀ x ∈ R,

which implies that

xk f (x) =
Cx2k

2
+

xk+2

k + 2
+ C1.
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We let x = 0 in the previous equality and we get that C1 = 0. This

implies that

f (x) =
Cxk

2
+

x2

k + 2
, C ∈ R. (21)

Now we check that if k is an odd integer, functions of the form (21)

verify the differential equation and if k is an even integer then func-

tions in (21) verify the differential equation if C = 0. The problem is

solved. �

Also solved by Ulrich Abel (University of Applied Sciences, Fried-

berg, Germany), Mihaly Bencze (Brasov, Romania), Jorge Mozo Fer-

nandez (Universidad de Valladolid, Spain), Soon-Mo Jung (Hongik

University, Chochiwon, Korea), Panagiotis T. Krasopoulos (Athens,

Greece), Sotirios E. Louridas (Athens, Greece), Socratis Varelogian-

nis (National Technical University of Athens, Greece).

159. Let f : I ⊂ R→ R be a twice differentiable function on the

interval I̊ (interior of I). If there exist the constants d, D such that

d ≤ f ′′ (t) ≤ D for any t ∈ I̊, (22)

show that

1

2
ν (1 − ν) d (b − a)2 ≤ (1 − ν) f (a) + ν f (b) − f

�
(1 − ν) a + νb

�

≤
1

2
ν (1 − ν) D (b − a)2 (23)

for any a, b ∈ I̊ and ν ∈ [0, 1] .

In particular, for any a, b > 0 and ν ∈ [0, 1] , show that the follow-

ing refinements and reverses of Young’s inequality are valid:

1

2
ν (1 − ν) (ln a − ln b)2 min {a, b}

≤ (1 − ν) a + νb − a1−νbν (24)

≤ 1

2
ν (1 − ν) (ln a − ln b)2 max {a, b}

and

exp

1
2
ν (1 − ν)

�
1 − min {a, b}

max {a, b}

�2 ≤ (1 − ν) a + νb

a1−νbν
(25)

≤ exp

1
2
ν (1 − ν)

�
max {a, b}
min {a, b}

− 1

�2 .

(Sever S. Dragomir, Victoria University,

Melbourne City, Australia)

Solution by the proposer. We consider the auxiliary function fD : I ⊂
R→ R defined by

fD (x) =
1

2
Dx2 − f (x) .

The function fD is differentiable on I̊ and f ′′
D

(x) = D − f ′′ (x) ≥ 0,

showing that fD is a convex function on I̊.

By the convexity of fD, we have, for any a, b ∈ I̊ and ν ∈ [0, 1] ,

that

0 ≤ (1 − ν) fD(a) + ν fD(b) − fD((1 − ν)a + νb)

= (1 − ν)
�1
2

Da2 − f (a)
�
+ ν
�1
2

Db2 − f (b)
�

−
�1
2

D((1 − ν)a + νb)2 − fD((1 − ν)a + νb)
�

=
1

2
D[(1 − ν)a2 + νb2 −

�
(1 − ν)a + νb

�2
]

− (1 − ν) f (a) − ν f (b) + fD

�
(1 − ν)a + νb

�

=
1

2
ν(1 − ν)D(b − a)2 − (1 − ν) f (a) − ν f (b) + fD

�
(1 − ν)a + νb

�
,

which implies the second inequality in (23).

The first inequality follows in a similar way by considering the

auxiliary function fd : I ⊂ R → R defined by fd (x) = f (x) − 1
2
dx2,

which is twice differentiable and convex on I̊.

If we write inequality (23) for the convex function f :

R→ (0,∞) ,

f (x) = exp (x) ,

then we have

1

2
ν(1 − ν)(x − y)2 min{exp x, exp y} (26)

≤ (1 − ν) exp(x) + ν exp(y) − exp
�
(1 − ν)x + νy

�

≤ 1

2
ν(1 − ν)(x − y)2 max{exp x, exp y}

for any x, y ∈ R and ν ∈ [0, 1] .

Let a, b > 0. If we take x = ln a, y = ln b in (26) then we get the

desired inequality (24).

Now, if we write inequality (23) for the convex function f :

(0,∞) → R, f (x) = − ln x, then we get, for any a, b > 0 and

ν ∈ [0, 1] , that

1

2
ν(1 − ν) (b − a)2

max2{a, b}
≤ ln
�
(1 − ν)a + νb

�
− (1 − ν) ln a − ν ln b

≤
1

2
ν(1 − ν)

(b − a)2

min2{a, b}
. (27)

Now, since

(b − a)2

min2 {a, b}
=

�
max {a, b}
min {a, b}

− 1

�2

and

(b − a)2

max2 {a, b}
=

�
min {a, b}
max {a, b}

− 1

�2
,

we have that (27) is equivalent to the desired result (25). �

Also solved by Mihaly Bencze (Brasov, Romania), Soon-Mo Jung

(Hongik University, Chochiwon, Korea).

160. Let p be the partition function (counting the ways to write

n as a sum of positive integers), extended so that p(0) = 1 and

p(n) = 0 for n < 0. Prove that, for n � 0,

1 �
2p(n + 2) − p(n + 3)

p(n)
�

3

2
.

(Mircea Merca, University of Craiova, Romania)
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Solution by the proposer. To prove this double inequality, we con-

sider the generating function of p(n),

∞�
n=0

p(n)qn =
1

(q; q)∞
, |q| < 1,

and Euler’s identity

∞�
n=0

zn

(q; q)n

=
1

(z; q)∞
, |q| , |z| < 1,

where

(a; q)n =


1 for n = 0,

(1 − a)(1 − aq) · · · (1 − aqn−1) for n > 0

and

(a; q)∞ = lim
n→∞

(a; q)n.

The left side of the double inequality is equivalent to

p(n) − 2p(n − 1) + p(n − 3) � 0, n � 0.

To prove this inequality, we need to show that the coefficient of qn in

the series

∞�
n=0

�
p(n) − 2p(n − 1) + p(n − 3)

�
qn =

1 − 2q + q3

(q; q)∞
, |q| < 1,

is non-positive for n > 0. We have

1 − 2q + q3

(q; q)∞
=

(1 − q)(1 − q − q2)

(1 − q)(q2; q)∞

=
1

(q3; q)∞
− q

(q2; q)∞

=
�
n≥0

q3n

(q; q)n

−
�
n≥0

q2n+1

(q; q)n

= 1 − q +
�
n≥2

q2n+1

(q; q)n

�
qn−1 − 1

�

= 1 − q −
�
n≥2

q2n+1

(q; q)n−2(1 − qn)

and we see, for n > 0, that the coefficient of qn is non-positive. We

have invoked the fact that

1

1 − q
=

∞�
n=0

qn, |q| < 1.

The right side of the double inequality is equivalent to

p(n) − 2p(n − 1) +
3

2
p(n − 3) � 0, n � 1.

Moreover, considering the trivial inequality

2p(n − 1) − p(n) � 0, n > 0,

we can write

p(n) − 2p(n − 1) +
3

2
p(n − 3)

� p(n) − 2p(n − 1) + 2p(n − 3) − p(n − 4), n � 3.

We show that, except for the coefficient of q, all the coefficients in

the series

∞�
n=0

�
p(n) − 2p(n − 1) + 2p(n − 3) − p(n − 4)

�
qn

=
1 − 2q2 + 2q3 − q4

(q; q)∞
, |q| < 1,

are non-negative. We have

1 − 2q2 + 2q3 − q4

(q; q)∞
=

(1 − q)2(1 − q2)

(q; q)∞

=
1 − q

(q3; q)∞

= (1 − q)

∞�
n=0

q3n

(q; q)n

= 1 − q +

∞�
n=1

q3n

(q2; q)n−1

.

Clearly, the coefficient of q0 is 1, the coefficient of q1 is −1 and, for

k > 1, all the coefficients of qk are non-negative. In other words, the

inequality

p(n) − 2p(n − 1) + 2p(n − 3) − p(n − 4) � 0

is valid for n � 1. This concludes the proof. �

Also solved by Mihaly Bencze (Brasov, Romania)

We wait to receive your solutions to the proposed problems and

ideas on the open problems. Send your solutions both by ordi-

nary mail to Themistocles M. Rassias, Department of Mathematics,

National Technical University of Athens, Zografou Campus, GR-

15780, Athens, Greece, and by email to trassias@math.ntua.gr.

We also solicit your new problems with their solutions for the next

“Solved and Unsolved Problems” column, which will be devoted to

mathematical analysis.




