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The last few years have witnessed various significant ad-
vances in quantum Shannon theory. In this article, we briefly
review the salient features of three of them: a counterexample
to the additivity conjecture, superactivation of the quantum
capacity of a channel and one-shot quantum information the-
ory. The first two pertain to information-transmitting proper-
ties of quantum channels whilst the third applies to a plethora
of information-processing tasks, over and above information
transmission.

The biggest hurdle in the path of information transmission
is the presence of noise in communication channels, which
can distort messages sent through them and necessitates the
use of error-correcting codes. There is, however, a fundamen-
tal limit on the rate at which information can be transmitted
reliably through a channel. The maximum rate is called the
capacity of the channel and was originally evaluated in the
so-called asymptotic, memoryless (or i.i.d.) setting. In this set-
ting, it is assumed that the channel is: (i) available for an un-
limited number of uses (say, n) and (ii) memoryless, i.e. there
is no correlation in the noise acting on successive inputs to
the channel. Classically, such a channel is modelled by a se-
quence of independent and identically distributed (i.i.d.) ran-
dom variables. The capacity of the channel is the optimal rate
at which information can be reliably transmitted through it in
the asymptotic limit (n→ ∞).

The capacity of a memoryless classical channel was de-
rived by Claude Shannon in his seminal paper of 1948 [1],
which heralded the birth of the field of classical information
theory. His Noisy Channel Coding Theorem gives an explicit
expression for the capacity of a discrete memoryless channel
N . Such a channel can be completely described by its condi-
tional probabilities pY |X(y|x) of producing output y given input
x, with X and Y denoting discrete random variables character-
ising the inputs and outputs of the channel. Shannon proved
that the capacity C(N) of such a channel is given by the for-
mula

C(N) = max
{pX (x)}

I(X : Y), (1)

where I(X : Y) denotes the mutual information of the random
variables X and Y , and the maximisation is over all possible
input probability distributions {pX(x)}.

In contrast to a classical channel, a quantum channel has
many different capacities. These depend on various factors,
e.g. on the type of information (classical or quantum) being
transmitted, the nature of the input states (entangled or not),
the nature of the measurements made on the outputs of the
channel (collective or individual) and whether any auxiliary

resources are available to assist the transmission. Auxiliary
resources, like prior shared entanglement between the sender
and the receiver, can enhance the capacities of a quantum
channel. This is in contrast to the case of a classical chan-
nel, where auxiliary resources, such as shared randomness
between the sender and the receiver, fail to enhance the ca-
pacity.

Let us briefly recall some basic facts about quantum chan-
nels. For simplicity of exposition, we refer to the sender
as Alice and the receiver as Bob. A quantum channel N is
mathematically given by a linear, completely positive trace-
preserving (CPTP) map, which maps states (i.e. density ma-
trices) ρ of the input quantum system A to states of the output
system B. More generally, N ≡ NA→B : B(HA) → B(HB),
where HA (HB) denote the Hilbert spaces associated with
the system A (B) and, in this article, they are considered
to be finite-dimensional. By Stinespring’s dilation theorem,
any such quantum channel can be seen as an isometry fol-
lowed by a partial trace, i.e. there is an auxiliary system
E, usually referred to as the environment, and an isometry
UN : HA → HB ⊗ HE , such that N(ρ) = TrE UNρU

†
N . This,

in turn, induces the complementary channel Nc ≡ NA→E
c :

B(HA) → B(HE) from the system A to the environment E,
given by Nc(ρ) = TrB UNρU

†
N . Physically, the complemen-

tary channel captures the environment’s view of the channel.
A quantum channel is said to be anti-degradable if there ex-
ists a CPTP map E : B(HE) → B(HB) so that the composi-
tion of the maps Nc and E satisfies the identity N = E ◦ Nc.
So, an eavesdropper (Eve), who has access to the environ-
ment of the channel, can simulate the channel from A to B by
locally applying the map E. An anti-degradable channel has
zero quantum capacity since it would otherwise violate the
so-called no-cloning theorem, which forbids the creation of
identical copies of an arbitrary unknown quantum state. This
can be seen as follows. Suppose there is an encoding and de-
coding scheme for Alice to communicate quantum informa-
tion reliably at a non-zero rate over such a channel. Then,
by acting on the output that she receives by the CPTP map
D ◦ E, where D is the decoding map that Bob uses, Eve
could obtain the quantum information sent by Alice. How-
ever, the ability for both Bob and Eve to obtain Alice’s in-
formation violates the no-cloning theorem. Hence the quan-
tum capacity of an anti-degradable channel must be zero.
In contrast, a quantum channel is said to be degradable if
there exists a CPTP map E′ : B(HB) → B(HE) such that
Nc = E′ ◦ N . In this case, Bob can simulate the comple-
mentary channel from A to E by locally applying the map
E′.
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The problem of determining the different capacities of a
quantum channel have only been partially resolved, in the
sense that the expressions obtained for most of them thus far
are regularised ones. They are therefore intractable and can-
not be used to determine the capacities of a given channel in
any effective way. If entanglement between inputs to succes-
sive uses of a quantum channel is not allowed, its capacity
for transmitting classical information is given by an entropic
quantity, χ∗(N), called its Holevo capacity [2]. The general
classical capacity of a quantum channel, in the absence of
auxiliary resources and without the above restriction, is given
by the following regularised expression:

C(N) = lim
n→∞

1
n
χ∗(N⊗n). (2)

Similarly, the capacity Q(N) of a quantum channel for trans-
mitting quantum information (in the absence of auxiliary re-
sources) is also known [3] to be given by a regularised expres-
sion:

Q(N) = lim
n→∞

1
n

Ic(N⊗n), (3)

where, for any quantum channel Ñ , Ic(Ñ) is an entropic quan-
tity referred to as its coherent information.

Another important capacity of a quantum channel is its
private capacity P(N), which is the maximum rate at which
classical information can be sent through it in a way such
that an eavesdropper, Eve, who has access to the environment
of the channel, cannot infer the transmitted information. The
private classical capacity P(N) of a quantum channel is also
given by the regularisation of an entropic quantity, which we
denote P(1)(N). Unfortunately, these intractable, regularised
expressions are in general useless for computing the actual
capacities of a channel. Regarding the quantum capacity, an
exception to this is provided by so-called degradable chan-
nels, for which the coherent information is additive and so
the quantum capacity reduces to a single-letter formula. Other
than the Holevo capacity, there are only a few other capacities
which have a single-letter (and hence not-regularised) expres-
sion for any arbitrary quantum channel. The most important
of these is the entanglement-assisted classical capacity [4],
which is the maximum rate of reliable classical communica-
tion when Alice and Bob are allowed to make use of entangled
states that they initially share.

An important property of the capacity of a classical chan-
nel is its additivity on the set of channels. Given two classi-
cal channels N1 and N2, the capacity of the product channel
N1 ⊗ N2 satisfies C(N1 ⊗ N2) = C(N1) + C(N2). In fact,
many important questions in information theory can be re-
duced to the purely mathematical question of additivity of
certain entropic functions on the set of channels. In particu-
lar, the regularised expressions for the classical, quantum and
private capacities of a quantum channel N would reduce to
tractable single-letter expressions if its Holevo capacity, co-
herent information and P(1)(N) were respectively additive.
However, it has been proved that the coherent information
and P(1)(N) are not necessarily additive for all channels. It
was conjectured that the Holevo capacity of a quantum chan-
nel is indeed additive, i.e. for any two quantum channels N1

and N2,

χ∗(N1 ⊗ N2) = χ∗(N1) + χ∗(N2).

This conjecture is directly related to the important question:
‘Can entanglement between successive input states boost
classical communication through a memoryless quantum chan-
nel?’ The answer to this question is “no” if the Holevo ca-
pacity of the channel is additive, since in this case C(N) =
χ∗(N), i.e. the general classical capacity reduces to the clas-
sical capacity evaluated under the restriction of unentan-
gled input states. The additivity conjecture had been proved
for several channels (see, for example, [5] and references
therein). However, proving that it is true for all quantum
channels had remained an important open problem for more
than a decade. Shor [6] provided useful insights into the
problem by proving that the additivity conjecture for the
Holevo capacity was equivalent to additivity-type conjec-
tures for three other quantities arising in quantum informa-
tion theory, in the sense that if any one of these conjec-
tures is always true then so are the others. One of these
conjectures concerns the additivity of the minimum out-
put entropy (MOE) of a quantum channel, which is defined
as

Hmin(N) = min
ρ

H(N(ρ)),

where, for any state σ, H(σ) := −Tr
(
σ logσ

)
is its von Neu-

mann entropy. The additivity conjecture for the MOE is that,
for any pair of quantum channels N1, N2, the minimum en-
tropy of the product channel N1 ⊗ N2 satisfies

Hmin(N1 ⊗ N2) = Hmin(N1) + Hmin(N2). (4)

Note that we always have ≤ in (4). This can be seen by
considering the product state ρ1 ⊗ ρ2 as input to N1 ⊗ N2,
with ρ1 and ρ2 being the minimisers for MOEs of N1 and
N2 respectively. The conjecture amounts to the claim that
we cannot get a smaller MOE by entangling the inputs to
N1 ⊗ N2.

These longstanding additivity conjectures were finally re-
solved in 2008 by Hastings [7], who built on prior work by
Hayden and Winter [8]. He proved the existence of a pair of
channels for which the above conjecture is false. By Shor’s
equivalence, this in turn implied that all the additivity conjec-
tures (including that for the Holevo capacity) are false. Hence,
we can conclude that there exist quantum channels for which
using entangled input states can indeed enhance the classical
capacity.

The product channel considered by Hastings has the form
N ⊗ N , where N is a special channel called a random uni-
tary channel, andN is its complex conjugate. This means that
there are positive numbers ν1, ν2, . . . , νd, with

∑d
i=1 νi = 1, and

unitary n× n matrices U1,U2, . . . ,Ud, chosen at random with
respect to the Haar measure, such that for any input state ρ,

N(ρ) =
d∑

i=1

νiUiρU
†
i ; N(ρ) =

d∑
i=1

νiUiρU
†
i .

The probabilities νi are chosen randomly and depend on the
integers n and d, where n is the dimension of the input
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space of the channel and d is the dimension of its environ-
ment. Hastings’ main result is that for n and d large enough,
there are random unitary channels for which Hmin(N ⊗N) <
Hmin(N) + Hmin(N), thus disproving (4).

A key ingredient of Hastings’ proof is the relative val-
ues of the dimensions, namely n >> d >> 1. The details of
Hastings’ original argument were elucidated later by Fukuda,
King and Moser [9]. These authors also derived explicit lower
bounds to the input, output and environment dimensions of
a quantum channel for which the additivity conjecture is vi-
olated. A simplified proof of Hastings’ result was given by
Brandao and Horodecki [10] in the framework of concentra-
tion of measure. They also proved non-additivity for the over-
whelming majority of channels consisting of a Haar random
isometry followed by partial trace over the environment, for
an environment dimension much bigger than the output di-
mension, thus extending the class of channels for which ad-
ditivity can be shown to be violated. Remarkably, in 2010,
Aubrun, Szarek and Werner [11] proved that Hastings’ coun-
terexample can be readily deduced from a version of Dvoret-
zky’s theorem, which is a fundamental result of Asymptotic
Geometric Analysis – a field of mathematics concerning the
behaviour of geometric parameters associated with norms in
Rn (or equivalently, with convex bodies) when n becomes
large. However, the violation to additivity in Hastings’ ex-
ample is numerically small and the question of how strong a
violation of additivity is possible is the subject of active re-
search.

The year 2008 also saw the discovery of a startling phe-
nomenon in quantum information theory, again related to
the question of additivity of capacities. Smith and Yard [12]
proved that there are pairs of quantum channels each having
zero quantum capacity but which have a non-zero quantum
capacity when used together. Hence, even though each chan-
nel in such a pair is by itself useless for sending quantum
information, they can be used together to send quantum in-
formation reliably. This phenomenon was termed “superac-
tivation”, since the two channels somehow “activate” each
other’s hidden ability to transmit quantum information. Su-
peractivation is a purely quantum phenomenon because clas-
sically if two channels have zero capacity, the capacity of the
joint channel must also be zero. This follows directly from
the additivity of the capacity of a classical channel, which in
turn ensures that the capacity of a classical channel is an in-
trinsic measure of its information-transmitting properties. In
the quantum case, in contrast, the possibility of superactiva-
tion implies that the quantum capacity of a channel is strongly
non-additive and does not adequately characterise its ability
to transmit quantum information, since the usefulness of a
channel depends on what other channels are also available.
A particular consequence of this phenomenon is that the set
of quantum channels with zero quantum capacity is not con-
vex.

Superactivation of quantum capacity continues to be the
subject of much research and is still not completely under-
stood. However, it seems to be related to the existence of
channels, called “private Horodecki channels”, which have
zero quantum capacity but positive private capacity. The key
ingredient of Smith and Yard’s proof of superactivation is a
novel relationship between two different capacities of a quan-

tum channel N , namely, its private capacity P(N) and its as-
sisted capacity QA(N). The latter is the quantum capacity of
the product channel N ⊗ A, where A is a symmetric chan-
nel. Such a channel maps symmetrically between its output
and its environment, i.e. for any input state ρ, the joint state
σBE := UAρU

†
A of the output and the environment after the

action of the channel A is invariant under the interchange of
B and E. A symmetric side channel is anti-degradable and
hence has zero quantum capacity. Smith and Yard proved that

QA(N) ≥ 1
2

P(N).

This in turn implies that any private Horodecki channel, NH ,
has a positive assisted capacity and hence the two zero-
quantum-capacity channels NH and A exhibit superactiva-
tion:

QA(NH) = Q(NH ⊗A) > 0.

The particular symmetric side channel that Smith and Yard
considered was a 50% erasure channel, which, with equal
probability, faithfully transmits the input state or outputs an
erasure flag.

Later, Brandao, Oppenheim and Strelchuk [13] proved
that superactivation even occurs for pairs of channels (NH ,N)
where N is anti-degradable but not necessarily symmetric.
Specifically, they proved the occurrence of superactivation
for two different choices of N : (i) an erasure channel that
outputs an erasure flag with probability p ∈ [1/2, 1) and
faithfully transmits the input state otherwise; and (ii) a de-
polarising channel that completely randomises the input state
with probability p ∈ [0, 1/2] and faithfully transmits the in-
put state otherwise. It is known that the output of any arbi-
trary quantum channel can be mapped to that of a depolaris-
ing channel by an operation known as “twirling”. The latter
consists of Alice applying some randomly chosen unitary on
the input state before sending it through the channel and in-
forming Bob as to which unitary operator U she used, with
Bob subsequently acting on the output state of the channel
by the inverse operator U†. This special feature of the depo-
larising channel and the fact that it can be used for superac-
tivation, suggests that superactivation is a rather generic ef-
fect. Superactivation has also been proven for other capaci-
ties of a quantum channel (see, for example, [14] and refer-
ences therein), namely its zero-error classical and quantum
capacities, which are, respectively, the classical and quan-
tum capacities evaluated under the requirement that the prob-
ability of an error being incurred in transmitting the infor-
mation is strictly zero (and doesn’t just vanish asymptoti-
cally).

All the capacities mentioned above were originally evalu-
ated in the limit of asymptotically many uses of a memoryless
channel. In fact, optimal rates of most information-processing
tasks, including transmission and compression of informa-
tion, and manipulation of entanglement, were originally eval-
uated in the asymptotic, memoryless setting. As mentioned
above, in this setting, one assumes that there is no correla-
tion in successive uses of resources (e.g. information sources,
channels and entanglement resources) employed in the tasks,
and one requires the tasks to be achieved perfectly in the limit
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of asymptotically many uses of the resources. These asymp-
totic rates, e.g. the various capacities discussed above, are
seen to be given in terms of entropic functions that can all be
derived from a single parent quantity, namely, the quantum
relative entropy.

In reality, however, the assumption of resources being un-
correlated and available for an unlimited number of uses is
not necessarily justified. This is particularly problematic in
cryptography, where one of the main challenges is dealing
with an adversary who might pursue an arbitrary (and un-
known) strategy. In particular, the adversary might manipu-
late resources (e.g. a communications channel) and introduce
undesired correlations. A more general theory of quantum
information-processing tasks is instead obtained in the so-
called one-shot scenario in which resources are considered to
be finite and possibly correlated. Moreover, the information-
processing tasks are required to be achieved only up to a finite
accuracy, i.e. one allows for a fixed, non-zero but small error
tolerance. This also corresponds to the scenario in which ex-
periments are performed since channels, sources and entan-
glement resources available for practical use are typically fi-
nite and correlated, and transformations can only be achieved
approximately.

The last few years have witnessed a surge of research
leading to the development of one-shot quantum informa-
tion theory. The birth of this field can be attributed to Ren-
ner (see [15] and references therein) who introduced a math-
ematical framework, called the smooth entropy framework,
which facilitated the analysis of information-processing tasks
in the one-shot scenario. He and his collaborators introduced
new entropy measures of states, called smooth min- and
max-entropies, which depend on a parameter (say, ε), called
the smoothing parameter. The smooth entropies Hεmin(ρ) and
Hεmax(ρ) of a state ρ can be defined as optimisations of the rel-
evant non-smooth quantities, the (non-smooth) min- and max-
entropies, over a ball Bε(ρ) of neighbouring states, which are
at a distance of at most ε from ρ, measured in an appropriate
metric. For a bipartite state ρAB, they also define conditional
min- and max-entropies.

Subsequently, it was proved (see, for example, [16]) that
these conditional and unconditional smooth min- and max-
entropies characterise the optimal rates of various information-
processing tasks in the one-shot scenario, with the smoothing
parameter corresponding to the allowed error tolerance. For
example, the one-shot ε-error quantum capacity of a chan-
nel, which is the maximum amount of quantum information
that can be transmitted over a single use of a quantum chan-
nel with an error tolerance of ε, has been proven to be given
in terms of a smooth conditional max-entropy [22, 17]. Note
that a single use of a channel can itself correspond to a finite
number of uses of a channel with arbitrarily correlated noise.
Hence the one-shot analysis indeed includes the consideration
of finite, correlated resources. Furthermore, one-shot rates of
all the different information-processing tasks studied thus far
readily yield the corresponding known rates in the asymptotic
limit, in the case of uncorrelated (i.e. memoryless) resources.
Moreover, they also yield asymptotic rates of tasks involv-
ing correlated resources via the so-called Quantum Informa-
tion Spectrum method (see, for example, [18] and references
therein). Hence, one-shot quantum information theory can be

viewed as the fundamental building block of quantum infor-
mation theory and its development has opened up various new
avenues of research.

In [20], we defined a generalised relative entropy called
the max-relative entropy, from which the min- and max-
entropies can be readily obtained, just as the ordinary quan-
tum (i.e. von Neumann) entropies are obtained from the quan-
tum relative entropy. Hence, the max-relative entropy plays
the role of a parent quantity for optimal rates of various
information-processing tasks in the one-shot scenario, analo-
gous to that of the quantum relative entropy in the asymptotic,
memoryless scenario. Moreover, it has an interesting oper-
ational interpretation, being related to the optimal Bayesian
error probability in determining which one, of a finite num-
ber of known states, a given quantum system is prepared in.
The max-relative entropy also leads naturally to the definition
of an entanglement monotone, which is seen to have an in-
teresting operational interpretation in the context of entangle-
ment manipulation [19]. The different information-processing
tasks in the one-shot scenario were initially studied sepa-
rately. However, we subsequently proved [22] that a host of
these tasks can be related to each other and conveniently ar-
ranged in a family tree, thus yielding a unifying mathemati-
cal framework for analysing them. Recently, we introduced a
two-parameter family of generalised relative entropies, called
the α− z relative Rényi entropies, from which the various dif-
ferent relative entropies (including the quantum relative en-
tropy and the max-relative entropy) that arise in quantum in-
formation theory can be derived. This family provides a uni-
fying framework for the analysis of properties of these differ-
ent relative entropies, which are both of mathematical interest
and of operational significance.
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