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Spectral Synthesis for Operators
and Systems
Anton Baranov (St. Petersburg State University, St. Petersburg, Russia) and
Yurii Belov (St. Petersburg State University, St. Petersburg, Russia)

Spectral synthesis is the reconstruction of the whole lattice
of invariant subspaces of a linear operator from generalised
eigenvectors. A closely related problem is the reconstruction
of a vector in a Hilbert space from its Fourier series with re-
spect to some complete and minimal system. This article dis-
cusses the spectral synthesis problem in the context of opera-
tor and function theory and presents several recent advances
in this area. Among them is the solution of the spectral syn-
thesis problem for systems of exponentials in L2(−π, π).

A more detailed account of these problems can be found
in the survey [1], to appear in the proceedings of 7ECM.

1 Introduction

Eigenfunction expansions play a central role in analysis and
its applications. We discuss several questions concerning such
expansions for special systems of functions, e.g. exponen-
tials in L2 on an interval and in weighted spaces, phase-space
shifts of the Gaussian function in L2(R) and reproducing ker-
nels in de Branges spaces (which include certain families of
Bessel or Airy type functions). We present solutions of some
problems in the area (including the longstanding spectral syn-
thesis problem for systems of exponentials in L2(−π, π)) and
mention several open questions, such as the Newman–Shapiro
problem about synthesis in Bargmann–Fock space.

Spectral synthesis for operators
One of the basic ideas of operator theory is to consider a lin-
ear operator as a “sum” of its simple parts, e.g. its restrictions
onto invariant subspaces. In the finite-dimensional case, the
possibility of such decomposition is guaranteed by the Jor-
dan normal form. Moreover, any invariant subspace coincides
with the span of the generalised eigenvectors it contains (re-
call that x is said to be a generalised eigenvector or a root
vector of a linear operator A if x ∈ Ker (A − λI)n for some
λ ∈ C and n ∈ N).

However, the situation in the infinite-dimensional case is
much more complex. Assume that A is a bounded linear op-
erator in a separable Hilbert space H that has a complete set
of generalised eigenvectors (in this case we say that A is com-
plete). Is it true that any A-invariant subspace is spectral, that
is, it coincides with the closed linear span of the generalised
eigenvectors it contains? In general, the answer is negative.
Therefore, it is natural to introduce the following notion.

Definition 1. A continuous linear operator A in a separable
Hilbert (or Banach, or Frechét) space H is said to admit spec-
tral synthesis or to be synthesable (we write A ∈ Synt) if, for

any invariant subspace E of A, we have

E = Span
{
x ∈ E : x ∈ ∪λ,n Ker (A − λI)n}.

Equivalently, this means that the restriction A|E has a com-
plete set of generalised eigenvectors.

The notion of spectral synthesis for a general operator
goes back to J. Wermer (1952). In the special context of
translation invariant subspaces in spaces of continuous or
smooth functions, similar problems were studied by J. Del-
sarte (1935), L. Schwartz (1947) and J.-P. Kahane (1953).
Note that, in this case, the generalised eigenvectors are ex-
ponentials and exponential monomials.

Wermer showed, in particular, that any compact nor-
mal operator in a Hilbert space admits spectral synthesis.
However, both of these conditions are essential: there ex-
ist non-synthesable compact operators and there exist non-
synthesable normal operators. For a normal operator A with
simple eigenvalues λn, Wermer showed that A � Synt if
and only if the set {λn} carries a complex measure orthog-
onal to polynomials, i.e. there exists a nontrivial sequence
{µn} ∈ �1 such that

∑
n µnλ

k
n = 0, k ∈ N0. Existence of

such measures follows from Wolff’s classical example of a
Cauchy transform vanishing outside of the disc: there exist
λn ∈ D = {z ∈ C : |z| < 1} and {µn} ∈ �1 such that

∑
n

µn

z − λn
≡ 0, |z| > 1.

At the same time, there exist compact operators that do not ad-
mit spectral synthesis. Curiously, the first example of such a
situation was implicitly given by H. Hamburger in 1951 (even
before Wermer’s paper). Further results were obtained in the
1970s by N. Nikolski and A. Markus. For example, Nikol-
ski [20] proved that any Volterra operator can be a part of a
complete compact operator (recall that a Volterra operator is
a compact operator whose spectrum is {0}).
Theorem 2 (Nikolski). For any Volterra operator V in a
Hilbert space H, there exists a complete compact operator A
on a larger Hilbert space H ⊕ H′ such that H is A-invariant
and A|H = V . In particular, A � Synt.

A. Markus [16] found a relation between spectral synthe-
sis for a compact operator and the geometric properties of
the eigenvectors. We now introduce the required “strong com-
pleteness” property.

Hereditarily complete systems
Let {xn}n∈N be a system of vectors in a separable Hilbert space
H that is both complete (i.e. its linear span is dense in H) and
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minimal (meaning that it fails to be complete when we remove
any of its vectors). Let {yn}n∈N be its (unique) biorthogonal
system, i.e. the system such that (xm, yn) = δmn, where δmn

is the Kronecker delta. Note that a system coincides with its
biorthogonal system if and only if it is an orthonormal basis.

With any x ∈ H, we associate its (formal) Fourier series
with respect to the biorthogonal pair {xn}, {yn}:

x ∈ H ∼
∑
n∈N

(x, yn)xn. (1)

It is one of the basic problems of analysis to find conditions
on the system {xn} that ensure the convergence of the Fourier
series to x in some sense. In applications, the system {xn} is
often given as the system of eigenvectors of some operator.

The choice of the coefficients in the expansion (1) is nat-
ural: note that if the series

∑
n cnxn converges to x in H then,

necessarily, cn = (x, yn). There are many ways to understand
convergence/reconstruction:
• The simplest case (with the exception of orthonormal

bases, of course) is a Riesz basis: a system {xn} is a Riesz
basis if, for any x, we have x =

∑
n cnxn (the series con-

verges in the norm) and A‖{cn}‖�2 ≤ ‖x‖ ≤ B‖{cn}‖�2 for
some positive constants A, B. Equivalently, xn = Ten for an
orthonormal basis {en} and some bounded invertible opera-
tor T .
• Bases with brackets: there exists a sequence nk such that∑nk

n=1(x, yn)xn converges to x as k → ∞.
• Existence of a linear (matrix) summation method

(e.g. Cesàro, Abel–Poisson, etc.): this means that there
exists a doubly infinite matrix (Am,n) such that
x = limm→∞

∑
n am,nS n(x), i.e. some means of the partial

sums S n(x) of the series (1) converge to x.

The following property, known as hereditary complete-
ness, may be understood as the weakest form of the recon-
struction of a vector x from its Fourier series

∑
n∈N(x, yn)xn.

Definition 3. A complete and minimal system {xn}n∈N in a
Hilbert space H is said to be hereditarily complete if, for any
x ∈ H, we have

x ∈ Span
{
(x, yn)xn

}
.

It is easy to see that hereditary completeness is equivalent
to the following property: for any partition N = N1 ∪ N2,
N1 ∩ N2 = ∅, of the index set N, the mixed system

{xn}n∈N1 ∪ {yn}n∈N2 (2)

is complete in H. Clearly, hereditary completeness is neces-
sary for the existence of a linear summation method for the
series (1) (otherwise, there exists a vector x orthogonal to all
partial sums of (1)).

Hereditarily complete systems are also known as strong
Markushevich bases. We will also say, in this case, that the
system admits spectral synthesis motivated by the following
theorem of Markus [16].

Theorem 4 (Markus). Let A be a complete compact operator
with generalised eigenvectors {xn} and trivial kernel. Then,
A ∈ Synt if and only if the system {xn} is hereditarily com-
plete.

Indeed, assume that the system of eigenvectors {xn} is not
hereditarily complete and, for some partition N = N1 ∪ N2,
the mixed system {xn}n∈N1 ∪ {yn}n∈N2 is not complete. The
biorthogonal system yn consists of eigenvectors of the adjoint
operator A∗. Then, E = Span{yn : n ∈ N2}⊥ is A-invariant and
{xn : n ∈ N1} ⊂ E but E � Span{xn : n ∈ N1}.

Note that hereditary completeness includes the require-
ment that the biorthogonal system {yn} is complete in H,
which is by no means automatic. In fact, it is very easy to
construct a complete and minimal system whose biorthogo-
nal is not complete.

Example 5. Let {en}n∈N be an orthonormal basis in H. Set
xn = e1 + en, n ≥ 2. Then, it is easy to see that {xn} is com-
plete and minimal, while its biorthogonal is clearly given by
yn = en, n ≥ 2. Taking direct sums of such examples, one
obtains biorthogonal systems with arbitrary finite or infinite
codimension.

It is not so trivial to construct a complete and minimal
system {xn} with a complete biorthogonal system {yn} that
is not hereditarily complete (i.e. the mixed system (2) fails
to be complete for some partition of the index set). A first
explicit construction was given by Markus (1970). Further
results about the structure of nonhereditarily complete sys-
tems were obtained by N. Nikolski, L. Dovbysh and V. Su-
dakov (1977). For an extensive survey of spectral synthesis
and hereditary completeness, the reader is referred to [13].

Interesting examples of hereditarily (in)complete systems
also appear in papers by D. Larson and W. Wogen (1990),
E. Azoff and H. Shehada (1993) and A. Katavolos, M. Lam-
brou and M. Papadakis (1993) in connection with reflexive
operator algebras.

2 Spectral synthesis for exponential systems

Let eλ(t) = eiλt be a complex exponential. For Λ = {λn} ⊂ C,
we consider

E(Λ) = {eλ}λ∈Λ
as a system in L2(−a, a). The series

∑
n cneλn are often referred

to as nonharmonic Fourier series, in contrast to “harmonic”
orthogonal series. A good introduction to the subject can be
found in [26].

Exponential systems play a most prominent role in anal-
ysis and its applications. Geometric properties of exponential
systems in L2(−a, a) were one of the major themes of 20th
century harmonic analysis. Let us briefly mention some of
the milestones of the theory.

(i) Completeness of exponential systems.
This basic problem was studied in the 1930–1940s by
N. Levinson and B. Ya. Levin. One of the most important con-
tributions is the famous result of A. Beurling and P. Malliavin
(1967), who gave an explicit formula for the radius of com-
pleteness of a system E(Λ) in terms of a certain density of Λ.
By the radius of completeness of E(Λ), we mean

r(Λ) = sup
{
a > 0 : E(Λ) is complete in L2(−a, a)

}
.

A new approach to these (and related) problems and their far-
reaching extensions can be found in [9, 10, 17, 18].



Feature

EMS Newsletter March 2017 13

(ii) Riesz bases of exponentials.
The first results about Riesz bases of exponentials, which go
back to R. Paley and N. Wiener (1930s), were of perturbative
nature. Assume that the frequencies λn are small perturbations
of integers,

sup
n∈Z
|λn − n| < δ.

Paley and Wiener showed that E(Λ) is a Riesz basis in
L2(−π, π) if δ = π−2. It was a longstanding problem to find
the best possible δ; finally, M. Kadets (1965) showed that the
sharp bound is 1/4. However, it was clear that one cannot
describe all Riesz bases in terms of “individual” perturba-
tions. A complete description of exponential bases in terms
of the Muckenhoupt (or Helson–Szegö) condition was given
by B. S. Pavlov (1979) and was further extended by S. V. Hru-
schev, N. K. Nikolski and B. S. Pavlov (see [11] for a detailed
account of the problem). Yu. Lyubarskii and K. Seip (1997)
extended this description to the Lp-setting. These results re-
vealed the connection of the problem to the theory of singular
integrals.

(iii) Exponential frames (sampling sequences).
A system {xn} in a Hilbert space H is said to be a frame if
there exist positive constants A, B such that

A
∑

n

|(x, xn)|2 ≤ ‖x‖2 ≤ B
∑

n

|(x, xn)|2,

i.e. a generalised Parceval identity holds. Here, we omit the
requirement of minimality to gain in “stability” of the recon-
struction; there is a canonical choice of coefficients so that the
series

∑
n cnxn converge to x. If a frame {xn} is minimal then

it is a Riesz basis.
Exponential frames were introduced by R. Duffin and

A. C. Schaeffer (1952), while their complete description was
obtained relatively recently by J. Ortega–Cerdà and K. Seip
[22]; this solution involves the theory of de Branges spaces of
entire functions, which is to be discussed below. For an exten-
sive review on exponential frames on disconnected sets, see a
recent monograph by A. Olevskii and A. Ulanovskii [21].

Synthesis up to codimension 1
The spectral synthesis (or hereditary completeness) problem
for exponential systems was also a longstanding problem in
nonharmonic Fourier analysis. Let E(Λ) be a complete and
minimal system of exponentials in L2(−a, a) and let {ẽλ} be
the biorthogonal system. It was shown by R. Young (1981)
that the biorthogonal system {ẽλ} is always complete.

Problem 6. Is it true that any complete and minimal system
of exponentials {eλ}λ∈Λ in L2(−a, a) is hereditarily complete,
i.e. any function f ∈ L2(−a, a) belongs to the closed linear
span of its “harmonics” ( f , ẽλ)eλ?

This question was answered in the negative by the authors
jointly with Alexander Borichev [2]. Surprisingly, it turned
out, at the same time, that spectral synthesis for exponential
systems always holds up to at most one-dimensional defect.

Theorem 7. There exists a complete and minimal system of
exponentials {eλ}λ∈Λ, Λ ⊂ R, in L2(−π, π) that is not heredi-
tarily complete.

Thus, in general, there exists no linear summation method
for nonharmonic Fourier series

∑
λ∈Λ( f , ẽλ)eλ associated to a

complete and minimal exponential system.
It is worth mentioning that “bad” sequences Λ can be reg-

ularly distributed, e.g. be a bounded perturbation of integers:
in Theorem 7 one can choose a uniformly separated sequence
Λ so that |λn − n| < 1, n ∈ Z.

Theorem 8. If the system of exponentials {eλ}λ∈Λ is complete
and minimal in L2(−a, a) then, for any partition Λ = Λ1 ∪Λ2,
Λ1 ∩ Λ2 = ∅, the corresponding mixed system has defect at
most 1, that is,

dim
({eλ}λ∈Λ1 ∪ {ẽλ}λ∈Λ2

)⊥ ≤ 1.

It turns out that incomplete mixed systems are always
highly asymmetric. Given a complete and minimal system
E(Λ) in L2(−π, π), it is natural to expect that “in the main”
Λ is similar to Z. This is indeed the case. As a very rough
consequence of more delicate results (such as the Cartwright–
Levinson theorem), let us mention that Λ always has den-
sity 1:

lim
r→∞

nr(Λ)
2r
= 1,

where nr(Λ) is the usual counting function, nr(Λ)
= #{λ ∈ Λ, |λ| ≤ r}. Analogously, one can define the upper
density D+(Λ):

D+(Λ) = lim sup
r→∞

nr(Λ)
2r
.

Theorem 9. Let Λ ⊂ C, let the system E(Λ) be complete and
minimal in L2(−a, a) and let the partition Λ = Λ1 ∪Λ2 satisfy
D+(Λ2) > 0. Then, the mixed system {eλ}λ∈Λ1 ∪ {ẽλ}λ∈Λ2 is
complete in L2(−a, a).

Theorem 9 shows that there is a strong asymmetry be-
tween the systems of reproducing kernels and their biorthog-
onal systems. The completeness of a mixed system may fail
only when we take a sparse (but infinite!) subsequence Λ1.

We conclude this subsection with one open problem.

Problem 10. Given a hereditarily complete system of expo-
nentials, does there exist a linear summation method for the
corresponding nonharmonic Fourier series?

Translation to the entire functions setting
A classical approach to a completeness problem is to translate
it (via a certain integral transform) to a uniqueness problem in
some space of analytic functions. In the case of exponentials
on an interval, the role of such a transform is played by the
standard Fourier transform F ,

(F f )(z) =
1

2π

∫ a

−a
f (t)e−iztdt.

By the classical Paley–Wiener theorem, F maps L2(−π, π)
unitarily onto the space

PWa = {F − entire, F ∈ L2(R), |F(z)| ≤ Cea|z|}.
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Paley–Wiener space PWa (also known as the space of ban-
dlimited functions of bandwidth 2a) plays a remarkably im-
portant role in signal processing.

The Fourier transform maps exponentials in L2(−a, a) to
the cardinal sine functions:

(F eλ̄)(z) = kλ(z) =
sin a(z − λ)
π(z − λ)

.

Note that the functions kλ are the reproducing kernels in
Paley–Wiener space PWa, i.e. the function kλ generates the
evaluation functional at the point λ:

F(λ) = (F, kλ), F ∈ PWa.

In particular, the orthogonal expansion f =
∑

n∈Z cneint in
L2(−π, π) becomes

F(z) =
∑

n∈Z
cn

sin π(z − n)
π(z − n)

, cn = F(n), (3)

the classical Shannon–Kotelnikov–Whittacker sampling for-
mula.

Moreover, this translation makes it possible to find an ex-
plicit form of the biorthogonal system, which is not possible
when staying inside L2(−a, a). Let {kλ}λ∈Λ be a complete and
minimal system in PWa. Its biorthogonal system may then be
obtained from one function GΛ known as the generating func-
tion of Λ. This is an entire function with the zero set Λ, which
can be defined by the formula

GΛ(z) = lim
R→∞

∏
λ∈Λ, |λ|<R

(
1 − z
λ

)
,

with the properties that GΛ � PWa (otherwise this would be
a contradiction to completeness) but GΛ

z−λ ∈ PWa for any λ ∈
Λ by the minimality of the system {kλ}λ∈Λ. The biorthogonal
system is then given by

gλ(z) =
GΛ(z)

G′
Λ

(λ)(z − λ) . (4)

Thus, with any function F ∈ PWa, we can associate two (for-
mal) Fourier series expansions:

F ∈ PWa ∼
∑
λ∈Λ

cλ
sin a(z − λ)
π(z − λ)

, cλ = (F, gλ),

F ∈ PWa ∼
∑
λ∈Λ

F(λ)
GΛ(z)

G′
Λ

(λ)(z − λ) .

The first series is an expansion with respect to cardinal sine
functions while the second one is a Lagrange-type interpola-
tion series.

Our results on exponential systems can be reformulated
for reproducing kernels of Paley–Wiener space: for any com-
plete and minimal system {kλ}λ∈Λ and any partition Λ =
Λ1 ∪ Λ2,

dim
({kλ}λ∈Λ1 ∪ {gλ}λ∈Λ2

)⊥ ≤ 1 (5)

but the defect 1 is possible.

3 Spectral synthesis in de Branges spaces and
applications

Preliminaries on de Branges spaces
The theory of Hilbert spaces of entire functions was created
by L. de Branges at the end of the 1950s and the beginning
of the 1960s. It was the main tool in his famous solution of
the direct and inverse spectral problems for two-dimensional
canonical systems. These are second order ODEs that include,
as particular cases, the Schrödinger equation on an interval,
the Dirac equation and Krein’s string equation. For the gen-
eral theory of de Branges spaces, we refer to the original
monograph by de Branges [8]; for information relating to in-
verse problems, see [23, 24].

De Branges spaces proved to be highly nontrivial and are
interesting objects from the point of view of function theory.
Surprisingly, they appear to be unavoidable in substantially
different branches of analysis, for example:
• Polynomial approximations on the real line.
• Orthogonal polynomials and random matrix theory (see,

for example, [15]).
• Model (backward shift invariant) subspaces of Hardy space:

KΘ = H2�ΘH2, where H2 is Hardy space andΘ is an inner
function (for a discussion of this relation, see, for example,
[9]).
• Functional models for different classes of linear operators

[5, 12].
and even
• Analytic number theory, the Riemann Hypothesis and

Dirichlet L-functions [14].
There are equivalent ways to introduce de Branges spaces:

an axiomatic approach or a definition in terms of the gen-
erating Hermite–Biehler entire function. Here, we will not
go into details, instead confining ourselves to an equivalent
representation of de Branges spaces via spectral data. This
representation of a de Branges space in terms of a weighted
Cauchy transform (which can already be found in the work of
de Branges) turns out to be a very useful tool; it relates the
study of de Branges spaces with singular integral operators
(see, for example, [6]).

Let T = {tn}n∈N ⊂ R be an increasing sequence (one-
sided or two sided, the index set being a subset of Z) such that
|tn| → ∞, |n| → ∞. Let µ =

∑
n µnδtn be a measure supported

by T such that
∑

n(t2
n + 1)−1µn < ∞. Consider the class of

entire functions

H =
{
F : F(z) = A(z)

∑
n

cnµ
1/2
n

z − tn

}
, (6)

where A is some (fixed) entire function that is real on R and
vanishes exactly on T , and {cn} ∈ �2.

Set ‖F‖H = ‖{cn}‖�2 . With this norm, H is a reproducing
kernel Hilbert space. It is an axiomatic de Branges space and
any de Branges space can be represented in this way.

We call the pair (T, µ) the spectral data for space H . Of
course, formally, the space also depends on the choice of the
entire function A but spaces with the same spectral data and
different functions A are canonically isomorphic.

Example 11. If T = Z, µn = 1 and A(z) = sin πz then
H = PWπ. The corresponding representation of the elements
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of H coincides with the Schannon–Kotelnikov–Whittaker
sampling formula (3).

An important feature of de Branges spaces is that they
have the so-called division property: if a function f in a de
Branges spaceH vanishes at some point w ∈ C then the func-
tion f (z)/(z − w) also belongs to H . Another characteristic
property of a de Branges space is existence of orthogonal
bases of reproducing kernels. It is clear from the definition
that the functions A(z)/(z − tn) form an orthogonal basis inH
and are reproducing kernels ofH up to normalisation.

Spectral synthesis problem and its solution
Let {kλ} be a complete and minimal system of reproducing
kernels in a de Branges space H . As in the Paley–Wiener
space, its biorthogonal system is given by formula (4) for
some appropriate generating function GΛ. However, in con-
trast to the Paley–Wiener case, the biorthogonal system in
general need not be complete (Baranov, Belov, 2011).

We will say that a de Branges space has the spectral syn-
thesis property if any complete and minimal system of repro-
ducing kernels with the complete biorthogonal system (this
assumption is included) is also hereditarily complete, i.e. all
mixed systems are complete. In [3], the following problem is
addressed.
Problem 12. Which de Branges spaces have the spectral syn-
thesis property? If a space does not have the spectral synthesis
property, what is the possible size of the defect for a mixed
system?

Why is hereditary completeness of reproducing kernels in
de Branges spaces an interesting and significant topic? There
are several motivations for that:
• Relation to exponential systems and nonharmonic Fourier

series as discussed above.
• N. Nikolski’s question: whether there exist nonhereditarily

complete systems of reproducing kernels in model spaces
KΘ = H2 � ΘH2? Note that de Branges spaces form an
important special subclass of model spaces.
• Spectral synthesis for rank one perturbations of self-adjoint

operators (see Subsection 3).
In [3], a complete description of de Branges spaces with

the spectral synthesis property was obtained. To state it, we
need one more definition. An increasing sequence T = {tn} is
said to be lacunary (or Hadamard lacunary) if

lim inf
tn→∞

tn+1

tn
> 1, lim inf

tn→−∞

|tn|
|tn+1|

> 1,

i.e. the moduli of |tn| tend to infinity at least exponentially.

Theorem 13. LetH be a de Branges space with spectral data
(T, µ). Then,H has the spectral synthesis property if and only
if one of the following conditions holds:

(i)
∑

n µn < ∞.
(ii) The sequence {tn} is lacunary and, for some C > 0 and

any n,
∑
|tk |≤|tn |

µk + t2
n

∑
|tk |>|tn |

µk

t2
k

≤ Cµn. (7)

Note that condition (3) implies that the sequence of
masses µn also grows at least exponentially.

Now we turn to the problem of the size of the defect (i.e.
the dimension of the complement to a mixed system). It turns
out that one can construct examples of systems of reproducing
kernels with large or even infinite defect.

Theorem 14. For any increasing sequence T = {tn} with
|tn| → ∞, |n| → ∞, and for any N ∈ N ∪ {∞}, there exists
a measure µ such that, in the de Branges space with spectral
data (T, µ), there exists a complete and minimal system of re-
producing kernels {kλ}λ∈Λ whose biorthogonal system {gλ}λ∈Λ
is also complete but, for some partition Λ = Λ1 ∪ Λ2,

dim ({gλ}λ∈Λ1 ∪ {kλ}λ∈Λ2 )⊥ = N.

The key role in this construction plays the balance be-
tween the “spectrum” {tn} and the masses {µn}. If

∑
n µn = ∞,

but there exists a subsequence tnk of T such that
∑

k t2N−2
nk
µnk <

∞, then, in the corresponding de Branges space, one has
mixed systems with any defect up to N. Conversely, the esti-
mate µn ≥ |tn|−M for some M > 0 and all n implies an estimate
from the above in terms of M for the defect.

Spectral theory of rank one perturbations of compact
self-adjoint operators
Let A be a compact self-adjoint operator in a separable Hilbert
space H with simple point spectrum {sn} and trivial kernel.
In other words, A is the simplest infinite-dimensional opera-
tor one can imagine, diagonalisable by the classical Hilbert–
Schmidt theorem. Surprisingly, the spectral theory of rank one
perturbations of such operators is already highly nontrivial.

For a, b ∈ H, consider the rank one perturbation L of A,

L = A + a ⊗ b, L f = A f + ( f , b)a, f ∈ H.

For example, one may obtain examples of rank one pertur-
bations changing one boundary condition in a second order
differential equation.

In [5], the spectral properties of rank one perturbations
are studied via a functional model. Several similar functional
models for rank one perturbations (or close classes of oper-
ators) have been developed, e.g. by V. Kapustin (1996) and
G. Gubreev and A. Tarasenko (2010). Let us present the idea
of this model without going into technicalities.

For tn = s−1
n , consider a de Branges spaceH with spectral

data (T, µ), where µ is some measure supported by T . Let G
be an entire function such that G � H but G(z)/(z − w) ∈
H whenever G(w) = 0. This means that the function G has
growth just slightly larger than is possible for the elements of
H . Assume also that G(0) = 1. Consider the linear operator

(MF)(z) =
F(z) − F(0)G(z)

z
, F ∈ H . (8)

It is easily seen that M is a rank one perturbation of a compact
self-adjoint operator with spectrum t−1

n = sn. The functional
model theorem from [5] proves that any rank one perturbation
of A is unitary equivalent to a model operator M of the form
(8) for some de Branges space H and function G. Therefore,
while the spectrum T = {tn} is fixed, the masses µn and the
function G are free parameters of the model.
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It is easy to see that the eigenfunctions of M are of the
form G(z)/(z−λ) for λ ∈ ZG, where Z(G) denotes the zero set
of G. The point spectrum of M is thus given by {λ−1 : λ ∈ ZG}.
Multiple zeros of G correspond to generalised eigenvectors
but we assume, for simplicity, that G has simple zeros only.
Thus, the system of eigenfunctions of the rank one perturba-
tion L is unitary equivalent to a system of the form {gλ}λ∈Λ,
as in (4), while eigenfunctions of L∗ (which is also a rank one
perturbation of A) correspond to a system {kλ}λ∈Λ of repro-
ducing kernels inH .

Thus, we relate the spectral properties of rank one per-
turbations to geometric properties of systems of reproducing
kernels (in view of the symmetry, we interchange the roles of
L and L∗):
• Completeness of L⇐⇒ completeness of a system of repro-

ducing kernels {kλ} inH(E).
• Completeness of L∗ ⇐⇒ completeness of the system bi-

orthogonal to the system of reproducing kernels.
• Spectral synthesis for L ⇐⇒ hereditary completeness of
{kλ}λ∈Λ, i.e. for any partition Λ = Λ1 ∪ Λ2, the system
{kλ}λ∈Λ1 ∪ {gλ}λ∈Λ2 is complete inH .

The results of Subsection 3 lead to a number of striking
examples for rank one perturbations of compact self-adjoint
operators. These examples show that the spectral theory of
such perturbations is a rich and complicated subject that is far
from being completely understood.

Theorem 15 (Baranov, Yakubovich). For any compact self-
adjoint operator A with simple spectrum, there exists its rank
one perturbation L = A + a ⊗ b such that:

(i) Ker L = Ker L∗ = 0 and L is complete but the eigenvec-
tors of L∗ span a subspace with infinite codimension.

(ii) L and L∗ are complete but L admits no spectral synthe-
sis with infinite defect (i.e. there exists an L-invariant
subspace E such that the generalised vectors of L that
belong to E have infinite codimension in E).

For more results about completeness and spectral synthe-
sis of rank one perturbations, see [5]. One may also ask for
which compact self-adjoint operators A there exists a rank
one perturbation that is a Volterra operator (i.e. the spectrum
can be destroyed by a rank one perturbation). This problem
was solved in [4], where it was shown that the spectrum
{sn} is “destructible” if and only if tn = s−1

n form the zero
set of an entire function of some special class introduced by
M. G. Krein (1947).

4 Spectral synthesis in Fock-type spaces

Classical Bargmann–Fock space
Fock-type spaces form another important class of Hilbert
spaces of entire functions. In contrast to de Branges spaces,
where the norm is defined as an integral over the real axis
(with respect to some continuous or discrete measure), in
Fock-type spaces the norm is defined as an area integral.
Classical Fock space F (also known as Bargmann, Segal–
Bargmann or Bargmann–Fock space) is defined as the set of
all entire functions F for which

‖F‖2F :=
1
π

∫
C

|F(z)|2e−π|z|
2
dm(z) < ∞,

where m stands for the area Lebesgue measure. This space (as
well as its multi-dimensional analogues) plays a most promi-
nent role in theoretical physics, serving as a model of the
phase space of a particle in quantum mechanics. It also ap-
pears naturally in time-frequency analysis and Gabor frame
theory. There is a canonical unitary map from L2(R) to F
(the Bargmann transform), which plays a role similar to that
of the Fourier transform in the Paley–Wiener space setting.
Note that, clearly, all functions in F are of order at most 2
and satisfy the estimate |F(z)| ≤ C exp(π|z|2/2) (which can be
slightly refined).

The reproducing kernels of F are the usual complex ex-
ponentials, kλ(z) = eπλ̄z. Moreover, the Bargmann transform
of the phase-space shift of the Gaussian, i.e. of the func-
tion e2πiηte−π(t−ξ)

2
, coincides up to normalisation with eπλz,

λ = ξ+ iη. Thus, geometric properties (e.g. spectral synthesis)
of the phase-space shifts of the Gaussian are equivalent to the
corresponding properties of the exponentials in Fock space.

Radial Fock-type spaces
Considering radial weights differing from the Gaussian weight,
one obtains a wide class of Hilbert spaces of entire functions.
Namely, for a continuous function ϕ : [0,∞) → (0,∞), we
define the radial Fock-type space as

Fϕ =
{
F entire : ‖F‖2Fϕ :=

1
π

∫
C

|F(z)|2e−ϕ(|z|)dm(z) < ∞
}
.

We always assume that log r = o(ϕ(r)), r → ∞, to exclude
finite-dimensional spaces.

Any Fock-type space is a reproducing kernel Hilbert
space. It was shown by K. Seip [25] that in classical Fock
space there are no Riesz bases of reproducing kernels. Re-
cently, A. Borichev and Yu. Lyubarskii [7] showed that Fock-
type spaces with slowly growing weights ϕ(r) = (log r)γ, γ ∈
(1, 2], have Riesz bases of reproducing kernels corresponding
to real points and, thus, can be realised as de Branges spaces
with equivalence of norms (this is clear from the representa-
tion of de Branges spaces via their spectral data). Moreover,
ϕ(r) = (log r)2 is in a sense the sharp bound for this phe-
nomenon. Namely, it is shown in [7] that if (log r)2 = o(ϕ(r)),
r → ∞, and ϕ has a certain regularity then Fϕ has no Riesz
bases of reproducing kernels.

In view of the examples above, one may ask which de
Branges spaces can be realised as radial Fock-type spaces,
that is, there is an area integral norm that is equivalent to
the initial de Branges space norm. Surprisingly, it turns out
that this class of de Branges spaces exactly coincides with
the class of de Branges spaces (ii) with the spectral synthesis
property in Theorem 13.

Theorem 16 (Baranov, Belov, Borichev). Let H be a de
Branges space with spectral data (T, µ). Then, the following
statements are equivalent:

(i) There exists a Fock-type space Fϕ such thatH = Fϕ.

(ii) H is rotation invariant, that is, the operator Rθ : f (z) �→
f (eiθz) is a bounded invertible operator in H for some
(all) θ ∈ (0, π).

(iii) The sequence T is lacunary and (7) holds.
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Thus, in the space Fϕ with ϕ(r) = (log r)γ, γ ∈ (1, 2],
any complete and minimal system of reproducing kernels is
hereditarily complete. We also mention that Riesz bases in
some de Branges spaces with lacunary spectral data have been
described by Yu. Belov, T. Mengestie and K. Seip [6].

Synthesis in Fock space and the Newman–Shapiro
problem
Now we turn to the case of classical Fock space F . Though
it has no Riesz bases of reproducing kernels, there exist many
complete and minimal systems of reproducing kernels. The
two-dimensional lattice Z+iZ plays for Fock space a role sim-
ilar to the role of the lattice Z for Paley–Wiener space PWπ.
In particular, if Λ = (Z+ iZ) \ {0} then {kλ}λ∈Λ = {eπλz}λ∈Λ is a
complete and minimal system, whose generating function is
the Weierstrass sigma-function (up to the factor z). The sec-
ond author proved (2015) the following Young-type theorem
for Fock space.

Theorem 17 (Belov). For any complete and minimal system
of reproducing kernels (i.e. exponentials) in F , its biorthogo-
nal system is also complete.

On the other hand, the first author recently proved that
classical Fock space has no spectral synthesis property. Equiv-
alently, this means that there exist nonhereditarily complete
systems of phase-space shifts of the Gaussian in L2(R). At
the same time, there are good reasons to believe that there ex-
ists a universal upper bound for the defects of mixed systems.
The proofs of these results are to appear elsewhere.

Theorem 18 (Baranov). There exist complete and minimal
systems {eπλz}λ∈Λ of reproducing kernels in F that are not
hereditarily complete, that is, for some partition Λ = Λ1∪Λ2,
the mixed system {eπλz}λ∈Λ1 ∪ {gλ}λ∈Λ2 is not complete in F .

Moreover, this example of a nonhereditarily complete sys-
tem of reproducing kernels in F admits the following refor-
mulation. Given a function G ∈ F , let us denote by RG the
subspace of F defined as

RG = {GF : GF ∈ F , F – entire}.

Thus, RG is the (closed) subspace in F that consists of func-
tions in F that vanish at the zeros of G with appropriate
multiplicities. The example of Theorem 18 shows that there
exists G ∈ F such that znG ∈ F for any n ≥ 1 and
Span{znG : n ∈ Z+} � RG.

We stated this result to compare it with a longstanding
problem in Fock space that has a similar form. This problem
was posed in the 1960s by D. J. Newman and H. S. Shapiro
[19], who were motivated by an old paper of E. Fisher (1917)
on differential operators. Assume that a function G from F is
such that ewzG ∈ F for any w ∈ C, that is, its growth is smaller
than the critical one. One may define on the linear span of all
exponentials the (unbounded) multiplication operator MGF =
GF. It is natural to expect that the adjoint of MG will then be
given by an infinite order differential operator G∗

( ∂
∂z
)
, where

G∗(z) = G(z). Newman and Shapiro showed that the positive
answer to this question is equivalent to the positive solution
of the following problem.

Problem 19. Let G ∈ F be such that ewzG ∈ F for any w ∈ C.
Is it true that

Span{ewzG : w ∈ C} = RG ?

Newman and Shapiro showed that the equality holds in
the case where G is a linear combination of exponential
monomials. In our example in Theorem 18, however, the
function G admits multiplication by polynomials in Fock
space but not multiplication by the exponents. Thus, the spec-
tral synthesis problem of Newman and Shapiro remains open.
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