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Ladies and Gentlemen,

It is a great honour to be invited to address you here
but one which is fraught with difficulties. First, there is
a rather natural reluctance for a practicing mathemati-
cian to philosophise about mathematics instead of just
giving a mathematical talk. As an illustration, the Eng-
lish mathematician G. Hardy called it a “melancholy
experience”to write about mathematics rather than just
prove theorems! However, had I not surmounted that
feeling, I wouldn’t be here, so I need not dwell on it any
more. More serious difficulties arise from the fact that
there are mathematicians and non-mathematicians in
the audience. Whether one should conclude from this
that my talk is best suited for an empty audience is a
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question that every one of you will have answered with-
in the next hour and therefore needs no further elabo-
ration. The difficulty brought about by the presence of
mathematicians here is that it makes me aware (almost
painfully aware) that, in fact, everything about my top-
ic has already been said, all arguments have already
been presented and pros and cons argued: mathematics
is only an art, or only a science, the queen of sciences,
merely a servant of science or even art and science com-
bined. The very subject of my address, in Latin Mathesis
et Ars et Scientia Dicenda, appeared as the third topic
in the defence of a dissertation in the year 1845. The
opponent claimed it was only art but not science [1]. It
has occasionally been maintained that mathematics is
rather trivial, almost tautological, and as such certainly
unworthy of being regarded either as art or as science
[2]- Most arguments can be supported by many refer-
ences to outstanding mathematicians. It is even possible
sometimes, by selective citation, to attribute widely dif-
ferent opinions to one and the same mathematician. So
I would like to emphasise at the outset that the profes-
sional mathematicians assembled here are unlikely to
hear anything new.

If T turn to the non-mathematicians, however, I
encounter a much bigger, almost opposite problem: my
task is to say something about the essence, the nature, of
mathematics. In so doing, however, I cannot assume that
the object of my statements is common knowledge. Of
course, I can presuppose a certain familiarity with Greek
mathematics, Euclidean geometry, for example, perhaps
the theory of conic sections, or even the rudiments of
algebra or analytical geometry. But they have little to do
with the object of present-day mathematical research.
Starting from this more or less familiar ground, math-
ematicians have gone on to develop ever more abstract
theories, which have less and less to do with everyday
experience, even when they later find important appli-
cations in the natural sciences. The transition from one
level of abstraction to the next has often been very dif-
ficult even for the best mathematicians and it represent-
ed, in their time, an extremely bold step. I couldn’t pos-
sibly give a satisfactory survey of this accumulation of
abstractions upon abstractions and of their applications
in just a few minutes. Still, I would feel quite uncomfort-
able simply to philosophise about mathematics without
saying anything specific on its contents. I would also like
to have a small supply of examples at hand to be able
to illustrate general statements about mathematics or
the position of mathematics with respect to art and the
natural sciences. I shall therefore attempt to describe, or
at least to give an idea of, some such steps.

In doing so, I will not be able to define precisely all
my terms and I don’t expect full understanding by all.
But that is not essential. What I want to communicate
is really just a feeling for the nature of these transitions,
perhaps even for their boldness and significance in the
history of thought. And I promise not to spend any more
than 20 minutes doing so.

A mathematician often aims for general solutions. He
enjoys solving many special problems with a few gen-
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eral formulae. One can call this economy of thought or
laziness. An age-old example is the solution to a second-
degree equation, say

x2+2bx+c=0.

Here, b and c are given real numbers. We are looking for
a real number x that will satisfy this equation. For centu-
ries, it has been known that x can be expressed in terms
of b and ¢ by the formula

If b2>c¢, we can take the square root and get two solu-
tions. If b2=c then x=-b is said to be a double solution. If
b?<c, however, then we cannot take the square root and
we maintain, at least at the beginning secondary school
level, that there is no solution.

In the 16th century, similar formulas were devised
for third- and even fourth-degree equations, such as the
equation

X*+ax+b=0.

I won’t write the formula out but it contains square
roots and cube roots — so-called radicals. An extremely
interesting phenomenon was discovered that came to be
called the casus irreducibilis. If this equation has three
distinct real solutions and we apply the formula, which
in principle allows one to compute them, then we meet
square roots of negative numbers; at the outset, these are
meaningless. If we ignore the fact that they don’t exist,
however, and are not afraid to compute with them then
they cancel out and we get the solutions, provided we
carefully follow certain formal rules. In short, starting
from the given real numbers a, b, we arrive at the sought
for ones by using “nonreal numbers”. The square roots
of negative numbers were called “imaginary numbers”to
distinguish them from the real numbers and controver-
sies raged as to whether it was actually legitimate to use
such nonreal numbers. Descartes, for example, did not
want to have anything to do with them. Only around the
year 1800 was a satisfactory solution — satisfactory for
some at least — to this problem found. The real numbers
are embedded in a bigger system consisting of the points
of the plane, i.e. pairs of real numbers, between which
one defines certain operations that have the same for-
mal properties as the four basic operations in arithmetic.
The real numbers are identified with the points on the
horizontal axis and the square roots of negative numbers
with those on the vertical axis. One then began to speak
of complex (or imaginary) numbers. Formally, we can use
these mathematical objects almost as easily as the real
numbers and can obtain solutions that are sometimes
real, sometimes complex. For the second-degree equa-
tion mentioned earlier, we can now say that there are two
complex solutions if b2 <c.

To a certain extent, this is, of course, merely a conven-
tion but it wasn’t easy to grant these complex numbers the
same right to existence as real numbers and not to regard
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them as a mere tool for arriving at real numbers. There
was no strict definition of real numbers back then but
the close connection between mathematics and measure-
ment or practical computation gave real numbers a cer-
tain reality, in spite of the difficulties with irrational and
negative numbers. It wasn’t the same with complex num-
bers, however. That was a step in an entirely new direc-
tion, bringing a purely intellectual creation to the fore.
As mathematicians became used to this new step, they
began to realise that many operations performed with
functions, such as polynomials, trigonometric functions,
etc., still made sense when complex values were accepted
as arguments and as values. This marked the beginning of
complex analysis or function theory. As early as 1811, the
mathematician Gauss pointed out the necessity of devis-
ing such a theory for its own sake:

The point here is not practical utility; rather, for me,
analysis is an independent science which would lose
an extraordinary amount of beauty and roundness by
discriminating against those fictitious quantities [3].

Apparently, even he did not foresee the practical rel-
evance complex analysis was later to achieve, as in the
theories of electricity or aerodynamics, for example.

But that is not the end of it. Allow me, if you will,
to mention two further steps toward greater abstraction.
Let us return to our second-degree equation. One can
now say that it has, in general, two solutions that may
be complex numbers. Similarly, an equation of the n-th
degree has n solutions if one accepts complex numbers.
From the 16th century on, people wondered whether
there was also a general formula that would express the
solutions of an equation of degree at least five from the
coefficients by means of radicals. It was finally proved
to be impossible. One proof (chronologically the third)
was given by the French mathematician E. Galois within
the framework of a more general theory, which was not
understood at the time and subsequently forgotten. Some
15 years later, his work was rediscovered and understood
only with great difficulty by a very few, so new was his
viewpoint. Given an equation, Galois considered a cer-
tain set of permutations of the roots and showed that
certain properties of this set of permutations are deci-
sive. That was the beginning of an independent study of
such sets of permutations, which later came to be known
as Galois groups. He showed that an equation is solv-
able by means of radicals only when the groups involved
belong to a certain class: namely, the solvable groups, as
they came to be called. The theorem mentioned earlier,
regarding equations of degree at least five, is then a con-
sequence of the fact that the group associated to a gen-
eral equation of the n-th degree is solvable only when n
=1, 2,3, 4 [4]. The important properties of such groups,
for instance to be solvable, are actually independent of
the nature of the objects to be permuted and this led to
the idea of an “abstract group”and to theorems of great
significance, applicable in many areas of mathematics.
But, for many years, this appeared to be nothing more
than pure and very abstract mathematics. As a mathema-

EMS Newsletter March 2017

tician and a physicist were discussing the curriculum for
physics at Princeton University around the year 1910, the
physicist said they could no doubt leave out group the-
ory, for it would never be applicable to physics [5]. Not
20 years later, three books on group theory and quantum
mechanics appeared and, since then, groups have been
fundamental in physics as well.

The following will serve as a final example. I said ear-
lier that we can consider complex numbers to be points
in the plane. An Irish mathematician, N.R. Hamilton,
wondered whether one could define an analogue of the
four basic operations among the points of three-dimen-
sional space, thus forming an even more comprehensive
number system. It took him about 10 years to find the
answer: it is not possible in three-dimensional space but
it is in four-dimensional space. We do not need to try
to imagine just what four-dimensional space is here. It
is simply a figure of speech for quadruples of real num-
bers instead of triples or pairs of real numbers. He called
these new numbers quaternions. He did, however, have
to do without one property of real or complex num-
bers, which, up until then, had been taken for granted:
commutativity in multiplication, i.e. axb=>bxa. He also
showed that calculus with quaternions had applications
in the mathematical treatment of questions in physics
and mechanics. Later, many other algebraic systems with
a noncommutative product were defined, notably matrix
algebras. This also appeared to be an entirely abstract
form of mathematics, without connections to the outside
world. In 1925, however, as Max Born was thinking about
some new ideas of W. Heisenberg’s, he discovered that
the most appropriate formalism for expressing them was
none other than matrix algebra, and this suggested that
physical quantities be represented by means of algebraic
objects that do not necessarily commute. This led to the
uncertainty principle and was the beginning of matrix
quantum mechanics and of the assignment of operators
to physical quantities, which is at the basis of quantum
mechanics [6].

With this last example, I shall conclude my attempts
to describe some mathematical topics. The examples are,
of course, extremely incomplete and not at all represent-
ative of all areas of mathematics. They do have two prop-
erties in common, however, which I would like to empha-
sise since they are valid in a great many cases. First of all,
these developments lead in the direction of ever greater
abstraction, further and further away from nature. Sec-
ond, abstract theories developed for their own sake have
found important applications in the natural sciences. The
suitability of mathematics to the needs of the natural sci-
ences is, in fact, astonishingly great (one physicist spoke
once of the “unreasonable effectiveness of mathemat-
ics”[7]) and is worthy of a far more detailed discussion
than I can afford to enter into here.

The transition to ever greater abstraction is not to be
taken for granted, as you may have gathered from Gauss’
quotation. Mathematics was originally developed for
practical purposes such as bookkeeping, measurements
and mechanics; even the great discoveries of the 17th
century, such as infinitesimal and integral calculus, were,
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at first, primarily tools for solving problems in mechan-
ics, astronomy and physics. The mathematician Euler,
who was active in all areas of mathematics and its appli-
cations — including shipbuilding — also wrote papers on
pure number theory and, more than once, felt the need
to explain that it was as justified and important as more
practically oriented work [8]. Mathematics was, from the
very beginning, of course, a kind of idealisation but, for a
long time, was not as far removed from reality or, more
precisely, from our perception of reality as in the exam-
ples mentioned earlier. As mathematicians went further
in this direction, they became increasingly aware that a
mathematical concept has a right to existence as soon as
it has been defined in a logically consistent manner, with-
out necessarily having a connection with the physical
world, and that they had the right to study it even when
there seemed to be no practical applications at hand. In
short, this led more and more to “Pure Mathematics”or
“Mathematics for Its Own Sake”.

But if one leaves out the controlling function of prac-
tical applicability, the question immediately arises as to
how one can make value judgments. Surely not all con-
cepts and theorems are equal; as in George Orwell’s Ani-
mal Farm, some must be more so than others. Are there
then internal criteria that can lead to a more or less objec-
tive hierarchy? You will notice that the same basic ques-
tion can be asked about painting, music or art in general.
It thus becomes a question of aesthetics. Indeed, a usual
answer is that mathematics is, to a great extent, an art, an
art whose development has been derived from, guided
by and judged according to aesthetic criteria. For the lay-
person, it is often surprising to learn that one can speak
of aesthetic criteria in so grim a discipline as mathemat-
ics. But this feeling is very strong for the mathematician,
even though it is difficult to explain. What are the rules
of this aesthetic? Wherein lies the beauty of a theorem,
of a theory? Of course, there is no single answer that will
satisfy all mathematicians but there is a surprising degree
of agreement, to a far greater extent, I think, than exists
in music or painting.

Without wishing to maintain that I can explain this
fully, I would like to attempt to say a bit more about it lat-
er. At the moment, I shall content myself with the asser-
tion that the analogy with art is one with which many
mathematicians agree. For example, G. H. Hardy was of
the opinion that if mathematics has any right to exist at
all then it is only as art [9]. Our activity has much in com-
mon with that of an artist: a painter combines colours
and forms, a musician tones, a poet words, and we com-
bine ideas of a certain sort. The painter E. Degas wrote
sonnets from time to time. Once, in a conversation with
the poet S. Mallarmé, he complained that he found writ-
ing difficult even though he had many ideas, indeed an
overabundance of ideas. Mallarmé answered that poems
were made of words, not ideas [10]. We, on the other
hand, work primarily with ideas.

This feeling of art becomes even stronger when one
thinks of how a researcher works and progresses. One
should not imagine that the mathematician operates
entirely logically and systematically. He often gropes
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aboutin the dark,not knowing whether he should attempt
to prove or disprove a certain proposition, and essential
ideas often occur to him quite unexpectedly, without him
even being able to see a clear and logical path leading to
them from earlier considerations. Just as with composers
and artists, one should speak of inspiration [11].

Other mathematicians, however, are opposed to this
view and maintain that an involvement with mathemat-
ics without being guided by the needs of the natural sci-
ences is dangerous and almost certainly leads to theo-
ries that may be quite subtle and may provide the mind
with a peculiar pleasure but which represent a kind of
intellectual mirror that is completely worthless from the
standpoint of science or knowledge. For example, the
mathematician J. von Neumann wrote in 1947:

As a mathematical discipline travels far from its empir-
ical sources, or still more, if it is second and third gen-
eration only indirectly inspired by ideas coming from
“reality”, it is beset with very grave dangers. It becomes
more and more purely aestheticizing, more and more
purely Uart pour l'art ... there is a great danger that
the subject will develop along the line of least resist-
ance ... will separate into a multitude of insignificant
branches. ..

In any event ... the only remedy seems to me to be the
rejuvenating return to the source: the reinjection of
more or less directly empirical ideas [12].

Still others have taken a more intermediate stance: they
fully recognise the importance of the aesthetic side of
mathematics but feel that it is dangerous to push math-
ematics for its own sake too far. Poincaré, for example,
wrote:

In addition to this, it provides its disciples with pleas-
ures similar to painting and music. They admire the
delicate harmony of the numbers and the forms, they
marvel when a new discovery opens up to them an
unexpected vista; and does the joy that they feel not
have an aesthetic character even if the senses are not
involved at all? ...

For this reason, I do not hesitate to say that mathemat-
ics deserves to be cultivated for its own sake, and [
mean the theories which cannot be applied to physics
just as much as the others [13].

But a few pages further on, he returns to this comparison
and adds:

If I may be allowed to continue my comparison with
the fine arts then the pure mathematician who would
forget the existence of the outside world could be lik-
ened to the painter who knew how to combine colours
and forms harmoniously but who lacked models. His
creative power would soon be exhausted [14].

This denial of the possibility of abstract painting strikes

me as especially noteworthy since we are in Munich,
where, not much later, an artist would concern himself
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quite deeply with this question (namely, Wassily Kandin-
sky). It was sometime in the first decade of this century
that he suddenly felt, after looking at one of his own can-
vases, that the subject can be detrimental to the painting
in that it may be an obstacle to direct access to forms and
colours: that is, to the actual artistic qualities of the work
itself. But, as he wrote later [15],“a frightening gap”(eine
erschreckende Tiefe) and a mass of questions confronted
him, the most important of which was: “What should
replace the missing subject?”Kandinsky was fully aware
of the danger of ornamentation, of a purely decorative
art, and wanted to avoid it at all costs. Contrary to Poin-
caré, however, he did not conclude that painting without
a real subject had to be fruitless. In fact, he even devel-
oped a theory of the “inner necessity”and “intellectual
content”of a painting. Since about 1910, as you know, he
and other painters in increasing numbers have dedicated
themselves to so-called abstract or pure painting, which
has little or nothing to do with nature.

If one does not want to admit an analogous possibility
for mathematics, however, then one will be led to a con-
ception of mathematics that I would like to summarise
as follows. On the one hand, it is a science because its
main goal is to serve the natural sciences and technology.
This goal is actually at the origin of mathematics and is
constantly a wellspring of problems. On the other hand,
it is an art because it is primarily a creation of the mind
and progress is achieved by intellectual means, many of
which issue from the depths of the human mind and for
which aesthetic criteria are the final arbiters. But this
intellectual freedom to move in a world of pure thought
must be governed, to some extent, by possible applica-
tions in the natural sciences.

However, this view is really too narrow; in particu-
lar, the final clause is too limiting and many mathema-
ticians have insisted on complete freedom of activity.
First of all, as has already been pointed out, many areas
of mathematics that have proved important for applica-
tions would not have been developed at all if one had
insisted on applicability from the beginning. In spite of
the above quotation, von Neumann himself pointed this
out in a later lecture:

But still a large part of mathematics which became use-
ful developed with absolutely no desire to be useful,
and in a situation where nobody could possibly know
in what area it would become useful: and there were no
general indications that it even would be so ... This is
true of all science. Successes were largely due to forget-
ting completely about what one ultimately wanted, or
whether one wanted anything ultimately, in refusing to
investigate things which profit, and in relying solely on
guidance by criteria of intellectual elegance...

And I think it extremely instructive to watch the role of
science in everyday life, and to note how in this area the
principle of laissez faire has led to strange and won-
derful results [16].

Secondly, and for me more importantly, there are are-
as of pure mathematics which have found little or no
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application outside mathematics but which one cannot
help viewing as great achievements. I am thinking, for
example, of the theory of algebraic numbers, class field
theory, automorphic functions, transfinite numbers, etc.

Let us return to the comparison with painting once
again and take as “subject”the problems that are drawn
from the physical world. Then, we see that we have
painting drawn from nature as well as pure or abstract
painting.

This comparison is, however, not yet entirely satis-
factory, for such a description of mathematics would
not encompass all its essential aspects, in particular its
coherence and unity. Indeed, mathematics displays a
coherence that I feel is much greater than in art. As a
testimony to this, note that the same theorem is often
proved independently by mathematicians living in
widely separated locations or that a considerable num-
ber of papers have two, sometimes more, authors. It can
also happen that parts of mathematics that have been
developed completely independently of one another
suddenly demonstrate deep connections under the
impact of new insights. Mathematics is, to a great extent,
a collective undertaking. Simplifications and unifica-
tions maintain the balance with unending development
and expansion; they display again and again a remark-
able unity even though mathematics is far too large to
be mastered by a single individual.

I think it would be difficult to account fully for this
by appealing solely to the criteria mentioned earlier:
namely, subjective ones like intellectual elegance and
beauty, and consideration of the needs of natural sci-
ences and technology. One is then led to ask whether
there are criteria or guidelines other than those. In my
opinion, this is the case and I would now like to com-
plete the earlier description of mathematics by looking
at it from a third standpoint and adding another essen-
tial element to it. In preparation for this, I would like
to digress, or at least apparently digress, and take up
the question: ‘Does mathematics have an existence of
its own? Do we create mathematics or do we gradu-
ally discover theories which exist somewhere indepen-
dently of us?’ If this is so, where is this mathematical
reality located?

It is, of course, not absolutely clear that such a ques-
tion is really meaningful. But this feeling — that math-
ematics somehow, somewhere, pre-exists — is widespread.
It was expressed quite sharply, for example, by G.H.
Hardy:

1 believe that mathematical reality lies outside us, that
our function is to discover or observe it, and that the
theorems which we prove, and which we describe gran-
diloquently as our “creations”, are simply our notes of
our observations. This view has been held, in one form
or another, by many philosophers of high reputation,
from Plato onwards... [17].}

If one is a believer then one will see this pre-existent

mathematical reality in God. This was actually the belief
of Hermite, who once said:
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There exists, if I am not mistaken, an entire world
which is the totality of mathematical truths, to which
we have access only with our mind, just as a world of
physical reality exists, the one like the other independ-
ent of ourselves, both of divine creation [18].

It wasn’t too long ago that a colleague explained in an
introductory lecture that the following question had
occupied him for years: “Why has God created the excep-
tional series?’

But a reference to divine origin would hardly satisfy
the nonbeliever. Many do, however, have a vague feeling
that mathematics exists somewhere, even though, when
they think about it, they cannot escape the conclusion
that mathematics is exclusively a human creation.

Such questions can be asked of many other concepts
such as state, moral values, religion, etc., and would prob-
ably be worthy of consideration all by themselves. But
for want of time and competence, I shall have to content
myself with a short and possibly oversimplified answer
to this apparent dilemma by agreeing with the thesis that
we tend to posit existence on all those things that belong
to a civilization or culture in that we share them with oth-
er people and can exchange thoughts about them. Some-
thing becomes objective (as opposed to “subjective”) as
soon as we are convinced that it exists in the minds of
others in the same form as it does in ours and that we can
think about it and discuss it together [19]. Because the
language of mathematics is so precise, it is ideally suited
to defining concepts for which such a consensus exists. In
my opinion, that is sufficient to provide us with a {\it feel-
ing} of an objective existence, of a reality of mathematics
similar to that mentioned by Hardy and Hermite above,
regardless of whether it has another origin, as Hardy and
Hermite maintain. One could speculate forever on this
last point, of course, but that is actually irrelevant to the
continuation of this discussion.

Before I elaborate on this, I would like to note that
similar thoughts about our conception of physical reality
have been expressed. For example, Poincaré wrote:

Our guarantee of the objectivity of the world in which
we live is the fact that we share this world with other
sentient beings. ..

That is therefore the first requirement of objectivity:
that which is objective must be common to more than
one spirit and as a result be transmittable from one to
the other... [20]

And Einstein:

By the aid of speech, different individuals can, to a
certain extent, compare their experiences. In this way,
it is shown that certain sense perceptions of different
individuals correspond to each other, while for other
sense perceptions no such correspondence can be
established. We are accustomed to regard as real those
sense perceptions which are common to different indi-
viduals, and which therefore are, in a measure, imper-
sonal [21].
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Now back to mathematics. Mathematicians share an intel-
lectual reality: a gigantic number of mathematical ideas,
objects whose properties are partly known and partly
unknown, theories, theorems, solved and unsolved prob-
lems, which they study with mental tools. These problems
and ideas are partially suggested by the physical world;
primarily, however, they arise from purely mathematical
considerations (such as groups or quaternions to go back
to my earlier examples). This totality, although stemming
from the human mind, appears to us to be a natural sci-
ence in the normal sense, such as physics or biology, and
is for us just as concrete. I would actually maintain that
mathematics not only has a theoretical side but also an
experimental one. The former is clear: we strive for gen-
eral theorems, principles, proofs and methods. That is
the theory. But, in the beginning, one often has no idea
of what to expect and how to continue, and one gains
understanding and intuition through experimentation,
that is, through the study of special cases. First, one hopes
to be led in this way to a sensible conjecture and, second,
perhaps to stumble upon an idea that will lead to a gen-
eral proof. It can also happen, of course, that certain spe-
cial cases are of great interest in themselves. That is the
experimental side. The fact that we operate with intellec-
tual objects more than with real objects and laboratory
equipment is actually not important. The feeling that
mathematics is, in this sense, an experimental science is
also not new.

Hermite, for example, wrote to L. Konigsberger
around 1880:

The feeling expressed at that point in your letter where
you say to me: “The more I think about all these things,
the more I come to realise that mathematics is an
experimental science like all other sciences.” This feel-
ing, I say, is also my feeling [22].

Traditionally, these experiments are carried out in one’s
head (or with pen and paper) and for this reason I have
spoken of mental tools. I should add, however, that for
about 20 years, real apparatuses, namely, electronic com-
puters, have been playing an increasing role. They have
actually given this experimental side of mathematics a
new dimension. This has advanced to the extent that one
can already see important, reciprocal and fascinating
interactions between computer science and pure math-
ematics.

The word “science”in my title now takes a broader
meaning: it refers not only to the natural sciences, as it
did earlier, but also — and this to a much greater extent
— to the conception of mathematics itself as an experi-
mental and theoretical science or, I would venture to say,
as a mental natural science, as a natural science of the
intellect, whose objects and modes of investigations are
all creations of the mind.

This makes it somewhat easier for me to speak of
motivation and aesthetics. If one does not want to take
applications in the natural sciences as a yardstick, one
is still not thrown back upon mere intellectual elegance.
There still remain almost practical criteria: namely, appli-
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cability in mathematics itself. The consideration of this
mathematical reality, the open problems, the structure,
needs and connections among various areas, already
indicates possibly fruitful, valuable directions and allows
the mathematician to orient himself and attach relative
values to problems as well as to theories. Often a test for
the value of a new theory is whether it can solve old prob-
lems. De facto, this limits the freedom of a mathematician,
in a way which is comparable to the constraints imposed
on a physicist, who after all doesn’t choose at random the
phenomena for which he wants to construct a theory or
to devise experiments. Many examples show that math-
ematicians have often been able to foresee how certain
areas of mathematics will develop and which problems
should be taken up and probably quickly solved. Rather
often, statements about the future of mathematics have
proved true. Such predictions are not perfect but they are
successful enough to indicate a difference from art. Anal-
ogous relatively successful forecasts about the future of
painting, for example, hardly exist at all.

I don’t want to go too far in this. However, [ suggested
the concept of mathematics as a mental natural science as
one of three elements, not as the whole. On the one hand,
I don’t want to overlook the importance of the interac-
tions between mathematics and the natural sciences.
First, it is a common saying that all disciplines in the nat-
ural sciences must strive for a mathematical formulation
and treatment — indeed, that a discipline achieves the sta-
tus of a science only when this has been carried out. Thus,
it is surely important that mathematicians try to help in
this way. Second, it is doubtless a great achievement to
formulate and treat complicated phenomena mathemati-
cally, and the new problems that are thereby introduced
represent an enrichment for mathematics. One need only
think of probability. I only mean that it is simply not nec-
essary to put the idea of applicability in the foreground
in order to do valuable mathematics. The history of
mathematics shows that many outstanding achievements
came from mathematicians who weren’t thinking at all
about external applications and who were led by purely
mathematical considerations. And as has already been
mentioned and illustrated, these contributions often
found important applications in the natural sciences or
in engineering, often in completely unforeseen ways.

On the other hand, I don’t want to say that one can
foresee everything completely rationally. Actually, this
isn’t the case even in the natural sciences, especially since
one often does not know in advance which experiments
will prove interesting. Outstanding mathematicians have
also been wrong and have sometimes, precisely in the
name of applicability within mathematics, termed fruit-
less, idle or even dangerous, new ideas that later proved
fundamental. The freedom not to consider practical
applications, which von Neumann demanded for science
as a whole, must also be demanded within mathematics.

One could object that this analogy between mathe-
matics and the natural sciences overlooks one essential
difference: in the natural sciences or in technology, one
often encounters problems that one has to solve in order
to advance at all. In the world of mathematical thought,
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one has still de jure the freedom to put aside apparently
unsolvable, overly difficult problems and turn to other,
more manageable ones and maybe, in fact, follow the
path of least resistance, just as von Neumann had feared.
Wouldn’t that be a temptation for a mathematician who
defines mathematics as “the art of finding problems that
one can solve”? Interestingly enough, I heard this defini-
tion from a mathematician whose works are especially
remarkable because they treated so many problems
which seemed quite special at the time but which later
proved fundamental and whose solutions opened up new
paths, namely, Heinz Hopf.

It cannot be denied, however, that sometimes paths
of least resistance are indeed followed, leading to trivial
or meaningless work. It can also happen that a successful
school later falls into a sterile period and then even, at
worst, exerts a harmful influence. Remarkably enough,
however, an antidote always comes along, a reaction that
eliminates these mistaken paths and fruitless directions.
Up until now, mathematics has always been able to over-
come such growth diseases and I am convinced that it
will always do so, as long as there are so many talented
mathematicians. It is very odd, however. Many of us have
this feeling of a unity in mathematics but it is dangerous
to prescribe overly precise guidelines in the name of our
conception of it. It is more important that freedom reigns,
despite occasional misuse. Why this is so successful can-
not be fully explained. If one thinks of Hopf, for exam-
ple, one can, to a certain extent, see rational criteria in
his choice of problems: they were, for instance, often the
first special cases of a general problem for which known
methods of proof were not applicable. He was, of course,
aware of this. But that doesn’t explain everything. He
probably didn’t always foresee how influential his work
would become; and, most likely, he did not worry about
it. It is simply a part of the talent of a mathematician to
be drawn to “good” problems, i.e. to problems that turn
out to be significant later, even if it is not obvious at the
time he takes them up. The mathematician is led to this
partly by rational, scientific observations and partly by
sheer curiosity, instinct, intuition or purely aesthetic con-
siderations. Which brings me to my final subject: the aes-
thetic feeling in mathematics.

I have already mentioned the idea of mathematics
as an art, a poetry of ideas. With that as a starting point,
one would conclude that, in order for one to appreciate
mathematics, to enjoy it, one needs a unique feeling for
intellectual elegance and beauty of ideas in a very spe-
cial world of thought. It is not surprising that this can
hardly be shared with non-mathematicians: our poems
are written in a highly specialised language, the math-
ematical language; although it is expressed in many of
the more familiar languages, it is nevertheless unique and
translatable into no other language; and unfortunately,
these poems can only be understood in the original. The
resemblance to an art is clear. One must also have a cer-
tain education for the appreciation of music or painting,
which is to say one must learn a certain language.

I have long agreed with such opinions and analogies.
Without changing my fundamental position with regard
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to mathematics, I would nonetheless like to reformulate
them somewhat in the direction of my previous state-
ments. [ believe that our aesthetics are not always so pure
and esoteric but also include a few more earthly yard-
sticks such as meaning, consequences, applicability, use-
fulness — but within the mathematical science. Our judg-
ment of a theorem, a theory or a proof is also influenced
by this but it is often simply equated to the aesthetic.
I would like to try to explain this using Galois’ theory
mentioned earlier. This theory is generally treasured as
one of the most beautiful chapters in mathematics. Why?
First, it solved a very old and, at that time, most impor-
tant question about equations. Second, it is an extremely
comprehensive theory that goes far beyond the origi-
nal question of solvability by radicals. Third, it is based
on only a few principles of great elegance and simplic-
ity, which are formulated within a new framework with
new concepts that demonstrate the greatest originality.
Fourth, these new viewpoints and concepts, especially
the concept of a group, opened new paths and had a last-
ing influence on the whole of mathematics.

You will notice that of these four points only the
third is a truly aesthetic judgment, and one about which
one can have one’s own opinion only when one under-
stands the technical details of the theory. The others
have a different character. One could make similar
statements about theories in any natural science. They
have a greater objective content, and a mathematician
can have his own opinion about them even if he doesn’t
fully grasp the technical details of the theory. For the
purpose of this discussion, I have separated these four
elements but normally I would not always do so explic-
itly, and all four contribute to the impression of beau-
ty. I do think that, in this respect, this example is fairly
typical: what we describe as aesthetic is actually often
a fusion of different views. For example, I would natu-
rally find a method of proof more beautiful if it found
new and unexpected applications, although the method
itself hadn’t changed. It may have become more impor-
tant but in and of itself not more beautiful. Since all this
takes place within mathematics itself, it will hardly help
the non-mathematician penetrate our aesthetic world. I
hope, however, that it will help him find more plausible
the fact that our so-called aesthetic judgments display a
greater consensus than in art, a consensus that goes far
beyond geographical and chronological limitations. In
any case, I regard this as being a major factor. But once
again, I must avoid taking this too far. It is a question
of degree, not an absolute difference. An aesthetic judg-
ment on the work of a composer or a painter also draws
on external factors such as influence, predecessors and
the position of the work with relation to other works,
even if it is to a lesser extent. On the other hand, there
are differences of opinion and fluctuations in time in the
evaluation of mathematical works, though not to such
a strong degree, I would add. All these nuances need a
good deal of explanation, which I cannot go into here for
lack of time.

In the limited amount of time at my disposal, it would,
of course, be easier to make only sweeping short state-
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ments about mathematics. But unfortunately, or for-
tunately, just as in other human undertakings to which
many people have contributed over many centuries,
mathematics refuses to let itself be described by just a
few simple formulas. Almost every general statement
about mathematics has to be qualified somehow. One
exception, perhaps the only one, might be this statement
itself. I hope I have, at least, given the impression that
mathematics is an extremely complex creation, which
displays so many essential traits in common with art and
experimental and theoretical sciences that it has to be
regarded as all three at the same time, and thus must be
differentiated from all three as well.

I am aware that I have raised more questions than I
have answered, treated too briefly those I have discussed
and not even touched upon some important ones, such
as the value of this creation. One can, of course, point
to innumerable applications in the natural sciences and
in engineering, many of which have a great influence on
our daily life, thereby establishing a social right to exist-
ence for mathematics. But I must confess that, as a pure
mathematician, I am more interested in an assessment
of mathematics in itself. The contributions of the vari-
ous mathematicians meld into an enormous intellectual
construct, which, in my opinion, represents an impressive
testimony to the power of human thinking. The math-
ematician Jacobi once wrote that “the only purpose of
science is to honour the human mind”[23]. I believe that
this creation does indeed do the human mind great hon-
our.

The Institute for Advanced Study
Princeton, New Jersey 08540
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the natural sciences”, Communications on Pure and Applied Math-
ematics 13 (1960), 1-14.

Among the many aspects of this interaction, the one that appears
most remarkable to me is that the mathematical formalism some-
times leads to basic, new and purely physical ideas. One well known
example is the discovery of the positron. In 1928, P A.M. Dirac set
up quantum mechanic relativistic equations for the movement of
the electron. These equations also allowed a solution with the same
mass as the electron but with the opposite electrical charge. All at-
tempts to explain these solutions satisfactorily, or to eliminate them
by some suitable modification of the equation, were unsuccessful.
This led Dirac eventually to conjecture the existence of a particle
with the necessary properties, which was later established by An-
derson. For this, see P. A. M. Dirac, “The development of quantum
theory”(J. R. Oppenheimer Memorial Prize acceptance speech),
Gordon and Breach, New York, 1971.

A newer and even more comprehensive example would be the use
of irreducible representations of the special unitary group SU(3) in
three complex variables, which led to the so-called “eightfold way”.
One of the first successes of this theory was quite striking, name-
ly, the discovery of the particle ()™: nine baryons were assigned,
through consideration of two of their characteristic quantum num-
bers, to nine points of a very specific mathematical configuration
consisting of 10 points in a plane [the 10 weights of an irreducible
10-dimensional representation of SU(3)]; this led M. Gell’'man to
conjecture that there should also be a particle corresponding to the
tenth point, which would then possess certain well-defined prop-
erties. Such a particle was observed some two years later. A fur-
ther development along these lines led to the theory of “quarks”.
For the beginnings of this theory, see F.J. Dyson, loc. cit. [5] and
M. Gell’'man and Y. Ne’eman, The Eightfold Way, W.A. Benjamin,
New York, 1964.

See a number of papers in L. Euler’s Opera Omnia, especially 1.2,
62-63,285,461,576;1.3,5.2.1 want to thank A. Weil for pointing this
out to me. Here is an example (translated from Latin by Weil), loc.
cit. pp. 62-63, published in 1747:

“Nor is the author disturbed by the authority of the greatest math-
ematicians when they sometimes pronounce that number theory is
altogether useless and does not deserve investigation. In the first
place, knowledge is always good in itself, even when it seems to
be far removed from common use. Secondly, all the aspects of the
truth which are accessible to our mind are so closely related to one
another that we dare not reject any of them as being altogether
useless. Moreover, even if the proof of some proposition does not
appear to have any present use, it usually turns out that the method
by which this problem has been solved opens the way to the discov-
ery of more useful results.

“Consequently, the present author considers that he has by no
means wasted his time and effort in attempting to prove various
theorems concerning integers and their divisors. Actually, far from
being useless, this theory is of no little use even in analysis. Moreo-
ver, there is little doubt that the method used here by the author
will turn out to be of no small value in other investigations of great-
er import.”

G.H. Hardy, A Mathematician’s Apology, Cambridge University
Press, 1940; new printing with a foreword by C.P. Snow, pp. 139-140.
P. Valery, Degas, danse, dessin, A.Vollard éd., Paris, 1936; Euvres 11,
La Pléiade, Gallimard éd., Paris, 1966, pp. 1163-1240, especially pp.
1207-1209.

The following excerpt from a letter from C.F. Gauss to Olbers, writ-
ten on 3 September 1805, shortly after Gauss had solved a prob-
lem (the “sign of the Gaussian Sums”) he had been working on for
years, can serve as an example:
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“Finally, just a few days ago, success — but not as a result of my la-
borious search but only by the grace of God I would say. Just as it is
when lightning strikes, the puzzle was solved; I myself would not be
able to show the threads which connect that which I knew before,
that with which I had made my last attempt, and that by which it
succeeded.”See Gauss, Gesammelte Werke, Vol. 10,, pp. 24-25. Here
one must also mention H. Poincaré’s description of some of his
fundamental discoveries on automorphic functions. H. Poincaré,
“L’invention mathematique” in Science et Méthode, E. Flammarion
éd., Paris, 1908, Chap. III.

J. v. Neumann, “The mathematician” in Robert B. Heywood, The
Works of the Mind, University of Chicago Press, 1947, pp. 180-187.
Collected Works, 6 Vol., Pergamon, New York, 1961, Vol. I, pp. 1-9.
H. Poincaré, La Valeur de la Science, E. Flammarion, Paris, 1905,
Chap. 5, p. 139. Actually, this chapter is the printed version of a
lecture that Poincaré delivered at the First International Congress
of Mathematicians, Zurich, 1897.

Loc. cit. [13], p. 147.

W. Kandinsky, Riickblick 1901-1913, H. Walden ed., 1913. New
printing by W. Klein Verlag, Baden-Baden, 1955. See pp. 20-21.
J.v.Neumann, “The role of mathematics in the science and in socie-
ty”, address to Princeton Graduate Alumni, June 1954. See Collect-
ed Works, 6 Vol., Pergamon, New York, 1961, Vol. VI, pp. 477-490.
See G.H. Hardy, loc. cit. [9], pp. 123-124.

G. Darboux, “La vie et I'(Euvre de Charles Hermite”, Revue du
mois, 10 January 1906, p. 46.

See L. White, “The locus of mathematical reality: An anthropologi-
cal footnote”, Philosophy of Science 14 (1947),189303; also in J.R.
Newman, The World of Mathematics, 4 Vol., Simon and Schuster,
New York, 1956, Vol. 4, pp. 2348-2364.

H. Poincaré, loc. cit. [13], p. 262.

A. Einstein, Vier Vorlesungen iiber Relativititstheorie, held in May
1921 at Princeton University, Fr. Vieweg und Sohn, Braunschweig,
1922, p. 1. English translation in: The Meaning of Relativity, Prince-
ton University Press, Princeton, 1945.

See L. Konigsberger, “Die Mathematik eine Geistes- oder Natur-
wissenschaft?”, Jahresbericht der Deutschen Mathematiker-Vereini-
gung 23 (1914),1-12.

In a letter of 2 July 1830 to A.M. Legendre, see C.G.J. Jacobi, Ge-
sammelte Werke, G. Riemer, Berlin, 1881-1891, Vol. 1, pp. 453-455.
Since this statement is sometimes misquoted, we prefer to give here
its original context:

“Mais M. Poisson n’aurait pas dii reproduire dans son rapport une
phrase peu adroite de feu M. Fourier, ol ce dernier nous fait des
reproches, a Abel et a moi, de ne pas nous étre occupés de préfé-
rence du mouvement de la chaleur. II est vrai que M. Fourier avait
I’opinion que le but principal des mathématiques était I'utilité pub-
lique et ’explication des phénomenes naturels; mais un philosophe
comme lui aurait d savoir que le but unique de la science, c’est
I’honneur de I’esprit humain et que sous ce titre une question de
nombres vaut autant qu’une question du systéeme du monde.”
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