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Solved and Un-

solved Problems
Michael Th. Rassias (Institute of Mathematics, University

of Zürich, Switzerland)

God created the natural numbers. The rest is the work of man.

Leopold Kronecker (1823–1891)

The column Solved and Unsolved Problems will continue present-

ing six proposed problems and two open problems, as has been done

over recent years. The set of proposed and open problems in each is-

sue will be devoted to a specific field of mathematics. In every issue

featuring this column, solutions will be presented to the proposed

problems from the previous issue along with the names of solvers.

Possible progress toward the solution of any of the open problems

proposed in this column will also be featured. The goal of the Solved

and Unsolved Problems column is to provide a series of intriguing

proposed problems and open problems ranging over several areas

of mathematics. Effort will also be made to present problems of an

interdisciplinary flavour.

The column in this issue is devoted to number theory. As is well

known, number theory is one of the oldest and most vibrant areas of

pure mathematics. Over the last few decades, it has also found im-

portant applicability in various scientific domains such as cryptog-

raphy, coding theory, theoretical computer science and even nuclear

physics and quantum information theory.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.

171. Prove that every integer can be written in infinitely many

ways in the form

±12 ± 32 ± 52 ± · · · ± (2k + 1)2

for some choices of signs + and −.

(Dorin Andrica, Babesş Bolyai University, Cluj-Napoca,

Romania)

172. Show that, for every integer n ≥ 1 and every real number

a ≥ 1, one has

1

2n
≤ 1

na+1

n∑
k=1

ka − 1

a + 1
<

1

2n

(
1 +

1

2n

)a
.

(László Tóth, University of Pécs, Hungary)

173. Let cn(k) denote the Ramanujan sum, defined as the sum of

kth powers of the primitive nth roots of unity. Show that, for any

integers n, k, a with n ≥ 1,

∑
d|n

cd(k)an/d ≡ 0 (mod n).

(László Tóth, University of Pécs, Hungary)

174. Prove, disprove or conjecture:

1. There are infinitely many primes with at least one 7 in their

decimal expansion.

2. There are infinitely many primes where 7 occurs at least

2017 times in their decimal expansion.

3. There are infinitely many primes where at most one-quarter

of the digits in their decimal expansion are 7s.

4. There are infinitely many primes where at most half the

digits in their decimal expansion are 7s.

5. There are infinitely many primes where 7 does not occur in

their decimal expansion.

Note. Let p be a prime. Then, the decimal expansion of 1/p is

often called the “decimal expansion of p”.

(Steven J. Miller, Department of Mathematics and Statistics,

Williams College, Williamstown, MA, USA)

175. Show that there is an infinite sequence of primes p1 < p2 <

p3 < · · · such that p2 is formed by appending a number in front

of p1, p3 is formed by appending a number in front of p2 and so

on. For example, we could have p1 = 3, p2 = 13, p3 = 313,

p4 = 3313, p5 = 13313, . . . . Of course, you might have to add

more than one digit at a time. Find a bound on how many digits

you need to add to ensure it can be done.

(Steven J. Miller, Department of Mathematics and Statistics,

Williams College, Williamstown, MA, USA)

176. Consider all pairs of integers x, y with the property that

xy − 1 is divisible by the prime number 2017. If three such inte-

gral pairs lie on a straight line on the xy−plane, show that both the

vertical distance and the horizontal distance of at least two of such

three integral pairs are divisible by 2017.

(W. S. Cheung, Department of Mathematics, The University of

Hong Kong, Pokfulam, Hong Kong)

II Two new open problems (on ζ-functions) by Preda

Mihăilescu, Mathematisches Institut, Göttingen,

Germany

Let K be a number field, let I(K) denote the set of integral ideals of

K, including the trivial ideal 1 = O(K), let P(K) ⊂ I(K) denote the

principal ideals and let C(K) be the ideal class group of K. Denote by

NK = N the absolute norm NK/Q and let d = [K : Q]. The Dedekind

ζ-function of K is

ζK (s) =
∑
a∈I

1

|NKa|s
. (1)

If K = Q then

ζK (s) = ζ(s) =
∑
n≥1

1

ns

is the Riemann ζ-function. More precisely, the Dirichlet series above

define the respective ζ-functions on the half plane H1 = {s ∈ C :

ℜ(s) > 1}, on which the series are absolutely convergent. They have

a pole at s = 1 and it is proved by means of Mellin transforms that

they have an analytic continuation to C, with no other singularity

except for s = 1. The properties of the ζK (s) have been investigated

by a series of classical mathematicians, including Dirichlet, Weier-

straß and Hecke. We refer to Lang’s Algebraic Number Theory [La],
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Chapters V–VIII, for a review of the classical results on ζK (s). Let

K ∈ C(K) be a class.

The counting function J(K, t) for t ∈ R>1 plays an essential role

in this context. It counts the number of ideals a ∈ I(K)∩ K that have

norm less than t. This is done by choosing some fixed ideal b ∈ K−1

and counting the number of ideals (α) ∈ P(K) ∩ b that have norm

bounded by |N(α)| < t|N(b)|. It is an elementary fact (proved in [La])

that these ideals are in one-to-one correspondence to the ideals of K

with norm less than t. Let E = O×(K) be the global units; certainly,

for α ∈ O(K), the principal ideal (α) ∈ P(K) is generated by any

element of the orbit αE of α under the action of the units by multi-

plication. We are thus reduced to the problem of counting orbits of

numbers α ∈ b under the action of the units. Here enters the geom-

etry of numbers. For details of the classical estimates, we refer the

reader to any detailed deduction of the classical results in any book

on algebraic number theory that also treats analytical results – the

account of Lang is a possible example.

Briefly, the numbers of the field K have two representations in

Rr+1, with r = r1 + r2 − 1 the Dirichlet rank of the units. The first

representation is µ : K× → Rr+1 via x �→ (|σi(x)|δi )r+1
i=1 , with (σi)

r1

i=1

an enumeration of the real embeddings of K and (σ j)
r+1
j=r1+1 an enu-

meration of representatives of pairs of complex conjugate embed-

dings; the exponents are δi = 1 for real embeddings and δ j = 2

for complex embeddings. The map µ is continued by an additive one

λ : Rr+1 → Rr+1, defined by λ(µ(x))k = log(|µ(x)k |) for k = 1, 2, . . . , r

and λ(µ(x))r+1 = |N(x)|1/d . The fundamental classical result deduced

by investigating J(K, t) under these maps is

J(K, t) = ρKt + O(t1−1/d). (2)

The constant ρK is completely determined in terms of the data of

the field, which are ∆,R,w – the discriminant, the regulator and the

number of roots of unity of the field respectively. It is independent

of K and its value is, with these notations,

ρK =
2r+1πr2 R

w
√
∆
.

The order of magnitude of the error term is determined by a crude

argument involving the fact that the fundamental domain D(1) ⊂
Rr+1 used for estimating J(K, t) is Lipschitz-parametrisable. One can

rephrase the formula above by stating that there certainly exists some

constant γK(K), depending only on K and possibly also on the class

K, such that

|J(K, t) − ρKt| ≤ γK(K) · t1−1/d, for t > ∆.

It is important to choose a lower bound for t in order to obtain an

accurate order of magnitude but the bound ∆ chosen in our defini-

tion is not stringent. One may expect, for reasons discussed in the

Remarks below, that these constants are quite small. However, the

present methods of estimates, which have only recently been worked

out by van Order and Murty [MO] to the effect of obtaining explicit

bounds on γK(K), yield excessively large values for the bound. We

shall make the definition of our constant uniform to make it indepen-

dent of the class and then state our first problem, which is a conjec-

ture. We define the constant γK by

γK := inf
t>
√
∆,K∈C(K)

�
γ ∈ R>0 : |J(K, t) − ρKt| ≤ γ · t1−1/d

�
. (3)

We define the surface of the units as follows: for a fundamental sys-

tem of units ui ∈ E(K), we let S (�u) be the surface of the fundamental

parallelepiped of the lattice spanned by the vectors wi := λ(µ(ui)).

The surface S (E(K)) = inf�u S (�u), the infimum over all the funda-

mental systems of units of K.

177
*. We keep the notation introduced above, in particular the

notation in (2) and (3).

(i) Prove that γK = c1Ra1∆a2 + c2S (E)b1 · ∆b2 , with constants

c1, c2 > 0 and powers a1, a2, b1, b2 ∈ Q, which do not de-

pend on the extension degree d.

(ii) Prove that there is an additional constant 0 < C < 1 such

that

|J(K, t) − ρKt| > CγKt1−1/d

for all t > ∆.

We continue our investigation of the counting function J for arbi-

trary number fields K with a problem on the geometry of numbers.

For a given class K, one can consider the lattices La spanned by

some ideal a ∈ K as a Z-module in Minkowski space. We are

interested in determining how close such a lattice can come to or-

thonormal lattices, if we allow a to take all the ideals in K as its

value. The following definition will introduce quantitative mea-

sures for the “distance” of a lattice to an orthonormal one. Let

Λ ⊂ Rn be a full lattice, let (vi)
n
i=1 ⊂ Rn be a spanning set of

generators and let Av be the matrix with these vectors as columns.

Let the Euclidean norm of a matrix B = (bi, j)
n
i, j=1 be the norm

||B|| =
��

i, j b2
i, j and let BT denote the transpose. Then we define

the orthonormality defect of this base by

ωv(Λ) = inf
λ∈R+
||A · AT − λI||.

The orthonormality defect of the lattice is defined by ω(Λ) :=

infv ωv(Λ), the infimum being over all bases of Λ.

Now, let a class K ⊂ O(K) be fixed and b ∈ K−1 ∩ I(K) be any in-

tegral ideal. The image of b under the map µ is a lattice Lb ⊂ Rr+1.

Let sb = |N(b)|1/d and normalise the lattice to L′
b
= Lb/sb, a lattice

of volume one. The orthonormality defect of b is naturally given

by ω(b) = ω(L′
b
). For our counting function, the choice of b is

arbitrary. We may multiply b by field elements (not necessarily in-

tegral) and obtain ideals of the same class. This leads to defining

the orthonormality defect of the class K by

ω(K) = inf
b∈K−1∩I(K)

ω(b). (4)

The defect of the class K is thus defined by means of ideals in K−1.

The second problem concerns orthonormality defects of classes.

178
*.

(i) Find an optimal estimate for the orthonormality defect ω(K)

of a class K ∈ C(K).

(ii) Prove or disprove that the radii verify an ultrametric inequal-

ity

ω(K · K′) ≤ max(ω(K), ω(K′)) .

Remarks: The Riemann1 zeta function ζ(z) has a Laurent expan-

sion in a neighbourhood of its simple pole at z = 1:

ζ(z) =
1

z − 1
+

∞�
n=0

(−1)n

n!
γn(z − 1)n, (5)

where γn are the Stieltjes constants

γn = lim
n→∞


m�

k=1

lnn k

k
− lnn+1 m

m + 1

 , n = 0, 1, . . . (6)

Clearly, γ0 is the Euler-Mascheroni constant and note that all

the terms of the sequence (γn)n≥0 are Euler-Mascheroni type con-

stants. Here are the first decimals of γn for n = 0, 1, 2, 3, 4, 5.
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γ0 = 0.5772156649 . . . , γ1 = −0.0728158454 . . . ,

γ2 = 0.0096903631 . . . , γ3 = 0.0020538344 . . . ,

γ4 = 0.0023253700 . . . , γ5 = 0.0007933238 . . . .

An elementary proof of the expansion (1) can be obtained by the

Euler–Maclaurin summation formula. In the paper [AT], formula

(1) and some asymptotic evaluations were obtained by using the

Laplace transform. The behaviour of these constants suggests that

the error term in (2) might be small, despite our present incapacity

of finding appropriate estimates – hence the relevance of these two

research problems.

References

[AT] D. Andrica and L. Tóth, Some remarks on Stieltjes con-

stants of the zeta function, Stud. Cerc. Mat. 43 (1991) 3–9;
MR 93c:11066.

[Br] W. E. Briggs, Some constants associated with the Riemann

zeta-function, Michigan Math. J. 3 (1955–56) 117–121;
MR 17,955c.

[La] S. Lang: Algebraic Number Theory, Spinger GTM 110,
(1986).

[MO] M. Ram Murty and J. Van Order: Counting integral ideals in

a number field.

III Solutions

163. Find all positive integers m and n such that the integer

am,n = 2 . . . 2︸︷︷︸
m time

5 . . . 5︸︷︷︸
n time

is a perfect square.

(Dorin Andrica, Babeş-Bolyai University,

Cluj-Napoca, Romania)

Solution by the proposer. We have a1,1 = 25 = 52 and a2,1 = 225 =

152. In the first step, we will show that if am,n is a perfect square then

n = 1. We can write

am,n = 2(10m+n−1 + · · · + 10n) + 5(10n−1 + · · · + 1)

= 2 · 10n · 10m − 1

9
+ 5 · 10n − 1

9
.

Therefore, the relation am,n = x2 is equivalent to

2 · 10m+n + 3 · 10n − 5 = (3x)2. (7)

If n ≥ 2, it follows that 3x is divisible by 5, hence x = 5x1 for some

positive integer x1. Replacing in equation (7), we get the equation

2 · 2m+n · 5m+n−1 + 3 · 2n · 5n−1 − 1 = 5(3x1)2,

which is not possible.

Now, we will prove that for m ≥ 3 the integer am,1 = 2 . . . 2︸︷︷︸
m time

5 is

not a perfect square. For n = 1, equation (7) is equivalent to

2 · 10m+1 + 25 = (3x)2,

that is,

2 · 10m+1 = (3x − 5)(3x + 5).

It follows that 3x − 5 = 2a · 5b and 3x + 5 = 2m+2−a · 5m+1−b, where a

and b are non-negative integers, hence

2m+2−a · 5m+1−b − 2a · 5b = 10, (8)

that is,

2m+1−a · 5m−b − 2a−1 · 5b−1 = 1. (9)

We consider the following cases for equation (9).

Case 1: a = 1. We obtain 2m · 5m+1−b − 5b−1 = 1. If b = 1 then it

follows that 5m = 2, which is not possible for m ≥ 1.

If b = m, we obtain 2m−5m−1 = 1, which is not possible because

5m−1 > 2m for m ≥ 1.

Case 2: a = m+1. It follows that 5m−b−2m ·5b−1 = 1. If b = 1, we get

5m−1 − 2m = 1, which is not possible because 5m−1 > 2m+1 > 2m + 1

when m ≥ 1.

If b = m, we obtain 2m+2 · 5m = 0, which is not possible.

In conclusion, the only solutions are m = 1, n = 1 and m =

2, n = 1. �

Also solved by Panagiotis T. Krasopoulos (Athens, Greece), Hans

J. Munkholm, Ellen S. Munkholm (University of Southern Denmark,

Odense, Denmark), F. Plastria (BUTO-Vrije Universiteit Brussel),

José Hernández Santiago (Morelia, Michoacan, Mexico)

164. Prove that every power of 2015 can be written in the form
x2+y2

x−y
, with x and y positive integers.

(Dorin Andrica, Babeş-Bolyai University,

Cluj-Napoca, Romania)

Solution by the proposer. We have 2015 = 5 · 13 · 31. Because 31

is congruent to 3 modulo 4, it follows that 31 divides both x and y,

etc. We get x = 31n x1, y = 31ny1 and replace in the equation to ob-

tain x2
1 + y2

1 = 5n · 13n(x1 − y1). But 5 · 13 = 65 = 82 + 12, hence

5n · 13n = (82 + 12)n = a2 + b2, where we can assume that a > b .

The equation is equivalent to (x1 + y1)2 + (x1 − y1)2 − 2 · 5n · 13n(x1 −
y1) + (5n · 13n)2 = (5n · 13n)2, that is,

(x1 + y1)2 + (5n · 13n − x1 + y1)2 = (5n · 13n)2.

The last equation is Pythagorean and we select solutions as

5n · 13n = a2 + b2, x1 + y1 = a2 − b2, 5n · 13n − x1 + y1 = 2ab ,

where a and b are positive integers such that

5n · 13n = (82 + 12)n = a2 + b2 and a > b .

It follows that

x1 = a2 − ab = a(a − b), y1 = ab − b2 = b(a − b) .

Finally, it follows that the equation is solvable and has solution

(x, y) = (31na(a − b), 31nb(a − b)) .

For example, for n = 1, we have a = 8, b = 1, hence we get the

solution to the reduced equation modulo 31, (x1, y1) = (8(8 − 1),

1(8 − 1)) = (56, 7). Finally, it follows that the equation is solvable

and has solution

(x, y) = (31 · 56, 31 · 7) = (1736, 217) .

�

Also solved by Mihály Bencze (Brasov, Romania), Panagiotis T. Kra-

sopoulos (Athens, Greece), Hans J. Munkholm, Ellen S. Munkholm

(University of Southern Denmark, Odense, Denmark), F. Plastria

(BUTO-Vrije Universiteit Brussel)
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165. Find the smallest positive integer k such that, for any n ≥ k,

every degree n polynomial f (x) over Z with leading coefficient 1

must be irreducible over Z if | f (x)| = 1 has not less than
[ n

2

]
+ 1

distinct integral roots.

(Wing-Sum Cheung, The University of Hong Kong,

Pokfulam, Hong Kong)

Solution by the proposer. Suppose f (x) is a degree n polynomial with

leading coefficient 1 such that | f (x)| = 1 has at least
[ n

2

]
+ 1 distinct

integral roots. Assume that f (x) is reducible, say, f (x) = g(x)h(x),

with deg g ≤ deg h. Clearly we have deg g ≤ [ n
2

]
.

Suppose | f (xi)| = 1 for i = 1, . . . ,m with m ≥ [ n

2

]
+ 1, where xi ∈ Z

are distinct. We have g(xi) = ±1 for all i = 1, . . . ,m. Without loss

of generality, assume that g(xi) = 1 for 1 ≤ i ≤ ℓ, g(xj) = −1 for

ℓ + 1 ≤ j ≤ m, and ℓ ≥ m

2
.

Then,

g(x) − 1 = (x − x1)(x − x2) · · · (x − xℓ)P(x)

for some polynomial P(x). Observe that

ℓ ≤ deg g ≤
[
n

2

]
<
[
n

2

]
+ 1 ≤ m .

Since

g(xj) = −1 ∀ ℓ + 1 ≤ j ≤ m ,

we have

(xj − x1)(xj − x2) · · · (xj − xℓ)P(xj) = −2 ∀ ℓ + 1 ≤ j ≤ m ,

and so

(xj − x1)(xj − x2) · · · (xj − xℓ)|2 ∀ ℓ + 1 ≤ j ≤ m . (∗)

If ℓ ≥ 4, (xj − x1)(xj − x2) · · · (xj − xℓ) is a product of 4 or more

distinct non-zero integers and so its absolute value is ≥ 4 and cannot

divide 2. Hence ℓ ≤ 3.

If ℓ = 3, (*) reduces to

(xj − x1)(xj − x2)(xj − x3)|2 .

Observe that there can be at most one a ∈ Z satisfying

(a − x1)(a − x2)(a − x3)|2 .

Thus, we must have m = 3 or 4.

If ℓ ≤ 2, since ℓ ≥ m

2
, we also have m ≤ 4.

Since m ≥ [ n

2

]
+ 1, we have n ≤ 7.

This shows that, for any n > 7, if | f (x)| = 1 has not less than[ n
2

]
+ 1 distinct integral roots then f (x) is irreducible.

Finally, observe that k = 7. In fact, for n = 7, the function f (x)

defined by

h(x) = 1 + x(x − 3)(x − 2)(x − 1)

g(x) = 1 + x(x − 3)(x − 1)

f (x) = g(x)h(x)

is reducible, whereas | f (x)| = 1 when x = 0, 1, 2, 3. So k cannot be

made smaller. �

Also solved by Mihály Bencze (Brasov, Romania), F. Plastria

(BUTO-Vrije Universiteit Brussel)

166. Let f : R → R be monotonically increasing ( f not neces-

sarily continuous). If f (0) > 0 and f (100) < 100, show that there

exists x ∈ R such that f (x) = x.

(Wing-Sum Cheung, The University of Hong Kong,

Pokfulam, Hong Kong)

Solution by the proposer. Define A := {x ∈ [0, 100] : f (x) ≥ x}.
Since 0 ∈ A, A � φ, let a := sup A. Clearly, a < 100. For any ε > 0,

there exists x ∈ A such that a − ε < x ≤ a. Hence,

a − f (a) ≤ a − f (x) < x + ε − f (x) < ε .

As ε > 0 is arbitrary, we have a ≤ f (a).

Suppose f (a)− a = δ > 0. Then, for any x ∈ (a, a+ δ)∩ [0, 100],

x does not belong to A and, by the monotonicity of f , we have

f (x) ≥ f (a) = a + δ > f (a + δ) ≥ f (x) ,

which is absurd. Thus f (a) = a. �

Also solved by A. M. Encinas (Universitat Politècnica de Catalunya,

Spain), Laurent Moret-Bailly (IRMAR, Université de Rennes 1,

France), F. Plastria (BUTO-Vrije Universiteit Brussel, Belgium).

167. Show that, for any a, b > 0, we have

1

2

(
1 − min {a, b}

max {a, b}

)2
≤ b − a

a
− ln b + ln a ≤ 1

2

(
max {a, b}
min {a, b} − 1

)2
.

(10)

(Silvestru Sever Dragomir, Victoria University,

Melbourne City, Australia)

Solution by the proposer. Integrating by parts, we have

∫ b

a

b − t

t2
dt =

b − a

a
− ln b + ln a (11)

for any a, b > 0.

If b > a then

1

2

(b − a)2

a2
≥
∫ b

a

b − t

t2
dt ≥ 1

2

(b − a)2

b2
. (12)

If a > b then

∫ b

a

b − t

t2
dt = −

∫ a

b

b − t

t2
dt =

∫ a

b

t − b

t2
dt

and
1

2

(b − a)2

b2
≥
∫ a

b

t − b

t2
dt ≥ 1

2

(b − a)2

a2
. (13)

Therefore, by (12) and (13), we have for any a, b > 0 that

∫ b

a

b − t

t2
dt ≥ 1

2

(b − a)2

max2 {a, b} =
1

2

(
min {a, b}
max {a, b} − 1

)2

and

∫ b

a

b − t

t2
dt ≤ 1

2

(b − a)2

min2 {a, b}
=

1

2

(
max {a, b}
min {a, b} − 1

)2
.

By the representation (11), we then get the desired result (10). �

Also solved by Panagiotis T. Krasopoulos (Athens, Greece), John

N. Lillington (Wareham, UK), F. Plastria (BUTO-Vrije Universiteit

Brussel)
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168. Let f : I → C be an n-time differentiable function on the

interior I̊ of the interval I, and f (n), with n ≥ 1, be locally abso-

lutely continuous on I̊. Show that, for each distinct x, a, b ∈ I̊ and

for any λ ∈ R\ {0, 1}, we have the representation

f (x) = (1 − λ) f (a) + λ f (b)

+

n∑
k=1

1

k!

[
(1 − λ) f (k) (a) (x − a)k + (−1)k λ f (k) (b) (b − x)k

]

+ S n,λ (x, a, b) , (14)

where the remainder S n,λ (x, a, b) is given by

S n,λ (x, a, b)

:=
1

n!

[
(1 − λ)(x − a)n+1

∫ 1

0

f (n+1)((1 − s)a + sx
)

(1 − s)n ds

+ (−1)n+1 λ (b − x)n+1

∫ 1

0

f (n+1)((1 − s)x + sb
)
snds

]
. (15)

(Silvestru Sever Dragomir, Victoria University,

Melbourne City, Australia)

Solution by the proposer. Using Taylor’s representation with the in-

tegral remainder, we can write the following two identities:

f (x) =

n∑
k=0

1

k!
f (k) (a) (x − a)k

+
1

n!

∫ x

a

f (n+1) (t) (x − t)n dt (16)

and

f (x) =

n∑
k=0

(−1)k

k!
f (k) (b) (b − x)k

+
(−1)n+1

n!

∫ b

x

f (n+1) (t) (t − x)n dt

(17)

for any x, a, b ∈ I̊.

For any integrable function h on an interval and any distinct

numbers c, d in that interval, we have, by the change of variable

t = (1 − s) c + sd, s ∈ [0, 1] , that

∫ d

c

h (t) dt = (d − c)

∫ 1

0

h ((1 − s) c + sd) ds.

Therefore,
∫ x

a

f (n+1) (t) (x − t)n dt

= (x − a)

∫ 1

0

f (n+1) ((1 − s) a + sx) (x − (1 − s) a − sx)n ds

= (x − a)n+1

∫ 1

0

f (n+1) ((1 − s) a + sx) (1 − s)n ds

and

∫ b

x

f (n+1) (t) (t − x)n dt

= (b − x)

∫ 1

0

f (n+1) ((1 − s) x + sb) ((1 − s) x + sb − x)n ds

= (b − x)n+1

∫ 1

0

f (n+1) ((1 − s) x + sb) snds.

The identities (16) and (17) can then be written as

f (x) =

n∑
k=0

1

k!
f (k) (a) (x − a)k

+
1

n!
(x − a)n+1

∫ 1

0

f (n+1) ((1 − s) a + sx) (1 − s)n ds (18)

and

f (x) =

n∑
k=0

(−1)k

k!
f (k) (b) (b − x)k

+ (−1)n+1 (b − x)n+1

n!

∫ 1

0

f (n+1) ((1 − s) x + sb) snds. (19)

Now, if we multiply (18) by (1− λ) and (19) by λ and add the result-

ing equalities, a simple calculation yields the desired identity (14)

with the reminder from (15). �

Also solved by Mihály Bencze (Brasov, Romania), Panagiotis T. Kra-

sopoulos (Athens, Greece), John N. Lillington (Wareham, UK)

Remark 1. Note that Problems 155 and 159 were also solved by John

N. Lillington (Poundbury, Dorchester, UK)

Remark 2. K. P. Hart noted that the answer to problem 157 can

be found in the article by Freudenthal and Hurewicz from 1936,

https://eudml.org/doc/212824.

We wait to receive your solutions to the proposed problems and

ideas on the open problems. Send your solutions both by ordinary

mail to Michael Th. Rassias, Institute of Mathematics, University of

Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, and

by email to michail.rassias@math.uzh.ch.

We also solicit your new problems with their solutions for the next

“Solved and Unsolved Problems” column, which will be devoted to

Discrete Mathematics.


