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Andrew Wiles’ Marvellous Proof”

Henri Darmon (McGill University, Montreal, Canada)

Fermat famously claimed to have discovered “a truly marvel-
lous proof™ of his Last Theorem, which the margin of his copy
of Diophantus’ Arithmetica was too narrow to contain. While
this proof (if it ever existed) is lost to posterity, Andrew Wiles’
marvellous proof has been public for over two decades and
has now earned him the Abel prize. According to the prize ci-
tation, Wiles merits this recognition “for his stunning proof of
Fermat’s Last Theorem by way of the modularity conjecture
for semistable elliptic curves, opening a new era in number
theory”.

Few can remain insensitive to the allure of Fermat’s Last
Theorem, a riddle with roots in the mathematics of ancient
Greece, simple enough to be understood and appreciated by
a novice (like the 10-year-old Andrew Wiles browsing the
shelves of his local public library), yet eluding the concerted
efforts of the most brilliant minds for well over three cen-
turies. It became, over its long history, the object of lu-
crative awards like the Wolfskehl prize and, more impor-
tantly, it motivated a cascade of fundamental discoveries: Fer-
mat’s method of infinite descent, Kummer’s theory of ideals,
the ABC conjecture, Frey’s approach to ternary diophantine
equations, Serre’s conjecture on mod p Galois representa-
tions, ...

Even without its seemingly serendipitous connection to
Fermat’s Last Theorem, Wiles’ modularity theorem is a fun-
damental statement about elliptic curves (as evidenced, for
instance, by the key role it plays in the proof of Theorem 2
of Karl Rubin’s contribution to the issue of the Notices of
the AMS mentioned above). It is also a centrepiece of the
“Langlands programme”, the imposing, ambitious edifice of
results and conjectures that has come to dominate the number
theorist’s view of the world. This programme has been de-
scribed as a “grand unified theory” of mathematics. Taking a
Norwegian perspective, it connects the objects that occur in
the works of Niels Hendrik Abel, such as elliptic curves and
their associated abelian integrals and Galois representations,
with (frequently infinite-dimensional) linear representations
of the continuous transformation groups, the study of which
was pioneered by Sophus Lie. This report focuses on the role
of Wiles’ Theorem and its “marvellous proof” in the Lang-
lands programme, in order to justify the closing phrase in the
prize citation: how Wiles’ proof has opened “a new era in
number theory” and continues to have a profound and lasting
impact on mathematics.

Our “beginner’s tour” of the Langlands programme will
only give a partial and undoubtedly biased glimpse of the full
panorama, reflecting the author’s shortcomings as well as the
inherent limitations of a treatment aimed at a general reader-

*  This report is a very slightly expanded transcript of the Abel prize lecture
delivered by the author on 25 May 2016 at the University of Oslo. It is
published with the permission of the Notices of the AMS: reprinted from
Volume 64, Issue 3, March 2017.
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ship. We will motivate the Langlands programme by starting
with a discussion of diophantine equations: for the purposes
of this exposition, they are equations of the form

Xt P(xi,...,xn41) =0, ey

where P is a polynomial in the variables xi, ..., x,+; with in-
teger (or sometimes rational) coefficients. One can examine
the set, denoted X(F), of solutions of (1) with coordinates
in any ring F. As we shall see, the subject draws much of
its fascination from the deep and subtle ways in which the
behaviours of different solution sets can resonate with each
other, even if the sets X(Z) or X(Q) of integer and rational
solutions are foremost in our minds. Examples of diophan-
tine equations include Fermat’s equation x¢ + y? = z? and
the Brahmagupta-Pell equation x> — Dy? = 1 with D > 0, as
well as elliptic curve equations of the form y* = x> + ax + b,
in which a and b are rational parameters, the solutions (x, y)
with rational coordinates being the object of interest in the
latter case.

It can be instructive to approach a diophantine equation
by first studying its solutions over simpler rings, such as the
complete fields of real or complex numbers. The set

Z/nZ = 1{0,1,...,n—1} 2)

of remainders after division by an integer n > 2, equipped
with its natural laws of addition, subtraction and multiplica-
tion, is another particularly simple collection of numbers, of
finite cardinality. If n = p is prime, this ring is even a field: it
comes equipped with an operation of division by non-zero el-
ements, just like the more familiar collections of rational, real
and complex numbers. The fact that F, := Z/pZ is a field is
an algebraic characterisation of the primes that forms the ba-
sis for most known efficient primality tests and factorisation
algorithms. One of the great contributions of Evariste Galois,
in addition to the eponymous theory that plays such a crucial
role in Wiles® work, is his discovery of a field of cardinality
p" for any prime power p”. This field, denoted F,- and some-
times referred to as the Galois field with p” elements, is even
unique up to isomorphism.

For a diophantine equation X as in (1), the most basic
invariant of the set

X(Ep) = {(x1, ..., 1) € T

such that  P(xy,...,x,+1) =0} (3)

of solutions over - is of course its cardinality
Ny = #X(F,r). 4)
What patterns (if any) are satisfied by the sequence

Nps Ny Ny oo Nypy o2 (5)
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This sequence can be packaged into a generating series like

i N,T" or i &T". (6)
=1

-
For technical reasons, it is best to consider the exponential of
the latter:

r=1

o Npr

£p(X;T) = exp (Z e ] (7)
r=1

This power series in T is known as the zeta function of X

over F,. It has integer coeflicients and enjoys the following

remarkable properties:

1. Itis a rational function in T:

o)

&H(XT) = RTY 3)
where Q(T) and R(T') are polynomials in 7 whose degrees
(for all but finitely many p) are independent of p and de-
termined by the shape — the complex topology — of the set
X(C) of complex solutions.

2. The reciprocal roots of Q(T") and R(T") are complex num-
bers of absolute value p'/? with i an integer in the interval
0<i<2n.

The first statement — the rationality of the zeta function, which
was proven by Bernard Dwork in the early 1960s — is a key
part of the Weil conjectures, whose formulation in the 1940s
unleashed a revolution in arithmetic geometry, driving the
development of étale cohomology by Grothendieck and his
school. The second statement, which asserts that the complex
function ¢,(X; p~*) has its roots on the real lines R(s) = i/2
with i as above, is known as the Riemann hypothesis for the
zeta functions of diophantine equations over finite fields. It
was proven by Pierre Deligne in 1974 and is one of the ma-
jor achievements for which he was awarded the Abel prize
in 2013.

That the asymptotic behaviour of N, can lead to deep in-
sights into the behaviour of the associated diophantine equa-
tions is one of the key ideas behind the Birch and Swinnerton-
Dyer conjecture. Understanding the patterns satisfied by the
functions

p— N, and p = (X T) )

as the prime p varies will also serve as our motivating ques-
tion for the Langlands programme.

It turns out to be fruitful to package the zeta functions over
all the finite fields into a single function of a complex variable
s, by taking the infinite product

(X;) = [&o(X;p™ (10)
p

as p ranges over all the prime numbers. In the case of the sim-
plest non-trivial diophantine equation x = 0, whose solution
set over [F,- consists of a single point, one has N, = 1 for all
p and therefore

r

T
L(x=0;T) =exp(z 7] =(1-T)". (11)

r>1

It follows that

-1

§(x=0;s)=]—[(1—l%) (12)

=ﬂ(1+%+%+%+m) (13)
PP p

£(s). (14)

1l
M
|-
Il

The zeta function of even the humblest diophantine equa-
tion is thus a central object of mathematics: the celebrated
Riemann zeta function, which is tied to some of the deepest
questions concerning the distribution of prime numbers. In
his great memoir of 1860, Riemann proved that, even though
(13) and (14) only converge absolutely on the right half-plane
R(s) > 1, the function /(s) extends to a meromorphic func-
tion of s € C (with a single pole at s = 1) and possesses an
elegant functional equation relating its values at s and 1 — s.
The zeta functions of linear equations X in n + 1 variables are
just shifts of the Riemann zeta function, since N, is equal to
P, and therefore J(X; s) = {(s — n).
Moving on to equations of degree two, the general quadratic

equation in one variable is of the form ax?> + bx + ¢ = 0 and
its behaviour is governed by its discriminant

A = b* - 4ac. (15)

This purely algebraic fact remains true over the finite fields
and, for primes p 1 2aA, one has

0
.y

A priori, the criterion for whether N, = 2 or 0 — whether the
integer A is or is not a quadratic residue modulo p — seems
like a subtle condition on the prime p. To get a better feeling
for this condition, consider the example of the equation x> —
x — 1, for which A = 5. Calculating whether 5 is a square or
not modulo p for the first few primes p < 101 leads to the
following list

if A is a non-square modulo p,

if A is a square modulo p. (16)

2 forp=11,19,29,31,41,59,61,71,79,
89,101, ...

N, = (17)
0 forp=2,3,7,13,17,23,37,43,47,53,

67,73,83, ...

A clear pattern emerges from this experiment: whether N, =
0 or 2 seems to depend only on the rightmost digit of p, i.e. on
what the remainder of p is modulo 10. One is led to surmise

that
2
N, = { 0

a formula that represents a dramatic improvement over (16),
allowing a much more efficient calculation of N, for exam-
ple. The guess in (18) is in fact a consequence of Gauss’ cel-
ebrated law of quadratic reciprocity:

if p=1,4 (mod5),

if p=2,3 (mod 5), (18)

Theorem (Quadratic reciprocity) For any equation ax’> +
bx + ¢, with A := b* — 4ac, the value of the function p — N,
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(for p t aA) depends only on the residue class of p modulo
4A, and hence is periodic with period length dividing 4|A|.

The repeating pattern satisfied by the N,’s as p varies
greatly facilitates the manipulation of the zeta functions of
quadratic equations. For example, the zeta function of X

x? —x—1=0is equal to

{(X;s)=§(s)x{(1—%—%+%)+(%—%—%+%)

1 1 1 1
+(E‘E‘Tgx+m)+"-}~ (19)

The series that occurs on the right side is a prototypical ex-
ample of a Dirichlet L-series. These L-series, which are the
key actors in the proof of Dirichlet’s theorem on the infini-
tude of primes in arithmetic progressions, enjoy many of the
same analytic properties as the Riemann zeta function: an an-
alytic continuation to the entire complex plane and a func-
tional equation relating their values at s and 1 — s. They are
also expected to satisfy a Riemann hypothesis that generalises
Riemann’s original statement and is just as deep and elusive.

It is a (not completely trivial) fact that the zeta function of
the general quadratic equation in n variables

Z ajjXiX; +

ij=1 i

n n
bixi+c=0 (20)
=1
involves the same basic constituents — Dirichlet series — as in
the one variable case. This means that quadratic diophantine
equations in any number of variables are well understood, at
least as far as their zeta functions are concerned.

The plot thickens when equations of higher degree are
considered. Consider, for instance, the cubic equation X=x-1
of discriminant A = —23. For all p # 23, this cubic equation
has no multiple roots over F,- and therefore N, = 0, 1 or 3. A
simple expression for N, in this case is given by the following
theorem of Hecke:

Theorem (Hecke). The following holds for all primes p # 23:
1. If p is not a square modulo 23 then N, = 1.
2. If p is a square modulo 23 then

0
w={ 3

for some a,b € Z.

if p =2a> + ab + 3b,

if p=d®+ab+ 612, @D

Hecke’s theorem implies that

(P =x=1;8) = {s)% Z ann””, (22)
n=1

where the generating series

F(q) :=Zanq"=q—qz—qS+q6+q8—q13—q16+q23+~--

n=1
(23)
is given by the explicit formula

1
F(g) = - Z qa2+ab+6b2 _ q2a2+ub+3b2 ] 24)
2 a,beZ
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The function f(z) = F(e*™) that arises by setting ¢ = ¢*™ in
(24) is a prototypical example of a modular form: namely, it
satisfies the transformation rule

sbs 3d Zs d_b :1,
f(az+b)=(CZ+d)f(Z)» { o2 e(i)_al ‘
23) 7

cz+d 23|c,
(25)
under so-called modular substitutions of the form z +— Ziz

This property follows from the Poisson summation formula
applied to the expression in (24). Thanks to (25), the zeta
function of X can be manipulated with the same ease as
the zeta functions of Riemann and Dirichlet. Indeed, Hecke
showed that the L-series ), a,n* attached to a modular
form Y, a,e*™™" possess very similar analytic properties,
notably an analytic continuation and a Riemann-style func-
tional equation.

The generating series F(g) can also be expressed as an
infinite product:

%{Z qa2+ah+6h2 _ ‘12a2-¢—t/1h+3b2 — f]ﬁ(l _ qn)(l _ q23n)'
a,beZ n=1

(26)
The first few terms of this power series identity can readily be
verified numerically but its proof is highly non-obvious and
indirect. It exploits the circumstance that the space of holo-
morphic functions of z satisfying the transformation rule (25)
together with suitable growth properties is a one-dimensional
complex vector space that also contains the infinite product

above. Indeed, the latter is equal to 77(¢)(¢>*), where

n(g)=q"* [ J(1-g" @7

n=1

is the Dedekind eta function whose logarithmic derivative (af-
ter viewing 7 as a function of z through the change of variables
g = €”™7) is given by

% = —m'(I—; 2> (D] d)e2”f"1) (28)

n=1 dn

i 1
T i Z Z (mz + n)?’ 29

m=—00 n=—00

where the term attached to (m,n) = (0,0) is excluded from
the last sum. The Dedekind n-function is also connected to
the generating series for the partition function p(n) describing
the number of ways in which n can be expressed as a sum of
positive integers via the identity

@) =q ) ping, (30)
n=0

which plays a starring role alongside Jeremy Irons and Dev
Patel in a recent film about the life of Srinivasa Ramanujan.
Commenting on the “unreasonable effectiveness and ubiq-
uity of modular forms”, Martin Eichler once wrote: “There
are five elementary arithmetical operations: addition, subtrac-
tion, multiplication, division, ... and modular forms.” Equa-
tions (26), (29) and (30) are just a few of the many wondrous
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identities that abound, like exotic strains of fragrant wild or-
chids, in what Roger Godement has called the “garden of
modular delights”.

The example above, and many others of a similar type,
are described in Jean-Pierre Serre’s delightful monograph [2],
touching on themes that were also covered in Serre’s lecture
at the inaugural Abel Prize ceremony in 2003.

Hecke was able to establish that all cubic polynomials in
one variable are modular, i.e., the coeflicients of their zeta
functions obey patterns just like those of (24) and (25). Wiles’
achievement was to extend this result to a large class of cubic
diophantine equations in two variables over the rational num-
bers: the elliptic curve equations, which can be brought into
the form

V=xX+ax+b 31

after a suitable change of variables and which are non-
singular, a condition equivalent to the assertion that the dis-
criminant A := —16(4a> + 27b?) is non-zero.

To illustrate Wiles’ theorem with a concrete example, con-
sider the equation

E:y'=x—u, (32)

of discriminant A = 64. After setting
UE; ) =ls—1)x (a1 + a2 +a3 +agd ™ +--)",
(33)
the associated generating series satisfies the following identi-
ties reminiscent of (24) and (26),

Fg) =) ax"

=qg-2¢ -3¢ +6¢° +2¢"" - ¢¥ +--- (34

= Dard (39)
a,b

=q[ Ja-g"ra-g"y, (36)

n=1

where the sum in (35) runs over the (a,b) € Z? for which
the Gaussian integer a + bi is congruent to 1 modulo (1 + i)>.
(This identity follows from Deuring’s study of zeta functions
of elliptic curves with complex multiplication, and may even
have been known earlier.) Once again, the holomorphic func-
tion f(z) := F(e*™?) is a modular form, satisfying the slightly
different transformation rule

az+b 5 a,b,c,de€Z,
= (cz+d ,
f(cz+d) (cz+d)" f(2) { 3.

ad —bc =1,

(37)
Note the exponent 2 that appears in this formula. Because of
it, the function f(z) is said to be a modular form of weight
2 and level 32. The modular forms of (25) attached to cubic
equations in one variable are of weight 1 but otherwise the
parallel of (35) and (36) with (24) and (26) is striking. The
original conjecture of Shimura-Taniyama and Weil asserts the
same pattern for all elliptic curves:

10

Conjecture (Shimura, Taniyama, Weil). Let E be any ellip-
tic curve. Then,

o0 -1
{E; )= {(s— 1) X (Z a,,n-f] : (38)

n=1

where fz(z) := Y a,e*™ is a modular form of weight 2.

The conjecture was actually more precise and predicted
that the level of fr —i.e., the integer that appears in the trans-
formation property for fg, as the integers 23 and 32 do in (25)
and (37) respectively — is equal to the arithmetic conductor
of E. This conductor, which is divisible only by primes for
which the equation defining £ becomes singular modulo p, is
a measure of the arithmetic complexity of E and can be cal-
culated explicitly from an equation for E by an algorithm of
Tate. An elliptic curve is said to be semistable if its arithmetic
conductor is squarefree. This class of elliptic curves includes
those of the form

y* = x(x — a)(x - b), (39)

with ged(a, b) = 1 and 16]b. The most famous elliptic curves
in this class are those that ultimately do not exist: the “Frey
curves” y? = x(x — aP)(x + bP) arising from putative solutions
to Fermat’s equation a” + b” = ¢P, whose non-existence had
previously been established in a landmark article of Kenneth
Ribet, under the assumption of their modularity. It is the proof
of the Shimura-Taniyama-Weil conjecture for semistable el-

liptic curves that earned Andrew Wiles the Abel prize:

Theorem (Wiles). Let E be a semistable elliptic curve. Then
E satisfies the Shimura-Taniyama-Weil conjecture.

The semistability assumption in Wiles’ theorem was later
removed by Christophe Breuil, Brian Conrad, Fred Diamond
and Richard Taylor around 1999. (See, for instance, the ac-
count that appeared in the Notices at the time [1].)

As a prelude to describing some of the important ideas in
its proof, one must first try to explain why Wiles’ theorem oc-
cupies such a central position in mathematics. The Langlands
programme places it in a larger context by offering a vast gen-
eralisation of what it means for a diophantine equation to be
“associated to a modular form”. The key is to view modu-
lar forms attached to cubic equations or to elliptic curves,
as in (24) or (34), as vectors in certain irreducible infinite-
dimensional representations of the locally compact topologi-
cal group

GLa(hg) = [ | 6La(@,) x GLy®),  (40)

P

where []), denotes a restricted direct product over all the
prime numbers, consisting of elements (y,), for which the p-
th component y,, belongs to the maximal compact subgroup
GL(Z) for all but finitely many p. The shift in emphasis
from modular forms to the so-called automorphic represen-
tations that they span is decisive. Langlands showed how to
attach an L-function to any irreducible automorphic represen-
tation of G(Ag) for an arbitrary reductive algebraic group G,
of which the matrix groups GL, and more general algebraic
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groups of Lie type are prototypical examples. This greatly en-
larges the notion of what it means to be “modular”: a diophan-
tine equation is now said to have this property if its zeta func-
tion can be expressed in terms of the Langlands L-functions
attached to automorphic representations. One of the funda-
mental goals in the Langlands programme is to establish fur-
ther cases of the following conjecture:

Conjecture. All diophantine equations are modular in the
above sense.

This conjecture can be viewed as a far-reaching gen-
eralisation of quadratic reciprocity and underlies the non-
abelian reciprocity laws that are at the heart of Andrew Wiles’
achievement.

Before Wiles’ proof, the following general classes of dio-
phantine equations were known to be modular:

e Quadratic equations, by Gauss’ law of quadratic reci-
procity.

e Cubic equations in one variable, by the work of Hecke and
Maass.

e Quartic equations in one variable.

This last case deserves further comment, since it has not
been discussed previously and plays a primordial role in
Wiles’ proof. The modularity of quartic equations follows
from the seminal work of Langlands and Tunnell. While it
is beyond the scope of this survey to describe their methods,
it must be emphasised that Langlands and Tunnell make es-
sential use of the solvability by radicals of the general quartic
equation, whose underlying symmetry group is contained in
the permutation group S4 on 4 letters. Solvable extensions
are obtained from a succession of abelian extensions, which
fall within the purview of class field theory developed in the
19th and first half of the 20th centuries. On the other hand,
the modularity of the general equation of degree > 4 in one
variable, which cannot be solved by radicals, seemed to lie
well beyond the scope of the techniques that were available in
the “pre-Wiles era”. The reader who perseveres to the end of
this essay will be given a glimpse of how our knowledge of
the modularity of the general quintic equation has progressed
dramatically in the wake of Wiles’ breakthrough.

Prior to Wiles’ proof, modularity was also not known for
any interesting general class of equations (of degree > 2, say)
in more than one variable; in particular, it had only been veri-
fied for finitely many elliptic curves over Q up to isomorphism
over Q (including the elliptic curves over Q with complex
multiplication, of which the elliptic curve of (31) is an ex-
ample). Wiles’ modularity theorem confirmed the Langlands
conjectures in the important test case of elliptic curves, which
may seem to be (and, in fact, are) very special diophantine
equations but which have provided a fertile terrain for arith-
metic investigations, both in theory and in applications (e.g.,
cryptography and coding theory).

Returning to the main theme of this report, Wiles’ proof
is also important for having introduced a revolutionary new
approach, which has opened the floodgates for many further
breakthroughs in the Langlands programme.

To expand on this point, we need to present another of
the dramatis personae in Wiles’ proof: Galois representa-
tions. Let Gg = Gal(Q/Q) be the absolute Galois group of
Q, namely, the automorphism group of the field of all alge-
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braic numbers. It is a profinite group, endowed with a natural
topology for which the subgroups Gal(Q/L) with L ranging
over the finite extensions of Q form a basis of open subgroups.
Following the original point of view taken by Galois himself,
the group Gg acts naturally as permutations on the roots of
polynomials with rational coefficients. Given a finite set S of
primes, one may consider only the monic polynomials with
integer coeflicients whose discriminant is divisible only by
primes £ € S (eventually after a change of variables). The
topological group Gq operates on the roots of such polynomi-
als through a quotient, denoted Gg s : the automorphism group
of the maximal algebraic extension unramified outside of S,
which can be regarded as the symmetry group of all the zero-
dimensional varieties over Q having “non-singular reduction
outside of S”.

In addition to the permutation representations of Gq that
were so essential in Galois’ original formulation of his the-
ory, it has become important to study the (continuous) linear
representations

o0:Gos — GL,(L) 41

of this Galois group, where L is a complete field, such as the
fields R or C of real or complex numbers, the finite field F
equipped with the discrete topology, or a finite extension L C
Qy of the field Q; of f-adic numbers.

Galois representations were an important theme in the
work of Abel and remain central in modern times. Many illus-
trious mathematicians in the 20th century have contributed to
their study, including three former Abel prize winners: Jean-
Pierre Serre, John Tate and Pierre Deligne. Working on Galois
representations might seem to be a prerequisite for an alge-
braic number theorist to receive the Abel prize!

Like diophantine equations, Galois representations also
give rise to analogous zeta functions. More precisely, the
group Go,s contains, for each prime p ¢ S, a distinguished el-
ement called the Frobenius element at p, denoted o . Strictly
speaking, this element is only well defined up to conjugacy in
Gq,s but this is enough to make the arithmetic sequence

N,y (0) := Trace(g(o-?,)) (42)

well defined. The zeta function {(o; s) packages the informa-
tion from this sequence in exactly the same way as in the def-
inition of (X s).

For example, if X is attached to a polynomial P of degree
d in one variable, the action of Ggs on the roots of P gives
rise to a d-dimensional permutation representation

ox : Gos — GL4(Q) (43)

and £(X, s) = {(ox, s). This connection goes far deeper, ex-
tending to diophantine equations in n + 1 variables for general
n > 0. The glorious insight at the origin of the Weil con-
jectures is that {(X; s) can be expressed in terms of the zeta
functions of Galois representations arising in the étale coho-
mology of X, a cohomology theory with ¢-adic coefficients
that associates to X a collection

{H(X,5.Q0)

0<i<2n

1
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of finite-dimensional Q,-vector spaces endowed with a con-
tinuous linear action of Gg 5. (Here, S is the set of primes ¢
consisting of ¢ and the primes for which the equation of X
becomes singular after being reduced modulo ¢.) These rep-
resentations generalise the representation pox of (43), insofar
as the latter is realised by the action of Ggs on H3(X5, Q)
after extending the coefficients from Q to Q.

Theorem (Weil, Grothendieck, ...). If X is a diophantine
equation having good reduction outside of S, there exist Ga-
lois representations 01 and 0, of Gq,s for which

(X5 8) = (013 5)/L(025 9). (44)

The representations o; and o, occur in GBHé[(X 15> Qo)
where the direct sum ranges over the odd and even values of
0 < i < 2nfor p; and o, respectively. More canonically, there
are always irreducible representations gj,...,0; of Gg, and
integers d,, . . . d, such that

(X;s) = [ [ ¢tis 9", (45)
i=1

arising from the decompositions of the (semisimplification of)
the Hét(z\’ 9» Q) into a sum of irreducible representations. The
£(0;, s) can be viewed as the “atomic constituents” of (X, s),
and reveal much of the “hidden structure” in the underlying
equation. The decomposition of (X s) into a product of dif-
ferent {(o;; s) is not unlike the decomposition of a wave func-
tion into its simple harmonics.

A Galois representation is said to be modular if its zeta
function can be expressed in terms of generating series at-
tached to modular forms and automorphic representations,
and is said to be geometric if it can be realised in an étale
cohomology group of a diophantine equation as above. The
“main conjecture of the Langlands programme” can now be
amended as follows:

Conjecture. All geometric Galois representations of Gg.s are
modular.

Given a Galois representation
0:Ggs — GL,(Z)) (46)

with £-adic coeflicients, one may consider the resulting mod
{ representation

0:Gos — GL,(Fy). 47)

The passage from o to o amounts to replacing the quantities
Ny, (0) € Z¢ as p" ranges over all the prime powers with their
mod ¢ reduction. Such a passage would seem rather contrived
for the sequences N,-(X) — why study the solution counts of a
diophantine equation over different finite fields, taken modulo
{7 — if one did not know a priori that these counts arise from
{-adic Galois representations with coefficients in Z,. There is
a corresponding notion of what it means for ¢ to be modular,
namely, that the data of N,-(9) agrees, very loosely speaking,
with the mod ¢ reduction of similar data arising from an auto-
morphic representation. We can now state Wiles’ celebrated

12

modularity lifting theorem, which lies at the heart of his strat-
egy:
Wiles’ modularity lifting theorem. Let

o: GQ,S —_— GLQ(Z[) (48)

be an irreducible geometric Galois representation satisfying
a few technical conditions (involving, for the most part, the
restriction of o to the subgroup Gg, = Gal(Q;/Qy) of Gays)
If 0 is modular and irreducible then so is o.

This stunning result was completely new at the time:
nothing remotely like it had ever been proved before! Since
then, “modularity lifting theorems” have proliferated and
their study, in ever more general and delicate settings, has
spawned an industry and led to a plethora of fundamental ad-
vances in the Langlands programme.

Let us first explain how Wiles himself parlays his orig-
inal modularity lifting theorem into a proof of the Shimura-
Taniyama-Weil conjecture for semistable elliptic curves. Given
such an elliptic curve E, consider the groups

E[3"] := {P €EQ) : 3"P= o}, T5(E) := lim E[3"],

(49)
the inverse limit being taken relative to the multiplication-by-
3 maps. The groups E[3"] and T3(E) are free modules of rank
2 over (Z/3"Z) and Zs respectively and are endowed with con-
tinuous linear actions of Gg s, where S is a set of primes con-
taining 3 and the primes that divide the conductor of E. One
obtains the associated Galois representations:

0r3 : Gos — Aut(E[3]) = GLy(F3),

(50)
0r3 1 Gos — GLa(Z3).

The theorem of Langlands and Tunnell about the modularity
of the general quartic equation leads to the conclusion that
©r3 1s modular. This rests on the happy circumstance that

GLy(F3)/(£1) =S4 (S

and, hence, that E[3] has essentially the same symmetry
group as the general quartic equation! The isomorphism in
(51) can be realised by considering the action of GL,(F3) on
the set {0, 1,2, co} of points on the projective line over Fs.

If E is semistable, Wiles is able to check that both og 3 and
ok satisfy the conditions necessary to apply the modularity
lifting theorem, at least when og 3 is irreducible. 1t then fol-
lows that oz 3 is modular and therefore so is E, since {(E; s)
and {(og3; s) are the same.

Note the key role played by the result of Langlands-
Tunnell in the above strategy. It is a dramatic illustration of
the unity and historical continuity of mathematics that the so-
Iution in radicals of the general quartic equation, one of the
great feats of the algebraists of the Italian renaissance, is pre-
cisely what allowed Langlands, Tunnell and Wiles to prove
their modularity results more than five centuries later.

Having established the modularity of all semistable ellip-
tic curves E for which gg 3 is irreducible, Wiles disposes of
the others by applying his lifting theorem to the prime £ = 5
instead of £ = 3. The Galois representation o s is always ir-
reducible in this setting because no elliptic curve over Q can
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have a rational subgroup of order 15. Nonetheless, the ap-
proach of exploiting £ = 5 seems hopeless at first glance be-
cause the Galois representation E[5] is not known to be mod-
ular a priori, for much the same reason that the general quintic
equation cannot be solved by radicals. (Indeed, the symmetry
group SL, (Fs) is a double cover of the alternating group As on
5 letters and thus closely related to the symmetry group un-
derlying the general quintic.) To establish the modularity of
E[5], Wiles constructs an auxiliary semistable elliptic curve
E’ satisfying

0r 5 = 0E5, O 3 is irreducible. (52)

It then follows from the argument in the previous paragraph
that £’ is modular, hence that E’[5] = E[5] is modular as well,
putting E within striking range of the modularity lifting theo-
rem with £ = 5. This lovely epilogue of Wiles’ proof, which
came to be known as the “3-5 switch”, may have been viewed
as an expedient trick at the time. But, since then, the prime
switching argument has become firmly embedded in the sub-
ject and many variants of it have been exploited to spectacular
effect in deriving new modularity results.

Wiles” modularity lifting theorem reveals that “modular-
ity is contagious” and can often be passed on to an {-adic
Galois representation from its mod ¢ reduction. It is this sim-
ple principle that accounts for the tremendous impact that the
modularity lifting theorem and the many variants proven since
then continue to have on the subject. Indeed, the modular-
ity of elliptic curves was only the first in a series of spec-
tacular applications of the ideas introduced by Wiles and,
since 1994, the subject has witnessed a real golden age, in
which open problems that previously seemed completely out
of reach have succumbed one by one.

Among these developments, let us mention a few below:
e The two-dimensional Artin conjecture, first formulated in

1923, concerns the modularity of all odd, two-dimensional
Galois representations

0:Gos — GL,(C). (53)

The image of such a o modulo the scalar matrices is iso-
morphic either to a dihedral group, to A4, to S4 or to As.
Thanks to the earlier work of Hecke, Langlands and Tun-
nell, only the case of the projective image As remained to
be disposed of. Many new cases of the two-dimensional
Artin conjecture were proven in this setting by Kevin Buz-
zard, Mark Dickinson, Nick Shepherd-Barron and Richard
Taylor around 2003, using the modularity of all mod 5 Ga-
lois representations arising from elliptic curves as a starting
point.

e Serre’s Conjecture, which was formulated in 1987, asserts
the modularity of all odd, two-dimensional Galois repre-
sentations

0:Gas — GL(Fy), (54)

with coefficients in a finite field. This result was proven
by Chandrasekhar Khare and Jean-Pierre Wintenberger in
2008 using a glorious extension of the “3 — 5 switching
technique” in which essentially all the primes are used.
(See Khare’s report in the Notices of the AMS mentioned
above.) This result also implies the two-dimensional Artin
conjecture in the general case.
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e The two-dimensional Fontaine—-Mazur conjecture concern-
ing the modularity of odd, two-dimensional p-adic Galois
representations

0:Ggs — GL2(Q)) (55

satisfying certain technical conditions with respect to their
restrictions to the Galois group of Q, was proven in many
cases as a consequence of work of Pierre Colmez, Matthew
Emerton and Mark Kisin.

e The Sato—Tate conjecture concerning the distribution of the
numbers N, (E) for an elliptic curve E as the prime p varies,
whose proof was known to follow from the modularity of
all the symmetric power Galois representations attached to
E, was proven in large part by Laurent Clozel, Michael
Harris, Nick Shepherd-Barron and Richard Taylor around
2006.

e One can also make sense of what it should mean for dio-
phantine equations over more general number fields to be
modular. The modularity of elliptic curves over all real
quadratic fields has been proven very recently by Nuno Fre-
itas, Bao Le Hung and Samir Siksek by combining the ever
more general and powerful modularity lifting theorems cur-
rently available with a careful diophantine study of the el-
liptic curves that could a priori fall outside the scope of
these lifting theorems.

e Among the spectacular recent developments building on
Wiles’ ideas is the proof, by Laurent Clozel and Jack
Thorne, of the modularity of certain symmetric powers of
the Galois representations attached to holomorphic modu-
lar forms, which is described in Thorne’s contribution to
the Notices of the AMS mentioned above.

These results are just a sample of the transformative impact of
modularity lifting theorems. The Langlands programme re-
mains a lively area, with many alluring mysteries yet to be
explored. It is hard to predict where the next breakthroughs
will come but surely they will continue to capitalise on the
rich legacy of Andrew Wiles’ marvellous proof.
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