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Introduction
For a long time now, as a historian as well as an observer 
of contemporary mathematical practices, I have been 
struck by the diversity of ways of doing mathemat-
ics. I am not speaking here of the variety of individu-
al styles, which has already been the subject of many 
works, but rather the diversity of collectively shared 
ways of practising mathematics. I feel this phenomenon 
deserves more attention than it has received to date. In 
this article, I would like to explain some of the reasons 
that convince me of the value that could be represented 
by the description of these social and cultural realities 
– realities that it seems to me appropriate to under-
stand as different “mathematical cultures”. I have had 
the opportunity to clarify, with the help of an example 
developed at length, what I mean by this last expression 
[1] and I will return to this question below. However, 
before I go any further, I must rule out one possible 
source of misunderstanding. While I propose speaking 
about ‘mathematical cultures’, this is totally unrelated 
to another, all-too-common interpretation of the same 
expression that seems to me meaningless and, what is 
more, dangerous.

Indeed, since the 19th century, a certain way of think-
ing about the diversity of mathematical practices has 
become dominant: it is the antithesis of the thesis for 
which I argue here. To remain brief, I will forego nuance 
and illustrate this alternative concept with a statement 
made by the physicist Jean-Baptiste Biot, which has the 
merit of, in only a few lines, revealing many facets of the 
representation that I reject. In an 1841 review of Jean-
Jacques Sédillot’s translation of a work in Arabic enti-
tled Traité des instruments astronomiques des Arabes, 
Biot published the following verdict (the italics are mine, 
except for the final sentence in Latin) [2]:
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…one finds [in this book] renewed evidence for this 
peculiar habit of mind, whereby the Arabs, like the 
Chinese and Hindus, limited their scientific writings 
to the statement of a series of rules, that, once given, 
were only to be verified by their very application, with-
out requiring any logical demonstration or connection 
between them, which gives these Oriental nations a 
remarkable character of dissimilarity, I would even 
add of intellectual inferiority, compared to the Greeks, 
with whom all propositions are established by reason-
ing, and generate logically-deduced consequences. This 
fixed writing of scientific methods, in the form of pre-
cepts, must have represented a significant hindrance 
for the development of new ideas for the peoples for 
which it was in use, and it is in sharp contrast with our 
European maxim: nullius in verba.2

When Biot concludes by quoting the motto of the Royal 
Society: “take no one’s word for it”, which enjoined its 
members to reject all forms of authority, it is to draw 
a contrast. The maxim calls for a form of “freedom” in 
thinking, which, for Biot, characterises Europe – else-
where he says the Occident – and which has been 
extolled regularly ever since as the specific intellectual 
attitude that allowed the emergence of “modern sci-
ence”. According to Biot, the “Orientals”, however, 
contented themselves with stating sequences of “rules” 
(in modern terms: algorithms) and then proceeded with 
prescriptions (“precepts”), which, in his view, supposed, 
by contrast, obedience from their users, meaning that it 
was therefore impossible for them to bring about a sci-
entific revolution. This is one of the key elements of a 
broader opposition between mathematical practices of 
different peoples that Biot shapes along these lines. Thus, 
on another level, the “Orientals” would not feel the need 
to demonstrate, making do with simple “verifications”. It 
is, in Biot’s eyes, the function of the mathematical prob-
lems contained in their texts and that he designates as 
“applications”. However, he insists, by contrast, that “the 
Greeks” demonstrate everything. As a consequence, in 
“Oriental” mathematical practice, the rules presented no 
interrelationships, while the “Occidentals”, conversely, 
created deductive edifices.

All in all, as the above statement shows, Biot believed 
in a fundamental difference in nature between peoples, 
the presentation of which required only two categories: 
in one camp, the “Oriental nations” and, in the other, 
“The Greeks” and the “Europeans”, among whom he 

1 I present here some of the results of research carried out 
in the context of the SAW (“Mathematical Sciences in the 
Ancient Worlds”) project that has been financed by the 
European Research Council, in the context of the 7th pro-
gramme framework (FP7/2007–2013, ERC Grant agreement 
n. 269804). This article is a translation, by Richard Kennedy, 
of “La diversité des cultures mathématiques: un passé et 
quelques futurs possibles”, Gazette des mathématiciens, 150, 
2016, p. 16–30 (online at http://www.smf.emath.fr/files/150-
bd.pdf). It derives from the plenary lecture that I gave at 
the European Congress of Mathematics (Berlin, July 2016). 
A more complete version of this text is to be published in 
the proceedings of this conference; I will also make it avail-
able on HAL-SHS. I am grateful to Bruno Belhoste and Nad 
Fachard for their invaluable help throughout the preparation 
of this article. 2 This document was first published by F. Charette [3].
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positioned himself. For him, this difference was reflected 
in the contrast between their mathematical practices – 
a contrast to which he assigns long-term consequences 
(one camp experiences progress while the other advanc-
es with great difficulty). If we examine more closely how 
Biot articulates the difference between peoples and the 
contrast between mathematics, we notice that, to his 
eyes, the way in which “Orientals” carry out mathemat-
ics derives from a “particular habit of mind” common to 
these peoples: mathematics here only illustrates a more 
general fact. It is as much his belief in the truth of the 
general fact as the confirmation that he believes to have 
found in the description of their mathematical activities 
that leads Biot to express a hierarchy between the peo-
ples. However, conversely, the declaration gives mathe-
matics and modern science as the proof of the superiority 
of the Greeks and of Europe. History of science served 
for a long time, in fact, as a laboratory for developing 
conceptions with which some have believed it possible 
to consider the “characteristics” of peoples and establish 
the theory of an irreducible disparity between them. In 
the context of the SAW Project, we started an historical 
study of these forms of history of science and their uses 
but pursuit of this here would lead us too far. Rather, let 
us return to our subject.

Biot wrote these lines in 1841. I can testify that many 
elements of the representation of the diversity of math-
ematical practice to which he subscribed still persist 
today, in various forms, and are even very widespread, 
if not within the mathematical community, at least more 
widely in our society. In the context of today’s world, the 
effects are potentially as destructive as they have been 
in the past. It is interesting to examine the documenta-
ry base from which Biot established his verdict. This is 
quite straightforward for China, as Biot’s son, Edouard 
(1803–1850), was the first specialist of China to publish 
in Europe on the history of mathematics, and the four 
articles he wrote on the subject between 1835 and 1841 
were all discussed with his father. Like a good number of 
sinologists of the time, Edouard never travelled to China 
and his investigations had to be limited to documents 
available in Europe. The Bibliothèque Royale’s collec-
tions in Paris gave him access to a book on mathemat-
ics, written in Chinese and published in China in 1593, 
to which he devoted his first two articles. In 1839, he 
published a study on a second work, which he was able 
to consult thanks to the fact that his mentor in sinology, 
Stanislas Julien, loaned it to him. Isolated in his work on 
the mathematics in Ancient China, Edouard incorrectly 
dated this book, completed in 1259, to the 8th century 
and appears not to have understood the algebraic sym-
bolism that was central to the author’s project. Finally, 
once again in the Bibliothèque Royale, he found a work 
dating from the start of the Common Era and address-
ing mathematical knowledge necessary for astronomy 
and cosmography, a translation of which he published in 
June 1841. It is essentially from these data that, in the 
same year, Jean-Baptist Biot would formulate his defini-
tive opinion of the mathematics of the Chinese “people” 
from antiquity up to his time.

The fact that today we can read several dozen math-
ematical books written in China between the last centu-
ries before the Common Era and the 19th century does 
not mean that it makes any more sense to talk about 
“Chinese mathematics”. In any case, it is not “math-
ematical cultures” conceived in terms of this type that 
I am thinking of when I propose to argue in favour of 
the interest there would be in considering the diversity of 
collectively shared ways of doing mathematics. Entities 
such as “nations” or “peoples” seem far too vast for what 
I have in mind. Wanting, at all costs, to say something 
about mathematics in a context of this magnitude, we 
would find ourselves condemned, like Biot, to generalis-
ing unduly. Or else the search for a common denomina-
tor for the mathematics of a “nation” or a “people” would 
lead us to stand much too far from those whom we are 
observing (and whom I will, as anthropologists do, call 
“actors”). At such a distance we would only grasp some 
commonalities of little significance, frequently minimis-
ing everything that contradicts the overall conclusion, 
and it would be by decree that we give these common 
points as characteristics of the entity observed. In both 
cases, it is by postulate that “nation” or “people” are pos-
ited as relevant frameworks and therefore we shouldn’t 
be surprised to find the postulate in the conclusions.

Another approach to mathematical cultures
Like the majority of historians, I prefer to work from 
documents. And what has struck me, in considering the 
writings produced in a variety of contexts, is that these 
documents form clusters, which attest shared but differ-
ent ways of doing mathematics. What types of human 
collectives do these clusters of writings bear witness to? 
We cannot give a general answer to this question and it 
would be necessary to examine them case by case. Below, 
I will outline some ways of addressing it. My main objec-
tive here will be, however, to illustrate, with examples, 
the phenomena which interest me and that I propose 
to approach in terms of different “cultures”. Along the 
way, these examples will allow me to explain why I am 
convinced of the importance of taking these phenomena 
into account to interpret our documents in a more thor-
ough and rigorous way and, through this exploration, I 
will also bring out some new general questions that they 
seem to raise.

The first illustration of what I mean by a “mathemati-
cal culture” comes from a field with which I am familiar. 
This is not by chance: an approach of this type requires 
an intimate knowledge of the sources. I chose this exam-
ple from ancient history, as the problems of the interpre-
tation of documents are often more acute when the writ-
ings were produced in the distant past. I hope, therefore, 
that the help in interpretation that can be afforded by an 
approach in terms of culture will be all the more obvi-
ous. I will consider, then, a cluster of Ancient Chinese 
mathematical works presented to the throne in 656 by Li 
Chunfeng and the scholars working under his direction: 
The Ten Canons of Mathematics.

By order of the Emperor, Li and his colleagues set 
about the preparation of this anthology, selecting clas-
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sics from the past as well as commentaries that had been 
written about them and then preparing a critical edition 
and their own commentaries for all these documents. 
From 656, with the work having just been completed, 
these books were used in the School of Mathematics 
that had been established within the Imperial University, 
where students could follow a specialised curriculum in 
mathematics in order to gain access to a career in the 
bureaucracy. These ten canons, in a different chrono-
logical order to their composition, formed the content of 
two curricula [4]. I am interested here in only the most 
elementary of these curricula and I will, in fact, mention 
only two of the books studied in this context: the first 
canon worked on, The Mathematical Classic of Master 
Sun, which was devised around the year 400 (even if the 
text that we can read shows marks of modifications dat-
ing from the 8th century), and the canon that formed the 
centrepiece of this course, The Nine Chapters on Mathe-
matical Procedures, the completion of which I date to the 
1st century CE. This book and the commentaries written 
about it by Liu Hui in the 3rd century and by the team 
working with Li Chunfeng in the 7th century required, in 
fact, a far greater number of years of study in comparison 
to the other books.

These historical elements allow us to formulate two 
important points of method. If these canons and their 
commentaries were taught in the same curricula, it means 
that 7th century actors considered them de facto as asso-
ciated with the same mathematical culture. In addition, 
the first six canons of the first curriculum are essentially 
composed of mathematical problems and algorithms 
allowing them to be solved; they are therefore difficult to 
interpret. By contrast, however, the commentaries cho-
sen or written by Li Chunfeng’s team comprise discus-
sions on mathematics and explicit references to the prac-
tice of mathematics. These commentators are, in fact, the 
earliest readers of the canons that we are able to observe 
and they provide us with essential clues to describe the 
mathematical culture that makes up my first example. I 
stress this point: the description of a mathematical cul-
ture must not derive from impressions or intuition but 
instead rely on historical demonstrations based on docu-
ments. The assertions that I will formulate below are, as 
far as possible, based on long arguments but I will not 
elaborate on them here, instead referring the reader to 
previous publications.

The key question at present is to understand how 
the mathematical activity testified by these documents 
was practised. A typical page from canons like The Nine 
Chapters (this is how I will abbreviate the title hence-
forth) is composed of problems and algorithms, while the 
commentaries, which appear in smaller characters and 
often between the sentences making up the algorithms, 
systematically establish the correctness of these algo-
rithms, interspersing these developments with all sorts of 
remarks and discussions.

As the oldest editions show, all these writings only 
contain characters, without any graphical representa-
tions of any sort. However, the canons, like the commen-
taries, make reference to rods, with which the numbers 

were represented on a surface on which the calculations 
were carried out. Without representations in the texts 
of the use made of the rods or the calculating surface, 
everything that took place on that surface has had to 
be reconstructed from clues gleaned from the writings 
and on the basis of historical arguments. Our situation is 
probably comparable with that of future historians who 
will concern themselves with understanding the part of 
the activity of mathematics that takes place today on our 
blackboards.

The rods constitute the first physical object men-
tioned in the texts and we will see that they played a key 
role in the mathematical culture testified by the canons. 
Furthermore, canons like The Mathematical Classic of 
Master Sun and The Nine Chapters neither contain nor 
mention any figures, nor even any visual aids. However, in 
the context of certain demonstrations, the commentaries 
do evoke figures and blocks, opting for one or the other 
according to whether they are dealing with plane geom-
etry or space geometry. With the blocks, which evoke the 
plaster and string models used by certain mathematical 
milieus in the second half of the 19th and the beginning 
of the 20th centuries, we thus encounter a second type of 
physical object that mathematics activity had recourse to. 
The early editions of these classics do not contain the fig-
ures that the commentators refer to and the examination 
of clues that we could gather about them has led me to 
conclude that they, too, were physical objects at the time. 
I will refer to them with the term “diagram”, to remind us 
that they are visual aids different from those we usually 
associate with the term “figure”.

In summary, and in contrast to what later documents 
attest, the mathematical activity evidenced by our first 
cluster of writings is based on books containing only text 
and also on three types of object: rods, blocks and dia-
grams [5]. 

In the course of a series of articles, I have shown how 
the description of what the actors did with the elements 
contained in the writings, as well as with the objects we 
have just identified (which only partly covers what I mean 
by the expression “way of doing mathematics”), is essen-
tial to interpreting the writings and obtaining a more 
complete grasp of the mathematical knowledge they 
had. Here, I will illustrate this thesis with the aid of only 
one of these aspects, concentrating on the way in which 
the actors worked with the calculating surface, accord-
ing to what can be reconstructed, and showing how this 
approach allows us to understand the knowledge that 
they had developed around arithmetical operations.

My reasoning starts with the first pages of The Math-
ematical Classic of Master Sun, that is to say, the start of 
the elementary curriculum. Here, the work describes, 
among other things, the use of rods to represent numbers 
on the calculating surface: without entering into detail, in 
this description, we can recognise a decimal place-value 
system, in the sense that writing the symbols 123 in these 
positions implies that 1 means a hundred, 2 twenty and 
3 three.

Then, based on this system of numeration (which, 
therefore, was purely physical and did not appear at the 
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time in the writings), the book offers two algorithms, one 
for multiplying and the other for dividing – the division 
here is called chu. The text of this second algorithm does 
not open with a prescription but with an assertion: “this 
algorithm is exactly opposed to that for multiplication”. 
The meaning of this statement is not obvious solely on 
the basis of the text of these two algorithms. However, 
the calculations for the execution of these two opera-
tions that we can reconstruct on the basis of the texts, 
and for which I give an example in Figure 1, suggest an 
interpretation. They will be essential to my argument and 
hence I enter into detail here.

These algorithms are based on two types of “positions”, 
both designated by the same Chinese term (wei). First-
ly, the numbers are written horizontally, as a series of 
decimal positions. This place-value notation echoes the 
property of the algorithms to iterate the same series 
of elementary operations along this sequence of digits. 
Moreover, both algorithms make use of three vertical 
positions, one above the other (upper, middle and lower). 
The multiplication starts by placing the multiplier (23 in 
my example) and the multiplicand (57) in the upper and 
lower positions respectively, leaving the middle position 
empty. The initial layout for the division of 1311 by 23 
is completely opposed with respect to the middle and 
upper positions: contrary to the multiplication, it is the 
upper position that is empty at the start of the calcula-
tion, while the middle position is full, as it contains the 
dividend. For both operations, the calculation proceeds 
in the same way, by filling the line of these two that is 
empty while emptying the line that is full. Operating on 
initial configurations that are opposed, the processes 
that follow are themselves opposed to each other. The 
“result” of the multiplication is produced in the middle, 
while that of the division is produced at the top. Here, 
we thus see that a relationship of opposition between the 
two operations is shaped, through the precise fashioning 
of the processes of execution on the calculating surface. 

It is the first property of interest for us in these flows of 
operations that execute multiplication and division. We 
will return to it.

In contrast to the middle and upper positions, which 
are opposed to each other between multiplication and 
division, the lower position similarly receives operators 
that are the multiplier and the divisor. Both act in the 
same way during the execution of their respective opera-
tions: their significant digits are not modified, but their 
decimal positions are, being displaced at each iteration. 
The layout of the two operations and the algorithms have 
the effect that the execution of the multiplication ends 
at the starting point of the division and vice versa: if you 
run multiplication and division one after the other, the 
operations cancel each other out. This is a second prop-
erty of interest to us in these flows of operations. 

These arrangements, partly opposed and partly iden-
tical, of the algorithms on the calculating surface corre-
spond to flows of calculations that allow practitioners to 
see the relationship of opposition between multiplication 
and division. Thus, once the multiplication operands are 
positioned, the multiplier 23 is moved to the left until its 
units digit is vertically under the digit with the highest 
magnitude in the multiplicand (5). The multiplier is thus 
multiplied by the power of 10 corresponding to this lat-
ter digit. The products of the digits of 23 by 5 can then 
be added progressively to the middle position, immedi-
ately above the corresponding digits in the multiplier. 
Once this sub-procedure is completed, 5 is deleted from 
the upper line, 23 is shifted one position to the right and 
the same sub-procedure is repeated with 7, the follow-
ing digit, which in turn will be deleted at the end of the 
execution. Thus, it is in this way that “that which the mul-
tiplication produces” finds itself “in the middle” while the 
multiplicand is, for its part, deleted. The execution of a 
division will “produce”, in an opposed way, the result “in 
the upper position”, while the number in the middle posi-
tion will be progressively deleted. By contrast, the digits 
in the quotient are, in effect, progressively added to the 
upper position (5 then 7), while, in the appropriate corre-
sponding position, the products of the digits in the divisor 
and first 5, and then 7, are progressively subtracted from 
(and not added to) the dividend. Incidentally, if we had 
divided not 1311 but 1312 by 23, the quotient would be 
given as 57 + 1/23. The fact that the results of divisions 
are always exact plays a critical role, but that necessitates 
another development that I am not able to give here. 

In the context of this way of doing mathematics, incul-
cated from the beginning of the first curriculum in the 
School of Mathematics, the algorithms for multiplication 
and division have therefore been shaped to allow a global 
vision, position by position, of a network of oppositions 
and similarities in the very dynamic of the executions 
on the calculating surface. It is, I think, to this and not 
the fact that multiplication and division cancel the effect 
of each other, that the declaration in The Mathematical 
Classic of Master Sun (placed at the beginning of the text 
on the algorithm for division) refers when it states “this 
algorithm is exactly opposed to that for multiplication”. 
This conclusion deserves further examination.

Figure 1.
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Firstly, it implies that the physical practices that math-
ematical activity brought into play in this context must 
be reconstituted so that we can fully interpret the writ-
ings. This assertion has a de facto general validity. Moreo-
ver, the interpretations I suggest for both the declaration 
in the text and the procedures for calculation imply that 
the processes for carrying out the operations on the cal-
culating surface do not only have the aim of producing 
results but also of expressing properties – here a form of 
relation between multiplication and division.

This basic example suffices to illustrate what I mean 
by different “mathematical cultures” and it also provides 
a glimpse of the interest their description takes on. The 
ideas brought into play in the algorithms represented in 
Figure 1 are identical to those that inspire the way we 
ourselves have learned to carry out multiplication and 
division. Yet, in the eyes of the actors who employed one 
or the other, the meaning of the two sets of algorithms 
differs in part and we will see that this difference has 
important consequences. By contrast to this other way 
of working, our practices for calculation do not invite us 
to interpret as meaningful the relations between flows 
of operations executing multiplication and division, or 
to work with these flows. This is one of the features that 
confers its uniqueness to the practice of calculation pro-
vided in the first curriculum of the 7th century in China, 
and the declaration in The Mathematical Classic of Mas-
ter Sun allows us to grasp what is at stake. Let us now 
analyse what is brought to us by the knowledge of this 
specific element of such a “way of doing mathematics”.

Work on the relations between the operations
The statement in The Mathematical Classic of Master 
Sun, combined with the flows of calculations we can 
reconstitute on the basis of the texts of algorithms, 
allows us to establish the existence of a practice of cal-
culation unique to a certain context: the use of “posi-
tion” to explore and express an interpretation of the 
relation between operations. In doing so, it reveals the 
existence of mathematical interest in such relations. 
Understanding this practice will, more generally, allow 
us to grasp mathematical knowledge on the relation 
between operations as it was produced in this context. 
This is all the more important because historians had not 
really perceived this knowledge before. Only by reading 
what the texts and the physical inscriptions express in 
a specific way do we uncover part of the actors’ mathe-
matical knowledge and also a fundamental question that 
inspired their research.

Moreover, the fact of having uncovered such a prac-
tice also provides us with tools for interpreting other 
texts in the same corpus and for going further into the 
reconstitution of the actors’ practices on the calculating 
surface. Thus, we can better understand the theoretical 
work that the actors carried out on the operations and 
also comprehend the history of this work. The opera-
tions of multiplication, and especially of division, as well 
as their execution on the calculating surface described 
above, will then prove to have played a key role in this 
history.

To establish this point, we will return firstly to The 
Nine Chapters, whose text attests the same practice of 
calculation on the calculating surface, as well as the same 
interest for the relations between operations. Let us 
examine, for example – without, for the moment, trying 
to interpret them – the texts of the algorithms provided 
for the extraction of square and cube roots (I only quote 
the beginnings here, which are sufficient to bring out the 
phenomena that interest me):3 

“Procedure for the extraction of the square root: One 
places the number-product as dividend. Borrowing 
one rod, one moves it forward, jumping one column. 
Once the quotient is obtained, one multiplies once 
the borrowed rod by it, which makes the divisor, then 
one divides by this. After having divided, one doubles 
the divisor, which makes the determined divisor. If 
one divides again, one reduces the divisor by moving 
it backward. One again places a borrowed rod, and 
moves it forward like at the beginning. One multiplies 
this once by the new quotient. (…)” 
“Procedure for the extraction of the cube root: One 
places the number-product as dividend. Borrowing 
one rod, one moves it forward, jumping two columns. 
Once the quotient is obtained, one multiplies twice 
the borrowed rod by it, which makes the divisor, 
then one divides by this. After having divided, one 
triples this, which makes the determined divisor. If 
one divides again, one reduces (the divisor) by mov-
ing it backward. One multiplies the quantity obtained 
by three, and one places this in the middle row. Once 
more borrowing a rod, one places it in the row under-
neath. One moves them forward, that which is in the 
middle jumping one column, that which is underneath 
jumping two columns. One again places a quotient 
and multiplies by it that which is in the middle once, 
and that which is underneath, twice. (…)”

If we consider these algorithm texts independently of 
any context, they are difficult to interpret with certainty. 
In particular, the layout of the calculations to which they 
refer seem unfathomable. However, two key points are 
evident.

I have marked in bold type the terms that these texts 
take from the algorithm for division. They clearly show 
that the formulations of the algorithms for extraction – 
tacitly, i.e. without any other form of commentary – shape 
these calculation procedures as types of divisions. Based 
on what we have seen above, we can advance the hypoth-
esis that the texts, like the executions, state a form of rela-
tion between extraction and division. We thus again find 
the interest that the actors manifested for this very ques-
tion and its exploration with the help of the same work-
ing tools, as well as, now, also the algorithm texts.

Furthermore, in the translations of the two texts, 
I have underlined the terms and expressions that indi-
cate how the root extractions are not real divisions. 
They show the modifications to the division algorithm 

3 [6] contains a complete, annotated translation of these texts.
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through which the extractions have been cast in the divi-
sions mould. These terms and expressions do, however, 
also demonstrate an interest for the relations between 
operations since they match each other from one text 
to another. This correspondence reveals how correlated 
modifications of the division algorithm lead to the extrac-
tion of square and cube roots respectively. The words in 
italics highlight how even the differences between these 
modifications are correlated from one algorithm to the 
other. The use, in the square root text, of an expression 
like “multiply once” instead of simply “multiply”, which 
accentuates the parallel with the expression “multiply 
twice” in the corresponding statement of the cube root 
text, brings out the authors’ wish to write the texts in 
relation to each other.

All these properties confirm what I have advanced 
above: alongside the work on the flows of calculation 
executing the operations on the calculating surface, we 
see emerging, through the formulations of the algorithm 
texts, a second facet in the modalities of exploring the 
relations between operations. Above, we encountered a 
specific practice using physical objects (rods and posi-
tions on the calculating surface). We discover now a spe-
cific way of working – and of expressing mathematical 
meanings – with certain elements that make up the texts 
themselves. These remarks provide us with tools to rigor-
ously reconstitute the flows of calculation to which the 
extraction procedures for square and cube roots refer. 
The key hypothesis that the previous argument allows 
us to advance, a hypothesis that plays a key role in this 
reconstitution, states that the processes of execution 
highlight, or “write”, the similarity between extractions 
and division on the calculating surface in the same way 
that they allowed the reading above of the opposition 
between multiplication and division. Therefore, we know 
that the first digit of the root (or “quotient”) a.10n and 
then those that followed were placed successively in 
the upper position, while the number A whose root was 
being sought was positioned as “dividend”. In the lower 
position, a number acting as “divisor” distinguished itself 
from the homonymous position of the division by the 
fact that its value had to be adjusted. The interpretation 
gives the flow of calculations reconstituted in Figure 2.

If we had read the texts with the sole intention of know-
ing how roots were extracted – as most historians have 
actually read them – we would have missed the work 
carried out to shape a set of relations between these 
operations as well as the ways of working developed in 
order to carry out this research (use of positions and the 
dynamic of the calculations, and formulation of the algo-

rithm texts). Certainly, we would have convinced our-
selves, once again, that the ideas applied are essentially 
identical to those used in the algorithms that some of us 
learned in our youth for extracting roots. But we would 
have missed out on what makes the difference between 
this latter algorithm and the one in The Nine Chapters. 
The reconstitution of the practice of writing algorithm 
texts, like the practice of calculation on the calculating 
surface (two facets of this specific way of doing math-
ematics that illustrate what I mean by “mathematical cul-
ture”), invites a different reading of the texts as flows of 
calculation and consequently allows us to grasp another 
facet of the actors’ mathematical work that no other dis-
courses express. I think this point clearly illustrates the 
link I stated between, on one hand, the description of the 
actors’ “mathematical culture” and, on the other, a better 
understanding of their mathematical knowledge, as well 
as the questions they were pursuing.

Another clue confirms the conclusions that one can 
draw from this form of interpretation, which derives 
from attention being paid to the practices: it comes from 
the way in which these operations were prescribed in the 
algorithm texts. Indeed, the texts refer to the operand of 
a root extraction by the term ‘dividend” and prescribe 
the operation, as appropriate, by the expressions: “one 
divides this by extraction of the square root” or “one 
divides this by extraction of the cube root”. In other 
words, the prescription states, again without further ado, 
the same structure for all the operations, signalling that 
chu division was their foundation.

This is not all and, for us to go further, it will be use-
ful to evoke the demonstrations that the commentator 
Liu Hui developed to establish the correctness of root 
extraction algorithms and, in particular, the diagram on 
which the proof is based in the case of the square root 
extraction. These demonstrations are the opportunity for 
Liu Hui to correlate the elementary steps of the extrac-
tions with those of chu division. Moreover, in order to 
develop the meaning of the steps in the extraction, the 
commentator introduces a diagram for the square root 
and blocks for the cube root. While the text of the com-
mentary refers to these, there are no illustrations in the 
text and, here again, it is down to historians to recon-
stitute them. Figure 3 illustrates the reconstitution that 

Figure 2.

Figure 3.
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historians all agree to propose for the visual aid relating 
to the square root upon which Liu Hui based the expla-
nation of the meaning of the calculations. I reproduce the 
colours that the text of the commentary indicates – this is 
a common feature of the diagrams in the context of this 
culture. Furthermore, I add marks allowing the execution 
of the extraction to be linked to the figure. It is possible 
that the diagram used by the commentator contained 
characters performing the same function but we have 
no evidence of this. We will return later to this diagram, 
insofar as we will see that it plays a role in the structuring 
of an altogether broader set of operations.

Chu division as the foundation for a set of  
operations
To summarise the conclusions we have obtained thus far: 
we have encountered several characteristic features of a 
mathematical culture by concentrating on the practice of 
computation. Among these features, we have identified 
the use of positions on the calculating surface to establish 
links between the operations through the flows of cal-
culation. The decimal positions of the place-value nota-
tion for numbers are a part of this landscape, insomuch 
as they constitute one of the types of position that the 
practice of computation brings into play. Their utilisation 
meshes with the use of algorithms operating uniformly 
on sequences of digits of the operands and producing, 
with regard to the operations of the division family, the 
results digit by digit.  Furthermore, chu division has been 
shown to play a central role in this context. The combina-
tion of all of these features is found in two other subjects 
dealt with in The Nine Chapters. We will analyse them 
one after the other.

The first concerns the resolution of systems of linear 
equations, which are the subject of Chapter 8 in the book. 
The central algorithm describes, firstly, an initial layout 
of the data (i.e. the coefficients of the equation) on the 
calculating surface and, thus, easily allows the reconstitu-
tion as follows (in modern terms, the system given on the 
left corresponds to the inscription on the surface recon-
stituted on the right):

a11x1 + a12x2 + · · · + a1nxn = b1 an1 · · · a21 a11
a21x1 + a22x2 + · · · + a2nxn = b2 an2 · · · a22 a12
·  ·  ·  ·
·  ·  ·  ·
·  ·  ·  ·
an1x1 + an2x2 + · · · + annxn = bn ann · · · a2n a1n
 bn · · · b2 b1

Thus, in the layout described in The Nine Chapters, each 
linear equation corresponds to a column and the coeffi-
cients attached to the same unknown are all placed in the 
same line. Here, again, the actors have developed a place-
value notation for the system of equations. The algorithm 
itself corresponds to the Gauss elimination method. It 
operates as follows. Assuming that the upper terms in the 
two right-most columns are non-zero, the upper term in 
the right column multiplies the column immediately to 
its left, whereupon the upper term in this second column 

is eliminated by operating on these two columns. This 
sub-procedure is repeated until the following triangular 
system is obtained:

a11x1 + a12x2 + · · · + a1nxn = b1 0 … 0 a11
0          + c22x2 + · · · + c2nxn = d2 0 … c22 a12
·  ·  ·  ·
·  ·  ·  ·
· 0 ·  ·  ·
0 + 0 + … + 0 + cnnxn = dn cnn … c2n a1n
 dn … d2 b1

The algorithm is concluded by determining xn by a 
simple division then successively calculating the other 
unknowns in a similar manner. Note in passing that the 
division that produces xn presents the dividend under 
the divisor. Here, too, a uniform algorithm meshes with 
a place-value notation of the system, since it determines 
the sequence of the unknowns by means of an iteration 
of the same sub-procedures, which deal with the posi-
tions in a uniform way. Positive and negative marks are 
introduced during the chapter to allow the operations to 
be completed in all cases and then to extend the set of 
systems that the algorithm can handle. Finally, let us note 
that the way the data are structured on the calculating 
surface is central to the operations the algorithm uses.

In the same way as before, the interpretation of the 
algorithm as identical to the Gauss elimination method 
is relevant but it only partially captures the mathemati-
cal knowledge developed. Indeed, the observation of the 
same elements as above (the terms employed to desig-
nate the operands, the algorithm texts and the calcula-
tion flows) highlights something else quite unexpected 
here. It appears that the constant terms in the equations 
are given the name “dividends”, while the coefficients 
of the unknowns are described as forming “divisors in 
square” – this is, in my view, the meaning of the name 
of the algorithm (in Chinese fang cheng, “measures in 
square”). Finally, the central operation of eliminating the 
upper non-zero terms from the columns is prescribed as 
a “vertical chu division”. It appears, once again, that the 
actors’ work was not limited to determining an algorithm 
to produce the results. In addition, they further carried 
out a conceptual reflection on the relations between the 
operations, which led to conceiving the resolution of 
systems of linear operations as a generalised division, 
opposing a sequence of dividends to a square of divi-
sors (here the dividends are also under the divisors), and 
articulating the forms of horizontal and vertical division 
[7]. Again, we find, on one hand, an interest for the struc-
turing of a set of operations and, on the other, chu divi-
sion as the foundation of this enlarged set. In this con-
text, the positions seem, once more, to have served as the 
work tool for carrying out the exploration.

We have brought out, by means of the observation of 
aspects of the mathematical culture, a reflection by the 
actors on the operations and the relations between them. 
We notice that bringing this work programme to light, 
which no text appears to formulate explicitly, allows us 
to give meaning to a growing set of clues contained in the 
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texts and to grasp a facet of the mathematical knowledge 
specific to the actors that have, up to this point, remained 
invisible. That the linear equation is conceived in this 
context as the opposition between a dividend and a set 
of divisors is actually only one aspect of a more general 
fact, as we will now see by turning to the second subject 
dealt with in The Nine Chapters, where positions and chu 
division also play a key role.

I will introduce this subject by showing how the 
description of facets of the mathematical culture in the 
context in which the text was written, with the restitu-
tion of the flows of calculation on the surface and the 
diagrams that can be deduced from clues in the text, pro-
vide essential tools for interpretation. The algorithm to 
understand is formulated following the problem that I 
represent in Figure 4 (by respecting the representation 
of the cardinal directions usual at that time).

It is a question of determining the (length of the) side of 
a square town, knowing that a person walking s bu (unit 
of distance) outside the southern gate then westwards 
w bu sees a tree situated n bu from the northern gate. 
The algorithm The Nine Chapters proposes is formulated 
as follows (I emphasise certain words in bold text):

“One multiplies the quantity of bu walked to the west 
by the quantity of bu outside the northern gate, and 
one doubles this which gives the dividend. Adding 
together the quantities of bu outside the southern 
gate and the northern gate makes the joined divisor. 
And one divides this by the extraction of the square 
root, which gives the side of the square town.” 

The algorithm thus calculates two operands (“dividend” 
and “joined divisor”) and prescribes the operation as a 
“square root extraction”. What is the meaning of this 
operation? Actually, it can neither be a square root 
extraction, as this operation should only have one oper-
and, nor can it be a division. Here, Liu Hui’s commentary 
provides valuable clues for dealing with the conundrum. 
The commentator describes a graphical process that 
does not correspond to any illustration in the text and 
that I translate as a sequence of figures. In Figure 4, I 
have marked the height and the base of a large trian-
gle. The term lü attached to the height and the base of 
a second triangle in the figure indicates the similarity of 

these two triangles. From this observation, Liu Hui draws 
the equality of the areas of the horizontal rectangle, with 
sides w and n, and the vertical rectangle, with sides x/2 
and n + x + s (see Figure 5).

Twice this area corresponds to what the algorithm calls 
the “dividend”: Liu Hui interprets this as the area of the 
vertical rectangle to which one adds the grey rectangle. It 
corresponds to the rectangle in Figure 6a. Liu Hui finally 
interprets the calculation of the “joined divisor” by the 
prescription of joining the upper and lower rectangles, 
which produces the shaded rectangle in Figure 6b. Estab-
lishing this figure concludes his commentary.

The commentator thus interprets the operation used in 
the algorithm as the equation represented in modern 
terms as:

x2 + (s + n) x  = 2 nw.

Why is its execution prescribed as a root extraction? 
The answer to this question is obtained by considering 
the demonstration Liu Hui formulated for the algorithm 
executing this last operation and, in particular, the dia-
gram that he introduced to state the meaning of the 
operations in the algorithm, whose reconstitution is pro-
vided in Figure 3. The commentator interprets steps 1 to 
6 of the algorithm (see Figure 2) as having the aim of 
subtracting the area of the square of side a.10n from A. If 
this square is removed from the figure, we are left with a 
gnomon, shown in Figure 7.

Figure 4.

Figure 5.

Figure 6.
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By unfolding this gnomon, one obtains a figure compara-
ble to that with which Liu Hui established the quadratic 
equation. Indeed, by omitting the first part of the root 
extraction algorithm (thus by removing from the result 
the digit of the root calculated to this point) and by com-
mencing the algorithm at step 8, one solves the quadratic 
equation that writes this gnomon (or rectangle). Now, if 
we observe the configuration of the calculating surface at 
step 8, we notice that there are, at this point in the calcu-
lation, two terms that correspond exactly to the operands 
of the quadratic equation described by the algorithm, the 
interpretation of which is under consideration. Thus, the 
quadratic equation is an operation that derives from root 
extraction, in that the procedure that executes it is a sub-
procedure of the execution of the extraction: we under-
stand at one and the same time how it is introduced and 
how it is executed in this context. Several consequences 
follow from this. 

Firstly, we note that a large number of ingredients 
enter into the development of our interpretation: the 
demonstrations by which the commentator established 
the correctness of both the algorithm solving the prob-
lem given and the root extraction algorithm; and the 
reconstitutions of the diagrams and the flows of calcu-
lation on the calculating surface, based on knowledge 
of the practices at work in this context. We see that, in 
the context of a given way of “doing mathematics”, the 
elementary practices (practices of diagrams, practices of 
computations, etc.) mesh with one another in a specific 
way. 

Furthermore, we observe here, once again, that the 
operations for square root extraction and quadratic 
equations are linked by processes of calculation on the 
calculating surface, and especially by the way of manag-
ing the positions. Both in terms of the processes of cal-
culation and the role played by diagrams, the relation is 
established in a different way from that which we have 
described for multiplication and division. Neverthe-
less, as above, the link between the operations is also 
expressed by the terminology chosen to designate the 
operands and the operations. All this explains, at one and 
the same time, the graphical means used to establish the 
equation and the fact that only two operands are identi-

fied for the quadratic equation (in the context of  tradi-
tions that developed on this basis, the term in x2 seems to 
have been identified only in the 11th century).

This last remark raises a crucial and particularly inter-
esting question. The fact that the quadratic equation is 
only associated with two operands highlights a correla-
tion between the ways of doing mathematics (here, in 
particular, the practice of computations on the surface 
linked to the establishment of relations between opera-
tions) and the concepts or, more broadly, the mathemati-
cal knowledge produced. This fact is, I think, wholly gen-
eral and only a careful examination of “mathematical 
cultures” will allow us to explore it further. For me, this 
issue provides a fundamental reason to justify the inter-
est in the diversity of ways of doing mathematics. What is 
at stake is understanding how mathematical knowledge 
is correlated to shared, collective ways of working. This 
is one of the new questions to which we are led and one 
which I hope historians of mathematics and mathemati-
cians will consider jointly.

But there is more. If we return to the quadratic equa-
tion, we realise that the text of The Nine Chapters only 
contains the names of the operands and the formulation 
of the prescription. By methodically reconstituting the 
ways of working, we have been able to reveal a repre-
sentation of the equation on the calculating surface and 
a process of execution, as well as a graphical representa-
tion essential to its establishment. In fact, all the quad-
ratic equations established in Ancient Chinese sources 
correspond to the reading of gnomons or of rectangles 
in geometrical configurations in the same way. In other 
words, if we had not paid attention to concrete practices 
with physical objects, we would have missed key aspects 
of the ways in which the actors worked in this context 
with this mathematical object and the tools they forged 
for this purpose.

More important for our purposes, we would also 
have missed out on the work and the resources that the 
actors deployed to structure a series of operations. Yet 
we are now discovering the extent of the knowledge 
developed on this subject. We see that, in this context, 
both linear and quadratic equations were conceptualised 
as forms of division. In fact, many traditions that gained 
momentum by relying on the canons at the centre of this 
mathematical culture, be they in China, Korea or Japan, 
would develop knowledge about algebraic equations in 
this conceptual framework. And I show, in the complete 
version of the article to appear in the proceedings of the 
EMC, that it is again only one aspect of a much more 
general phenomenon.

Another mathematical culture in Ancient China 
and some issues at stake
Let us recapitulate what the observation of certain facets 
of a mathematical culture (in the main, the use of posi-
tions and the processes for calculation) has allowed us 
to do so far. We have relied on it for a more rigorous 
interpretation of the texts. We have also reconstituted 
ways of working with mathematical entities. Finally, we 
have grasped a body of knowledge that the actors had 

Figure 7.
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clues gleaned from the operations suggest that the num-
bers were represented using a different number system. 

This is the first of a series of facts that appear to indi-
cate that the surface on which the calculations were car-
ried out was the subject of a different practice. In fact, 
more generally, no reference is made to the use of a sys-
tem of positions in the execution of the algorithms and 
nor do any of these writings use terms like “line”, “col-
umn” or “position”.

So much for the physical aspects of the practice of cal-
culation. If we now turn to the operations, an initial fact is 
immediately striking: division seems to have been seen as 
a specific operation, different from all the others. A first 
clue for this is the fact that, while the other operations 
can all be prescribed by simple verbs, division is always, 
at least in this context, prescribed by complex expres-
sions. In particular, the term chu alone cannot prescribe 
a division, contrary to what we have seen earlier for the 
other cluster of texts. And when it is encountered in iso-
lation, it refers in fact to a subtraction. It seems then that 
one can perceive a change in the meaning of the verb chu 
and a change in the practice of division.

These recently discovered documents contain algo-
rithms for square root extraction. But these procedures 
do not determine the roots decimal position by decimal 
position and do not seem to iterate sub-procedures on 
numbers written in a place-value form. Neither do they 
appear to present a relation to a process like that of divi-
sion as we saw in the canons. More generally, no trace 
appears to reveal an interest for the relations between 
the operations.

Finally, none of the algorithms in which we have seen 
the close relation with division and the use of positions, 
such as the resolution of systems of linear or quadratic 
equations, appear, for the moment, among the subjects 
dealt with in these documents.

In conclusion, whether from the perspective of ways 
of working with the processes of calculation or from the 
perspective of knowledge or of the projects that actors 
formed, in these documents we have none of the ele-
ments from the constellation of facts described earlier. 
This suggests another issue of interest which is, in my 
opinion, wholly general. In fact, these new documents 
invite the thought that The Nine Chapters and the other 
canons bear witness to the emergence, no later than the 
1st century of the Common Era, of two closely linked 
things: on one hand, a way of doing mathematics (more 
precisely a way of working with the processes of calcula-
tion and an interest in uniform algorithms) and, on the 
other, new knowledge, among which I include new ways 
of carrying out known operations, several new opera-
tions, a way of understanding the relations between these 
operations and a decimal place-value numbering system. 
Thus, at the same time, a way of working and a body of 
knowledge appear in concert.

When historians of mathematics have become inter-
ested in the activity of mathematics as such, they have, in 
general, studied, with a few exceptions I cannot develop 
here, the history of mathematical knowledge. Yet, the 
phenomena that I have mentioned above suggest that a 

developed on the subject of the relations that link cer-
tain operations and the systematic study, which had been, 
until now, overlooked by historians. In this context, the 
operation of chu division has emerged as pivotal. I have 
approached all these aspects from the basis of a cluster of 
documents originating from Ancient China: the canons 
published with certain commentaries in the 7th century 
and used as textbooks in the official mathematics cur-
riculum.

Recently, two other clusters of mathematical docu-
ments also originating from Ancient China have resur-
faced and a quick observation of the way of doing math-
ematics they bear witness to allows us to raise some very 
interesting questions, both specific and general. I will 
only refer here to the first cluster of documents, directing 
the reader to the article published in the proceedings for 
the operation of the second.

I will speak, therefore, only about documents newly 
provided by archaeology. Since the 1970s, a growing num-
ber of tombs sealed in China in the last centuries before 
the Common Era have been excavated and archaeolo-
gists soon discovered that, in some of them, libraries had 
been interred among the funerary objects supposed to 
accompany the dead person in the afterlife. These docu-
ments provide fresh perspectives on the final centuries 
before the Common Era and have shaken up our knowl-
edge of this period. During the Winter of 1983–1984, a 
first mathematical document, the size of a book, came to 
light among a series of writings of this type. Since then, 
excavations and the antiquities market have produced 
several other similar documents and we can expect new 
finds, all profoundly altering our understanding of the 
history of mathematics in China at the time. For the time 
being, only two of the mathematical texts discovered 
have been published completely (the first in 2001); for 
the others, we can only consult some extracts pending 
their full publication. The conclusions I propose are thus 
fragile and could be contradicted by new discoveries.

Of these documents, those we can study all seem to 
reflect the same way of practising mathematics: in the 
terms that I introduced above, they form the same clus-
ter. Moreover, as far as we can see, the writings have sev-
eral features in common with the canons and their com-
mentaries. We can suppose then that all the documents 
had close historical ties, without, for the moment, being 
able to specify their exact nature. What is important for 
us is that these two clusters of documents also present 
significant differences to each other, which leads me to 
advance the hypothesis that these two clusters bear wit-
ness to different ways of doing mathematics, even if both 
present similarities. For my purposes, I will concentrate 
here on a set of similarities and key differences.

Firstly, like the canons and their commentaries, these 
documents contain no illustrations, being made up solely 
of Chinese characters and punctuation marks. They do, 
however, also refer to counting rods to represent num-
bers and to the practice of laying out numerical val-
ues away from the text. However, no traces have been 
detected of the use of a decimal place-value system for 
writing numbers. On the contrary, a certain number of 
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history of ways of doing mathematics is also meaning-
ful. What is more, these two dimensions (mathematical 
knowledge and mathematical practice) appear to consti-
tute inseparable facets of the same reality. This is what 
we have seen for Ancient China, and I think it is the same 
everywhere and at all times.

I pose the conjecture that these two facets trans-
formed themselves jointly. It is, without doubt, one of 
the fundamental reasons why the description of ways 
of doing could help in the interpretation of writings and 
allow a better understanding of the knowledge to which 
they attest. This close articulation between these two 
types of facts constitutes another reason why the history 
of mathematics should be interested in the description 
of mathematical cultures. After all, ways of doing math-
ematics do not appear from nowhere. They have been 
shaped and transformed by the actors during the pro-
cess of exploring the problems that they sought to solve 
and the questions they pondered. Ways of doing math-
ematics represent one of the results of actors’ research: 
mathematical work thus produces both knowledge and 
practices. This is, in any case, one of the principal motiva-
tions of my plea for the history of mathematics to take 
as a subject of study not only the knowledge but also the 
practices and ultimately the relations that exist between 
one and the other.

I have presented arguments on the value of studying 
the ways of doing mathematics by illustrating my argu-
ments with examples taken from Ancient Chinese docu-
ments. Many other clusters of texts produced closer to 
us, even today, seem to me to call for the same analysis. I 
conclude this article with the wish that the general issues 
that I have formulated inspire discussion and research 
into the mathematical cultures in other periods and in 
other fields, and even cooperation between mathema-
ticians and historians to address contemporary math-
ematical practices in this light. I am convinced that such 
cooperation would be fruitful for the historians and, who 
knows, could provide some interesting insights to today’s 
mathematics.
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