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Mathematics AND Music?1,2
Personal Views on a Difficult Relationship

Christian Krattenthaler (Universität Wien, Austria)3

Preamble

〈 Robert Schumann (1810–1856): “Aveu” from  
Carnaval op. 9 〉 4

Mathematics and music – stress on “AND” – question 
mark, this is our topic today. In order to enter the subject: 
when I am involved in a conversation, and the person 
with whom I am talking discovers that, on the one hand, I 
am professor of mathematics at the University of Vienna 
and, on the other hand, have been a concert pianist in a 
previous life, then it happens frequently that this person 
spontaneously exclaims:

“Mathematics and Music – they are so close to each 
other!” 

To which I reply: 

“Is that really so?” 

What do I want to say? Frankly, I have always had big 
troubles with the topic “Mathematics AND Music”, 
namely when mathematics and music are brought 
together, are set in relation to each other, or when one 
merely searches for connections between them. Yes, it 
is correct, tones and intervals obey strict mathematical 
rules, due to laws of physics; but does this establish a con-
nection between mathematics and music? Yes, it is also 
true that Johann Sebastian Bach frequently wove num-
bers into his compositions.5 But is this mathematics? It 

is also correct that compositions are often built in rather 
complex ways, that they have complicated forms. But is 
this mathematics in music? Conversely, if mathematics – 
here I mean structure – becomes too dominant in music, 
as for example in serialism, where all parameters – pitch, 
rhythm, volume, etc. – are subject to strict rules, is the 
result still music?

Without further ado, I confess: I cannot see any direct, 
substantial connections between mathematics and music. 
In particular, I never have understood what mathematics 
has to do with, say, that touching confession, declaration 
of love6 from Robert Schumann – I suppose dedicated to 
his beloved Clara –, which I played at the beginning. If 
you had come to hear my answer to the question of the 
title of my talk: here it is! You could then safely go home. 
Of course, that would be too cheap, and, moreover, we 
would not have addressed a further question. 

Let me rst take a step back. Not very long ago, a 
prominent visitor said to the Dean of the Fakultät für 
Mathematik of the University of Vienna:

“I hear that you are chairing a department of pianists!” 

What did this visitor want to say? If you go through the 
list of members of the Fakultät für Mathematik – myself 
among them7 –, then it is indeed remarkable how many 
of them are enthusiastic pianists. (The dean I refer to is 
one of them, by the way.) Moreover, there are others who 
play other instruments, there are those who are passion-
ate choir singers, and there are others who do not play 
an instrument or sing but instead are devoted opera- and 

1 This is the English translation of the (slightly extended) 
script of a talk-performance that the author gave on May 16, 
2013 in the math.space in the museums’ quarter in Vienna. 
Since the author’s performances of the piano pieces cannot 
be reproduced on printed paper, for each piece he provides a 
hint for an excellent performance.

2 The German original appeared in Int. Math. Nachr. 224 
(2013), 29–60. The English translation appears here with the 
kind permission of the Austrian Mathematical Society.

3 I am deeply indebted to Theresia Eisenkölbl, who designed 
the computer presentation for this talk, parts of which have 
been incorporated into this article. I also thank Reinhard 
Winkler, for a careful reading of a rst version of the manu-
script, and for numerous corrections and insightful com-
ments. Last, but not least, I am extremely grateful to Tomack 
Gilmore for signicant and essential help with the English 
translation of the German original.

4 I did not find anything on YouTube which really convinces 
me. Tal-Haim Samnon’s performance (http://www.youtube.
com/watch?v=EN2gUDaHqvo) matches the character, but 
drawls sometimes too much.

5 It is well documented, for instance (see, for example, Ludwig 

Prautzsch, Die verborgene Symbolsprache Johann Sebastian 
Bachs, Band 1: Zeichen- und Zahlenalphabet der kirchen-
musikalischen Werke. Merseburger, Kassel 2004), that Bach 
put numbers of psalm verses into his passions, at the places 
where these are cited. However, this remains concealed from 
a listener since this cannot be “extracted” by just listening; 
it can only be discovered and substantiated through a care-
ful study of the score. This was an extraneous task that Bach 
chose to take upon himself.

 The number that plays the biggest role in Bach’s work is the 
number 14. In a sense, it is Bach’s signature mark (in the 
same way as painters sign their paintings by putting their sig-
nature marks on them). In order to understand this, one has 
to observe that the number 14 is the sum of the positions 
of the letters B, A, C, and H in our alphabet (to be precise, 
2+1+3+8=14). To mention an example, the number of pieces 
in the “Musicali sches Opfer” (“Musical Offering”) is exactly 
14 (if one counts correctly, of course, as one of the canons can 
be performed in two different ways).

6 “Confession”, “declaration of love” – this is the meaning of 
the French word “aveu”.

7 I was not dean then…
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about them. So, what is the definition of mathematics, 
what is the definition of music? 

Music is … arises … comes about, when tones are pro-
duced … when tones and noise are produced (I must 
not forget noise!). So, if these tones and noise sound, 
together … 

I am sorry, I see that this does not really work. Let us try 
something easier! Mathematics – this is very simple: 

Mathematics is … art of calculation. Mathematics deals 
with numbers, … geometric objects, … more abstract 
objects – such as for instance algebraic structures and 
such – and … 

No, no, this makes no sense! 
Actually, what I am doing here is completely stupid. 

Today one no longer racks one’s brains, today one has 
Wikipedia! So, what does Wikipedia say about music?8 

Music is an art form and cultural activity whose medi-
um is sound and silence, which exist in time. The com-
mon elements of music are pitch (which governs melo-
dy and harmony), rhythm (and its associated concepts 
tempo, meter, and articulation), dynamics (loudness 
and softness), and the sonic qualities of timbre and 
texture (which are sometimes termed the “color” of a 
musical sound). 

Well … I would say: not completely wrong … But I don’t 
think that this is convincing. What does Wikipedia say 
about mathematics?9 

Mathematics is the study of topics such as quantity 
(numbers), structure, space, and change. 

Is this really mathematics? 
What do I want to prove via this somewhat clumsy exer-

cise? Of course, it is impossible to precisely say, to precisely 
define what music is, and it is equally impossible to pre-
cisely define what mathematics is (even if this may seem 
a little strange to the mathematical layman). Very good!

Nevertheless, I can precisely say what I mean when 
I talk here of music, when I talk here of mathematics. 
When I talk here of music, then I mean the art form 
music; art wants to express something, music wants to 
convey something to the listener with the help of tones 
and noise, it wants to give something to the audience to 

concert goers. In other words, the proportion of mem-
bers of the Fakultät who have a great affinity for music is 
much higher than average. The same holds if one looks at 
other mathematics departments.

On the other hand, it is also surprising to see how 
many musicians also have an affinity for mathematics. 
A prominent example is the young pianist and com-
poser Kit Armstrong, who, as is well known, studied with 
Alfred Brendel in London, but, on the side, also com-
pleted a mathematics degree at the Université “Pierre et 
Marie Curie” in Paris. 

Hence, the question that presents itself at this point 
is: 

“Why are there so many mathematicians who also 
have a strong affinity for music, and why are there so 
many musicians who also have a strong affinity for 
mathematics?” 

On a superficial level, we could phrase this question as 
follows: 

“How do we imagine the typical mathematician – I 
mean, the typical sharp thinker, the typical intellectual?” 

I would say that the portraits in Figure 1 match this image 
perfectly. You agree, don’t you? We can cross-check: 

“How do we imagine the typical musician – I mean, the 
typical sensitive artist?” 

Exactly like the portraits in Figure 2, right? 
For those who are not so familiar with the names 

“Wiles” and “Perelman”, I should perhaps explain: 
Andrew Wiles, a British mathematician, is famous for 
having solved a 300 year old problem that goes by the 
name of “Fermat’s Last Theorem”. We shall hear more 
about this later. On the other hand, Grigori Perelman, a 
Russian – very eccentric – mathematician, is famous for 
the proof of a 100 year old conjecture of Henri Poincaré 
on four-dimensional geometry. 

Before we attempt to answer the above question, 
we should perhaps first make precise what we are talk-
ing about. I am a mathematician, and in mathematics all 
objects must first be precisely defined before one can talk 

Figure 1. Gustav Mahler, Dmitry Shostakovich, Arnold Schönberg. Figure 2. Andrew Wiles, Grigori Perelman.

8 http://en.wikipedia.org, as of 12 November 2016.
9 http://en.wikipedia.org, as of 12 November 2016.
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“Why are there so many mathematicians who also 
have a strong affinity for music, and why are there so 
many musicians who also have a strong affinity for 
mathematics?” 

To give it away, the thesis which I shall defend here is:

Both Mathematics AND Music are food for the soul 
AND the brain. 

Maybe there is a region in our brain which resonates –
responds to – particularly when emotion and intellect 
come together, form a symbiosis. Maybe this provides the 
explanation for the phenomenon which is touched upon 
in the above question. In the following, I shall attempt to 
substantiate this thesis.

Soul in music
You will say: “This is like carrying coals to Newcastle! 
Of course, emotion plays an enormously important role 
in music.” You are obviously completely right. Neverthe-
less, I want to say a few words about this, because not 
only can it have many different facets, but also it gives me 
the opportunity to play the piano a little… 

You remember: music wants to express something, 
wants to transmit something to the audience. This may 
be many different things. For example, music may simply 
spread good cheer…

〈 Scott Joplin (1867/1868?–1917): Maple Leaf Rag 
(beginning) 〉11 

or bad…

〈 Robert Schumann (1810–1856): Pantalon et  
Colombine (beginning) from Carnaval op. 9 〉12 

Music can be heartbreakingly sad…

〈 Franz Schubert (1797–1828): Andantino (beginning) 
from the Sonata in A major, D 959 〉13 

or transcendentally joyful… 

take home. In order to make this absolutely clear: when 
I randomly press a few keys of a piano and then maybe 
bang the lid, then these were a few tones and one noise. 
This was not music; it did not say anything, and it did not 
want to say anything. 

When I talk here of mathematics, I mean the science 
of mathematics; that is, we are talking of discovering new 
grounds, of solving mathematical problems, of investi-
gating and studying mathematical phenomena, and of 
revealing the structure and connections lurking behind. 
In order to completely clarify this point: when I random-
ly type mathematical numbers and symbols on the page 
(like in Figure 3), this is not mathematics.

I can now precisely explain my difficulties with the 
topic “Mathematics AND Music”. When Bach weaves 
numbers into his compositions, then these are numbers, 
this is not mathematics. Moreover, these numbers do 
nothing for the message of the work as it is transmit-
ted to the audience. When compositions take on com-
plex forms, then, from the point of view of the science 
of mathematics, this is either trivial or completely with-
out interest. When mathematics – structure – starts to 
dominate music – when, in the extreme case, we program 
a computer to produce (“compose”) tones and then 
eagerly await the result, then out will come tones but no 
music. This will convey nothing. What music shall do for 
mathematics, is entirely unclear anyway.10 Thus for me 
the interesting question is not that of the connections 
between mathematics and music, but rather:

10  If one ignores that the reconstruction and analysis of sound 
documents pose very interesting and challenging mathemati-
cal problems; see for example: A. Boggess and F. Narcowich, 
A first course in wavelets with Fourier analysis, second edition, 
John Wiley & Sons, Inc., 2009. However, also here we are not 
talking of a true substantial relation or connection between 
mathematics and music: the substance lies entirely on the side 
of mathematics, music as an art form is not affected here.

 In this context, one could also think of some colleagues who 
have apparently better ideas if they have music playing on 
the side. I do not belong to these: bad music is annoying, and 
good music – it enthrals me, I have to listen to it, I can’t think 
about mathematics at the same time. In any case, this leads us 
somewhat off-course…

 Closest to a true connection between mathematics and music 
is research as done, for example, by Gerhard Widmer (even 
if his work rather belongs to Artificial Intelligence; see http://

Figure 3.

www.cp.jku.at/people/widmer/), who, with the help of mathe-
matical models, investigates specialities and peculiarities of in-
terpretations of pianists, or, on the other hand, tries to “teach” 
computers how to “interpret” musical scores agogically – vary-
ing the tempo as the piece moves along – “correctly” – on a 
piano. He is however well aware of the limits of such studies 
and experiments, even if it is not clear where these lie exactly.

11 Absolutely worth listening to is the pianola roll recording 
played by Scott Joplin himself: http://www.youtube.com/
watch?v=pMAtL7n_-rc.

12 Arturo Benedetti Michelangeli knows how to perfectly 
portray a squabbling couple (who then reconcile, only to 
begin squabbling again, etc.): http: //www.youtube.com/
watch?v=LgpDYQcmZB4.

13 The “measure of all things” concerning Franz Schubert’s 
work for piano is, without any doubt, Alfred Brendel: http://
www.youtube.com/watch?v=Il6-lZYDpqY.
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“nice” (as well as the word “beautiful”). On this point, I 
shall digress a little. 

Not long ago, I attended a performance of the opera 
“Mathis der Maler” by Paul Hindemith. The opera is fin-
ished, the applause has ceased and then I hear one person 
saying to her neighbour: “Very nice!” I was quite taken 
aback. What was that? One must know that “Mathis der 
Maler” is set during the peasants’ wars in Germany. This 
was a very dark epoch. The peasants revolted against the 
abuses that were visited upon them by their landlords, 
and the latter crushed this revolt mercilessly. During the 
opera, one of the leaders of the peasants’ movement is 
cruelly slaughtered openly on-stage. At the heart of the 
story lies the conflict of conscience of the artist Mathis 
over how to behave during these times. Should he con-
tinue to work on his canvases and sculptures, or should 
he “engage himself in politics”? Finally, he joins the peas-
ants’ revolt and, of course, achieves nothing. At the end 
of the opera, a voice announces that the artist should 
stick to his art, but this is not really convincing. Clearly, 
Paul Hindemith projects his own personal conflict over 
how to behave as an artist in the face of the Nazi regime 
into this opera. The music reflects all of this. It is disturb-
ing, very intelligent, but one cannot characterise it as 
“nice.” Bluntly: there are very few pure major chords in 
this opera… 

I want to drive this particular point home: 

Music does not want to be nice! 

What I mean is: music wants to say something, wants to 
express something to a listener. This may be accompa-
nied by beauty, but then beauty is not an end in itself, it 
is always a means to an end. But it need not be accom-
panied by beauty. “Sacre de Printemps” by Igor Stravin-
sky is eruptive, explosive, but it is not “nice” or “beau-
tiful”. The last movement of the “Great Sonata for the 
Hammerklavier” in B flat major, op. 106, by Ludwig van 
Beethoven, the movement containing the fugue, is many 
things – grand, bold, unprecedented –, but it is certainly 
not “nice” or “beautiful”. In fact, one has to wait for a 
hundred years until again a piece is written which con-
tains similar harmonic abrasiveness. Even in the work 
of Johann Sebastian Bach one cannot call many of his 
compositions “nice”, since frequently consistent progres-
sion of voices is more important than “nicely sounding” 
harmonies. When saying this, I have in mind some of the 
canons in the “Goldberg Variations”, each of which has 
its distinctive character, but which are not always “nice”. 

Hence, when, after a performance of “Mathis der 
Maler”, I hear: “Very nice!”, then I am strongly remind-
ed of the celebrated standard phrase of the “alte Kaiser” 

〈 Franz Schubert (1797–1828): Impromptu A flat 
major, D 899, Nr. 4 (end) 〉14 

Music may radiate elegance, and what better accomplish-
es this than a waltz by Chopin?

〈 Frédéric Chopin (1810–1849): Grande Valse  
Brillante E flat major, op. 18 (beginning) 〉15 

We come to humour in music. This is an entire topic in 
itself. The grand master of humour in music was with-
out any doubt Joseph Haydn. All of you know his most 
famous joke: that sudden fortissimo chord from the entire 
orchestra in his “Surprise Symphony”. There, as you all 
will recall, the second movement begins with the most 
trivial theme that one can imagine, and, as if that were 
not enough, this theme is repeated! It is understandable 
that one nods off a bit at this point, before, suddenly, the 
orchestra roars off completely without warning. Today, 
we are used to quite a bit, however at the time the effect 
was certainly enormous … I want to draw your atten-
tion to a little detail that is not that obvious at first sight. 
Joseph Haydn grew up in deepest Lower Austria, later 
living in Vienna and in Eisenstadt in Burgenland.16 This 
joke, however, represents17 typical British humour: it is 
told “with a straight face”. After that fortissimo chord, 
one constantly – and nervously – awaits further conse-
quences as the movement continues (for instance, in the 
form of further shock effects…). But, no: nothing happens 
at all, the music continues as if nothing had occurred… 

Normally, however, humour in music is of a finer 
nature. Usually, the expectations of the listener are led 
astray, and it is in this manner that humourous effects 
are produced. A nice example for this is the first of 
the Humoresken by Max Reger. This piece has quite a 
graceful main theme, which however cannot develop as 
it would like. This main theme dominates two short sec-
tions at the beginning and at the end that frame a middle 
section, which considers itself as slightly too important, 
and thereby also creates an amusing impression. 

〈 Max Reger (1873–1916): Humoreske D major,  
op. 20/1 〉18 

I have a final point to offer: Tour de Force! I think you 
know: the thunderous hammering of keys in the Liszt 
Sonata, for example…

〈 Franz Liszt (1811–1886): Sonata b minor (excerpt)  〉19 

If you listened attentively then you will have observed 
that I studiously avoided one word in particular: the word 

14 Alfred Brendel: http://www.youtube.com/watch?v=V0z7m 
UV5rSc

15 Inimitable in his elegant, natural style of playing is Arthur Ru-
binstein: http://www.youtube.com/watch?v=laSh3D_77ZM, 
even if he does not take “brillante” too strictly…

16 A rural region of Austria to the south-east of Vienna.
17 It is fitting that that symphony is one that Haydn wrote for 

London.

18 Marc-André Hamelin does quite well in http://www.youtube.
com/watch?v=ba5js057WGM.

19 I like a recording from the Salzburg Festival, of which I possess 
a CD and in which Emil Gilels plays extraordinarily. On You-
Tube there exists a recording in three parts that is not quite as 
good: http://www.youtube.com/watch?v=7yhGSrn3idI, http://
www.youtube.com/watch?v=gyQ-MnjRvsE, http://www.you-
tube.com/watch?v=EKUAFRosm48.
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down in order to let others read and check it – Wiles did 
that; the result was an article of 200 pages, which itself 
was based on previous work by numerous other authors 
–, and the writeup must be submitted to a scientific jour-
nal for publication – Wiles also did that –, after which 
referees carefully verify this proof. During this process, it 
was discovered after a short while that Wiles’ proof con-
tained a gap that he was unable to fill. It needed another 
two years until Wiles, in joint work with his former stu-
dent Richard Taylor, succeeded in repairing this hole. In 
a BBC documentary,24 Andrew Wiles says the following 
about the moment when he realised that now all difficul-
ties are overcome: 

[Wiles is visibly deeply moved and speaks haltingly] 
When I was sitting here, at this desk – it was a Mon-
day morning, September 19 – and I was trying con-
vincing myself that it did not work, seeing exactly what 
the problem was, when suddenly, totally unexpectedly, 
I had this incredible revelation. I realised [that] what 
was holding me up was exactly what would resolve the 
problem that I had in my Iwasawa theory attempt three 
years earlier. 
It was–. it was the most – the most important moment 
of my working life … [At this point, Wiles is finally no 
longer able to continue; the scene is faded out.] 
It was so indescribably beautiful, it was so simple and 
so elegant … – and I just stared in disbelief for 20 min-
utes …. – then during the day I walked to our depart-
ment, I keep coming back to my desk, looking to see, it 
was still there, it was still there… 

Impressive, isn’t it? Contrary to widespread perception, 
mathematics seems to be a highly emotional activity. I 
noticed various emotions, including everything from 
“heartbreakingly sad” – at the point when the construc-
tion of the proof was in danger of collapsing – up to 
“transcendently joyful” – at the point when Wiles real-
ised that he has now mastered all difficulties. You may 
argue that Wiles is so moved because it was him who first 
solved this famous problem. This is certainly a compo-
nent. However, it falls short of the full truth. Wiles also 
says: “This was so indescribably beautiful, so elegant!”. 
Mathematics must have other qualities than just being 
“dust-dry” and “abstract”. We should hence discuss some 
of these qualities in greater depth.

As I have already said, once a mathematician has 
proved a fantastic theorem, then this proof must be writ-
ten down and be submitted for publication, whereupon 
the corresponding article is examined. The referees do 

Franz Joseph,20 who used to apply it whenever he was 
confronted with cultural intrusions: 

“Es war sehr schön, es hat mich sehr gefreut!”21 

For somebody, who apparently did not have any affin-
ity for culture, this was seemingly the best he could say 
about it… 

Let us return to the actual subject of this essay. 

Soul in mathematics 
For non-mathematicians, this will look like a pretty 

difficult topic. After all, we have all learned in high school 
that mathematics is a dust-dry, abstract matter, which is 
about applying recipes that have been known for centu-
ries to more or less intelligent exercises, and hoping that 
one has selected the correct recipe… (For the vindica-
tion of my mathematics teacher, I must say that I did not 
learn this in high school.) Anyhow, I believe that on the 
topic of “soul in mathematics” we should hand over to 
the earlier mentioned Andrew Wiles.

As I have already said, Wiles is famous for having 
proved “Fermat’s Last Theorem.” The statement of this 
theorem can be understood by any high school student, 
and I shall therefore present it here.

Theorem (Wiles, Taylor 1995). (Fermat’s Last Theorem) 
Let n be a natural number which is at least 3. Then there 
are no natural numbers22 x; y; z such that 

xn + yn = zn. 

Pierre de Fermat scribbled this assertion over 300 years 
ago into the margin of a page of an exemplary of Dio-
phantos’ book “Arithmetica”.23 In order to increase the 
suspense, he also added that he has found a “truly won-
derful” proof of this, but that the page margin was not 
wide enough to hold this proof. Since then, many very 
clever people racked their brains about this problem. As 
a matter of fact, much of number theory ignited itself 
on exactly this problem. However, for over 300 years 
nobody could find a proof of Fermat’s assertion. We may 
therefore safely assume that Fermat did not really have 
a proof, in any case not something that we would accept 
as a proof nowadays. It was a big sensation when Andrew 
Wiles announced at the end of a series of lectures that he 
gave at the Isaac Newton Institute in Cambridge in 1993 
that he had found a proof. Now, in mathematics it is not 
sufficient to just announce that one has found the proof 
of a theorem (as Fermat did). The proof must be written 

20 Franz Joseph I. (1830–1916), Emperor of Austria 1848–1916.
21 It was very nice! I enjoyed it very much!
22 In order to avoid any misunderstanding, when I speak of 

“natural” numbers, I mean the numbers 1, 2, 3,…, which 
corresponds to the original meaning of the word “natural”. 
Nowadays, unfortunately, one learns in school that the “natu-
ral numbers” consist of the numbers 0, 1, 2,… This may in-
deed be handy in some situations but it is simply a perver-
sion of the word “natural”, since 0 is without any doubt not a 
natural number.

23 The background/context of this assertion is the sharp con-
trast to the situation for n = 2: in that case, there are infinitely 
many solutions to the equation x2 + y2 = z2 in the natural 
numbers x, y, z, which can be precisely characterised and 
which are known as “Pythagorean triples”. Two of these we 
know from high school: 32 + 42 = 52 and 52 + 122 = 132.

24 The complete documentary can be seen at http://www.you-
tube.com/watch?v=7FnXgprKgSE. The cited passage ap-
pears roughly 5 minutes before the end. The very beginning 
of the documentary is also remarkable…
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the one hand, divide this number and, on the other hand, 
must appear among the prime numbers 2, 3, 5, 7, 11, 13, …, 
1031. (Remember that we assumed that these are all the 
prime numbers!) Let p be such a prime factor. p cannot 
equal 2 since the above number is visibly an odd num-
ber. But p can also not equal 3 since 3 does not divide a 
number of the form 3X + 1, of which the above number 
is an example. For an analogous reason, the prime fac-
tor cannot equal 5,…, and it cannot equal 1031. Hence, 
this cannot have been all the prime numbers.   

Now you will object: “This is all fine, however this is not 
a rigorous – valid in generality – mathematical proof.” 
After all, 1031 is just one special prime number. You are 
right, but the rigorous proof looks exactly the same. The 
only thing that needs to be done is to replace 2, 3, 5, …, 
1031 by symbols: p1, p2, p3, … , pn. 

Proof. Let us suppose that there are only finitely many 
prime numbers, say, p1, p2, p3, p4, p5, p6, … , pn. 

We now consider 

p1 · p2 · p3 · p4 · p5 · p6 · … · pn + 1: 

This (huge) number can be decomposed into a prod-
uct of prime factors. Each of these prime factors must, 
on the one hand, divide this number and, on the other 
hand, must appear among the prime numbers p1, p2, 
… , pn. (Remember that we assumed that these are 
all the prime numbers!) Let p be such a prime factor. 
p cannot equal p1 since p1 does not divide the num-
ber above. But p can also not equal p2 since p2 does 
not divide the above number. For the same reason, 
the prime factor cannot equal p3, …, and pn. Hence, 
this cannot have been all the prime numbers.  

We come to Humour in Mathematics. Can there really be 
humour, or indeed jokes, in mathematics? Well, this must 
be the case, since sometimes we may read in a reviewer’s 
report: 

“This is a funny construction!” 

How does humour appear in mathematics? Humour in 
mathematics is – as in music – normally of a finer nature. 
Also here, the expectations of the reader of a proof are 
led astray before, suddenly, a little detail surfaces, which 
we had not noticed earlier, but it is exactly this little detail 
which is the last (but decisive!) little brick that is needed 
to complete the argument. At this point, a mathematician 
must smile (how could (s)he have overlooked this?), and 
it delights her/his soul. 

I shall try once more to give an example, this time 
extracted from the work of the celebrated Indian mathe-
matician Srinivasa Ramanujan (see Figure 4). Born in 1887 
in the vicinity of Madras (today Chennai), Ramanujan had 
a very modest upbringing. He had only a basic school edu-
cation, but had always been interested in mathematics and 
mathematical problems. After finishing school, he worked 
as a clerk in the Madras Port trust, but in his leisure time 

not only judge correctness of proofs but also the other 
qualities of the article. A standard phrase that a referee 
might use to show that they like the article is:

“This is a very nice paper!” 

In view of the previous digression on “beauty” of music: 
funny, isn’t it? Mathematicians also don’t know anything 
better than saying “nice”… However, if the referee pro-
vides a sound opinion then they would also tell more spe-
cifically what they like about the article. Then we may 
sometimes read:

“This is a very elegant proof!” 

What is an “elegant proof”? In other words, what is a 
“mathematical waltz by Chopin”? Usually, we are talk-
ing about the situation where – in a proof – the math-
ematician is facing a seemingly insurmountable obstacle. 
With the help of a relatively simple, but not at all obvious, 
idea, the mathematician succeeds however to – elegant-
ly – circumnavigate this obstacle. I shall try to give an 
example, the theorem, known to everybody, that there 
are infinitely many prime numbers. 

Theorem. There are infinitely many prime numbers. 

Proof. If one looks at this assertion, what would we have 
to do in order to prove it? It seems that we would have 
to construct infinitely many primes. We would do even 
better if we could find a formula which gives us all prime 
numbers (or at least infinitely many). This is pretty hope-
less.25 

However, there is an – elegant – way around this. Let 
us suppose that there are only finitely many prime num-
bers. If, under this assumption, we succeed in deriving a 
contradiction, then our original assumption must have 
been wrong. Thus, we would have shown that there are 
indeed infinitely many prime numbers.

So, let us suppose that there are only finitely many 
prime numbers; say, 2, 3, 5, 7, 11, 13, … , 1031. 

We now consider 

2 · 3 · 5 · 7 · 11 · 13 · … · 1031 + 1: 

This (huge) number can be decomposed into a product 
of prime factors. Each of these prime factors must, on 

25 Mathematics offers plenty of incredibly fascinating, respec-
tively absurd, facts – depending on which point of view one 
is willing to take… the Russian mathematician Yuri Matiya-
sevich proved that there exist polynomials in several vari-
ables whose positive values – if the variables are specialised 
to concrete natural numbers – run through all prime num-
bers; see Dokl. Akad. Nauk SSSR 196 (1971), 770–773; Soviet 
Math.\ Dokl. 12 (1971), 249–254. Such polynomials have in-
deed been constructed explicitly. Not only do they have the 
“annoying” property that they attain (some) negative values, 
but in particular this property is satisfied most of the time… 
Hence, they are today just a curiosity, since, aside from their 
existence, they do not seem to be good for anything.
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at the same time an eminent mathematician then, had 
calculated the numbers p(n) up to n = 200.26 The first few 
numbers p(n) are shown here: 

Ramanujan studied MacMahon’s tables intensively, and 
made remarkable observations. One of these is made 
explicit in the theorem below. It says that every fifth par-
tition number is divisible by 5; see the bold face entries 
in the above table.27 

Theorem (“Ramanujan’s most beautiful theorem” 1919). 
p(5n + 4) is always divisible by 5. 

This theorem acquired the byname “Ramanujan’s most 
beautiful theorem”,28 since it is so simple and elegant 
to formulate, and at the same time it is so unexpected. 
Moreover, Ramanujan himself found a proof for it. 
Here, I want to discuss a proof taken from a paper of 
Hirschhorn and Hunt,29 which is very much in the spirit 
of Ramanujan. I am fully aware that the following is 
(mathematically) more demanding than everything else 
we have discussed so far. If you should not understand 
everything (or understand almost nothing…), this is 
fine. My point here is to indicate what “humour” may 
mean in mathematics. 

The proof is based on an old result of Leonhard Eul-
er. It says that the power series, in which the numbers 
p(n) appear as coefficients, can be written in terms of an 
infinite product. 

Theorem (Euler). We have 

Proof. It is quite possible that you feel uneasy when 
looking at these infinite sums and products. You may 
ask: “Does this really converge?”30 But this is the wrong 
question! The above expressions should be regarded as 
formal expressions, which are added, multiplied, etc., 
naively.31 

Let us adopt this formal point of view. Then, Euler’s 
formula can be proved in the following way. The prod-
uct on the right side consists throughout of factors of the 

he constantly worked on mathematical problems. At the 
age of 25, he sent his mathematical results to eminent 
mathematicians of the time. One of them, Godfrey Har-
old Hardy, Professor at the University of Cambridge, 
indeed read Ramanujan’s letter and recognised the genius 
of the unknown author. He invited Ramanujan to come 
to Cambridge, and to study and work with him. Benefac-
tors in India succeeded in collecting the money necessary 
to finance the journey to England, thus Ramanujan spent 
some years at the University of Cambridge. During this 
time, he wrote several very famous articles, often in col-
laboration with Hardy. Unfortunately, Ramanujan could 
not bear the British climate (as well as British nutrition…) 
and was frequently ill; within a year of returning to India 
he passed away at the age of only 32 years. 

One of the objects that were very dear to Ramanujan 
in his mathematical work was (integer) partitions. A par-
tition of a number n is the representation of this number 
as a sum of other natural numbers, where the summands 
are arranged in (weakly) increasing order. For n = 1, 
there is exactly one such representation, namely, 

1

For n = 2, there are two, namely, 

2, 1 + 1, 

For n = 3, there are three partitions, 

3, 1 + 2, 1 + 1 + 1,  

For n = 4, we already have five, 

4, 1 + 3, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1, 

and, for n = 5, we have 

5, 1 + 4, 2 + 3, 1 + 1 + 3, 1 + 2 + 2, 1 + 1 + 1 + 2,  
1 + 1 + 1 + 1 + 1. 

Let p(n) denote the number of partitions of n. Percy 
Alexander MacMahon, Major of the British army and 

Figure 4. Srinivasa Ramanujan, Godfrey Harold Hardy.

26 And he did this without making a single mistake! Even if he 
did not accomplish this by listing all partitions of numbers up to 
200, but rather by using a recurrence relation due to Euler, this 
constitutes – at a time that knew of no “computing machines” 
except paper and pencil – an extraordinary achievement!

27 Ramanujan made similar observations for the prime num-
bers 7 and 11. Together with the theorem discussed in the 
text, these founded the research area of “partition congru-
ences”, which has witnessed important breakthroughs during 
the past few years; see page 1525 in the survey article “Srini-

vasa Ramanujan: Going Strong at 125, Part I”, that appeared 
in the Notices of the American Mathematical Society, vol. 59, 
Nr. 11, 2012, edited by Krishnaswami Alladi, and is available 
at http://www.ams.org/notices/201211/rtx121101522p.pdf.

28 Strictly speaking, it is the identity (*) below, which Hardy se-
lected as “Ramanujan’s most beautiful identity.”

29 J. reine angew. Math. 326 (1981), 1–17.
30 It does for |q| < 1.
31 All this can be made rigorous by the theory of so-called for-

mal power series.

For n = 4, we already have five,

4, 1 + 3, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1,

and, for n = 5, we have

5, 1 + 4, 2 + 3, 1 + 1 + 3, 1 + 2 + 2,
1 + 1 + 1 + 2, 1 + 1 + 1 + 1 + 1.

Let p(n) denote the number of partitions of n. Percy Alexan-
der MacMahon, then a Major in the British army and an
eminent mathematician, calculated the numbers p(n) up to
n = 200.23 The first few numbers p(n) are shown here:

p(1) = 1 p(2) = 2, p(3) = 3, p(4)p(4)p(4) = 5,= 5,= 5, p(5) = 7

p(6) = 11 p(7) = 15, p(8) = 22, p(9)p(9)p(9) = 30,= 30,= 30, p(10) = 42

p(11) = 56 p(12) = 77, p(13) = 101, p(14)p(14)p(14) = 135,= 135,= 135, p(15) = 176

p(16) = 231 p(17) = 297, p(18) = 385, p(19)p(19)p(19) = 490,= 490,= 490, p(20) = 627

Ramanujan studied MacMahon’s tables intensively and made
remarkable observations. One of these is made explicit in the
theorem below. It says that every fifth partition number is di-
visible by 5 (see the bold entries in the table above).24

Theorem (“Ramanujan’s most beautiful theorem” 1919).
p(5n + 4) is always divisible by 5.

This theorem acquired the nickname “Ramanujan’s most
beautiful theorem”,25 since it is so simple and elegant to for-
mulate and, at the same time, so unexpected. Moreover, Ra-
manujan himself found a proof for it. Here, I want to discuss
a proof taken from a paper of Hirschhorn and Hunt,26 which
is very much in the spirit of Ramanujan. I am fully aware
that the following is (mathematically) more demanding than
everything else we have discussed so far. If you do not un-
derstand everything (or understand almost nothing . . . ), that
is fine. My point is to indicate what “humour" may mean in
mathematics.

The proof is based on an old result of Leonhard Euler. It
says that the power series, in which the numbers p(n) appear
as coefficients, can be written in terms of an infinite product.

Theorem (Euler). We have

1 + p(1)q + p(2)q2 + p(3)q3 + p(4)q4 + · · ·

=
1

(1 − q)(1 − q2)(1 − q3)(1 − q4) · · · .

Proof. It is quite possible that you feel uneasy when looking
at these infinite sums and products. You may ask: “Does this
really converge?"27 But this is the wrong question! The above

expressions should be regarded as formal expressions, which
are added, multiplied, etc., naively.28

Let us adopt this formal point of view. Then, Euler’s for-
mula can be proven in the following way. The product on the
right side consists throughout of factors of the form 1

1−qk . In
high school, we learned that the infinite geometric series can
be summed:29

1 + Q + Q2 + Q3 + Q4 + · · · = 1
1 − Q

.

We may apply this summation formula to each of the factors
(reading it backwards, so to speak):

1
(1 − q)(1 − q2)(1 − q3)(1 − q4) · · ·

=
1

1 − q
· 1

1 − q2 ·
1

1 − q3 ·
1

1 − q4 · · ·

= (1 + q1 + q1+1 + q1+1+1 + · · · )
· (1 + q2 + q2+2 + q2+2+2 + · · · )

· (1 + q3 + q3+3 + q3+3+3 + · · · ) · · · · .

Now, we must imagine what happens if we expand this last
product. Each term in the result arises by selecting one term
from each factor and multiplying these terms. For example, if
we select the term q1+1 from the first factor, the term q2+2+2

from the second, the term q3 from the third factor and the term
1 from all remaining factors then we obtain

q1+1+2+2+2+3

upon multiplication of these terms. Now it costs just a few
moments to convince oneself that the exponents of the ex-
pressions one obtains in this manner run through all parti-
tions. Thus, the above product is indeed equal to the left side
of Euler’s theorem. �

We are now in the position to embark on the proof of Ra-
manujan’s “most beautiful theorem”.

Proof of Ramanujan’s most beautiful theorem. In order to
have a compact notation,30 we abbreviate the product (1 −
q)(1 − q2)(1 − q3)(1 − q4) · · · by (q; q)∞. More generally, we
write

(α; q)∞ = (1 − α)(1 − αq)(1 − αq2)(1 − αq3) · · · .

The proof is based on several auxiliary results. These auxil-
iary results can be derived by means of elementary (but tricky)

23 And he did this without making a single mistake! Even if he did not accomplish this by listing all partitions of numbers up to 200 but rather by using a
recurrence relation due to Euler, this constitutes – at a time of no “computing machines” except paper and pencil – an extraordinary achievement!

24 Ramanujan made similar observations for the prime numbers 7 and 11. Together with the theorem discussed in the text, these founded the research area of
“partition congruences", which has witnessed important breakthroughs over the past few years; see page 1525 in the survey article “Srinivasa Ramanujan:
Going Strong at 125, Part I”, which appeared in the Notices of the American Mathematical Society, vol. 59, Nr. 11, 2012, edited by Krishnaswami Alladi,
and is available at http://www.ams.org/notices/201211/rtx121101522p.pdf.

25 Strictly speaking, it is the identity (∗) below, which Hardy selected as “Ramanujan’s most beautiful identity".
26 J. reine angew. Math. 326 (1981), 1–17.
27 It does for |q| < 1.
28 All this can be made rigorous by the theory of so-called formal power series.
29 The formula is also valid in the theory of formal power series.
30 Ramanujan did not know this notation and did not use any other short notation. Consequently, to read notes of Ramanujan constitutes a certain challenge.

For n = 4, we already have five,

4, 1 + 3, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1,

and, for n = 5, we have

5, 1 + 4, 2 + 3, 1 + 1 + 3, 1 + 2 + 2,
1 + 1 + 1 + 2, 1 + 1 + 1 + 1 + 1.

Let p(n) denote the number of partitions of n. Percy Alexan-
der MacMahon, then a Major in the British army and an
eminent mathematician, calculated the numbers p(n) up to
n = 200.23 The first few numbers p(n) are shown here:

p(1) = 1 p(2) = 2, p(3) = 3, p(4)p(4)p(4) = 5,= 5,= 5, p(5) = 7

p(6) = 11 p(7) = 15, p(8) = 22, p(9)p(9)p(9) = 30,= 30,= 30, p(10) = 42

p(11) = 56 p(12) = 77, p(13) = 101, p(14)p(14)p(14) = 135,= 135,= 135, p(15) = 176

p(16) = 231 p(17) = 297, p(18) = 385, p(19)p(19)p(19) = 490,= 490,= 490, p(20) = 627

Ramanujan studied MacMahon’s tables intensively and made
remarkable observations. One of these is made explicit in the
theorem below. It says that every fifth partition number is di-
visible by 5 (see the bold entries in the table above).24

Theorem (“Ramanujan’s most beautiful theorem” 1919).
p(5n + 4) is always divisible by 5.

This theorem acquired the nickname “Ramanujan’s most
beautiful theorem”,25 since it is so simple and elegant to for-
mulate and, at the same time, so unexpected. Moreover, Ra-
manujan himself found a proof for it. Here, I want to discuss
a proof taken from a paper of Hirschhorn and Hunt,26 which
is very much in the spirit of Ramanujan. I am fully aware
that the following is (mathematically) more demanding than
everything else we have discussed so far. If you do not un-
derstand everything (or understand almost nothing . . . ), that
is fine. My point is to indicate what “humour" may mean in
mathematics.

The proof is based on an old result of Leonhard Euler. It
says that the power series, in which the numbers p(n) appear
as coefficients, can be written in terms of an infinite product.

Theorem (Euler). We have

1 + p(1)q + p(2)q2 + p(3)q3 + p(4)q4 + · · ·

=
1

(1 − q)(1 − q2)(1 − q3)(1 − q4) · · · .

Proof. It is quite possible that you feel uneasy when looking
at these infinite sums and products. You may ask: “Does this
really converge?"27 But this is the wrong question! The above

expressions should be regarded as formal expressions, which
are added, multiplied, etc., naively.28

Let us adopt this formal point of view. Then, Euler’s for-
mula can be proven in the following way. The product on the
right side consists throughout of factors of the form 1

1−qk . In
high school, we learned that the infinite geometric series can
be summed:29

1 + Q + Q2 + Q3 + Q4 + · · · = 1
1 − Q

.

We may apply this summation formula to each of the factors
(reading it backwards, so to speak):

1
(1 − q)(1 − q2)(1 − q3)(1 − q4) · · ·

=
1

1 − q
· 1

1 − q2 ·
1

1 − q3 ·
1

1 − q4 · · ·

= (1 + q1 + q1+1 + q1+1+1 + · · · )
· (1 + q2 + q2+2 + q2+2+2 + · · · )

· (1 + q3 + q3+3 + q3+3+3 + · · · ) · · · · .

Now, we must imagine what happens if we expand this last
product. Each term in the result arises by selecting one term
from each factor and multiplying these terms. For example, if
we select the term q1+1 from the first factor, the term q2+2+2

from the second, the term q3 from the third factor and the term
1 from all remaining factors then we obtain

q1+1+2+2+2+3

upon multiplication of these terms. Now it costs just a few
moments to convince oneself that the exponents of the ex-
pressions one obtains in this manner run through all parti-
tions. Thus, the above product is indeed equal to the left side
of Euler’s theorem. �

We are now in the position to embark on the proof of Ra-
manujan’s “most beautiful theorem”.

Proof of Ramanujan’s most beautiful theorem. In order to
have a compact notation,30 we abbreviate the product (1 −
q)(1 − q2)(1 − q3)(1 − q4) · · · by (q; q)∞. More generally, we
write

(α; q)∞ = (1 − α)(1 − αq)(1 − αq2)(1 − αq3) · · · .

The proof is based on several auxiliary results. These auxil-
iary results can be derived by means of elementary (but tricky)

23 And he did this without making a single mistake! Even if he did not accomplish this by listing all partitions of numbers up to 200 but rather by using a
recurrence relation due to Euler, this constitutes – at a time of no “computing machines” except paper and pencil – an extraordinary achievement!

24 Ramanujan made similar observations for the prime numbers 7 and 11. Together with the theorem discussed in the text, these founded the research area of
“partition congruences", which has witnessed important breakthroughs over the past few years; see page 1525 in the survey article “Srinivasa Ramanujan:
Going Strong at 125, Part I”, which appeared in the Notices of the American Mathematical Society, vol. 59, Nr. 11, 2012, edited by Krishnaswami Alladi,
and is available at http://www.ams.org/notices/201211/rtx121101522p.pdf.

25 Strictly speaking, it is the identity (∗) below, which Hardy selected as “Ramanujan’s most beautiful identity".
26 J. reine angew. Math. 326 (1981), 1–17.
27 It does for |q| < 1.
28 All this can be made rigorous by the theory of so-called formal power series.
29 The formula is also valid in the theory of formal power series.
30 Ramanujan did not know this notation and did not use any other short notation. Consequently, to read notes of Ramanujan constitutes a certain challenge.
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This lemma entails two further lemmas. 

Lemma. We have 

where R is a power series in q5.34 

Lemma. We have 

Now, we may combine these lemmas35 in order to find the 
following expression for the so-called “generating func-
tion” for the partition numbers: 

By this time, we have certainly lost sight of our overall 
goal. Why do we write such a complicated expression for 
the generating function of the partition numbers? What 
did we actually want to prove? It is at this point that the 
punch line reveals itself! We are actually only interested 
in the partition numbers p(4), p(9), p(14), p(19), etc., that 
is, in 

p(4)q4 + p(9)q9 + p(14)q14 + p(19)q19 + · · ·.

Let us look at the right-hand side of the above compli-
cated expression: there we see the series R, which accord-
ing to the lemma contains only powers of q5. Also, the 
products (q5; q5)∞ and (q25; q25)∞ consist only of powers 
of q5. At the front of this expression, there is the factor 
q4. So, inside the big parentheses, the only terms that are 
of interest for us are powers of q5; everything else can be 
neglected. However, if one actually looks inside carefully 
(the reader should recall that the series R only contains 
powers of q5!) then the only term that is relevant is the 
lonely 5! In other words, from the horrendous formula 
above (the reader should concentrate on the terms in 
bold face), one can immediately extract that: 

The point here is: on the right-hand side everything 
gets multiplied by 5! Consequently, all coefficients on 
the left-hand side – that is, p(4), p(9), p(14), p(19), etc. 

form  11–qk . In high school, we learned that the infinite geo-
metric series can be summed:32 

We may apply this summation formula to each of the fac-
tors (so-to-speak: reading it backwards): 

Now we must imagine what happens if we expand this 
last product. Each term in the result arises by selecting 
one term from each factor, and by multiplying these 
terms. For example, if we select the term q1+1 from the 
first factor, the term q2+2+2 from the second, the term q3 
from the third factor and the term 1 from all remaining 
factors, then we obtain 

q1+1+2+2+2+3

upon multiplication of these terms. Now it costs just a few 
moments to convince oneself that the exponents of the 
expressions one obtains in this manner run through all par-
titions. Thus, the above product is indeed equal to the left-
hand side of Euler’s theorem..     

We are now in the position to embark on the proof of 
Ramanujan’s “most beautiful theorem”. 

Proof of Ramanujan’s most beautiful theorem. In order 
to have a compact notation,33 we abbreviate the product 
(1 – q)(1 – q2)(1 – q3)(1 – q4) by (q; q)∞. More generally, we 
write 

(a;q)∞ = (1 – a)(1 – aq)(1 – aq2)(1 – aq3) · · ·.

The proof is based on several auxiliary results. These 
auxiliary results can be derived by means of elementary 
(but tricky) manipulations of power series and by the use 
of Jacobi’s triple product formula 

It would however go definitely beyond the scope of this 
discussion to explain this in detail here. 

Lemma. Let w 5= 1, w ≠ 1. Then

32 The formula is also valid in the theory of formal power series.
33 Ramanujan did not know this notation, and did not use any 

other short notation. Consequently, to read notes of Ra-
manujan constitutes a certain challenge.

34 There also exists an explicit formula for the series R.
35 The identity from the last lemma is “divided” by the one from 

the previous lemma, and then one substitutes Euler’s theo-
rem.

For n = 4, we already have five,

4, 1 + 3, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1,

and, for n = 5, we have

5, 1 + 4, 2 + 3, 1 + 1 + 3, 1 + 2 + 2,
1 + 1 + 1 + 2, 1 + 1 + 1 + 1 + 1.

Let p(n) denote the number of partitions of n. Percy Alexan-
der MacMahon, then a Major in the British army and an
eminent mathematician, calculated the numbers p(n) up to
n = 200.23 The first few numbers p(n) are shown here:

p(1) = 1 p(2) = 2, p(3) = 3, p(4)p(4)p(4) = 5,= 5,= 5, p(5) = 7

p(6) = 11 p(7) = 15, p(8) = 22, p(9)p(9)p(9) = 30,= 30,= 30, p(10) = 42

p(11) = 56 p(12) = 77, p(13) = 101, p(14)p(14)p(14) = 135,= 135,= 135, p(15) = 176

p(16) = 231 p(17) = 297, p(18) = 385, p(19)p(19)p(19) = 490,= 490,= 490, p(20) = 627

Ramanujan studied MacMahon’s tables intensively and made
remarkable observations. One of these is made explicit in the
theorem below. It says that every fifth partition number is di-
visible by 5 (see the bold entries in the table above).24

Theorem (“Ramanujan’s most beautiful theorem” 1919).
p(5n + 4) is always divisible by 5.

This theorem acquired the nickname “Ramanujan’s most
beautiful theorem”,25 since it is so simple and elegant to for-
mulate and, at the same time, so unexpected. Moreover, Ra-
manujan himself found a proof for it. Here, I want to discuss
a proof taken from a paper of Hirschhorn and Hunt,26 which
is very much in the spirit of Ramanujan. I am fully aware
that the following is (mathematically) more demanding than
everything else we have discussed so far. If you do not un-
derstand everything (or understand almost nothing . . . ), that
is fine. My point is to indicate what “humour" may mean in
mathematics.

The proof is based on an old result of Leonhard Euler. It
says that the power series, in which the numbers p(n) appear
as coefficients, can be written in terms of an infinite product.

Theorem (Euler). We have

1 + p(1)q + p(2)q2 + p(3)q3 + p(4)q4 + · · ·

=
1

(1 − q)(1 − q2)(1 − q3)(1 − q4) · · · .

Proof. It is quite possible that you feel uneasy when looking
at these infinite sums and products. You may ask: “Does this
really converge?"27 But this is the wrong question! The above

expressions should be regarded as formal expressions, which
are added, multiplied, etc., naively.28

Let us adopt this formal point of view. Then, Euler’s for-
mula can be proven in the following way. The product on the
right side consists throughout of factors of the form 1

1−qk . In
high school, we learned that the infinite geometric series can
be summed:29

1 + Q + Q2 + Q3 + Q4 + · · · = 1
1 − Q

.

We may apply this summation formula to each of the factors
(reading it backwards, so to speak):

1
(1 − q)(1 − q2)(1 − q3)(1 − q4) · · ·

=
1

1 − q
· 1

1 − q2 ·
1

1 − q3 ·
1

1 − q4 · · ·

= (1 + q1 + q1+1 + q1+1+1 + · · · )
· (1 + q2 + q2+2 + q2+2+2 + · · · )

· (1 + q3 + q3+3 + q3+3+3 + · · · ) · · · · .

Now, we must imagine what happens if we expand this last
product. Each term in the result arises by selecting one term
from each factor and multiplying these terms. For example, if
we select the term q1+1 from the first factor, the term q2+2+2

from the second, the term q3 from the third factor and the term
1 from all remaining factors then we obtain

q1+1+2+2+2+3

upon multiplication of these terms. Now it costs just a few
moments to convince oneself that the exponents of the ex-
pressions one obtains in this manner run through all parti-
tions. Thus, the above product is indeed equal to the left side
of Euler’s theorem. �

We are now in the position to embark on the proof of Ra-
manujan’s “most beautiful theorem”.

Proof of Ramanujan’s most beautiful theorem. In order to
have a compact notation,30 we abbreviate the product (1 −
q)(1 − q2)(1 − q3)(1 − q4) · · · by (q; q)∞. More generally, we
write

(α; q)∞ = (1 − α)(1 − αq)(1 − αq2)(1 − αq3) · · · .

The proof is based on several auxiliary results. These auxil-
iary results can be derived by means of elementary (but tricky)

23 And he did this without making a single mistake! Even if he did not accomplish this by listing all partitions of numbers up to 200 but rather by using a
recurrence relation due to Euler, this constitutes – at a time of no “computing machines” except paper and pencil – an extraordinary achievement!

24 Ramanujan made similar observations for the prime numbers 7 and 11. Together with the theorem discussed in the text, these founded the research area of
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For n = 4, we already have five,
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1
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manipulations of power series and by the use of Jacobi’s triple
product formula

∞∑
n=−∞

(−1)nqn(n−1)/2xn = (q; q)∞ (x; q)∞ (q/x; q)∞.

It would, however, go beyond the scope of this discussion to
explain this in detail here.

Lemma. Let ω5 = 1, ω � 1. Then,

(q; q)∞ (ωq;ωq)∞ (ω2q;ω2q)∞ (ω3q;ω3q)∞ (ω4q;ω4q)∞

=
(q5; q5)6

∞
(q25; q25)∞

.

This lemma entails two further lemmas.

Lemma. We have

(q; q)∞
q(q25; q25)∞

= q−1R − 1 − qR−1,

where R is a power series in q5.31

Lemma. We have

q−5R5 − 11 − q5R−5 =
(q5; q5)6

∞
q5(q25; q25)6

∞
.

Now, we may combine these lemmas32 in order to find the
following expression for the so-called “generating function"
for the partition numbers:

1 + p(1)q + p(2)q2 + p(3)q3 + p(4)q4p(4)q4p(4)q4+p(5)q5

+p(6)q6 + p(7)q7 + p(8)q8 + p(9)q9p(9)q9p(9)q9+p(10)q10

+p(11)q11 + p(12)q12 + p(13)q13 + p(14)q14p(14)q14p(14)q14 + · · ·

= q4 (q25; q25)5
∞

(q5; q5)6
∞

q4 (q25; q25)5
∞

(q5; q5)6
∞

q4 (q25; q25)5
∞

(q5; q5)6
∞
· (q−4R4 + q−3R3 + 2q−2R2 + 3q−1R + 555

−3qR−1 + 2q2R−2 − q3R−3 + q4R−4). (∗)

By this time, we have certainly lost sight of our overall goal.
Why do we write such a complicated expression for the gener-
ating function of the partition numbers? What did we actually
want to prove? It is at this point that the punchline reveals it-
self! We are actually only interested in the partition numbers
p(4), p(9), p(14), p(19), etc., that is, in

p(4)q4 + p(9)q9 + p(14)q14 + p(19)q19 + · · · .

Let us look at the right side of the complicated expres-
sion above: there we see the series R, which, according to
the lemma, contains only powers of q5. Also, the products
(q5; q5)∞ and (q25; q25)∞ consist only of powers of q5. At the
front of this expression, there is the factor q4. So, inside the
big parentheses, the only terms that are of interest for us are
powers of q5; everything else can be neglected. However, if
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one actually looks inside carefully (the reader should recall
that the series R only contains powers of q5!) then the only
term that is relevant is the lonely 5! In other words, from the
horrendous formula above (the reader should concentrate on
the terms in bold face), one can immediately extract that:

p(4)q4 + p(9)q9 + p(14)q14 + · · · = q4 (q25; q25)5
∞

(q5; q5)6
∞
×5×5×5 .

The point here is: on the right side everything gets multiplied
by 5 ! Consequently, all the coefficients on the left side – that
is, p(4), p(9), p(14), p(19), etc. – are divisible by 5. This is
exactly the desired assertion that we wanted to prove. �

I do not know how you were doing while going through
this proof. Every time I present it during a lecture course,
there are always a few students who cannot help but smile
when the punchline is revealed.

We come to the Tour de Force! Of course, what Andrew
Wiles has accomplished is an incredible tour de force. Since
this requires, however, large chunks of modern number theory
and algebra, in a few minutes I can say exactly nothing about
it. Therefore, I have chosen a different example for illustra-
tion from my own research area, namely, Doron Zeilberger’s
(see Figure 5) theorem on alternating sign matrices. First of
all, we need to know what an alternating sign matrix is. An
alternating sign matrix is a square arrangement of 0’s, 1’s and
(−1)’s that satisfies the following rule: if one reads along rows
or columns and ignores the 0’s then one reads alternatingly 1,
−1, 1, . . . , 1. In order to avoid any misunderstanding: one
starts and ends with a 1. Here is an example of an alternating
sign matrix:

0 0 1 0 0 0
0 1 −1 0 1 0
0 0 1 0 −1 1
1 0 −1 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0 .

You may well ask why mathematicians are interested in alter-
nating sign matrices. I cannot say too much here for the sake
of brevity. Alternating sign matrices arose originally in a nat-
ural fashion around 1980 in the work of David Robbins and
Howard Rumsey on generalisation of determinants. Later, it

31 There also exists an explicit formula for the series R.
32 The identity from the last lemma is “divided” by the one from the previous lemma and then one substitutes Euler’s theorem.
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Howard Rumsey on generalisation of determinants. Later, it

31 There also exists an explicit formula for the series R.
32 The identity from the last lemma is “divided” by the one from the previous lemma and then one substitutes Euler’s theorem.

manipulations of power series and by the use of Jacobi’s triple
product formula

∞∑
n=−∞

(−1)nqn(n−1)/2xn = (q; q)∞ (x; q)∞ (q/x; q)∞.

It would, however, go beyond the scope of this discussion to
explain this in detail here.

Lemma. Let ω5 = 1, ω � 1. Then,

(q; q)∞ (ωq;ωq)∞ (ω2q;ω2q)∞ (ω3q;ω3q)∞ (ω4q;ω4q)∞

=
(q5; q5)6

∞
(q25; q25)∞

.

This lemma entails two further lemmas.

Lemma. We have

(q; q)∞
q(q25; q25)∞

= q−1R − 1 − qR−1,

where R is a power series in q5.31

Lemma. We have

q−5R5 − 11 − q5R−5 =
(q5; q5)6

∞
q5(q25; q25)6

∞
.

Now, we may combine these lemmas32 in order to find the
following expression for the so-called “generating function"
for the partition numbers:

1 + p(1)q + p(2)q2 + p(3)q3 + p(4)q4p(4)q4p(4)q4+p(5)q5

+p(6)q6 + p(7)q7 + p(8)q8 + p(9)q9p(9)q9p(9)q9+p(10)q10

+p(11)q11 + p(12)q12 + p(13)q13 + p(14)q14p(14)q14p(14)q14 + · · ·

= q4 (q25; q25)5
∞

(q5; q5)6
∞

q4 (q25; q25)5
∞

(q5; q5)6
∞

q4 (q25; q25)5
∞

(q5; q5)6
∞
· (q−4R4 + q−3R3 + 2q−2R2 + 3q−1R + 555

−3qR−1 + 2q2R−2 − q3R−3 + q4R−4). (∗)

By this time, we have certainly lost sight of our overall goal.
Why do we write such a complicated expression for the gener-
ating function of the partition numbers? What did we actually
want to prove? It is at this point that the punchline reveals it-
self! We are actually only interested in the partition numbers
p(4), p(9), p(14), p(19), etc., that is, in

p(4)q4 + p(9)q9 + p(14)q14 + p(19)q19 + · · · .

Let us look at the right side of the complicated expres-
sion above: there we see the series R, which, according to
the lemma, contains only powers of q5. Also, the products
(q5; q5)∞ and (q25; q25)∞ consist only of powers of q5. At the
front of this expression, there is the factor q4. So, inside the
big parentheses, the only terms that are of interest for us are
powers of q5; everything else can be neglected. However, if
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one actually looks inside carefully (the reader should recall
that the series R only contains powers of q5!) then the only
term that is relevant is the lonely 5! In other words, from the
horrendous formula above (the reader should concentrate on
the terms in bold face), one can immediately extract that:

p(4)q4 + p(9)q9 + p(14)q14 + · · · = q4 (q25; q25)5
∞

(q5; q5)6
∞
×5×5×5 .

The point here is: on the right side everything gets multiplied
by 5 ! Consequently, all the coefficients on the left side – that
is, p(4), p(9), p(14), p(19), etc. – are divisible by 5. This is
exactly the desired assertion that we wanted to prove. �

I do not know how you were doing while going through
this proof. Every time I present it during a lecture course,
there are always a few students who cannot help but smile
when the punchline is revealed.

We come to the Tour de Force! Of course, what Andrew
Wiles has accomplished is an incredible tour de force. Since
this requires, however, large chunks of modern number theory
and algebra, in a few minutes I can say exactly nothing about
it. Therefore, I have chosen a different example for illustra-
tion from my own research area, namely, Doron Zeilberger’s
(see Figure 5) theorem on alternating sign matrices. First of
all, we need to know what an alternating sign matrix is. An
alternating sign matrix is a square arrangement of 0’s, 1’s and
(−1)’s that satisfies the following rule: if one reads along rows
or columns and ignores the 0’s then one reads alternatingly 1,
−1, 1, . . . , 1. In order to avoid any misunderstanding: one
starts and ends with a 1. Here is an example of an alternating
sign matrix:

0 0 1 0 0 0
0 1 −1 0 1 0
0 0 1 0 −1 1
1 0 −1 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0 .

You may well ask why mathematicians are interested in alter-
nating sign matrices. I cannot say too much here for the sake
of brevity. Alternating sign matrices arose originally in a nat-
ural fashion around 1980 in the work of David Robbins and
Howard Rumsey on generalisation of determinants. Later, it
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32 The identity from the last lemma is “divided” by the one from the previous lemma and then one substitutes Euler’s theorem.
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By this time, we have certainly lost sight of our overall goal.
Why do we write such a complicated expression for the gener-
ating function of the partition numbers? What did we actually
want to prove? It is at this point that the punchline reveals it-
self! We are actually only interested in the partition numbers
p(4), p(9), p(14), p(19), etc., that is, in

p(4)q4 + p(9)q9 + p(14)q14 + p(19)q19 + · · · .

Let us look at the right side of the complicated expres-
sion above: there we see the series R, which, according to
the lemma, contains only powers of q5. Also, the products
(q5; q5)∞ and (q25; q25)∞ consist only of powers of q5. At the
front of this expression, there is the factor q4. So, inside the
big parentheses, the only terms that are of interest for us are
powers of q5; everything else can be neglected. However, if
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one actually looks inside carefully (the reader should recall
that the series R only contains powers of q5!) then the only
term that is relevant is the lonely 5! In other words, from the
horrendous formula above (the reader should concentrate on
the terms in bold face), one can immediately extract that:

p(4)q4 + p(9)q9 + p(14)q14 + · · · = q4 (q25; q25)5
∞

(q5; q5)6
∞
×5×5×5 .

The point here is: on the right side everything gets multiplied
by 5 ! Consequently, all the coefficients on the left side – that
is, p(4), p(9), p(14), p(19), etc. – are divisible by 5. This is
exactly the desired assertion that we wanted to prove. �

I do not know how you were doing while going through
this proof. Every time I present it during a lecture course,
there are always a few students who cannot help but smile
when the punchline is revealed.

We come to the Tour de Force! Of course, what Andrew
Wiles has accomplished is an incredible tour de force. Since
this requires, however, large chunks of modern number theory
and algebra, in a few minutes I can say exactly nothing about
it. Therefore, I have chosen a different example for illustra-
tion from my own research area, namely, Doron Zeilberger’s
(see Figure 5) theorem on alternating sign matrices. First of
all, we need to know what an alternating sign matrix is. An
alternating sign matrix is a square arrangement of 0’s, 1’s and
(−1)’s that satisfies the following rule: if one reads along rows
or columns and ignores the 0’s then one reads alternatingly 1,
−1, 1, . . . , 1. In order to avoid any misunderstanding: one
starts and ends with a 1. Here is an example of an alternating
sign matrix:

0 0 1 0 0 0
0 1 −1 0 1 0
0 0 1 0 −1 1
1 0 −1 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0 .

You may well ask why mathematicians are interested in alter-
nating sign matrices. I cannot say too much here for the sake
of brevity. Alternating sign matrices arose originally in a nat-
ural fashion around 1980 in the work of David Robbins and
Howard Rumsey on generalisation of determinants. Later, it

31 There also exists an explicit formula for the series R.
32 The identity from the last lemma is “divided” by the one from the previous lemma and then one substitutes Euler’s theorem.
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If we denote the number of all alternating sign matrices 
consisting of exactly n rows by A(n) then the following 
table 

shows the first values of the sequence. Mills, Robbins and 
Rumsey studied these numbers carefully and made a 
remarkable discovery. 

Conjecture (Mills, Robbins, Rumsey ∼ 1980). We have

where m! = m · (m – 1) · (m – 2) · · · · · 2 · 1. 

This is extremely surprising. If a mathematician learns 
about the above question, then the immediate reaction 
would be that there cannot be any reasonable formula 
for the number of all alternating sign matrices consisting 
of exactly n rows. But, no! It seems that there is even an 
elegant, compact product formula!

But how to prove this? For more than 10 years, math-
ematicians did not even know how to attack this con-
jecture. Everybody was therefore very surprised when 
Doron Zeilberger announced in 1993 that he had found 
a proof. Along with the announcement, he distributed a 
25-page article which contained that proof. 

As you know, it is not sufficient to announce that 
one has proved something. The proof must be written 
down and submitted for publication, after which the cor-
responding article is refereed. Zeilberger submitted his 
article for publication and – you guess it – the referee 
found gaps in the proof. So, the article went back to Dor-
on Zeilberger with the request to fill the gaps. Zeilberger 
did some repair work and resubmitted the article, and 
the referee found new gaps. The article went again back 
to Zeilberger, he did more modifications, resubmitted, 
and the article went back and forth in this manner sever-
al times, until the referee lost patience. He probably told 
Zeilberger roughly the following: “Dear Doron! Before 
you resubmit the article, please do something. Read your 
proof carefully from the very beginning to the end. If you 
should not be able to do that, then give the article to a 
student to check the proof; but, please, do something!” 

Doron Zeilberger did do something. First of all, he 
read and checked his article carefully. Furthermore, he 
structured the proof completely hierarchically, so that the 
article could be read “locally”; in the sense that each part 

– are divisible by 5. This is exactly the desired asser-
tion that we wanted to prove.     

I do not know how you were doing while going 
through this proof. Every time, I present it during a lec-
ture course, there are always a few students who cannot 
help but smile when the punch line is revealed. 

We come to the Tour de Force! Of course, what 
Andrew Wiles has accomplished is an incredible tour de 
force. Since this requires however large chunks of mod-
ern number theory and algebra, in a few minutes I can 
say exactly nothing about it. Therefore, I have chosen a 
different example for illustration – from my own research 
area –, namely Doron Zeilberger’s (see Figure 5) theo-
rem on alternating sign matrices. First of all, we need to 
know what an alternating sign matrix is. An alternating 
sign matrix is a square arrangement of 0’s, 1’s and (–1)’s 
which satisfies the following rule: if one reads along rows 
or columns and ignores the 0’s then one reads alternat-
ingly 1, –1, 1, … , 1. In order to avoid any misunderstand-
ing: one starts and ends with a 1. Here is an example of 
an alternating sign matrix: 

You may well ask why mathematicians are interested 
in alternating sign matrices. I cannot say too much here 
for the sake of brevity. Alternating sign matrices arose 
originally in a natural fashion around 1980 in work of 
David Robbins and Howard Rumsey on a generalisa-
tion of determinants. Later, it was discovered that the 
same objects also appear in Theoretical Physics, albeit in 
different guise, namely as configurations in an – admit-
tedly somewhat simplistic – model for the formation of 
ice. William Mills, David Robbins and Howard Rumsey 
asked themselves how many alternating sign matrices 
there are. More precisely:

How many alternating sign matrices with exactly n 
rows are there? 

Apparently there exists exactly one alternating sign 
matrix consisting of one row, namely 

1. 

There are two alternating sign matrices with two rows: 

And there are 7 alternating sign matrices with three rows: 
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was discovered that the same objects also appear in theoret-
ical physics, albeit in a different guise, namely, as configu-
rations in an admittedly somewhat simplistic model for the
formation of ice. William Mills, David Robbins and Howard
Rumsey asked themselves how many alternating sign matri-
ces there are. More precisely:

How many alternating sign matrices with exactly n rows are
there?

There exists exactly one alternating sign matrix consisting of
one row, namely,

1.

There are two alternating sign matrices with two rows:

1 0
0 1

0 1
1 0 .

And there are 7 alternating sign matrices with three rows:

1 0 0
0 1 0
0 0 1

1 0 0
0 0 1
0 1 0

0 1 0
1 0 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

0 0 1
0 1 0
1 0 0

0 1 0
1 −1 1
0 1 0 .

If we denote the number of all alternating sign matrices con-
sisting of exactly n rows by A(n) then the following table

Table 1

n 1 2 3 4 5 6
A(n) 1 2 7 42 429 7436

shows the first values of the sequence. Mills, Robbins and
Rumsey studied these numbers carefully and made a remark-
able discovery.

Conjecture (Mills, Robbins, Rumsey ∼ 1980). We have

A(n) =
1! · 4! · 7! · · · · · (3n − 2)!

n! · (n + 1)! · (n + 2)! · · · · · (2n − 1)!
,

where m! = m · (m − 1) · (m − 2) · · · · · 2 · 1.

This is extremely surprising. If a mathematician learns
about the above question then the immediate reaction would
be that there cannot be any reasonable formula for the number
of all alternating sign matrices consisting of exactly n rows.
But no! It seems that there is even an elegant, compact prod-
uct formula!

But how to prove this? For more than 10 years, mathe-
maticians did not even know how to attack this conjecture.
Everybody was therefore very surprised when Doron Zeil-
berger announced in 1993 that he had found a proof. Along
with the announcement, he distributed a 25-page article that
contained the proof.

As you know, it is not sufficient to announce that one has
proven something. The proof must be written down and sub-
mitted for publication, after which the corresponding article is

refereed. Zeilberger submitted his article for publication and
– you guessed it – the referee found gaps in the proof. So, the
article went back to Doron Zeilberger with a request to fill the
gaps. Zeilberger did some repair work and resubmitted the ar-
ticle and the referee found new gaps. The article went back to
Zeilberger again, he did more modifications, resubmitted and
the article went back and forth in this manner several times,
until the referee lost patience. He probably told Zeilberger
roughly the following: “Dear Doron! Before you resubmit the
article, please do something. Read your proof carefully from
the very beginning to the end. If you should not be able to do
that then give the article to a student to check the proof; but
please, do something!”

Doron Zeilberger did do something. First of all, he read
and checked his article carefully. Furthermore, he structured
the proof completely hierarchically so that the article could
be read “locally", in the sense that each part could be read
independently of the rest if one assumed that everything that
appeared lower in the hierarchy was correct. Subsequently,
he asked about 80 colleagues to check the article. He as-
signed to each of them 2 to 3 pages, and the task was to
check these pages under the assumption that everything that
appeared lower in the proof hierarchy was correct. So it hap-
pened. A few minor deficiencies were discovered in that way,
which could be easily repaired, but nothing dramatic surfaced
anymore and the article was eventually published in 1995.33

In Figure 6, we see the first page of the article. After the ti-
tle, the aforementioned colleagues (the “checkers”, totalling
around 80) are listed. The article is no longer 25 pages long
but rather 85. As I said, the proof is structured completely hi-
erarchically. The actual main theorem of the article is called
Lemma 1 (see Figure 7). This is based on Sublemma 1.1
and Sublemma 1.2. The latter in turn are based on Subsub-
lemma 1.1.1, Subsublemma 1.1.2, . . . , Subsublemma 1.2.1,
Subsublemma 1.2.2, . . . , which in turn are based on Subsub-
sublemma 1.1.1.1, . . . , and so forth, up to Sub6, that is, up to
Subsubsubsubsubsublemma, one of which we see in Figure 8.

You get the impression – we are talking about a real tour
de force. There is one thing, however, that cannot be said
about it. One cannot claim that this is a “nice” proof, an ele-
gant proof. In order to defend this, the same Doron Zeilberger
– in a different context – went as far as to exclaim:34

“Extreme UGLINESS is new BEAUTY!”

I think we let this stand as it is. Those who are naturally
sarcastic would say: “Yes, I always had the impression that
this is exactly the idea of many modern composers.” I would
counter that, at all times, there have existed better and worse
composers. Once time passes, the worse ones tend to be for-
gotten and only the outstanding composers remain. One can
verify the latter phenomenon very well if one asks how many
composers there were when Beethoven was a celebrity. An-
swer: innumerably many! If, however, one asks which of them
are still known today, which ones are still performed today,
then Franz Schubert comes immediately to one’s mind (who
was “ironically” largely unknown at the time) and also Carl
Maria von Weber and the Italian opera composers Gioachino

33 Electron. J. Combin. 3 (no. 2, “The Foata Festschrift”) (1996), #R13, 84 pp.
34 Excerpt from a talk at the Third International Conference on “Formal Power Series and Algebraic Combinatorics", Bordeaux, 4 May 1991.

was discovered that the same objects also appear in theoret-
ical physics, albeit in a different guise, namely, as configu-
rations in an admittedly somewhat simplistic model for the
formation of ice. William Mills, David Robbins and Howard
Rumsey asked themselves how many alternating sign matri-
ces there are. More precisely:

How many alternating sign matrices with exactly n rows are
there?

There exists exactly one alternating sign matrix consisting of
one row, namely,

1.

There are two alternating sign matrices with two rows:
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0 1
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If we denote the number of all alternating sign matrices con-
sisting of exactly n rows by A(n) then the following table

Table 1

n 1 2 3 4 5 6
A(n) 1 2 7 42 429 7436

shows the first values of the sequence. Mills, Robbins and
Rumsey studied these numbers carefully and made a remark-
able discovery.

Conjecture (Mills, Robbins, Rumsey ∼ 1980). We have

A(n) =
1! · 4! · 7! · · · · · (3n − 2)!

n! · (n + 1)! · (n + 2)! · · · · · (2n − 1)!
,

where m! = m · (m − 1) · (m − 2) · · · · · 2 · 1.

This is extremely surprising. If a mathematician learns
about the above question then the immediate reaction would
be that there cannot be any reasonable formula for the number
of all alternating sign matrices consisting of exactly n rows.
But no! It seems that there is even an elegant, compact prod-
uct formula!

But how to prove this? For more than 10 years, mathe-
maticians did not even know how to attack this conjecture.
Everybody was therefore very surprised when Doron Zeil-
berger announced in 1993 that he had found a proof. Along
with the announcement, he distributed a 25-page article that
contained the proof.

As you know, it is not sufficient to announce that one has
proven something. The proof must be written down and sub-
mitted for publication, after which the corresponding article is

refereed. Zeilberger submitted his article for publication and
– you guessed it – the referee found gaps in the proof. So, the
article went back to Doron Zeilberger with a request to fill the
gaps. Zeilberger did some repair work and resubmitted the ar-
ticle and the referee found new gaps. The article went back to
Zeilberger again, he did more modifications, resubmitted and
the article went back and forth in this manner several times,
until the referee lost patience. He probably told Zeilberger
roughly the following: “Dear Doron! Before you resubmit the
article, please do something. Read your proof carefully from
the very beginning to the end. If you should not be able to do
that then give the article to a student to check the proof; but
please, do something!”

Doron Zeilberger did do something. First of all, he read
and checked his article carefully. Furthermore, he structured
the proof completely hierarchically so that the article could
be read “locally", in the sense that each part could be read
independently of the rest if one assumed that everything that
appeared lower in the hierarchy was correct. Subsequently,
he asked about 80 colleagues to check the article. He as-
signed to each of them 2 to 3 pages, and the task was to
check these pages under the assumption that everything that
appeared lower in the proof hierarchy was correct. So it hap-
pened. A few minor deficiencies were discovered in that way,
which could be easily repaired, but nothing dramatic surfaced
anymore and the article was eventually published in 1995.33

In Figure 6, we see the first page of the article. After the ti-
tle, the aforementioned colleagues (the “checkers”, totalling
around 80) are listed. The article is no longer 25 pages long
but rather 85. As I said, the proof is structured completely hi-
erarchically. The actual main theorem of the article is called
Lemma 1 (see Figure 7). This is based on Sublemma 1.1
and Sublemma 1.2. The latter in turn are based on Subsub-
lemma 1.1.1, Subsublemma 1.1.2, . . . , Subsublemma 1.2.1,
Subsublemma 1.2.2, . . . , which in turn are based on Subsub-
sublemma 1.1.1.1, . . . , and so forth, up to Sub6, that is, up to
Subsubsubsubsubsublemma, one of which we see in Figure 8.

You get the impression – we are talking about a real tour
de force. There is one thing, however, that cannot be said
about it. One cannot claim that this is a “nice” proof, an ele-
gant proof. In order to defend this, the same Doron Zeilberger
– in a different context – went as far as to exclaim:34

“Extreme UGLINESS is new BEAUTY!”

I think we let this stand as it is. Those who are naturally
sarcastic would say: “Yes, I always had the impression that
this is exactly the idea of many modern composers.” I would
counter that, at all times, there have existed better and worse
composers. Once time passes, the worse ones tend to be for-
gotten and only the outstanding composers remain. One can
verify the latter phenomenon very well if one asks how many
composers there were when Beethoven was a celebrity. An-
swer: innumerably many! If, however, one asks which of them
are still known today, which ones are still performed today,
then Franz Schubert comes immediately to one’s mind (who
was “ironically” largely unknown at the time) and also Carl
Maria von Weber and the Italian opera composers Gioachino

33 Electron. J. Combin. 3 (no. 2, “The Foata Festschrift”) (1996), #R13, 84 pp.
34 Excerpt from a talk at the Third International Conference on “Formal Power Series and Algebraic Combinatorics", Bordeaux, 4 May 1991.
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proof, an elegant proof. In order to defend this, the same 
Doron Zeilberger – in a different context – went as far 
as to exclaim:37 

“Extreme UGLINESS is new BEAUTY!” 

I think we let this stand as it is. The sarcasts among you 
will say: “Yes, I always had the impression that this is 
exactly the idea of many modern composers.” I would 
counter that at all times there existed better and worse 
composers. Once time passes, the worse ones tend to be 
forgotten, and only the outstanding composers remain. 
One can verify the latter phenomenon very well if one 
asks how many composers there were when Beethoven 
was a celebrity. Answer: innumerably many! If, however, 
one asks which of those are still known today, which ones 
are still performed today, then Franz Schubert comes 
immediately to one’s mind (who “ironically” was largely 
unknown at the time), also Carl Maria von Weber and 
the Italian opera composers Gioachino Rossini and 
Gaetano Donizetti. This is it! The same thing will apply 
for us in 100 or 200 years from now. Most composers will 
be completely forgotten, and only the outstanding ones 
will survive. If I may make a personal comment on this 

could be read independently of the rest if one assumed 
that everything which appeared lower in the hierarchy 
was correct. Subsequently, he asked about 80 colleagues 
to check the article. He assigned to each of them 2 to 3 
pages, and the task was to check these pages under the 
assumption that everything which appeared lower in the 
proof hierarchy was correct. So it happened. A few minor 
deficiencies were discovered in that way, which could be 
easily repaired, but nothing dramatic surfaced anymore, 
and the article was eventually published in 1995.36 In Fig-
ure 6, we see the first page of the article. After the title, 
the aforementioned colleagues (the “checkers”, totalling 
around 80) are listed. The article is no longer 25 pages 
long, but rather 85. As I said, the proof is structured com-
pletely hierarchically. The actual main theorem of the 
article is called Lemma 1 (see Figure 7). This is based 
on Sublemma 1.1 and Sublemma 1.2. The latter in turn 
are based on Subsublemma 1.1.1, Subsublemma 1.1.2, 
… , Subsublemma 1.2.1, Subsublemma 1.2.2, … , which 
in turn are based on Subsubsublemma 1.1.1.1, … , and 
so forth, up to Sub6, that is, up to Subsubsubsubsubsub-
lemma, one of which we see in Figure 8. 

You get the impression: we are talking about a real 
tour de force. There is one thing, however, that cannot 
be said about it. One cannot claim that this is a “nice” 

36 Electron. J. Combin. 3 (no. 2, “The Foata Festschrift”) (1996), 
#R13, 84 pp.

37 Excerpt from a talk at the Third International Conference on 
“Formal Power Series and Algebraic Combinatorics”, Bor-
deaux, 4 May 1991.
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Rossini and Gaetano Donizetti. That is it! The same thing will
apply for us in 100 or 200 years from now. Most composers
will be completely forgotten and only the outstanding ones
will survive. If I may make a personal comment on this mat-
ter from a local, patriotic view: I am convinced that Friedrich
Cerha will be one of those composers whose music will still
be performed in 100 or 200 years. His powerful, expressive
musical language is impressive and also clearly present in
pieces that I like less.

Figuratively – not literally – the above statement is es-
sentially what Arnold Schönberg and the composers around
him have done. The romantic sound idiom, after it had also
moved into expressionism, was exhausted at its end. No fur-

ther development was possible. What Arnold Schönberg did
then, when he turned to the twelve-tone technique, was radi-
cally rupture all common habits and rules. He based his music
on a completely new foundation, with completely new rules.
He believed – hoped – that in this way a new musical aes-
thetic would emerge. I, personally, regard this experiment as
a failure. As I already said on a different occasion, I under-
stand that a genius such as Arnold Schönberg tried this path
but I do not understand why he did not find an escape from
this (as I see it) dead-end of musical history. (That Schönberg
was a musical genius is single-handedly proved by his string
sextet “Verklärte Nacht”.35 This is such an incredibly touch-
ing, moving and, at the same time, complex piece, which only

35 “Transfigured Night”.

Figure 6.

[In order to view all of them type ‘GOG(3,5):’ in ROBBINS.]

On the TSSCPP side, it was shown in [MRR3] that TSSCPPs whose 3D Ferrers graphs lie in the

cube [0, 2n]3 are in trivial bijection with triangular arrays ci,j , 1 ≤ i ≤ n, 1 ≤ j ≤ n − i + 1,

of integers such that: (i) 1 ≤ ci,j ≤ j, (ii) ci,j ≥ ci+1,j , and (iii) ci,j ≤ ci,j+1. We will call

such triangles n-Magog triangles, and the corresponding chopped variety, with exactly the same

conditions as above, but ci,j is only defined for 1 ≤ i ≤ k rather than for 1 ≤ i ≤ n, n × k-Magog

trapezoids. For example the following is one of the 429 5−Magog triangles:

1 2 3 3 5
1 2 2 3
1 2 2
1 2
1

.

[In order to view all of them type ‘MAGOG(5,5):’ in ROBBINS.] Retaining only the first three rows of the

above Magog-triangle, yields one of the 387 5 × 3-Magog trapezoids:

1 2 3 3 5
1 2 2 3
1 2 2

.

[ In order to view all of them type ‘MAGOG(3,5):’ in ROBBINS.]

Our goal is to prove the following statement, conjectured in [MRR3], and proved there for k = 2.

Lemma 1: For n ≥ k ≥ 1, the number of n× k-Gog trapezoids equals the number of n× k-Magog

trapezoids.

[ The number of n by k Magog trapezoids, for specific n and k, is obtained by typing b(k,n); while the number of

n by k Gog trapezoids is given by m(k,n);. To verify lemma 1, type S1(k,n):.]

This would imply, by setting n = k, that,

Corollary 1’: For n ≥ 1, the number of n-Gog triangles equals the number of n-Magog triangles.

Since n-Gog triangles are equi-numerous with n × n alternating sign matrices, and n-Magog tri-

angles are equi-numerous with TSSCPPs bounded in [0, 2n]3, this would imply, together with

Andrews’s[A2] affirmative resolution of the TSCCPP conjecture, the following result, that was

conjectured in [MRR1].

The Alternating Sign Matrix Theorem: The number of n × n alternating sign matrices, for

n ≥ 1, is:

1!4! . . . (3n− 2)!

n!(n + 1)! . . . (2n− 1)!
=

n−1∏

i=0

(3i + 1)!

(n + i)!
.
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Brains in mathematics 
You may argue that there is little to say on this topic. 
Obviously, reason and thought are the essentials in math-
ematics. You are right, of course. Hence, we may consider 
this topic as checked… 

Brains in Music 
This is again an entire topic in itself. There is the wide-
spread naive idea, concerning pianists, that a pianist must 
practise diligently, and in the evening of the concert he 
storms onto the stage, sits down at the piano, and cuts 
loose. Yes, this is a possibility, but this is not how it works.
The audience will notice39 that not much thought went 
into that interpretation. It will not really make sense, it 
will remain inconclusive. Indeed, if one looks at the great 
pianists, one will notice that emotion and thought always 
go together – form a symbiosis – certainly with different 
weighting in each individual case. The prototypical exam-
ple is Alfred Brendel, where it is amply established by his 
books just how much thought went into his interpreta-
tions, and where simply watching him play was sufficient 
to understand what a sensitive and emotional artist he 
was. 

Concerning composers, there is a similar widespread 
conception that it is most important to have good melod-
ic ideas. Everything else just works by itself. In response 
to this, I can only say that at all times there are and have 
been many more composers with good melodic ideas 
than good (or even outstanding) composers. The great art 
is in bringing to bear the melodic ideas, the themes, and 
in building, forming, and developing the pieces. Here too 
the following applies: if one looks at the great composers, 
then emotion and thought always go hand in hand. For 
composers such as Bach, Beethoven, or Brahms, this is 
obvious anyway. However, it also applies to composers 
who are not really under suspicion of having approached 
composition in a particularly intellectual manner. In 
this latter category, I would see Franz Schubert, Anton 
Bruckner, or also Modest Mussorgsky. One will be sur-
prised how much thought went into the compositions 
of even these composers. For Mussorgsky, it suffices to 
consider his “Pictures at an Exhibition,” how the prom-
enades keep the work artfully together, how the theme 
of the last picture, the “Great Gate of Kiev” is extracted 
from the theme of the promenade, which is itself formed 
in a self-referential way. Bruckner’s scores are highly 
complex anyway. Even in the work of Schubert the role 
of reason and thought is much bigger than one would 
commonly believe. I want to give a glimpse of an idea 
here. The example I have chosen is the Great Sonata in A 
major, D 959, from Schubert’s last year of life. This sona-
ta has four movements. A broad first movement, whose 
proud opening theme is the following: 

matter from a local patriotic view: I am convinced that 
Friedrich Cerha will be one of those composers whose 
music will still be performed in 100 or 200 years. His pow-
erful, expressive musical language is impressive and also 
clearly present in pieces which I like less.

Figuratively – not literally – the above statement is 
essentially what Arnold Schönberg and the composers 
around him have done. The romantic sound idiom was, 
after it had also moved into expressionism, exhausted, 
at its end. No further development was possible. What 
Arnold Schönberg did then, when he turned to the 
twelve-tone technique, was radically rupture all common 
habits and rules. He based his music on a completely 
new foundation, with completely new rules. He believed 
–hoped – that in this way a new musical aesthetic would 
emerge. I, personally, regard this experiment as a failure. 
As I already said at a different occasion: I understand 
that a genius such as Arnold Schönberg tried this path, 
but I do not understand why he did not find an escape 
from this – as I see it – dead end of musical history. 
(That Schönberg was a musical genius is single-handedly 
proved by his string sextet “Verklärte Nacht”.38 This is 
such an incredibly touching and moving, and at the same 
time complex piece as only a genius can write. To me, it 
belongs to the greatest compositions ever.) 

38 “Transfigured Night”.

39 Singular exception is presumably Martha Argerich, whose 
interpretations do not seem to be very reflective. Instead, 
she proceeds rather spontaneously when playing. I have 
the greatest respect for Martha Argerich. Her musicality is 
marvellous. I did however also listen to pieces played by her 
which, due to her spontaneous approach, – so-to-speak – dis-
integrated under her fingers…

We now need the following (sub)6 lemma:

Subsubsubsubsubsublemma 1.2.1.2.1.1.1: Let Uj , j = 1, . . . , l, be quantities in an associative

algebra, then:
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Proof: The series on the right telescopes to the expression on the left. Alternatively, use increasing

induction on l, starting with the tautologous ground case l = 0.
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We can split (Marvin′) yet further apart, with the aid of the following (sub)6lemma:

Subsubsubsubsubsublemma 1.2.1.2.1.1.2: Let Uj , (j = K, . . . , L), be quantities in an asso-

ciative algebra, then:
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Proof: The sum on the right telescopes to the expression on the left. (Note that it is in the

opposite direction to the way in which it happened in 1.2.1.2.1.1.1.) Alternatively, the identity is

tautologous when K = L + 1, and follows by decreasing induction on K. This completes the proof

of (sub)6 lemma 1.2.1.2.1.1.2. .

Going back to (Marvin′), we use the last (sub)6lemma (1.2.1.2.1.1.2), with K = rj−1 + 2, L = rj ,

and Ui := (x̄i−1xi), to rewrite:
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at the great pianists, one will notice that emotion and thought
always go together – form a symbiosis – certainly with dif-
ferent weightings in each individual case. The prototypical
example is Alfred Brendel, where it is amply established in
his books just how much thought went into his interpretations
and where simply watching him play was sufficient to under-
stand what a sensitive and emotional artist he was.

Concerning composers, there is a similar widespread idea
that it is most important to have good melodic ideas and that
everything else just works by itself. In response to this, I can
only say that, at all times, there are and have been many
more composers with good melodic ideas than there have

been good (or even outstanding) composers. The great art is in
bringing to bear the melodic ideas, the themes, and in build-
ing, forming and developing the pieces. Here, too, the fol-
lowing applies: if one looks at the great composers then emo-
tion and thought always go hand-in-hand. For composers such
as Bach, Beethoven and Brahms, this is obvious. However,
it also applies to composers who are not really under suspi-
cion of having approached composition in a particularly intel-
lectual manner. In this latter category, I would include Franz
Schubert, Anton Bruckner and also Modest Mussorgsky. One
would be surprised at how much thought went into the com-
positions of even these composers. For Mussorgsky, it suf-

Figure 8.
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Differences between mathematics and music 
So far, I have talked a lot about parallels between math-
ematics and music. I should perhaps also address the dif-
ferences between them. In short, there are many. Here, 
I only want to work out the most significant difference. 

This begins with another parallel. When a composer 
has the great inspiration and a composition materialis-
es in his/her head, then it must now be written down in 
order to be performed. This may then look as in Figure 9. 

When a mathematician has a brilliant idea and proves 
a great new theorem, then it must now be written down 
in order for others to be able to study it. This may then 
look as in Figure 10. 

If somebody cannot read scores and also does not 
understand anything of mathematics: I would say, there 
is no discernible difference between the two; each is as 
incomprehensible as the other…

Let us return to the score. It must now be brought to 
life. In the case of the “Appassionata”, we need a pianist. 
This pianist must carefully study and practise the piece, 
and then perform it. And this performance – this is it! 
This is the complete composition! Nothing was added, 
nothing was omitted (if we neglect that the pianist stum-
bles possibly here and there…). And everybody can sit 
down and listen to it. No prior education is required for 
that. If one has an affinity with the musical language of 
Beethoven, then one will be captivated by the dark, tense 
atmosphere of the Appassionata. 

Now you may object: but at the university, in the 
mathematics courses, there mathematics is “performed.” 
Somehow, yes. However, this is actually different. You 
cannot simply sit down in a course and delight in the vari-
ous qualities of the “performed” mathematics. Depend-
ing on how advanced a course is, it requires more or less 
prior knowledge from the listener in order to understand 
at all what is being discussed. (Even the courses in the 
first semester require certain prior knowledge, without 
which it is not advisable to attend such a course. Unfor-
tunately, every year there arrive more freshmen than we 
would like for whom this is apparently not so clear…). In 
the courses, it is common practise to build on this prior 
knowledge, and to not repeat what is (should be) already 

We already know the heartbreakingly sad theme of the 
second movement: 

There follows a playful Scherzo, which also contains 
Ländler40 elements: 

The concluding melodious Rondo begins as follows:

You will not have noticed, but maybe you sensed it: these 
four themes, so different in character, are bound together 
by a hidden brace. This is what I now want to expose. 

If one looks at the opening theme of the first move-
ment more closely, then one recognises that (in the upper 
voice) the note a is at first repeated several times, before 
it is “resolved” to a g sharp in the end, which is also orna-
mented by an f sharp. Thus, if one reduces the theme to 
its nucleus then it becomes clear that we are talking of a 
largely blown up suspension a–g sharp: 

How does the second movement begin? The answer is: 
a–g sharp. How does the Scherzo fit in? This is more hid-
den. Here, one must look at the lower voice in order to 
discover a–g sharp again! The theme of the last move-
ment even contains the suspension a–g sharp twice 
(namely in the second and in the fourth bar, both times 
in the upper voice). 

Sure, these fine points are not consciously noticed by 
the listener, nonetheless, they do have an unconscious 
effect. In our concrete case, they contribute to the great 
unity of the sonata. It is, among other things, these details 
that make the difference between a masterpiece and 
compositions of average quality. 

40 A “Ländler” is a rural dance in Austria. The German transla-
tion of “rural” is “ländlich”.

Figure 9.
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newest composition, so to speak – in front of a wide 
audience. However, because of the earlier described 
difficulties, it is impossible! In order to avoid any mis-
understanding: I am not saying that one should not talk 
about mathematics. On the contrary! What I am doing 
here is, in a sense, also to talk about mathematics. How-
ever, if it comes to current research, then one will have 
to take recourse to metaphors, then one will only be able 
to vaguely indicate what is really going on. As I said: the 
performance of mathematics does not exist, and thus a 
mathematician will never be able to convey to a wide 
audience what (s)he experiences when (s)he deals with 
mathematical problems and their solutions. Here, math-
ematicians are always at a disadvantage when compared 
to musicians – and to researchers in other disciplines; 
music speaks directly to the listener, no “translation”, no 
further explanation is necessary, and this is in sharp con-
trast to mathematics.42 

Personal notes 
What do mathematics and music mean to me? A lot, 
obviously. First of all, there is the inexplicable, magi-
cal component. If I am asked why I went for music and 
mathematics: I do not know. I remember very well that, 
as a 6–7-year old, I used to sing along with great passion. 
Why? I do not know. I also remember very well that, as a 
13–14-year old, I was burningly interested in how big the 
probability is that, by throwing a given number of dice, 
one scores a certain total; so, for example, how likely it 
is to score 36 by throwing 10 dice. I computed (by hand) 
long tables, and I studied the numbers in these tables. 
After work of several years, I was indeed able to find a 
formula for this probability. Obviously, at the time, I did 
not have the slightest idea how to prove it.43 Why was I 
so fascinated by this? I do not know. 

What fascinates me today in mathematics and music? 
When it comes to mathematics, there is for one the chal-
lenge to “crack” open problems as they constantly arise 
in physics, in computer science, and also in mathematics 
itself. Interestingly, in my research work, in order to solve 
a problem, I frequently study long tables (nowadays 
computed by using a computer, of course), subsequently 
I try to guess a mathematical formula for the numbers in 
these tables (also partially with the help of a computer), 
and then – if successful – try to prove this newly discov-

known. Moreover, for conclusions which are somehow 
“obvious”, it is left to the listener to fill in the details. In 
this sense, also in courses at the university there is no 
(complete) performance of mathematics.

You will insist: okay, but at mathematics conferences, 
there mathematicians present their latest results in front 
of their colleagues, there mathematics is “performed”! 
The former is certainly correct, but here as well there is 
no “performance” of mathematics which takes place in 
the same sense as music is performed. At a conference, 
you may have maybe 30 minutes, maybe an hour to pre-
sent your latest result. What is presented the lecturer has 
thought about for weeks, months, sometimes years. This 
cannot be presented in all detail within 30 minutes or an 
hour. What one therefore does is explain the assertion 
of the newest theorem, and subsequently indicate which 
ideas go into the proof. If a listener wants to completely 
work through the proof, respectively wants to completely 
check the proof in all detail, then (s)he must study the 
article in which this proof is written down. So, also here, 
there is no “performance” of mathematics.

This has a very lamentable consequence for mathe-
maticians: I would say that – very roughly estimated – 90 
percent of the population are amenable to music. If one 
subtracts popular music, then there remain still – con-
servatively estimated – 10 percent who are addressable 
by – let me say – expressive music. 41 

How are matters with mathematics? I would formu-
late it as follows. You may perhaps remember from high 
school that mathematicians have a special symbol for 
infinitely small quantities: the e! So, I would say that – 
roughly – e percent of the population are amenable to 
the manifold qualities of the science of mathematics. 

This is very grievous for mathematicians. Frequently, 
mathematicians are reproached for not stepping out of 
their ivory tower and not explaining a wide audience 
what they are doing. As a matter of fact, mathematicians 
would love to do exactly that: with great excitement, they 
would present and explain their newest theorem – their 

Figure 10.

41 I never knew what to do with the labels “classical music” and 
“light music”.

42 Consequently, Cédric Villani, in his remarkable and contro-
versial book “Théorème vivant” (in the English translation: 
“Birth of a Theorem”) – in which he describes how the proof 
of the theorem emerged that significantly contributed to the 
award of the Fields Medal to him in 2010 – does not even try 
to explain the mathematics behind, but on the contrary inten-
tionally remains often incomprehensible even to mathemati-
cians who are not experts in the field of partial differential 
equations, in order to entirely concentrate on the emotional 
side of the involvement with mathematics. Villani is highly 
successful doing this, but – seen plainly – he does not talk 
about mathematics.

43 Today I know that this formula can be easily proved with the 
help of generating functions or with the help of the principle 
of inclusion-exclusion.
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Conclusion 
Thus, I arrive at the end of my discourse on “Mathemat-
ics AND Music?”. To tell you a secret: it is absolutely 
allowed to remain largely incomprehensible during 
a mathematical talk; there is but one condition (in the 
words of the influential Italian/American mathematician 
Gian-Carlo Rota as a postulation of the audience to the 
speaker 45): 

“Give us something to take home!” 

In this sense, I hope that I was not too incomprehensible, 
and that there was something for you to take home. On 
this point, I have one thing further to offer, a piece of 
music at the end. Obviously, it must suit our motto “Soul 
AND Brains”. Clearly, one could find many natural can-
didates, for example, in the work of Johann Sebastian 
Bach, or of Ludwig van Beethoven. However, this would 
be too simple, too conventional. Instead, I chose the 
Sonata Opus 1 by Alban Berg. He wrote this sonata at 23 
years of age. It is, in a sense, the final “paper” of his music 
studies, which he mainly undertook under Arnold Schön-
berg. If you wish, it is Alban Berg’s musical “thesis,” in 
order to stress another analogue with mathematics. It fits 
excellently with our motto “Soul AND Brains”. I would 
say that the musical language of this sonata can be classi-
fied as expressionistic. It is thus highly emotional. On the 
other hand, it is an incredibly dense musical construction, 
in which the complete piece of approximately 10 minutes 
is extracted from one nucleus – namely the theme at the 
beginning.

Enough of explanations. I will now play the Sonata 
Opus 1 by Alban Berg. I shall directly adjoin a prayer 
by Johannes Brahms. “Intermezzo” is the original title by 
Brahms, from the last piano pieces that he wrote. I have 
always liked to do this, since, first of all, the two pieces 
fit so well together, and, second, if one listens, then one 
understands where the musical language of Berg comes 
from.

〈 Alban Berg (1885–1935): Sonata op. 1 〉46   

〈 Johannes Brahms (1833–1897): Intermezzo in  
b minor, op. 119/1 〉47
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a professor of discrete mathematics at the University of 
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ered conjecture. Moreover, I am of course fascinated by 
searching and discovering hidden structures and connec-
tions behind the problems and their solutions. Clearly, 
the aesthetic component in mathematics plays a big role 
for me as well. 

Also in music, I am fascinated by fathoming new ter-
ritory. It is extremely interesting to take a new44 piece, 
and now start working on it. As we already discussed: a 
score must be brought to life. When one starts studying a 
piece, one often does not know which are the important 
points within it, how to understand the structure of the 
piece, and how the piece should develop when played. I 
remember very well the situation when I, together with 
my trio partners, started to prepare the third movement 
of Mozart’s piano trio in C major, KV 548, for an encore 
of a concert evening. Each of us had – individually –pre-
pared and practised one’s own part, but the first “read-
ing” of the movement ended up in a complete disaster: 
nothing made any sense at all. The violinist immediately 
pled that we choose a different piece as an encore … 
I insisted to give the piece a chance. So, we started to 
work on it, and, lo and behold, this “ugly duckling” slow-
ly transformed itself into a lively, witty piece of music, 
which was a great pleasure to play for all of us.

Another important point is that, once one has 
worked out an interpretation of a piece, to present this 
– own – view of the composition in front of an audience. 
Each time, this is a tremendously interesting and excit-
ing experience. One never knows in advance how this is 
going to develop, but the more this is tantalising, and the 
more this can be enriching.

In any case, for me, mathematics and music always 
have been two very different things that complement 
each other. And it is exactly this complementary aspect 
that I have always found so interesting and appealing. 
It is perhaps unhealthy to become obsessed with just 
one matter. When I am trying to solve a mathematical 
problem and I arrive at a dead end where I do not know 
how to proceed, then I may sit down at the piano and 
concentrate on something completely different, and in 
this way clear my mind. Maybe upon returning to the 
mathematical problem, I will have a new, fresh view of 
things, which allows me to progress again. 

44 Meaning: “not yet studied”.
45 The citation is from the talk “Ten Lessons I wish I had been 

Taught”, which Rota delivered on 20 April 1996 at the oc-
casion of a birthday conference in his honour at the Massa-
chusetts Institute of Technology in Boston. It can be read in 
the Notices of the American Mathematical Society, vol. 44, Nr. 
1, 1997, pp. 22–25 (see http://www.ams.org/notices/199701/
comm-rota.pdf).

46 In danger of exhibiting a certain bias, Alfred Brendel’s won-
derfully balanced view can be enjoyed on YouTube in two 
parts: http://www.youtube.com/watch?v=PlV-ksfS7F8, http://
www.youtube.com/watch?v=QxBGG74ztVo.

47 An old concert recording of this piece with the author him-
self at the piano can be found at http://www.mat.univie.
ac.at/~kratt/klavier/brahms119-1.html.




