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intensively and we are certain of an attractive meeting, 
which will do much for the standing of mathematics in 
this part of Europe.

Even if it is still a long time ahead, I encourage you 
to contemplate possible candidates for the EMS prizes 
in 2020. Our main award is highly renowned – recent 
confirmation can be seen from two of its latest laureates, 
Hugo Duminil-Copin and Geordie Williamson, winning 
the 2017 New Horizons in Mathematics Prize just a few 
days ago. It is in all our interests to keep the flag flying 
high.

A New Year message generally strikes an optimistic 
tone. However, I hope it won’t do any harm to add a few 
words about our worries. Some of them, frankly, are of 
our own making; if I were to characterise their common 
root, I would suggest a lack of loyalty to the mathemati-
cal community. To give a few examples, numerous col-
leagues registered for the Berlin congress but did not 
then pay, causing a financial headache for the organis-
ers (and we know that at least some such individuals 
did indeed attend). On the other hand, far from every 
member of the organising committee of the congress 
opted to attend the meeting whose programme they had 
designed! 

You may also have noticed the council amending 
the society’s By-Laws (Rule 23) to state that commit-
tee members must be individual EMS members “in good 
standing”. While this requirement should be self-evident, 
we have spotted committee members (and even chairs) 
ignoring it. (I add that this has happened despite our 
membership dues being far lower than those of math-
ematical societies on other continents.) A few of our cor-
porate members are also perpetually in arrears. We are, 
of course, conscious of difficult economic situations in 
parts of our continent and will never introduce the spirit 

Dear EMS Members, Dear Friends,

Any society’s life contains both climactic and anticli-
mactic periods. The year just concluded was full of major 
events but while the New Year promises many things we 
look forward to, it is day-to-day work that will provide 
the leitmotiv of the coming months. This includes the 
implementation of the decisions taken at our council 
meeting in Berlin last Summer. To begin with, the soci-
ety’s leadership has been substantially renewed. With 
deep gratitude for their devoted work, we part with 
Franco Brezzi and Martin Raussen and we wish success 
to Volker  Mehrmann and Armen Sergeev who replace 
them as the society’s vice-presidents. We also thank the 
other departing members of the Executive Commit-
tee: Alice Fialowski, Gert-Martin Greuel and Laurence 
Halpern. We welcome the new members: Nicola Fusco, 
Stefan Jackowski, Vicente Muñoz, Beatrice Pelloni and 
Betül Tanbay.

Equally important is the renewal of our stand-
ing committees, which form the backbone of the EMS.  
Around half the chairs and a number of the members 
have reached the end of their tenure. Their replacements 
were decided at the recent meeting of the Executive 
Committee in Tbilisi. Let me express our gratitude to 
all of them, with personal thanks to follow separately. 
In some committees, the changes run particularly deep. 
This is especially true for the Education Committee, 
which will see a majority of new members. We wish them 
success and hope that the committee’s scope will broad-
en and include some hands-on activities. 

Another big change concerns the Publication and 
Electronic Publication Committees. As technology 
advances, this separation has become gradually less 
justifiable and we have invited their members to dis-
cuss the formation of a unified committee within the 
next few months. Before leaving the topic of commit-
tees, let me also mention the generous support the EMS 
has received from the Simons Foundation, targeted at 
mathematics in Africa. Our Committee for Developing 
Countries has worked hard to create appropriate grant 
schemes and its five year programme is now underway.

While none of the largest mathematical meetings will 
occur this year, some are already looming on the hori-
zon. On a global scale, we look forward to ICM 2018 
in Rio and are delighted that the following meeting in 
2022 will return, after 16 years, to Europe: either Paris 
or Saint Petersburg. The EMS, as a society represent-
ing the entire European mathematical community, will 
express no preference between the two bids but we are 
confident that both offer the prospect of a wonderful 
meeting. At the European scale, the Berlin Council has 
decided to hold the 8th European Congress in Portorož 
in 2020. Our Slovenian colleagues have started working 

Editorial – Message from the President
Pavel Exner, President of the EMS
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of “juste retour” to the EMS. Nevertheless, we need at 
least to see sincere efforts to deal with this matter.

These are problems we can resolve ourselves, with 
the will to do so. That is less true of difficulties in our 
relations to the “outside world”, including European 
funding schemes. In last year’s message, I spoke about 
the ERC, a very valuable instrument that covers, how-
ever, only a limited segment of mathematical activities. 
During 2016, the European Commission led an open 
consultation on the role of mathematics in Horizon 
2020. This was a useful exercise in which many of us par-
ticipated but it would be overly optimistic to expect an 
enduring effect. It is a task for each of us to seek out 
opportunities within the funding system and I would 
like to praise members of the EU-MATHS-IN initiative 
and other colleagues who have devoted their energies 
to such activities. This matter regularly features at the 
annual Meeting of the Presidents of the EMS Member 
Societies and no doubt will be raised again in April in 
Lisbon.

Then, we come to a still wider political scene, in 
which our ability to influence things is close to zero. 
We received a harsh reminder of this on the eve of the 
Berlin congress, when an attempted coup (or whatever 
we should call it) prevented our colleagues in Turkey 
from attending. An immediate consequence was that the 
second Caucasian Conference (planned with EMS sup-
port) had to be postponed; subsequent events in Turkey 
have thrown its new date into further doubt. In other 
countries, we see processes unfolding that may not be as 
violent but that signify deep instabilities in the political 
climate. In such a situation, it is useful to keep in mind 
a double inclusion: geographical Europe is wider than 
political Europe and mathematical Europe is wider than 
geographical Europe. We can and must hold together, 
even as we sail through rough waters. 

Let me end on an optimistic note after all: these 
political tumults are temporary but – as we all know – 
mathematics is eternal. Happy New Year! 

Fernando Pestana da Costa is an 
associate professor at the Depart-
ment of Sciences and Technology 
of Universidade Aberta, Lisbon, 
and is a researcher at the Cen-
tre for Mathematical Analy-
sis, Geometry and Dynamical 
Systems, Técnico, University of 
Lisbon. His research areas are 

analysis and differential equations, with an emphasis on 
aspects of qualitative theory. He graduated from Técnico 
in chemical engineering and then turned to mathemat-
ics, completing his PhD in mathematics at Heriot-Watt 
University, Edinburgh, under the supervision of Jack 
Carr. He was Vice-President (2012–4) and then President 
(2014–6) of the Portuguese Mathematical Society and he 
is now (2016–8) President of its General Assembly.

New Editors Appointed

Farewells within the Editorial Board  
of the EMS Newsletter
With the December 2016 issue, Lucia Di Vizio, Jorge Buescu and Jaap Top ended their editorship of  the Newslet-
ter. We express our deep gratitude for all the work they have carried out with great enthusiasm and competence, 
and thank them for contributing to a friendly and productive atmosphere. 
Two new members have rejoined the Editorial Board in January 2017. It is a pleasure to welcome Fernando P. da 
Costa and Michael Th. Rassias, introduced below. 
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Michael Th. Rassias is a postdoc-
toral researcher in Mathematics 
at the University of Zürich and 
a visiting researcher at the Pro-
gram in Interdisciplinary Stud-
ies of the Institute for Advanced 
Study, Princeton, since Septem-
ber 2015. He holds a Diploma 
from the School of Electrical 
and Computer Engineering of 
the National Technical Univer-
sity of Athens (2010), a Master 

of Advanced Study in Mathematics from the Univer-
sity of Cambridge (2011), and a PhD in Mathematics 
from ETH-Zürich (2014). His doctoral thesis was on 
the “Analytic investigation of cotangent sums related to 
the Riemann zeta function”, written under the super-
vision of Professor E. Kowalski. During the academic 

Nicola Fusco It is a great honour 
for me to be elected to the Execu-
tive Committee (EC) of the EMS.

In my professional career as 
a mathematician, I have had a 
lot of scientific and personal con-
tact with colleagues from several 
European countries. On all these 
occasions, I have experienced, 
beyond any obvious national 
differences, that we all face the 
same problems and the same 

challenges. One of them is the funding of both pure and 
applied mathematical research, which is often severely 
cut in favour of other areas with more immediate impact. 
Another common and critical issue in many countries is 

that life is not easy for talented young mathematicians: 
there is little money for mobility, research funds are 
scarce and there are inadequate job opportunities. There-
fore, I would like to make a contribution to all the actions 
that the new EC will promote to support and defend (in 
all countries and  European institutions) the fundamen-
tal role played by mathematics in the scientific and tech-
nological enhancement of our society. For these reasons, 
I will also be happy to develop, together with my distin-
guished colleagues of the EC, actions aimed at spread-
ing, throughout the European public, the knowledge of 
mathematics and the awareness of its great achievements 
and its important role in so many aspects of everybody’s 
life. In the hard times we are nowadays facing, I would 
also stress how mathematics can promote peaceful coop-
eration among people of different cultures and countries.

New Members of the EC of the EMS

Stefan Jackowski received all his 
degrees from the University of 
Warsaw, where he is currently a 
professor. He has spent several 
research stays abroad, includ-
ing at the ETH Zürich, Aarhus 
University, the University of 
Oxford, the University of Chica-
go, IHES, the Fields Institute and 
Max-Planck Institute Bonn. His 
research interests are in algebraic 
topology, including transforma-

tion groups, homotopy theory, group theory, homological 
algebra and their interactions. He is an editor of “Fun-
damenta mathematicae” and “Journal of Homotopy and 

Related Structures” and is a former editor of “Algebraic 
and Geometric Topology”.

In the years 2005-2013, he was President of the Polish 
Mathematical Society and he chaired the Local Organi-
sation Committee of 6ECM in Kraków (2012). He is 
currently a member of the Committee for Evaluation of 
[Polish] Scientific Research Institutions. 

The goals he would like to work for while on the 
Executive Committee include promotion of collabora-
tion and exchange of ideas between national societies, 
facilitation of national and joint initiatives under the 
auspices of the EMS and, last but not least, strengthen-
ing European identity and promoting understanding 
between the countries represented in the EMS.

year 2014-2015, he was a Postdoctoral researcher at the 
Department of Mathematics of Princeton University 
and the Department of Mathematics of ETH-Zürich, 
conducting research at Princeton. While at Princeton, 
he collaborated with Professor John F. Nash, Jr. for the 
preparation of the volume entitled “Open Problems in 
Mathematics”, Springer, 2016. He has been awarded 
with two Gold medals in National Mathematical Olym-
piads in Greece, a Silver medal in the International 
Mathematical Olympiad of 2003 in Tokyo, as well as 
with the Notara Prize of the Academy of Athens, 2014. 
He has authored two problem-solving books in Num-
ber Theory and Euclidean Geometry, respectively, as 
well as a book on Goldbach’s Ternary Conjecture and 
has edited four books, by Springer. He has published 
several research papers in Mathematical Analysis and 
Analytic Number Theory. His homepage is http://www.
mthrassias.com/ .
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Beatrice Pelloni I am honoured 
to start serving on the Execu-
tive Committee of the EMS this 
year, after serving for four years 
on the Council of the London 
Mathematical Society (LMS). I 
have also served a 5-year term 
as a member of the Women in 
Mathematics Committee of the 
LMS and one year as Chair of the 

Women and Mathematics Committee of the EMS. After 
many years at the University of Reading, in April 2016 I 
moved to Heriot-Watt University in Edinburgh, as Head 
of the School of Mathematical and Computer Sciences. 
I am strongly committed to promoting fairness, equality 
and transparency in academic life, while maintaining the 
highest standards of scientific integrity. This is the reason 

I agreed to take on the Head of School role, giving me 
the opportunity of supporting these values in the eve-
ryday reality within a large school with a high volume 
of research activity. It is also the reason I am attracted 
by the opportunity to participate and assist the strate-
gic aims of the EMS. My research interests are at the 
boundary between pure and applied mathematics. My 
contributions relate to the study of analytical techniques 
for nonlinear partial differential equations arising in 
mathematical physics. I am active in two different parts 
of this wide area of research: boundary value problems 
for integrable partial differential equations and the rig-
orous analysis of nonlinear partial differential equations 
modelling atmospheric flows. For my work in the former 
area, I was awarded the Olga Taussky-Todd prize lecture 
at ICIAM 2011.

Betül Tanbay completed her 
undergraduate degree at the 
University of Strasbourg (ULP) 
and her graduate degrees at the 
University of California, Berke-
ley (UCB). She has been a fac-
ulty member at the University 
of Boğaziçi, Istanbul, since 1989. 
Her research area is operator 
algebras, mainly focusing on the 

Kadison-Singer problem. She has held visiting positions 
at the University of California, Berkeley and Santa Bar-
bara, the Université de Bordeaux, the Institut de Mathé-
matiques de Jussieu, Paris VI, the University of Kansas 
and Pennsylvania State University. Betül Tanbay is the 
founder of the Istanbul Center for Mathematical Sci-

ences, which she directed from 2006 to 2012. She was 
the first woman president of the Turkish Mathematical 
Society, from 2010 to 2016, where she also became an 
Honorary Member. She has represented the society at 
the General Assemblies of the IMU in Germany, Spain 
and South Korea and at the Councils of the EMS in Hol-
land and Poland, and she was elected as a member to 
the Executive Committee at the Council in Berlin in 
2016.  Previously, she worked as a member of the EMS 
Raising Public Awareness and Ethics Committees and is 
currently EC-liaison of the latter committee and also a 
member of the Committee for Women in Mathematics 
of the IMU. Betül Tanbay is fluent in Turkish, English, 
French, German and Spanish. She has a daughter and 
a son both studying mathematics in Turkish public uni-
versities. 

Vicente Muñoz received his 
PhD in 1996 at the University of 
Oxford (UK) under the supervi-
sion of Simon Donaldson. After 
this, he had positions in Univer-
sidad de Málaga, Universidad 
Autónoma de Madrid and CSIC 
(Spain). Since 2009, he has been 
a full professor at the Univesidad 
Complutense de Madrid. He has 
had visiting fellowships at IAS 
Princeton (USA) in 2007 and 

Université Paris 13 (France) in 2015 and he has been 
a member of ICMAT (Spain), 2013-2016. His research 
interests lie in differential geometry, algebraic geometry 
and algebraic topology and, more specifically, gauge the-
ory, moduli spaces, symplectic geometry, complex geom-
etry and rational homotopy theory. His main results are 
a proof of the Atiyah-Floer conjecture, the finite type 
condition for Donaldson invariants of 4-manifolds, the 

concept of s-formality on rational homotopy theory and 
the construction of a symplectic simply-connected non-
formal 8-manifold (with Marisa Fernández), the realisa-
tion of real homology classes via embedded laminations 
(with Ricardo Pérez-Marco), a Bogomolov inequal-
ity associated to Spin(7)-instantons on 8-dimensional 
tori and a topological field theory method for comput-
ing Deligne-Hodge polynomials of character varieties 
of surfaces (with Peter Newstead, Marina Logares and 
Javier Martínez). He has supervised four doctoral stu-
dents and is currently supervising two students. He has 
published more than 90 research papers and the popu-
lar book “Distorting Shapes” (editorial RBA), which 
has been translated into six languages. He was an edi-
tor of the EMS Newsletter from 2004 to 2008 and then 
became Editor-in-Chief from 2008 to 2012. He is an edi-
tor of Revista Matemática Complutense (Springer) and 
Revista Matemática Iberoamericana (EMS) and he is a 
member of the Governing Board of the Real Sociedad 
Matemática Española.
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Report from the Executive Committee 
Meeting in Tbilisi, 
4–6 November 2016 
Richard Elwes, EMS Publicity Officer and Sjoerd Verduyn Lunel, EMS Secretary

The Executive Committee of the EMS met in Tbilisi, 
4–6 November 2016, at Ivane Javakhishvili Tbilisi State 
University, on the kind invitation of the Georgian Math-
ematical Society. As well as the committee’s current 
incumbents, several incoming members for 2017 also 
attended by invitation, making this event something of 
a handover. On Friday evening, the gathered assembly 
enjoyed a warm welcome from Roland Duduchava, 
Otar Chkadua and Tinatin Davitashvili (President and 
Vice-Presidents of the Georgian Mathematical Society), 
as well as Mikhail Chkhenkeli, Vice-Rector of Tbilisi 
State University. The oldest university in the Caucasus, it 
was founded in 1918 by the historian Ivane Javakhishvili, 
with, amongst others, the mathematician Andrea Raz-
madze, after whom the mathematics institute is named.

Officers’ Reports and Membership
President Pavel Exner welcomed all members and 
guests and opened the meeting by relating his recent 
activities. The treasurer, Mats Gyllenberg, then present-
ed his report on the society’s 2016 income and expendi-
ture, recording healthy results. Thus, the EMS can afford 
to maintain its recently elevated expenditure on scien-
tific projects. He then presented the society’s budget for 
2017.

The committee was pleased to approve a list of 54 
new individual members. The office has received no new 
applications for corporate membership, although there 
have been enquiries that may develop. Too many indi-
vidual members remain in arrears, although several have 
belatedly paid their dues after a reminder. The office will 
continue to chase outstanding payments. The conversa-
tion then turned to the thornier problem of member 
societies that are perpetually in arrears. The society is 
mindful of the financial difficulties that national mathe-
matical societies can experience. Nevertheless, the com-
mittee previously agreed the principle that membership 
will lapse for societies that neither pay their dues nor 
respond to letters from the president. In early 2016, 
the president wrote to all corporate members badly in 
arrears. The committee thus resolved that he will now 
write final reminders to such members, warning them of 
the committee’s intention to propose the termination of 
their membership at the next council meeting.

ECMs 7&8
This was the first meeting of the Executive Committee 
since the 7th European Congress of Mathematics (ECM) 

in Berlin in July. The committee considered a report from 
local organiser Volker Mehrmann. It was agreed that, on 
most metrics, the meeting was a great success and the 
committee reiterated its profound thanks to all involved. 
However, there were also problems, notably a surpris-
ing disparity between the number of people registering 
and those paying the registration fee. Consequently, the 
meeting ended up in financial deficit. The organisers of 
ECM8 must be aware of this danger.

The committee opted to amend the profile for mem-
bers of future ECM Scientific Committees, who should 
not only be top mathematicians but also people with 
broad mathematical interests willing to attend the event 
in person.

This was also the first Executive Committee meet-
ing since the venue of the 8th European Congress 
was settled at July’s council meeting: it will be held in 
Portorož in Slovenia, 5–11 July 2020. Local organiser 
Tomaz Pisanski delivered a presentation on prepara-
tions so far, including some thoughts on the philosophy 
of the congress. In the ensuing discussion, the commit-
tee contemplated the mission of the ECM in our chang-
ing mathematical world. How can we use such events 
to strengthen our community? How can we help young 
mathematicians feel welcome? Some initial ideas were 
aired and it was agreed that this was an important topic 
that will be revisited.

Other Scientific Meetings
The committee discussed reports from the 2016 EMS 
Summer Schools and agreed that these were scientifi-
cally successful and a worthwhile use of EMS resourc-
es. Considering recommendations from the Meetings 
Committee, support for four 2017 Summer Schools was 
approved. It was decided to require applicants for Sum-
mer School funding to provide more details on topics 
such as geographic, age and gender distributions of par-
ticipants. The remit for the Meetings Committee was 
then adapted to encourage a more proactive approach 
to attracting proposals and thus hopefully increasing 
competition. It may also be useful to publicise recent 
successful Summer Schools.

Committee member Alice Fialowski reported from 
the EMS Distinguished Speaker talk, delivered by Ernest 
Vinberg at the 50th Seminar Sophus Lie. It was agreed 
to increase the level of ceremony at EMS Distinguished 
Speaker events to reflect the honour of the award. EMS 
Distinguished Speakers for 2017 were decided: Mireille 
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Bousquet-Mélou at the Conference on Foundations of 
Computational Mathematics (Barcelona, 10–19 July 
2017) and Kathryn Hess at the Meeting of the Catalan, 
Spanish and Swedish Math Societies (Umeå, 12–15 June, 
2017).

The committee agreed that the EMS will endorse 
the following events: the 9th European Student Confer-
ence in Mathematics, EUROMATH-2017 (Bucharest, 
29 March – 2 April 2017); the 2nd Academic University 
Student Conference 2017 (15–19 November 2017, Lar-
naca, Cyprus); and the 11th European Conference on 
Mathematical and Theoretical Biology (Lisbon, 23–27 
July 2018).

Meanwhile, the EMS-Bernoulli Society Joint Lecture 
for 2017 will be given by Alexander Holevo at the 31st 
European Meeting of Statisticians (Helsinki, 24–28 July 
2017).

The committee approved separate funding for the 
Applied Mathematics Committee for scientific activi-
ties, to the tune of 5,000 euros in 2017 and 10,000 euros 
in 2018 (bearing in mind that 2018 is the Year of Math-
ematical Biology).

Society Meetings
The Executive Committee discussed the president’s 
report from the council meeting from July and contem-
plated ways to make it a more interactive event. This 
conversation will be continued at future meetings. The 
committee was delighted to accept an invitation from 
the Czech Mathematical Society to hold the 2018 Coun-
cil in Prague.

The next Executive Committee meeting will be held 
on 17–19 March in Bratislava and the next meeting of 
the Presidents of Member Societies will be held on 1–2 
April 2017 in Lisbon.

Standing Committees & Projects
With numerous upcoming vacancies across the society’s 
11 standing committees (excluding the Executive Com-
mittee), the committee expressed its sincere appreciation 
to all outgoing members for their efforts in carrying out 
the society’s work. It was then pleased to fill these plac-
es, including appointing Jürg Kramer as Chair and Tine 
Kjedsen as Vice-Chair of the Education Committee, San-
dra di Rocco as Chair and Stanislaw Janeczko as Vice-
Chair of the European Solidarity Committee, Michael 
Drmota as Chair and Ciro Ciliberto as Vice-Chair of the 
Meetings Committee, and Alessandra Celletti as Chair of 
the Women in Mathematics Committee.

The society’s standing committees will soon reduce 
to 10, following a decision to merge the Publishing and 
Electronic Publishing Committees. The details, and 
further appointments to the combined committee, will 
await the outcome of a discussion between the two. The 
Executive Committee then approved an updated remit 
for the Ethics Committee.

The Chair of the Committee for Developing Coun-
tries (CDC) Giulia Di Nunno, in attendance by invita-
tion, then delivered a presentation on the CDC’s work, 
including on the Emerging Regional Centres of Excel-

lence programme and plans for the grant scheme for 
researchers from Africa (made possible by generous 
funding from the Simons Foundation for Africa). The 
Executive Committee thanked her for the CDC’s excel-
lent work and discussed ways to increase its visibility. 
EMS members should be reminded of the option of 
donating to the CDC when paying their EMS member-
ship fees (the amount raised by this route has decreased 
in recent years).

Reports from the chairs of other standing commit-
tees were also discussed, along with reports from the 
Publicity Officer and Editor-in-Chief of the Newsletter, 
and reports on other EMS-affiliated projects including 
the European Digital Mathematical Library, Zentral-
blatt MATH and EU-MATHS-IN (the European Ser-
vice Network of Mathematics for Industry and Inno-
vation). The latter has had a proposal (“Mathematical 
Modelling, Simulation and Optimization for Societal 
Challenges with Scientific Computing”) funded under 
the Horizon 2020 programme on user-driven e-infra-
structure innovation. EU-MATHS-IN is also involved 
in making mathematics more visible in H2020 generally.

Funding, Political and Scientific Organisations
The president reported on recent developments in Hori-
zon2020 and the European Research Council. He also 
discussed the new legal status of the Initiative for Sci-
ence in Europe (ISE), reminding the committee that the 
fee for ISE membership for the EMS is set to double 
to 3,000 euros. Thus, after two years, the benefits of ISE 
membership will be re-evaluated. The president gave a 
short report about ESOF (EuroScience Open Forum) 
in Manchester in July 2016, noting that the Committee 
for Raising Public Awareness had run a successful panel 
session on “The Myth of Turing”.

There are live bids from both Paris and St. Petersberg 
for the ICM in 2022. The EMS is supporting both. The 
committee also discussed EMS ongoing business with 
other mathematical organisations, including ICIAM, 
the Abel Prize, CIMPA, the Fermat Prize and various 
research facilities around Europe.

Conclusion
The meeting was closed with enthusiastic thanks to our 
hosts, the Georgian Mathematical Society (particularly 
its President Roland Duduchava) and Tbilisi State Uni-
versity for excellent organisation and generous hospital-
ity.
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Call for Nominations for the  
Fermat Prize 2017
The new edition of the Fermat Prize for Mathematics Research opened in October 2016.

The call for nominations of candidates will be open until 30 June 2017 and the results will be announced in Decem-
ber 2017.

The Fermat Prize rewards the research of one or more mathematicians in fields where the contributions of Pierre 
de Fermat have been decisive: statements of variational principles or, more generally, partial differential equa-
tions; foundations of probability and analytical geometry; and number theory.

More information about the Fermat Prize, in particular concerning the application process, are available at 

http://www.math.univ-toulouse.fr/FermatPrize.

Call for Nominations for the  
Ostrowski Prize 2017

The aim of the Ostrowski Foundation is to promote the mathematical sciences. Every second year it provides a 
prize for recent outstanding achievements in pure mathematics and in the foundations of numerical mathematics.
The value of the prize for 2017 is 100,000 Swiss francs. 

The prize has been awarded every two years since 1989. The most recent winners are Ben Green and Terence Tao 
in 2005, Oded Schramm in 2007, Sorin Popa in 2009, Ib Madsen, David Preiss and Kannan Soundararajan in 2011, 
Yitang Zhang in 2013, and Peter Scholze in 2015. See 

https://www.ostrowski.ch/index_e.php

for the complete list and further details.

The jury invites nominations for candidates for the 2017 Ostrowski Prize. Nominations should include a CV of the 
candidate, a letter of nomination and 2–3 letters of reference.

The Chair of the jury for 2017 is Gil Kalai of the Hebrew University of Jerusalem, Israel. Nominations should be 
sent to kalai@math.huji.ac.il by May 15, 2017.
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The ICIAM Prize Committee for 2019 is calling for nomi-
nations for the five ICIAM Prizes to be awarded in 2019 
(the Collatz Prize, the Lagrange Prize, the Maxwell Prize, 
the Pioneer Prize and the Su Buchin Prize). Each ICIAM 
Prize has its own special character but each one is truly 
international in character. Nominations are therefore wel-
come from every part of the world. A nomination should 
take into account the specifications of each particular 
prize (see below and at http://www.iciam.org/iciam-prizes) 
and should contain the following information:

- Full name and address of the person nominated.
- Web homepage if any.
- Name of particular ICIAM Prize.
- Justification for nomination (cite nominator’s reason 

for considering the candidate to be deserving of the 
prize, including explanations of the scientific and practi-
cal influence of the candidate’s work and publications).

- Proposed citation (concise statement about the out-
standing contribution in fewer than 250 words).

- CV of the nominee.
- 2–3 letters of support from experts in the field and/or 2–3 

names of experts to be consulted by the Prize Committee.
- Name and contact details of the proposer.

Sir Simon Kirwan Donaldson FRS, professor in pure 
mathematics at Imperial College London (UK) and per-
manent member of the Simons Center for Geometry and 
Physics at Stony Brook University (US), received the 
honorary degree Doctor Honoris Causa by Universidad 
Complutense de Madrid (Spain) on 20 January 2017.

The ceremony was presided over by the Rector, 
Carlos Andradas, who is also a professor in algebra at 
UCM. Vicente Muñoz, a professor in geometry and 
topology at UCM and a member of the Executive Com-
mittee of the EMS, was in charge of reading the Lau-
datio. There were 150 people in attendance, including 
the President of the Spanish Mathematical Society and 
the President of the Spanish Academy of Sciences. The 
ceremony took place in the Faculty of Mathematics of 
UCM. This is the first time that such an event has been 
hosted in this relatively new building. This allowed for 
an affluence of undergraduate and postgraduate stu-
dents and served to commemorate the 25th anniversary 
of the faculty building.

Call for Nominations for the  
2019 ICIAM Prizes

Simon Donaldson Awarded  
Doctor Honoris Causa

Nominations should be made electronically through the 
website https://iciamprizes.org/. The deadline for nomi-
nations is 15 July 2017.

Please contact president@iciam.org if you have any 
questions regarding the nomination procedure.

ICIAM Prize Committee for 2019:
Committee Chair:  Maria J. Esteban
Zdenek Strakos (Chair of Collatz Prize Subcommittee)
Alexandre Chorin (Chair of Lagrange Prize Subcommit-

tee)
Alexander Mielke (Chair of Maxwell Prize Subcommit-

tee)
Denis Talay (Chair of Pioneer Prize Subcommittee)
Zuowei Shen (Chair of Su Buchin Prize Subcommittee)
Margaret H. Wright

The International Council for Industrial and Applied 
Mathematics (ICIAM) is the world organisation for 
applied and industrial mathematics.

Its members are mathematical societies based in 
more than 30 countries.

For more information, see the council’s webpage at 
http://www.iciam.org/.

Professor Simon Donaldson is a renowned geom-
eter who has received numerous prizes, including the 
Fields Medal, the Shaw Prize and the Breakthrough 
Prize. The ceremony can be viewed at www.youtube.com/
watch?v=xoC53Smg-WI. A report (in Spanish) can be 
found at tribuna.ucm.es/43/art2605.php.

Simon Donaldson (left) and Carlos Andradas (right) during the cer-
emony (photo: Jesús de Miguel/UCM)
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Spectral Synthesis for Operators
and Systems
Anton Baranov (St. Petersburg State University, St. Petersburg, Russia) and
Yurii Belov (St. Petersburg State University, St. Petersburg, Russia)

Spectral synthesis is the reconstruction of the whole lattice
of invariant subspaces of a linear operator from generalised
eigenvectors. A closely related problem is the reconstruction
of a vector in a Hilbert space from its Fourier series with re-
spect to some complete and minimal system. This article dis-
cusses the spectral synthesis problem in the context of opera-
tor and function theory and presents several recent advances
in this area. Among them is the solution of the spectral syn-
thesis problem for systems of exponentials in L2(−π, π).

A more detailed account of these problems can be found
in the survey [1], to appear in the proceedings of 7ECM.

1 Introduction

Eigenfunction expansions play a central role in analysis and
its applications. We discuss several questions concerning such
expansions for special systems of functions, e.g. exponen-
tials in L2 on an interval and in weighted spaces, phase-space
shifts of the Gaussian function in L2(R) and reproducing ker-
nels in de Branges spaces (which include certain families of
Bessel or Airy type functions). We present solutions of some
problems in the area (including the longstanding spectral syn-
thesis problem for systems of exponentials in L2(−π, π)) and
mention several open questions, such as the Newman–Shapiro
problem about synthesis in Bargmann–Fock space.

Spectral synthesis for operators
One of the basic ideas of operator theory is to consider a lin-
ear operator as a “sum” of its simple parts, e.g. its restrictions
onto invariant subspaces. In the finite-dimensional case, the
possibility of such decomposition is guaranteed by the Jor-
dan normal form. Moreover, any invariant subspace coincides
with the span of the generalised eigenvectors it contains (re-
call that x is said to be a generalised eigenvector or a root
vector of a linear operator A if x ∈ Ker (A − λI)n for some
λ ∈ C and n ∈ N).

However, the situation in the infinite-dimensional case is
much more complex. Assume that A is a bounded linear op-
erator in a separable Hilbert space H that has a complete set
of generalised eigenvectors (in this case we say that A is com-
plete). Is it true that any A-invariant subspace is spectral, that
is, it coincides with the closed linear span of the generalised
eigenvectors it contains? In general, the answer is negative.
Therefore, it is natural to introduce the following notion.

Definition 1. A continuous linear operator A in a separable
Hilbert (or Banach, or Frechét) space H is said to admit spec-
tral synthesis or to be synthesable (we write A ∈ Synt) if, for

any invariant subspace E of A, we have

E = Span
{
x ∈ E : x ∈ ∪λ,n Ker (A − λI)n}.

Equivalently, this means that the restriction A|E has a com-
plete set of generalised eigenvectors.

The notion of spectral synthesis for a general operator
goes back to J. Wermer (1952). In the special context of
translation invariant subspaces in spaces of continuous or
smooth functions, similar problems were studied by J. Del-
sarte (1935), L. Schwartz (1947) and J.-P. Kahane (1953).
Note that, in this case, the generalised eigenvectors are ex-
ponentials and exponential monomials.

Wermer showed, in particular, that any compact nor-
mal operator in a Hilbert space admits spectral synthesis.
However, both of these conditions are essential: there ex-
ist non-synthesable compact operators and there exist non-
synthesable normal operators. For a normal operator A with
simple eigenvalues λn, Wermer showed that A � Synt if
and only if the set {λn} carries a complex measure orthog-
onal to polynomials, i.e. there exists a nontrivial sequence
{µn} ∈ �1 such that

∑
n µnλ

k
n = 0, k ∈ N0. Existence of

such measures follows from Wolff’s classical example of a
Cauchy transform vanishing outside of the disc: there exist
λn ∈ D = {z ∈ C : |z| < 1} and {µn} ∈ �1 such that

∑
n

µn

z − λn
≡ 0, |z| > 1.

At the same time, there exist compact operators that do not ad-
mit spectral synthesis. Curiously, the first example of such a
situation was implicitly given by H. Hamburger in 1951 (even
before Wermer’s paper). Further results were obtained in the
1970s by N. Nikolski and A. Markus. For example, Nikol-
ski [20] proved that any Volterra operator can be a part of a
complete compact operator (recall that a Volterra operator is
a compact operator whose spectrum is {0}).
Theorem 2 (Nikolski). For any Volterra operator V in a
Hilbert space H, there exists a complete compact operator A
on a larger Hilbert space H ⊕ H′ such that H is A-invariant
and A|H = V . In particular, A � Synt.

A. Markus [16] found a relation between spectral synthe-
sis for a compact operator and the geometric properties of
the eigenvectors. We now introduce the required “strong com-
pleteness” property.

Hereditarily complete systems
Let {xn}n∈N be a system of vectors in a separable Hilbert space
H that is both complete (i.e. its linear span is dense in H) and

Spectral Synthesis for Operators  
and Systems
Anton Baranov (St. Petersburg State University, St. Petersburg, Russia) and Yurii Belov (St. Petersburg State 
University, St. Petersburg, Russia)
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minimal (meaning that it fails to be complete when we remove
any of its vectors). Let {yn}n∈N be its (unique) biorthogonal
system, i.e. the system such that (xm, yn) = δmn, where δmn

is the Kronecker delta. Note that a system coincides with its
biorthogonal system if and only if it is an orthonormal basis.

With any x ∈ H, we associate its (formal) Fourier series
with respect to the biorthogonal pair {xn}, {yn}:

x ∈ H ∼
∑
n∈N

(x, yn)xn. (1)

It is one of the basic problems of analysis to find conditions
on the system {xn} that ensure the convergence of the Fourier
series to x in some sense. In applications, the system {xn} is
often given as the system of eigenvectors of some operator.

The choice of the coefficients in the expansion (1) is nat-
ural: note that if the series

∑
n cnxn converges to x in H then,

necessarily, cn = (x, yn). There are many ways to understand
convergence/reconstruction:
• The simplest case (with the exception of orthonormal

bases, of course) is a Riesz basis: a system {xn} is a Riesz
basis if, for any x, we have x =

∑
n cnxn (the series con-

verges in the norm) and A‖{cn}‖�2 ≤ ‖x‖ ≤ B‖{cn}‖�2 for
some positive constants A, B. Equivalently, xn = Ten for an
orthonormal basis {en} and some bounded invertible opera-
tor T .
• Bases with brackets: there exists a sequence nk such that∑nk

n=1(x, yn)xn converges to x as k → ∞.
• Existence of a linear (matrix) summation method

(e.g. Cesàro, Abel–Poisson, etc.): this means that there
exists a doubly infinite matrix (Am,n) such that
x = limm→∞

∑
n am,nS n(x), i.e. some means of the partial

sums S n(x) of the series (1) converge to x.

The following property, known as hereditary complete-
ness, may be understood as the weakest form of the recon-
struction of a vector x from its Fourier series

∑
n∈N(x, yn)xn.

Definition 3. A complete and minimal system {xn}n∈N in a
Hilbert space H is said to be hereditarily complete if, for any
x ∈ H, we have

x ∈ Span
{
(x, yn)xn

}
.

It is easy to see that hereditary completeness is equivalent
to the following property: for any partition N = N1 ∪ N2,
N1 ∩ N2 = ∅, of the index set N, the mixed system

{xn}n∈N1 ∪ {yn}n∈N2 (2)

is complete in H. Clearly, hereditary completeness is neces-
sary for the existence of a linear summation method for the
series (1) (otherwise, there exists a vector x orthogonal to all
partial sums of (1)).

Hereditarily complete systems are also known as strong
Markushevich bases. We will also say, in this case, that the
system admits spectral synthesis motivated by the following
theorem of Markus [16].

Theorem 4 (Markus). Let A be a complete compact operator
with generalised eigenvectors {xn} and trivial kernel. Then,
A ∈ Synt if and only if the system {xn} is hereditarily com-
plete.

Indeed, assume that the system of eigenvectors {xn} is not
hereditarily complete and, for some partition N = N1 ∪ N2,
the mixed system {xn}n∈N1 ∪ {yn}n∈N2 is not complete. The
biorthogonal system yn consists of eigenvectors of the adjoint
operator A∗. Then, E = Span{yn : n ∈ N2}⊥ is A-invariant and
{xn : n ∈ N1} ⊂ E but E � Span{xn : n ∈ N1}.

Note that hereditary completeness includes the require-
ment that the biorthogonal system {yn} is complete in H,
which is by no means automatic. In fact, it is very easy to
construct a complete and minimal system whose biorthogo-
nal is not complete.

Example 5. Let {en}n∈N be an orthonormal basis in H. Set
xn = e1 + en, n ≥ 2. Then, it is easy to see that {xn} is com-
plete and minimal, while its biorthogonal is clearly given by
yn = en, n ≥ 2. Taking direct sums of such examples, one
obtains biorthogonal systems with arbitrary finite or infinite
codimension.

It is not so trivial to construct a complete and minimal
system {xn} with a complete biorthogonal system {yn} that
is not hereditarily complete (i.e. the mixed system (2) fails
to be complete for some partition of the index set). A first
explicit construction was given by Markus (1970). Further
results about the structure of nonhereditarily complete sys-
tems were obtained by N. Nikolski, L. Dovbysh and V. Su-
dakov (1977). For an extensive survey of spectral synthesis
and hereditary completeness, the reader is referred to [13].

Interesting examples of hereditarily (in)complete systems
also appear in papers by D. Larson and W. Wogen (1990),
E. Azoff and H. Shehada (1993) and A. Katavolos, M. Lam-
brou and M. Papadakis (1993) in connection with reflexive
operator algebras.

2 Spectral synthesis for exponential systems

Let eλ(t) = eiλt be a complex exponential. For Λ = {λn} ⊂ C,
we consider

E(Λ) = {eλ}λ∈Λ
as a system in L2(−a, a). The series

∑
n cneλn are often referred

to as nonharmonic Fourier series, in contrast to “harmonic”
orthogonal series. A good introduction to the subject can be
found in [26].

Exponential systems play a most prominent role in anal-
ysis and its applications. Geometric properties of exponential
systems in L2(−a, a) were one of the major themes of 20th
century harmonic analysis. Let us briefly mention some of
the milestones of the theory.

(i) Completeness of exponential systems.
This basic problem was studied in the 1930–1940s by
N. Levinson and B. Ya. Levin. One of the most important con-
tributions is the famous result of A. Beurling and P. Malliavin
(1967), who gave an explicit formula for the radius of com-
pleteness of a system E(Λ) in terms of a certain density of Λ.
By the radius of completeness of E(Λ), we mean

r(Λ) = sup
{
a > 0 : E(Λ) is complete in L2(−a, a)

}
.

A new approach to these (and related) problems and their far-
reaching extensions can be found in [9, 10, 17, 18].
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(ii) Riesz bases of exponentials.
The first results about Riesz bases of exponentials, which go
back to R. Paley and N. Wiener (1930s), were of perturbative
nature. Assume that the frequencies λn are small perturbations
of integers,

sup
n∈Z
|λn − n| < δ.

Paley and Wiener showed that E(Λ) is a Riesz basis in
L2(−π, π) if δ = π−2. It was a longstanding problem to find
the best possible δ; finally, M. Kadets (1965) showed that the
sharp bound is 1/4. However, it was clear that one cannot
describe all Riesz bases in terms of “individual” perturba-
tions. A complete description of exponential bases in terms
of the Muckenhoupt (or Helson–Szegö) condition was given
by B. S. Pavlov (1979) and was further extended by S. V. Hru-
schev, N. K. Nikolski and B. S. Pavlov (see [11] for a detailed
account of the problem). Yu. Lyubarskii and K. Seip (1997)
extended this description to the Lp-setting. These results re-
vealed the connection of the problem to the theory of singular
integrals.

(iii) Exponential frames (sampling sequences).
A system {xn} in a Hilbert space H is said to be a frame if
there exist positive constants A, B such that

A
∑

n

|(x, xn)|2 ≤ ‖x‖2 ≤ B
∑

n

|(x, xn)|2,

i.e. a generalised Parceval identity holds. Here, we omit the
requirement of minimality to gain in “stability” of the recon-
struction; there is a canonical choice of coefficients so that the
series

∑
n cnxn converge to x. If a frame {xn} is minimal then

it is a Riesz basis.
Exponential frames were introduced by R. Duffin and

A. C. Schaeffer (1952), while their complete description was
obtained relatively recently by J. Ortega–Cerdà and K. Seip
[22]; this solution involves the theory of de Branges spaces of
entire functions, which is to be discussed below. For an exten-
sive review on exponential frames on disconnected sets, see a
recent monograph by A. Olevskii and A. Ulanovskii [21].

Synthesis up to codimension 1
The spectral synthesis (or hereditary completeness) problem
for exponential systems was also a longstanding problem in
nonharmonic Fourier analysis. Let E(Λ) be a complete and
minimal system of exponentials in L2(−a, a) and let {ẽλ} be
the biorthogonal system. It was shown by R. Young (1981)
that the biorthogonal system {ẽλ} is always complete.

Problem 6. Is it true that any complete and minimal system
of exponentials {eλ}λ∈Λ in L2(−a, a) is hereditarily complete,
i.e. any function f ∈ L2(−a, a) belongs to the closed linear
span of its “harmonics” ( f , ẽλ)eλ?

This question was answered in the negative by the authors
jointly with Alexander Borichev [2]. Surprisingly, it turned
out, at the same time, that spectral synthesis for exponential
systems always holds up to at most one-dimensional defect.

Theorem 7. There exists a complete and minimal system of
exponentials {eλ}λ∈Λ, Λ ⊂ R, in L2(−π, π) that is not heredi-
tarily complete.

Thus, in general, there exists no linear summation method
for nonharmonic Fourier series

∑
λ∈Λ( f , ẽλ)eλ associated to a

complete and minimal exponential system.
It is worth mentioning that “bad” sequences Λ can be reg-

ularly distributed, e.g. be a bounded perturbation of integers:
in Theorem 7 one can choose a uniformly separated sequence
Λ so that |λn − n| < 1, n ∈ Z.

Theorem 8. If the system of exponentials {eλ}λ∈Λ is complete
and minimal in L2(−a, a) then, for any partition Λ = Λ1 ∪Λ2,
Λ1 ∩ Λ2 = ∅, the corresponding mixed system has defect at
most 1, that is,

dim
({eλ}λ∈Λ1 ∪ {ẽλ}λ∈Λ2

)⊥ ≤ 1.

It turns out that incomplete mixed systems are always
highly asymmetric. Given a complete and minimal system
E(Λ) in L2(−π, π), it is natural to expect that “in the main”
Λ is similar to Z. This is indeed the case. As a very rough
consequence of more delicate results (such as the Cartwright–
Levinson theorem), let us mention that Λ always has den-
sity 1:

lim
r→∞

nr(Λ)
2r
= 1,

where nr(Λ) is the usual counting function, nr(Λ)
= #{λ ∈ Λ, |λ| ≤ r}. Analogously, one can define the upper
density D+(Λ):

D+(Λ) = lim sup
r→∞

nr(Λ)
2r
.

Theorem 9. Let Λ ⊂ C, let the system E(Λ) be complete and
minimal in L2(−a, a) and let the partition Λ = Λ1 ∪Λ2 satisfy
D+(Λ2) > 0. Then, the mixed system {eλ}λ∈Λ1 ∪ {ẽλ}λ∈Λ2 is
complete in L2(−a, a).

Theorem 9 shows that there is a strong asymmetry be-
tween the systems of reproducing kernels and their biorthog-
onal systems. The completeness of a mixed system may fail
only when we take a sparse (but infinite!) subsequence Λ1.

We conclude this subsection with one open problem.

Problem 10. Given a hereditarily complete system of expo-
nentials, does there exist a linear summation method for the
corresponding nonharmonic Fourier series?

Translation to the entire functions setting
A classical approach to a completeness problem is to translate
it (via a certain integral transform) to a uniqueness problem in
some space of analytic functions. In the case of exponentials
on an interval, the role of such a transform is played by the
standard Fourier transform F ,

(F f )(z) =
1

2π

∫ a

−a
f (t)e−iztdt.

By the classical Paley–Wiener theorem, F maps L2(−π, π)
unitarily onto the space

PWa = {F − entire, F ∈ L2(R), |F(z)| ≤ Cea|z|}.
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Paley–Wiener space PWa (also known as the space of ban-
dlimited functions of bandwidth 2a) plays a remarkably im-
portant role in signal processing.

The Fourier transform maps exponentials in L2(−a, a) to
the cardinal sine functions:

(F eλ̄)(z) = kλ(z) =
sin a(z − λ)
π(z − λ)

.

Note that the functions kλ are the reproducing kernels in
Paley–Wiener space PWa, i.e. the function kλ generates the
evaluation functional at the point λ:

F(λ) = (F, kλ), F ∈ PWa.

In particular, the orthogonal expansion f =
∑

n∈Z cneint in
L2(−π, π) becomes

F(z) =
∑

n∈Z
cn

sin π(z − n)
π(z − n)

, cn = F(n), (3)

the classical Shannon–Kotelnikov–Whittacker sampling for-
mula.

Moreover, this translation makes it possible to find an ex-
plicit form of the biorthogonal system, which is not possible
when staying inside L2(−a, a). Let {kλ}λ∈Λ be a complete and
minimal system in PWa. Its biorthogonal system may then be
obtained from one function GΛ known as the generating func-
tion of Λ. This is an entire function with the zero set Λ, which
can be defined by the formula

GΛ(z) = lim
R→∞

∏
λ∈Λ, |λ|<R

(
1 − z
λ

)
,

with the properties that GΛ � PWa (otherwise this would be
a contradiction to completeness) but GΛ

z−λ ∈ PWa for any λ ∈
Λ by the minimality of the system {kλ}λ∈Λ. The biorthogonal
system is then given by

gλ(z) =
GΛ(z)

G′
Λ

(λ)(z − λ) . (4)

Thus, with any function F ∈ PWa, we can associate two (for-
mal) Fourier series expansions:

F ∈ PWa ∼
∑
λ∈Λ

cλ
sin a(z − λ)
π(z − λ)

, cλ = (F, gλ),

F ∈ PWa ∼
∑
λ∈Λ

F(λ)
GΛ(z)

G′
Λ

(λ)(z − λ) .

The first series is an expansion with respect to cardinal sine
functions while the second one is a Lagrange-type interpola-
tion series.

Our results on exponential systems can be reformulated
for reproducing kernels of Paley–Wiener space: for any com-
plete and minimal system {kλ}λ∈Λ and any partition Λ =
Λ1 ∪ Λ2,

dim
({kλ}λ∈Λ1 ∪ {gλ}λ∈Λ2

)⊥ ≤ 1 (5)

but the defect 1 is possible.

3 Spectral synthesis in de Branges spaces and
applications

Preliminaries on de Branges spaces
The theory of Hilbert spaces of entire functions was created
by L. de Branges at the end of the 1950s and the beginning
of the 1960s. It was the main tool in his famous solution of
the direct and inverse spectral problems for two-dimensional
canonical systems. These are second order ODEs that include,
as particular cases, the Schrödinger equation on an interval,
the Dirac equation and Krein’s string equation. For the gen-
eral theory of de Branges spaces, we refer to the original
monograph by de Branges [8]; for information relating to in-
verse problems, see [23, 24].

De Branges spaces proved to be highly nontrivial and are
interesting objects from the point of view of function theory.
Surprisingly, they appear to be unavoidable in substantially
different branches of analysis, for example:
• Polynomial approximations on the real line.
• Orthogonal polynomials and random matrix theory (see,

for example, [15]).
• Model (backward shift invariant) subspaces of Hardy space:

KΘ = H2�ΘH2, where H2 is Hardy space andΘ is an inner
function (for a discussion of this relation, see, for example,
[9]).
• Functional models for different classes of linear operators

[5, 12].
and even
• Analytic number theory, the Riemann Hypothesis and

Dirichlet L-functions [14].
There are equivalent ways to introduce de Branges spaces:

an axiomatic approach or a definition in terms of the gen-
erating Hermite–Biehler entire function. Here, we will not
go into details, instead confining ourselves to an equivalent
representation of de Branges spaces via spectral data. This
representation of a de Branges space in terms of a weighted
Cauchy transform (which can already be found in the work of
de Branges) turns out to be a very useful tool; it relates the
study of de Branges spaces with singular integral operators
(see, for example, [6]).

Let T = {tn}n∈N ⊂ R be an increasing sequence (one-
sided or two sided, the index set being a subset of Z) such that
|tn| → ∞, |n| → ∞. Let µ =

∑
n µnδtn be a measure supported

by T such that
∑

n(t2
n + 1)−1µn < ∞. Consider the class of

entire functions

H =
{
F : F(z) = A(z)

∑
n

cnµ
1/2
n

z − tn

}
, (6)

where A is some (fixed) entire function that is real on R and
vanishes exactly on T , and {cn} ∈ �2.

Set ‖F‖H = ‖{cn}‖�2 . With this norm, H is a reproducing
kernel Hilbert space. It is an axiomatic de Branges space and
any de Branges space can be represented in this way.

We call the pair (T, µ) the spectral data for space H . Of
course, formally, the space also depends on the choice of the
entire function A but spaces with the same spectral data and
different functions A are canonically isomorphic.

Example 11. If T = Z, µn = 1 and A(z) = sin πz then
H = PWπ. The corresponding representation of the elements
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of H coincides with the Schannon–Kotelnikov–Whittaker
sampling formula (3).

An important feature of de Branges spaces is that they
have the so-called division property: if a function f in a de
Branges spaceH vanishes at some point w ∈ C then the func-
tion f (z)/(z − w) also belongs to H . Another characteristic
property of a de Branges space is existence of orthogonal
bases of reproducing kernels. It is clear from the definition
that the functions A(z)/(z − tn) form an orthogonal basis inH
and are reproducing kernels ofH up to normalisation.

Spectral synthesis problem and its solution
Let {kλ} be a complete and minimal system of reproducing
kernels in a de Branges space H . As in the Paley–Wiener
space, its biorthogonal system is given by formula (4) for
some appropriate generating function GΛ. However, in con-
trast to the Paley–Wiener case, the biorthogonal system in
general need not be complete (Baranov, Belov, 2011).

We will say that a de Branges space has the spectral syn-
thesis property if any complete and minimal system of repro-
ducing kernels with the complete biorthogonal system (this
assumption is included) is also hereditarily complete, i.e. all
mixed systems are complete. In [3], the following problem is
addressed.
Problem 12. Which de Branges spaces have the spectral syn-
thesis property? If a space does not have the spectral synthesis
property, what is the possible size of the defect for a mixed
system?

Why is hereditary completeness of reproducing kernels in
de Branges spaces an interesting and significant topic? There
are several motivations for that:
• Relation to exponential systems and nonharmonic Fourier

series as discussed above.
• N. Nikolski’s question: whether there exist nonhereditarily

complete systems of reproducing kernels in model spaces
KΘ = H2 � ΘH2? Note that de Branges spaces form an
important special subclass of model spaces.
• Spectral synthesis for rank one perturbations of self-adjoint

operators (see Subsection 3).
In [3], a complete description of de Branges spaces with

the spectral synthesis property was obtained. To state it, we
need one more definition. An increasing sequence T = {tn} is
said to be lacunary (or Hadamard lacunary) if

lim inf
tn→∞

tn+1

tn
> 1, lim inf

tn→−∞

|tn|
|tn+1|

> 1,

i.e. the moduli of |tn| tend to infinity at least exponentially.

Theorem 13. LetH be a de Branges space with spectral data
(T, µ). Then,H has the spectral synthesis property if and only
if one of the following conditions holds:

(i)
∑

n µn < ∞.
(ii) The sequence {tn} is lacunary and, for some C > 0 and

any n,
∑
|tk |≤|tn |

µk + t2
n

∑
|tk |>|tn |

µk

t2
k

≤ Cµn. (7)

Note that condition (3) implies that the sequence of
masses µn also grows at least exponentially.

Now we turn to the problem of the size of the defect (i.e.
the dimension of the complement to a mixed system). It turns
out that one can construct examples of systems of reproducing
kernels with large or even infinite defect.

Theorem 14. For any increasing sequence T = {tn} with
|tn| → ∞, |n| → ∞, and for any N ∈ N ∪ {∞}, there exists
a measure µ such that, in the de Branges space with spectral
data (T, µ), there exists a complete and minimal system of re-
producing kernels {kλ}λ∈Λ whose biorthogonal system {gλ}λ∈Λ
is also complete but, for some partition Λ = Λ1 ∪ Λ2,

dim ({gλ}λ∈Λ1 ∪ {kλ}λ∈Λ2 )⊥ = N.

The key role in this construction plays the balance be-
tween the “spectrum” {tn} and the masses {µn}. If

∑
n µn = ∞,

but there exists a subsequence tnk of T such that
∑

k t2N−2
nk
µnk <

∞, then, in the corresponding de Branges space, one has
mixed systems with any defect up to N. Conversely, the esti-
mate µn ≥ |tn|−M for some M > 0 and all n implies an estimate
from the above in terms of M for the defect.

Spectral theory of rank one perturbations of compact
self-adjoint operators
Let A be a compact self-adjoint operator in a separable Hilbert
space H with simple point spectrum {sn} and trivial kernel.
In other words, A is the simplest infinite-dimensional opera-
tor one can imagine, diagonalisable by the classical Hilbert–
Schmidt theorem. Surprisingly, the spectral theory of rank one
perturbations of such operators is already highly nontrivial.

For a, b ∈ H, consider the rank one perturbation L of A,

L = A + a ⊗ b, L f = A f + ( f , b)a, f ∈ H.

For example, one may obtain examples of rank one pertur-
bations changing one boundary condition in a second order
differential equation.

In [5], the spectral properties of rank one perturbations
are studied via a functional model. Several similar functional
models for rank one perturbations (or close classes of oper-
ators) have been developed, e.g. by V. Kapustin (1996) and
G. Gubreev and A. Tarasenko (2010). Let us present the idea
of this model without going into technicalities.

For tn = s−1
n , consider a de Branges spaceH with spectral

data (T, µ), where µ is some measure supported by T . Let G
be an entire function such that G � H but G(z)/(z − w) ∈
H whenever G(w) = 0. This means that the function G has
growth just slightly larger than is possible for the elements of
H . Assume also that G(0) = 1. Consider the linear operator

(MF)(z) =
F(z) − F(0)G(z)

z
, F ∈ H . (8)

It is easily seen that M is a rank one perturbation of a compact
self-adjoint operator with spectrum t−1

n = sn. The functional
model theorem from [5] proves that any rank one perturbation
of A is unitary equivalent to a model operator M of the form
(8) for some de Branges space H and function G. Therefore,
while the spectrum T = {tn} is fixed, the masses µn and the
function G are free parameters of the model.



16 EMS Newsletter March 2017

Feature

It is easy to see that the eigenfunctions of M are of the
form G(z)/(z−λ) for λ ∈ ZG, where Z(G) denotes the zero set
of G. The point spectrum of M is thus given by {λ−1 : λ ∈ ZG}.
Multiple zeros of G correspond to generalised eigenvectors
but we assume, for simplicity, that G has simple zeros only.
Thus, the system of eigenfunctions of the rank one perturba-
tion L is unitary equivalent to a system of the form {gλ}λ∈Λ,
as in (4), while eigenfunctions of L∗ (which is also a rank one
perturbation of A) correspond to a system {kλ}λ∈Λ of repro-
ducing kernels inH .

Thus, we relate the spectral properties of rank one per-
turbations to geometric properties of systems of reproducing
kernels (in view of the symmetry, we interchange the roles of
L and L∗):
• Completeness of L⇐⇒ completeness of a system of repro-

ducing kernels {kλ} inH(E).
• Completeness of L∗ ⇐⇒ completeness of the system bi-

orthogonal to the system of reproducing kernels.
• Spectral synthesis for L ⇐⇒ hereditary completeness of
{kλ}λ∈Λ, i.e. for any partition Λ = Λ1 ∪ Λ2, the system
{kλ}λ∈Λ1 ∪ {gλ}λ∈Λ2 is complete inH .

The results of Subsection 3 lead to a number of striking
examples for rank one perturbations of compact self-adjoint
operators. These examples show that the spectral theory of
such perturbations is a rich and complicated subject that is far
from being completely understood.

Theorem 15 (Baranov, Yakubovich). For any compact self-
adjoint operator A with simple spectrum, there exists its rank
one perturbation L = A + a ⊗ b such that:

(i) Ker L = Ker L∗ = 0 and L is complete but the eigenvec-
tors of L∗ span a subspace with infinite codimension.

(ii) L and L∗ are complete but L admits no spectral synthe-
sis with infinite defect (i.e. there exists an L-invariant
subspace E such that the generalised vectors of L that
belong to E have infinite codimension in E).

For more results about completeness and spectral synthe-
sis of rank one perturbations, see [5]. One may also ask for
which compact self-adjoint operators A there exists a rank
one perturbation that is a Volterra operator (i.e. the spectrum
can be destroyed by a rank one perturbation). This problem
was solved in [4], where it was shown that the spectrum
{sn} is “destructible” if and only if tn = s−1

n form the zero
set of an entire function of some special class introduced by
M. G. Krein (1947).

4 Spectral synthesis in Fock-type spaces

Classical Bargmann–Fock space
Fock-type spaces form another important class of Hilbert
spaces of entire functions. In contrast to de Branges spaces,
where the norm is defined as an integral over the real axis
(with respect to some continuous or discrete measure), in
Fock-type spaces the norm is defined as an area integral.
Classical Fock space F (also known as Bargmann, Segal–
Bargmann or Bargmann–Fock space) is defined as the set of
all entire functions F for which

‖F‖2F :=
1
π

∫
C

|F(z)|2e−π|z|
2
dm(z) < ∞,

where m stands for the area Lebesgue measure. This space (as
well as its multi-dimensional analogues) plays a most promi-
nent role in theoretical physics, serving as a model of the
phase space of a particle in quantum mechanics. It also ap-
pears naturally in time-frequency analysis and Gabor frame
theory. There is a canonical unitary map from L2(R) to F
(the Bargmann transform), which plays a role similar to that
of the Fourier transform in the Paley–Wiener space setting.
Note that, clearly, all functions in F are of order at most 2
and satisfy the estimate |F(z)| ≤ C exp(π|z|2/2) (which can be
slightly refined).

The reproducing kernels of F are the usual complex ex-
ponentials, kλ(z) = eπλ̄z. Moreover, the Bargmann transform
of the phase-space shift of the Gaussian, i.e. of the func-
tion e2πiηte−π(t−ξ)

2
, coincides up to normalisation with eπλz,

λ = ξ+ iη. Thus, geometric properties (e.g. spectral synthesis)
of the phase-space shifts of the Gaussian are equivalent to the
corresponding properties of the exponentials in Fock space.

Radial Fock-type spaces
Considering radial weights differing from the Gaussian weight,
one obtains a wide class of Hilbert spaces of entire functions.
Namely, for a continuous function ϕ : [0,∞) → (0,∞), we
define the radial Fock-type space as

Fϕ =
{
F entire : ‖F‖2Fϕ :=

1
π

∫
C

|F(z)|2e−ϕ(|z|)dm(z) < ∞
}
.

We always assume that log r = o(ϕ(r)), r → ∞, to exclude
finite-dimensional spaces.

Any Fock-type space is a reproducing kernel Hilbert
space. It was shown by K. Seip [25] that in classical Fock
space there are no Riesz bases of reproducing kernels. Re-
cently, A. Borichev and Yu. Lyubarskii [7] showed that Fock-
type spaces with slowly growing weights ϕ(r) = (log r)γ, γ ∈
(1, 2], have Riesz bases of reproducing kernels corresponding
to real points and, thus, can be realised as de Branges spaces
with equivalence of norms (this is clear from the representa-
tion of de Branges spaces via their spectral data). Moreover,
ϕ(r) = (log r)2 is in a sense the sharp bound for this phe-
nomenon. Namely, it is shown in [7] that if (log r)2 = o(ϕ(r)),
r → ∞, and ϕ has a certain regularity then Fϕ has no Riesz
bases of reproducing kernels.

In view of the examples above, one may ask which de
Branges spaces can be realised as radial Fock-type spaces,
that is, there is an area integral norm that is equivalent to
the initial de Branges space norm. Surprisingly, it turns out
that this class of de Branges spaces exactly coincides with
the class of de Branges spaces (ii) with the spectral synthesis
property in Theorem 13.

Theorem 16 (Baranov, Belov, Borichev). Let H be a de
Branges space with spectral data (T, µ). Then, the following
statements are equivalent:

(i) There exists a Fock-type space Fϕ such thatH = Fϕ.

(ii) H is rotation invariant, that is, the operator Rθ : f (z) �→
f (eiθz) is a bounded invertible operator in H for some
(all) θ ∈ (0, π).

(iii) The sequence T is lacunary and (7) holds.
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Thus, in the space Fϕ with ϕ(r) = (log r)γ, γ ∈ (1, 2],
any complete and minimal system of reproducing kernels is
hereditarily complete. We also mention that Riesz bases in
some de Branges spaces with lacunary spectral data have been
described by Yu. Belov, T. Mengestie and K. Seip [6].

Synthesis in Fock space and the Newman–Shapiro
problem
Now we turn to the case of classical Fock space F . Though
it has no Riesz bases of reproducing kernels, there exist many
complete and minimal systems of reproducing kernels. The
two-dimensional lattice Z+iZ plays for Fock space a role sim-
ilar to the role of the lattice Z for Paley–Wiener space PWπ.
In particular, if Λ = (Z+ iZ) \ {0} then {kλ}λ∈Λ = {eπλz}λ∈Λ is a
complete and minimal system, whose generating function is
the Weierstrass sigma-function (up to the factor z). The sec-
ond author proved (2015) the following Young-type theorem
for Fock space.

Theorem 17 (Belov). For any complete and minimal system
of reproducing kernels (i.e. exponentials) in F , its biorthogo-
nal system is also complete.

On the other hand, the first author recently proved that
classical Fock space has no spectral synthesis property. Equiv-
alently, this means that there exist nonhereditarily complete
systems of phase-space shifts of the Gaussian in L2(R). At
the same time, there are good reasons to believe that there ex-
ists a universal upper bound for the defects of mixed systems.
The proofs of these results are to appear elsewhere.

Theorem 18 (Baranov). There exist complete and minimal
systems {eπλz}λ∈Λ of reproducing kernels in F that are not
hereditarily complete, that is, for some partition Λ = Λ1∪Λ2,
the mixed system {eπλz}λ∈Λ1 ∪ {gλ}λ∈Λ2 is not complete in F .

Moreover, this example of a nonhereditarily complete sys-
tem of reproducing kernels in F admits the following refor-
mulation. Given a function G ∈ F , let us denote by RG the
subspace of F defined as

RG = {GF : GF ∈ F , F – entire}.

Thus, RG is the (closed) subspace in F that consists of func-
tions in F that vanish at the zeros of G with appropriate
multiplicities. The example of Theorem 18 shows that there
exists G ∈ F such that znG ∈ F for any n ≥ 1 and
Span{znG : n ∈ Z+} � RG.

We stated this result to compare it with a longstanding
problem in Fock space that has a similar form. This problem
was posed in the 1960s by D. J. Newman and H. S. Shapiro
[19], who were motivated by an old paper of E. Fisher (1917)
on differential operators. Assume that a function G from F is
such that ewzG ∈ F for any w ∈ C, that is, its growth is smaller
than the critical one. One may define on the linear span of all
exponentials the (unbounded) multiplication operator MGF =
GF. It is natural to expect that the adjoint of MG will then be
given by an infinite order differential operator G∗

( ∂
∂z
)
, where

G∗(z) = G(z). Newman and Shapiro showed that the positive
answer to this question is equivalent to the positive solution
of the following problem.

Problem 19. Let G ∈ F be such that ewzG ∈ F for any w ∈ C.
Is it true that

Span{ewzG : w ∈ C} = RG ?

Newman and Shapiro showed that the equality holds in
the case where G is a linear combination of exponential
monomials. In our example in Theorem 18, however, the
function G admits multiplication by polynomials in Fock
space but not multiplication by the exponents. Thus, the spec-
tral synthesis problem of Newman and Shapiro remains open.
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Diffusion, Optimal Transport and Ricci
Curvature for Metric Measure Spaces
Luigi Ambrosio (Scuola Normale Superiore, Pisa, Italy), Nicola Gigli (SISSA, Trieste, Italy)
and Giuseppe Savaré (Università di Pavia, Italy)

Lower Ricci curvature bounds play a crucial role in several
deep geometric and functional inequalities in Riemannian ge-
ometry and diffusion processes. Bakry–Émery [8] introduced
an elegant and powerful technique, based on commutator es-
timates for differential operators and so-called Γ-calculus, to
derive many sharp results. Their curvature-dimension condi-
tion has been further developed by many authors, mainly in
the framework of Markov diffusion modelled on weighted Rie-
mannian manifolds, with relevant applications to infinite di-
mensional problems.

A new synthetic approach relying on entropy and opti-
mal transport has been more recently introduced by Lott,
Sturm and Villani. It relies structurally on the notions of dis-
tance and measure and can therefore be used to extend the
curvature-dimension condition to the general nonsmooth set-
ting of metric measure spaces (X, d,m). Among its many beau-
tiful properties, the synthetic approach is stable with respect
to measured Gromov convergence.

The equivalence of the two points of view can be directly
proved in a smooth differential setting but it is a difficult task
in a general metric framework, when explicit calculations in
local charts are hard (if not impossible) to justify.

We will try to give a brief and informal introduction to the
two approaches and show how the Otto variational interpre-
tation of the Fokker-Planck equation and the theory of metric
gradient flows has provided a unifying point of view, which al-
lows one to prove their equivalence for arbitrary metric mea-
sure spaces. As a byproduct, by combining Γ-calculus and op-
timal transport techniques, an impressive list of deep results
in Riemannian geometry and smooth diffusion have a natural
counterpart in the nonsmooth metric measure framework.

1 Ricci curvature and Γ-calculus in a smooth
setting

In order to introduce and explain the basic notions we will
deal with, we consider a smooth, complete and connected d-
dimensional Riemannian manifold (M, g) endowed with its
Riemannian distance dg and a reference measurem = e−VVolg
that is absolutely continuous with respect to the Riemannian
volume form Volg; its density is associated to the smooth po-
tential V : M → R. The metric tensor g induces a norm |∇ f |g
of the gradient of a smooth function f : M → R, given in
local coordinates by |∇ f |2g =

∑
i, j gi j∂i f∂ j f .

The combination with the reference measure m gives rise
to the quadratic energy form

E( f ) :=
∫
M

|∇ f |2g dm, E( f , g) :=
∫
M

〈∇ f ,∇g〉g dm, (1)

and to the second order differential operator L = ∆g − 〈∇V, ·〉g
satisfying the integration-by-parts formula

E( f , g) = −
∫
M

f Lg dm.

L reads in local coordinates as

L f = eW
∑
i, j

∂i
(
e−W gi j∂ j f

)
, W = V +

1
2

log det(gi j),

and generates a semigroup (Pt)t≥0 through the solution ft =
Pt f of the diffusion equation

∂t ft = L ft in [0,∞) ×M, f0 = f . (2)

Whenever f0 ∈ C∞c (M) is smooth with compact support, f is a
classical C∞ solution to (2) and one can extend L from C∞c (M)
to a self-adjoint operator in L2(X,m) generating a Markov
semigroup.

Example 1. ChoosingM = Rd with the Euclidean metric and
V ≡ 0, one gets the Laplace operator and the corresponding
heat flow. More general choices of V yield the drift-diffusion
operator and the weighted Dirichlet form

L f = ∆ f − ∇V · ∇ f , E( f ) :=
∫
Rd
|∇ f |2 e−V dx;

the Gaussian space (Rd, | · |,mG) corresponds to the Gaussian
measure mG associated to VG(x) := 1

2 |x|2 +
d
2 ln(2π) and to the

Ornstein-Uhlenbeck operator L f = ∆ f − x · ∇ f .
The usual elliptic second order operators in divergence form

L f =
∑
i, j

∂i
(
gi j∂ j f

)
, E( f ) =

∫
Rd

∑
i, j

gi j∂i f∂ j f dx,

are associated to the uniformly elliptic metric tensor gi j and
to the potential V := − 1

2 log det(gi j) by the expression of the
volume measure in local coordinates.
The Laplace-Beltrami operator ∆g and the energy form

L f = ∆g f , E( f ) =
∫
M

|∇ f |2g dVolg,

in a Riemannian manifold corresponds to the choice V ≡ 0.

Diffusion, Optimal Transport and Ricci
Curvature for Metric Measure Spaces
Luigi Ambrosio (Scuola Normale Superiore, Pisa, Italy), Nicola Gigli (SISSA, Trieste, Italy) and Giuseppe Savaré 
(Università di Pavia, Italy)
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It is interesting to note that the operator L encodes the in-
formation concerning the metric tensor, which can be recon-
structed by the commutation identity yielding the Γ-tensor

Γ( f , g) :=
1
2

(
L( f g) − (L f ) g − f Lg

)
, Γ( f ) := Γ( f , f ),

since one easily gets

Γ( f , g) = 〈∇ f ,∇g〉g, Γ( f ) = |∇ f |2g.

Γ also characterises the class of the Lipschitz functions (and
thus the Riemannian distance), since

Γ( f ) ≤ L2 ⇒ f is L-Lipschitz. (3)

Bakry–Émery [8, 9] introduced a further geometric tensor,
called Γ2, obtained by an iterated commutation:

Γ2( f ) :=
1
2

LΓ( f ) − Γ( f ,L f ). (4)

Thanks to the Bochner-Lichnerowicz identity, the Γ2 tensor
can be expressed by the following remarkable formula, in-
volving, in a crucial way, Ricci curvature and the Hessian of
V:

Γ2( f ) =
∣∣∣∇2 f
∣∣∣2
g + Ricg(∇ f ,∇ f ) + ∇2

gV(∇ f ,∇ f ).

According to Barky-Émery, the weighted Riemannian man-
ifold (M, dg,m) satisfies the curvature-dimension condition
BE(K,N), K ∈ R, N ∈ [1,∞] if, for every smooth function f ,

Γ2( f ) ≥ K Γ( f ) +
1
N

∣∣∣L f
∣∣∣2. (5)

Example 2. When V ≡ 0, the BE(K,N) condition is equiva-
lent to Ricg ≥ Kg and d ≤ N. In particular, Euclidean space
Rd satisfies the BE(0, d) condition; the d-dimensional unit
sphere Sd (resp. hyperbolic space Hd) is the reference model
for BE(d − 1, d) (resp. BE(−(d − 1), d)).
When a general potential V is involved, (5) also reflects the
convexity of V: in the simplest Euclidean case of Rd and
N = ∞, (5) is equivalent to ∇2V ≥ KI. In particular, Gaussian
space (Rd, | · |,mG) satisfies the BE(1,∞) condition.

2 Two equivalent formulations of the
curvature-dimension condition

The BE(K,N) condition has many deep and beautiful func-
tional and geometric consequences (some of them are listed
at the end of this paper in Section 7). Here we focus on two
relevant (and seemingly far-reaching) aspects.

Pointwise gradient estimates for Markov diffusion
A first application concerns the behaviour of the semigroup
(Pt)t≥0 associated to (2).

Theorem 3 ([8, 45]). The weighted manifold (M, dg,m) sat-
isfies the curvature-dimension condition BE(K,N) if and only

if, for every smooth function f with compact support and for
every t ≥ 0,

e2Kt |∇Pt f |2g +
2
N

E2K(t) |LPt f |2 ≤ Pt |∇ f |2g, (6)

where

Eλ(t) :=
∫ t

0
eλs ds =


λ−1(eλt − 1

)
if λ � 0,

t if λ = 0.

In the flat Euclidean caseM = Rd, V ≡ 0, (6) with N = ∞
simply follows by Jensen’s inequality and the commutation
property of the heat equation ∇Pt f = Pt(∇ f ). In the gen-
eral case, (6) reflects the commutator bounds coded in (5); the
simplest situation is provided by the BE(K,∞) case, when (6)
follows (at least formally – see, for example, [9, Sec. 3.2.3])
by the monotonicity property of the quantity

Λ(s) := Ps
(
Γ(Pt−s f )

)
, 0 ≤ s ≤ t,

which satisfies the differential inequality

d
ds
Λ(s) = 2Ps

(
Γ2(Pt−s f )

) ≥ 2KPs
(
Γ(Pt−s f )

)
= 2K Λ(s).

Brunn–Minkowski and Prékopa–Leindler inequalities
A second instance of application of curvature bounds con-
cerns the curved version of the celebrated Brunn–Minkowski
inequality

Vol((1 − ϑ)A + ϑB) ≥ (Vol(A)
)1−ϑ(Vol(B)

)ϑ
, ϑ ∈ [0, 1],

for an arbitrary couple of Borel sets A, B ⊂ Rd; here, (1 −
ϑ)A + ϑB = {(1 − ϑ)a + ϑb : a ∈ A, b ∈ B}.

In order to state it in a Riemannian manifold, it is conve-
nient to denote by Zϑ(a, b), a, b ∈ M, the set of interpolating
points x ∈ M satisfying

dg(a, x) = (1 − ϑ)dg(a, b), dg(x, b) = ϑdg(a, b), ϑ ∈ [0, 1].

Theorem 4 ([17]). The weighted manifold (M, dg,m) satis-
fies the curvature-dimension condition BE(K,∞) if and only
if, for every ϑ ∈ [0, 1] and Borel functions f , f0, f1 : M →
[0,∞) satisfying

f (x) ≥ exp
(
− K

2
ϑ(1 − ϑ)d2

g(a, b)
)

f0(a)1−ϑ f1(b)ϑ (7a)

whenever a, b ∈ M and x ∈ Zϑ(a, b), it holds that

∫
M

f dm ≥
(∫
M

f0 dm
)1−ϑ (∫

M

f1 dm
)ϑ
. (7b)

In particular, if K ≥ 0, we have

m
(
Zϑ(A, B)

) ≥ (m(A)
)1−ϑ(
m(B)

)ϑ
, (8)

where

Zϑ(A, B) :=
{
x ∈ Zϑ(a, b) for some a ∈ A, b ∈ B

}
.
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(8) admits the refined N-dimensional version,

m
(
Zϑ(A, B)

)1/N ≥ τ1−ϑ
K,N (δ)m(A)1/N + τϑK,N(δ)m(B)1/N ,

where τK,N(·) are suitable distortion coefficients only depend-
ing on K and N and δ is the minimal (resp. maximal) distance
between the points of A and B if K ≥ 0 (resp. K < 0).

We shall see that the optimal transport point of view pro-
vides a nice unifying interpretation of (6) and (7a,b), which
will only depend on the metric dg and on the reference mea-
surem defined onM, without referring to its differential struc-
ture. The basic idea is to lift the geometric properties ofM to
the space of Borel probability measures P(M): (2) can be in-
terpreted as a gradient flow in P(M) and an interpolation of
sets as in (8) becomes a geodesic in P(M). In both cases, the
curvature-dimension condition can be characterised by the be-
haviour of the entropy functional along these two classes of
curves.

3 Optimal transport and the geometry of
probability measures

Optimal transport provides a natural way to introduce a geo-
metric distance between probability measures, which reflects
the properties of dg inM. We introduce it in the more general
framework of a complete and separable metric space (X, d).

We call P2(X) the space of Borel probability measures
with finite quadratic moment: every µ ∈ P2(X) satisfies

∫
X

d2(x, xo) dµ(x) < ∞

for some (and thus any) reference point xo ∈ X.
For a given couple of measures µ0, µ1 ∈ P2(X), we con-

sider the collection Plan(µ0, µ1) of all the transport plans or
couplings between µ0, µ1, i.e. measures µ ∈ P(X × X) with
marginals µ0, µ1, thus satisfying

µ(A × X) = µ0(A), µ(X × B) = µ1(B)

for every Borel subset A, B ⊂ X. The squared Kantorovich-
Rubinstein-Wasserstein distance Wd(µ0, µ1) (Wasserstein dis-
tance, for short) is then defined as

W2
d (µ0, µ1) := min

µ∈Plan(µ0,µ1)

∫
X×X

d2(x0, x1) dµ(x0, x1). (9)

Equation (9) is an important example of the class of opti-
mal transport problems, where the squared distance function
d2(x0, x1) in (9) is replaced by a general cost c : X × X → R.

Wd is a distance on P2(X) inducing the topology of weak
convergence with quadratic moments, i.e. convergence of all
the integrals µ �→

∫
X φ dµ whenever φ : X → R is continuous

with at most quadratic growth. (P2(X),Wd) is a complete and
separable metric space and it inherits other useful properties
from (X, d) such as compactness or existence of geodesics. We
refer the interested reader to a number of books [3, 44, 39].

The dynamical formulation of Benamou–Brenier
The Wasserstein distance Wd enjoys two other important dy-
namical characterisations, which play a crucial role in the ge-
ometric formulation of the properties discussed in Section 2.

According to the first one, which is due to Benamou–
Brenier [10], the Wasserstein distance between µ0, µ1 ∈
P2(M) in the Riemannian manifold M can be evaluated by
minimising the action

W2
d (µ0, µ1) = min

∫ 1

0

∫
M

|v|2g dµt dt (10a)

among all the weakly continuous solutions (µ,v) of the con-
tinuity equation

∂tµt + divg(µtvt) = 0, t ∈ [0, 1], (10b)

connecting µ0 to µ1. Equation (10b) has to be intended in du-
ality with smooth test functions, i.e.

∫ 1

0

∫
M

(
∂tζ(x, t) + 〈∇ζ(x, t),v(x, t)〉g

)
dµt dt = 0,

for every ζ ∈ C∞c (M × (0, 1)).
The Benamou–Brenier representation (10a,b) can be fur-

ther extended to Lipschitz (or even absolutely continuous)
curves (µt)t∈[0,1] in P2(M): they can be characterised as so-
lutions to the continuity equation (10b) with a Borel vector
field v satisfying

∫
X
|vt(x)|2g dµt(x) = lim

h→0

W2
d (µt, µt+h)

h2 (11)

for a.e. t ∈ (0, 1). The limit on the right side of equation
(11) has a natural interpretation as the squared metric velocity
|µ̇t |2Wd

of µ at the time t, whose integral

∫ 1

0
|µ̇t |Wd

dt =
∫ 1

0

(∫
M

|vt |2g dµt

)1/2
dt

expresses the length of the curve in P2(X).

Duality and Hamilton–Jacobi equations
The second characterisation of Wd is a dynamical version of
the dual Kantorovich formulation

1
2

W2
d (µ0, µ1) = sup

φ∈Cb(X)

∫
X

Q1φ(y) dµ1(x) −
∫

X
φ(x) dµ0(x)

shared with all optimal transport problems. Here, Q1 denotes
the inf-convolution

Q1φ(y) := inf
x∈X

1
2

d2(x, y) + φ(x)

and it is the value at time t = 1 of the Hopf-Lax evolution
(Qt)t≥0, defined by

Qtφ(y) := inf
x∈X

1
2t

d2(x, y) + φ(x), φ ∈ Cb(X).
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When (X, d) is a length space, i.e. for every couple of points
x, y ∈ X and ε > 0, there exists an ε-midpoint zε ∈ X satisfy-
ing

max
(
d(x, zε), d(zε, y)

) ≤ (1/2 + ε) d(x, y),

then (Qt)t≥0 is a semigroup in Lipb(X), the space of bounded
and Lipschitz real functions defined in X. In the Euclidean
case X = Rd, φt(·) := Qtφ is the unique viscosity solution of
the Hamilton–Jacobi equation

∂tφt(x) +
1
2
|∇φt(x)|2 = 0, lim

t↓0
φt(x) = φ(x),

and an analogous property holds in the Riemannian setting.
In general metric spaces, one can give a metric interpretation
to the quantity |∇φ| by considering the local slope or local
Lipschitz constant of a map φ : X → R,

|∇φ|(x) := lim sup
y→x

|φ(y) − φ(x)|
d(y, x)

. (12)

It is possible to prove [4] that, for every x ∈ X, φt(·) := Qtφ
satisfies

∂tφt(x) +
1
2
|∇φt |2(x) = 0 (13)

for every t ∈ (0,∞) with at most countably many exceptions.
A further regularisation in time [2] shows that

1
2

W2
d (µ0, µ1) = sup

∫
X
φ1(y) dµ1(y)−

∫
X
φ0(x) dµ0(x), (14a)

where the supremum runs among all the regular subsolutions
φ ∈ C1([0, 1]; Lipb(X)) of (13), i.e. solving

∂tφt +
1
2
|∇φt |2(x) ≤ 0 in X × [0, 1]. (14b)

4 Wasserstein distance and lower curvature
bounds in smooth Riemannian manifolds

The two equivalent formulations of the curvature-dimension
condition BE(K,∞) in Section 2 have nice counterparts in
terms of the Kantorovich-Rubinstein-Wasserstein distance. In
order to keep the exposition simpler, we just focus on the case
N = ∞.

Pointwise gradient estimates and Wasserstein contraction
The first formulation relies on the Kuwada duality result
[34], which exploits the dual dynamic representation formula
(14a,b) and deals with a couple of dual maps: P : Cb(X) →
Cb(X) linear and continuous and P∗ : P(X) → P(X) satisfy-
ing
∫

X
Pφ dµ =

∫
X
φ d(P∗µ) for every ϕ ∈ Cb(X), µ ∈ P(X).

Kuwada’s duality states that in length metric spaces and un-
der minimal assumptions, P preserves Lipschitz functions and
satisfies the pointwise bound

|∇Pφ| ≤ L P|∇φ| for every φ ∈ Lipb(X)

if and only if P∗ is a L-Wasserstein contraction, i.e.

Wd(P∗µ,P∗ν) ≤ L Wd(µ, ν) for every µ, ν ∈ P2(X).

In the case of the Markov semigroup (Pt)t≥0 introduced in
Section 1 in a Riemannian setting, one gets the following the-
orem [38, 42].

Theorem 5. The semigroup (Pt)t≥0 satisfies the pointwise
bound (6) of Theorem 3 with K ∈ R, N = ∞, if and only
if the semigroup (P∗t )t≥0, defined on m-absolutely continuous
measures µ = �m by P∗t µ := (Pt�)m, admits a unique exten-
sion to P2(X) satisfying the contraction property

Wd(P∗t µ,P
∗
t ν) ≤ e−Kt Wd(µ, ν) for every µ, ν ∈ P2(X). (15)

Even more refined estimates hold in the case N < ∞.
Notice that one of the advantages of (15) with respect to

(6) and to the differential formulation of the BE(K,∞) con-
dition given by (5) relies on the weaker regularity require-
ment of its formulation: it involves probability measures and
the Markov semigroup (Pt)t≥0 but avoids local differentiabil-
ity structures. This is one of the recurrent themes of pushing
the geometric information coded into lower Ricci curvature
bounds toward general metric measure spaces.

Prékopa–Leindler inequality and convexity of the entropy
A second crucial interpretation provides a link between the
weighted Prékopa–Leindler inequality (7a,b), the geometric
notion of geodesics in metric spaces and the entropy func-
tional.

Geodesics in a metric space (X, dX) are length-minimising
curves (xϑ)ϑ∈[0,1] in X satisfying

dX(xϑ0 , xϑ1 ) = (ϑ1 − ϑ0)dX(x0, x1), 0 ≤ ϑ0 ≤ ϑ1 ≤ 1.

A real functional Φ : D(Φ) ⊂ X → R is called geodesically
K-convex if every couple of points x0, x1 ∈ D(Φ) can be con-
nected by a geodesic (xϑ)ϑ∈[0,1] along which

Φ(xϑ) ≤ (1− ϑ)Φ(x0)+ ϑΦ(x1)− K
2
ϑ(1− ϑ)d2(x0, x1). (16)

Since (P2(X),Wd) is a metric space, we can also consider
geodesics at the level of probability measures: these are
curves (µϑ)ϑ∈[0,1] in P2(X) satisfying

Wd(µϑ0 , µϑ1 ) = (ϑ1 − ϑ0)Wd(µ0, µ1), 0 ≤ ϑ0 ≤ ϑ1 ≤ 1.
(17)

In a pioneering paper, McCann [36] pointed out the role and
the interest of geodesic convexity of suitable integral func-
tionals in P2(X) as the relative entropy,

Ent(µ) :=



∫
X � log � dm if µ = �m, �| log �| ∈ L1(X,m),

+∞ otherwise.

As a beautiful example, Theorem 4 admits a nice reformula-
tion in terms of its geodesic K-convexity.

Theorem 6 ([37, 18]). The Prékopa–Leindler inequality (7a,
b) holds in the weighted Riemannian manifold (M, dg,m) if
and only if the functional Ent is geodesically K-convex in
P2(M). In this case, for every (µϑ)ϑ∈[0,1] satisfying (17), we
have

Ent(µϑ) ≤ (1 − ϑ)Ent(µ0) + ϑEnt(µ1)

− K
2
ϑ(1 − ϑ)Wd(µ0, µ1). (18)
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Gradient flows in P2(X): convexity and contraction
The two remarkable properties highlighted by Theorems 5
and 6 can be better understood by the Jordan-Otto interpre-
tation of the semigroup P∗ as the gradient flow of the en-
tropy functional in Wasserstein space P2(M). There are (at
least) three different ways to justify this interpretation. The
first one combines the Benamou–Brenier result with the De
Giorgi notion of curves of maximal slope [3], the second one
is related to the so-called JKO/minimising movement varia-
tional scheme [20, 31, 3] and the last one captures the energy-
distance interaction of convex functions in Euclidean space.

Curves of maximal slope.
One starts from the basic remark that solutions in Rd to the
gradient flow equation

x′(t) = −∇Φ(x(t)) (19)

for a smooth function Φ : Rd → R can be characterised by
the maximal rate decay of Φ, in the sense that along a general
smooth curve y, we have

d
dt
Φ(y(t)) = −∇Φ(y(t)) · y′(t) ≥ −|∇Φ(y(t))| |y′(t)|, (20)

whereas along any solution of (19), we have precisely

d
dt
Φ(x(t)) = −|∇Φ(x(t)| |x′(t)| = −|∇Φ(x(t))|2 = −|x′(t)|2,

(21)
an identity that is, in fact, equivalent to (19).

In order to mimic the above argument at the Wasserstein
level, we first observe that, along any smooth solution µt =

�tm of the continuity equation (10b), it is possible to compute
the time derivative of the entropy by an integration by parts,
obtaining

d
dt

Ent(µt) =
∫
M

〈∇ log �t,vt〉 dµt

≥ −
(∫
M

|∇ log �t |2g dµt

)1/2 (∫
M

|vt |2g dµt

)1/2
.

Thus, the rate of decay of Ent is bounded from below by the
product of the Wasserstein velocity of the curve (11) and the
square root of the Fisher information functional

F(µ) =
∫
�>0
|∇ log �|2g dµt =

∫
�>0

|∇�|2g
�

dm

= 4
∫
M

|∇√�|2g dm, µ = �m,

(22)

which plays the same role as |∇Φ| in (20). On the other hand,
along the solution µt = P∗t µ = (Pt�)m induced by (2), one has

d
dt

Ent(µt) = −F(µt) = −|µ̇t |2Wd
, (23)

which corresponds to (21).

The minimising movement approach.
A second point of view (and, in fact, the original one adopted
by Jordan–Kinderlehrer–Otto [31]) concerns a variational
scheme that can be used to construct gradient flows in gen-
eral metric spaces [20, 3]. It is strongly related to the implicit
Euler scheme for (19), which suggests approximating the val-
ues of the solution x at the discrete points kτ, k ∈ N, of a
uniform grid of step τ > 0 by the solutions Xk

τ ≈ x(kτ) of the
recursive discrete scheme

1
τ

(
Xk
τ − Xk−1

τ

)
+ ∇Φ(Xk

τ) = 0, k = 1, 2, · · · , (24)

starting from an approximation X0
τ ≈ x(0). One can select

solutions to (24) by choosing Xk
τ among the minimisers of

X �→ 1
2τ
|X − Xk−1

τ |2 + Φ(X).

At the level of measures, replacing the Euclidean distance in
Rd by the Wasserstein distance in P2(X) and the function Φ
by the relative entropy, one eventually obtains the following
scheme.

Given M0
τ := µ = �m, find Mk

τ ∈ P2(X) by minimising

M �→ 1
2τ

W2
d (M,Mk−1

τ ) + Ent(M), k = 1, 2, · · · .

Defining Mτ(t) as the piecewise constant interpolant of the
values Mk

τ in each interval ((k− 1)τ, kτ], one can prove, under
very general assumptions [31, 3, 4], that the family Mτ con-
verges locally uniformly in P2(X) to the solution µt = P∗t µ =
(Pt�)m associated to (2).

Gradient flows and evolution variational inequalities.
In the Euclidean framework, one can evaluate the derivative
of the squared distance function of a solution x of (19) from
any given point y ∈ Rd, obtaining

d
dt

1
2
|x(t) − y|2 = 〈∇Φ(x(t), y − x(t)〉,

and then use the K-convexity inequality

〈∇Φ(x), y − x〉 ≤ Φ(y) − Φ(x) − K
2
|x − y|2

to obtain the Evolution Variational Inequality (EVIK)

d
dt

1
2
|x(t)−y|2 ≤ Φ(y)−Φ(x(t))− K

2
|x(t)−y|2 ∀y ∈ Rd. (25)

It is not hard to see that (25), in fact, characterises the solu-
tions to (19). Since (25) just involves the ambient distance and
the driving functionalΦ, one is tempted to use it for a possible
definition of gradient flows in arbitrary metric spaces [3].

Definition 7. Let (X, dX) be a metric space and let Φ :
D(Φ) ⊂ X → R be a given l.s.c. functional. A semigroup
(St)t≥0 in D(Φ) is an EVIK-flow of Φ if, for every x ∈ D(Φ),
the curve xt := St x is locally Lipschitz in (0,∞) and solves

d
dt

1
2

d2
X(x(t), y) ≤ Φ(y) − Φ(x(t)) − K

2
d2
X(x(t), y) ∀ y ∈ X.
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In general metric spaces, the existence of an EVIK-flow
is a much stronger requirement than the simple energy-
dissipation identity (21): it encodes both the K-convexity of
Φ and a sort of infinitesimal Riemannian behaviour of the dis-
tance dX [19].

Theorem 8. Suppose that (St)t≥0 is an EVIK flow for Φ on
(X, dX). Then, S is a K-exponential contraction, i.e.

dX(St x,Sty) ≤ e−KtdX(x, y).

If, moreover, any couple of points x, y ∈ D(Φ) can be joined
by a geodesic in D(Φ) then Φ is strongly K-geodesically con-
vex.

Taking the above result and Otto heuristics concerning
the Riemannian character of the Wasserstein distance into ac-
count, it is not completely surprising that Theorems 5 and
6 can be obtained as a consequence of the EVIK character-
isation of the Markov semigroup P∗ in P2(M). In fact, the
weighted Riemannian manifold (M, dg,m) satisfies the curva-
ture-dimension BE(K,∞) condition if and only if the semi-
group (P∗t )t≥0 is the EVIK flow of the entropy functional in
P2(X): for every µ ∈ D(Ent), the curve µt = P∗t µ satisfies

d
dt

1
2

W2
d (µt, ν) ≤ Ent(ν) − Ent(µt) −

K
2

W2
d (µt, ν) (26)

for every ν ∈ D(Ent).

5 Metric measure spaces, Gromov
convergence and the Lott–Sturm–Villani
curvature-dimension condition

Let us now address the question of how to extend the previ-
ous results to a general metric measure space (X, d,m), i.e. a
complete and separable metric space (X, d) endowed with a
non-negative Borel measure m, which we assume here to be
with full support, satisfying the growth condition

m(Br(xo)) ≤ a eb r2
, a, b ∈ R+. (27)

This general class of spaces naturally arises when lower Ricci
curvature bounds are considered, thanks to the following re-
markable result of Gromov (see, for example, [30]) and to the
deep contributions by Cheeger-Colding [14, 15, 16].

Theorem 9 (Gromov compactness). Let (Mh, dh
g,m

h), h ∈ N,
be a sequence of weighted Riemannian manifolds with uni-
formly bounded diameter and satisfying a uniform BE(K,N)
condition, for some K,N ∈ R independent of h. Then, there
exist a limit metric measure space (X, d,m) and a subsequence
n �→ h(n) such that (Mh(n), dh(n)

g ,m
h(n)) converges to (X, d,m)

under the measured Gromov convergence.

Perhaps the simplest way to introduce measured Gromov
convergence for normalised (i.e. m(X) = 1) metric measure
spaces is to resort to another beautiful theorem of Gromov
[30], characterising the equivalence class of metric measure
spaces up to measure-preserving isometries. It relies on the
notion of cylindrical metric functionals of the form

ϕ�
[
(X, d,m)

]
:=
∫

Xn
ϕ
(
d(xi, x j)n

i, j=1
)

dm⊗n(x1, · · · , xn), (28)

where n ∈ N and ϕ ∈ Cb(Rn×n).
It is clear that if two metric measure spaces (Xi, di,mi), i =

1, 2, are isomorphic, i.e. there exists an isometry ι : X1 → X2
preserving distances and volumes

d2(ι(x), ι(y)) = d1(x, y), m1(ι−1(A)) = m2(A)

for every couple of points x, y ∈ X1 and every Borel set
A ⊂ X2, then ϕ�

[
(X1, d1,m1)

]
= ϕ�

[
(X1, d2,m2)

]
for every

cylindrical functional ϕ� as in (28). The Gromov reconstruc-
tion theorem guarantees the converse property: if two nor-
malised metric measure spaces are indistinguishable by all
the cylindrical functionals then they are isomorphic. It jus-
tifies the following definition [30, 28] (see [40, 44, 27] for
other equivalent approaches and for the relation with mea-
sured Gromov-Hausdorff convergence).

Definition 10 (Measured Gromov convergence). A sequence
of normalised metric measure spaces (Xh, dh,mh), h ∈ N, con-
verges to a limit metric measure space (X, d,m) if, for every
cylindrical functional ϕ� as in (28), we have

lim
h→∞
ϕ�
[
(Xh, dh,mh)

]
= ϕ�

[
(X, d,m)

]
.

In view of Theorem 9, it is natural to look for a synthetic
definition of lower Ricci curvature bounds for general metric
measure spaces that is stable under measured Gromov conver-
gence, a programme that has been outlined in [14, Appendix
2]. Such a definition has been independently introduced by
Sturm [40, 41] and Lott–Villani [35], starting from the smooth
characterisation given by Theorem 6.

Definition 11 (The Lott–Sturm–Villani CD(K,∞) condition).
A metric measure space (X, d,m) satisfies the CD(K,∞) con-
dition if the entropy functional Ent is geodesically K-convex
in (P2(X),Wd): every couple µ0, µ1 ∈ D(Ent) can be con-
nected by a geodesic (µϑ)ϑ∈[0,1] satisfying (17) along which
(18) holds.

A similar but technically more complicated notion can be
introduced in the case of a finite dimension upper bound N <
∞ (and we do not distinguish here between CD, CD∗ or CDe

classes of spaces). Besides its intrinsic geometric structure,
just involving the notion of distance (through Wasserstein
geodesics) and measure (through the entropy functional), a
crucial feature of the above definition is its stability with re-
spect to measured Gromov convergence: if (Xh, dh,mh), h ∈
N, is a sequence of CD(K,N) metric measure spaces con-
verging to (X, d,m) in the measured Gromov topology then
(X, d,m) is a CD(K,N) metric measure space.

It is possible to prove that CD(K,N) metric measure
spaces enjoy many of the geometric properties that are a con-
sequence of the curvature-dimension condition in the smooth
Riemannian setting (see the final remarks below).

Definition 11, however, captures only part of the informa-
tion coded in the Riemannian formalism, since geodesic K-
convexity of the entropy functional is also shared by Finsler
(non-Riemannian) geometries: perhaps the simplest example
is given by the space (Rd, ‖ · ‖,Vol), where the distance is in-
duced by an arbitrary norm ‖ · ‖ (not necessarily Hilbertian)
and the measure is the usual Lebesgue one.
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On the other hand, in many examples where a specific
Dirichlet energy form and a corresponding Markov semi-
group can be constructed, one may adopt the Bakry–Émery
point of view to characterise a curvature-dimension condi-
tion. In this direction, Gromov wrote [29, page 85]: “There
is another option for the abstract theory of Ricci ≥ 0, where
instead of the metric one emphasizes the heat flow (diffusion),
but at this stage it is unclear whether the two approaches are
equivalent and if not which one is better for applications.”

A relevant question is to single out a stronger condition for
general metric measure spaces that is still stable under mea-
sured Gromov convergence and is capable of reproducing the
pointwise gradient estimates (6) along a suitably adapted ver-
sion of the heat flow. This would have the great advantage of
combining both the tools from Γ-calculus and optimal trans-
port and hopefully extending to the non-smooth framework
many deep results and techniques available in the Rieman-
nian setting. As explained in Section 4, the Wasserstein gra-
dient flow of the entropy functional provides a unifying point
of view for both the approaches and keeps the basic feature of
a pure geometric formulation in terms of distance and mea-
sure.

6 RCD(K,∞) spaces and the link between BE
and CD

The Cheeger energy and its L2-gradient flow
A first step in the direction of extending the Bakry–Émery
approach to the setting of metric measure spaces concerns
the construction of a canonical energy form, the so called
Cheeger energy [13], and of the related evolution semigroup.

The Cheeger energy can be obtained by a relaxation pro-
cedure from the functional

∫
X |∇ f |2(x) dm(x), initially defined

on bounded Lipschitz functions and involving the local slope
introduced in (12).

Definition 12 (The Cheeger energy). For every f ∈ L2(X,m),
we define

Ch( f ) := inf
{

lim inf
n→∞

1
2

∫
X
|∇ fn|2 dm :

fn ∈ Lipb(X), fn
L2

→ f
}
,

(29)

with proper domain D(Ch) :=
{
f ∈ L2(X,m) : Ch( f ) < ∞}.

It is possible to prove that Ch is a convex, 2-homogeneous,
lower semicontinuous functional in L2(X,m) with a dense do-
main. For every f ∈ D(Ch), there exists at least one opti-
mal sequence ( fn)n ⊂ Lipb(X) converging to f in L2(X,m)
and realising the infimum in (29): the corresponding slopes
|∇ fn| converge strongly in L2(X,m) to a unique limit that is
called the weak gradient of f and is denoted by |∇ f |w. The
map f �→ |∇ f |w is 1-homogeneous and subadditive, enjoys
some natural calculus rules [4, 26] and represents Ch by the
formula

Ch( f ) =
1
2

∫
X
|∇ f |2w dm,

which can also be useful to define the Fisher information F(µ)

of a nonnegative measure µ = �m as in (22):

F(µ) = 8 Ch(
√
� ) =

∫
�>0

|∇�|2w
�

dm, µ = �m. (30)

Even if Ch is not a quadratic form, it is still possible to use
convex analysis to define the nonlinear Laplacian −∆X f as the
element of minimal L2-norm of its L2-subdifferential, consist-
ing of all the functions ξ ∈ L2(X,m) satisfying the variational
inequality
∫

X
ξ(g − f ) dm ≤ Ch(g) − Ch( f ) for every g ∈ D(Ch).

It is a remarkable result of the theory of gradient flows in
Hilbert spaces that, for every f ∈ L2(X,m), there exists a
unique locally Lipschitz curve ( ft)t>0 solving

d
dt

ft = ∆X ft for a.e. t > 0, lim
t↓0

ft = f . (31)

The map Pt : f �→ ft defines a continuous semigroup of con-
tractions in L2(X,m); by the specific property of Ch, (Pt)t≥0
can also be extended to a semigroup of contractions in every
Lp(X,m), preserving positivity, mass and constants.

It is then possible to prove, in many cases, that the semi-
group (Pt)t≥0 coincides with the Wasserstein gradient flow
of the entropy functional (as a curve of maximal slope and
as a limit of the minimising movement variational scheme):
this important identification holds, in particular, for the whole
class of CD(K,∞) metric measure spaces [24, 4].

Theorem 13. If (X, d,m) is a CD(K,∞) space then, for every
µ = �m ∈ P2(X) with Ent(µ) < ∞, the curve µt = (Pt�)m is
locally Lipschitz in P2(X) and the map t �→ Ent(µt) is locally
Lipschitz and satisfies (23); it is, moreover, the limit of the
minimising movement scheme (30). Conversely, any locally
Lipschitz curve µt = �tm, t ≥ 0, inP2(X) solving (23) satisfies
�t = Pt�0.

Quadratic Cheeger energies and a metric setting for the
Bakry–Émery approach
If one looks for a good metric framework where the Bakry–
Émery approach can be applied, there are at least two essential
properties: the linearity of Pt and the link between distance
and energy. Since Pt is originally defined as the gradient flow
of the Cheeger energy in Hilbert space L2(X,m), it is not sur-
prising that the linearity of Pt is related to the quadraticity
of Ch; as a byproduct, it induces a nice connection between
weak gradients and Γ-calculus.

Theorem 14 (Cheeger energy, Dirichlet forms and Γ). The
semigroup (Pt)t≥0 is linear if and only if the Cheeger energy
is quadratic, i.e. for every f , g ∈ D(Ch),

Ch( f + g) + Ch( f − g) = 2 Ch( f ) + 2 Ch(g). (32)

In this case, E( f , g) := Ch( f +g)−Ch( f )−Ch(g) is a strongly
local Dirichlet form, whose Γ-tensor coincides with the weak
gradient and whose generator L coincides with ∆X:

Γ( f ) = |∇ f |2w if f ∈ D(Ch), L f = ∆X f if f ∈ D(∆X).



26 EMS Newsletter March 2017

Feature

In the metric setting, a nice collection of smooth functions
where the pointwise differential formulation of the Bakry–
Émery condition (5) can be stated is lacking; however, it is
possible to give a suitable weak formulation that is still equiv-
alent to the pointwise gradient estimate (6): e.g. the BE(K,∞)
condition is equivalent to asking that the map

s �→ e−2Ks
∫

X
Γ(Pt−s f )Psφ dm

is increasing in (0, t) for every f ∈ D(Ch) and every nonneg-
ative φ ∈ L∞(X,m).

Concerning the link with distance, the very definition of
Cheeger energy shows that every bounded L-Lipschitz func-
tion f satisfies

Γ( f ) = |∇ f |2w ≤ L m-a.e. (33)

In order to infer geometric properties on (X, d) from the en-
ergy form, it is natural to ask that every function f ∈ D(Ch)
satisfying (33) admits an L-Lipschitz representative.

The RCD(K,∞) condition and the entropic EVIK-flow
Summarising the discussion above for a general metric mea-
sure space with a quadratic Cheeger energy, it is possible to
ask for the Lott–Sturm–Villani CD(K,∞) condition or for the
Bakry–Émery condition BE(K,∞). It turns out that these are,
in fact, equivalent and can be unified by the notion of EVIK

flow [4, 5, 6].

Theorem 15. For a general metric measure space (X, d,m),
the following properties are equivalent:

(1) The Cheeger energy is quadratic according to (32) (and
thus (Pt)t≥0 is linear) and (X, d,m) is a CD(K,∞) space.

(2) The Cheeger energy is quadratic according to (32), ev-
ery function satisfying (33) is L-Lipschitz and the Bakry–
Émery condition holds (in a suitably weak formulation).

(3) The entropy functional Ent admits a EVIK flow according
to Definition (7).

This result leads to the following definition.

Definition 16 (The Riemannian curvature-dimension condi-
tion). A metric measure space (X, d,m) satisfies the
RCD(K,∞) condition if one of the equivalent properties of
Theorem 15 is satisfied.

The theorem above has been remarkably extended to the
case of the finite dimension condition by Erbar-Kuwada-
Sturm [21] by introducing a suitable notion of EVIK,N flow
for the entropy power functional

HN(µ) := exp
(
− 1

N
Ent(µ)

)
.

A different approach, using Rény entropies in the original for-
mulation of the Lott–Sturm–Villani condition, has also been
developed by [1]. A crucial result due to the formulation in
terms of entropy and Wasserstein distance is the following
stability property with respect to measured Gromov conver-
gence [6, 27].

Theorem 17. If (Xh, dh,mh), h ∈ N, is a sequence of
RCD(K,N) metric measure spaces converging to (X, d,m) in
the measured Gromov topology then (X, d,m) is an RCD(K,N)
metric measure space. Moreover, if the diameters of Xh are
uniformly bounded and λk(Lh), k ∈ N, are the ordered se-
quences of eigenvalues of the compact operator Lh, we have

lim
h→∞
λk(Lh) = λk(L) for every k ∈ N.

7 Applications

It is really difficult to give even a partial account of the ongo-
ing and striking developments of the metric theory of CD and
RCD spaces. Both are sufficiently flexible and strong to guar-
antee a series of structural geometric results: among them, we
quote the tensorisation property, the global-to-local and local-
to-global characterisations of the CD/RCD conditions and the
development of a nice first and second order calculus [26].

We now recall some of the most important geometric and
functional analytic estimates (often stated in particular exem-
plifying cases) that can be derived for a general metric mea-
sure space (X, d,m). We start from the properties valid for
all CD(K,N) spaces, where the recent results of Cavalletti-
Mondino [11, 12] solve a series of important open problems
and show the power of the optimal transport approach (in
the RCD framework, they can also be deduced by Γ-calculus
tools – see [9]).

Bishop–Gromov inequality: For x0 ∈ X, the map

r �→ m(Br(x0))∫ r
0 sK,N(t) dt

is nonincreasing,

where sK,N is the function providing the measure of the
spheres in the model space of Ricci curvature K and dimen-
sion N [44].

Bonnet–Myers diameter estimate: If K > 0 then the diame-
ter of X is bounded by π

√
(N − 1)/K.

Spectral gap and Poincaré inequality: If K > 0 then
∫

X
( f − f̄ )2 dm ≤ N − 1

NK

∫
X
|∇ f |2w dm, f̄ =

∫
X

f dm,

and a sharp inequality also holds for Lp with p � 2 [12].

Log–Sobolev and Talagrand inequalities: If K > 0 and
m(X) = 1 then [12]

KN
2(N − 1)

W2
d (µ,m) ≤ Ent(µ) ≤ N − 1

2KN
F(µ).

Sharp Sobolev inequalities: If K > 0, N > 2, 2 < p ≤ 2� :=
2N/(N − 2) then [12]

‖ f ‖2Lp ≤ ‖ f ‖2L2 +
(p − 2)(N − 1)

KN

∫
X
|∇ f |2w dm.

Levy–Gromov inequality: If m(X) = 1, diam(X) = D and
A ⊂ X with perimeter P(A) < ∞ then

P(A) ≥ IK,N,D(m(A)),
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where I is a suitably defined model isoperimetric profile for
the parameters K,N,D (such as the N-dimensional sphere,
when N is an integer and K > 0). The case N = ∞ holds
in RCD spaces [9, Cor. 8.5.5], [7].

Let us now consider the specific case of RCD(K,N) spaces,
where (Pt)t≥0 is a linear Markov semigroup associated to a
Markov process and second order calculus tools can also be
developed [22].

Li-Yau and Harnack inequalities: If K ≥ 0 and N < ∞ then
[9, Cor. 6.7.6]

L(log Pt f ) ≥ −N
2t

t > 0,

Pt f (x) ≤ Pt+s f (y)
( t + s

t

)N/2
ed2(x,y)/2.

The splitting theorem [25]: If K ≥ 0, N ∈ [2,∞) and X
contains a line, i.e. there exists a map γ : R → X such that
d(γ(s), γ(t)) = |t − s| for every s, t ∈ R, then (X, d,m) is iso-
morphic to the product of R (with Euclidean distance and the
usual Lebesgue measure) and a RCD(0,N − 1) space.
The maximal diameter theorem [32]: If (X, d,m) satisfies
the RCD(N,N + 1) condition with N > 0 and there exists
points x, y ∈ X such that d(x, y) = π then (X, d,m) is isomor-
phic to the spherical product of [0, π] and a RCD(N − 1,N)
space with diameter less than π.

Volume-to-metric cones [23]: If K = 0, there exists xo ∈ X
such that m(Br(xo)) = (R/r)Nm(Br(xo)) for some R > r > 0
and the sphere centred at x0 of radius R/2 contains at least
three points then the ball BR(xo) is locally isometric to the
ball BR(yo) of the cone Y built over an RCD(N − 2,N − 1)
space.

We conclude this brief review by noting that there have been
some recent striking applications to time-dependent metric
measure spaces and Ricci flows [43, 33].
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The year 2016 marked the centennial of the birth of 
Claude Elwood Shannon, that singular genius whose fer-
tile mind gave birth to the field of information theory. 
In addition to providing a source of elegant and intrigu-
ing mathematical problems, this field has also had a pro-
found impact on other fields of science and engineering, 
notably communications and computing, among many 
others. While the life of this remarkable man has been 
recounted elsewhere, in this article we seek to provide an 
overview of his major scientific contributions and their 
legacy in today’s world. This is both an enviable and an 
unenviable task. It is enviable, of course, because it is a 
wonderful story; it is unenviable because it would take 
volumes to give this subject its due. Nevertheless, in the 
hope of providing the reader with an appreciation of the 
extent and impact of Shannon’s major works, we shall try. 

To approach this task, we have divided Shannon’s 
work into 10 topical areas: 

- Channel capacity
- Channel coding
- Multiuser channels
- Network coding
- Source coding
- Detection and hypothesis testing
- Learning and big data
- Complexity and combinatorics
- Secrecy
- Applications

We will describe each one briefly, both in terms of Shan-
non’s own contribution and in terms of how the concepts 
initiated by Shannon have influenced work in the inter-
vening decades. By necessity, we will take a minimalist 
approach in this discussion. We offer apologies for the 
many topics and aspects of these problems that we must 
necessarily omit.

Channel capacity
By Shannon’s own characterisation: “The fundamental 
problem of communication is that of reproducing at one 
point either exactly or approximately a message select-
ed at another point.” The channel is the medium – wire, 
cable, air, water, etc. – through which that communication 
occurs. Often, the channel transmits information in a way 
that is noisy or imperfect. The notion that truly reliable 

Claude Shannon: His Work and Its 
Legacy1

Michelle Effros (California Institute of Technology, USA) and H. Vincent Poor (Princeton University, USA)

communication is possible even in the face of noise and 
the demonstration that a channel has an inherent maxi-
mal rate at which it can reliably deliver information are, 
arguably, Shannon’s most important contributions to the 
field. These concepts were first expounded in his foun-
dational 1948 paper. He developed these ideas further 
throughout the 1950s and even into the 1960s, examining 
the capacity of particular channels, looking at the effects 
of feedback and other features of existing communica-
tion networks and also, because capacity in his vision is 
an asymptotic quantity, looking at ways in which that 
asymptote is achieved. 

Since Shannon’s original work, the notion of capacity 
has evolved in several directions. For example, the tradi-
tional notion of capacity has been generalised to remove 
many of Shannon’s original simplifying assumptions. In 
addition, the notion of capacity has been expanded to 
capture other notions of communication. For example, 
identification capacity was introduced to measure the 

1 This paper was adapted from a talk presented at The Bell 
Labs Shannon Conference on the Future of the Information 
Age, Murray Hill, NJ, 28–29 April 2016, celebrating the occa-
sion of the Shannon centennial.
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capacity when one is only interested in knowing when a 
message is present, not necessarily what is in the message, 
computation capacity was introduced to measure how 
many computations are possible in certain circumstanc-
es, and so on. Capacity has also been applied to many 
types of channels that have emerged since Shannon’s 
day. Examples include quantum channels, which include 
both quantum as well as classical notions of transmission 
and noise, fading channels, which model signal attenua-
tion in wireless transmissions, and, most famously, mul-
tiple-antenna channels, which form the basis of modern 
wireless broadband communications. Even more recent-
ly, Shannon’s asymptotic concept of capacity, which relies 
on the ability to use a channel an unlimited number of 
times, has been examined in a finite-blocklength setting, 
where only a limited number of channel uses is consid-
ered; the finite-blocklength constraint is relevant to mod-
ern, delay-constrained applications such as multimedia 
communications. 

Channel capacity has been an enduring concept. Even 
today, almost seven decades later, we are still using the 
notion of capacity to think about how communication 
channels behave. We have every expectation that it will 
continue to be an important concept well into the future. 

Channel coding
In his 1948 paper, Shannon showed that, for any com-
munication rate less than capacity, one can communicate 
with arbitrarily small error probabilities. In Shannon’s 
paradigm, reliability is achieved through channel coding: 
transmitters protect signals against errors by introducing 
redundancy into each message before transmission, and 
receivers apply their knowledge of the type of redun-
dancy employed to improve their probability of correct-
ly determining the intended message from the channel 
output. The idea of adding redundancy to a signal was 
not new but, prior to Shannon, many communications 
engineers thought that achieving arbitrarily small error 
required more and more redundancy, therefore neces-
sarily forcing the rate of transmission to zero. The idea 
that an arbitrarily small probability of error could be 
achieved with some constant rate of transmission there-
fore flew in the face of conventional wisdom at the time 
of its introduction. 

Shannon’s notion of channel coding initiated a tre-
mendous amount of research and spawned entire sub-
fields within the field of information theory. In particu-
lar, a significant amount of fundamental work went on 
in the 1950s through to the 1980s, when some of the 
very basic codes and decoding algorithms that we still 
use today were developed. Notable examples include 
algebraic codes, such as the Reed-Solomon family of 
channel codes that form the basis of codes used in mod-
ern storage media, and the Viterbi sequential decod-
ing algorithm, which has found an astonishing array of 
applications, including its use in essentially every mobile 
phone in use today. The developments of more recent 
times have been no less impressive. In the 1990s, turbo 
codes were discovered, which, together with correspond-
ing iterative decoding ideas, revolutionised the field of 

data transmission. This was followed quickly by another 
revolution, namely space-time coding. These ideas have 
driven a lot of what has happened in practice since that 
time, including the revival of the near-capacity-achieving 
low-density parity-check codes and the introduction of 
multiple-input multiple-output (MIMO) systems. These 
advances have enabled modern high-capacity data com-
munication systems. And, of course, there have been 
many other key developments, including fountain and 
Raptor codes, polar codes, etc. In recent times, we have 
also seen a resurgence of some of the earlier ideas relat-
ed to areas such as cloud storage and other distributed 
storage applications. So, channel coding provides a fur-
ther example of a very early idea of Shannon’s that has 
played a critical role in driving what is happening in tech-
nology today.

Multiuser channels
Shannon introduced the notions of channel coding 
and capacity in a very simple communication setting in 
which a single transmitter sends information to a single 
receiver. The techniques that he used to analyse chan-
nels in this setting are applicable well beyond this simple 
“point-to-point” communication model. Multiuser chan-
nel models generalise point-to-point channel models by 
incorporating multiple transmitters, multiple receivers, 
multi-directional flow of information or some combina-
tion of these features. 

The generalisation from point-to-point channels to 
multiuser channels shows up in Shannon’s own work as 
early as the 1950s. In his 1956 paper, Shannon general-
ised his network model from the point-to-point scenario 
to channels incorporating feedback; the goal in that work 
was to understand when feedback from the receiver to 
the transmitter increases the rate at which the transmit-
ter can send to the receiver. That work employed two 
notions of capacity: the capacity achievable with an 
asymptotic notion of reliability and the capacity achiev-
able with perfect reliability. In the former, information 
delivery is considered reliable if the probability of error 
can be made arbitrarily small. In the latter, information 
delivery is considered reliable only if the probability of 
error can be made to equal zero for a sufficiently large 
number of channel uses.

In 1960, Shannon generalised the network further by 
considering two-way channels. Two-way channels differ 
from point-to-point channels with feedback in that the 
point-to-point channel with feedback has only a single 
message travelling from the transmitter to the receiver 
while the two-way channel has messages travelling from 
each node to the other. The 1960 paper also mentions a 
channel in which a pair of transmitters sends information 
through a shared medium to a single receiver; that chan-
nel would today be called a “multiple access channel”. 
The 1960 paper mentions future work to appear on this 
topic; while no such paper is found in the literature, it 
is clear that Shannon was thinking about generalisations 
beyond two-communicator models.

Starting in the late 1960s, multiuser channels became an 
important area for information theory research. Research 
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on feedback investigated the improved trade-offs between 
rate and error probability achievable through feedback. 
Research on two-way channels yielded improved upper 
and lower bounds on achievable rate regions. A wide 
array of new channel models were developed, including 
multiple access channels (in which multiple transmitters 
send information to a single receiver), broadcast channels 
(in which a single transmitter sends possibly distinct infor-
mation to multiple receivers), relay channels (in which a 
single transmitter sends information to a single receiver 
with the aid of a relay that can both transmit and receive 
information but has no messages of its own to transmit) 
and interference channels (in which the transmissions of 
multiple transmitters interfere at the multiple receivers 
with which they are trying to communicate). 

Generalisations of Shannon’s channel model are not 
limited to increasing the number of transmitters or receiv-
ers in the networks. Other generalisations include com-
pound channels, which capture channels with unknown 
or varying statistics, wiretap channels, which model chan-
nels with eavesdroppers, and arbitrarily varying channels, 
which capture channels under jamming. Joint source-
channel coding has also been a major topic in the mul-
tiuser communication literature. While the optimality of 
separation between source and channel coding holds for 
the point-to-point scenario studied by Shannon, it does 
not hold in general and a good deal of work has gone into 
understanding when such separation is optimal and how 
to achieve optimal performance when it is not. 

While interest in multiuser channels waxes and wanes 
over time due to the difficulty of the problems, the mas-
sive size and huge importance of modern communication 
networks makes multiuser information theory an impor-
tant area for continuing research. 

Network coding
The examples given above of multiuser channels are 
typically used to model wireless communication environ-
ments. But wireless networks are not the only multiuser 
communication networks. After all, Shannon’s work was 
itself originally inspired by communication networks 
like the wireline phone and telegraph networks of his 
day, each of which connected vast numbers of users over 
massive networks of wires. The modern field of network 
coding studies such networks of point-to-point chan-
nels. Typically, the point-to-point channels in these mod-
els are assumed to be noiseless, capacitated links. The 
field of network coding began with questions about the 
capacity of network coding networks. In some scenarios, 
notably the case of multicast network coding, the capac-
ity is known, and efficient algorithms are available for 
achieving those bounds in practice. However, for most 
networks, the network coding capacity remains incom-
pletely understood. 

Given the difficulty of solving the general network 
coding problem, a variety of special cases have been con-
sidered. One of these is the family of index coding net-
works. Unlike general network coding networks, index 
coding networks are networks in which only one node 
in the network has an opportunity to code. It has been 

shown that if one could solve all index coding networks 
then that would provide a means of solving all network 
coding networks as well. That is, any network coding 
instance can be represented by an index coding instance 
whose solution would give you a solution to the original 
network coding problem. 

In addition to work on network coding capacity, there 
has also been quite a bit of work on network code design, 
as well as work on the relationship between networks 
of capacitated links and the corresponding networks of 
noisy channels that they are intended to model. Results 
in this domain demonstrate that the capacity of a net-
work of noisy channels is exactly equal to the capacity 
of the network coding network achieved by replacing 
each channel by a noiseless, capacitated link of the same 
capacity. Thus, Shannon’s channel capacity fully charac-
terises the behaviour of noisy, memoryless channels at 
least insofar as they affect the capacity of the networks 
in which they are employed. 

Other questions considered in the domain of network 
coding include network error correction, secure network 
coding, network coding in the presence of eavesdroppers, 
network coding techniques for distributed storage and 
network coding for wireless applications with unreliable 
packet reception. 

Source coding
Source coding, also called data compression, refers to the 
efficient representation of information. Shannon’s work 
introduces two types of source coding to the literature: 
lossless source coding, in which the data can be recon-
structed from its description either perfectly or with a 
probability of error approaching zero, and lossy source 
coding, in which greater efficiency in data representa-
tion is obtained through the allowance of some level of 
inaccuracy or “distortion” in the resulting reproduction. 
While Shannon’s 1948 paper famously discusses both 
source coding and channel coding and is often described 
as the origination point for both ideas, Shannon first 
posed the lossy source coding problem in an earlier com-
munication. 

Shannon’s 1948 paper sets a lot of highly influen-
tial precedents for the field of lossless source coding. It 
introduces the now-classical approach to deriving upper 
bounds on the rates needed to reliably describe a source 
and gives a strong converse to prove that no better rates 
can be achieved. It also includes both the ideas of fixed- 
and variable-length codes, that is, codes that give the 
same description length to all symbols, and codes that 
give different description lengths to different symbols. 
Arithmetic codes, which remain ubiquitous to this day, 
have their roots in this paper. The notions of entropy, 
entropy rate, typical sequences and many others also 
come from the 1948 paper.

The 1948 paper also looks at lossy source coding, 
describing the optimal trade-off between rate and distor-
tion in lossy source description and intuitively explain-
ing its derivation. In a 1959 paper, Shannon revisits the 
trade-off between rate and distortion in lossy source 
coding, giving more details of the proof, coining the term 
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“rate distortion function” to describe that bound and 
presenting more examples of solutions of the rate distor-
tion function for different sources. 

Since then, there has been a lot of work in both loss-
less and lossy source coding. Much of the work in the 
1950s through the 1970s looked at detailed proofs and 
extensions of the original ideas. Extensions include mod-
el generalisations to allow sources with memory, non-
ergodic sources, and so on. Advances were also made in 
practical code design for both lossless and lossy source 
coding. Huffman developed his famous source coding 
algorithm, which is still in use. Tunstall codes looked at 
coding from variable-length blocks of source symbols to 
fixed-length descriptions. Arithmetic codes were further 
developed for speed and performance. Algorithms for 
designing fixed and variable-rate vector quantizers were 
also introduced. 

In the years that followed, a lot of work was done on 
universal source coding and multi-terminal source cod-
ing. Universal source codes are data compression algo-
rithms that achieve the asymptotic limits promised by 
Shannon without requiring a priori knowledge of the dis-
tribution from which the source samples will be drawn. 
Results on universal source coding include code designs 
for both lossless and lossy universal source coding and 
analyses of code performance measures such as the rate 
at which a code’s achievable rate (and, in the case of lossy 
coding, distortion) approaches the optimal bound. Like 
multiuser channel codes, multi-terminal source codes are 
data compression algorithms for networks with multiple 
transmitters of information, multiple receivers of infor-
mation or both. Examples include the work of Ahlswede 
and Körner on source coding with coded side informa-
tion and the work of Slepian and Wolf on distributed 
source coding networks, where source coded descriptions 
are sent by independent encoders to a single decoder. 

In addition to advances in the theory of optimal 
source codes and their performance, there has been 
much research and development aimed at building and 
standardising lossless and lossy source codes for a vari-
ety of communication applications. These algorithms are 
critical parts of many of the data-rich applications that 
are becoming increasingly ubiquitous in our world. 

Detection and hypothesis testing
Another field in which Shannon’s influence has been felt 
has been that of signal detection and hypothesis testing. 
Although one might not normally think of Shannon in 
this context, he worked directly on signal detection in 
some of his very early work in 1944, in which he explored 
the problem of the best detection of pulses, deriving the 
optimal maximum a posteriori probability (MAP) proce-
dure for signal detection; his work was one of the earli-
est expositions of the so-called “matched filter” principle. 
Also, by revealing the advantages of digital transmission 
in communications, he showed the importance of these 
fields to communication theory in general. And further, 
he expounded the idea that there is an optimal sampling 
rate for digitising signals through the famous Nyquist-
Shannon sampling theorem. 

These ideas have motivated quite a bit of work in 
subsequent years and to the present day. For example, 
channel decoding is, in essence, hypothesis testing with 
large numbers of hypotheses, and some famous results 
from this area have been developed within the context of 
sequence detection, including the Viterbi algorithm, not-
ed above, and Forney’s maximum likelihood sequence 
detector. Related to these developments is multiuser 
detection, which is also motivated by data detection in 
multiple-access communications, and the closely related 
problem of data detection in MIMO systems. Distributed 
detection, which is a problem motivated by wireless sen-
sor networking, is also a successor to these ideas. And, 
returning to the sampling theorem, one of the major 
trends today in signal processing is compressed sensing, 
which exploits signal sparsity to go well beyond Nyquist-
Shannon sampling to capture the essence of a signal with 
far fewer samples. So, again, although we might not think 
of Shannon as being a progenitor of this field, these con-
nections show that his work has had a major influence 
either directly or as a motivator. 

Machine learning 
Another topic that is very much in evidence today is that 
of machine learning and its role in big data applications. 
Shannon was an early actor in the application of machine 
learning ideas – in 1950, he wrote one of the earliest 
chess-playing computer programs and, in 1952, he devel-
oped “Theseus”, the famous maze-solving mouse. Of 
course, we have come a very long way in machine learn-
ing since those early contributions, driven by ever more 
powerful computers. For example, many games have 
been conquered: checkers in the 1950s, chess with Deep 
Blue in the 1990s, Jeopardy with Watson in 2011 and go 
with AlphaGo in 2016. And, of course, there have been 
many fundamental developments in learning and related 
tasks, such as neural networks and decision trees, and 
also graphical models, which have played a major role in 
channel decoding. These developments are behind con-
temporary developments such as deep learning and self-
driving cars. So, again, Shannon was an early pioneer of 
a field that has turned out to be a very important part of 
modern technology and science. 

Complexity and combinatorics
Quite a bit of Shannon’s work related to and influenced 
the fields of complexity and combinatorics. Shannon’s 
Master’s thesis, perhaps his most famous work next to the 
1948 paper, drew a relationship between switching cir-
cuits and Boolean algebra. His 1948 paper also introduced 
many tools that continue to be useful to combinatorial 
applications. Shannon’s 1956 paper on zero-error capacity 
revisits the capacity problem – shifting the approach from 
a probabilistic perspective with asymptotic guarantees of 
reliability to a combinatoric perspective in which reliabili-
ty requires the guaranteed accurate reproduction of every 
possible message that can be sent by the transmitter. 

Over time, information theory has been and contin-
ues to be used for a variety of applications in the com-
plexity and combinatorics literature. Results include 
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generalisations of tools originally developed by Shan-
non in the probabilistic framework to their combinatoric 
alternatives. An example is Shannon’s typical set, which 
captures a small set of sequences of approximately equal 
individual probability that together capture a fraction of 
the total probability approaching 1. This set generalises 
to more combinatoric alternatives such as that used in 
the method of types. Fano’s inequality, entropy space 
characterisations, and a variety of other tools from infor-
mation theory likewise play a role in the combinatorics 
and complexity literature. 

The field of communication complexity also draws 
upon information theory tools. Concentration inequali-
ties are another example of areas that sit at that bound-
ary between combinatorics and information theory, 
bringing in tools from both of these communities to solve 
important problems. One can also find many examples in 
the literature involving bounding various counting argu-
ments using information theory tools. 

Cyber security
Cyber security is another extremely important aspect of 
modern technology that has its roots, at least in terms 
of its fundamentals, in Shannon’s work. In particular, he 
established an information theoretic basis for this field in 
his 1949 paper (in turn based on earlier classified work), 
in which he addressed the question of when a cipher sys-
tem is perfectly secure in an information theoretic sense. 
In this context, he showed the very fundamental result 
that cipher systems can only be secure if the key – that is, 
the secret key that is shared by sender and receiver and 
used to create an enciphered message – has at least the 
same entropy as the source message to be transmitted. 
Or, in other words, he showed that only one-time pads 
are perfectly secure in an information theoretic context. 

Shannon’s work was allegedly motivated by the SIG-
SALY system, which was used between Churchill and 
Roosevelt to communicate by radio telephone in World 
War II and which made use of one-time pads provided 
through physical transport of recordings of keys from 
Virginia to London. Most cyber security systems today, of 
course, do not use one-time pads. In fact, almost none do. 
Rather, they use smaller bits of randomness, expand that 
into a key and use computational difficulty to provide 
security. Nevertheless, the fundamental thinking comes 
from Shannon. Public key cryptosystems, of course, were 
not invented by Shannon but they are basically part of 
the legacy of looking at cyber security, or secret commu-
nications, from a fundamental point of view.

Another major advance in information theoretic 
characterisations of security was Wyner’s introduction 
of the wire-tap channel in 1975, which gets away from 
a shared secret and uses the difference in the physical 
channels, from the transmitter to a legitimate receiver 
and to an eavesdropper, to provide data confidentiality. 
This setting introduces the notion of secrecy capacity, 
which is defined as the maximum rate at which a message 
can be transmitted reliably to the legitimate receiver 
while being kept perfectly secret from the eavesdropper. 
Wyner’s work was extended by Csiszár and Körner to 

the broadcast channel with confidential messages, which 
is a model that has driven considerable research since, 
particularly in the recent development of wireless physi-
cal layer security, which makes use of radio physics to 
provide a degree of security in wireless transmission. The 
1990s notion of common randomness as a source of dis-
tilling secret keys for use in cipher systems also has its 
roots in information theory and is another basis for wire-
less physical layer security.

So, again, we see another very important field of con-
temporary technology development influenced by Shan-
non’s work. 

Applications
While Shannon originally developed information theory 
as a means of studying the problems of information com-
munication and storage, ideas from his work were very 
quickly taken up by other fields. In 1956, Shannon wrote 
about this phenomenon in an article titled “The Band-
wagon,” where he warned of “an element of danger” in 
the widespread adoption of information theory tools and 
terminology. In that article, he noted his personal belief 
that “information theory will prove useful in these other 
fields” but also argued that “establishing of such applica-
tions is not a trivial matter of translating words to a new 
domain, but rather the slow tedious process of hypoth-
esis and experimental verification”. 

Today, information theory is used in a wide variety 
of fields. Biology and finance are two major examples 
of fields where people are starting to apply information 
theoretic tools: in one case to study how biological sys-
tems transmit and store information and in the other to 
model long-term behaviour of markets and strategies 
for maximising performance in such markets. Applica-
tions also exist in fields like linguistics, computer science, 
mathematics, probability, statistical inference and so on. 

Concluding remarks
While one can barely skim the surface of Shannon’s 
work and legacy in an article such as this, it should be 
clear that his genius has benefitted modern science and 
engineering, and thereby society, in countless ways. We 
hope that this very brief overview will inspire continuing 
interest in Shannon and his work and continuing interac-
tion across the boundaries of the many distinct fields that 
share tools, philosophies, and interests with the field of 
information theory. 
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Seymour Papert, who died on 31 July, was a mathemati-
cian with two PhDs in pure mathematics, from the Uni-
versity of Witwatersrand, South Africa, and the Univer-
sity of Cambridge, UK. He was a founder of artificial 
intelligence with Marvin Minsky at MIT, a psychologist 
working alongside Jean Piaget, a political activist against 
apartheid and, on a personal level, a wonderful cook and 
loyal friend. Since his death, the web has been awash with 
reminiscences and detailed accounts of his intellectual 
contributions, not only to the fundamental subjects in 
which he was the undisputed leader but also to the field of 
education, to a scholar who believed and showed that the 
computer, or at least the very carefully crafted use of the 
computer, could introduce young and old alike to the joys 
and power of mathematics and mathematical thinking.

In this short article, we have selected four pieces of 
work that directly impacted on the mathematics educa-
tion field and community. Significantly, these are among 
his less well-known lectures and papers and we hope that, 
by airing them, the realisation of Papert’s vision of a new 
kind of learnable mathematics may be one step closer.

Visions for Mathematical Learning:  
The Inspirational Legacy of Seymour 
Papert (1928–2016)
Celia Hoyles and Richard Noss (UCL Knowledge Lab, University College, London, UK)

1980: Keynote in ICME Berkeley, USA
Seymour gave one of the four plenaries at ICME 1980. 
Sadly, as far as we can tell, there was no transcript pro-
duced of Seymour’s remarks. We are, however, grateful 
to Jeremy Kilpatrick (who attended the talk) for pointing 
us to a 1980 book edited by Lynn Steen and Don  Albers, 
which includes a 4-page synopsis of Seymour’s talk.1 

Apparently, Seymour was inspirational. From the 
abstract, we know that he began: 

“We are at the beginning of what is the decade of math-
ematics education. Not just in how children learn, but 
what they learn: we will see dramatic changes in what 
children learn; we will see subject matters that for-
merly seemed inaccessible or difficult even at college 
level learned by young children; we will see changes in 
where learning takes place, and in the process of learn-
ing itself.”

1 https://books.google.cz/books?id=zcq9BwAAQBAJ&pg=P
A12&lpg=PA12&dq=%22.
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2 http://dailypapert.com/wp-content/uploads/2015/07/Beyon-
dTheCognitive.pdf

Seymour Papert and Celia Hoyles. Seymour Papert and Richard Noss.

Even at this early stage, some 30 years before the pres-
ence of computers in school became commonplace, Sey-
mour was addressing the question of epistemology, the 
‘what’ of mathematics education – a theme that perme-
ated his writings and speeches ever since.

1986: Keynote at the Tenth Conference of the 
International Group for the Psychology of  
Mathematics Education (PME 10) in London, UK
The title of Seymour’s talk was “Beyond the Cognitive: 
the Other Face of Mathematics”.2 This talk was again 
inspirational and maybe a little controversial. He began 
by stating how he 

“shared with Piaget the heuristic value that trying as 
hard as one can to understand as much as one can of 
children’s mathematics and mathematicians’ math-
ematics in the same categories. Doing so can illuminate 
both sides” (p. 1). 

How right he was – as so many of us have now experienced 
in our own work. Seymour argued for a greater impor-
tance to be accorded to the affective side of mathemat-
ics; remember that this keynote was 30 years ago, when 
mathematics education research was firmly grounded 
in the cognitive paradigm. In particular, Seymour noted 
how some people tended to identify with mathematical 
objects: a precursor of the hugely influential movement 
‘embodied mathematics’? “Do you observe the math-
ematical scene in your head or are you in it?” he asks 
(p. 2). And then the punchline that we will never forget: 
he showed how the “Euclidean propositions can be seen 
in a different light as special cases of turtle theorems” 
(p. 3), thus illustrating beautifully how a geometry that 

starts with the intuitions of body movement rather than 
abstract points and lines can be no less rigorous but con-
siderably more inviting.

1996: Launching a new journal: the International 
Journal of Computers for Mathematics Learning 
(IJCML)
In 1996, Seymour became the founding editor of a new 
journal, IJCML. In the first issue, he undertakes “An 
Exploration in the Space of Mathematics Educations”. 
This brilliant contribution begins memorably:

A mathematical metaphor frames the intentions of 
this paper. Imagine that we know how to construct an 
N-dimensional space, ME, in which each point repre-
sents an alternative mathematics education – or ame 
– and each dimension a feature, such as a component 
of content, a pedagogical method, a theoretical or ideo-
logical position. Each “reform” of mathematics educa-
tion introduces new points and each fundamental idea 
a new dimension. Thus, if one considers a particular 
point (an ame) in ME, among its many “coordinates” 
are a (metaphorical) measure that runs from informal 
to formal and another that runs from instructionist to 
constructivist. In the paper I shall define seven more 
such oppositional principles that have not been recog-
nized in the past as structuring choices in mathematics 
education. (Papert, 1996)

The reader will not miss the daring and imaginative style 
of this metaphor. The article focuses on how the medium 
of expression can make any specific ‘ame’ seem ‘natural’, 
again using elementary geometric examples as illustra-
tion. But Seymour argues: 

“…there is no doubt that in general much more can 
be done at an elementary level with dynamic than with 
algebraic characterizations of curves”. 
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Recall that this was a decade or so before dynamic geom-
etry became widespread! In 2004, Seymour took up the 
theme of the mediation of knowledge more generally 
in a little-known but, for us, highly significant speech to 
open the London Knowledge Lab, where we both work. 
Take a look at https://mediacentral.ucl.ac.uk/Play/3004.

2006: Opening keynote to ICMI 17 Study  
Conference, Technology Revisited, Vietnam
In July 2002, the ICMI Executive Committee launched 
the 17th ICMI Study, called “Technology Revisited”, the 
title reflecting the fact that the very first ICMI Study, held 
in Strasbourg in 1985, focused on the influence of com-
puters and informatics on mathematics and its teaching. 
The Programme Committee wanted the Study Confer-
ence to be opened by a scholar with vision, experience 
and stature in the fields of mathematics, mathematics 
education and technology. We chose Seymour and to 
our delight he accepted by return of email. The tone of 
his emails became more and more excited as the confer-
ence approached. In his talk, Seymour spoke to the title 
‘30 Years of Digital Technologies in Mathematics Educa-
tion and the Future’, using the recently prototyped and 
revolutionary ‘100 dollar laptop’ (renamed the ‘XO’) to 
present his talk. He argued that, with full and easy access 
to computers, we face the challenge to consider not only 
how existing knowledge can be addressed in technology-
enhanced ways but also that we should reserve at least 
10% of our time and energy to consider what new types of 
mathematical knowledge and practices might emerge as a 
result. His accident the next day was a most terrible shock 
to us and to all the participants, and the conference strug-
gled to continue after this tragedy, even as Seymour strug-
gled in hospital. The best tribute we could think of was to 
try to keep the spirit of his ambition alive throughout the 
meeting by asking for participants to consider ‘Seymour’s 
10%’ in all their sessions and their subsequent papers. 
(Adapted from Hoyles, C., & Lagrange, J. B., 2010)

We hope that this short piece will keep Seymour’s 
vision and struggle alive.
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schaft, Themenreihe XXXIII). We are grateful for their 
permission to publish this English language version.

Ladies and Gentlemen,

It is a great honour to be invited to address you here 
but one which is fraught with difficulties. First, there is 
a rather natural reluctance for a practicing mathemati-
cian to philosophise about mathematics instead of just 
giving a mathematical talk. As an illustration, the Eng-
lish mathematician G. Hardy called it a “melancholy 
experience”to write about mathematics rather than just 
prove theorems! However, had I not surmounted that 
feeling, I wouldn’t be here, so I need not dwell on it any 
more. More serious difficulties arise from the fact that 
there are mathematicians and non-mathematicians in 
the audience. Whether one should conclude from this 
that my talk is best suited for an empty audience is a 

The headline question is a phrase from the article  
“Mathematics: Art and Science” by A. Borel, which is the 
English translation of the text of his lecture delivered (in 
German) in Munich in 1981. I remembered about this 
article in October 2016 when I saw the title “Discoveries, 
not inventions – Interview with Ernest B. Vinberg” of an 
article for publication in the EMS Newsletter, No. 102, 
December 2016 [2]. The very title clearly implies a defi-
nite answer to this question but it turns out that, in the 
interview, the issue of whether mathematicians explore 
something that exists independently of them or some-
thing they have invented is not discussed. However, as 
is shown in the article by A. Borel, this issue is, in fact, 
deeper than it may seem and contains items for discus-
sion that might engage readers of the EMS Newsletter. 
Because of this, the mentioned article by A. Borel is 
reprinted below. There is also another reason to do this: 
in addition to a discussion of the formulated question, in 
this article, A. Borel also discusses other principal issues 
of a general nature related to mathematics, such as the 

Do We Create Mathematics or Do We 
Gradually Discover Theories Which  
Exist Somewhere Independently of Us?
Vladimir L. Popov (Steklov Mathematical Institute, Moscow, Russia), Editor of EMS Newsletter

problem of its relationship with the natural and applied 
sciences. The severity of the statements on these issues 
does not abate with time: to the citations in the reprinted 
paper by A. Borel, one could add the well known view-
point of V. Arnold (and see also the recent interview with 
the Fields Medallist S. Novikov [3]). These are the items 
for discussion that might engage readers of the EMS 
Newsletter. Note that the reprinted article by A. Borel 
is not his only public statement on the subject (see [1]).
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Mathematics: Art and Science
A. Borel 

Published with the permission of Springer Science and 
Business Media: extracts from pp. 9–17, The Mathematical 
Intelligencer, Vol. 5, No. 4, 1983, doi:10.1007/BF03026504.

The Mathematical Intelligencer Editor’s note: Apart from 
some minor changes, the following article is a translation 
of the text of a lecture delivered, in German, at the Carl 
Friedrich von Siemens Stiftung, Munich, on May 7, 1981, 
and, in a slightly modified form, as the first of three “Pauli-
Vorlesungen”, on February 1, 1982, at the Federal School 
of Technology, Zurich.

The Intelligencer requested permission from the 
author to publish a translation of the text (translated by 
Kevin M. Lenzen). We supplied the translation which the 
author checked and modified. We wish to thank him for 
his considerable help in improving the original translation.

The German text of this lecture was published by the 
C. F. v. Siemens Stiftung (Mathematik: Kunst und Wissen-
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eral formulae. One can call this economy of thought or 
laziness. An age-old example is the solution to a second-
degree equation, say

x2 + 2 bx + c = 0.

Here, b and c are given real numbers. We are looking for 
a real number x that will satisfy this equation. For centu-
ries, it has been known that x can be expressed in terms 
of b and c by the formula

x = –b ± b2 – c.

If b2 > c, we can take the square root and get two solu-
tions. If b2 = c then x = –b is said to be a double solution. If 
b2 < c, however, then we cannot take the square root and 
we maintain, at least at the beginning secondary school 
level, that there is no solution.

In the 16th century, similar formulas were devised 
for third- and even fourth-degree equations, such as the 
equation

x3 + ax + b = 0.

I won’t write the formula out but it contains square 
roots and cube roots – so-called radicals. An extremely 
interesting phenomenon was discovered that came to be 
called the casus irreducibilis. If this equation has three 
distinct real solutions and we apply the formula, which 
in principle allows one to compute them, then we meet 
square roots of negative numbers; at the outset, these are 
meaningless. If we ignore the fact that they don’t exist, 
however, and are not afraid to compute with them then 
they cancel out and we get the solutions, provided we 
carefully follow certain formal rules. In short, starting 
from the given real numbers a, b, we arrive at the sought 
for ones by using “nonreal numbers”. The square roots 
of negative numbers were called “imaginary numbers”to 
distinguish them from the real numbers and controver-
sies raged as to whether it was actually legitimate to use 
such nonreal numbers. Descartes, for example, did not 
want to have anything to do with them. Only around the 
year 1800 was a satisfactory solution – satisfactory for 
some at least – to this problem found. The real numbers 
are embedded in a bigger system consisting of the points 
of the plane, i.e. pairs of real numbers, between which 
one defines certain operations that have the same for-
mal properties as the four basic operations in arithmetic. 
The real numbers are identified with the points on the 
horizontal axis and the square roots of negative numbers 
with those on the vertical axis. One then began to speak 
of complex (or imaginary) numbers. Formally, we can use 
these mathematical objects almost as easily as the real 
numbers and can obtain solutions that are sometimes 
real, sometimes complex. For the second-degree equa-
tion mentioned earlier, we can now say that there are two 
complex solutions if b2 < c.

To a certain extent, this is, of course, merely a conven-
tion but it wasn’t easy to grant these complex numbers the 
same right to existence as real numbers and not to regard 

question that every one of you will have answered with-
in the next hour and therefore needs no further elabo-
ration. The difficulty brought about by the presence of 
mathematicians here is that it makes me aware (almost 
painfully aware) that, in fact, everything about my top-
ic has already been said, all arguments have already 
been presented and pros and cons argued: mathematics 
is only an art, or only a science, the queen of sciences, 
merely a servant of science or even art and science com-
bined. The very subject of my address, in Latin Mathesis 
et Ars et Scientia Dicenda, appeared as the third topic 
in the defence of a dissertation in the year 1845. The 
opponent claimed it was only art but not science [1]. It 
has occasionally been maintained that mathematics is 
rather trivial, almost tautological, and as such certainly 
unworthy of being regarded either as art or as science 
[2]. Most arguments can be supported by many refer-
ences to outstanding mathematicians. It is even possible 
sometimes, by selective citation, to attribute widely dif-
ferent opinions to one and the same mathematician. So 
I would like to emphasise at the outset that the profes-
sional mathematicians assembled here are unlikely to 
hear anything new.

If I turn to the non-mathematicians, however, I 
encounter a much bigger, almost opposite problem: my 
task is to say something about the essence, the nature, of 
mathematics. In so doing, however, I cannot assume that 
the object of my statements is common knowledge. Of 
course, I can presuppose a certain familiarity with Greek 
mathematics, Euclidean geometry, for example, perhaps 
the theory of conic sections, or even the rudiments of 
algebra or analytical geometry. But they have little to do 
with the object of present-day mathematical research. 
Starting from this more or less familiar ground, math-
ematicians have gone on to develop ever more abstract 
theories, which have less and less to do with everyday 
experience, even when they later find important appli-
cations in the natural sciences. The transition from one 
level of abstraction to the next has often been very dif-
ficult even for the best mathematicians and it represent-
ed, in their time, an extremely bold step. I couldn’t pos-
sibly give a satisfactory survey of this accumulation of 
abstractions upon abstractions and of their applications 
in just a few minutes. Still, I would feel quite uncomfort-
able simply to philosophise about mathematics without 
saying anything specific on its contents. I would also like 
to have a small supply of examples at hand to be able 
to illustrate general statements about mathematics or 
the position of mathematics with respect to art and the 
natural sciences. I shall therefore attempt to describe, or 
at least to give an idea of, some such steps.

In doing so, I will not be able to define precisely all 
my terms and I don’t expect full understanding by all. 
But that is not essential. What I want to communicate 
is really just a feeling for the nature of these transitions, 
perhaps even for their boldness and significance in the 
history of thought. And I promise not to spend any more 
than 20 minutes doing so.

A mathematician often aims for general solutions. He 
enjoys solving many special problems with a few gen-
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tician and a physicist were discussing the curriculum for 
physics at Princeton University around the year 1910, the 
physicist said they could no doubt leave out group the-
ory, for it would never be applicable to physics [5]. Not 
20 years later, three books on group theory and quantum 
mechanics appeared and, since then, groups have been 
fundamental in physics as well.

The following will serve as a final example. I said ear-
lier that we can consider complex numbers to be points 
in the plane. An Irish mathematician, N. R. Hamilton, 
wondered whether one could define an analogue of the 
four basic operations among the points of three-dimen-
sional space, thus forming an even more comprehensive 
number system. It took him about 10 years to find the 
answer: it is not possible in three-dimensional space but 
it is in four-dimensional space. We do not need to try 
to imagine just what four-dimensional space is here. It 
is simply a figure of speech for quadruples of real num-
bers instead of triples or pairs of real numbers. He called 
these new numbers quaternions. He did, however, have 
to do without one property of real or complex num-
bers, which, up until then, had been taken for granted: 
commutativity in multiplication, i.e. a × b = b × a. He also 
showed that calculus with quaternions had applications 
in the mathematical treatment of questions in physics 
and mechanics. Later, many other algebraic systems with 
a noncommutative product were defined, notably matrix 
algebras. This also appeared to be an entirely abstract 
form of mathematics, without connections to the outside 
world. In 1925, however, as Max Born was thinking about 
some new ideas of W. Heisenberg’s, he discovered that 
the most appropriate formalism for expressing them was 
none other than matrix algebra, and this suggested that 
physical quantities be represented by means of algebraic 
objects that do not necessarily commute. This led to the 
uncertainty principle and was the beginning of matrix 
quantum mechanics and of the assignment of operators 
to physical quantities, which is at the basis of quantum 
mechanics [6].

With this last example, I shall conclude my attempts 
to describe some mathematical topics. The examples are, 
of course, extremely incomplete and not at all represent-
ative of all areas of mathematics. They do have two prop-
erties in common, however, which I would like to empha-
sise since they are valid in a great many cases. First of all, 
these developments lead in the direction of ever greater 
abstraction, further and further away from nature. Sec-
ond, abstract theories developed for their own sake have 
found important applications in the natural sciences. The 
suitability of mathematics to the needs of the natural sci-
ences is, in fact, astonishingly great (one physicist spoke 
once of the “unreasonable effectiveness of mathemat-
ics”[7]) and is worthy of a far more detailed discussion 
than I can afford to enter into here.

The transition to ever greater abstraction is not to be 
taken for granted, as you may have gathered from Gauss’ 
quotation. Mathematics was originally developed for 
practical purposes such as bookkeeping, measurements 
and mechanics; even the great discoveries of the 17th 
century, such as infinitesimal and integral calculus, were, 

them as a mere tool for arriving at real numbers. There 
was no strict definition of real numbers back then but 
the close connection between mathematics and measure-
ment or practical computation gave real numbers a cer-
tain reality, in spite of the difficulties with irrational and 
negative numbers. It wasn’t the same with complex num-
bers, however. That was a step in an entirely new direc-
tion, bringing a purely intellectual creation to the fore. 
As mathematicians became used to this new step, they 
began to realise that many operations performed with 
functions, such as polynomials, trigonometric functions, 
etc., still made sense when complex values were accepted 
as arguments and as values. This marked the beginning of 
complex analysis or function theory. As early as 1811, the 
mathematician Gauss pointed out the necessity of devis-
ing such a theory for its own sake:

The point here is not practical utility; rather, for me, 
analysis is an independent science which would lose 
an extraordinary amount of beauty and roundness by 
discriminating against those fictitious quantities [3].

Apparently, even he did not foresee the practical rel-
evance complex analysis was later to achieve, as in the 
theories of electricity or aerodynamics, for example.

But that is not the end of it. Allow me, if you will, 
to mention two further steps toward greater abstraction. 
Let us return to our second-degree equation. One can 
now say that it has, in general, two solutions that may 
be complex numbers. Similarly, an equation of the n-th 
degree has n solutions if one accepts complex numbers. 
From the 16th century on, people wondered whether 
there was also a general formula that would express the 
solutions of an equation of degree at least five from the 
coefficients by means of radicals. It was finally proved 
to be impossible. One proof (chronologically the third) 
was given by the French mathematician E. Galois within 
the framework of a more general theory, which was not 
understood at the time and subsequently forgotten. Some 
15 years later, his work was rediscovered and understood 
only with great difficulty by a very few, so new was his 
viewpoint. Given an equation, Galois considered a cer-
tain set of permutations of the roots and showed that 
certain properties of this set of permutations are deci-
sive. That was the beginning of an independent study of 
such sets of permutations, which later came to be known 
as Galois groups. He showed that an equation is solv-
able by means of radicals only when the groups involved 
belong to a certain class: namely, the solvable groups, as 
they came to be called. The theorem mentioned earlier, 
regarding equations of degree at least five, is then a con-
sequence of the fact that the group associated to a gen-
eral equation of the n-th degree is solvable only when n 
= 1, 2, 3, 4 [4]. The important properties of such groups, 
for instance to be solvable, are actually independent of 
the nature of the objects to be permuted and this led to 
the idea of an “abstract group”and to theorems of great 
significance, applicable in many areas of mathematics. 
But, for many years, this appeared to be nothing more 
than pure and very abstract mathematics. As a mathema-
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about in the dark, not knowing whether he should attempt 
to prove or disprove a certain proposition, and essential 
ideas often occur to him quite unexpectedly, without him 
even being able to see a clear and logical path leading to 
them from earlier considerations. Just as with composers 
and artists, one should speak of inspiration [11].

Other mathematicians, however, are opposed to this 
view and maintain that an involvement with mathemat-
ics without being guided by the needs of the natural sci-
ences is dangerous and almost certainly leads to theo-
ries that may be quite subtle and may provide the mind 
with a peculiar pleasure but which represent a kind of 
intellectual mirror that is completely worthless from the 
standpoint of science or knowledge. For example, the 
mathematician J. von Neumann wrote in 1947:

As a mathematical discipline travels far from its empir-
ical sources, or still more, if it is second and third gen-
eration only indirectly inspired by ideas coming from 
“reality”, it is beset with very grave dangers. It becomes 
more and more purely aestheticizing, more and more 
purely l’art pour l’art … there is a great danger that 
the subject will develop along the line of least resist-
ance … will separate into a multitude of insignificant 
branches…
In any event … the only remedy seems to me to be the 
rejuvenating return to the source: the reinjection of 
more or less directly empirical ideas [12].

Still others have taken a more intermediate stance: they 
fully recognise the importance of the aesthetic side of 
mathematics but feel that it is dangerous to push math-
ematics for its own sake too far. Poincaré, for example, 
wrote:

In addition to this, it provides its disciples with pleas-
ures similar to painting and music. They admire the 
delicate harmony of the numbers and the forms; they 
marvel when a new discovery opens up to them an 
unexpected vista; and does the joy that they feel not 
have an aesthetic character even if the senses are not 
involved at all? …
For this reason, I do not hesitate to say that mathemat-
ics deserves to be cultivated for its own sake, and I 
mean the theories which cannot be applied to physics 
just as much as the others [13].

But a few pages further on, he returns to this comparison 
and adds:

If I may be allowed to continue my comparison with 
the fine arts then the pure mathematician who would 
forget the existence of the outside world could be lik-
ened to the painter who knew how to combine colours 
and forms harmoniously but who lacked models. His 
creative power would soon be exhausted [14].

This denial of the possibility of abstract painting strikes 
me as especially noteworthy since we are in Munich, 
where, not much later, an artist would concern himself 

at first, primarily tools for solving problems in mechan-
ics, astronomy and physics. The mathematician Euler, 
who was active in all areas of mathematics and its appli-
cations – including shipbuilding – also wrote papers on 
pure number theory and, more than once, felt the need 
to explain that it was as justified and important as more 
practically oriented work [8]. Mathematics was, from the 
very beginning, of course, a kind of idealisation but, for a 
long time, was not as far removed from reality or, more 
precisely, from our perception of reality as in the exam-
ples mentioned earlier. As mathematicians went further 
in this direction, they became increasingly aware that a 
mathematical concept has a right to existence as soon as 
it has been defined in a logically consistent manner, with-
out necessarily having a connection with the physical 
world, and that they had the right to study it even when 
there seemed to be no practical applications at hand. In 
short, this led more and more to “Pure Mathematics”or 
“Mathematics for Its Own Sake”.

But if one leaves out the controlling function of prac-
tical applicability, the question immediately arises as to 
how one can make value judgments. Surely not all con-
cepts and theorems are equal; as in George Orwell’s Ani-
mal Farm, some must be more so than others. Are there 
then internal criteria that can lead to a more or less objec-
tive hierarchy? You will notice that the same basic ques-
tion can be asked about painting, music or art in general. 
It thus becomes a question of aesthetics. Indeed, a usual 
answer is that mathematics is, to a great extent, an art, an 
art whose development has been derived from, guided 
by and judged according to aesthetic criteria. For the lay-
person, it is often surprising to learn that one can speak 
of aesthetic criteria in so grim a discipline as mathemat-
ics. But this feeling is very strong for the mathematician, 
even though it is difficult to explain. What are the rules 
of this aesthetic? Wherein lies the beauty of a theorem, 
of a theory? Of course, there is no single answer that will 
satisfy all mathematicians but there is a surprising degree 
of agreement, to a far greater extent, I think, than exists 
in music or painting.

Without wishing to maintain that I can explain this 
fully, I would like to attempt to say a bit more about it lat-
er. At the moment, I shall content myself with the asser-
tion that the analogy with art is one with which many 
mathematicians agree. For example, G. H. Hardy was of 
the opinion that if mathematics has any right to exist at 
all then it is only as art [9]. Our activity has much in com-
mon with that of an artist: a painter combines colours 
and forms, a musician tones, a poet words, and we com-
bine ideas of a certain sort. The painter E. Degas wrote 
sonnets from time to time. Once, in a conversation with 
the poet S. Mallarmé, he complained that he found writ-
ing difficult even though he had many ideas, indeed an 
overabundance of ideas. Mallarmé answered that poems 
were made of words, not ideas [10]. We, on the other 
hand, work primarily with ideas.

This feeling of art becomes even stronger when one 
thinks of how a researcher works and progresses. One 
should not imagine that the mathematician operates 
entirely logically and systematically. He often gropes 
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quite deeply with this question (namely, Wassily Kandin-
sky). It was sometime in the first decade of this century 
that he suddenly felt, after looking at one of his own can-
vases, that the subject can be detrimental to the painting 
in that it may be an obstacle to direct access to forms and 
colours: that is, to the actual artistic qualities of the work 
itself. But, as he wrote later [15], “a frightening gap”(eine 
erschreckende Tiefe) and a mass of questions confronted 
him, the most important of which was: “What should 
replace the missing subject?”Kandinsky was fully aware 
of the danger of ornamentation, of a purely decorative 
art, and wanted to avoid it at all costs. Contrary to Poin-
caré, however, he did not conclude that painting without 
a real subject had to be fruitless. In fact, he even devel-
oped a theory of the “inner necessity”and “intellectual 
content”of a painting. Since about 1910, as you know, he 
and other painters in increasing numbers have dedicated 
themselves to so-called abstract or pure painting, which 
has little or nothing to do with nature.

If one does not want to admit an analogous possibility 
for mathematics, however, then one will be led to a con-
ception of mathematics that I would like to summarise 
as follows. On the one hand, it is a science because its 
main goal is to serve the natural sciences and technology. 
This goal is actually at the origin of mathematics and is 
constantly a wellspring of problems. On the other hand, 
it is an art because it is primarily a creation of the mind 
and progress is achieved by intellectual means, many of 
which issue from the depths of the human mind and for 
which aesthetic criteria are the final arbiters. But this 
intellectual freedom to move in a world of pure thought 
must be governed, to some extent, by possible applica-
tions in the natural sciences.

However, this view is really too narrow; in particu-
lar, the final clause is too limiting and many mathema-
ticians have insisted on complete freedom of activity. 
First of all, as has already been pointed out, many areas 
of mathematics that have proved important for applica-
tions would not have been developed at all if one had 
insisted on applicability from the beginning. In spite of 
the above quotation, von Neumann himself pointed this 
out in a later lecture:

But still a large part of mathematics which became use-
ful developed with absolutely no desire to be useful, 
and in a situation where nobody could possibly know 
in what area it would become useful: and there were no 
general indications that it even would be so … This is 
true of all science. Successes were largely due to forget-
ting completely about what one ultimately wanted, or 
whether one wanted anything ultimately, in refusing to 
investigate things which profit, and in relying solely on 
guidance by criteria of intellectual elegance…
And I think it extremely instructive to watch the role of 
science in everyday life, and to note how in this area the 
principle of laissez faire has led to strange and won-
derful results [16].

Secondly, and for me more importantly, there are are-
as of pure mathematics which have found little or no 

application outside mathematics but which one cannot 
help viewing as great achievements. I am thinking, for 
example, of the theory of algebraic numbers, class field 
theory, automorphic functions, transfinite numbers, etc.

Let us return to the comparison with painting once 
again and take as “subject”the problems that are drawn 
from the physical world. Then, we see that we have 
painting drawn from nature as well as pure or abstract 
painting.

This comparison is, however, not yet entirely satis-
factory, for such a description of mathematics would 
not encompass all its essential aspects, in particular its 
coherence and unity. Indeed, mathematics displays a 
coherence that I feel is much greater than in art. As a 
testimony to this, note that the same theorem is often 
proved independently by mathematicians living in 
widely separated locations or that a considerable num-
ber of papers have two, sometimes more, authors. It can 
also happen that parts of mathematics that have been 
developed completely independently of one another 
suddenly demonstrate deep connections under the 
impact of new insights. Mathematics is, to a great extent, 
a collective undertaking. Simplifications and unifica-
tions maintain the balance with unending development 
and expansion; they display again and again a remark-
able unity even though mathematics is far too large to 
be mastered by a single individual.

I think it would be difficult to account fully for this 
by appealing solely to the criteria mentioned earlier: 
namely, subjective ones like intellectual elegance and 
beauty, and consideration of the needs of natural sci-
ences and technology. One is then led to ask whether 
there are criteria or guidelines other than those. In my 
opinion, this is the case and I would now like to com-
plete the earlier description of mathematics by looking 
at it from a third standpoint and adding another essen-
tial element to it. In preparation for this, I would like 
to digress, or at least apparently digress, and take up 
the question: ‘Does mathematics have an existence of 
its own? Do we create mathematics or do we gradu-
ally discover theories which exist somewhere indepen-
dently of us?’ If this is so, where is this mathematical 
reality located?

It is, of course, not absolutely clear that such a ques-
tion is really meaningful. But this feeling – that math-
ematics somehow, somewhere, pre-exists – is widespread. 
It was expressed quite sharply, for example, by G. H. 
Hardy:

I believe that mathematical reality lies outside us, that 
our function is to discover or observe it, and that the 
theorems which we prove, and which we describe gran-
diloquently as our “creations”, are simply our notes of 
our observations. This view has been held, in one form 
or another, by many philosophers of high reputation, 
from Plato onwards… [17].}

If one is a believer then one will see this pre-existent 
mathematical reality in God. This was actually the belief 
of Hermite, who once said:
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There exists, if I am not mistaken, an entire world 
which is the totality of mathematical truths, to which 
we have access only with our mind, just as a world of 
physical reality exists, the one like the other independ-
ent of ourselves, both of divine creation [18].

It wasn’t too long ago that a colleague explained in an 
introductory lecture that the following question had 
occupied him for years: ‘Why has God created the excep-
tional series?’

But a reference to divine origin would hardly satisfy 
the nonbeliever. Many do, however, have a vague feeling 
that mathematics exists somewhere, even though, when 
they think about it, they cannot escape the conclusion 
that mathematics is exclusively a human creation.

Such questions can be asked of many other concepts 
such as state, moral values, religion, etc., and would prob-
ably be worthy of consideration all by themselves. But 
for want of time and competence, I shall have to content 
myself with a short and possibly oversimplified answer 
to this apparent dilemma by agreeing with the thesis that 
we tend to posit existence on all those things that belong 
to a civilization or culture in that we share them with oth-
er people and can exchange thoughts about them. Some-
thing becomes objective (as opposed to “subjective”) as 
soon as we are convinced that it exists in the minds of 
others in the same form as it does in ours and that we can 
think about it and discuss it together [19]. Because the 
language of mathematics is so precise, it is ideally suited 
to defining concepts for which such a consensus exists. In 
my opinion, that is sufficient to provide us with a {\it feel-
ing} of an objective existence, of a reality of mathematics 
similar to that mentioned by Hardy and Hermite above, 
regardless of whether it has another origin, as Hardy and 
Hermite maintain. One could speculate forever on this 
last point, of course, but that is actually irrelevant to the 
continuation of this discussion.

Before I elaborate on this, I would like to note that 
similar thoughts about our conception of physical reality 
have been expressed. For example, Poincaré wrote:

Our guarantee of the objectivity of the world in which 
we live is the fact that we share this world with other 
sentient beings…
That is therefore the first requirement of objectivity: 
that which is objective must be common to more than 
one spirit and as a result be transmittable from one to 
the other… [20]

And Einstein:

By the aid of speech, different individuals can, to a 
certain extent, compare their experiences. In this way, 
it is shown that certain sense perceptions of different 
individuals correspond to each other, while for other 
sense perceptions no such correspondence can be 
established. We are accustomed to regard as real those 
sense perceptions which are common to different indi-
viduals, and which therefore are, in a measure, imper-
sonal [21].

Now back to mathematics. Mathematicians share an intel-
lectual reality: a gigantic number of mathematical ideas, 
objects whose properties are partly known and partly 
unknown, theories, theorems, solved and unsolved prob-
lems, which they study with mental tools. These problems 
and ideas are partially suggested by the physical world; 
primarily, however, they arise from purely mathematical 
considerations (such as groups or quaternions to go back 
to my earlier examples). This totality, although stemming 
from the human mind, appears to us to be a natural sci-
ence in the normal sense, such as physics or biology, and 
is for us just as concrete. I would actually maintain that 
mathematics not only has a theoretical side but also an 
experimental one. The former is clear: we strive for gen-
eral theorems, principles, proofs and methods. That is 
the theory. But, in the beginning, one often has no idea 
of what to expect and how to continue, and one gains 
understanding and intuition through experimentation, 
that is, through the study of special cases. First, one hopes 
to be led in this way to a sensible conjecture and, second, 
perhaps to stumble upon an idea that will lead to a gen-
eral proof. It can also happen, of course, that certain spe-
cial cases are of great interest in themselves. That is the 
experimental side. The fact that we operate with intellec-
tual objects more than with real objects and laboratory 
equipment is actually not important. The feeling that 
mathematics is, in this sense, an experimental science is 
also not new.

Hermite, for example, wrote to L. Königsberger 
around 1880:

The feeling expressed at that point in your letter where 
you say to me: “The more I think about all these things, 
the more I come to realise that mathematics is an 
experimental science like all other sciences.”This feel-
ing, I say, is also my feeling [22].

Traditionally, these experiments are carried out in one’s 
head (or with pen and paper) and for this reason I have 
spoken of mental tools. I should add, however, that for 
about 20 years, real apparatuses, namely, electronic com-
puters, have been playing an increasing role. They have 
actually given this experimental side of mathematics a 
new dimension. This has advanced to the extent that one 
can already see important, reciprocal and fascinating 
interactions between computer science and pure math-
ematics. 

The word “science”in my title now takes a broader 
meaning: it refers not only to the natural sciences, as it 
did earlier, but also – and this to a much greater extent 
– to the conception of mathematics itself as an experi-
mental and theoretical science or, I would venture to say, 
as a mental natural science, as a natural science of the 
intellect, whose objects and modes of investigations are 
all creations of the mind.

This makes it somewhat easier for me to speak of 
motivation and aesthetics. If one does not want to take 
applications in the natural sciences as a yardstick, one 
is still not thrown back upon mere intellectual elegance. 
There still remain almost practical criteria: namely, appli-
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one has still de jure the freedom to put aside apparently 
unsolvable, overly difficult problems and turn to other, 
more manageable ones and maybe, in fact, follow the 
path of least resistance, just as von Neumann had feared. 
Wouldn’t that be a temptation for a mathematician who 
defines mathematics as “the art of finding problems that 
one can solve”? Interestingly enough, I heard this defini-
tion from a mathematician whose works are especially 
remarkable because they treated so many problems 
which seemed quite special at the time but which later 
proved fundamental and whose solutions opened up new 
paths, namely, Heinz Hopf.

It cannot be denied, however, that sometimes paths 
of least resistance are indeed followed, leading to trivial 
or meaningless work. It can also happen that a successful 
school later falls into a sterile period and then even, at 
worst, exerts a harmful influence. Remarkably enough, 
however, an antidote always comes along, a reaction that 
eliminates these mistaken paths and fruitless directions. 
Up until now, mathematics has always been able to over-
come such growth diseases and I am convinced that it 
will always do so, as long as there are so many talented 
mathematicians. It is very odd, however. Many of us have 
this feeling of a unity in mathematics but it is dangerous 
to prescribe overly precise guidelines in the name of our 
conception of it. It is more important that freedom reigns, 
despite occasional misuse. Why this is so successful can-
not be fully explained. If one thinks of Hopf, for exam-
ple, one can, to a certain extent, see rational criteria in 
his choice of problems: they were, for instance, often the 
first special cases of a general problem for which known 
methods of proof were not applicable. He was, of course, 
aware of this. But that doesn’t explain everything. He 
probably didn’t always foresee how influential his work 
would become; and, most likely, he did not worry about 
it. It is simply a part of the talent of a mathematician to 
be drawn to “good” problems, i.e. to problems that turn 
out to be significant later, even if it is not obvious at the 
time he takes them up. The mathematician is led to this 
partly by rational, scientific observations and partly by 
sheer curiosity, instinct, intuition or purely aesthetic con-
siderations. Which brings me to my final subject: the aes-
thetic feeling in mathematics.

I have already mentioned the idea of mathematics 
as an art, a poetry of ideas. With that as a starting point, 
one would conclude that, in order for one to appreciate 
mathematics, to enjoy it, one needs a unique feeling for 
intellectual elegance and beauty of ideas in a very spe-
cial world of thought. It is not surprising that this can 
hardly be shared with non-mathematicians: our poems 
are written in a highly specialised language, the math-
ematical language; although it is expressed in many of 
the more familiar languages, it is nevertheless unique and 
translatable into no other language; and unfortunately, 
these poems can only be understood in the original. The 
resemblance to an art is clear. One must also have a cer-
tain education for the appreciation of music or painting, 
which is to say one must learn a certain language.

I have long agreed with such opinions and analogies. 
Without changing my fundamental position with regard 

cability in mathematics itself. The consideration of this 
mathematical reality, the open problems, the structure, 
needs and connections among various areas, already 
indicates possibly fruitful, valuable directions and allows 
the mathematician to orient himself and attach relative 
values to problems as well as to theories. Often a test for 
the value of a new theory is whether it can solve old prob-
lems. De facto, this limits the freedom of a mathematician, 
in a way which is comparable to the constraints imposed 
on a physicist, who after all doesn’t choose at random the 
phenomena for which he wants to construct a theory or 
to devise experiments. Many examples show that math-
ematicians have often been able to foresee how certain 
areas of mathematics will develop and which problems 
should be taken up and probably quickly solved. Rather 
often, statements about the future of mathematics have 
proved true. Such predictions are not perfect but they are 
successful enough to indicate a difference from art. Anal-
ogous relatively successful forecasts about the future of 
painting, for example, hardly exist at all.

I don’t want to go too far in this. However, I suggested 
the concept of mathematics as a mental natural science as 
one of three elements, not as the whole. On the one hand, 
I don’t want to overlook the importance of the interac-
tions between mathematics and the natural sciences. 
First, it is a common saying that all disciplines in the nat-
ural sciences must strive for a mathematical formulation 
and treatment – indeed, that a discipline achieves the sta-
tus of a science only when this has been carried out. Thus, 
it is surely important that mathematicians try to help in 
this way. Second, it is doubtless a great achievement to 
formulate and treat complicated phenomena mathemati-
cally, and the new problems that are thereby introduced 
represent an enrichment for mathematics. One need only 
think of probability. I only mean that it is simply not nec-
essary to put the idea of applicability in the foreground 
in order to do valuable mathematics. The history of 
mathematics shows that many outstanding achievements 
came from mathematicians who weren’t thinking at all 
about external applications and who were led by purely 
mathematical considerations. And as has already been 
mentioned and illustrated, these contributions often 
found important applications in the natural sciences or 
in engineering, often in completely unforeseen ways.

On the other hand, I don’t want to say that one can 
foresee everything completely rationally. Actually, this 
isn’t the case even in the natural sciences, especially since 
one often does not know in advance which experiments 
will prove interesting. Outstanding mathematicians have 
also been wrong and have sometimes, precisely in the 
name of applicability within mathematics, termed fruit-
less, idle or even dangerous, new ideas that later proved 
fundamental. The freedom not to consider practical 
applications, which von Neumann demanded for science 
as a whole, must also be demanded within mathematics.

One could object that this analogy between mathe-
matics and the natural sciences overlooks one essential 
difference: in the natural sciences or in technology, one 
often encounters problems that one has to solve in order 
to advance at all. In the world of mathematical thought, 



Discussion

44 EMS Newsletter March 2017

to mathematics, I would nonetheless like to reformulate 
them somewhat in the direction of my previous state-
ments. I believe that our aesthetics are not always so pure 
and esoteric but also include a few more earthly yard-
sticks such as meaning, consequences, applicability, use-
fulness – but within the mathematical science. Our judg-
ment of a theorem, a theory or a proof is also influenced 
by this but it is often simply equated to the aesthetic. 
I would like to try to explain this using Galois’ theory 
mentioned earlier. This theory is generally treasured as 
one of the most beautiful chapters in mathematics. Why? 
First, it solved a very old and, at that time, most impor-
tant question about equations. Second, it is an extremely 
comprehensive theory that goes far beyond the origi-
nal question of solvability by radicals. Third, it is based 
on only a few principles of great elegance and simplic-
ity, which are formulated within a new framework with 
new concepts that demonstrate the greatest originality. 
Fourth, these new viewpoints and concepts, especially 
the concept of a group, opened new paths and had a last-
ing influence on the whole of mathematics.

You will notice that of these four points only the 
third is a truly aesthetic judgment, and one about which 
one can have one’s own opinion only when one under-
stands the technical details of the theory. The others 
have a different character. One could make similar 
statements about theories in any natural science. They 
have a greater objective content, and a mathematician 
can have his own opinion about them even if he doesn’t 
fully grasp the technical details of the theory. For the 
purpose of this discussion, I have separated these four 
elements but normally I would not always do so explic-
itly, and all four contribute to the impression of beau-
ty. I do think that, in this respect, this example is fairly 
typical: what we describe as aesthetic is actually often 
a fusion of different views. For example, I would natu-
rally find a method of proof more beautiful if it found 
new and unexpected applications, although the method 
itself hadn’t changed. It may have become more impor-
tant but in and of itself not more beautiful. Since all this 
takes place within mathematics itself, it will hardly help 
the non-mathematician penetrate our aesthetic world. I 
hope, however, that it will help him find more plausible 
the fact that our so-called aesthetic judgments display a 
greater consensus than in art, a consensus that goes far 
beyond geographical and chronological limitations. In 
any case, I regard this as being a major factor. But once 
again, I must avoid taking this too far. It is a question 
of degree, not an absolute difference. An aesthetic judg-
ment on the work of a composer or a painter also draws 
on external factors such as influence, predecessors and 
the position of the work with relation to other works, 
even if it is to a lesser extent. On the other hand, there 
are differences of opinion and fluctuations in time in the 
evaluation of mathematical works, though not to such 
a strong degree, I would add. All these nuances need a 
good deal of explanation, which I cannot go into here for 
lack of time.

In the limited amount of time at my disposal, it would, 
of course, be easier to make only sweeping short state-

ments about mathematics. But unfortunately, or for-
tunately, just as in other human undertakings to which 
many people have contributed over many centuries, 
mathematics refuses to let itself be described by just a 
few simple formulas. Almost every general statement 
about mathematics has to be qualified somehow. One 
exception, perhaps the only one, might be this statement 
itself. I hope I have, at least, given the impression that 
mathematics is an extremely complex creation, which 
displays so many essential traits in common with art and 
experimental and theoretical sciences that it has to be 
regarded as all three at the same time, and thus must be 
differentiated from all three as well.

I am aware that I have raised more questions than I 
have answered, treated too briefly those I have discussed 
and not even touched upon some important ones, such 
as the value of this creation. One can, of course, point 
to innumerable applications in the natural sciences and 
in engineering, many of which have a great influence on 
our daily life, thereby establishing a social right to exist-
ence for mathematics. But I must confess that, as a pure 
mathematician, I am more interested in an assessment 
of mathematics in itself. The contributions of the vari-
ous mathematicians meld into an enormous intellectual 
construct, which, in my opinion, represents an impressive 
testimony to the power of human thinking. The math-
ematician Jacobi once wrote that “the only purpose of 
science is to honour the human mind”[23]. I believe that 
this creation does indeed do the human mind great hon-
our.

The Institute for Advanced Study
Princeton, New Jersey 08540

Notes
1 The dissertation was by L. Kronecker, see Werke, 5 Vol., Teubner, 

Leipzig, 1895–1930, Vol. 1, p. 73. The opponent was G. Eisenstein.
 The source I am aware of because the name and the opinion of 

the opponent is a footnote by E. Lampe to a lecture by P. du Bois-
Reymond, “Was will die Mathematik und was will der Mathema-
tiker?”, published posthumously by E. Lampe in Jahresbericht der 
Deutschen Mathematiker-Vereinigung 19 (1910), 190–198.

2 For a discussion of a number of such opinions, see A. Pringsheim, 
“Ueber den Wert und angeblichen Unwert der Mathematik”, 
Jahresbericht der Deutschen Mathematiker-Vereinigung 13 (1904), 
357–382.

3 Letter to F. W. Bessel, 18 November 1811. See G. F. Auwers Verlag, 
Briefwechsel zwischen Gauss und Bessel, Leipzig 1880, p. 156.

4 Actually, the beginnings of group theory can already be traced to 
some earlier work, notably by Lagrange, which was, in part, familiar 
to Galois. The latter’s standpoint was, however, so general and ab-
stract and, in addition, so sketchily described that it was assimilated 
only slowly. For historical information on the theory of equations 
and the beginnings of group theory, see, for example, N. Bourbaki, 
Eléments d’histoire des mathématiques, Hermann ed., Paris, 1969, 
third and fifth articles.

5 F. J. Dyson, “Mathematics in the physical sciences”, Scientific Amer-
ican 211, September (1964), 129–146.

6 See B. L. van der Waerden’s historical introduction in “Sources in 
Quantum Mechanics”, Classics of Science, Vol. 5, Dover Publica-
tions, New York, 1967, especially pp. 36–38. Also see Dirac’s re-
marks on the introduction of non-commutativity in quantum me-
chanics in loc. cit. [7].
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7 E. P. Wigner, “The unreasonable effectiveness of mathematics in 
the natural sciences”, Communications on Pure and Applied Math-
ematics 13 (1960), 1–14.

 Among the many aspects of this interaction, the one that appears 
most remarkable to me is that the mathematical formalism some-
times leads to basic, new and purely physical ideas. One well known 
example is the discovery of the positron. In 1928, P. A. M. Dirac set 
up quantum mechanic relativistic equations for the movement of 
the electron. These equations also allowed a solution with the same 
mass as the electron but with the opposite electrical charge. All at-
tempts to explain these solutions satisfactorily, or to eliminate them 
by some suitable modification of the equation, were unsuccessful. 
This led Dirac eventually to conjecture the existence of a particle 
with the necessary properties, which was later established by An-
derson. For this, see P. A. M. Dirac, “The development of quantum 
theory”(J. R. Oppenheimer Memorial Prize acceptance speech), 
Gordon and Breach, New York, 1971.

 A newer and even more comprehensive example would be the use 
of irreducible representations of the special unitary group SU(3) in 
three complex variables, which led to the so-called “eightfold way”. 
One of the first successes of this theory was quite striking, name-
ly, the discovery of the particle –: nine baryons were assigned, 
through consideration of two of their characteristic quantum num-
bers, to nine points of a very specific mathematical configuration 
consisting of 10 points in a plane [the 10 weights of an irreducible 
10-dimensional representation of SU(3)]; this led M. Gell’man to 
conjecture that there should also be a particle corresponding to the 
tenth point, which would then possess certain well-defined prop-
erties. Such a particle was observed some two years later. A fur-
ther development along these lines led to the theory of “quarks”. 
For the beginnings of this theory, see F. J. Dyson, loc. cit. [5] and 
M. Gell’man and Y. Ne’eman, The Eightfold Way, W. A. Benjamin, 
New York, 1964.

8 See a number of papers in L. Euler’s Opera Omnia, especially I.2, 
62–63, 285, 461, 576; I.3, 5.2. I want to thank A. Weil for pointing this 
out to me. Here is an example (translated from Latin by Weil), loc. 
cit. pp. 62–63, published in 1747:

 “Nor is the author disturbed by the authority of the greatest math-
ematicians when they sometimes pronounce that number theory is 
altogether useless and does not deserve investigation. In the first 
place, knowledge is always good in itself, even when it seems to 
be far removed from common use. Secondly, all the aspects of the 
truth which are accessible to our mind are so closely related to one 
another that we dare not reject any of them as being altogether 
useless. Moreover, even if the proof of some proposition does not 
appear to have any present use, it usually turns out that the method 
by which this problem has been solved opens the way to the discov-
ery of more useful results.

 “Consequently, the present author considers that he has by no 
means wasted his time and effort in attempting to prove various 
theorems concerning integers and their divisors. Actually, far from 
being useless, this theory is of no little use even in analysis. Moreo-
ver, there is little doubt that the method used here by the author 
will turn out to be of no small value in other investigations of great-
er import.”

9 G. H. Hardy, A Mathematician’s Apology, Cambridge University 
Press, 1940; new printing with a foreword by C. P. Snow, pp. 139–140.

10 P. Valery, Degas, danse, dessin, A. Vollard éd., Paris, 1936; Œuvres II, 
La Pléiade, Gallimard éd., Paris, 1966, pp. 1163–1240, especially pp. 
1207–1209.

11 The following excerpt from a letter from C. F. Gauss to Olbers, writ-
ten on 3 September 1805, shortly after Gauss had solved a prob-
lem (the “sign of the Gaussian Sums”) he had been working on for 
years, can serve as an example:

 “Finally, just a few days ago, success – but not as a result of my la-
borious search but only by the grace of God I would say. Just as it is 
when lightning strikes, the puzzle was solved; I myself would not be 
able to show the threads which connect that which I knew before, 
that with which I had made my last attempt, and that by which it 
succeeded.”See Gauss, Gesammelte Werke, Vol. 10I, pp. 24–25. Here 
one must also mention H. Poincaré’s description of some of his 
fundamental discoveries on automorphic functions. H. Poincaré, 
“L’invention mathematique” in Science et Méthode, E. Flammarion 
éd., Paris, 1908, Chap. III.

12 J. v. Neumann, “The mathematician” in Robert B. Heywood, The 
Works of the Mind, University of Chicago Press, 1947, pp. 180–187. 
Collected Works, 6 Vol., Pergamon, New York, 1961, Vol. I, pp. 1–9.

13 H. Poincaré, La Valeur de la Science, E. Flammarion, Paris, 1905, 
Chap. 5, p. 139. Actually, this chapter is the printed version of a 
lecture that Poincaré delivered at the First International Congress 
of Mathematicians, Zurich, 1897.

14 Loc. cit. [13], p. 147.
15 W. Kandinsky, Rückblick 1901–1913, H. Walden ed., 1913. New 

printing by W. Klein Verlag, Baden–Baden, 1955. See pp. 20–21.
16 J. v. Neumann, “The role of mathematics in the science and in socie-

ty”, address to Princeton Graduate Alumni, June 1954. See Collect-
ed Works, 6 Vol., Pergamon, New York, 1961, Vol. VI, pp. 477–490.

17 See G. H. Hardy, loc. cit. [9], pp. 123–124.
18 G. Darboux, “La vie et l’Œuvre de Charles Hermite”, Revue du 

mois, 10 January 1906, p. 46.
19 See L. White, “The locus of mathematical reality: An anthropologi-

cal footnote”, Philosophy of Science 14 (1947), 189303; also in J. R. 
Newman, The World of Mathematics, 4 Vol., Simon and Schuster, 
New York, 1956, Vol. 4, pp. 2348–2364.

20 H. Poincaré, loc. cit. [13], p. 262.
21 A. Einstein, Vier Vorlesungen über Relativitätstheorie, held in May 

1921 at Princeton University, Fr. Vieweg und Sohn, Braunschweig, 
1922, p. 1. English translation in: The Meaning of Relativity, Prince-
ton University Press, Princeton, 1945.

22 See L. Königsberger, “Die Mathematik eine Geistes- oder Natur-
wissenschaft?”, Jahresbericht der Deutschen Mathematiker-Vereini-
gung 23 (1914), 1–12.

23 In a letter of 2 July 1830 to A. M. Legendre, see C. G. J. Jacobi, Ge-
sammelte Werke, G. Riemer, Berlin, 1881–1891, Vol. 1, pp. 453–455. 
Since this statement is sometimes misquoted, we prefer to give here 
its original context:

 “Mais M. Poisson n’aurait pas dû reproduire dans son rapport une 
phrase peu adroite de feu M. Fourier, où ce dernier nous fait des 
reproches, à Abel et à moi, de ne pas nous être occupés de préfé-
rence du mouvement de la chaleur. II est vrai que M. Fourier avait 
l’opinion que le but principal des mathématiques était l’utilité pub-
lique et l’explication des phénomènes naturels; mais un philosophe 
comme lui aurait dû savoir que le but unique de la science, c’est 
l’honneur de l’esprit humain et que sous ce titre une question de 
nombres vaut autant qu’une question du système du monde.”
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1 Introduction
Scholarly communication is in a state of ferment. The 
shift over the last few decades from print to digital dis-
semination has set off a wide range of movements for 
change, from the radical to the more modest and incre-
mental. At the centre of many of these debates is the 
move toward wider access to the research literature. 
Mathematics occupies an unusual place in these debates, 
being simultaneously radical in the degree of uptake of 
new approaches such as arXiv.org for rapid dissemina-
tion prior to peer review but also highly conservative 
in terms of the move to online-only journals and wide 
access models more generally.

Several surveys have examined the opinions of 
researchers generally (most recently Tenopir et al. [6] – 
see also their literature review – Taylor & Francis [5] and 
Solomon [4] and issues of access to funding (Solomon 
and Björk [2], Björk & Solomon [1]) and Dallmeier-
Tiessen et al. [3] but few have focused on the views of 
mathematicians specifically. We sought to understand 
how those engaged in mathematical research viewed 
the importance of enhancing access to the mathematics 
research literature and their interest in a wider range of 
innovations, including changes to peer review and publi-
cation practice. We also aimed to get feedback from the 
mathematics community on specific issues they saw with 
mathematical journals.

1.1 Methodology
An online survey instrument was made available via 
Google Forms from 12 April 2016 and submissions were 
initially solicited through personal emails, social media and 
research mathematics mailing lists (including DMANET, 
the Australian Mathematical Society and the  European 
Mathematical Society –– note that the American Math-
ematical Society declined to advertise it). In order to 
increase the number of responses, we made a second wave 
of approaches to recent authors in mathematics journals, 
societies and mathematics departments worldwide.1

Results of a Worldwide Survey of 
Mathematicians on Journal Reform
Cameron Neylon (Curtin University, Perth, Australia), David M. Roberts (University of Adelaide, Australia) and 
Mark C. Wilson (University of Auckland, New Zealand)

The survey cannot be taken as representing the gen-
eral opinion of mathematicians because we have no 
information about who responded – full anonymity was 
promised to participants. However, we are confident that 
we reached a broad cross-section of the community. Of 
respondents, in the last three years, 33% have acted as an 
editor for a mathematics journal, 93% have authored a 
paper and 86% have acted as a referee.

The survey addressed general questions of desire for 
change, specific issues and the association of specific fac-
tors with journal prestige. Questions on prestige were 
framed in two different ways. In one set, respondents 
were asked how they personally associate specific factors 
with the prestige of journals. In the second set, they were 
asked how the community associate those same factors 
with the prestige of journals. This allows us to identify 
consistent differences between individual (self-reported) 
views and the assumptions those same individuals have 
about community views. All data, including a copy of 
the survey itself and raw and processed responses, and 
the code used for processing, are available at https://
figshare.com/projects/Survey_of_mathematical_publish-
ing/16944.

2 Results
We closed the survey when it reached exactly 1000 
responses, on 28 August 2016.2

2.1 Demographics
Respondents self-reported as PhD student (10.5%), 
postdoc (15.5%), tenure-track (7%), tenured (57%) and 
other (emeritus, librarian, etc.) (10%). Surveys in Europe 
and North America of career stages of researchers give 
very different results for the distribution of career stag-
es. The respondent distribution is not inconsistent with 
these other surveys but we cannot show that the respond-
ents are demographically representative. Geographical 
representation was dominated by Europe (54%) and 
North America (25%). Other respondents selected Oce-
ania (11%), Asia (6%), South America (4%) and Africa 
(0.5%) as locations. 

2.2 Appetite for change
On a five point scale from 1 being “the status-quo is com-
pletely acceptable” and 5 being “almost all [journals] 
need serious work”, 78% of respondents selected 3, 4 
or 5. Amongst respondents, there is a strong desire for 

1 Authors’ email addresses were extracted from issues of the 
following journals in the years 2014–16: Acta Appl. Math., 
Acta Inf., Acta Math. Sin. (Engl. Ser.), Adv. Comput. Math., 
BIT, Calc. Var. Partial Differential Equations, Comput. Math. 
Organ. Theory, Comput. Math. Model., Funct. Anal. Appl., 
Graphs Combin., Invent. Math., J. Algebraic Combin., J. En-
grg. Math., J. Math. Sci. (N.Y.), J. Theoret. Probab., Manu-
scripta Math., Monatsh. Math., Numer. Math., Potential Anal., 
Probab. Theory Related Fields, Statist. Papers, Theoret. and 
Math. Phys. Mathematics departments were chosen with no 
particular plan from universities in China, Czechia, Israel, Ja-
pan, Sweden, Turkey, Azerbaijan, Iran and South Africa.

2 Thanks to Ben Rohrlach for additional exploratory analysis 
and help with R.



Discussion

EMS Newsletter March 2017 47

change. Free text answers describing the major perceived 
problems revealed serious concerns that suggest system-
ic issues: almost 200 journals from 57 publishers were 
mentioned by name as needing serious improvement. 
These ranged from journals at large commercial publish-
ers and university presses to small Open Access journals 
that do not charge an Article Processing Charge (APC), 
over the whole spectrum of prestige. Table 1 gives a clas-
sification of the stated issues into main categories (from 
the 466 respondents who named a journal). Of particular 
concern is the number of respondents who had concerns 
with the quality of peer review. For example, 126 journals 
or publishers were named as being unsatisfactory in the 
time taken for refereeing or the time taken from accept-
ance to publication. 

Table 1: Distribution of free-form comments by area where improve-
ment is needed.

Issue N %
peer review quality 139 30
efficiency 115 24
price 101 21
other quality 83 17
access 72 15
ethics 35 7
governance 27 6
unclear 15 3

On this question, those who had acted as editors did not 
differ substantially from those who had not. To protect 
anonymity, the survey did not ask which journals editors 
worked for but with over 330 editors this sample must 
include many associated with traditionally run journals. 

Figure 1 plots the suggestions for each publisher in 
each category by the size of the mathematics journal 
portfolio (or rather, by log10 of the number of mathemat-
ics journals to account for the two orders of magnitude 
range: 1–202 journals). Any publisher with at least five 
journals suggested is labelled. One would expect pub-
lishers with larger mathematics portfolios to garner 
more criticism but there is essentially little trend among 
publishers excluding Elsevier and Springer. Even though 
Elsevier publishes less than half as many mathematics 
journals as Springer, its journals get more suggestions for 
improvements in all categories but one. 

2.3 Which attributes of journals contribute to  
 journal prestige?
A diversity of studies continue to show that journal repu-
tation or prestige is an important factor for authors in 
selecting a journal. In two sets of questions, we asked 
respondents how important they thought specific aspects 
were for journal reputation and how important they 
thought those same aspects were for the community’s 
view of reputation. Results are summarised in Figure 2.

The most important factor for respondents was the 
quality of peer review (median rank 5). This was fol-

lowed by the reputation of editors and historical repu-
tation, and selectivity (median 4), then Journal Impact 
Factor (JIF), Open Access status and external rankings 
(median 3). The publisher had the lowest median ranking 
(2), with a mode of 1. 

When we asked for the respondents’ assessment of the 
importance of these factors in the community’s view, a 
striking pattern emerged, as shown in Figure 3. For factors 
that might be considered as traditional markers of prestige 
(publisher, external rankings, JIF), respondents believe 
they matter more to the community than they do to them-
selves. That is, respondents tend to believe themselves less 
influenced by such “external” factors than the community. 
For other “traditional” markers (editors’ reputation, his-
torical reputation, degree of selectivity), this was less pro-
nounced but the tendency is in the same direction.

Figure 1: Number of suggestions per publisher, by category and port-
folio size (small horizontal jitter added for clarity).

Figure 2: Stacked diverging bar chart of Likert scale responses.

Figure 3: Respondents’ beliefs about community opinion on issues.
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When asked about Open Access (OA), respondents 
implied strongly that it was more important to them than 
the community. Combined together, this shows that our 
respondents believe their colleagues to be more influ-
enced by traditional markers and less interested in OA 
than they are. These differences matter. Change is risky. 
If mathematicians are pessimistic about their colleagues’ 
desire for change then working for change is much less 
appealing. It is one thing for the status quo to be support-
ed by peer pressure but it appears it may be supported by 
the perception of peer pressure.

Finally, the difference between personal and com-
munity views on the importance of the peer review pro-
cess was both striking and disturbing. By a strong mar-
gin, most respondents view the quality of peer review 
as more important to themselves than they believe it is 
to the community. If this is true beyond our sample, it 
is concerning because it suggests that individuals do not 
see the community as a whole as driven by high stand-
ards. While this is potentially a result of sample bias, fur-
ther investigation of this finding should be carried out. 

2.4 Changing practice
If there is change, what should it look like? When asked 
to rate the importance of elements of journal publish-
ing, high ethical standards and timely and thorough peer 
review were rated the most important (median 5). All 
other factors (Open Access, low cost of publication, non-
profit status, transparent costings, community control 
and use of modern internet technologies) had a median 
ranking of 4. The most frequent ranking (mode) was 5 for 
all of these questions, apart from low cost. Perhaps more 
informatively, there is greater distribution in responses 
for those lower ranked priorities. In terms of the specif-
ics of change, editors are less keen on Open Access than 
non-editors. This may be related to their having a sub-
stantially stronger view that author payments for publi-
cation are unacceptable (see Section 2.5).

In terms of new practices, almost a quarter of 
respondents supported open peer review as a default 
(with opt-out) and half supported post publication 
review with moderated comments and commenter iden-
tities revealed. Nearly half supported the publication of 
anonymous referee reports, suitably presented, to help 
readers. Free-form responses were also allowed and, 
of the 53 constructive suggestions made, 11 mentioned 
double-blind refereeing. Editors were clearly less favour-
able towards open review (26% vs. 38%) and community 
election of editors (31% vs. 43%) than non-editors. Inter-
estingly, editors were slightly more supportive of banning 
monetary payments to editors (45% vs. 41%) and of edi-
tor term limits (31% vs. 29%).

2.5 Funding of increased access
Because mathematics is a discipline with relatively little 
funding and therefore has limited discretionary resourc-
es, it is commonly believed that there is a strong aversion 
to author publication charges (APCs). However, opin-
ions on APCs were split, with (roughly) a quarter believ-
ing them unacceptable in principle, a quarter saying they 

should be paid by library consortia and a quarter saying 
they were “OK if they are sufficiently low”. Respondents 
were, however, united on one issue. Only 2% believed 
that they were “not a problem, and competition in the 
journal market will take care of them”.

3 Discussion
Overall, we interpret these results as showing that 
respondents are strongly in favour of change in the 
publishing system but pessimistic about the support the 
efforts for such change would get from their colleagues. 
There is strong support for high(er) ethical standards 
and high quality peer review, and substantial support for 
rather radical changes to the way journals operate. These 
issues are also the subject of serious concerns raised in 
free-text answers. Editors and publishers should take 
note of these concerns, alongside the demand for greater 
transparency in editor selection and editorial processes. 
On several of these issues, editors’ views diverge from 
that of the community and this should be a subject of 
some concern. However, there is substantial agreement 
between editors and non-editors on many issues.

When asked what should happen if efforts by edi-
tors to reform a journal are blocked by the publisher, 
over half of respondents favoured resigning to join a 
better journal (29%) or to create a new one (32%). 
Only a very small proportion (4.5%) favoured settling 
for the status quo. For this set of respondents at least, 
the appetite for change is there and community support 

Figure 4: Importance of journal aspects: editors and non-editors.

Figure 5: Support for new practices.
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for bold moves by editors on behalf of the community 
is strong.

To our knowledge, no previous study has sought to 
compare the views of individuals with their views of the 
community. Although it may reflect a sampling bias, it is 
striking that respondents to this survey show a strong ten-
dency to claim views that are more aligned with change 
than those they believe the community hold, particularly 
on Open Access and traditional measures of prestige and 
quality. This is in sharp contrast to their views on peer 
review, where there appears to be pronounced scepticism 
on the importance other members of the community 
place on the quality of peer review.

3.1 How is Europe different?
We recalculated some of the results for the subset of data 
in which the respondent indicated they work in Europe. 
One difference observed is that European respond-
ents were somewhat keener on Open Access than non-
Europeans (the distribution of European answers sto-
chastically dominated the non-European). In terms of 
demographics, there were more PhD students and fewer 
editors in the European respondent set than the non-
European but the differences were not very large. How-
ever, we have not delved into this issue rigorously and 
leave it to our European colleagues to analyse our pub-
licly available data.
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Assuming various points of view (power series expansions, Feshbach–Grushin reductions, WKB constructions, coherent 
states decompositions, normal forms) a theory of Magnetic Harmonic Approximation is then established which allows, in 
particular, accurate descriptions of the magnetic eigenvalues and eigenfunctions. Some parts of this theory, such as those 

related to spectral reductions or waveguides, are still accessible to advanced students while others (e.g., the discussion of the Birkhoff normal form 
and its spectral consequences, or the results related to boundary magnetic wells in dimension three) are intended for seasoned researchers.

European Mathematical Society Publishing House
Seminar for Applied Mathematics
ETH-Zentrum SEW A21, CH-8092 Zürich, Switzerland
orders@ems-ph.org / www.ems-ph.org
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M&MoCS – International Research 
Center on Mathematics and  
Mechanics of Complex Systems 
Francesco dell’Isola (University of Rome “La Sapienza”, Italy and International Research Center on Mathematics 
and Mechanics of Complex Systems, L’Aquila, Italy), Luca Placidi (International Telematic University Uninettuno, 
Italy and International Research Center on Mathematics and Mechanics of Complex Systems, L’Aquila, Italy) and 
Emilio Barchiesi (University of Rome “La Sapienza”, Italy and International Research Center on Mathematics and 
Mechanics of Complex Systems, L’Aquila, Italy)

The Centre
The International Research Center for Mathematics & 
Mechanics of Complex Systems (M&MoCS) is a research 
centre of the University of L’Aquila. The centre was 
established in 2010 by the Dipartimento di Ingegneria 
delle Strutture, delle Acque e del Terreno (DISAT), the 
Dipartimento di Matematica Pura e Applicata (DMPA) 
of the University of L’Aquila and the Dipartimento di 
Strutture of Roma Tre University, with the financial and 
logistic aid of Fondazione Tullio Levi-Civita. The current 
director of the centre is Francesco dell’Isola, who is a full 
professor of mechanics of solids at “La Sapienza” Uni-
versity of Rome. The previous director of the centre was 
Angelo Luongo, who is a full professor of mechanics of 
solids at the University of L’Aquila.

The mission of the centre is the development and 
dissemination of scientific knowledge. In order to pur-
sue these goals, the centre: (a) conducts and coordi-
nates research activities; (b) promotes initiatives for the 
enhancement of scientific liaison between researchers 
in mathematical fields and researchers in solid and fluid 
mechanics, operating both in Italy and abroad; (c) pro-
motes, supports and organises highly qualified educa-
tional activities, such as training, Master’s and doctorate 
courses; (d) encourages the promotion of mathematics 
and mechanics of complex systems through publications, 
conferences, seminars and exhibitions; and (e) carries 
out consultancy and research activities for organisations 
and institutions.

Workshops and summer schools
From 2011 to 2013, the centre offered the Sperlonga 
Summer Schools on Mechanics and Engineering Scienc-
es: courses and seminars, organised with an interdiscipli-
nary attitude, aimed at introducing young scientists to 
present-day developments in mechanics at the interface 
with mathematics, physics, materials science, biology and 

engineering. Lectures were complemented by discus-
sion sessions to foster lively interactions amongst par-
ticipants. Moreover, the centre, in collaboration with the 
CNRS International Associate Laboratory Coss&Vita, 
the Paris Federation of Mechanics Labs and the GDR 
MeGe (French Research Network), has organised, since 
its foundation, many workshops in Arpino, Alghero 
and Catania. Since 2014, the centre has organised two 
EUROMECH colloquia, and a third one “Generalized 
and microstructured continua: new ideas in modeling 
and/or applications to structures with (nearly-)inex-
tensible fibers” is planned for 3-8 April 2017 in Arpino 
(Italy). In the framework of a joint effort with Warsaw 
University of Technology and among the many seminars 
organised at the centre, an introductory course in analyt-
ical continuum mechanics and computational mechanics 
is offered every year. Many other events are scheduled 
throughout the year. 

To find out more information, please visit the website 
http://memocs.univaq.it.

Research and facilities
Research activities carried out at the centre are directed 
toward the formulation of computationally tractable 
mathematical models to predict phenomena occurring 
in complex systems and address their numerical solu-
tion. Experimental research is also being carried out at 
the centre facilities. The research mainly concerns: vari-
ational and optimisation methods, gamma convergence, 
homogenisation techniques for periodic media, mechan-
ics of fluids and solids, vibration control by means of 
piezoelectric actuators, composite materials, landmine 
detection, biomechanics of growing tissues, fluid dynam-
ics and transport phenomena, kinetic theory, vibrations 
and waves in continuous and multi-phase media, plastic-
ity, damage mechanics, continuum mechanics, stability 
and control of structures, identification of materials and 
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mechanical systems, dynamical systems and bifurcation 
theory, fluid dynamics models for the analysis of traffic 
flows and the social sciences, and numerical differen-
tial modelling of the mechanical and electromagnetic 
response of biological materials and nano-structures. 

In the following subsections, we briefly summarise 
the main activities of the experimental laboratories.

Laboratory of Materials and Structures Testing
The activities of the Laboratory of Materials and 
Structures Testing concern experiments on materials 
and structures for the purpose of consultancy, applied 
research and teaching. The aim of the laboratory is to 
provide the construction industry with a diagnosis of 
the state of degradation of civil works, thus providing an 
assessment of the residual life of structures.

Laboratory of Structures and Smart Materials
The Laboratory of Structures and Smart Materials is 
actively engaged in the study and prototyping of smart 
structures. The research group addresses the issue of 
mechanical structure vibration damping using piezoelec-
tric transducers coupled with electronic systems and the 
research is directed toward linear and nonlinear control 
of structural dynamics. Applications considered include 
the design of soundproofing systems, wing and blade 
flutter control, the identification of structural damage 
and the design of smart systems able to self-monitor the 
evolution of their constitutive parameters. Uncertainty 
modelling in inhomogeneous structures with unknown 
inhomogeneity and stimulated by piezoelectric actua-
tors and the analysis of metals subject to the action of 
external loads and induced structural change (such as 
anisotropy and strength of material) are also investi-
gated.

Naval Structures and Onboard Instrumentation 
Laboratory
The Naval Structures and Onboard Instrumentation 
Laboratory (officially known as Laboratorio Strutture 
Navali e Strumentazioni di Bordo) conducts research 
on prototypes of ship structures (surface and under-
water vehicles). The research activity is focused on the 
areas of control and vibration damping in the field of 
marine structures and stability of ship structures subject 
to the action of fluid waves and impact. The laboratory 
is directly involved in the development and realisation 
of the project SEALAB. The SEALAB project includes 
the construction of an experimental surface marine 
mobile station, functioning as a test bed for marine 
technologies. It is intended to develop, validate, refine 
and eventually patent new design solutions, devices and 
innovative systems in the field of marine engineering. At 
the same time, SEALAB aims to bring together, in a sin-
gle project, the efforts and skills of university and indus-
try research. Although SEALAB was born with the goal 
of providing an experimental platform to develop new 
solutions, the vehicle being developed can be used in an 
HSU (high-speed unmanned) version as a coastal patrol 
in autonomous and/or high speed (close to 200 km/h) 

remote driving. It could potentially be employed in civil 
defence or for the coast guard, etc.

Vibrations Laboratory
The Vibrations Laboratory conducts research in the 
fields of smart structures, vibration control, noise gener-
ation and transmission, and structural integrity monitor-
ing. In particular, research focuses on: (a) non-destruc-
tive fresco integrity diagnosis with Doppler vibrometer 
scanning lasers; (b) development of acoustic-vibrators 
for the location of historically significant fresco and 
plaster defects; (c) development of lighter and cheap-
er flexible robotic systems; (d) development of smart 
structures, equipped with piezoelectric sensors such as 
thin plates or panels for noise and vibration control; (e) 
finite element modelling for the design of structures in 
the civil and industrial sectors, such as wood laminated 
orthotropic structures; and (f) energy analysis of build-
ings.

Humanitarian Demining Laboratory (HDL)
The main aim of the Humanitarian Demining Labo-
ratory (HDL) is to develop new anti-personnel mine 
detection devices for humanitarian demining. Experi-
mental activity is being carried out on a promising 
original active thermal technology based on localised 
heating pulses and temperature sensing. With the aim 
of developing a multi-sensor platform employing data 
fusion and collaborating robotic agents, vibrometric/
acoustic and GPR techniques are also employed. For 
experimental purposes, a computer-controlled cart that 
can move over a sand box while holding a heater and 
other instrumentation has been realised. In the sand 
box, two accurate low-metal-content mine surrogates 
of different materials are hidden, together with another 
object. An outdoor “minefield” has also recently been 
realised. 

Functional Multiscale Metamaterials and Smart 
Systems Lab
The activities carried out in the Functional Multiscale 
Metamaterials and Smart Systems Lab range from 
numerical modelling to experiments on micro- and 
nano-structural and functional materials. The materials 
have many applications, from biomaterials to energy 
harvesting. The laboratory has equipment for electron, 
ionic and atomic force microscopy (including advanced 
technologies for spectroscopy and nanoindentation) for 
the structural characterisation of micro- and nano- inno-
vative materials.

MEMOCS Journal
The International Research Center for the Mathemat-
ics and Mechanics of Complex Systems has founded 
the homonymous journal Mathematics and Mechanics 
of Complex Systems, abbreviated to MEMOCS, for the 
benefit of the community of researchers in mechanics 
and mathematics. MEMOCS is peer-reviewed, indexed 
in all major databases and free to both authors and read-
ers. It publishes articles from diverse scientific fields with 
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a specific emphasis on mechanics. Articles must rely on 
the application or development of rigorous mathemati-
cal methods. Indeed, the journal is intended to foster a 
multidisciplinary approach to knowledge firmly based 
on mathematical foundations. It will serve as a forum 
where scientists from different disciplines meet to share 
a common, rational vision of science and technology. 
It is intended to support and divulge research whose 
primary goal is to develop mathematical methods and 
tools for the study of complexity. The journal also fos-
ters and publishes original research in related areas of 
mathematics of proven applicability, such as variational 
methods, numerical methods and optimisation tech-
niques. Besides their intrinsic interest, such treatments 
can become heuristic and epistemological tools for fur-
ther investigations and provide methods for deriving 
predictions from postulated theories. Papers focusing on 
and clarifying aspects of the history of mathematics and 
science are also welcome. All methodologies and points 
of view, if rigorously applied, are considered.

To find out more information, please visit the website 
http://memocs.org.

M&MoCS
DICEAA
Università degli Studi dell’Aquila
Via Giovanni Gronchi 18 
67100 L’Aquila, Italy
Tel. 06.90.28.67.84 Fax 0773.1871016
Website: http://memocs.univaq.it
Email: memocs.cisterna@gmail.com

Francesco dell’Isola received cum laude his 
degree in physics at the University of Naples 
“Federico II” in 1986. At the same universi-
ty, in 1992, he received a PhD in mathemati-
cal physics with a thesis on the rational ther-
modynamics of nonmaterial bidimensional 
continua. Since 2006, he has been a full pro-

fessor of solid and structural mechanics at “La Sapienza” 
University of Rome. Professor dell’Isola has authored 
more than 150 papers in international journals.

Luca Placidi graduated cum laude in phys-
ics at the University of Naples “Federico II” 
in 2001 and in engineering at the Virginia 
Polytechnic Institute in 2002. He received 
a PhD in 2004 from the Technical Univer-
sity of Darmstadt and a second one in 2006 
from “La Sapienza” University of Rome. 

He has authored five books and more than 40 papers in 
journals. Since 2011, he has been an assistant professor at 
the International Telematic University Uninettuno.

Emilio Barchiesi completed cum laude his 
MSc in mathematical engineering at the 
University of L’Aquila (Italy) in 2016, de-
fending a thesis on the numerical identifica-
tion of mathematical models for the descrip-
tion of engineering fabrics. He is currently 
pursuing his PhD studies in theoretical and 

applied mechanics at “La Sapienza” University of Rome. 
His main research interests lie in homogenisation theory, 
computational mechanics, higher gradient continua and 
variational methods.

Dynamics Done with Your Bare Hands. Lecture notes by Diana Davis, Bryce Weaver, Roland K. W. Roeder,  
Pablo Lessa (EMS Series of Lectures in Mathematics)
Françoise Dal’Bo (Université de Rennes I, France), François Ledrappier (University of Notre Dame, USA) and
Amie Wilkinson (University of Chicago, USA), Editors

ISBN 978-3-03719-168-2. 2016. 214 pages. Hardcover. 17 x 24 cm. 36.00 Euro

This book arose from 4 lectures given at the Undergraduate Summer School of the Thematic Program Dynamics and 
Boundaries held at the University of Notre Dame. It is intended to introduce (under)graduate students to the field of dynami-
cal systems by emphasizing elementary examples, exercises and bare hands constructions.
The lecture of Diana Davis is devoted to billiard flows on polygons, a simple-sounding class of continuous time dynamical 
system for which many problems remain open. 

Bryce Weaver focuses on the dynamics of a 2x2 matrix acting on the flat torus. This example introduced by Vladimir Arnold illustrates the wide class 
of uniformly hyperbolic dynamical systems, including the geodesic flow for negatively curved, compact manifolds. 
Roland Roeder considers a dynamical system on the complex plane governed by a quadratic map with a complex parameter. These maps exhibit 
complicated dynamics related to the Mandelbrot set defined as the set of parameters for which the orbit remains bounded. 
Pablo Lessa deals with a type of non-deterministic dynamical system: a simple walk on an infinite graph, obtained by starting at a vertex and choosing 
a random neighbor at each step. The central question concerns the recurrence property. When the graph is a Cayley graph of a group, the behavior 
of the walk is deeply related to algebraic properties of the group.

New book published by the European Mathematical Society Publishing House
Seminar for Applied Mathematics
ETH-Zentrum SEW A21, CH-8092 Zürich, Switzerland
orders@ems-ph.org / www.ems-ph.org
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About the LMS
As a UK-wide learned society for mathematics, the Lon-
don Mathematical Society (LMS) advances, disseminates 
and promotes mathematical knowledge, both nationally 
and internationally. Its activities include:

- Grants to support conferences and collaborative re-
search between UK based and non-UK based math-
ematicians, e.g. Research in Pairs (https://www.lms.
ac.uk/grants/research-pairs-scheme-4).

- Training opportunities aimed at Young Mathemati-
cians and Early Career Researchers, e.g. LMS-CMI 
Research Schools: https://www.lms.ac.uk/events/lms-
cmi-research-schools. 

- Prestigious prizes to recognise achievements in math-
ematics research, with nine Whitehead Prize winners 
going on to win EMS Prizes: https://www.lms.ac.uk/
prizes. 

Join the London Mathematical Society 
(LMS)
Elizabeth Fisher (London Mathematical Society, London, UK)

- Thirteen international peer-reviewed journals, seven of 
which are in collaboration with other learned societies 
and institutions, and two book series (lecture notes and 
student texts): https://www.lms.ac.uk/publications.

- Scientific lectures and meetings for research mathema-
ticians, including meetings at the ECM and the ICM: 
https://www.lms.ac.uk/events/society-meetings. 

- Representation of mathematics research and educa-
tion to Government and other national policymakers 
and sponsors: https://www.lms.ac.uk/policy/policy-con-
sultations.

- Participation in international mathematical initiatives 
and promoting the discipline more widely, e.g. sup-
porting mathematics in Africa through Mentoring Af-
rican Research in Mathematics (MARM) and grants 
to conferences at the African Mathematics Millennium 
Science Initiative (AMMSI): https://www.lms.ac.uk/
grants/international-grants#Africa.

Participants at the LMS Women in Mathematics Day, Edinburgh, 
April 2016.

LMS Members at the Annual General Meeting, London, November 
2016.

Simon Donaldson gives a talk at the South West & South Wales  
Regional Meeting, Bath, December 2016.

Speakers at the Research School, Belfast, September 2016.
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Further information about recent LMS activities can also 
be found in the Society’s 2015–16 Annual Review: www.
lms.ac.uk/sites/lms.ac.uk/files/files/files/reports/LMS%20
Annual%20review%202016%20web.pdf.

The LMS and the European Mathematical Society
The LMS has been a member society of the EMS since 
1990. The collaboration between the LMS and the EMS 
has included:

- Hosting the EMS Ethics Committee in 2013 and both 
the EMS Executive Committee and the EMS Applied 
Mathematics Committee in 2014.

- Travel Grants to European Congresses of Mathemat-
ics.

- Participation of LMS delegates at the EMS Council 
Meetings.

This partnership was recently celebrated at a Joint Meet-
ing held at the University of Birmingham in September 
2015 to mark the societies’ respective anniversaries: 25 
years for the EMS and 150 years for the LMS.

Membership of the LMS
The LMS has a membership of 2,800 members that make 
up a vibrant international mathematical community, with 
20% of the LMS membership based outside the UK, 
including 234 members based in other European coun-
tries.

Membership of the LMS falls into three categories:

- Ordinary membership: for academic staff, mathemati-
cians in other occupations and all those with a deep 
commitment to mathematics and an interest in math-
ematical research. 

- Associate membership: for undergraduates, postgradu-
ates and early career mathematicians who are within 
three years of completing their PhD. 

- Reciprocity membership: for those not normally resi-
dent in the UK and also members of some overseas 
mathematical societies. 

The LMS is pleased to have reciprocal agreements with 
20 mathematical societies. Any non-UK based EMS 
members thinking of joining the LMS are advised to 
check the list to see if their society is included when 
applying: https://www.lms.ac.uk/membership/member 
ship-categories#Reciprocity.

How to join 
The LMS welcomes applications via its online form:  
https://www.lms.ac.uk/membership/online-application, 
and applicants are formally elected to membership at 
one of the society meetings of the LMS.

Do visit the website for full details on the applica-
tion process (https://www.lms.ac.uk/membership/how-
join) and the current fees (https://www.lms.ac.uk/sites/
lms.ac.uk/files/Membership/Subscription%20Rates%20
and%20Notes%202016-17%20updated.pdf).

Benefits of LMS membership include:
- Membership of a vibrant, national and international 

mathematics community.
- Networking opportunities.

- Opportunities to influence national policy.
- Full voting rights in society elections – your chance to 

shape the future of the LMS.
- A complimentary monthly newsletter – available in 

print and online.
- Regular members-only LMS e-Updates.
- Opportunities to attend events hosted by the society.
- Free online subscriptions to the Bulletin of the Lon-

don Mathematical Society, the Journal of the London 
Mathematical Society, the Proceedings of the London 
Mathematical Society and Nonlinearity (published 
jointly with the Institute of Physics).

- Members discount on other selected LMS publica-
tions: 25% discount on the LMS Lecture Note Series 
and 25% discount on LMS Student Texts.

- Use of the Verblunsky Members’ Room at De Morgan 
House, Russell Square, London.

LMS Immediate Past President Terry Lyons FRS (Oxford), EMS-
LMS Meeting Organiser Chris Parker (Birmingham) and EMS Presi-
dent Pavel Exner (Academy of Sciences of the Czech Republic) at the 
Joint LMS-EMS Anniversary Meeting, Birmingham, September 2015.

LMS President Simon Tavaré (Cambridge) welcomes new LMS mem-
bers at the 7ECM in Berlin, July 2016



Societies

EMS Newsletter March 2017 55

is a member, is also available at https://www.lms.ac.uk/
news-entry/05072016-1201/council-mathematical-scienc-
es-eu-referendum-statement.

Elizabeth Fisher
LMS Membership & Activities Officer

- Use of University College London Library, where 
the society’s library is housed. 

- The opportunity to sign the LMS Members’ Book, 
which dates back to 1865 when the society was founded 
and which contains signatures of members throughout 
the years, including Augustus De Morgan, Henri Poin-
caré, G. H. Hardy and Mary Cartwright.

Contact the LMS
We would be pleased to hear from you. For queries about 
membership, do email us at membership@lms.ac.uk and 
for regular news from the LMS, follow us on Twitter @
LondMathSoc. 

And what about Brexit?
Following the Brexit vote, the LMS would like to express 
its support and solidarity with the 31% of the UK math-
ematical academic community from other EU states. We 
would like to reassure our EU friends and colleagues, 
wherever they are based, that we are keen to maintain 
our close mathematical and professional relationships 
with the rest of Europe, however the Brexit process pro-
ceeds. The EU referendum statement from the Council 
for the Mathematical Sciences (CMS), of which the LMS 

EMS President Pavel Exner and LMS Vice-President John Greenlees 
at the UK Parliamentary Links Day with Science, June 2016.

Augusto C. Ponce (Université catholique de Louvain, Belgium)
Elliptic PDEs, Measures and Capacities (EMS Tracts in Mathematics Vol. 23)

ISBN 978-3-03719-140-8. 2016. 463 pages. Softcover. 17 x 24 cm. 58.00 Euro

Partial differential equations (PDEs) and geometric measure theory (GMT) are branches of analysis whose connections are usually not 
emphasized in introductory graduate courses. Yet, one cannot dissociate the notions of mass or electric charge, naturally described in 
terms of measures, from the physical potential they generate. Having such a principle in mind, this book illustrates the beautiful interplay 
between tools from PDEs and GMT in a simple and elegant way by investigating properties like existence and regularity of solutions of 
linear and nonlinear elliptic PDEs.
This book invites the reader to a trip through modern techniques in the frontier of elliptic PDEs and GMT, and is addressed to graduate 
students and researchers having some deep interest in analysis. Most of the chapters can be read independently, and only basic know-
ledge of measure theory, functional analysis and Sobolev spaces is required.

Yves Cornulier (Université Paris-Sud, Orsay, France) and Pierre de la Harpe (Université de Genève, Switzerland)
Metric Geometry of Locally Compact Groups (EMS Tracts in Mathematics Vol. 25)

ISBN 978-3-03719-166-8. 2013. 243 pages. Softcover. 17 x 24 cm. 62.00 Euro

The main aim of this book is the study of locally compact groups from a geometric perspective, with an emphasis on appropriate me-
trics that can be defined on them. The approach has been successful for finitely generated groups, and can favourably be extended to 
locally compact groups. Parts of the book address the coarse geometry of metric spaces, where ‘coarse’ refers to that part of geometry 
concerning properties that can be formulated in terms of large distances only. This point of view is instrumental in studying locally 
compact groups.
Basic results in the subject are exposed with complete proofs, others are stated with appropriate references. Most importantly, the 
development of the theory is illustrated by numerous examples, including matrix groups with entries in the the field of real or complex 
numbers, or other locally compact fields such as p-adic fields, isometry groups of various metric spaces, and, last but not least, discrete 
group themselves.
The book is aimed at graduate students and advanced undergraduate students, as well as mathematicians who wish some introduction 
to coarse geometry and locally compact groups.

Award winning monographs published by the European Mathematical Society Publishing House
Seminar for Applied Mathematics
ETH-Zentrum SEW A21, CH-8092 Zürich, Switzerland
orders@ems-ph.org / www.ems-ph.org
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ICMI Column
Jean-Luc Dorier (University of Geneva, Switzerland)

Call for nominations for the 2017 ICMI Felix Klein 
and Hans Freudenthal Awards
Since 2003, the International Commission on Mathe-
matical Instruction (ICMI) has awarded biannually two 
awards to recognise outstanding accomplishments in 
mathematics education research: the Felix Klein Medal 
and the Hans Freudenthal Medal (http://www.mathunion.
org/icmi/activities/awards/introduction/).

The Klein and Freudenthal Awards Committee con-
sists of a Chair (Professor Anna Sfard), who is nominat-
ed by the President of the ICMI, and five other members 
who remain anonymous until their terms have come to 
an end. The committee is currently entering the 2017 
cycle of selecting awardees and welcomes nominations 
for the two awards from individuals or groups of indi-
viduals in the mathematics education community.

Practical information can be seen at http://www.mat-
hunion.org/icmi/activities/awards/call-for-awards-2017/.

All nominations must be sent no later than 15 April 
2017. 

The USA–Finland Workshop
A few months ago, the U.S. National Commission on 
Mathematics Instruction in collaboration with the Uni-
versity of Helsinki held a Workshop on Supporting Math-
ematics Teachers and Teaching in the United States and 
Finland. The bilateral meeting of U.S. and Finnish math-
ematics educators was held on 1–2 August at the Univer-
sity of Helsinki in Helsinki, Finland, and was attended 
by 30 experts from both nations and approximately 70 
international experts virtually. The workshop was spon-
sored by Åbo Akademi University, Högskolestiftelsen i 
Österbotten, the National Science Foundation and Sven-
sk-Österbottniska samfundet.

Videos of the workshop sessions, presentations (in 
PDF format for download) and background readings 
are NOW available at http://sites.nationalacademies.org/
PGA/biso/ICMI/PGA_173314. 

The 69th CIEAEM Conference
The 69th Conference of the Commission Internationale 
pour l’Étude et l’Amélioration de l’Enseignement des 
Mathématiques (International Commission for the Study 
and Improvement of Mathematics Teaching) will take 
place on 15–19 July 2017 at the Freie Universität Berlin, 
Germany. The theme of the event is “Mathematisation: 
social process & didactic principle”. The Call for Papers 
was distributed in December 2016. For more details, see 
http://www.cieaem.org/.

ICME 14 and ICME 15
The next International Congress on Mathematical Edu-
cation ICME 14 will be held in Shanghai on 12–19 July 

2020 (see http://www.icme14.org/ and watch out for 
upcoming announcements and further information).

The ICMI is calling for intentions to bid for ICME 15 
(to be held in July 2024). Mathematics education and/or 
mathematics associations of potential host countries are 
invited to consider hosting the congress. 

Important dates:
- Preliminary declaration of intent to present a bid to 

act as host for ICME 15 should be received by the Sec-
retary-General of the ICMI (abraham.arcavi@weiz-
mann.ac.il) by 1 December 2017. 

- Firm bids should reach the Secretary-General by 1 No-
vember 2018 (in 12 hard copies).

For further details please see http://www.mathunion.org/
icmi/conferences/icme-international-congress-on-math-
ematical-education/icme-15-2024/.

Subscribing to the ICMI Newsletter
Most of the previous material was first published in the 
ICMI Newsletter.
There are two ways of subscribing to ICMI News:

1. Visit www.mathunion.org/index.php using a Web 
browser and go to the “Subscribe” button to sub-
scribe to ICMI News online.

2.  Send an email to icmi-news-request@mathunion.org 
with the Subject-line: “Subject: subscribe”.

All previous issues can be seen at http://www.mathunion.
org/pipermail/icmi-news.
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Book Reviews

Reviewer: Katrin Gelfert

The Newsletter thanks zbMATH and Karin Gelfert for the 
permission to republish this review, originally appeared as 
Zbl 1347.37001.

This book studies Gibbs measures (or states) for the geo-
desic flows of negatively curved Riemannian manifolds. 
Its framework allows, in particular, the removal of the 
compactness assumption on the manifold. The authors 
consider a Hölder continuous function (also called a 
potential) F defined on the unit tangent bundle T 1M 
and prove many results on the existence, uniqueness and 
finiteness of the Gibbs measure of F. This very compre-
hensive monograph not only includes detailed proofs 
and background material but also highlights possible 
further developments and open problems.

Gibbs measures have a thermodynamic origin and 
were introduced for hyperbolic dynamical systems 
by Ya. G. Sinai [Usp. Mat. Nauk 27, No. 4(166), 21–64 
(1972; Zbl 0246.28008)], R. Bowen [Equilibrium states 
and the ergodic theory of Anosov diffeomorphisms. 2nd 
revised ed. Berlin: Springer (2008; Zbl 1172.37001)] and 
D. Ruelle [Thermodynamic formalism. The mathemati-
cal structures of equilibrium statistical mechanics. 2nd 
edition. Cambridge: Cambridge University Press. (2004; 
Zbl 1062.82001)], revealing their intimate relation with 
symbolic dynamical systems over finite alphabets. In 
the case of the non-wandering set of the geodesic flow 
(and, in particular, when M is compact), this reduction 
to a symbolic system allows a detailed analysis of Gibbs 
(equilibrium) measures and the (weighted) distribution 
of periodic orbits. No such coding theory that does not 
lose geometric information is known in the non-compact 
case. The authors circumvent this difficulty by geometri-
cally constructing and studying Gibbs measures in this 
general case.

The guiding objects are three numerical invariants 
associated to the weighted dynamics. The critical expo-
nent is defined by means of the fundamental group G of 
M acting by isometries on the universal cover  

~
M of M 

and measures the exponential growth rate of the orbit 
points of the group weighted by the (lift to T1 ~

M of the) 
potential F. The Gurevich pressure is the exponential 

Frédéric Paulin, Mark Pollicott and 
Barbara Schapira

Equilibrium States in Negative 
Curvature

Astérisque, 2015
289 p.
ISBN 978-2-85629-818-3

growth rate of the values of the potential along periodic 
orbits of increasing period (the possibility of non-com-
pact manifolds requires a restriction to periodic orbits 
that meet a given compact set, though it is shown that the 
resulting rate does not depend on the choice of set). The 
topological pressure (in other contexts also called the 
variational pressure) is defined as the supremum of the 
measure-theoretic entropy plus the averaged potential 
with respect to the measure, where the supremum is tak-
en over all invariant Borel probability measures. A meas-
ure realising the supremum is called an equilibrium state 
for the potential. It is shown that all these quantities are 
well defined and, moreover, that all three of them agree 
(which extends [A. Manning, Ann. Math. (2) 110, 567–573 
(1979; Zbl 0426.58016)], [D. Ruelle, Bol. Soc. Bras. Mat. 
12, No. 1, 95–99 (1981; Zbl 0599.58038)] and [W. Parry, 
Lect. Notes Math. 1342, 617–625 (1988; Zbl 0667.58056)] 
in the case when M is compact). See Chapters 3, 4 and 6.

The book develops a Patterson–Sullivan theory for 
Gibbs measures (Chapter 3). Here, the Gibbs measure 
mF of F is defined through Mohsen’s extension [Ann. 
Sci. Éc. Norm. Supér. (4) 40, No. 2, 191–207 (2007; 
Zbl 1128.58008)] of the Patterson–Sullivan construc-
tion [S. Patterson, Acta Math. 136, 241–273 (1976; Zbl 
0336.30005) and D. Sullivan, Publ. Math., Inst. Hautes 
Étud. Sci. 50, 171–202 (1979; 0439.30034)]. In the case 
when M is compact, they recover, up to some scalar mul-
tiple, for F = 0, (the Patterson-Sullivan construction of) 
the Bowen–Margulis measure and, for F being the (un)
stable Jacobian (that is, the pointwise exponential growth 
rate of the Jacobian of the geodesic flow restricted to the 
strong (un)stable manifold), the Liouville measure. One 
fundamental result of the book is the Variational Prin-
ciple: in the case when the Gibbs measure of F is finite 
then this (properly normalised) measure is the unique 
equilibrium state for F; otherwise, there exists no equi-
librium state.

Under the hypotheses that the Gibbs measure mF is 
finite and mixing, Dirac masses on an orbit weighted by 
the potential are asymptotically equidistributed toward 
the product of Patterson densities on the sphere at infin-
ity  

~
M, which in turn provides counting asymptotics of 

orbit points. This type of result translates to results on 
the equidistribution of periodic orbits and on counting 
of periodic orbits (which, in the compact case, are due to 
R. Bowen [Am. J. Math. 94, 413–423 (1972; 0249.53033)]); 
see Chapter 9. The authors show the equivalence of the 
following properties:

- The Poincaré series of (G, F) diverges at the critical ex-
ponent.

- The conical limit set of G has positive Patterson meas-
ure.

- The action of G on  
~

M ×  
~

M is ergodic and conserva-
tive.
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Math. Fr., Nouv. Sér. 95, 96 p. (2003; Zbl 1056.37034)] and 
builds essentially on work by the last author [Propriétés 
ergodiques du feuilletage horosphérique d’une variété à 
courbure négative. Orléans: Univ. Orléans (PhD Thesis) 
(2003)].

Katrin Gelfert (gelfert@im.ufrj.br) is a pro-
fessor at the Department of Mathematics 
at the Federal University of Rio de Janeiro, 
Brazil, where she has been since 2010. She 
received her PhD in mathematics in 2001 
(TU Dresden, Germany). Her research in-
terests include dynamical systems theory 
and ergodic theory.

- The geodesic flow is ergodic and conservative with re-
spect to the Gibbs measure of F (Chapter 5).

Geometric criteria for the finiteness and the mixing prop-
erty of mF are also discussed (Chapter 8). One particular 
and very natural focus is on the case when F is the (un)
stable Jacobian (Chapter 7).

Further investigations concern the ergodic theory 
of the strong unstable foliation of T 1M (Chapter 10). 
Again, under the hypotheses that mF is finite and mix-
ing, there exists an (up to scalar multiple) unique family 
of transverse measures for the strong unstable foliation 
that is quasi-invariant for the holonomy map (taking into 
account the potential F), which enables unique ergodic-
ity results. This extends work by T. Roblin [Mém. Soc. 

it to multi-point cases. This chapter also defines almost 
grading for the type of algebras introduced earlier.

Chapter 4 deals with some technical but useful details 
of almost grading, like the proof of existence of an almost 
grading. For this, the author uses Riemann–Roch type 
arguments to show the existence of certain basis ele-
ments that give the almost-graded structure. In Chapter 
5, there are explicit expressions for the homogeneous 
basis elements. 

The following chapters deal with representations 
of algebras. Firstly, in Chapter 6, central extensions of 
Krichever–Novikov type algebras are studied: their rela-
tion to Lie algebra cohomology and their construction 
for geometrically induced Lie algebras. Central exten-
sions appear naturally in quantisations of classical field 
theories. Chapter 7 studies fermionic Fock space repre-
sentations or, equivalently, semi-infinite wedge represen-
tations of these algebras. One can also obtain a represen-
tation of a certain central extension of the full algebra 
of differential operators with the help of a regularisa-
tion procedure. As a technical tool, infinite dimensional 
matrix algebras are used. 

In Chapter 8, the author shows that the semi-infinite 
wedge form also comes with the representation of an 
algebra that has a Clifford algebra-like structure. The 
corresponding field theory system is called the b–c sys-
tem. In a mathematical context, the operators b and c 
are defined via anticommutators. In this chapter, arbi-
trary representation spaces of these field operators are 
considered and the energy momentum tensor is defined. 
Its “modes” define a representation of an almost-graded 
central extension of a vector field algebra. The 2-point 
and the multi-point situations are discussed. 

Chapter 9 contains the detailed study of higher genus 
current algebras and their central extensions. The almost-
graded central extensions are classified. These algebras 
correspond to gauge symmetries. As examples of repre-
sentations, the Verma modules and fermionic Fock space 
representations are introduced. Chapter 10 presents the 
Sugawara construction for arbitrary genus in the multi-
point situation. This construction relates gauge symmetry 

Martin Schlichenmaier

Krichever-Novikov Type  
Algebras.  
Theory and Applications

De Gruyter, 2014
xv, 360 p.
ISBN 978-3-11-027964-1

Reviewer: Alice Fialowski

The Newsletter thanks zbMATH and Alice Fialowski 
for the permission to republish this review, originally 
appeared as Zbl 1347.17001.

The goal of this book is to acquaint the reader with 
Krichever–Novikov type infinite dimensional Lie alge-
bras, to study their properties and to highlight the most 
important applications. 

The book is excellent for studying the topic. It has 14 
chapters, an extended bibliography and an index. The 
only prerequisites are the theories of Lie algebras and 
Riemann surfaces. To make the presentation self-con-
tained, Chapter 1 recalls the basics of Lie algebras, super-
algebras, Virasoro and current algebras, and Riemann 
surfaces of genus g ≥ 0. In Chapter 2, algebraic structures 
of specific meromorphic objects on a compact Riemann 
surface are studied. Such algebras are called Krichever–
Novikov type if they are holomorphic outside a fixed set 
of points. They form an important class of infinite dimen-
sional Lie algebras, which are far from being understood 
in general. Krichever–Novikov type algebras nicely com-
bine geometric and algebraic properties. 

These algebras are, in general, not graded, which is 
often useful for dealing with infinite dimensional algebras. 
Instead, as Krichever and Novikov observed, a weaker 
concept ‘almost grading’ can be introduced, which makes 
the necessary constructions possible. The definition is 
given in Chapter 3. The original almost-graded structure 
is given for the 2-point situation and the author extends 
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to conformal symmetry, which is realised by vector field 
algebras and their central extensions.

The last four chapters cover the main applications 
of the theory. Chapter 11 presents the author’s and O. 
Sheinman’s global operator approach to Wess–Zumino–
Novikov–Witten models and the Knizhnik–Zamolod-
chikov connection. Their approach uses global objects, 
which are Krichever–Novikov algebras and their repre-
sentations. A crucial point is that a certain subspace of 
the Krichever–Novikov algebra of vector fields can be 
identified with tangent directions on the moduli space of 
the geometric data. One can define conformal blocks and 
also, with the global Sugawara construction, the higher 
genus multi-point Knizhnik–Zamolodchikov connection. 
It should be mentioned that this global construction (so 
far) only works over an open dense subset of the moduli 
space. The approach of other authors provides a valid 
theory for the compactified moduli space.

Another application of Krichever–Novikov type 
algebras is related to deformations. This is the material of 
Chapter 12 and the results have been investigated jointly 
with A. Fialowski. It turns out that Witt/Virasoro alge-
bra deforms into elliptic vector field Krichever–Novikov 
algebras. These families are locally nontrivial, in spite 
of the fact that Witt/Virasoro algebra is formally rigid, 
because the second cohomology group with values in the 
adjoint module is trivial. The same is true of current alge-
bras. The point is that, in the infinite dimensional situa-

tion, the vanishing cohomology space does not imply that 
the algebra is rigid in the geometric sense. 

Chapter 13 introduces Lax operator algebras, which 
are a new class of global current type algebra. They are 
related to integrable systems. In these algebras, addition-
al singularities are allowed. It is possible for such Lax 
operator algebras to introduce almost grading and classi-
fy associated almost-graded central extensions. The con-
struction works so far for gl(n), sl(n), so(n), sp(2n) and 
G2. In the last chapter, there are further developments 
and related subjects, mainly noted through references. 

The book should convince the reader that, beside 
Krichever–Novikov type algebras being mathematically 
very interesting infinite dimensional geometric examples, 
they are important in conformal field theory, integrable 
systems, deformations and many other topics.

Alice Fialowski (fialowsk@ttk.pte.hu) is a 
professor at the Institute of Mathematics of 
the University of Pécs and Eötvös Loránd 
University Budapest, Hungary. She received 
her candidate’s degree at Moscow State 
University in 1983, under the supervision 
of A. A. Kirillov. She became a professor in 
the USA in 1994. Her research interests are 
Lie theory, cohomology and deformation 
theory, with applications in mathematical 
physics.
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Solved and Un-

solved Problems
Michael Th. Rassias (Institute of Mathematics, University

of Zürich, Switzerland)

God created the natural numbers. The rest is the work of man.

Leopold Kronecker (1823–1891)

The column Solved and Unsolved Problems will continue present-

ing six proposed problems and two open problems, as has been done

over recent years. The set of proposed and open problems in each is-

sue will be devoted to a specific field of mathematics. In every issue

featuring this column, solutions will be presented to the proposed

problems from the previous issue along with the names of solvers.

Possible progress toward the solution of any of the open problems

proposed in this column will also be featured. The goal of the Solved

and Unsolved Problems column is to provide a series of intriguing

proposed problems and open problems ranging over several areas

of mathematics. Effort will also be made to present problems of an

interdisciplinary flavour.

The column in this issue is devoted to number theory. As is well

known, number theory is one of the oldest and most vibrant areas of

pure mathematics. Over the last few decades, it has also found im-

portant applicability in various scientific domains such as cryptog-

raphy, coding theory, theoretical computer science and even nuclear

physics and quantum information theory.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.

171. Prove that every integer can be written in infinitely many

ways in the form

±12 ± 32 ± 52 ± · · · ± (2k + 1)2

for some choices of signs + and −.

(Dorin Andrica, Babesş Bolyai University, Cluj-Napoca,

Romania)

172. Show that, for every integer n ≥ 1 and every real number

a ≥ 1, one has

1

2n
≤ 1

na+1

n∑
k=1

ka − 1

a + 1
<

1

2n

(
1 +

1

2n

)a
.

(László Tóth, University of Pécs, Hungary)

173. Let cn(k) denote the Ramanujan sum, defined as the sum of

kth powers of the primitive nth roots of unity. Show that, for any

integers n, k, a with n ≥ 1,

∑
d|n

cd(k)an/d ≡ 0 (mod n).

(László Tóth, University of Pécs, Hungary)

174. Prove, disprove or conjecture:

1. There are infinitely many primes with at least one 7 in their

decimal expansion.

2. There are infinitely many primes where 7 occurs at least

2017 times in their decimal expansion.

3. There are infinitely many primes where at most one-quarter

of the digits in their decimal expansion are 7s.

4. There are infinitely many primes where at most half the

digits in their decimal expansion are 7s.

5. There are infinitely many primes where 7 does not occur in

their decimal expansion.

Note. Let p be a prime. Then, the decimal expansion of 1/p is

often called the “decimal expansion of p”.

(Steven J. Miller, Department of Mathematics and Statistics,

Williams College, Williamstown, MA, USA)

175. Show that there is an infinite sequence of primes p1 < p2 <

p3 < · · · such that p2 is formed by appending a number in front

of p1, p3 is formed by appending a number in front of p2 and so

on. For example, we could have p1 = 3, p2 = 13, p3 = 313,

p4 = 3313, p5 = 13313, . . . . Of course, you might have to add

more than one digit at a time. Find a bound on how many digits

you need to add to ensure it can be done.

(Steven J. Miller, Department of Mathematics and Statistics,

Williams College, Williamstown, MA, USA)

176. Consider all pairs of integers x, y with the property that

xy − 1 is divisible by the prime number 2017. If three such inte-

gral pairs lie on a straight line on the xy−plane, show that both the

vertical distance and the horizontal distance of at least two of such

three integral pairs are divisible by 2017.

(W. S. Cheung, Department of Mathematics, The University of

Hong Kong, Pokfulam, Hong Kong)

II Two new open problems (on ζ-functions) by Preda

Mihăilescu, Mathematisches Institut, Göttingen,

Germany

Let K be a number field, let I(K) denote the set of integral ideals of

K, including the trivial ideal 1 = O(K), let P(K) ⊂ I(K) denote the

principal ideals and let C(K) be the ideal class group of K. Denote by

NK = N the absolute norm NK/Q and let d = [K : Q]. The Dedekind

ζ-function of K is

ζK (s) =
∑
a∈I

1

|NKa|s
. (1)

If K = Q then

ζK (s) = ζ(s) =
∑
n≥1

1

ns

is the Riemann ζ-function. More precisely, the Dirichlet series above

define the respective ζ-functions on the half plane H1 = {s ∈ C :

ℜ(s) > 1}, on which the series are absolutely convergent. They have

a pole at s = 1 and it is proved by means of Mellin transforms that

they have an analytic continuation to C, with no other singularity

except for s = 1. The properties of the ζK (s) have been investigated

by a series of classical mathematicians, including Dirichlet, Weier-

straß and Hecke. We refer to Lang’s Algebraic Number Theory [La],

Solved  
and Unsolved 
Problems
Michael Th. Rassias (University of Zürich, Switzerland)
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Chapters V–VIII, for a review of the classical results on ζK (s). Let

K ∈ C(K) be a class.

The counting function J(K, t) for t ∈ R>1 plays an essential role

in this context. It counts the number of ideals a ∈ I(K)∩ K that have

norm less than t. This is done by choosing some fixed ideal b ∈ K−1

and counting the number of ideals (α) ∈ P(K) ∩ b that have norm

bounded by |N(α)| < t|N(b)|. It is an elementary fact (proved in [La])

that these ideals are in one-to-one correspondence to the ideals of K

with norm less than t. Let E = O×(K) be the global units; certainly,

for α ∈ O(K), the principal ideal (α) ∈ P(K) is generated by any

element of the orbit αE of α under the action of the units by multi-

plication. We are thus reduced to the problem of counting orbits of

numbers α ∈ b under the action of the units. Here enters the geom-

etry of numbers. For details of the classical estimates, we refer the

reader to any detailed deduction of the classical results in any book

on algebraic number theory that also treats analytical results – the

account of Lang is a possible example.

Briefly, the numbers of the field K have two representations in

Rr+1, with r = r1 + r2 − 1 the Dirichlet rank of the units. The first

representation is µ : K× → Rr+1 via x �→ (|σi(x)|δi )r+1
i=1 , with (σi)

r1

i=1

an enumeration of the real embeddings of K and (σ j)
r+1
j=r1+1 an enu-

meration of representatives of pairs of complex conjugate embed-

dings; the exponents are δi = 1 for real embeddings and δ j = 2

for complex embeddings. The map µ is continued by an additive one

λ : Rr+1 → Rr+1, defined by λ(µ(x))k = log(|µ(x)k |) for k = 1, 2, . . . , r

and λ(µ(x))r+1 = |N(x)|1/d . The fundamental classical result deduced

by investigating J(K, t) under these maps is

J(K, t) = ρKt + O(t1−1/d). (2)

The constant ρK is completely determined in terms of the data of

the field, which are ∆,R,w – the discriminant, the regulator and the

number of roots of unity of the field respectively. It is independent

of K and its value is, with these notations,

ρK =
2r+1πr2 R

w
√
∆
.

The order of magnitude of the error term is determined by a crude

argument involving the fact that the fundamental domain D(1) ⊂
Rr+1 used for estimating J(K, t) is Lipschitz-parametrisable. One can

rephrase the formula above by stating that there certainly exists some

constant γK(K), depending only on K and possibly also on the class

K, such that

|J(K, t) − ρKt| ≤ γK(K) · t1−1/d, for t > ∆.

It is important to choose a lower bound for t in order to obtain an

accurate order of magnitude but the bound ∆ chosen in our defini-

tion is not stringent. One may expect, for reasons discussed in the

Remarks below, that these constants are quite small. However, the

present methods of estimates, which have only recently been worked

out by van Order and Murty [MO] to the effect of obtaining explicit

bounds on γK(K), yield excessively large values for the bound. We

shall make the definition of our constant uniform to make it indepen-

dent of the class and then state our first problem, which is a conjec-

ture. We define the constant γK by

γK := inf
t>
√
∆,K∈C(K)

�
γ ∈ R>0 : |J(K, t) − ρKt| ≤ γ · t1−1/d

�
. (3)

We define the surface of the units as follows: for a fundamental sys-

tem of units ui ∈ E(K), we let S (�u) be the surface of the fundamental

parallelepiped of the lattice spanned by the vectors wi := λ(µ(ui)).

The surface S (E(K)) = inf�u S (�u), the infimum over all the funda-

mental systems of units of K.

177
*. We keep the notation introduced above, in particular the

notation in (2) and (3).

(i) Prove that γK = c1Ra1∆a2 + c2S (E)b1 · ∆b2 , with constants

c1, c2 > 0 and powers a1, a2, b1, b2 ∈ Q, which do not de-

pend on the extension degree d.

(ii) Prove that there is an additional constant 0 < C < 1 such

that

|J(K, t) − ρKt| > CγKt1−1/d

for all t > ∆.

We continue our investigation of the counting function J for arbi-

trary number fields K with a problem on the geometry of numbers.

For a given class K, one can consider the lattices La spanned by

some ideal a ∈ K as a Z-module in Minkowski space. We are

interested in determining how close such a lattice can come to or-

thonormal lattices, if we allow a to take all the ideals in K as its

value. The following definition will introduce quantitative mea-

sures for the “distance” of a lattice to an orthonormal one. Let

Λ ⊂ Rn be a full lattice, let (vi)
n
i=1 ⊂ Rn be a spanning set of

generators and let Av be the matrix with these vectors as columns.

Let the Euclidean norm of a matrix B = (bi, j)
n
i, j=1 be the norm

||B|| =
��

i, j b2
i, j and let BT denote the transpose. Then we define

the orthonormality defect of this base by

ωv(Λ) = inf
λ∈R+
||A · AT − λI||.

The orthonormality defect of the lattice is defined by ω(Λ) :=

infv ωv(Λ), the infimum being over all bases of Λ.

Now, let a class K ⊂ O(K) be fixed and b ∈ K−1 ∩ I(K) be any in-

tegral ideal. The image of b under the map µ is a lattice Lb ⊂ Rr+1.

Let sb = |N(b)|1/d and normalise the lattice to L′
b
= Lb/sb, a lattice

of volume one. The orthonormality defect of b is naturally given

by ω(b) = ω(L′
b
). For our counting function, the choice of b is

arbitrary. We may multiply b by field elements (not necessarily in-

tegral) and obtain ideals of the same class. This leads to defining

the orthonormality defect of the class K by

ω(K) = inf
b∈K−1∩I(K)

ω(b). (4)

The defect of the class K is thus defined by means of ideals in K−1.

The second problem concerns orthonormality defects of classes.

178
*.

(i) Find an optimal estimate for the orthonormality defect ω(K)

of a class K ∈ C(K).

(ii) Prove or disprove that the radii verify an ultrametric inequal-

ity

ω(K · K′) ≤ max(ω(K), ω(K′)) .

Remarks: The Riemann1 zeta function ζ(z) has a Laurent expan-

sion in a neighbourhood of its simple pole at z = 1:

ζ(z) =
1

z − 1
+

∞�
n=0

(−1)n

n!
γn(z − 1)n, (5)

where γn are the Stieltjes constants

γn = lim
n→∞


m�

k=1

lnn k

k
− lnn+1 m

m + 1

 , n = 0, 1, . . . (6)

Clearly, γ0 is the Euler-Mascheroni constant and note that all

the terms of the sequence (γn)n≥0 are Euler-Mascheroni type con-

stants. Here are the first decimals of γn for n = 0, 1, 2, 3, 4, 5.



Problem Corner

62 EMS Newsletter March 2017

γ0 = 0.5772156649 . . . , γ1 = −0.0728158454 . . . ,

γ2 = 0.0096903631 . . . , γ3 = 0.0020538344 . . . ,

γ4 = 0.0023253700 . . . , γ5 = 0.0007933238 . . . .

An elementary proof of the expansion (1) can be obtained by the

Euler–Maclaurin summation formula. In the paper [AT], formula

(1) and some asymptotic evaluations were obtained by using the

Laplace transform. The behaviour of these constants suggests that

the error term in (2) might be small, despite our present incapacity

of finding appropriate estimates – hence the relevance of these two

research problems.
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III Solutions

163. Find all positive integers m and n such that the integer

am,n = 2 . . . 2︸︷︷︸
m time

5 . . . 5︸︷︷︸
n time

is a perfect square.

(Dorin Andrica, Babeş-Bolyai University,

Cluj-Napoca, Romania)

Solution by the proposer. We have a1,1 = 25 = 52 and a2,1 = 225 =

152. In the first step, we will show that if am,n is a perfect square then

n = 1. We can write

am,n = 2(10m+n−1 + · · · + 10n) + 5(10n−1 + · · · + 1)

= 2 · 10n · 10m − 1

9
+ 5 · 10n − 1

9
.

Therefore, the relation am,n = x2 is equivalent to

2 · 10m+n + 3 · 10n − 5 = (3x)2. (7)

If n ≥ 2, it follows that 3x is divisible by 5, hence x = 5x1 for some

positive integer x1. Replacing in equation (7), we get the equation

2 · 2m+n · 5m+n−1 + 3 · 2n · 5n−1 − 1 = 5(3x1)2,

which is not possible.

Now, we will prove that for m ≥ 3 the integer am,1 = 2 . . . 2︸︷︷︸
m time

5 is

not a perfect square. For n = 1, equation (7) is equivalent to

2 · 10m+1 + 25 = (3x)2,

that is,

2 · 10m+1 = (3x − 5)(3x + 5).

It follows that 3x − 5 = 2a · 5b and 3x + 5 = 2m+2−a · 5m+1−b, where a

and b are non-negative integers, hence

2m+2−a · 5m+1−b − 2a · 5b = 10, (8)

that is,

2m+1−a · 5m−b − 2a−1 · 5b−1 = 1. (9)

We consider the following cases for equation (9).

Case 1: a = 1. We obtain 2m · 5m+1−b − 5b−1 = 1. If b = 1 then it

follows that 5m = 2, which is not possible for m ≥ 1.

If b = m, we obtain 2m−5m−1 = 1, which is not possible because

5m−1 > 2m for m ≥ 1.

Case 2: a = m+1. It follows that 5m−b−2m ·5b−1 = 1. If b = 1, we get

5m−1 − 2m = 1, which is not possible because 5m−1 > 2m+1 > 2m + 1

when m ≥ 1.

If b = m, we obtain 2m+2 · 5m = 0, which is not possible.

In conclusion, the only solutions are m = 1, n = 1 and m =

2, n = 1. �

Also solved by Panagiotis T. Krasopoulos (Athens, Greece), Hans

J. Munkholm, Ellen S. Munkholm (University of Southern Denmark,

Odense, Denmark), F. Plastria (BUTO-Vrije Universiteit Brussel),

José Hernández Santiago (Morelia, Michoacan, Mexico)

164. Prove that every power of 2015 can be written in the form
x2+y2

x−y
, with x and y positive integers.

(Dorin Andrica, Babeş-Bolyai University,

Cluj-Napoca, Romania)

Solution by the proposer. We have 2015 = 5 · 13 · 31. Because 31

is congruent to 3 modulo 4, it follows that 31 divides both x and y,

etc. We get x = 31n x1, y = 31ny1 and replace in the equation to ob-

tain x2
1 + y2

1 = 5n · 13n(x1 − y1). But 5 · 13 = 65 = 82 + 12, hence

5n · 13n = (82 + 12)n = a2 + b2, where we can assume that a > b .

The equation is equivalent to (x1 + y1)2 + (x1 − y1)2 − 2 · 5n · 13n(x1 −
y1) + (5n · 13n)2 = (5n · 13n)2, that is,

(x1 + y1)2 + (5n · 13n − x1 + y1)2 = (5n · 13n)2.

The last equation is Pythagorean and we select solutions as

5n · 13n = a2 + b2, x1 + y1 = a2 − b2, 5n · 13n − x1 + y1 = 2ab ,

where a and b are positive integers such that

5n · 13n = (82 + 12)n = a2 + b2 and a > b .

It follows that

x1 = a2 − ab = a(a − b), y1 = ab − b2 = b(a − b) .

Finally, it follows that the equation is solvable and has solution

(x, y) = (31na(a − b), 31nb(a − b)) .

For example, for n = 1, we have a = 8, b = 1, hence we get the

solution to the reduced equation modulo 31, (x1, y1) = (8(8 − 1),

1(8 − 1)) = (56, 7). Finally, it follows that the equation is solvable

and has solution

(x, y) = (31 · 56, 31 · 7) = (1736, 217) .

�

Also solved by Mihály Bencze (Brasov, Romania), Panagiotis T. Kra-

sopoulos (Athens, Greece), Hans J. Munkholm, Ellen S. Munkholm

(University of Southern Denmark, Odense, Denmark), F. Plastria

(BUTO-Vrije Universiteit Brussel)
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165. Find the smallest positive integer k such that, for any n ≥ k,

every degree n polynomial f (x) over Z with leading coefficient 1

must be irreducible over Z if | f (x)| = 1 has not less than
[ n

2

]
+ 1

distinct integral roots.

(Wing-Sum Cheung, The University of Hong Kong,

Pokfulam, Hong Kong)

Solution by the proposer. Suppose f (x) is a degree n polynomial with

leading coefficient 1 such that | f (x)| = 1 has at least
[ n

2

]
+ 1 distinct

integral roots. Assume that f (x) is reducible, say, f (x) = g(x)h(x),

with deg g ≤ deg h. Clearly we have deg g ≤ [ n
2

]
.

Suppose | f (xi)| = 1 for i = 1, . . . ,m with m ≥ [ n

2

]
+ 1, where xi ∈ Z

are distinct. We have g(xi) = ±1 for all i = 1, . . . ,m. Without loss

of generality, assume that g(xi) = 1 for 1 ≤ i ≤ ℓ, g(xj) = −1 for

ℓ + 1 ≤ j ≤ m, and ℓ ≥ m

2
.

Then,

g(x) − 1 = (x − x1)(x − x2) · · · (x − xℓ)P(x)

for some polynomial P(x). Observe that

ℓ ≤ deg g ≤
[
n

2

]
<
[
n

2

]
+ 1 ≤ m .

Since

g(xj) = −1 ∀ ℓ + 1 ≤ j ≤ m ,

we have

(xj − x1)(xj − x2) · · · (xj − xℓ)P(xj) = −2 ∀ ℓ + 1 ≤ j ≤ m ,

and so

(xj − x1)(xj − x2) · · · (xj − xℓ)|2 ∀ ℓ + 1 ≤ j ≤ m . (∗)

If ℓ ≥ 4, (xj − x1)(xj − x2) · · · (xj − xℓ) is a product of 4 or more

distinct non-zero integers and so its absolute value is ≥ 4 and cannot

divide 2. Hence ℓ ≤ 3.

If ℓ = 3, (*) reduces to

(xj − x1)(xj − x2)(xj − x3)|2 .

Observe that there can be at most one a ∈ Z satisfying

(a − x1)(a − x2)(a − x3)|2 .

Thus, we must have m = 3 or 4.

If ℓ ≤ 2, since ℓ ≥ m

2
, we also have m ≤ 4.

Since m ≥ [ n

2

]
+ 1, we have n ≤ 7.

This shows that, for any n > 7, if | f (x)| = 1 has not less than[ n
2

]
+ 1 distinct integral roots then f (x) is irreducible.

Finally, observe that k = 7. In fact, for n = 7, the function f (x)

defined by

h(x) = 1 + x(x − 3)(x − 2)(x − 1)

g(x) = 1 + x(x − 3)(x − 1)

f (x) = g(x)h(x)

is reducible, whereas | f (x)| = 1 when x = 0, 1, 2, 3. So k cannot be

made smaller. �

Also solved by Mihály Bencze (Brasov, Romania), F. Plastria

(BUTO-Vrije Universiteit Brussel)

166. Let f : R → R be monotonically increasing ( f not neces-

sarily continuous). If f (0) > 0 and f (100) < 100, show that there

exists x ∈ R such that f (x) = x.

(Wing-Sum Cheung, The University of Hong Kong,

Pokfulam, Hong Kong)

Solution by the proposer. Define A := {x ∈ [0, 100] : f (x) ≥ x}.
Since 0 ∈ A, A � φ, let a := sup A. Clearly, a < 100. For any ε > 0,

there exists x ∈ A such that a − ε < x ≤ a. Hence,

a − f (a) ≤ a − f (x) < x + ε − f (x) < ε .

As ε > 0 is arbitrary, we have a ≤ f (a).

Suppose f (a)− a = δ > 0. Then, for any x ∈ (a, a+ δ)∩ [0, 100],

x does not belong to A and, by the monotonicity of f , we have

f (x) ≥ f (a) = a + δ > f (a + δ) ≥ f (x) ,

which is absurd. Thus f (a) = a. �

Also solved by A. M. Encinas (Universitat Politècnica de Catalunya,

Spain), Laurent Moret-Bailly (IRMAR, Université de Rennes 1,

France), F. Plastria (BUTO-Vrije Universiteit Brussel, Belgium).

167. Show that, for any a, b > 0, we have

1

2

(
1 − min {a, b}

max {a, b}

)2
≤ b − a

a
− ln b + ln a ≤ 1

2

(
max {a, b}
min {a, b} − 1

)2
.

(10)

(Silvestru Sever Dragomir, Victoria University,

Melbourne City, Australia)

Solution by the proposer. Integrating by parts, we have

∫ b

a

b − t

t2
dt =

b − a

a
− ln b + ln a (11)

for any a, b > 0.

If b > a then

1

2

(b − a)2

a2
≥
∫ b

a

b − t

t2
dt ≥ 1

2

(b − a)2

b2
. (12)

If a > b then

∫ b

a

b − t

t2
dt = −

∫ a

b

b − t

t2
dt =

∫ a

b

t − b

t2
dt

and
1

2

(b − a)2

b2
≥
∫ a

b

t − b

t2
dt ≥ 1

2

(b − a)2

a2
. (13)

Therefore, by (12) and (13), we have for any a, b > 0 that

∫ b

a

b − t

t2
dt ≥ 1

2

(b − a)2

max2 {a, b} =
1

2

(
min {a, b}
max {a, b} − 1

)2

and

∫ b

a

b − t

t2
dt ≤ 1

2

(b − a)2

min2 {a, b}
=

1

2

(
max {a, b}
min {a, b} − 1

)2
.

By the representation (11), we then get the desired result (10). �

Also solved by Panagiotis T. Krasopoulos (Athens, Greece), John

N. Lillington (Wareham, UK), F. Plastria (BUTO-Vrije Universiteit

Brussel)
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168. Let f : I → C be an n-time differentiable function on the

interior I̊ of the interval I, and f (n), with n ≥ 1, be locally abso-

lutely continuous on I̊. Show that, for each distinct x, a, b ∈ I̊ and

for any λ ∈ R\ {0, 1}, we have the representation

f (x) = (1 − λ) f (a) + λ f (b)

+

n∑
k=1

1

k!

[
(1 − λ) f (k) (a) (x − a)k + (−1)k λ f (k) (b) (b − x)k

]

+ S n,λ (x, a, b) , (14)

where the remainder S n,λ (x, a, b) is given by

S n,λ (x, a, b)

:=
1

n!

[
(1 − λ)(x − a)n+1

∫ 1

0

f (n+1)((1 − s)a + sx
)

(1 − s)n ds

+ (−1)n+1 λ (b − x)n+1

∫ 1

0

f (n+1)((1 − s)x + sb
)
snds

]
. (15)

(Silvestru Sever Dragomir, Victoria University,

Melbourne City, Australia)

Solution by the proposer. Using Taylor’s representation with the in-

tegral remainder, we can write the following two identities:

f (x) =

n∑
k=0

1

k!
f (k) (a) (x − a)k

+
1

n!

∫ x

a

f (n+1) (t) (x − t)n dt (16)

and

f (x) =

n∑
k=0

(−1)k

k!
f (k) (b) (b − x)k

+
(−1)n+1

n!

∫ b

x

f (n+1) (t) (t − x)n dt

(17)

for any x, a, b ∈ I̊.

For any integrable function h on an interval and any distinct

numbers c, d in that interval, we have, by the change of variable

t = (1 − s) c + sd, s ∈ [0, 1] , that

∫ d

c

h (t) dt = (d − c)

∫ 1

0

h ((1 − s) c + sd) ds.

Therefore,
∫ x

a

f (n+1) (t) (x − t)n dt

= (x − a)

∫ 1

0

f (n+1) ((1 − s) a + sx) (x − (1 − s) a − sx)n ds

= (x − a)n+1

∫ 1

0

f (n+1) ((1 − s) a + sx) (1 − s)n ds

and

∫ b

x

f (n+1) (t) (t − x)n dt

= (b − x)

∫ 1

0

f (n+1) ((1 − s) x + sb) ((1 − s) x + sb − x)n ds

= (b − x)n+1

∫ 1

0

f (n+1) ((1 − s) x + sb) snds.

The identities (16) and (17) can then be written as

f (x) =

n∑
k=0

1

k!
f (k) (a) (x − a)k

+
1

n!
(x − a)n+1

∫ 1

0

f (n+1) ((1 − s) a + sx) (1 − s)n ds (18)

and

f (x) =

n∑
k=0

(−1)k

k!
f (k) (b) (b − x)k

+ (−1)n+1 (b − x)n+1

n!

∫ 1

0

f (n+1) ((1 − s) x + sb) snds. (19)

Now, if we multiply (18) by (1− λ) and (19) by λ and add the result-

ing equalities, a simple calculation yields the desired identity (14)

with the reminder from (15). �

Also solved by Mihály Bencze (Brasov, Romania), Panagiotis T. Kra-

sopoulos (Athens, Greece), John N. Lillington (Wareham, UK)

Remark 1. Note that Problems 155 and 159 were also solved by John

N. Lillington (Poundbury, Dorchester, UK)

Remark 2. K. P. Hart noted that the answer to problem 157 can

be found in the article by Freudenthal and Hurewicz from 1936,

https://eudml.org/doc/212824.

We wait to receive your solutions to the proposed problems and

ideas on the open problems. Send your solutions both by ordinary

mail to Michael Th. Rassias, Institute of Mathematics, University of

Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, and

by email to michail.rassias@math.uzh.ch.

We also solicit your new problems with their solutions for the next

“Solved and Unsolved Problems” column, which will be devoted to

Discrete Mathematics.
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FROM FRENET TO CARTAN:  
THE METHOD OF MOVING FRAMES
Jeanne N. Clelland, University of Colorado
An introduction to the method of moving frames as developed by Cartan, at a level suitable for beginning graduate 
students familiar with the geometry of curves and surfaces in Euclidean space. The main focus is on the use of this 
method to compute local geometric invariants for curves and surfaces in various 3-dimensional homogeneous 
spaces, including Euclidean, Minkowski, equi-affine, and projective spaces. A special feature of this book is the 
inclusion of detailed guidance regarding the use of the computer algebra system Maple™ to perform many of the 
computations involved in the exercises.

Graduate Studies in Mathematics, Vol. 178
Apr 2017 414pp 9781470429522 Hardback €85.00 

Free delivery worldwide at eurospanbookstore.com/ams
AMS is distributed by Eurospan|group

GAME THEORY, ALIVE
Anna R. Karlin, University of Washington & Yuval Peres, Microsoft Research 
Presents a rigorous introduction to the mathematics of game theory without losing sight of the joy of the subject. 
This is done by focusing on theoretical highlights and by presenting exciting connections of game theory to other 
fields such as computer science, economics, social choice, biology, and learning theory. Both classical topics, such 
as zero-sum games, and modern topics, such as sponsored search auctions, are covered. Along the way, beautiful 
mathematical tools used in game theory are introduced, including convexity, fixed-point theorems, and probabilistic 
arguments.
Apr 2017 396pp 9781470419820 Hardback €87.00 

IT’S ABOUT TIME
Elementary Mathematical Aspects of Relativity
Roger Cooke, University of Vermont 
This book has three main goals: to explore a selection of topics from the early period of the theory of relativity, 
focusing on particular aspects that are interesting or unusual; to provide an exposition of the differential geometry 
needed to understand these topics; and to reflect on the historical development of the subject and its significance for 
our understanding of what reality is. The book also takes note of historical prefigurations of relativity, such as Euler’s 
1744 result that a particle moving on a surface and subject to no tangential acceleration will move along a geodesic, 
and the work of Lorentz and Poincaré on space-time coordinate transformations between two observers in motion at 
constant relative velocity.
Apr 2017 410pp Hardback 9781470434830 €87.00

PUSHING LIMITS
From West Point to Berkeley & Beyond
Ted Hill, Georgia Tech 
Challenges the myth that mathematicians lead dull and ascetic lives. It recounts the unique odyssey of noted 
mathematician Ted Hill, who overcame military hurdles at West Point, Army Ranger School and the Vietnam War, and 
survived many civilian escapades. From ultra-conservative West Point in the ‘60s to ultra-radical Berkeley in the ‘70s, 
and ultimately to genteel Georgia Tech in the ‘80s, this is the tale of an academic career as noteworthy for its offbeat 
adventures as for its teaching and research accomplishments. It brings to life the struggles and risks underlying 
mathematical research, the unparalleled thrill of making scientific breakthroughs, and the joy of sharing those 
discoveries around the world. Hill’s book is packed with energy, humor, and suspense, both physical and intellectual.
Apr 2017 334pp Hardback 9781470435844 €53.00 
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Walter Schachermayer (Universität Wien, Austria)
Asymptotic Theory of Transaction Costs (Zürich Lectures in Advanced Mathematics)

ISBN 978-3-03719-173-6. 2017. 160 pages. Hardcover. 17 x 24 cm. 34.00 Euro

A classical topic in Mathematical Finance is the theory of portfolio optimization. Robert Merton’s work from the early seventies had 
enormous impact on academic research as well as on the paradigms guiding practitioners.
One of the ramifications of this topic is the analysis of (small) proportional transaction costs, such as a Tobin tax. The lecture notes pre-
sent some striking recent results of the asymptotic dependence of the relevant quantities when transaction costs tend to zero.
An appealing feature of the consideration of transaction costs is that it allows for the first time to reconcile the no arbitrage paradigm 
with the use of non-semimartingale models, such as fractional Brownian motion. This leads to the culminating theorem of the present 
lectures which roughly reads as follows: for a fractional Brownian motion stock price model we always find a shadow price process for 
given transaction costs. This process is a semimartingale and can therefore be dealt with using the usual machinery of mathematical 
finance.

Hans Triebel (University of Jena, Germany)
PDE Models for Chemotaxis and Hydrodynamics in Supercritical Function Spaces (EMS Series of Lectures in Mathematics)

ISBN 978-3-03719-171-2. 2017. 138 pages. Hardcover. 17 x 24 cm. 32.00 Euro

This book deals with PDE models for chemotaxis (the movement of biological cells or organisms in response of chemical gradients) 
and hydrodynamics (viscous, homogeneous, and incompressible fluid filling the entire space). The underlying Keller–Segel equations 
(chemotaxis), Navier–Stokes equations (hydrodynamics), and their numerous modifications and combinations are treated in the context 
of inhomogeneous spaces of Besov–Sobolev type paying special attention to mapping properties of related nonlinearities. Further 
models are considered, including (deterministic) Fokker–Planck equations and chemotaxis Navier–Stokes equations.
These notes are addressed to graduate students and mathematicians having a working knowledge of basic elements of the theory of 
function spaces, especially of Besov-Sobolev type and interested in mathematical biology and physics.

Vincent Guedj and Ahmed Zeriahi (both Université Paul Sabatier, Toulouse, France)
Degenerate Complex Monge–Ampère Equations (EMS Tracts in Mathematics, Vol. 26)

ISBN 978-3-03719-167-5. 2017. 496 pages. Hardcover. 17 x 24 cm. 88.00 Euro

Complex Monge–Ampère equations have been one of the most powerful tools in Kähler geometry since Aubin and Yau’s classical 
works, culminating in Yau’s solution to the Calabi conjecture. A notable application is the construction of Kähler-Einstein metrics on 
some compact Kähler manifolds. In recent years degenerate complex Monge–Ampère equations have been intensively studied, requir-
ing more advanced tools.
The main goal of this book is to give a self-contained presentation of the recent developments of pluripotential theory on compact 
Kähler manifolds and its application to Kähler–Einstein metrics on mildly singular varieties. After reviewing basic properties of plurisub-
harmonic functions, Bedford–Taylor’s local theory of complex Monge–Ampère measures is developed. In order to solve degenerate 
complex Monge–Ampère equations on compact Kähler manifolds, fine properties of quasi-plurisubharmonic functions are explored, 
classes of finite energies defined and various maximum principles established. After proving Yau’s celebrated theorem as well as its 
recent generalizations, the results are then used to solve the (singular) Calabi conjecture and to construct (singular) Kähler–Einstein 
metrics on some varieties with mild singularities.
The book is accessible to advanced students and researchers of complex analysis and differential geometry.
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Absolute Arithmetic and F1-Geometry
Koen Thas (University of Gent, Belgium), Editor

ISBN 978-3-03719-157-6. 2016. 404 pages. Hardcover. 17 x 24 cm. 68.00 Euro

It has been known for some time that geometries over finite fields, their automorphism groups and certain counting formulae involving 
these geometries have interesting guises when one lets the size of the field go to 1. On the other hand, the nonexistent field with one 
element, F1, presents itself as a ghost candidate for an absolute basis in Algebraic Geometry to perform the Deninger–Manin program, 
which aims at solving the classical Riemann Hypothesis.
This book, which is the first of its kind in the F1-world, covers several areas in F1-theory, and is divided into four main parts – Combi-
natorial Theory, Homological Algebra, Algebraic Geometry and Absolute Arithmetic. Topics treated include the combinatorial theory and 
geometry behind F1, categorical foundations, the blend of different scheme theories over F1 which are presently available, motives and 
zeta functions, the Habiro topology, Witt vectors and total positivity, moduli operads, and at the end, even some arithmetic.
Each chapter is carefully written by experts, and besides elaborating on known results, brand new results, open problems and conjectures 
are also met along the way. The diversity of the contents, together with the mystery surrounding the field with one element, should attract 
any mathematician, regardless of speciality.
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