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locals was no worse than usual, several invited speak-
ers changed their minds over the year and some even 
requested that the EMS boycott Turkey.

I fully respect an unwillingness to travel to a place 
where one does not feel secure. But let us think twice 
before we announce this reluctance as an academic 
boycott. It might also be good to remember that certain 
governments can be alike in their degree of authoritari-
anism, violence and funding of wars but very different 
in terms of their respect for academia and academicians 
or their support for mathematics.

A lot has been said about the controversy of aca-
demic boycotts but let us remember what Noam Chom-
sky, prominent supporter of the Palestinian cause, said 
about the calls for a boycott of Israel. He supported the 
“boycott and divestment of firms that are carrying out 
operations in the occupied territories” but he stated that 
a general boycott of Israel would be “a gift to Israeli 
hardliners and their American supporters”.

So, mathematicians of the world … unite! We have 
a lot to lose! 

Professor Betül Tanbay
Member of the EMS Executive Committee

Editorial: If Mathematicians Unite…
Betül Tanbay (Bogazici University, Istanbul, Turkey), Member of the EMS Executive Committee

IMU is not quite the abbreviation of the title – but 
bringing mathematicians together is certainly the mis-
sion of institutions such as the IMU and the EMS. The 
first objective in the IMU statutes is “to promote inter-
national cooperation in mathematics” and the EMS 
similarly aims “to foster the interaction between math-
ematicians of different countries”.

Globalisation may have brought a hope of general 
peace but today we see its failure in the sense of a world 
without borders. Yet there are two “success” stories to 
highlight at opposite ends of the spectrum, one fortu-
nate and one extremely unfortunate: mathematics and 
terrorism. Thanks to technology, we are able to be pre-
sent in Oslo and have a research partner in Cape Town. 
But also due to technology, we can be blown up on the 
metro in London or during a football game in Istanbul. 
How can we save mathematics and delete terrorism 
from the planet? Today we have to push the limits of 
our thinking processes and our imagination. We could 
not have carried out any mathematics had we not used 
our ‘imagination’. So, aren’t ‘we’ well-equipped? 

In August 2017, the IMAGINARY exhibition (htt-
ps://imaginary.org) will open in Van, one of the east-
ernmost cities of the westernmost country of the East 
(Turkey) and the cradle of many civilisations, including 
some of the first Christians (Armenia), as well the Urar-
tus, Byzance, Kurdish and Turkish cultures. The occa-
sion is the second Caucasian Mathematics Conference 
(CMC, http://euro-math-soc.eu/cmc/), which has been 
organised under the auspices of the EMS by the math-
ematical societies of the Caucasian countries and their 
neighbours: Armenia, Azerbaijan, Georgia, Iran, Russia 
and Turkey. When the steering committee met during 
the very successful first CMC in Tbilisi in 2014, after a 
lot of “math and dance”, it seemed very natural to all of 
us to have the second CMC in Turkey (in 2016). How-
ever, the unfortunate developments of that Summer 
made us postpone CMCII. Although the situation for 
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In honour of the famous Italian mathematical physicist 
Tullio Levi-Civita,* in 2010, the International Research 
Center for Mathematics & Mechanics of Complex Sys-
tems (M&MoCS) established the international prize 
“Tullio Levi-Civita”. The prize recognises the high qual-
ity and undisputed originality of the scientific research 
of up to two distinguished Italian or foreign scientists in 
the field of mechanics and/or mathematics. Every win-
ner must have contributed to the development of at least 
one young researcher and is expected to hold a series of 
lectures and join the research activities of the centre dur-
ing a short stay. In 2016, the prize was awarded to Tudor 
Ratiu (École Polytechnique Fédérale de Lausanne 
EPFL, Switzerland) and Mauro Carfora (Università deg-
li Studi di Pavia, Italy). Past winners of the prize include 
Lucio Russo (2010, Università degli Studi di Roma Tor 
Vergata), Pierre Seppecher (2010, Université de Toulon 
et du Var), Jean Jacques Marigo (2011, Ecole Polytech-
nique), Eric Carlen (2011, Rutgers University), Félix 
Darve (2012, Institut National Polytechnique de Gre-
noble), Alexander Seyranian (2012, Institute of Mechan-
ics, Moscow State Lomonosov University), Kazou Aoki 
(2013, Kyoto University), David Steigmann (2013, Uni-

International Prize “Tullio Levi-Civita” 
for the Mathematical and Mechanical 
Sciences

versity of California, Berkeley), Marcelo Epstein (2014, 
University of Calgary), Errico Presutti (2014, Gran Sasso 
Science Institute), Graeme W. Milton (2015, University of 
Utah) and Andrea Braides (2015, Università degli Studi di 
Roma Tor Vergata). 

Moreover, every year, during the Levi Civita Lec-
tures, the recipients of the International Levi Civita Prize 
and up to two young promising researchers are invited 
to give a talk. Finally, there is no need for applications 
since every scientist working in mechanics and mathe-
matics will be considered for the prize by the scientific 
committee. Any further enquiries can be sent to memocs.
cisterna@gmail.com and more information can be found 
on the website http://memocs.univaq.it.

M&MoCS
DICEAA
Università degli Studi dell’Aquila
Via Giovanni Gronchi 18 
67100 L’Aquila, Italy
Tel. 06.90.28.67.84 Fax 0773.1871016
Website: http://memocs.univaq.it
E-mail: memocs.cisterna@gmail.com

* Tullio Levi Civita (1873–1941) was born into an Italian Jewish 
family and enrolled in 1890 at the University of Padua. He 
graduated in 1892 and his final dissertation, which was super-
vised by Ricci Curbastro, dealt with absolute invariants and 
tensor calculus. Levi-Civita was appointed to the Chair of Ra-
tional Mechanics at Padua in 1898. After the end of World War 
I, the University of Rome made strenuous efforts to attract 
many leading scientists and hence become an internationally 
recognised first-tier institution. Levi-Civita was always very 
international in his outlook and the ability of Rome to attract 
top quality students from abroad must have been a reason for 
him choosing to move there. In 1918, he was appointed to the 
Chair of Higher Analysis at Rome and, two years later, he was 
appointed to the Chair of Mechanics. Levi-Civita had a great 
command of pure mathematics, with a particularly strong ge-
ometric intuition, which he exploited in addressing a variety 

of problems in applied mathematics. He is best known for his 
work on absolute differential calculus, with its applications to 
the theory of Einstein’s relativity, and on the calculus of ten-
sors including covariant differentiation, continuing the work 
of Christoffel. Levi-Civita was also interested in the theory of 
stability and qualitative analysis of differential equations (be-
cause of his interest in geometry and geometric models) and 
classical and celestial mechanics. Indeed, he published many 
papers dealing with analytic dynamics. He examined special 
cases of the three-body problem and, near the end of his ca-
reer, he became interested in the n-body problem. In the field 
of systems of partial differential equations, he extended the 
theory of Cauchy and Kovalevskaya. In addition, Levi-Civita 
made a major contribution to hydrodynamics, proving the ex-
istence of periodic finite-amplitude irrotational surface waves 
in a mono-dimensional fluid flow.

The Olga Taussky-Todd Lecture is held every four 
years at the International Congress on Industrial and 

ICIAM Olga Taussky-Todd Lecture 
2019 – Call for Nominations

Applied Mathematics (ICIAM). This honour is con-
ferred on a woman who has made outstanding contri-
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Nominations should be made electronically through the 
website https://iciamprizes.org/. The deadline for nomi-
nations is 30 September 2017.

Please contact president@iciam.org if you have any 
questions regarding the nomination procedure.

Olga Taussky-Todd Committee for 2019:
Liliana Borcea, Chair (University of Michigan)
Raymond Chan (The Chinese University of Hong Kong)
Ingrid Daubechies (Duke University)
Nick Higham (University of Manchester)
Sofia C. Ohlede (University College London)
Anna Karin Tornberg (KTH, Stockholm)

ICIAM, the International Council for Industrial and 
Applied Mathematics, is the world organisation for 
applied and industrial mathematics.

Its members are mathematical societies based in 
more than 30 countries.

For more information, see the council’s webpage at 
http://www.iciam.org/.

Maria J. Esteban, ICIAM President

butions in applied mathematics and/or scientific com-
putation. 

The lecture is named in tribute to the memory of Olga 
Taussky-Todd, whose scientific legacy is in both theoreti-
cal and applied mathematics and whose work exempli-
fies the qualities to be recognised.

The Officers and Board of the ICIAM now call for 
nominations for the Olga Taussky-Todd Lecture, to be 
given at the ICIAM 2019 congress, which will take place 
in Valencia (Spain), 15–19 July 2019.

A nomination consists of:

- Full name and address of person nominated.
- Web homepage if applicable.
- Justification for nomination (on at most two pages, 

stating the nominator’s reason for considering the can-
didate to be deserving of this honour, including an ex-
planation of the scientific and practical influence of the 
candidate’s work and publications).

- 2–3 letters of support from experts in the field (not 
mandatory), each of them on a maximum of two pages.

- CV of the nominee.
- Name and contact details of the proposer.

Call for the 

Ferran Sunyer i 
Balaguer Prize 2018 

The prize will be awarded for a mathe-
matical monograph of an expository 
nature presenting the latest develop-
ments in an active area of research in 
mathematics.

The prize consists of 15,000 Euros 
and the winning monograph will be 
published in Springer Basel’s Birkhäu-
ser series “Progress in Mathematics”.

DEADLINE FOR SUBMISSION: 
1 December 2017
http://ffsb.iec.cat

The Ferran Sunyer i Balaguer Prize 2017 winners were:

Antoine Chambert-Loir (Université Paris-Diderot 
Paris 7), Johannes Nicaise (Imperial College London), 
and Julien Sebag (Université Rennes 1), for the work

Motivic Integration

Abstract: Over the last 12 years, since the introduction by 
Kontsevich in 1995, Motivic integration has been strong-
ly developed by Denef and Loeser, to whom this mono-
graph is dedicated (Nicaise and Sebaq were students of 
them). This theory evolved into a major branch of alge-
braic and arithmetic geometry. It has triggered develop-
ments in singularity theory, theory of motives, nonarchi-
medean and tropical geometry. The monograph under 
consideration is the first comprehensive exposition of 
this theory, going much beyond the two volumes of col-
lected papers published by the LMS in 2011. In particu-
lar, most of the material in Sections 2 (Arc Schemes) and 
3–4 (Greenberg Schemes) are new. Section 6 is a nice 
summary of applications of motivic integration.
This monograph will be published by Springer Basel in 
their Birkhäuser series Progress in Mathematics. 

The Ferran Sunyer 
i Balaguer Prize 
2017

http://ffsb.iec.cat
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Motivated by the theory of turbulence in fluids, the physicist and 
chemist Lars Onsager conjectured in 1949 that weak solutions to the 
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Andrew Wiles’ Marvellous Proof*
Henri Darmon (McGill University, CICMA and CRM, Montreal, Canada)

Fermat famously claimed to have discovered “a truly marvel-
lous proof” of his Last Theorem, which the margin of his copy
of Diophantus’ Arithmetica was too narrow to contain. While
this proof (if it ever existed) is lost to posterity, Andrew Wiles’
marvellous proof has been public for over two decades and
has now earned him the Abel prize. According to the prize ci-
tation, Wiles merits this recognition “for his stunning proof of
Fermat’s Last Theorem by way of the modularity conjecture
for semistable elliptic curves, opening a new era in number
theory”.

Few can remain insensitive to the allure of Fermat’s Last
Theorem, a riddle with roots in the mathematics of ancient
Greece, simple enough to be understood and appreciated by
a novice (like the 10-year-old Andrew Wiles browsing the
shelves of his local public library), yet eluding the concerted
efforts of the most brilliant minds for well over three cen-
turies. It became, over its long history, the object of lu-
crative awards like the Wolfskehl prize and, more impor-
tantly, it motivated a cascade of fundamental discoveries: Fer-
mat’s method of infinite descent, Kummer’s theory of ideals,
the ABC conjecture, Frey’s approach to ternary diophantine
equations, Serre’s conjecture on mod p Galois representa-
tions, . . .

Even without its seemingly serendipitous connection to
Fermat’s Last Theorem, Wiles’ modularity theorem is a fun-
damental statement about elliptic curves (as evidenced, for
instance, by the key role it plays in the proof of Theorem 2
of Karl Rubin’s contribution to the issue of the Notices of
the AMS mentioned above). It is also a centrepiece of the
“Langlands programme”, the imposing, ambitious edifice of
results and conjectures that has come to dominate the number
theorist’s view of the world. This programme has been de-
scribed as a “grand unified theory” of mathematics. Taking a
Norwegian perspective, it connects the objects that occur in
the works of Niels Hendrik Abel, such as elliptic curves and
their associated abelian integrals and Galois representations,
with (frequently infinite-dimensional) linear representations
of the continuous transformation groups, the study of which
was pioneered by Sophus Lie. This report focuses on the role
of Wiles’ Theorem and its “marvellous proof” in the Lang-
lands programme, in order to justify the closing phrase in the
prize citation: how Wiles’ proof has opened “a new era in
number theory” and continues to have a profound and lasting
impact on mathematics.

Our “beginner’s tour” of the Langlands programme will
only give a partial and undoubtedly biased glimpse of the full
panorama, reflecting the author’s shortcomings as well as the
inherent limitations of a treatment aimed at a general reader-

* This report is a very slightly expanded transcript of the Abel prize lecture
delivered by the author on 25 May 2016 at the University of Oslo. It is
published with the permission of the Notices of the AMS: reprinted from
Volume 64, Issue 3, March 2017.

ship. We will motivate the Langlands programme by starting
with a discussion of diophantine equations: for the purposes
of this exposition, they are equations of the form

X : P(x1, . . . , xn+1) = 0, (1)

where P is a polynomial in the variables x1, . . . , xn+1 with in-
teger (or sometimes rational) coefficients. One can examine
the set, denoted X(F), of solutions of (1) with coordinates
in any ring F. As we shall see, the subject draws much of
its fascination from the deep and subtle ways in which the
behaviours of different solution sets can resonate with each
other, even if the sets X(Z) or X(Q) of integer and rational
solutions are foremost in our minds. Examples of diophan-
tine equations include Fermat’s equation xd + yd = zd and
the Brahmagupta-Pell equation x2 − Dy2 = 1 with D > 0, as
well as elliptic curve equations of the form y2 = x3 + ax + b,
in which a and b are rational parameters, the solutions (x, y)
with rational coordinates being the object of interest in the
latter case.

It can be instructive to approach a diophantine equation
by first studying its solutions over simpler rings, such as the
complete fields of real or complex numbers. The set

Z/nZ := {0, 1, . . . , n − 1} (2)

of remainders after division by an integer n ≥ 2, equipped
with its natural laws of addition, subtraction and multiplica-
tion, is another particularly simple collection of numbers, of
finite cardinality. If n = p is prime, this ring is even a field: it
comes equipped with an operation of division by non-zero el-
ements, just like the more familiar collections of rational, real
and complex numbers. The fact that Fp := Z/pZ is a field is
an algebraic characterisation of the primes that forms the ba-
sis for most known efficient primality tests and factorisation
algorithms. One of the great contributions of Evariste Galois,
in addition to the eponymous theory that plays such a crucial
role in Wiles’ work, is his discovery of a field of cardinality
pr for any prime power pr. This field, denoted Fpr and some-
times referred to as the Galois field with pr elements, is even
unique up to isomorphism.

For a diophantine equation X as in (1), the most basic
invariant of the set

X(Fpr ) :=
{
(x1, . . . , xn+1) ∈ Fn+1

pr

such that P(x1, . . . , xn+1) = 0
}

(3)

of solutions over Fpr is of course its cardinality

Npr := #X(Fpr ). (4)

What patterns (if any) are satisfied by the sequence

Np,Np2 ,Np3 , . . . ,Npr , . . .? (5)

Andrew Wiles’ Marvellous Proof *
Henri Darmon (McGill University, Montreal, Canada)
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This sequence can be packaged into a generating series like

∞∑
r=1

Npr T r or
∞∑

r=1

Npr

r
T r. (6)

For technical reasons, it is best to consider the exponential of
the latter:

ζp(X; T ) := exp


∞∑

r=1

Npr

r
T r

 . (7)

This power series in T is known as the zeta function of X
over Fp. It has integer coefficients and enjoys the following
remarkable properties:

1. It is a rational function in T :

ζp(X; T ) =
Q(T )
R(T )

, (8)

where Q(T ) and R(T ) are polynomials in T whose degrees
(for all but finitely many p) are independent of p and de-
termined by the shape – the complex topology – of the set
X(C) of complex solutions.

2. The reciprocal roots of Q(T ) and R(T ) are complex num-
bers of absolute value pi/2 with i an integer in the interval
0 ≤ i ≤ 2n.

The first statement – the rationality of the zeta function, which
was proven by Bernard Dwork in the early 1960s – is a key
part of the Weil conjectures, whose formulation in the 1940s
unleashed a revolution in arithmetic geometry, driving the
development of étale cohomology by Grothendieck and his
school. The second statement, which asserts that the complex
function ζp(X; p−s) has its roots on the real lines �(s) = i/2
with i as above, is known as the Riemann hypothesis for the
zeta functions of diophantine equations over finite fields. It
was proven by Pierre Deligne in 1974 and is one of the ma-
jor achievements for which he was awarded the Abel prize
in 2013.

That the asymptotic behaviour of Np can lead to deep in-
sights into the behaviour of the associated diophantine equa-
tions is one of the key ideas behind the Birch and Swinnerton-
Dyer conjecture. Understanding the patterns satisfied by the
functions

p �→ Np and p �→ ζp(X; T ) (9)

as the prime p varies will also serve as our motivating ques-
tion for the Langlands programme.

It turns out to be fruitful to package the zeta functions over
all the finite fields into a single function of a complex variable
s, by taking the infinite product

ζ(X; s) =
∏

p

ζp(X; p−s) (10)

as p ranges over all the prime numbers. In the case of the sim-
plest non-trivial diophantine equation x = 0, whose solution
set over Fpr consists of a single point, one has Npr = 1 for all
p and therefore

ζp(x = 0; T ) = exp


∑
r≥1

T r

r

 = (1 − T )−1. (11)

It follows that

ζ(x = 0; s) =
∏

p

(
1 − 1

ps

)−1

(12)

=
∏

p

(
1 +

1
ps +

1
p2s +

1
p3s + · · ·

)
(13)

=

∞∑
n=1

1
ns = ζ(s). (14)

The zeta function of even the humblest diophantine equa-
tion is thus a central object of mathematics: the celebrated
Riemann zeta function, which is tied to some of the deepest
questions concerning the distribution of prime numbers. In
his great memoir of 1860, Riemann proved that, even though
(13) and (14) only converge absolutely on the right half-plane
�(s) > 1, the function ζ(s) extends to a meromorphic func-
tion of s ∈ C (with a single pole at s = 1) and possesses an
elegant functional equation relating its values at s and 1 − s.
The zeta functions of linear equations X in n+ 1 variables are
just shifts of the Riemann zeta function, since Npr is equal to
pnr, and therefore ζ(X; s) = ζ(s − n).

Moving on to equations of degree two, the general quadratic
equation in one variable is of the form ax2 + bx + c = 0 and
its behaviour is governed by its discriminant

∆ := b2 − 4ac. (15)

This purely algebraic fact remains true over the finite fields
and, for primes p � 2a∆, one has

Np =

{
0 if ∆ is a non-square modulo p,
2 if ∆ is a square modulo p. (16)

A priori, the criterion for whether Np = 2 or 0 — whether the
integer ∆ is or is not a quadratic residue modulo p — seems
like a subtle condition on the prime p. To get a better feeling
for this condition, consider the example of the equation x2 −
x − 1, for which ∆ = 5. Calculating whether 5 is a square or
not modulo p for the first few primes p ≤ 101 leads to the
following list

Np =



2 for p = 11, 19, 29, 31, 41, 59, 61, 71, 79,
89, 101, . . .

0 for p = 2, 3, 7, 13, 17, 23, 37, 43, 47, 53,
67, 73, 83, . . .

(17)

A clear pattern emerges from this experiment: whether Np =

0 or 2 seems to depend only on the rightmost digit of p, i.e. on
what the remainder of p is modulo 10. One is led to surmise
that

Np =

{
2 if p ≡ 1, 4 (mod 5),
0 if p ≡ 2, 3 (mod 5), (18)

a formula that represents a dramatic improvement over (16),
allowing a much more efficient calculation of Np for exam-
ple. The guess in (18) is in fact a consequence of Gauss’ cel-
ebrated law of quadratic reciprocity:

Theorem (Quadratic reciprocity) For any equation ax2 +

bx + c, with ∆ := b2 − 4ac, the value of the function p �→ Np
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(for p � a∆) depends only on the residue class of p modulo
4∆, and hence is periodic with period length dividing 4|∆|.

The repeating pattern satisfied by the Np’s as p varies
greatly facilitates the manipulation of the zeta functions of
quadratic equations. For example, the zeta function of X :
x2 − x − 1 = 0 is equal to

ζ(X; s) = ζ(s)×
{(

1− 1
2s −

1
3s +

1
4s

)
+
( 1
6s −

1
7s −

1
8s +

1
9s

)

+
( 1
11s −

1
12s −

1
13s +

1
14s

)
+ · · ·

}
. (19)

The series that occurs on the right side is a prototypical ex-
ample of a Dirichlet L-series. These L-series, which are the
key actors in the proof of Dirichlet’s theorem on the infini-
tude of primes in arithmetic progressions, enjoy many of the
same analytic properties as the Riemann zeta function: an an-
alytic continuation to the entire complex plane and a func-
tional equation relating their values at s and 1 − s. They are
also expected to satisfy a Riemann hypothesis that generalises
Riemann’s original statement and is just as deep and elusive.

It is a (not completely trivial) fact that the zeta function of
the general quadratic equation in n variables

n∑
i, j=1

ai jxix j +

n∑
i=1

bixi + c = 0 (20)

involves the same basic constituents – Dirichlet series – as in
the one variable case. This means that quadratic diophantine
equations in any number of variables are well understood, at
least as far as their zeta functions are concerned.

The plot thickens when equations of higher degree are
considered. Consider, for instance, the cubic equation x3−x−1
of discriminant ∆ = −23. For all p � 23, this cubic equation
has no multiple roots over Fpr and therefore Np = 0, 1 or 3. A
simple expression for Np in this case is given by the following
theorem of Hecke:

Theorem (Hecke). The following holds for all primes p � 23:
1. If p is not a square modulo 23 then Np = 1.
2. If p is a square modulo 23 then

Np =

{
0 if p = 2a2 + ab + 3b2,
3 if p = a2 + ab + 6b2,

(21)

for some a, b ∈ Z.

Hecke’s theorem implies that

ζ(x3 − x − 1; s) = ζ(s) ×
∞∑

n=1

ann−s, (22)

where the generating series

F(q) :=
∞∑

n=1

anqn = q− q2 − q3 + q6 + q8 − q13 − q16 + q23 + · · ·

(23)
is given by the explicit formula

F(q) =
1
2


∑

a,b∈Z
qa2+ab+6b2 − q2a2+ab+3b2

 . (24)

The function f (z) = F(e2πiz) that arises by setting q = e2πiz in
(24) is a prototypical example of a modular form: namely, it
satisfies the transformation rule

f
(

az + b
cz + d

)
= (cz+ d) f (z),

{
a, b, c, d ∈ Z, ad − bc = 1,
23|c,

(
a

23

)
= 1,

(25)
under so-called modular substitutions of the form z �→ az+b

cz+d .
This property follows from the Poisson summation formula
applied to the expression in (24). Thanks to (25), the zeta
function of X can be manipulated with the same ease as
the zeta functions of Riemann and Dirichlet. Indeed, Hecke
showed that the L-series

∑∞
n=1 ann−s attached to a modular

form
∑∞

n=1 ane2πinz possess very similar analytic properties,
notably an analytic continuation and a Riemann-style func-
tional equation.

The generating series F(q) can also be expressed as an
infinite product:

1
2


∑

a,b∈Z
qa2+ab+6b2 − q2a2+ab+3b2

 = q
∞∏

n=1

(1 − qn)(1 − q23n).

(26)
The first few terms of this power series identity can readily be
verified numerically but its proof is highly non-obvious and
indirect. It exploits the circumstance that the space of holo-
morphic functions of z satisfying the transformation rule (25)
together with suitable growth properties is a one-dimensional
complex vector space that also contains the infinite product
above. Indeed, the latter is equal to η(q)η(q23), where

η(q) = q1/24
∞∏

n=1

(1 − qn) (27)

is the Dedekind eta function whose logarithmic derivative (af-
ter viewing η as a function of z through the change of variables
q = e2πiz) is given by

η′(z)
η(z)

= −πi
(
−1
12
+ 2

∞∑
n=1

(∑
d|n

d
)
e2πinz

)
(28)

=
i

4π

∞∑
m=−∞

∞∑
n=−∞

1
(mz + n)2 , (29)

where the term attached to (m, n) = (0, 0) is excluded from
the last sum. The Dedekind η-function is also connected to
the generating series for the partition function p(n) describing
the number of ways in which n can be expressed as a sum of
positive integers via the identity

η−1(q) = q−1/24
∞∑

n=0

p(n)qn, (30)

which plays a starring role alongside Jeremy Irons and Dev
Patel in a recent film about the life of Srinivasa Ramanujan.

Commenting on the “unreasonable effectiveness and ubiq-
uity of modular forms”, Martin Eichler once wrote: “There
are five elementary arithmetical operations: addition, subtrac-
tion, multiplication, division, . . . and modular forms.” Equa-
tions (26), (29) and (30) are just a few of the many wondrous
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identities that abound, like exotic strains of fragrant wild or-
chids, in what Roger Godement has called the “garden of
modular delights”.

The example above, and many others of a similar type,
are described in Jean-Pierre Serre’s delightful monograph [2],
touching on themes that were also covered in Serre’s lecture
at the inaugural Abel Prize ceremony in 2003.

Hecke was able to establish that all cubic polynomials in
one variable are modular, i.e., the coefficients of their zeta
functions obey patterns just like those of (24) and (25). Wiles’
achievement was to extend this result to a large class of cubic
diophantine equations in two variables over the rational num-
bers: the elliptic curve equations, which can be brought into
the form

y2 = x3 + ax + b (31)

after a suitable change of variables and which are non-
singular, a condition equivalent to the assertion that the dis-
criminant ∆ := −16(4a3 + 27b2) is non-zero.

To illustrate Wiles’ theorem with a concrete example, con-
sider the equation

E : y2 = x3 − x, (32)

of discriminant ∆ = 64. After setting

ζ(E; s) = ζ(s − 1) × (a1 + a22−s + a33−s + a44−s + · · · )−1
,

(33)
the associated generating series satisfies the following identi-
ties reminiscent of (24) and (26),

F(q) =
∑

anqn

= q − 2q5 − 3q9 + 6q13 + 2q17 − q25 + · · · (34)

=
∑
a,b

a · q(a2+b2) (35)

= q
∞∏

n=1

(1 − q4n)2(1 − q8n)2, (36)

where the sum in (35) runs over the (a, b) ∈ Z2 for which
the Gaussian integer a + bi is congruent to 1 modulo (1 + i)3.
(This identity follows from Deuring’s study of zeta functions
of elliptic curves with complex multiplication, and may even
have been known earlier.) Once again, the holomorphic func-
tion f (z) := F(e2πiz) is a modular form, satisfying the slightly
different transformation rule

f
(

az + b
cz + d

)
= (cz+d)2 f (z),


a, b, c, d ∈ Z, ad − bc = 1,

32|c.
(37)

Note the exponent 2 that appears in this formula. Because of
it, the function f (z) is said to be a modular form of weight
2 and level 32. The modular forms of (25) attached to cubic
equations in one variable are of weight 1 but otherwise the
parallel of (35) and (36) with (24) and (26) is striking. The
original conjecture of Shimura-Taniyama and Weil asserts the
same pattern for all elliptic curves:

Conjecture (Shimura, Taniyama, Weil). Let E be any ellip-
tic curve. Then,

ζ(E; s) = ζ(s − 1) ×

∞∑

n=1

ann−s


−1

, (38)

where fE(z) :=
∑

ane2πinz is a modular form of weight 2.

The conjecture was actually more precise and predicted
that the level of fE – i.e., the integer that appears in the trans-
formation property for fE , as the integers 23 and 32 do in (25)
and (37) respectively – is equal to the arithmetic conductor
of E. This conductor, which is divisible only by primes for
which the equation defining E becomes singular modulo p, is
a measure of the arithmetic complexity of E and can be cal-
culated explicitly from an equation for E by an algorithm of
Tate. An elliptic curve is said to be semistable if its arithmetic
conductor is squarefree. This class of elliptic curves includes
those of the form

y2 = x(x − a)(x − b), (39)

with gcd(a, b) = 1 and 16|b. The most famous elliptic curves
in this class are those that ultimately do not exist: the “Frey
curves” y2 = x(x− ap)(x+ bp) arising from putative solutions
to Fermat’s equation ap + bp = cp, whose non-existence had
previously been established in a landmark article of Kenneth
Ribet, under the assumption of their modularity. It is the proof
of the Shimura-Taniyama-Weil conjecture for semistable el-
liptic curves that earned Andrew Wiles the Abel prize:

Theorem (Wiles). Let E be a semistable elliptic curve. Then
E satisfies the Shimura-Taniyama-Weil conjecture.

The semistability assumption in Wiles’ theorem was later
removed by Christophe Breuil, Brian Conrad, Fred Diamond
and Richard Taylor around 1999. (See, for instance, the ac-
count that appeared in the Notices at the time [1].)

As a prelude to describing some of the important ideas in
its proof, one must first try to explain why Wiles’ theorem oc-
cupies such a central position in mathematics. The Langlands
programme places it in a larger context by offering a vast gen-
eralisation of what it means for a diophantine equation to be
“associated to a modular form”. The key is to view modu-
lar forms attached to cubic equations or to elliptic curves,
as in (24) or (34), as vectors in certain irreducible infinite-
dimensional representations of the locally compact topologi-
cal group

GL2(AQ) =
∏

p

′
GL2(Qp) ×GL2(R), (40)

where
∏′

p denotes a restricted direct product over all the
prime numbers, consisting of elements (γp)p for which the p-
th component γp belongs to the maximal compact subgroup
GL2(Zp) for all but finitely many p. The shift in emphasis
from modular forms to the so-called automorphic represen-
tations that they span is decisive. Langlands showed how to
attach an L-function to any irreducible automorphic represen-
tation of G(AQ) for an arbitrary reductive algebraic group G,
of which the matrix groups GLn and more general algebraic
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groups of Lie type are prototypical examples. This greatly en-
larges the notion of what it means to be “modular”: a diophan-
tine equation is now said to have this property if its zeta func-
tion can be expressed in terms of the Langlands L-functions
attached to automorphic representations. One of the funda-
mental goals in the Langlands programme is to establish fur-
ther cases of the following conjecture:

Conjecture. All diophantine equations are modular in the
above sense.

This conjecture can be viewed as a far-reaching gen-
eralisation of quadratic reciprocity and underlies the non-
abelian reciprocity laws that are at the heart of Andrew Wiles’
achievement.

Before Wiles’ proof, the following general classes of dio-
phantine equations were known to be modular:
• Quadratic equations, by Gauss’ law of quadratic reci-

procity.
• Cubic equations in one variable, by the work of Hecke and

Maass.
• Quartic equations in one variable.

This last case deserves further comment, since it has not
been discussed previously and plays a primordial role in
Wiles’ proof. The modularity of quartic equations follows
from the seminal work of Langlands and Tunnell. While it
is beyond the scope of this survey to describe their methods,
it must be emphasised that Langlands and Tunnell make es-
sential use of the solvability by radicals of the general quartic
equation, whose underlying symmetry group is contained in
the permutation group S 4 on 4 letters. Solvable extensions
are obtained from a succession of abelian extensions, which
fall within the purview of class field theory developed in the
19th and first half of the 20th centuries. On the other hand,
the modularity of the general equation of degree > 4 in one
variable, which cannot be solved by radicals, seemed to lie
well beyond the scope of the techniques that were available in
the “pre-Wiles era”. The reader who perseveres to the end of
this essay will be given a glimpse of how our knowledge of
the modularity of the general quintic equation has progressed
dramatically in the wake of Wiles’ breakthrough.

Prior to Wiles’ proof, modularity was also not known for
any interesting general class of equations (of degree > 2, say)
in more than one variable; in particular, it had only been veri-
fied for finitely many elliptic curves overQ up to isomorphism
over Q̄ (including the elliptic curves over Q with complex
multiplication, of which the elliptic curve of (31) is an ex-
ample). Wiles’ modularity theorem confirmed the Langlands
conjectures in the important test case of elliptic curves, which
may seem to be (and, in fact, are) very special diophantine
equations but which have provided a fertile terrain for arith-
metic investigations, both in theory and in applications (e.g.,
cryptography and coding theory).

Returning to the main theme of this report, Wiles’ proof
is also important for having introduced a revolutionary new
approach, which has opened the floodgates for many further
breakthroughs in the Langlands programme.

To expand on this point, we need to present another of
the dramatis personae in Wiles’ proof: Galois representa-
tions. Let GQ = Gal(Q̄/Q) be the absolute Galois group of
Q, namely, the automorphism group of the field of all alge-

braic numbers. It is a profinite group, endowed with a natural
topology for which the subgroups Gal(Q̄/L) with L ranging
over the finite extensions ofQ form a basis of open subgroups.
Following the original point of view taken by Galois himself,
the group GQ acts naturally as permutations on the roots of
polynomials with rational coefficients. Given a finite set S of
primes, one may consider only the monic polynomials with
integer coefficients whose discriminant is divisible only by
primes � ∈ S (eventually after a change of variables). The
topological group GQ operates on the roots of such polynomi-
als through a quotient, denoted GQ,S : the automorphism group
of the maximal algebraic extension unramified outside of S ,
which can be regarded as the symmetry group of all the zero-
dimensional varieties over Q having “non-singular reduction
outside of S ”.

In addition to the permutation representations of GQ that
were so essential in Galois’ original formulation of his the-
ory, it has become important to study the (continuous) linear
representations

� : GQ,S −→ GLn(L) (41)

of this Galois group, where L is a complete field, such as the
fields R or C of real or complex numbers, the finite field F�r
equipped with the discrete topology, or a finite extension L ⊂
Q̄� of the field Q� of �-adic numbers.

Galois representations were an important theme in the
work of Abel and remain central in modern times. Many illus-
trious mathematicians in the 20th century have contributed to
their study, including three former Abel prize winners: Jean-
Pierre Serre, John Tate and Pierre Deligne. Working on Galois
representations might seem to be a prerequisite for an alge-
braic number theorist to receive the Abel prize!

Like diophantine equations, Galois representations also
give rise to analogous zeta functions. More precisely, the
group GQ,S contains, for each prime p � S , a distinguished el-
ement called the Frobenius element at p, denoted σp. Strictly
speaking, this element is only well defined up to conjugacy in
GQ,S but this is enough to make the arithmetic sequence

Npr (�) := Trace(�(σr
p)) (42)

well defined. The zeta function ζ(�; s) packages the informa-
tion from this sequence in exactly the same way as in the def-
inition of ζ(X; s).

For example, if X is attached to a polynomial P of degree
d in one variable, the action of GQ,S on the roots of P gives
rise to a d-dimensional permutation representation

�X : GQ,S −→ GLd(Q) (43)

and ζ(X, s) = ζ(�X, s). This connection goes far deeper, ex-
tending to diophantine equations in n+1 variables for general
n ≥ 0. The glorious insight at the origin of the Weil con-
jectures is that ζ(X; s) can be expressed in terms of the zeta
functions of Galois representations arising in the étale coho-
mology of X, a cohomology theory with �-adic coefficients
that associates to X a collection

{
Hi

et(X/Q̄,Q�)
}
0≤i≤2n
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of finite-dimensional Q�-vector spaces endowed with a con-
tinuous linear action of GQ,S . (Here, S is the set of primes q
consisting of � and the primes for which the equation of X
becomes singular after being reduced modulo q.) These rep-
resentations generalise the representation �X of (43), insofar
as the latter is realised by the action of GQ,S on H0

et(XQ̄,Q�)
after extending the coefficients from Q to Q�.

Theorem (Weil, Grothendieck, . . . ). If X is a diophantine
equation having good reduction outside of S , there exist Ga-
lois representations �1 and �2 of GQ,S for which

ζ(X; s) = ζ(�1; s)/ζ(�2; s). (44)

The representations �1 and �2 occur in ⊕Hi
et(X/Q̄,Q�),

where the direct sum ranges over the odd and even values of
0 ≤ i ≤ 2n for �1 and �2 respectively. More canonically, there
are always irreducible representations �1, . . . , �t of GQ,s and
integers d1, . . . dt such that

ζ(X; s) =
t∏

i=1

ζ(�i; s)di , (45)

arising from the decompositions of the (semisimplification of)
the Hi

et(XQ̄,Q�) into a sum of irreducible representations. The
ζ(�i, s) can be viewed as the “atomic constituents” of ζ(X, s),
and reveal much of the “hidden structure” in the underlying
equation. The decomposition of ζ(X; s) into a product of dif-
ferent ζ(�i; s) is not unlike the decomposition of a wave func-
tion into its simple harmonics.

A Galois representation is said to be modular if its zeta
function can be expressed in terms of generating series at-
tached to modular forms and automorphic representations,
and is said to be geometric if it can be realised in an étale
cohomology group of a diophantine equation as above. The
“main conjecture of the Langlands programme” can now be
amended as follows:

Conjecture. All geometric Galois representations of GQ,S are
modular.

Given a Galois representation

� : GQ,S −→ GLn(Z�) (46)

with �-adic coefficients, one may consider the resulting mod
� representation

�̄ : GQ,S −→ GLn(F�). (47)

The passage from � to �̄ amounts to replacing the quantities
Npr (�) ∈ Z� as pr ranges over all the prime powers with their
mod � reduction. Such a passage would seem rather contrived
for the sequences Npr (X) – why study the solution counts of a
diophantine equation over different finite fields, taken modulo
�? – if one did not know a priori that these counts arise from
�-adic Galois representations with coefficients in Z�. There is
a corresponding notion of what it means for �̄ to be modular,
namely, that the data of Npr (�̄) agrees, very loosely speaking,
with the mod � reduction of similar data arising from an auto-
morphic representation. We can now state Wiles’ celebrated

modularity lifting theorem, which lies at the heart of his strat-
egy:

Wiles’ modularity lifting theorem. Let

� : GQ,S −→ GL2(Z�) (48)

be an irreducible geometric Galois representation satisfying
a few technical conditions (involving, for the most part, the
restriction of � to the subgroup GQ� = Gal(Q̄�/Q�) of GQ,S ).
If �̄ is modular and irreducible then so is �.

This stunning result was completely new at the time:
nothing remotely like it had ever been proved before! Since
then, “modularity lifting theorems” have proliferated and
their study, in ever more general and delicate settings, has
spawned an industry and led to a plethora of fundamental ad-
vances in the Langlands programme.

Let us first explain how Wiles himself parlays his orig-
inal modularity lifting theorem into a proof of the Shimura-
Taniyama-Weil conjecture for semistable elliptic curves. Given
such an elliptic curve E, consider the groups

E[3n] :=
{
P ∈ E(Q̄) : 3nP = 0

}
, T3(E) := lim

←
E[3n],

(49)
the inverse limit being taken relative to the multiplication-by-
3 maps. The groups E[3n] and T3(E) are free modules of rank
2 over (Z/3nZ) and Z3 respectively and are endowed with con-
tinuous linear actions of GQ,S , where S is a set of primes con-
taining 3 and the primes that divide the conductor of E. One
obtains the associated Galois representations:

�̄E,3 : GQ,S −→ Aut(E[3]) � GL2(F3),
�E,3 : GQ,S −→ GL2(Z3).

(50)

The theorem of Langlands and Tunnell about the modularity
of the general quartic equation leads to the conclusion that
�̄E,3 is modular. This rests on the happy circumstance that

GL2(F3)/〈±1〉 � S 4 (51)

and, hence, that E[3] has essentially the same symmetry
group as the general quartic equation! The isomorphism in
(51) can be realised by considering the action of GL2(F3) on
the set {0, 1, 2,∞} of points on the projective line over F3.

If E is semistable, Wiles is able to check that both �E,3 and
�̄E,3 satisfy the conditions necessary to apply the modularity
lifting theorem, at least when �̄E,3 is irreducible. It then fol-
lows that �E,3 is modular and therefore so is E, since ζ(E; s)
and ζ(�E,3; s) are the same.

Note the key role played by the result of Langlands-
Tunnell in the above strategy. It is a dramatic illustration of
the unity and historical continuity of mathematics that the so-
lution in radicals of the general quartic equation, one of the
great feats of the algebraists of the Italian renaissance, is pre-
cisely what allowed Langlands, Tunnell and Wiles to prove
their modularity results more than five centuries later.

Having established the modularity of all semistable ellip-
tic curves E for which �̄E,3 is irreducible, Wiles disposes of
the others by applying his lifting theorem to the prime � = 5
instead of � = 3. The Galois representation �̄E,5 is always ir-
reducible in this setting because no elliptic curve over Q can
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have a rational subgroup of order 15. Nonetheless, the ap-
proach of exploiting � = 5 seems hopeless at first glance be-
cause the Galois representation E[5] is not known to be mod-
ular a priori, for much the same reason that the general quintic
equation cannot be solved by radicals. (Indeed, the symmetry
group SL2(F5) is a double cover of the alternating group A5 on
5 letters and thus closely related to the symmetry group un-
derlying the general quintic.) To establish the modularity of
E[5], Wiles constructs an auxiliary semistable elliptic curve
E′ satisfying

�̄E′,5 = �̄E,5, �̄E′,3 is irreducible. (52)

It then follows from the argument in the previous paragraph
that E′ is modular, hence that E′[5] = E[5] is modular as well,
putting E within striking range of the modularity lifting theo-
rem with � = 5. This lovely epilogue of Wiles’ proof, which
came to be known as the “3-5 switch”, may have been viewed
as an expedient trick at the time. But, since then, the prime
switching argument has become firmly embedded in the sub-
ject and many variants of it have been exploited to spectacular
effect in deriving new modularity results.

Wiles’ modularity lifting theorem reveals that “modular-
ity is contagious” and can often be passed on to an �-adic
Galois representation from its mod � reduction. It is this sim-
ple principle that accounts for the tremendous impact that the
modularity lifting theorem and the many variants proven since
then continue to have on the subject. Indeed, the modular-
ity of elliptic curves was only the first in a series of spec-
tacular applications of the ideas introduced by Wiles and,
since 1994, the subject has witnessed a real golden age, in
which open problems that previously seemed completely out
of reach have succumbed one by one.

Among these developments, let us mention a few below:
• The two-dimensional Artin conjecture, first formulated in

1923, concerns the modularity of all odd, two-dimensional
Galois representations

� : GQ,S −→ GL2(C). (53)

The image of such a � modulo the scalar matrices is iso-
morphic either to a dihedral group, to A4, to S 4 or to A5.
Thanks to the earlier work of Hecke, Langlands and Tun-
nell, only the case of the projective image A5 remained to
be disposed of. Many new cases of the two-dimensional
Artin conjecture were proven in this setting by Kevin Buz-
zard, Mark Dickinson, Nick Shepherd-Barron and Richard
Taylor around 2003, using the modularity of all mod 5 Ga-
lois representations arising from elliptic curves as a starting
point.
• Serre’s Conjecture, which was formulated in 1987, asserts

the modularity of all odd, two-dimensional Galois repre-
sentations

� : GQ,S −→ GL2(Fpr ), (54)

with coefficients in a finite field. This result was proven
by Chandrasekhar Khare and Jean-Pierre Wintenberger in
2008 using a glorious extension of the “3 − 5 switching
technique” in which essentially all the primes are used.
(See Khare’s report in the Notices of the AMS mentioned
above.) This result also implies the two-dimensional Artin
conjecture in the general case.

• The two-dimensional Fontaine–Mazur conjecture concern-
ing the modularity of odd, two-dimensional p-adic Galois
representations

� : GQ,S −→ GL2(Q̄p) (55)

satisfying certain technical conditions with respect to their
restrictions to the Galois group of Qp was proven in many
cases as a consequence of work of Pierre Colmez, Matthew
Emerton and Mark Kisin.
• The Sato–Tate conjecture concerning the distribution of the

numbers Np(E) for an elliptic curve E as the prime p varies,
whose proof was known to follow from the modularity of
all the symmetric power Galois representations attached to
E, was proven in large part by Laurent Clozel, Michael
Harris, Nick Shepherd-Barron and Richard Taylor around
2006.
• One can also make sense of what it should mean for dio-

phantine equations over more general number fields to be
modular. The modularity of elliptic curves over all real
quadratic fields has been proven very recently by Nuno Fre-
itas, Bao Le Hung and Samir Siksek by combining the ever
more general and powerful modularity lifting theorems cur-
rently available with a careful diophantine study of the el-
liptic curves that could a priori fall outside the scope of
these lifting theorems.
• Among the spectacular recent developments building on

Wiles’ ideas is the proof, by Laurent Clozel and Jack
Thorne, of the modularity of certain symmetric powers of
the Galois representations attached to holomorphic modu-
lar forms, which is described in Thorne’s contribution to
the Notices of the AMS mentioned above.

These results are just a sample of the transformative impact of
modularity lifting theorems. The Langlands programme re-
mains a lively area, with many alluring mysteries yet to be
explored. It is hard to predict where the next breakthroughs
will come but surely they will continue to capitalise on the
rich legacy of Andrew Wiles’ marvellous proof.
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Introduction
For a long time now, as a historian as well as an observer 
of contemporary mathematical practices, I have been 
struck by the diversity of ways of doing mathemat-
ics. I am not speaking here of the variety of individu-
al styles, which has already been the subject of many 
works, but rather the diversity of collectively shared 
ways of practising mathematics. I feel this phenomenon 
deserves more attention than it has received to date. In 
this article, I would like to explain some of the reasons 
that convince me of the value that could be represented 
by the description of these social and cultural realities 
– realities that it seems to me appropriate to under-
stand as different “mathematical cultures”. I have had 
the opportunity to clarify, with the help of an example 
developed at length, what I mean by this last expression 
[1] and I will return to this question below. However, 
before I go any further, I must rule out one possible 
source of misunderstanding. While I propose speaking 
about ‘mathematical cultures’, this is totally unrelated 
to another, all-too-common interpretation of the same 
expression that seems to me meaningless and, what is 
more, dangerous.

Indeed, since the 19th century, a certain way of think-
ing about the diversity of mathematical practices has 
become dominant: it is the antithesis of the thesis for 
which I argue here. To remain brief, I will forego nuance 
and illustrate this alternative concept with a statement 
made by the physicist Jean-Baptiste Biot, which has the 
merit of, in only a few lines, revealing many facets of the 
representation that I reject. In an 1841 review of Jean-
Jacques Sédillot’s translation of a work in Arabic enti-
tled Traité des instruments astronomiques des Arabes, 
Biot published the following verdict (the italics are mine, 
except for the final sentence in Latin) [2]:

The Diversity of Mathematical Cultures: 
One Past and Some Possible Futures
Karine Chemla (Laboratory SPHERE, CNRS, Université Paris Diderot, France and Project ERC SAW1)

…one finds [in this book] renewed evidence for this 
peculiar habit of mind, whereby the Arabs, like the 
Chinese and Hindus, limited their scientific writings 
to the statement of a series of rules, that, once given, 
were only to be verified by their very application, with-
out requiring any logical demonstration or connection 
between them, which gives these Oriental nations a 
remarkable character of dissimilarity, I would even 
add of intellectual inferiority, compared to the Greeks, 
with whom all propositions are established by reason-
ing, and generate logically-deduced consequences. This 
fixed writing of scientific methods, in the form of pre-
cepts, must have represented a significant hindrance 
for the development of new ideas for the peoples for 
which it was in use, and it is in sharp contrast with our 
European maxim: nullius in verba.2

When Biot concludes by quoting the motto of the Royal 
Society: “take no one’s word for it”, which enjoined its 
members to reject all forms of authority, it is to draw 
a contrast. The maxim calls for a form of “freedom” in 
thinking, which, for Biot, characterises Europe – else-
where he says the Occident – and which has been 
extolled regularly ever since as the specific intellectual 
attitude that allowed the emergence of “modern sci-
ence”. According to Biot, the “Orientals”, however, 
contented themselves with stating sequences of “rules” 
(in modern terms: algorithms) and then proceeded with 
prescriptions (“precepts”), which, in his view, supposed, 
by contrast, obedience from their users, meaning that it 
was therefore impossible for them to bring about a sci-
entific revolution. This is one of the key elements of a 
broader opposition between mathematical practices of 
different peoples that Biot shapes along these lines. Thus, 
on another level, the “Orientals” would not feel the need 
to demonstrate, making do with simple “verifications”. It 
is, in Biot’s eyes, the function of the mathematical prob-
lems contained in their texts and that he designates as 
“applications”. However, he insists, by contrast, that “the 
Greeks” demonstrate everything. As a consequence, in 
“Oriental” mathematical practice, the rules presented no 
interrelationships, while the “Occidentals”, conversely, 
created deductive edifices.

All in all, as the above statement shows, Biot believed 
in a fundamental difference in nature between peoples, 
the presentation of which required only two categories: 
in one camp, the “Oriental nations” and, in the other, 
“The Greeks” and the “Europeans”, among whom he 

1 I present here some of the results of research carried out 
in the context of the SAW (“Mathematical Sciences in the 
Ancient Worlds”) project that has been financed by the 
European Research Council, in the context of the 7th pro-
gramme framework (FP7/2007–2013, ERC Grant agreement 
n. 269804). This article is a translation, by Richard Kennedy, 
of “La diversité des cultures mathématiques: un passé et 
quelques futurs possibles”, Gazette des mathématiciens, 150, 
2016, p. 16–30 (online at http://www.smf.emath.fr/files/150-
bd.pdf). It derives from the plenary lecture that I gave at 
the European Congress of Mathematics (Berlin, July 2016). 
A more complete version of this text is to be published in 
the proceedings of this conference; I will also make it avail-
able on HAL-SHS. I am grateful to Bruno Belhoste and Nad 
Fachard for their invaluable help throughout the preparation 
of this article. 2 This document was first published by F. Charette [3].
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positioned himself. For him, this difference was reflected 
in the contrast between their mathematical practices – 
a contrast to which he assigns long-term consequences 
(one camp experiences progress while the other advanc-
es with great difficulty). If we examine more closely how 
Biot articulates the difference between peoples and the 
contrast between mathematics, we notice that, to his 
eyes, the way in which “Orientals” carry out mathemat-
ics derives from a “particular habit of mind” common to 
these peoples: mathematics here only illustrates a more 
general fact. It is as much his belief in the truth of the 
general fact as the confirmation that he believes to have 
found in the description of their mathematical activities 
that leads Biot to express a hierarchy between the peo-
ples. However, conversely, the declaration gives mathe-
matics and modern science as the proof of the superiority 
of the Greeks and of Europe. History of science served 
for a long time, in fact, as a laboratory for developing 
conceptions with which some have believed it possible 
to consider the “characteristics” of peoples and establish 
the theory of an irreducible disparity between them. In 
the context of the SAW Project, we started an historical 
study of these forms of history of science and their uses 
but pursuit of this here would lead us too far. Rather, let 
us return to our subject.

Biot wrote these lines in 1841. I can testify that many 
elements of the representation of the diversity of math-
ematical practice to which he subscribed still persist 
today, in various forms, and are even very widespread, 
if not within the mathematical community, at least more 
widely in our society. In the context of today’s world, the 
effects are potentially as destructive as they have been 
in the past. It is interesting to examine the documenta-
ry base from which Biot established his verdict. This is 
quite straightforward for China, as Biot’s son, Edouard 
(1803–1850), was the first specialist of China to publish 
in Europe on the history of mathematics, and the four 
articles he wrote on the subject between 1835 and 1841 
were all discussed with his father. Like a good number of 
sinologists of the time, Edouard never travelled to China 
and his investigations had to be limited to documents 
available in Europe. The Bibliothèque Royale’s collec-
tions in Paris gave him access to a book on mathemat-
ics, written in Chinese and published in China in 1593, 
to which he devoted his first two articles. In 1839, he 
published a study on a second work, which he was able 
to consult thanks to the fact that his mentor in sinology, 
Stanislas Julien, loaned it to him. Isolated in his work on 
the mathematics in Ancient China, Edouard incorrectly 
dated this book, completed in 1259, to the 8th century 
and appears not to have understood the algebraic sym-
bolism that was central to the author’s project. Finally, 
once again in the Bibliothèque Royale, he found a work 
dating from the start of the Common Era and address-
ing mathematical knowledge necessary for astronomy 
and cosmography, a translation of which he published in 
June 1841. It is essentially from these data that, in the 
same year, Jean-Baptist Biot would formulate his defini-
tive opinion of the mathematics of the Chinese “people” 
from antiquity up to his time.

The fact that today we can read several dozen math-
ematical books written in China between the last centu-
ries before the Common Era and the 19th century does 
not mean that it makes any more sense to talk about 
“Chinese mathematics”. In any case, it is not “math-
ematical cultures” conceived in terms of this type that 
I am thinking of when I propose to argue in favour of 
the interest there would be in considering the diversity of 
collectively shared ways of doing mathematics. Entities 
such as “nations” or “peoples” seem far too vast for what 
I have in mind. Wanting, at all costs, to say something 
about mathematics in a context of this magnitude, we 
would find ourselves condemned, like Biot, to generalis-
ing unduly. Or else the search for a common denomina-
tor for the mathematics of a “nation” or a “people” would 
lead us to stand much too far from those whom we are 
observing (and whom I will, as anthropologists do, call 
“actors”). At such a distance we would only grasp some 
commonalities of little significance, frequently minimis-
ing everything that contradicts the overall conclusion, 
and it would be by decree that we give these common 
points as characteristics of the entity observed. In both 
cases, it is by postulate that “nation” or “people” are pos-
ited as relevant frameworks and therefore we shouldn’t 
be surprised to find the postulate in the conclusions.

Another approach to mathematical cultures
Like the majority of historians, I prefer to work from 
documents. And what has struck me, in considering the 
writings produced in a variety of contexts, is that these 
documents form clusters, which attest shared but differ-
ent ways of doing mathematics. What types of human 
collectives do these clusters of writings bear witness to? 
We cannot give a general answer to this question and it 
would be necessary to examine them case by case. Below, 
I will outline some ways of addressing it. My main objec-
tive here will be, however, to illustrate, with examples, 
the phenomena which interest me and that I propose 
to approach in terms of different “cultures”. Along the 
way, these examples will allow me to explain why I am 
convinced of the importance of taking these phenomena 
into account to interpret our documents in a more thor-
ough and rigorous way and, through this exploration, I 
will also bring out some new general questions that they 
seem to raise.

The first illustration of what I mean by a “mathemati-
cal culture” comes from a field with which I am familiar. 
This is not by chance: an approach of this type requires 
an intimate knowledge of the sources. I chose this exam-
ple from ancient history, as the problems of the interpre-
tation of documents are often more acute when the writ-
ings were produced in the distant past. I hope, therefore, 
that the help in interpretation that can be afforded by an 
approach in terms of culture will be all the more obvi-
ous. I will consider, then, a cluster of Ancient Chinese 
mathematical works presented to the throne in 656 by Li 
Chunfeng and the scholars working under his direction: 
The Ten Canons of Mathematics.

By order of the Emperor, Li and his colleagues set 
about the preparation of this anthology, selecting clas-



History

16 EMS Newsletter June 2017

sics from the past as well as commentaries that had been 
written about them and then preparing a critical edition 
and their own commentaries for all these documents. 
From 656, with the work having just been completed, 
these books were used in the School of Mathematics 
that had been established within the Imperial University, 
where students could follow a specialised curriculum in 
mathematics in order to gain access to a career in the 
bureaucracy. These ten canons, in a different chrono-
logical order to their composition, formed the content of 
two curricula [4]. I am interested here in only the most 
elementary of these curricula and I will, in fact, mention 
only two of the books studied in this context: the first 
canon worked on, The Mathematical Classic of Master 
Sun, which was devised around the year 400 (even if the 
text that we can read shows marks of modifications dat-
ing from the 8th century), and the canon that formed the 
centrepiece of this course, The Nine Chapters on Mathe-
matical Procedures, the completion of which I date to the 
1st century CE. This book and the commentaries written 
about it by Liu Hui in the 3rd century and by the team 
working with Li Chunfeng in the 7th century required, in 
fact, a far greater number of years of study in comparison 
to the other books.

These historical elements allow us to formulate two 
important points of method. If these canons and their 
commentaries were taught in the same curricula, it means 
that 7th century actors considered them de facto as asso-
ciated with the same mathematical culture. In addition, 
the first six canons of the first curriculum are essentially 
composed of mathematical problems and algorithms 
allowing them to be solved; they are therefore difficult to 
interpret. By contrast, however, the commentaries cho-
sen or written by Li Chunfeng’s team comprise discus-
sions on mathematics and explicit references to the prac-
tice of mathematics. These commentators are, in fact, the 
earliest readers of the canons that we are able to observe 
and they provide us with essential clues to describe the 
mathematical culture that makes up my first example. I 
stress this point: the description of a mathematical cul-
ture must not derive from impressions or intuition but 
instead rely on historical demonstrations based on docu-
ments. The assertions that I will formulate below are, as 
far as possible, based on long arguments but I will not 
elaborate on them here, instead referring the reader to 
previous publications.

The key question at present is to understand how 
the mathematical activity testified by these documents 
was practised. A typical page from canons like The Nine 
Chapters (this is how I will abbreviate the title hence-
forth) is composed of problems and algorithms, while the 
commentaries, which appear in smaller characters and 
often between the sentences making up the algorithms, 
systematically establish the correctness of these algo-
rithms, interspersing these developments with all sorts of 
remarks and discussions.

As the oldest editions show, all these writings only 
contain characters, without any graphical representa-
tions of any sort. However, the canons, like the commen-
taries, make reference to rods, with which the numbers 

were represented on a surface on which the calculations 
were carried out. Without representations in the texts 
of the use made of the rods or the calculating surface, 
everything that took place on that surface has had to 
be reconstructed from clues gleaned from the writings 
and on the basis of historical arguments. Our situation is 
probably comparable with that of future historians who 
will concern themselves with understanding the part of 
the activity of mathematics that takes place today on our 
blackboards.

The rods constitute the first physical object men-
tioned in the texts and we will see that they played a key 
role in the mathematical culture testified by the canons. 
Furthermore, canons like The Mathematical Classic of 
Master Sun and The Nine Chapters neither contain nor 
mention any figures, nor even any visual aids. However, in 
the context of certain demonstrations, the commentaries 
do evoke figures and blocks, opting for one or the other 
according to whether they are dealing with plane geom-
etry or space geometry. With the blocks, which evoke the 
plaster and string models used by certain mathematical 
milieus in the second half of the 19th and the beginning 
of the 20th centuries, we thus encounter a second type of 
physical object that mathematics activity had recourse to. 
The early editions of these classics do not contain the fig-
ures that the commentators refer to and the examination 
of clues that we could gather about them has led me to 
conclude that they, too, were physical objects at the time. 
I will refer to them with the term “diagram”, to remind us 
that they are visual aids different from those we usually 
associate with the term “figure”.

In summary, and in contrast to what later documents 
attest, the mathematical activity evidenced by our first 
cluster of writings is based on books containing only text 
and also on three types of object: rods, blocks and dia-
grams [5]. 

In the course of a series of articles, I have shown how 
the description of what the actors did with the elements 
contained in the writings, as well as with the objects we 
have just identified (which only partly covers what I mean 
by the expression “way of doing mathematics”), is essen-
tial to interpreting the writings and obtaining a more 
complete grasp of the mathematical knowledge they 
had. Here, I will illustrate this thesis with the aid of only 
one of these aspects, concentrating on the way in which 
the actors worked with the calculating surface, accord-
ing to what can be reconstructed, and showing how this 
approach allows us to understand the knowledge that 
they had developed around arithmetical operations.

My reasoning starts with the first pages of The Math-
ematical Classic of Master Sun, that is to say, the start of 
the elementary curriculum. Here, the work describes, 
among other things, the use of rods to represent numbers 
on the calculating surface: without entering into detail, in 
this description, we can recognise a decimal place-value 
system, in the sense that writing the symbols 123 in these 
positions implies that 1 means a hundred, 2 twenty and 
3 three.

Then, based on this system of numeration (which, 
therefore, was purely physical and did not appear at the 
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time in the writings), the book offers two algorithms, one 
for multiplying and the other for dividing – the division 
here is called chu. The text of this second algorithm does 
not open with a prescription but with an assertion: “this 
algorithm is exactly opposed to that for multiplication”. 
The meaning of this statement is not obvious solely on 
the basis of the text of these two algorithms. However, 
the calculations for the execution of these two opera-
tions that we can reconstruct on the basis of the texts, 
and for which I give an example in Figure 1, suggest an 
interpretation. They will be essential to my argument and 
hence I enter into detail here.

These algorithms are based on two types of “positions”, 
both designated by the same Chinese term (wei). First-
ly, the numbers are written horizontally, as a series of 
decimal positions. This place-value notation echoes the 
property of the algorithms to iterate the same series 
of elementary operations along this sequence of digits. 
Moreover, both algorithms make use of three vertical 
positions, one above the other (upper, middle and lower). 
The multiplication starts by placing the multiplier (23 in 
my example) and the multiplicand (57) in the upper and 
lower positions respectively, leaving the middle position 
empty. The initial layout for the division of 1311 by 23 
is completely opposed with respect to the middle and 
upper positions: contrary to the multiplication, it is the 
upper position that is empty at the start of the calcula-
tion, while the middle position is full, as it contains the 
dividend. For both operations, the calculation proceeds 
in the same way, by filling the line of these two that is 
empty while emptying the line that is full. Operating on 
initial configurations that are opposed, the processes 
that follow are themselves opposed to each other. The 
“result” of the multiplication is produced in the middle, 
while that of the division is produced at the top. Here, 
we thus see that a relationship of opposition between the 
two operations is shaped, through the precise fashioning 
of the processes of execution on the calculating surface. 

It is the first property of interest for us in these flows of 
operations that execute multiplication and division. We 
will return to it.

In contrast to the middle and upper positions, which 
are opposed to each other between multiplication and 
division, the lower position similarly receives operators 
that are the multiplier and the divisor. Both act in the 
same way during the execution of their respective opera-
tions: their significant digits are not modified, but their 
decimal positions are, being displaced at each iteration. 
The layout of the two operations and the algorithms have 
the effect that the execution of the multiplication ends 
at the starting point of the division and vice versa: if you 
run multiplication and division one after the other, the 
operations cancel each other out. This is a second prop-
erty of interest to us in these flows of operations. 

These arrangements, partly opposed and partly iden-
tical, of the algorithms on the calculating surface corre-
spond to flows of calculations that allow practitioners to 
see the relationship of opposition between multiplication 
and division. Thus, once the multiplication operands are 
positioned, the multiplier 23 is moved to the left until its 
units digit is vertically under the digit with the highest 
magnitude in the multiplicand (5). The multiplier is thus 
multiplied by the power of 10 corresponding to this lat-
ter digit. The products of the digits of 23 by 5 can then 
be added progressively to the middle position, immedi-
ately above the corresponding digits in the multiplier. 
Once this sub-procedure is completed, 5 is deleted from 
the upper line, 23 is shifted one position to the right and 
the same sub-procedure is repeated with 7, the follow-
ing digit, which in turn will be deleted at the end of the 
execution. Thus, it is in this way that “that which the mul-
tiplication produces” finds itself “in the middle” while the 
multiplicand is, for its part, deleted. The execution of a 
division will “produce”, in an opposed way, the result “in 
the upper position”, while the number in the middle posi-
tion will be progressively deleted. By contrast, the digits 
in the quotient are, in effect, progressively added to the 
upper position (5 then 7), while, in the appropriate corre-
sponding position, the products of the digits in the divisor 
and first 5, and then 7, are progressively subtracted from 
(and not added to) the dividend. Incidentally, if we had 
divided not 1311 but 1312 by 23, the quotient would be 
given as 57 + 1/23. The fact that the results of divisions 
are always exact plays a critical role, but that necessitates 
another development that I am not able to give here. 

In the context of this way of doing mathematics, incul-
cated from the beginning of the first curriculum in the 
School of Mathematics, the algorithms for multiplication 
and division have therefore been shaped to allow a global 
vision, position by position, of a network of oppositions 
and similarities in the very dynamic of the executions 
on the calculating surface. It is, I think, to this and not 
the fact that multiplication and division cancel the effect 
of each other, that the declaration in The Mathematical 
Classic of Master Sun (placed at the beginning of the text 
on the algorithm for division) refers when it states “this 
algorithm is exactly opposed to that for multiplication”. 
This conclusion deserves further examination.

Figure 1.
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Firstly, it implies that the physical practices that math-
ematical activity brought into play in this context must 
be reconstituted so that we can fully interpret the writ-
ings. This assertion has a de facto general validity. Moreo-
ver, the interpretations I suggest for both the declaration 
in the text and the procedures for calculation imply that 
the processes for carrying out the operations on the cal-
culating surface do not only have the aim of producing 
results but also of expressing properties – here a form of 
relation between multiplication and division.

This basic example suffices to illustrate what I mean 
by different “mathematical cultures” and it also provides 
a glimpse of the interest their description takes on. The 
ideas brought into play in the algorithms represented in 
Figure 1 are identical to those that inspire the way we 
ourselves have learned to carry out multiplication and 
division. Yet, in the eyes of the actors who employed one 
or the other, the meaning of the two sets of algorithms 
differs in part and we will see that this difference has 
important consequences. By contrast to this other way 
of working, our practices for calculation do not invite us 
to interpret as meaningful the relations between flows 
of operations executing multiplication and division, or 
to work with these flows. This is one of the features that 
confers its uniqueness to the practice of calculation pro-
vided in the first curriculum of the 7th century in China, 
and the declaration in The Mathematical Classic of Mas-
ter Sun allows us to grasp what is at stake. Let us now 
analyse what is brought to us by the knowledge of this 
specific element of such a “way of doing mathematics”.

Work on the relations between the operations
The statement in The Mathematical Classic of Master 
Sun, combined with the flows of calculations we can 
reconstitute on the basis of the texts of algorithms, 
allows us to establish the existence of a practice of cal-
culation unique to a certain context: the use of “posi-
tion” to explore and express an interpretation of the 
relation between operations. In doing so, it reveals the 
existence of mathematical interest in such relations. 
Understanding this practice will, more generally, allow 
us to grasp mathematical knowledge on the relation 
between operations as it was produced in this context. 
This is all the more important because historians had not 
really perceived this knowledge before. Only by reading 
what the texts and the physical inscriptions express in 
a specific way do we uncover part of the actors’ mathe-
matical knowledge and also a fundamental question that 
inspired their research.

Moreover, the fact of having uncovered such a prac-
tice also provides us with tools for interpreting other 
texts in the same corpus and for going further into the 
reconstitution of the actors’ practices on the calculating 
surface. Thus, we can better understand the theoretical 
work that the actors carried out on the operations and 
also comprehend the history of this work. The opera-
tions of multiplication, and especially of division, as well 
as their execution on the calculating surface described 
above, will then prove to have played a key role in this 
history.

To establish this point, we will return firstly to The 
Nine Chapters, whose text attests the same practice of 
calculation on the calculating surface, as well as the same 
interest for the relations between operations. Let us 
examine, for example – without, for the moment, trying 
to interpret them – the texts of the algorithms provided 
for the extraction of square and cube roots (I only quote 
the beginnings here, which are sufficient to bring out the 
phenomena that interest me):3 

“Procedure for the extraction of the square root: One 
places the number-product as dividend. Borrowing 
one rod, one moves it forward, jumping one column. 
Once the quotient is obtained, one multiplies once 
the borrowed rod by it, which makes the divisor, then 
one divides by this. After having divided, one doubles 
the divisor, which makes the determined divisor. If 
one divides again, one reduces the divisor by moving 
it backward. One again places a borrowed rod, and 
moves it forward like at the beginning. One multiplies 
this once by the new quotient. (…)” 
“Procedure for the extraction of the cube root: One 
places the number-product as dividend. Borrowing 
one rod, one moves it forward, jumping two columns. 
Once the quotient is obtained, one multiplies twice 
the borrowed rod by it, which makes the divisor, 
then one divides by this. After having divided, one 
triples this, which makes the determined divisor. If 
one divides again, one reduces (the divisor) by mov-
ing it backward. One multiplies the quantity obtained 
by three, and one places this in the middle row. Once 
more borrowing a rod, one places it in the row under-
neath. One moves them forward, that which is in the 
middle jumping one column, that which is underneath 
jumping two columns. One again places a quotient 
and multiplies by it that which is in the middle once, 
and that which is underneath, twice. (…)”

If we consider these algorithm texts independently of 
any context, they are difficult to interpret with certainty. 
In particular, the layout of the calculations to which they 
refer seem unfathomable. However, two key points are 
evident.

I have marked in bold type the terms that these texts 
take from the algorithm for division. They clearly show 
that the formulations of the algorithms for extraction – 
tacitly, i.e. without any other form of commentary – shape 
these calculation procedures as types of divisions. Based 
on what we have seen above, we can advance the hypoth-
esis that the texts, like the executions, state a form of rela-
tion between extraction and division. We thus again find 
the interest that the actors manifested for this very ques-
tion and its exploration with the help of the same work-
ing tools, as well as, now, also the algorithm texts.

Furthermore, in the translations of the two texts, 
I have underlined the terms and expressions that indi-
cate how the root extractions are not real divisions. 
They show the modifications to the division algorithm 

3 [6] contains a complete, annotated translation of these texts.
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through which the extractions have been cast in the divi-
sions mould. These terms and expressions do, however, 
also demonstrate an interest for the relations between 
operations since they match each other from one text 
to another. This correspondence reveals how correlated 
modifications of the division algorithm lead to the extrac-
tion of square and cube roots respectively. The words in 
italics highlight how even the differences between these 
modifications are correlated from one algorithm to the 
other. The use, in the square root text, of an expression 
like “multiply once” instead of simply “multiply”, which 
accentuates the parallel with the expression “multiply 
twice” in the corresponding statement of the cube root 
text, brings out the authors’ wish to write the texts in 
relation to each other.

All these properties confirm what I have advanced 
above: alongside the work on the flows of calculation 
executing the operations on the calculating surface, we 
see emerging, through the formulations of the algorithm 
texts, a second facet in the modalities of exploring the 
relations between operations. Above, we encountered a 
specific practice using physical objects (rods and posi-
tions on the calculating surface). We discover now a spe-
cific way of working – and of expressing mathematical 
meanings – with certain elements that make up the texts 
themselves. These remarks provide us with tools to rigor-
ously reconstitute the flows of calculation to which the 
extraction procedures for square and cube roots refer. 
The key hypothesis that the previous argument allows 
us to advance, a hypothesis that plays a key role in this 
reconstitution, states that the processes of execution 
highlight, or “write”, the similarity between extractions 
and division on the calculating surface in the same way 
that they allowed the reading above of the opposition 
between multiplication and division. Therefore, we know 
that the first digit of the root (or “quotient”) a.10n and 
then those that followed were placed successively in 
the upper position, while the number A whose root was 
being sought was positioned as “dividend”. In the lower 
position, a number acting as “divisor” distinguished itself 
from the homonymous position of the division by the 
fact that its value had to be adjusted. The interpretation 
gives the flow of calculations reconstituted in Figure 2.

If we had read the texts with the sole intention of know-
ing how roots were extracted – as most historians have 
actually read them – we would have missed the work 
carried out to shape a set of relations between these 
operations as well as the ways of working developed in 
order to carry out this research (use of positions and the 
dynamic of the calculations, and formulation of the algo-

rithm texts). Certainly, we would have convinced our-
selves, once again, that the ideas applied are essentially 
identical to those used in the algorithms that some of us 
learned in our youth for extracting roots. But we would 
have missed out on what makes the difference between 
this latter algorithm and the one in The Nine Chapters. 
The reconstitution of the practice of writing algorithm 
texts, like the practice of calculation on the calculating 
surface (two facets of this specific way of doing math-
ematics that illustrate what I mean by “mathematical cul-
ture”), invites a different reading of the texts as flows of 
calculation and consequently allows us to grasp another 
facet of the actors’ mathematical work that no other dis-
courses express. I think this point clearly illustrates the 
link I stated between, on one hand, the description of the 
actors’ “mathematical culture” and, on the other, a better 
understanding of their mathematical knowledge, as well 
as the questions they were pursuing.

Another clue confirms the conclusions that one can 
draw from this form of interpretation, which derives 
from attention being paid to the practices: it comes from 
the way in which these operations were prescribed in the 
algorithm texts. Indeed, the texts refer to the operand of 
a root extraction by the term ‘dividend” and prescribe 
the operation, as appropriate, by the expressions: “one 
divides this by extraction of the square root” or “one 
divides this by extraction of the cube root”. In other 
words, the prescription states, again without further ado, 
the same structure for all the operations, signalling that 
chu division was their foundation.

This is not all and, for us to go further, it will be use-
ful to evoke the demonstrations that the commentator 
Liu Hui developed to establish the correctness of root 
extraction algorithms and, in particular, the diagram on 
which the proof is based in the case of the square root 
extraction. These demonstrations are the opportunity for 
Liu Hui to correlate the elementary steps of the extrac-
tions with those of chu division. Moreover, in order to 
develop the meaning of the steps in the extraction, the 
commentator introduces a diagram for the square root 
and blocks for the cube root. While the text of the com-
mentary refers to these, there are no illustrations in the 
text and, here again, it is down to historians to recon-
stitute them. Figure 3 illustrates the reconstitution that 

Figure 2.

Figure 3.
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historians all agree to propose for the visual aid relating 
to the square root upon which Liu Hui based the expla-
nation of the meaning of the calculations. I reproduce the 
colours that the text of the commentary indicates – this is 
a common feature of the diagrams in the context of this 
culture. Furthermore, I add marks allowing the execution 
of the extraction to be linked to the figure. It is possible 
that the diagram used by the commentator contained 
characters performing the same function but we have 
no evidence of this. We will return later to this diagram, 
insofar as we will see that it plays a role in the structuring 
of an altogether broader set of operations.

Chu division as the foundation for a set of  
operations
To summarise the conclusions we have obtained thus far: 
we have encountered several characteristic features of a 
mathematical culture by concentrating on the practice of 
computation. Among these features, we have identified 
the use of positions on the calculating surface to establish 
links between the operations through the flows of cal-
culation. The decimal positions of the place-value nota-
tion for numbers are a part of this landscape, insomuch 
as they constitute one of the types of position that the 
practice of computation brings into play. Their utilisation 
meshes with the use of algorithms operating uniformly 
on sequences of digits of the operands and producing, 
with regard to the operations of the division family, the 
results digit by digit.  Furthermore, chu division has been 
shown to play a central role in this context. The combina-
tion of all of these features is found in two other subjects 
dealt with in The Nine Chapters. We will analyse them 
one after the other.

The first concerns the resolution of systems of linear 
equations, which are the subject of Chapter 8 in the book. 
The central algorithm describes, firstly, an initial layout 
of the data (i.e. the coefficients of the equation) on the 
calculating surface and, thus, easily allows the reconstitu-
tion as follows (in modern terms, the system given on the 
left corresponds to the inscription on the surface recon-
stituted on the right):

a11x1 + a12x2 + · · · + a1nxn = b1 an1 · · · a21 a11
a21x1 + a22x2 + · · · + a2nxn = b2 an2 · · · a22 a12
·  ·  ·  ·
·  ·  ·  ·
·  ·  ·  ·
an1x1 + an2x2 + · · · + annxn = bn ann · · · a2n a1n
 bn · · · b2 b1

Thus, in the layout described in The Nine Chapters, each 
linear equation corresponds to a column and the coeffi-
cients attached to the same unknown are all placed in the 
same line. Here, again, the actors have developed a place-
value notation for the system of equations. The algorithm 
itself corresponds to the Gauss elimination method. It 
operates as follows. Assuming that the upper terms in the 
two right-most columns are non-zero, the upper term in 
the right column multiplies the column immediately to 
its left, whereupon the upper term in this second column 

is eliminated by operating on these two columns. This 
sub-procedure is repeated until the following triangular 
system is obtained:

a11x1 + a12x2 + · · · + a1nxn = b1 0 … 0 a11
0          + c22x2 + · · · + c2nxn = d2 0 … c22 a12
·  ·  ·  ·
·  ·  ·  ·
· 0 ·  ·  ·
0 + 0 + … + 0 + cnnxn = dn cnn … c2n a1n
 dn … d2 b1

The algorithm is concluded by determining xn by a 
simple division then successively calculating the other 
unknowns in a similar manner. Note in passing that the 
division that produces xn presents the dividend under 
the divisor. Here, too, a uniform algorithm meshes with 
a place-value notation of the system, since it determines 
the sequence of the unknowns by means of an iteration 
of the same sub-procedures, which deal with the posi-
tions in a uniform way. Positive and negative marks are 
introduced during the chapter to allow the operations to 
be completed in all cases and then to extend the set of 
systems that the algorithm can handle. Finally, let us note 
that the way the data are structured on the calculating 
surface is central to the operations the algorithm uses.

In the same way as before, the interpretation of the 
algorithm as identical to the Gauss elimination method 
is relevant but it only partially captures the mathemati-
cal knowledge developed. Indeed, the observation of the 
same elements as above (the terms employed to desig-
nate the operands, the algorithm texts and the calcula-
tion flows) highlights something else quite unexpected 
here. It appears that the constant terms in the equations 
are given the name “dividends”, while the coefficients 
of the unknowns are described as forming “divisors in 
square” – this is, in my view, the meaning of the name 
of the algorithm (in Chinese fang cheng, “measures in 
square”). Finally, the central operation of eliminating the 
upper non-zero terms from the columns is prescribed as 
a “vertical chu division”. It appears, once again, that the 
actors’ work was not limited to determining an algorithm 
to produce the results. In addition, they further carried 
out a conceptual reflection on the relations between the 
operations, which led to conceiving the resolution of 
systems of linear operations as a generalised division, 
opposing a sequence of dividends to a square of divi-
sors (here the dividends are also under the divisors), and 
articulating the forms of horizontal and vertical division 
[7]. Again, we find, on one hand, an interest for the struc-
turing of a set of operations and, on the other, chu divi-
sion as the foundation of this enlarged set. In this con-
text, the positions seem, once more, to have served as the 
work tool for carrying out the exploration.

We have brought out, by means of the observation of 
aspects of the mathematical culture, a reflection by the 
actors on the operations and the relations between them. 
We notice that bringing this work programme to light, 
which no text appears to formulate explicitly, allows us 
to give meaning to a growing set of clues contained in the 
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texts and to grasp a facet of the mathematical knowledge 
specific to the actors that have, up to this point, remained 
invisible. That the linear equation is conceived in this 
context as the opposition between a dividend and a set 
of divisors is actually only one aspect of a more general 
fact, as we will now see by turning to the second subject 
dealt with in The Nine Chapters, where positions and chu 
division also play a key role.

I will introduce this subject by showing how the 
description of facets of the mathematical culture in the 
context in which the text was written, with the restitu-
tion of the flows of calculation on the surface and the 
diagrams that can be deduced from clues in the text, pro-
vide essential tools for interpretation. The algorithm to 
understand is formulated following the problem that I 
represent in Figure 4 (by respecting the representation 
of the cardinal directions usual at that time).

It is a question of determining the (length of the) side of 
a square town, knowing that a person walking s bu (unit 
of distance) outside the southern gate then westwards 
w bu sees a tree situated n bu from the northern gate. 
The algorithm The Nine Chapters proposes is formulated 
as follows (I emphasise certain words in bold text):

“One multiplies the quantity of bu walked to the west 
by the quantity of bu outside the northern gate, and 
one doubles this which gives the dividend. Adding 
together the quantities of bu outside the southern 
gate and the northern gate makes the joined divisor. 
And one divides this by the extraction of the square 
root, which gives the side of the square town.” 

The algorithm thus calculates two operands (“dividend” 
and “joined divisor”) and prescribes the operation as a 
“square root extraction”. What is the meaning of this 
operation? Actually, it can neither be a square root 
extraction, as this operation should only have one oper-
and, nor can it be a division. Here, Liu Hui’s commentary 
provides valuable clues for dealing with the conundrum. 
The commentator describes a graphical process that 
does not correspond to any illustration in the text and 
that I translate as a sequence of figures. In Figure 4, I 
have marked the height and the base of a large trian-
gle. The term lü attached to the height and the base of 
a second triangle in the figure indicates the similarity of 

these two triangles. From this observation, Liu Hui draws 
the equality of the areas of the horizontal rectangle, with 
sides w and n, and the vertical rectangle, with sides x/2 
and n + x + s (see Figure 5).

Twice this area corresponds to what the algorithm calls 
the “dividend”: Liu Hui interprets this as the area of the 
vertical rectangle to which one adds the grey rectangle. It 
corresponds to the rectangle in Figure 6a. Liu Hui finally 
interprets the calculation of the “joined divisor” by the 
prescription of joining the upper and lower rectangles, 
which produces the shaded rectangle in Figure 6b. Estab-
lishing this figure concludes his commentary.

The commentator thus interprets the operation used in 
the algorithm as the equation represented in modern 
terms as:

x2 + (s + n) x  = 2 nw.

Why is its execution prescribed as a root extraction? 
The answer to this question is obtained by considering 
the demonstration Liu Hui formulated for the algorithm 
executing this last operation and, in particular, the dia-
gram that he introduced to state the meaning of the 
operations in the algorithm, whose reconstitution is pro-
vided in Figure 3. The commentator interprets steps 1 to 
6 of the algorithm (see Figure 2) as having the aim of 
subtracting the area of the square of side a.10n from A. If 
this square is removed from the figure, we are left with a 
gnomon, shown in Figure 7.

Figure 4.

Figure 5.

Figure 6.
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By unfolding this gnomon, one obtains a figure compara-
ble to that with which Liu Hui established the quadratic 
equation. Indeed, by omitting the first part of the root 
extraction algorithm (thus by removing from the result 
the digit of the root calculated to this point) and by com-
mencing the algorithm at step 8, one solves the quadratic 
equation that writes this gnomon (or rectangle). Now, if 
we observe the configuration of the calculating surface at 
step 8, we notice that there are, at this point in the calcu-
lation, two terms that correspond exactly to the operands 
of the quadratic equation described by the algorithm, the 
interpretation of which is under consideration. Thus, the 
quadratic equation is an operation that derives from root 
extraction, in that the procedure that executes it is a sub-
procedure of the execution of the extraction: we under-
stand at one and the same time how it is introduced and 
how it is executed in this context. Several consequences 
follow from this. 

Firstly, we note that a large number of ingredients 
enter into the development of our interpretation: the 
demonstrations by which the commentator established 
the correctness of both the algorithm solving the prob-
lem given and the root extraction algorithm; and the 
reconstitutions of the diagrams and the flows of calcu-
lation on the calculating surface, based on knowledge 
of the practices at work in this context. We see that, in 
the context of a given way of “doing mathematics”, the 
elementary practices (practices of diagrams, practices of 
computations, etc.) mesh with one another in a specific 
way. 

Furthermore, we observe here, once again, that the 
operations for square root extraction and quadratic 
equations are linked by processes of calculation on the 
calculating surface, and especially by the way of manag-
ing the positions. Both in terms of the processes of cal-
culation and the role played by diagrams, the relation is 
established in a different way from that which we have 
described for multiplication and division. Neverthe-
less, as above, the link between the operations is also 
expressed by the terminology chosen to designate the 
operands and the operations. All this explains, at one and 
the same time, the graphical means used to establish the 
equation and the fact that only two operands are identi-

fied for the quadratic equation (in the context of  tradi-
tions that developed on this basis, the term in x2 seems to 
have been identified only in the 11th century).

This last remark raises a crucial and particularly inter-
esting question. The fact that the quadratic equation is 
only associated with two operands highlights a correla-
tion between the ways of doing mathematics (here, in 
particular, the practice of computations on the surface 
linked to the establishment of relations between opera-
tions) and the concepts or, more broadly, the mathemati-
cal knowledge produced. This fact is, I think, wholly gen-
eral and only a careful examination of “mathematical 
cultures” will allow us to explore it further. For me, this 
issue provides a fundamental reason to justify the inter-
est in the diversity of ways of doing mathematics. What is 
at stake is understanding how mathematical knowledge 
is correlated to shared, collective ways of working. This 
is one of the new questions to which we are led and one 
which I hope historians of mathematics and mathemati-
cians will consider jointly.

But there is more. If we return to the quadratic equa-
tion, we realise that the text of The Nine Chapters only 
contains the names of the operands and the formulation 
of the prescription. By methodically reconstituting the 
ways of working, we have been able to reveal a repre-
sentation of the equation on the calculating surface and 
a process of execution, as well as a graphical representa-
tion essential to its establishment. In fact, all the quad-
ratic equations established in Ancient Chinese sources 
correspond to the reading of gnomons or of rectangles 
in geometrical configurations in the same way. In other 
words, if we had not paid attention to concrete practices 
with physical objects, we would have missed key aspects 
of the ways in which the actors worked in this context 
with this mathematical object and the tools they forged 
for this purpose.

More important for our purposes, we would also 
have missed out on the work and the resources that the 
actors deployed to structure a series of operations. Yet 
we are now discovering the extent of the knowledge 
developed on this subject. We see that, in this context, 
both linear and quadratic equations were conceptualised 
as forms of division. In fact, many traditions that gained 
momentum by relying on the canons at the centre of this 
mathematical culture, be they in China, Korea or Japan, 
would develop knowledge about algebraic equations in 
this conceptual framework. And I show, in the complete 
version of the article to appear in the proceedings of the 
EMC, that it is again only one aspect of a much more 
general phenomenon.

Another mathematical culture in Ancient China 
and some issues at stake
Let us recapitulate what the observation of certain facets 
of a mathematical culture (in the main, the use of posi-
tions and the processes for calculation) has allowed us 
to do so far. We have relied on it for a more rigorous 
interpretation of the texts. We have also reconstituted 
ways of working with mathematical entities. Finally, we 
have grasped a body of knowledge that the actors had 

Figure 7.
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clues gleaned from the operations suggest that the num-
bers were represented using a different number system. 

This is the first of a series of facts that appear to indi-
cate that the surface on which the calculations were car-
ried out was the subject of a different practice. In fact, 
more generally, no reference is made to the use of a sys-
tem of positions in the execution of the algorithms and 
nor do any of these writings use terms like “line”, “col-
umn” or “position”.

So much for the physical aspects of the practice of cal-
culation. If we now turn to the operations, an initial fact is 
immediately striking: division seems to have been seen as 
a specific operation, different from all the others. A first 
clue for this is the fact that, while the other operations 
can all be prescribed by simple verbs, division is always, 
at least in this context, prescribed by complex expres-
sions. In particular, the term chu alone cannot prescribe 
a division, contrary to what we have seen earlier for the 
other cluster of texts. And when it is encountered in iso-
lation, it refers in fact to a subtraction. It seems then that 
one can perceive a change in the meaning of the verb chu 
and a change in the practice of division.

These recently discovered documents contain algo-
rithms for square root extraction. But these procedures 
do not determine the roots decimal position by decimal 
position and do not seem to iterate sub-procedures on 
numbers written in a place-value form. Neither do they 
appear to present a relation to a process like that of divi-
sion as we saw in the canons. More generally, no trace 
appears to reveal an interest for the relations between 
the operations.

Finally, none of the algorithms in which we have seen 
the close relation with division and the use of positions, 
such as the resolution of systems of linear or quadratic 
equations, appear, for the moment, among the subjects 
dealt with in these documents.

In conclusion, whether from the perspective of ways 
of working with the processes of calculation or from the 
perspective of knowledge or of the projects that actors 
formed, in these documents we have none of the ele-
ments from the constellation of facts described earlier. 
This suggests another issue of interest which is, in my 
opinion, wholly general. In fact, these new documents 
invite the thought that The Nine Chapters and the other 
canons bear witness to the emergence, no later than the 
1st century of the Common Era, of two closely linked 
things: on one hand, a way of doing mathematics (more 
precisely a way of working with the processes of calcula-
tion and an interest in uniform algorithms) and, on the 
other, new knowledge, among which I include new ways 
of carrying out known operations, several new opera-
tions, a way of understanding the relations between these 
operations and a decimal place-value numbering system. 
Thus, at the same time, a way of working and a body of 
knowledge appear in concert.

When historians of mathematics have become inter-
ested in the activity of mathematics as such, they have, in 
general, studied, with a few exceptions I cannot develop 
here, the history of mathematical knowledge. Yet, the 
phenomena that I have mentioned above suggest that a 

developed on the subject of the relations that link cer-
tain operations and the systematic study, which had been, 
until now, overlooked by historians. In this context, the 
operation of chu division has emerged as pivotal. I have 
approached all these aspects from the basis of a cluster of 
documents originating from Ancient China: the canons 
published with certain commentaries in the 7th century 
and used as textbooks in the official mathematics cur-
riculum.

Recently, two other clusters of mathematical docu-
ments also originating from Ancient China have resur-
faced and a quick observation of the way of doing math-
ematics they bear witness to allows us to raise some very 
interesting questions, both specific and general. I will 
only refer here to the first cluster of documents, directing 
the reader to the article published in the proceedings for 
the operation of the second.

I will speak, therefore, only about documents newly 
provided by archaeology. Since the 1970s, a growing num-
ber of tombs sealed in China in the last centuries before 
the Common Era have been excavated and archaeolo-
gists soon discovered that, in some of them, libraries had 
been interred among the funerary objects supposed to 
accompany the dead person in the afterlife. These docu-
ments provide fresh perspectives on the final centuries 
before the Common Era and have shaken up our knowl-
edge of this period. During the Winter of 1983–1984, a 
first mathematical document, the size of a book, came to 
light among a series of writings of this type. Since then, 
excavations and the antiquities market have produced 
several other similar documents and we can expect new 
finds, all profoundly altering our understanding of the 
history of mathematics in China at the time. For the time 
being, only two of the mathematical texts discovered 
have been published completely (the first in 2001); for 
the others, we can only consult some extracts pending 
their full publication. The conclusions I propose are thus 
fragile and could be contradicted by new discoveries.

Of these documents, those we can study all seem to 
reflect the same way of practising mathematics: in the 
terms that I introduced above, they form the same clus-
ter. Moreover, as far as we can see, the writings have sev-
eral features in common with the canons and their com-
mentaries. We can suppose then that all the documents 
had close historical ties, without, for the moment, being 
able to specify their exact nature. What is important for 
us is that these two clusters of documents also present 
significant differences to each other, which leads me to 
advance the hypothesis that these two clusters bear wit-
ness to different ways of doing mathematics, even if both 
present similarities. For my purposes, I will concentrate 
here on a set of similarities and key differences.

Firstly, like the canons and their commentaries, these 
documents contain no illustrations, being made up solely 
of Chinese characters and punctuation marks. They do, 
however, also refer to counting rods to represent num-
bers and to the practice of laying out numerical val-
ues away from the text. However, no traces have been 
detected of the use of a decimal place-value system for 
writing numbers. On the contrary, a certain number of 
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history of ways of doing mathematics is also meaning-
ful. What is more, these two dimensions (mathematical 
knowledge and mathematical practice) appear to consti-
tute inseparable facets of the same reality. This is what 
we have seen for Ancient China, and I think it is the same 
everywhere and at all times.

I pose the conjecture that these two facets trans-
formed themselves jointly. It is, without doubt, one of 
the fundamental reasons why the description of ways 
of doing could help in the interpretation of writings and 
allow a better understanding of the knowledge to which 
they attest. This close articulation between these two 
types of facts constitutes another reason why the history 
of mathematics should be interested in the description 
of mathematical cultures. After all, ways of doing math-
ematics do not appear from nowhere. They have been 
shaped and transformed by the actors during the pro-
cess of exploring the problems that they sought to solve 
and the questions they pondered. Ways of doing math-
ematics represent one of the results of actors’ research: 
mathematical work thus produces both knowledge and 
practices. This is, in any case, one of the principal motiva-
tions of my plea for the history of mathematics to take 
as a subject of study not only the knowledge but also the 
practices and ultimately the relations that exist between 
one and the other.

I have presented arguments on the value of studying 
the ways of doing mathematics by illustrating my argu-
ments with examples taken from Ancient Chinese docu-
ments. Many other clusters of texts produced closer to 
us, even today, seem to me to call for the same analysis. I 
conclude this article with the wish that the general issues 
that I have formulated inspire discussion and research 
into the mathematical cultures in other periods and in 
other fields, and even cooperation between mathema-
ticians and historians to address contemporary math-
ematical practices in this light. I am convinced that such 
cooperation would be fruitful for the historians and, who 
knows, could provide some interesting insights to today’s 
mathematics.
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Sometimes accidental events have a huge impact on his-
tory. One such event took place 100 years ago. An even-
ing walk of a 29-year-old mathematician resulted in the 
“discovery” of an extremely talented mathematician and, 
consequently, several outstanding results in mathemat-
ics. This meeting has recently been commemorated in 
Kraków.

Steinhaus
Let us start with an introduction of Hugo Steinhaus 
(1887–1972). He studied in Göttingen, where, in 1911, he  
obtained his PhD under the supervision of David Hilbert. 
He was an exceptional person with a broad knowledge 
of different branches of mathematics. A significant part 
of his scientific work involves practical, sometimes very 
surprising, applications of mathematics. He was remark-
ably multi-faceted and was a man of great culture and 
deep knowledge of literature. His aphorisms, remarks 
and thoughts are famous to this day. Unfortunately, most 
of them, including the best, are not translatable. One 
of his thoughts was: “It is easy to go from the house of 
reality to the forest of mathematics, but only few know 
how to go back.” Once, when somebody was decorated 
with a medal, Steinhaus said: “Now I know what to do in 
order to be awarded a medal. Nothing, but for a very long 
time.” He used to say that “a computer is an extremely 
efficient idiot”. He was an accomplished populariser  of 
mathematics. His book “Mathematical Snapshots”, first 
published in 1938, was translated into many languages. 
However, in the second decade of the 20th century, he 
was just a young, well-educated mathematician without 
an occupation. In the Summer of 1916, in the middle of 
World War I, Hugo Steinhaus was spending some months 
in Kraków. This Polish city was then a safe fortress in the 
Austro-Hungarian empire.

A famous meeting
Once, during his evening walk in the Planty Gardens in 
the centre of Kraków, Steinhaus heard the words “Leb-
esgue integral”. At that time, this was a recent idea known 
almost exclusively to specialists. Steinhaus was intrigued. 
He joined the conversation between two young men, 
who turned out to be Stefan Banach and Otton Nikodym. 
They told Steinhaus that they had a habit of evening 
walks and discussing mathematics. In fact, they were usu-
ally talking about mathematics with their friend Witold 
Wilkosz but, this evening, Wilkosz was not with them. 
During the conversation, Steinhaus presented a problem 
he was currently working on. The problem concerned the 
convergence in the first moment of partial sums of the 

Banach and Nikodym on the  
Bench in Kraków Again
Danuta Ciesielska (Institute for the History of Science, Polish Academy of Sciences, Warsaw, Poland) and 
Krzysztof Ciesielski (Jagiellonian University, Kraków, Poland)

Fourier series of an integrable function. A few days later, 
Banach visited Steinhaus and presented to him a correct 
solution of the problem. Then, Steinhaus realised that 
Banach had an incredible mathematical talent. He start-
ed taking care of Banach. The solution of this problem 
was published in the Bulletin International de l’Académie 
Sciences de Cracovie [3], presented by Stanisław Zarem-
ba (1863–1942), the most well known Polish mathemati-
cian of that period. Later, Steinhaus, an author of many 
important papers, used to say that his best mathematical 
discovery was the “discovery” of Stefan Banach.

Banach, Nikodym and Wilkosz before 1916
Who were the three young men who had a habit of even-
ing discussions about mathematics? Let us start with the 
most famous of them, Stefan Banach. 

Banach was born in 
Kraków in 1892. He was 
born out of wedlock and 
took his surname from 
his mother, Katarzyna 
Banach. His father, Ste-
fan Greczek, was a sol-
dier serving in the Aus-
trian army. Entrusted 
into the care of a laun-
dry owner Franciszka 
Płowa a few months 
after birth, Banach was 
brought up by her and by 
her daughter Maria. In 
1902, he entered Gymna-
sium (secondary school) 
No.4 in Kraków. On 

completion of his secondary education in 1910, Banach 
decided to study engineering in Lvov (Lemberg). He 
was interested in mathematics but considered it to be a 
nearly complete science to which very little was left to 
be added. He decided to study in Lvov, as  there was no 
technical university in Kraków. At the outbreak of World 
War I, Banach returned to Kraków. He attended some 
mathematical lectures at the Jagiellonian University and 
enriched his mathematical knowledge with independent 
studies.

Wilkosz, born in 1891 in Kraków, was Banach’s 
schoolmate. Endowed with outstanding mathematical 
and linguistic abilities, he initially linked his future with 
the latter. However, after two years of philological stud-
ies in Kraków, he changed direction to mathematics and 
studied in Turin. In Italy, he prepared his doctoral dis-

Figure 1. Stefan Banach in 1919. 
(Courtesy of the Banach family  
collection [11]).
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sertation under the direction of Giuseppe Peano but, 
due to the outbreak of war, the final exams did not take 
place and Wilkosz had to return to Kraków. He contin-
ued mathematical studies at the Jagiellonian University.  

Nikodym was older than his friends. He was born 
in 1887 in Demycze, a suburb of the small Galician city 
Zabłotów, to a family with Polish, Czech, Italian and 
French roots. He graduated in 1911 from the university 
in Lvov, obtaining the right to teach mathematics and 
physics in secondary schools. He moved to Kraków and 
taught in Gymnasium No.4, the same one that Banach 
and Wilkosz had previously attended. In those days, it 
was usual that, after graduating university, mathemati-
cians would start off teaching at schools and only after 
some years would join the university faculty. 

Banach after 1916
Who knows how the future of Banach would have evolved 
if Steinhaus had not heard the words “Lebesgue inte-
gral”? The result of the accidental meeting in the Planty 
Gardens was many other meetings; Steinhaus had found 
excellent interlocutors and brilliant mathematicians. In 
the Autumn of 1917, Steinhaus left Kraków but he did 
not forget about Banach. Banach and his colleagues con-
tinued to deal with mathematics. After Poland regained 
its independence (the country lost its independence in 
1795), the Polish Mathematical Society was formed in the 
Spring of 1919 in the building at No. 12 St. Anne Street 
that housed the Mathematics Seminar of the Jagiellonian 
University. Banach and Nikodym were among the found-
ers (see Figure 2). Stanisław Zaremba became the first 
president of the society. For more details about the initial 
period of activity of the Polish Mathematical Society, see 
[14]. 

In 1920, Steinhaus was offered a Chair in Mathemat-
ics at the university in Lvov, which, in 1919, was given the 
name Jan Kazimierz University (Jan Kazimierz was the 
Polish king who founded this university in 1661). Through 
Steinhaus’ intercession, Banach was appointed to an 
assistantship at Lvov Technical University. In December 

1920, Banach passed 
his PhD exam at 
the Jan Kazimierz 
University. In his 
PhD dissertation, 
the notion of the 
space known later 
as Banach space 
was introduced 
(the name “Banach 
space” was prob-
ably used for the 
first time by Mau-
rice Fréchet in 1928). 
The paper was pub-
lished in 1922 ([1]). 
In the same paper, 
the famous Banach 
Fixed Point Theo-
rem was proved. In 

1922, Banach was appointed as a professor at the Jan 
Kazimierz University.  

Banach continued research, starting from the work in 
his PhD dissertation. This resulted in the great develop-
ment of functional analysis (the term “functional analy-
sis” only came into use in the 1940s). In 1928, Banach 
and Steinhaus founded the journal Studia Mathematica. 
At the end of the 1920s, Banach proved some theorems 
that are regarded by many authorities as the three basic 
principles of functional analysis: the Hahn–Banach The-
orem, the Banach Closed Graph Theorem and (obtained 
in collaboration with Steinhaus) the Banach–Steinhaus 
Theorem. In 1931, Banach’s fundamental monograph 
on functional analysis Teoria operacyj. Operacje linowe 
(Theory of operations. Linear operations) was published 
and, one year later, its French translation ([2]) appeared. 
For a few decades, this monograph was the most funda-
mental book on functional analysis. 

Banach did not only work on functional analysis. For 
example, he obtained some results in measure theory and 
the foundations of mathematics. In particular, Banach 
and Alfred Tarski proved that it is possible to break 
up a 3D ball into a finite number of pieces that can be 
recombined to form two balls, each of them congruent 
to the initial one. The proof relies on the properties of 
the group SO(3) and the axiom of choice. The theorem 
is nowadays called the Banach–Tarski Theorem on para-
doxical decomposition of the ball. 

For more information on Banach, see [7, 9, 11, 12]. An 
excellent description of mathematical results obtained 
by Banach and his collaborators in Lvov can be found 
in [10]. 

In 1939, Lvov was captured by the Soviet Union and, 
in 1941, Nazi Germans soldiers took Lvov for four years. 
After World War II, Lvov was joined to the Soviet Union 
and Banach planned to go to Kraków, where he was 
offered a Chair at the Jagiellonian University. He died 
just a few days before the planned move. He is buried in 
Lychakov Cemetery in Lvov. 

Banach published about 80 papers and some mono-
graphs and textbooks. It is very interesting that, in the 
Zentralblatt für Mathematik database, Banach is the 
mathematician who is most frequently listed in the titles 
of papers (on 15 April 2017, the score was 23846; the 
main role played here, of course, is Banach spaces, with a 
result of 17821).

Nikodym and Wilkosz after 1916
Wilkosz obtained his PhD from the Jagiellonian Univer-
sity in 1918 and he was later appointed to a chair there. He 
had a very broad range of mathematical interests. Apart 
from important scientific results from various branches 
of mathematics (mathematical analysis, geometry, topol-
ogy and set theory), he was very active in popularisa-
tion and teaching. He wrote about 50 scientific papers 
and several monographs, textbooks and popular books. 
In particular, he was an author of the first monograph 
on topology in Poland ([16]) and the first monograph on 
topology by a Polish author published abroad ([17]). He 
was also a pioneer in radio engineering and broadcasting 

Figure 2. A fragment of the second page of 
the minutes, with the list of the founders of 
the Polish Mathematical Society; Banach 
and Nikodym are listed in positions 9 and 
10. (Archives of the Polish Mathematical 
Society)
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in Poland. He constructed a new radio receiver, known 
later as “Wilkosz’s radio”. In the 1920s, he reformed the 
system of mathematical studies at the Jagiellonian Uni-
versity. He died in 1941 in Kraków.

Nikodym continued teaching in the gymnasium for a 
few years. He did not endeavour to obtain a PhD. He used 
to ask: “Will I be wiser because of that?” Nevertheless, he 
obtained a PhD in 1925 from Warsaw University. Up to 
World War II, he spent some time in Kraków and some 
time in Warsaw. In addition to his intensive research, he 
was writing textbooks and scientific monographs. Man-
uscripts of two monographs prepared for printing just 
before the war were lost after the 1944 Warsaw Uprising. 
He commented: “So I will not have to make corrections” 
and did not write them again. After World War II, he 
moved to the USA and continued his research in a wide 
range of areas, including measure theory and differential 
equations. 

He is also an author of mathematical results of great 
importance. Before World War II, he published more 
than 30 scientific papers and a total of about 100. One 
of his most famous results is the Radon-Nikodym Theo-
rem about the existence of a certain measurable function 
(nowadays often known as the Radon–Nikodym deriva-
tive). The result obtained by Nikodym was published in 
a paper concerning Radon’s integral and the version of 
the theorem obtained by Johann Radon in a special case 
in 1913 [13]. The theorem is also known as the Lebesgue-
Radon–Nikodym Theorem or the Lebesgue–Nikodym 
Theorem. Another famous result connected with the 
name of Nikodym is the Nikodym–Grothendieck 
Boundedness Theorem. It says that if a family of scalar 
bounded, finitely additive measures defined on s-algebra 
A is simply bounded then it is uniformly bounded on A. 
The result of Nikodym from the 1930s was generalised 
about 30 years later by Alexandre Grothendieck. 

Nikodym died in 1974 in Utica. In his tomb, there 
is a mosaic designed by his wife Stanisława, who was a 
mathematician and an artist. For more information about 
Nikodym and his wife, see [5, 15]. 

Nikodym’s name also appears frequently in the titles 
of mathematical papers. According to the Zentralblatt 
für Mathematik database, his score in the titles of papers 

is 783; he is one of the lead-
ing Polish mathematicians 
in this “competition”, with 
a result similar to those of 
Sierpiński, Schauder and 
Marcinkiewicz. 

Banach, Nikodym and 
Wilkosz were invited speak-
ers at the International 
Congresses of Mathemati-
cians: Nikodym in Bologna 
in 1928, Wilkosz in Zurich 
in 1932 and Banach as a 
plenary speaker at the 
ICM 1936 in Oslo and an 
invited speaker in 1928. It 
is interesting that, although 

Banach, Nikodym and Wilkosz were good friends and 
they were discussing mathematics a lot (Banach and 
Nikodym even worked later on similar areas), any two of 
them have never written a joint paper.

A monument
In many cities, statues of people can be seen sitting on 
benches. Such monuments are now quite popular but is 
there a better justification for a commemorative bench 
than the event described here, which had such an effect 
on science? The concept of placing a bench with a statue 
of Banach has been considered several times before but 
the idea has always ended at the concept stage. There 
are many difficulties, as there are four basic problems to 
solve: 

- Finance. Making such an object would cost a lot and 
there is no chance of getting any financial support from 
official sources. 

- Permission. Kraków is a historical city, the Planty Gar-
dens are in the city centre and it is extremely difficult 
to get permission to place a memorial plaque there, 
let alone a monument. For example, presenting math-
ematics to a broad audience in the city centre during 
the 6ECM immediately caused a reaction from the city 
guard (see [4]) – fortunately, permission for “maths 
busking” was then provided (although the formalities 
took a couple of months). 

- Design of the sculpture. Such a monument must be 
beautiful and representative of the 1916 reality. 

- Management of the event. People are needed to man-
age the project (from the concept until the unveiling of 
the monument). This is a very troublesome and time-
consuming task.

Many mathematicians have wondered about the pre-
cise location of the bench where Steinhaus encountered 
Banach? The Planty Gardens is a large park of about 21 
hectares surrounding the historical centre of Kraków. 
The meeting could have happened in many different 
places. In his memoirs and articles about Banach, Stein-
haus does not indicate a precise place. However, after 
careful analysis of the problem, we came to a conclu-

Figure 3. Otton Nikodym in about 
1930. (Courtesy of the Math-
ematical Institute of the Polish 
Academy of Science)

Figure 4. Witold Wilkosz.  
(Courtesy of the Jagiellonian 
University).

Figure 5. The grave of Otton 
Nikodym.  
(Photo by Janusz Łysko)
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sion. Of course, one cannot be sure but it is almost cer-
tain that this meeting happened at the extreme end of 
the Planty Gardens, close to Wawel Castle and the house 
where Banach lived (for details, see [6]). Thus, there was 
a renewed motivation for making a bench memorialising 
this significant event. Moreover, the 100th anniversary of 
the event was approaching. 

In 2014, the Dean of the Faculty of Mathematics 
and Computer Science of the Jagiellonian University 
appointed a special committee to act upon the crea-
tion of the bench. It consisted of seven people: Artur 
Birczyński, Danuta Ciesielska, Krzysztof Ciesielski 
(chair), Małgorzata Jantos, Jerzy Ombach, Piotr Tworze-
wski and Karol Życzkowski. Our idea was to present not 
only Banach but Nikodym as well, sitting on a bench as 
it was in 1916. And now, everyone can come to them and 
join them like Steinhaus did.

Stefan Dousa, an outstanding Polish sculptor, agreed 
to design the monument. Dousa is a professor at the 
Kraków University of Technology and a creator of many 
of the magnificent monuments, plaques and medals in 
Poland, as well as many European countries and the USA. 
Moreover, Dousa likes mathematicians. He had already 
made a memorable medal for the 6ECM (see [8]). We 
got all the required permissions from the city authori-
ties (with great help from M. Jantos, who is a member 
of the City Council). One of the good reasons that per-
mission was granted was that, in this case, a monument 
in the form of figures on a bench was perfectly justified. 
Finally, a sponsor was found. ASTOR, a company that 
provides modern technologies in the fields of industrial 
robotics, IT solutions and technical knowledge through 
training and consulting, agreed to finance the monument. 
The name ASTOR is an acronym for Automatyka, Ste-
rowanie, Transmisja, Oprogramowanie, Robotyka (Auto-
mation, Control, Transmission, Software, Robotics).

Unveiling
It was known in what area of the Planty Gardens the 
bench should be placed and it was Stefan Dousa who 
picked the final location of the bronze monument. It is 
on the way from Wawel Castle to the Main Square, the 
route most frequently used by tourists. The unveiling was 

planned not for the Summer (the exact date of the his-
toric meeting is unknown but it is known that it was in 
the Summer) but in October, after the start of the aca-
demic year. The celebration took place on 14 October 
2016. More than 200 people attended, including many 
high profile guests. Several of them came from abroad. 
Some members of the Council of the European Math-
ematical Society and authorities of the Polish Math-
ematical Society were also present. The monument was 
unveiled by Stanisław Kistryn (Vice-Rector of the Jag-
iellonian University), Stefan Życzkowski (President of 
ASTOR), Monika Waksmundzka-Hajnos from Lublin (a 
niece of Banach) and Banach’s nephew, John Greczek 
from the USA. The film of the ceremony can be seen at 
https://www.youtube.com/watch?v=813R1905hUc. After 
the ceremony, the guests visited the ASTOR Innovation 
Room and were invited for dinner in the CK Browar 
Restaurant. The choice of this location was because the 
restaurant is in the basement of the building where Gym-
nasium No.4 was located 100 years ago. 

In addition to the figures sitting on the bench, the back-
rest of the bench is enscribed with the logo of ASTOR 
and the inscription: “On the 100th anniversary of the 
most famous mathematical discussion at the Planty Gar-
dens.” On the seat of the bench, next to the figures, math-
ematical symbols are carved. We decided that they would 
not be symbols of Banach’s and Nikodym’s best-known 
results but, instead, a formula from the paper in which the 
solution of the problem communicated by Steinhaus to 
Banach at their first meeting was published [3]. 

Moreover, close 
to the bench, there is 
a special plaque (see 
Fig. 8) with informa-
tion (in Polish and 
English) about the 
event in 1916 and 
the figures. 

Now, visiting the 
Planty Gardens in 
this area, one can see 
that the bench is of 

Figure 6. From left to right: Piotr Idzi (Dousa’s assistant),  
D. Ciesielska and S. Dousa in Dousa’s workplace and a plaster model 
of a monument.

Figure 7. The unveiling of the bench. From left to right: S. Dousa, 
M. Waksmundzka-Hajnos, J. Greczek, S. Kistryn and S. Życzkowski. 
(Courtesy of the Jagiellonian University)

Figure 8. The plaque close to the bench.
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great interest. People often sit on it, take photographs 
with Banach and Nikodym, study the inscriptions, etc. 
It is really a great promotion of mathematics. Moreo-
ver, the bench is really marvellous and perfectly made 
by Dousa. The faces of Banach and Nikodym are very 
similar to their photographs dated 100 years ago. As one 
approaches the bench, it almost looks as if there were 
two real human beings talking to each other.

One mathematician, after a first look at the bench, 
commented: “It is obvious that they talk about mathe-
matics.”  
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It is quite impossible to write about the history of the 
Institut Mittag-Leffler (IML) without, at the same time, 
discussing the mathematician who conceived it and after 
whom it is named.1

In writing his obituary, G. H. Hardy noted that  
“[t]here have been greater mathematicians during the 
last fifty years, but no one who has done in his way more 
for mathematics” [10, p. 160]. And, indeed, even though 
he produced quite deep results during his active years, 
Gösta Mittag-Leffler is mostly remembered for his vital 
role in the mathematical community at the turn of the 
century and as the founder of Acta Mathematica, which 
appeared in 1882 for the first time. André Weil aptly 
called Mittag-Leffler’s new journal his deed of true geni-
us [24, p. 12].

Its success as one of the first truly international jour-
nals was partly due to Sweden’s neutrality, making it pos-
sible for French and German mathematicians to publish 
in the same journal roughly a decade after the Franco-
Prussian War [2, 5]. But, even more importantly, Acta was 
a testimony to Mittag-Leffler’s outstanding organisation-
al talent, including his ability to find a number of promi-
nent sponsors, the  Swedish King Oscar II among them. 
And when he married Signe Lindfors the very same year, 
their romantic honeymoon trip through Europe was 
surely dampened by the fact that he was constantly meet-
ing with French and German mathematicians in order to 
secure publications for Acta [2, pp. 6, 8].

Already a decade before, Mittag-Leffler had made 
important contacts in Berlin and Paris, the two foremost 
mathematical centres at the time. It was in May 1872, 
right after he finished his dissertation, that he was award-
ed the Byzantine Grant, which allowed him to travel to 
Central Europe, a trip that proved decisive for the rest of 
his mathematical career [22, pp. 143ff].

In Paris, he got to meet Charles Hermite, from which 
a friendly relationship developed that lasted until the lat-
ter’s death in 1901. An extensive correspondence bears 
witness to that friendship, which was especially impor-
tant for Mittag-Leffler in helping him make connections 
with the French mathematical community and for secur-
ing publications for Acta. While the letters from Hermite 
to Mittag-Leffler were edited and published by Pierre 
Dugac [6–8], the other side of the exchange still exists in 
the IML in the form of drafts, waiting for anyone willing 
to battle with Mittag-Leffler’s difficult handwriting.

The Institut Mittag-Leffler and its  
Archives: A Mathematician and his 
Legacy
Eva Kaufholz-Soldat (Johannes Gutenberg-Universität, Mainz, Germany)

It was in 1881 that Mittag-Leffler first wrote to Henri 
Poincaré, soon after Hermite had called his attention to 
this talented young mathematician, who had just finished 
his doctoral thesis under his direction. Their subsequent 
letters along with other archival materials relating to 
Poincaré at the IML are without doubt among the bet-
ter known holdings there. In 1999, Philippe Nabonnand 
(Poincaré Archives, Nancy) edited and published this 
correspondence. Unlike many others, Mittag-Leffler 
kept his letters to Poincaré on a strictly professional lev-
el, whereas for Poincaré it is the most regular and exten-
sive scientific correspondence that has been preserved 
[18]. As a result, their symbiotic relationship is very well 
documented. From the very beginning, Mittag-Leffler 
recognised Poincaré’s potential and he would continue 
to promote him throughout his career. 

He also hoped that Poincaré would play a role for 
Acta similar to the one Niels Henrik Abel had so impor-
tantly played for Crelle’s Journal für die reine und ange-
wandte Mathematik. In the late 1820s, Abel’s publications 
had helped launch this fledgling journal, which quickly 
became one of the most renowned mathematical publi-
cations of its time [14, p. 199]. Mittag-Leffler was not to 
be disappointed. Indeed, many of Poincaré’s most impor-
tant papers would appear under his editorship, such as 
his publications on Fuchsian functions and, of course, his 
now famous contribution on the n-body-problem, which 
won the prize established in honour of King Oscar II of 
Sweden. At first, however, it was overlooked that Poin-
caré’s original paper, published in Acta in 1889, contained 
such a serious error that the issue had to be reprinted. 
Poincaré reworked that article and, in the new version, 
he presented what could be considered a first description 
of chaotic behaviour, even though this concept would 
only be formulated much later, in 1960, when Edward 
Lorenz introduced modern chaos theory [1]. Scans of 
some of the documents concerning this dramatic episode 
in the history of modern mathematics can be found on 
the IML’s homepage, together with a short overview of 
the events.2 Unfortunately, no other documents are avail-
able online as yet, nor is there an index of all the material 
that can be found on-site (this would be very helpful).

According to Mittag Leffler, it was partly due to Her-
mite’s influence that he met Weierstraß for the first time. 
Unlikely as it may seem, the French mathematician sup-
posedly advised him to go to Berlin to attend his lectures, 
calling him the “master of us all”. Not long after his arrival 

1 My grateful thanks to both Mikael Rågstedt and David E. 
Rowe for their valuable help and suggestions for this article. 2 http://www.mittag-leffler.se/library/prize-competition.
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there in 1875, Mittag-Leffler wrote to his former teacher 
Hjalmar Holmgren that he had nowhere “found so much 
to learn as here”. This was mainly due to Weierstraß, who, 
together with Leopold Kronecker and Eduard Kummer, 
had led the Prussian capital into what would later be 
called the “golden era” of Berlin mathematics. Still, his 
account was not all praise, as he described Weierstraß’s 
manner of lecturing as lying “beneath all criticism, and 
even the least important French mathematician, were he 
to deliver such lectures, would be considered completely 
incompetent as a teacher”. Nevertheless, he was deeply 
impressed by the clarity of his thought and the systematic 
approach he took [19, pp. 62f].

It was under Weierstraß’s influence that Mittag-Leff-
ler produced his most noteworthy mathematical result: 
the theorem that bears his name was, in fact, closely 
linked to the master’s programme on the foundations of 
complex analysis [23]. Afterwards, he would dedicate a 
large part of his life to spreading and defending the prin-
ciples that Weierstraß had established as standards for 
mathematical research. It is therefore not surprising that 
he based his own lecture course on Weierstraß’s ideals 
when he became the first professor of mathematics at the 
newly founded högskola in Stockholm. 

Weierstraß seldom published his latest results, pre-
ferring to present them in his lecture courses. Recognis-
ing this, from the time he came to Berlin in the 1870s, 
Mittag-Leffler made diligent efforts to take notes him-
self but also collect lecture notes prepared by other 
students. Others certainly did so as well; Weierstraß’s 
lectures were lauded for their innovative character and 
studied by aspiring mathematicians who longed to get 
their hands on good written versions of them. But no one 
would manage to assemble more of these lecture notes 
than Mittag-Leffler, who eventually owned a collection 
of around 50 of them, some prepared by different tran-
scribers who attended the same course[20, p. 7].

In fact, Mittag-Leffler’s passion as a lifelong collector 
of mathematical literature and memorabilia is one of the 
reasons that the IML is so unique today. Not only did he 
purchase almost all the important mathematical publica-
tions and mathematical journals printed during his life-
time – which can still be found in the IML library, usually 
in complete sets – he also acquired the correspondence 
between some of the most eminent mathematicians in 
history, for example, letters written by and to Carl Gustav 
Jacob Jacobi, most of the latter written by Adrien-Marie 
Legendre. Occasionally, this passion for owning some-
thing from the hand of a personal hero resulted in rather 
odd purchases, such as a poem by Louis Cauchy or his 
book of household accounts. Over time, he also acquired 
an impressive collection of roughly 1500 books print-
ed before 1800, including several first editions, such as 
Archimedes’ Opera (1544) and Galilei’s Dialogo (1632) 
and Discorsi (1638), as well as Newton’s Principia (1687) 
and Opticks (1704). At some point, the famous explorer 
Adolf Erik Nordenskiöld presented Mittag-Leffler with 
a very special gift, the first incunable of Euclid’s Elements 
from 1482, which also happens to be the first printed book  
to include pictures. Since Mittag-Leffler already owned 

it, there are now two copies available to the researcher. 
One might, in fact, compare this rare version with any of 
the various other early editions and translations of the 
Elements that can be found on-site.

Another unusual part of his library is the so-called 
Boncampagni Collection, named after its creator. Much 
like Mittag-Leffler, Baldassarre Boncompagni Ludovi-
si, Prince of Piombino (1821–94), began his career as 
a mathematician but is remembered today mainly for 
his role as a bibliophile and promoter of the discipline. 
He, too, relied on his contacts with other influential 
men of the time, most notably Pope Pius IX. After the 
1840s, he began to take a deep interest in the history of 
mathematics, founding the first journal devoted to this 
field, Bullettino di bibliografia e di storia delle scienze 
matematiche e fisiche, which appeared from 1868 to 1887. 
He also assembled a large library on the history of the 
exact sciences, much of it consisting of medieval abbaci 
and early treatises of arithmetic. To do so, he relied on a 
large network of contacts who kept him informed about 
such works, which he then purchased whenever possible. 
When he could not, he often employed artists who were 
responsible for producing duplicates [15, pp. 257–260]. 
These exquisite copies were designed so as to be as true 
to the originals as possible, even to the point of having 
imitation creases, cracks or missing pieces painted into 
them. Four years after Prince Boncampagni’s death, Mit-
tag-Leffler bought this unique collection at an auction in 
1898. While this short description gives a vague idea of 
this collection,3 the books have been sitting on shelves, 
untouched  and awaiting future research.

Mittag-Leffler’s ability to collect such expensive 
books reflects the fact that he proved to be a rather suc-
cessful entrepreneur [22, passim]. Additionally, his wife 
Signe contributed a considerable dowry to the marriage, 
as she was heir to the significant fortune her grandfather 
had made in the tobacco business [9, pp. 363f]. Together, 
the Mittag-Lefflers could thus dispose of assets that far 
exceeded those of a typical professor. Such means also 
enabled them in 1890 to begin building their impressive 
mansion, nestled in the rolling hills of Djursholm, just 
north of Stockholm [22, p. 391]. This served as their home 
for the rest of their lives, even though two of its three 
floors were designed to be libraries from the very begin-
ning. Moreover, these were never conceived as being 
for private use alone, as becomes clear in the ex-libris 
carefully glued into every book: Sibi et amicis – for me 
and my friends. In this respect, the villa’s future life as a 
research institute was foretold.

Mittag-Leffler had long been driven by a desire not 
only to make a name for himself in the mathematical 
community but to fashion an enduring legacy, a longing 
that only grew the older he became. Shortly before his 
60th birthday in 1906, he wrote about his future plans 
in his diary, including arrangements for “financing for 
the legacy that I want to leave behind” [22, p. 504]. Thus, 
the establishment of a mathematical institute that would 

3 Items 502-1,223 on pp. 95-141 in the Catalogo della biblioteca 
Boncompagni, Vol. I, Rome, 1898.
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bear his name after his death fitted perfectly with his 
mindset.

Probably inspired by the wish to realise this dream 
but also to ensure that his own ideas would not be mis-
construed, he set these down a decade later in his last will 
and testament. Therein, he designated that on his 70th 
birthday, he would bequeath his villa and fortune to the 
Royal Swedish Academy of Sciences, under the condition 
that they use both to found a mathematical institute.4

That date fell in the middle of the Great War so the 
official opening was postponed until 1919. Nevertheless, 
it remained a pure formality [9, p. 364] and it was only 
long after Mittag-Leffler’s death in 1927 that his dream 
would become a reality. After the IML had lain more or 
less dormant for several decades, discussions about clos-
ing it for good began to surface. But, luckily enough, Len-
nart Carleson had different ideas and he was in a posi-
tion to act on them. In 1966, he had proven a conjecture 
by Nikolai Luzin about the convergence of certain types 
of Fourier series, a result so impressive that he received 
numerous job offers from universities in the United 
States. To discourage him from relocating, the Swedish 
government awarded him a special professorship, which 
allowed him to work wherever he wanted. And so he 
chose to go to the IML, taking up residence there a mere 
year later. From there, he began efforts to secure the nec-
essary financial means and he was able to play the role 
of Prince Charming, whose kiss reawakened the Sleeping 
Beauty of the old villa, which could now begin to bloom 
as an international research institute. 

In doing so, Mittag-Leffler mysteriously came to assist 
him from beyond the grave [11, p. 1053f]. As it happened, 
the cellars of his villa were filled with countless complete 
sets of Acta Mathematica, some of them probably intend-
ed for a special purpose. For Mittag-Leffler had not only 
bequeathed his fortune to establish the IML, he had also 
designated how this was to be spent. Part of the funding 
was to be earmarked for stipends to support young math-
ematicians from the Nordic countries and, if their work 
proved to be of exceptional quality, to reward them with 
gold medals and a complete set of the journal [22, p. 584]. 
Now, however, at a time when universities were expand-
ing worldwide, the Institut had the opportunity, instead, 
to sell several hundred of these, thereby contributing to 
its solid financial basis as an added bonus for Carleson’s 
endeavours [11, p. 1053].

Ever since that time, the villa has served as an inter-
national research institute, hosting numerous longer 
mathematical programmes, now supplemented with con-
ferences during the Summer. Mathematical topics have 
regularly been set by the directors for up to one year, 
during which leading experts and young research schol-

ars working in the chosen field are invited to attend. But, 
under Carleson’s directorship, the IML has also become 
an important repository of historical documents. While 
it would take until the 1990s before Reinhard Bölling 
systematically ordered and catalogued the archival 
materials on-site [20, p. 9], 20 years earlier Ivor Grattan-
Guinness had taken a first look at the treasures hidden in 
various boxes and cabinets. He was delighted to find that 
he could now determine – at least partly – “the where-
abouts, or fate, of Weierstraß’s Nachlass” [9, p. 365]. Lat-
er, Gert Schubring discovered a small number of Weier-
straß’s letters in Berlin [21].

That most of Weierstraß’s personal papers are now 
located in a country that played no role in his career is, of 
course, due to Mittag-Leffler, who procured them after 
the Nachlass had passed through many hands. After Karl 
Weierstraß died in 1897, his estate was initially handled 
by his former student and confident Johannes Knob-
lauch, at the request of Weierstraß’s sister Elise, but was 
later given to their brother Peter, who passed away in 
1904. None of the Weierstraß siblings had (legitimate) 
children,5 so there was no official heir. Thereafter, Mit-
tag-Leffler contacted H. Schulz, who was apparently the 
husband of Peter’s housekeeper during the last months 
of his life and acted as a custodian for his estate. Mittag-
Leffler persuaded him to sell him “a small mountain” of 
correspondence, some original writings, diplomas, offi-
cial documents and paintings of the Berlin mathemati-
cian in his name. And, thus, a significant part of Weier-
straß’s Nachlass was moved to his home in Djursholm. In 
later years, it even grew larger as other mathematicians 
– Eugen Netto, Georg Cantor, Paul du Bois-Reymond 
and Leo Königsberger – also agreed to hand over their  
respective correspondence with Weierstraß to Mittag-
Leffler [20]. 

That Mittag-Leffler tried to save as much as possible 
of Weierstraß’s papers can only partly be explained as a 
wish to ensure these documents would not get lost over 
time. As has already been mentioned, he modelled his 
own lecture courses on those given by the Berlin mathe-
matician. He did so, however, not only to spread the prin-
ciples of his idol but also in order “to appropriate a part 
of the legacy of the great Weierstrass for himself” [14, p. 
118]. So his motivation, once again, had much to do with 
fashioning his own place in the history of mathematics. 
Already in the early 1880s, he had been strengthening his 
bonds with Weierstraß, particularly when, through much 
personal effort, he managed in 1883 to appoint the lat-
ter’s “favourite pupil”, Sofia Kovalevskaya, at the hög-
skola in Stockholm. 

Ever since, Kovalevskaya has attracted a great deal 
of attention: not only was she one of the first women to 
hold an official teaching position at a university, she was 
also a writer with connections to current radical political 
movements. Whereas her lecture notes and other math-

4 While Mittag-Leffler suffered serious financial setbacks dur-
ing the latter stages of his life, in part because his financial 
advisors took advantage of him, there are no sources con-
firming that this was motivated by an imminent loss of his 
possessions due to any depreciation of investments in Ger-
man bonds during World War I, as claimed earlier by Ivor 
Grattan-Guinness [9, p. 364].

5 While none of the Weierstraß siblings officially had any chil-
dren, there is a certain possibility that Karl fathered a son out 
of wedlock with the widow of his best friend Carl Borchhardt 
[3].
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ematical papers, as well as various manuscripts from 
her literary ventures, have remained largely untouched, 
much of her vast Nachlass at the IML has been used in 
biographical studies, most notably by Ann Hibner Kob-
litz and Pelageya Kochina [12, 13]. Another important 
publication stemming from her personal papers were the 
letters Weierstraß wrote to her, which were published by  
Reinhard Bölling in 1993 [4].

Still, Bölling was not the first to publish from this cor-
respondence, as Mittag-Leffler himself had already cited 
letters from it in recounting the life of Weierstrass at the 
ICM held in Paris in 1900. It was only toward the end of 
his life, however, that Mittag-Leffler actually published 
several of the letters that would later find their way into 
Bölling’s collection. 

One reason for the delay was a promise he had made 
to Weierstraß. Deeply struck by the death of his very 
dear friend, the Berlin mathematician had burned all her 
letters to him but he allowed Mittag-Leffler to keep the 
ones he wrote to her under the condition that the Swede 
would not publish these before he died. Mittag-Leffler 
kept true to his word: not until 1923, more than 25 years 
after Weierstraß’s death in 1897, did he publish excerpts 
from them. These appeared in an article in volume 39 
of Acta that was based on Mittag-Leffler’s lecture from 
1900 [17]. 

That volume, like the preceding one, had been dedi-
cated to the lives and scientific achievements of Karl 
Weierstraß, Henri Poincaré and Sofia Kovalevskaya, all 
of whom were, by then, long since deceased. As Mikael 
Rågstedt, the current librarian of the IML, has noted: 
“Mittag-Leffler throughout his life showed a special 
fascination with an exclusive group of mathematicians, 
[often behaving like] a knight who stood up for them and 
tried to restore them to their rightful scientific position.” 
Certainly, Mittag-Leffler proved his loyalty to these 
three famous figures all his life but, as Rågstedt also not-
ed, “chivalry is not the only qualification of a knight, and 
Mittag-Leffler also knew how to make use of his idols as 
armour and lances for his own ambitions” [20, p. 2]. In 
this spirit, his efforts to promote the careers of Poincaré 
and Kovalevskaya were not just a little self-serving. More 
striking still were his efforts to make himself the legiti-
mate heir to Weierstraß’s legacy by way of the biographi-
cal genre, an aim he pursued for decades with increas-
ing zeal [14, p. 118]. This culminated in a long essay on 
his idol’s life contained in [16], for which he could rely 
on those personal papers out of the Nachlass he had 
acquired almost 20 years earlier.

While Mittag-Leffler never finished the extensive 
biography of the Berlin mathematician he had hoped to 
write, it would certainly be wrong to claim that Weier-
straß’s Nachlass has been completely ignored since his 
time. Quite a few items from it have been cited in vari-
ous publications since its rediscovery by Grattan-Guin-
ness. Nevertheless, it still awaits a proper assessment as 
a whole. This would certainly shed more light on the life 
and work of one of the most important mathematicians 
of the 19th century, including the school he founded in 
Berlin, which is still lacking a comprehensive study.

Much the same could be said about another major 
resource found at the IML, one which had already 
impressed André Weil when, as a fellow of the Rocke-
feller Foundation, he visited Mittag-Leffler in 1927, just 
months before the latter’s death. What he discovered was 
Mittag-Leffler’s correspondence with “the great ones of 
the past half-century; […] all there to keep me company 
while everyone was asleep, opening up for me the secret 
recesses of their minds” [24, p. 11]. Here, one can find 
letters from the likes of Georg Cantor, Marie Curie, 
Gottlob Frege, G. H. Hardy, David Hilbert, Camille Jor-
dan, Felix Klein, Sophus Lie and Paul Painlevé. As would 
be expected, much of this deals with matters concern-
ing Acta, as Mittag-Leffler was always on the lookout 
for possible publications, very often with a remarkable 
instinct for groundbreaking advances.

As Mittag-Leffler had a tendency to keep records of 
everything, drafts of his own letters are also available in 
most cases, making it possible to reconstruct a fairly com-
plete picture of his correspondence in many instances. 
While quite a few of these documents have been cited 
in various publications, most recently in Arild Stub-
haug’s biography of Mittag-Leffler [22], a full study of 
this correspondence would certainly be a most reward-
ing undertaking. For, as Weil rightly noted, Mittag-Lef-
fler had a talent for turning colleagues into friends and 
the “rare quality of sympathy in the bonds of friendship 
which Mittag-Leffler had succeeded in establishing with 
men so diversely gifted, inducing them to confide their 
innermost thoughts to him with such abandon” is cer-
tainly striking [24, p. 11]. Thus, the letters bear witness to 
important advances in the discipline in a technical sense 
but also provide insights into what was going on behind 
the scenes, allowing for a rich and multifaceted picture of 
a larger part of the mathematical community at the time.

For security reasons, the originals of these letters  have 
recently been moved to the Royal Swedish Academy of 
Sciences in Stockholm. Earlier, Mittag-Leffler’s private 
materials (about 80 shelf metres), most notably including 
his diaries, were transferred to the National Library. Still, 
the IML has kept high quality copies of the scientific 
letters, which are easily accessible to anyone who feels 
inspired to follow in Weil’s footsteps. As the IML also 
provides accommodation for researchers, the grand man-
sion in serene Djurs holm offers ideal conditions either 
to study these or to tackle other historical papers, such 
as those in Weierstraß’s Nachlass. And this can be done 
in virtually the same atmosphere that Mittag-Leffler 
enjoyed, breathing the spirit of the 19th and early 20th 
centuries in his spacious but charming rooms, furnished 
mostly with the original chairs, lamps and shelves of the 
day. But one can do that while taking advantage of the 
perks of the digital age, provided in most discrete ways 
so as not to disturb the enchanting atmosphere of a place 
that seems to have fallen out of time.
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The mathematical community has suffered a heavy loss 
with the death of one of the world’s greatest mathema-
ticians and theoretical physicists Ludwig Faddeev, who 
passed away on 26 February after a heavy illness. Despite 
his ailing health, Faddeev remained active until the last 
months of his life. In August 2016, he attended a special 
meeting, the 23th European Conference on Few-Body 
Problems in Physics, held in Aarhus (Denmark), where 
a new award to recognise distinguished achievements in 
few-body physics, the Faddeev Medal, was inaugurated. 
This proved to be the last honour, among the many oth-
ers, that he received in his lifetime.

Professor Ludwig Faddeev is widely known for his 
contributions to mathematics and theoretical phys-
ics, which have largely reshaped modern mathematical 
physics. His work on quantum field theory prepared the 
ground for the gauge fields theory revolution of the 1970s. 
His contributions to the many-body problem in quantum 
mechanics and to the inverse scattering problem belong 
to the deepest achievements in these areas. His pioneer-
ing work on the quantum inverse scattering method 
started a wide new field of research, ranging from solv-
able models in quantum field theory to quantum groups.

For more than 60 years, Professor Faddeev was asso-
ciated with the Steklov Mathematical Institute. In 1976–
2000, he was serving as Director of the Leningrad (later, 
St. Petersburg) branch of the Institute and Head of the 
Laboratory of Mathematical Problems in Physics, where 
he brought together a score of his pupils and colleagues. 
Although they are now dispersed over several countries 

Ludwig Faddeev (1934–2017) – 
His Work and Legacy
Irina Aref’eva (Steklov Mathematical Institute, Moscow), Michael Semenov-Tian-Shansky (St. Petersburg 
Branch of the Steklov Mathematical Institute and Université de Bourgogne, Dijon, France), and Leon Takhtajan 
(University of Stony Brook, USA)

and continents, the Faddeev school is still highly united 
and plays a prominent role in modern mathematical 
physics.

Early years
Professor Faddeev was born in 1934 in Leningrad (now St. 
Petersburg) into a family of prominent Soviet mathema-
ticians. His mother Professor V. N. Faddeeva was among 
the pioneers of computational methods and, for many 
years, headed the Laboratory of Computational Methods 
of the Steklov Institute in Leningrad. His father Professor 
D. K. Faddeev was one of the best Soviet algebraists; he is 
particularly remembered for his contributions to homo-
logical algebra, Galois theory and representation theory. 
His university teaching has shaped several generations 
of Soviet algebraists. He was also a distinguished musi-
cian and a brilliant pianist. The choice of the rather rare 
name Ludwig for his elder son reflected the parents’ hope 
that he would one day become a professional musician. 
This hope would not materialise because of the hardships 
of wartime during his childhood but Ludwig still had a 
profound knowledge of classical music. Together with his 
father, he played Bruckner’s and Mahler’s symphonies 
(in a four-hands transcription) and his favourite compos-
ers were Berlioz and Richard Strauss.

The younger years of Faddeev were a time when the 
country was recovering from the ravages of war and also 
a time of great hope after the death of Stalin. Among 
his generation, there is a remarkable number of first-rate 
mathematicians: Arnold, Berezin, Maslov, Novikov and 
Sinai, to mention just a few. This spectacular explosion 
of talent was, to a great extent, due to a very simple cir-
cumstance: in this time of still tough ideological controls, 
mathematics was a domain of freedom that naturally 
attracted bright young people. Another crucial point was 
the solid scientific tradition that survived the turmoil of 
revolution and the repressions of the 1930s.

One important decision Faddeev took as a 17-year-
old youth was the choice of the Physics Department of 
Leningrad University. At the time, his father was Dean 
of the Mathematics Department and Ludwig wanted to 
make his own way. The Physics Department had a bril-
liant tradition in theoretical physics and especially in 
general relativity and in quantum mechanics (then only 
25 years old!), marked by such names as A. A. Friedmann 
and V. A. Fock. The higher mathematics course, which 
was supervised by Academician V. I. Smirnov, was direct-
ly oriented towards the needs of quantum theory, with an 
emphasis on operator theory, spectral theory of differen-

Ludwig Faddeev. Aarhus University, August 2010.
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tial operators, etc. Starting from 1954, the mathematical 
education of the young theorists was mainly entrusted 
to Professor O. A. Ladyzhenskaya, then the youngest 
and most brilliant professor of the Chair of Mathemat-
ics. Before that, the Chair of Mathematics at the Phys-
ics Department, created by Academician Smirnov in the 
1930s, was mainly considered an auxiliary one. Now, for 
the first time, it was given an independent status and was 
allowed to have its own students, give special courses and 
supervise diploma work. Faddeev was thus in the very 
first group of students who defended their university 
theses in mathematical physics. Already in 1954, Pro-
fessor Ladyzhenskaya had organised a special learning 
seminar in quantum field theory, where Faddeev was one 
the main speakers. This seminar shaped his early inter-
est in mathematical problems of quantum field theory. 
Professor Ladyzhenskaya also became Faddeev’s thesis 
adviser during his PhD studentship at the Leningrad 
Branch of the Steklov Mathematical Institute. Her por-
trait remained on Faddeev’s writing desk in his study at 
the Steklov Institute up to the last day of his life.

First papers: quantum scattering and the inverse 
problem
The first published papers of Faddeev dealt with poten-
tial scattering and spectral decomposition for Schröding-
er operators with continuous spectrum. His concise proof 
of the dispersion relations for the scattering amplitude 
was included in the famous Landau and Lifshitz text-
book on quantum mechanics. In his PhD thesis, he gave 
a complete solution of the inverse scattering problem 
for the Schrödinger operator on the line. This work was 
written in the aftermath of the fundamental results on 
inverse scattering due to I. M. Gelfand, B. M. Levitan 
and V. A. Marchenko, who had solved the inverse scat-
tering problem for the radial Schrödinger equation 
(which arises from the three-dimensional Schrödinger 
equation after a separation of variables). The case of the 
Schrödinger equation on the line is slightly more diffi-
cult because of the multiple continuous spectrum. Over 
a decade later, this paper proved to be of crucial impor-
tance as it contained all the background of the future 
inverse scattering method in the theory of integrable sys-
tems. In the course of this study, Faddeev also prepared a 
comprehensive review of quantum inverse scattering. At 
the invitation of Academician N. N. Bogolyubov, it was 
submitted at the inauguration meeting of the Laboratory 
of Theoretical Physics in Dubna, in the presence of Gel-
fand, Levitan, Krein, Marchenko and other big names; its 
written version, published in 1959 in Uspekhi, became a 
standard reference in the field.

Quantum three-body problem
The next big subject Faddeev chose was the quantum 
three-body problem. At the time, he was already heavily 
attracted to the intricate and complicated problems of 
quantum field theory but believed that, before launch-
ing into the insecure waters of QFT, it was important to 
resolve a really difficult technical problem. While the dif-
ficulties of the quantum three-body problem are of an 

entirely different nature than those of its famous clas-
sical counterpart, it represents a real challenge because 
of the complicated structure of the continuous spec-
trum. Before Faddeev’s work, only some partial results 
had been obtained by physicists (under very restrictive 
and not quite self-consistent assumptions on the inter-
action potentials). Faddeev’s original approach to this 
problem was based on experience he had gained in his 
work with the so-called Friedrichs model in perturbation 
theory and also in the study of an instructive example 
from QFT, the Thirring model. The key idea consists of 
a clever rearrangement of the integral equations associ-
ated with the multi-body scattering problem (which basi-
cally result from the Hilbert identity for the resolvent of 
the Schrödinger operator) into a much more manage-
able and symmetric system for the so-called T-operators 
(generalising the pairwise scattering amplitudes for 
different particles). This new system of integral equa-
tions, called Faddeev equations, is already Fredholm, in 
contrast to the initial equation for the resolvent. It has 
become the basis of efficient numerical computations in 
various applications (ranging from quantum chemistry to 
nuclear physics). Faddeev’s work on the quantum three-
body problem triggered tremendous activity in the area 
(pursued up to the present day); his own decision, how-
ever, was definitely to move to other subjects. After the 
publication of his now famous monograph on three-body 
scattering (1963, English translation 1965), while some of 
his pupils continued working in this direction for another 
decade or more, he decided that it was now time to attack 
QFT.

Quantum gauge theory
The bid was, in fact, a very difficult one since QFT was 
positively out of grace in the Soviet Union at the time. 
The great success of quantum electrodynamics in the late 
1940s and early 1950s was followed by a decade of fruitless 
attempts to apply QFT to strong interactions. Still more 
importantly, QFT was plagued by the so-called “zero 
charge paradox”, discovered by Landau and Pomeran-
chuk and believed to point out the logical inconsistency 

First Conference on Quantum Solitons. Leningrad, October 1978.
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of quantum electrodynamics and QFT in general. In his 
short note dedicated to the memory of Wolfgang Pauli, 
written shortly before the tragic car accident that put an 
end to his scientific career, Landau insisted, with a ref-
erence to this paradox, that the Hamiltonian method in 
field theory was now totally dead and needed to be bur-
ied (“with all the honours it deserves”). Due to the brev-
ity of life, he concluded, we cannot allow ourselves the 
luxury of spending our time on problems that do not lead 
to new results. Landau’s words were considered by his 
pupils in the 1960s as the Teacher’s Testament and when, 
in 1966, Faddeev, together with his pupil V. N. Popov, 
obtained a breakthrough in quantum Yang–Mills theory, 
their paper could not be published in any of the Soviet 
scientific journals nor sent abroad (for which a positive 
opinion of the Nuclear Physics Department of the Acad-
emy of Sciences was necessary). A short note by Faddeev 
and Popov was finally published in Physics Letters (with 
a year delay), while the full text was made available only 
as a preprint of the Kiev Institute of Theoretical Phys-
ics (with hand-written formulae); its English version only 
appeared in 1973 at the time of the big boost triggered by 
the gauge fields revolution of the early 1970s.

The choice of Yang–Mills theory reflected Faddeev’s 
characteristic non-conformism but also his fundamental 
belief that a good physical theory should have math-
ematical beauty. His original idea was to understand the 
quantisation of general relativity, a theory of incontest-
able great beauty but also of notorious difficulty. Yang–
Mills theory seemed, at the time, just a kind of useful 
model example. We know now that this example proved 
to be an exceptionally successful one: it allowed the gen-
eralisation of quantum electrodynamics by unifying elec-
tromagnetic and weak interactions, and the building of 
a consistent theory of strong interactions. Geometrically, 
Yang–Mills theory is, in fact, very close to general relativ-
ity (while the latter deals with the tangent bundle of the 
spacetime, Yang–Mills theory brings into play abstract 
vector bundles). All these exciting developments had 
already taken place in the 1970s; the key discoveries, due 
to G. ’t Hooft, D. Gross, F. Wilczek and D. Politzer, were 
that Yang–Mills theory is renormalisable and free of the 
zero charge paradox. The culmination of this “gauge 
fields revolution” was the creation of the “standard mod-
el” in high energy physics. The earlier results of Faddeev 
and Popov provided both the technical base and the con-
ceptual base for these developments, marked by several 
Nobel prizes.

Turning back to the Faddeev–Popov paper, it is worth 
stressing the conciseness and clarity of their approach, 
which was to become the basic language of the new the-
ory. The new QFT formalism they proposed was, for the 
first time, entirely based on the ample use of functional 
integrals. Functional integrals had already been intro-
duced into quantum mechanics by R. Feynmann in the 
1940s but, for some strange reason, he never used them 
in quantum field theory, even though, as we understand 
now, they provide the easiest and most straightforward 
way to deduce his famous diagram expansion. In the 
early 1960s, Feynmann also examined the quantisation 

of Yang–Mills theory (he, too, regarded it as a model 
example before addressing quantum gravity). Feynmann 
discovered the inconsistency of the naive perturbative 
expansion for Yang–Mills theory but did not manage 
to resolve this problem. The use of functional integrals 
makes all computations completely transparent. The 
main point is to determine the correct symplectic meas-
ure on the quotient phase space of the theory (passing 
to the symplectic quotient accounts for the gauge sym-
metry of the theory, which is, in fact, its key property). 
This brings into play a specific regularised determinant 
of a differential operator, itself represented as an aux-
iliary Berezin functional integral over anti-commuting 
variables. The associated extra “non-physical” particles 
are the famous Faddeev–Popov ghosts that soon became 
sort of a mascot of the new method.

As the ideas of quantum field theory were spreading 
over new areas of mathematics (in particular, represen-
tation theory and topology), the force and flexibility of 
the Faddeev–Popov approach were fully confirmed once 
again. The refined “method of ghosts” developed into a 
convenient cohomology technique directly connected to 
supersymmetry concepts (the BRST method).

Automorphic functions and three-dimensional 
inverse scattering
The work on quantum Yang–Mills theory is probably the 
best known of Faddeev’s results of the late 1960s, although 
it is by no means the only one. In the aftermath of his 
fundamental works on perturbation theory for operators 
with continuous spectrum, Faddeev addressed the spec-
tral theory of the automorphic Laplace operator on the 
Poincaré upper half-plane (the standard model of the non-
Euclidean plane). The key problem that attracted much 
attention at the time was the famous trace formula found 
by A. Selberg, which is particularly non-trivial for discrete 
subgroups with a non-compact fundamental domain. At 
I. M. Gelfand’s initiative, Faddeev applied to this problem 
the methods he had developed in his study of scattering 
theory and perturbation theory for operators with con-
tinuous spectrum. This resulted in a non-arithmetic proof 
of the spectral theorem for the automorphic Laplacian, 
followed by a proof of the Selberg trace formula (in joint 
work with his PhD students A. Venkov and V. Kalinin). In 
another development, Faddeev (together with B. Pavlov) 
explored the non-stationary scattering problem for the 
automorphic wave equation, which allows the interpreta-
tion of the zeros of Riemann’s zeta function as quantum 
mechanical resonances.

Simultaneously, Faddeev obtained a crucial advance-
ment in the three-dimensional inverse problem for the 
Schrödinger operator. The key difficulty here was to find 
an adequate substitute for the so-called Volterra trans-
formation operators, which play a prominent role in the 
treatment of the one-dimensional inverse problem. This 
was done in a 1965 paper but a complete exposition had 
to wait for about a decade because of intensive work on 
other subjects. Although these results are less widely 
known, Faddeev considered them as his best analytic 
results.
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Classical integrability
Another exciting area was the theory of integrable sys-
tems, which was started by the famous paper of Gardner, 
Greene, Kruskal and Miura (1967) on the Korteweg–de 
Vries equation. Faddeev learned about these develop-
ments a few years later in 1971, during a conference 
on the inverse scattering problem. As it turned out, the 
technique he had developed in his PhD thesis had now 
become directly relevant for the new method. His first 
major contribution to the new theory was his joint paper 
with V. Zakharov, which established that the KdV equa-
tion is completely integrable in a technical sense.

The ideological importance of this paper was immense: 
it provided a first ever non-trivial example of an infinite-
dimensional, completely integrable system and triggered 
a complete change of the paradigm in the study of non-
linear evolution equations. From the very beginning, 
Faddeev’s interest in the study of these equations was 
fuelled not by their role as useful models in mechanics or 
hydrodynamics but rather by their possible application to 
quantum field theory. The original KdV equation is not 
quite appropriate in this respect because of its non-rela-
tivistic kinematics but very quickly Faddeev came upon 
a truly exciting example, the now famous Sine–Gordon 
equation, which he studied together with his young stu-
dent L. Takhtajan. Soliton solutions for this model may 
be interpreted as genuine relativistic particles and hence 
the particle content of the corresponding QFT model is 
much richer than suggested by naive perturbation theo-
ry. The Sine-Gordon equation was the first indication of 
the important role of classical quasi-particle solutions in 
quantum field theory and, more generally, of how rich 
correctly chosen non-linear QFT models could be.

The way to a full justification of these bold predic-
tions proved to be quite long and difficult. By that time, 
Faddeev had created, at the Leningrad Branch of the 
Steklov Institute, an independent Laboratory of Math-
ematical Problems in Physics, which gathered his young 
students around him. With some pride, Faddeev defined 

his own role in this small team as that of a playing coach. 
Many results and key developments of the next two dec-
ades were largely due to their collective work. Faddeev’s 
weekly seminar at the Steklov Institute became a focus 
of research activity in various aspects of integrability, 
in QFT and in infinite dimensional Lie groups and Lie 
algebras. This versatile activity and lecture courses that 
Faddeev delivered in the 1970s, notably at the Summer 
School in Les Houches, have contributed substantially 
to the fundamental reshaping of mathematical physics 
in general, with its new emphasis on interdisciplinary 
research and the increased role of geometric and alge-
braic ideas.

The quantum inverse scattering method
Besides the study of various examples of integrable 
systems, the mid-1970s were also marked by the first 
attempts to understand quantisation of integrable models 
in QFT, at first at the semiclassical level. This demanded 
a good deal of heavy technical work, which was needed 
to confirm the stability of solitons, contrary to the initial 
scepticism of theoretical physicists. This work prepared 
the way for a major breakthrough at the end of the dec-
ade, when a new systematic method for solving quantum 
counterparts of classical integrable systems was created. 
This was a truly fundamental discovery that united ideas 
from the classical inverse scattering method, the recent 
developments in quantum statistical physics (due mainly 
to R. Baxter) and the old technical insights of quantum 
mechanics (the Bethe ansatz). The keystone of the new 
method was the beautiful algebra based on the notion of 
the “quantum R-matrix”. One of the important examples 
of a quantum R-matrix was extracted from an old paper of 
C. N. Yang and hence the main algebraic identity satisfied 
by quantum R-matrices was given the name of quantum 
Yang–Baxter identity (a name by which it became uni-
versally known). Faddeev’s programme talk with a sketch 
of the quantum inverse scattering method was delivered 
in May 1978; within a year, all his major conjectures were 
confirmed, with key contributions from Faddeev’s pupils 
and collaborators: E. Sklyanin, L. Takhtajan, P. Kulish and 
others. One of the highlights of the new method was the 
solution of the quantum Sine–Gordon model.

The new algebra, focused on the quantum Yang–Bax-
ter identity, soon led to the discovery of new algebraic 
objects that have subsequently been baptised quantum 
groups. A first example of a quantised universal envel-
oping algebra is due to P. Kulish and N. Reshetikhin; 
further examples and appropriate axiomatics are due to 
V. Drinfeld. Quantum groups started a new chapter in 
non-commutative algebra, with numerous applications 
ranging from knot theory and low-dimensional topology 
to combinatorics and representation theory. A few years 
later, Faddeev, together with Reshetikhin and Takhtajan, 
developed an original approach to the quantisation of 
Lie groups and Lie algebras based entirely on the use 
of quantum R-matrices. While the notion of quantum 
groups has won tremendous popularity, it should be not-
ed that it only formalised the ‘easy part’ of the quantum 
inverse scattering method, its true core certainly being 

During the conference “Mathematical Physics. Its Past, Present and 
Future”. Euler Mathematical Institute, St. Petersburg, March 2014.
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the algebraic and analytic technique used to solve the 
spectral problem for quantum Hamiltonians. In its sim-
plest version, this was the algebraic Bethe ansatz invent-
ed by Faddeev, together with Sklyanin and Takhtajan; it 
was followed by the more elaborate techniques of the 
functional Bethe ansatz and quantum separation of vari-
ables, introduced by Sklyanin a few years later. Active 
work in this direction is still going on up to the present 
day.

Quantum anomalies and the search of knotted 
solitons
The rapid development of the quantum inverse scatter-
ing method had, to a certain extent, pushed aside the 
four-dimensional physics in the work of Faddeev’s labo-
ratory. Still, there are quite a few important results that 
were obtained in this direction as well. In the 1980s, there 
was the joint work of Faddeev and S. Shatashvili on quan-
tum anomalies (in particular, the Gauss law anomaly in 
Yang–Mills theory), which resulted in the discovery of a 
new, interesting cohomology class and an associated abe-
lian extension of the three-dimensional current group. 
Faddeev was particularly fond of these results, since they 
brought to bear, rather unexpectedly, the discoveries in 
homological algebra of his father Professor D. K. Fad-
deev from the 1940s.

One more research direction was the search of non-
trivial, soliton-like solutions of non-linear equations in 
three and four dimensions, based on the use of the Hopf 
invariant. In the 1990s, Faddeev’s collaborator A. Niemi 
confirmed numerically the existence of stable “knotted” 
solutions of the modified Skyrme model proposed by 
Faddeev. These solutions play a key role in the descrip-
tion of the hypothetical “glueball” solutions of the Yang–
Mills equations related to one of the possible scenarios 
of quark confinement.

Later years
The decay of the Soviet Union and the deep crisis of the 
country brought about profound changes in the composi-

tion of the Faddeev group. Many of his former students 
and collaborators were dispersed over various laborato-
ries and universities all over the world. There were also 
several early losses to deplore, provoked by the stresses 
of the situation in the 1990s. Those who stayed at the 
Steklov Institute were spending a good share of their 
time abroad as well. There were still quite a few gifted 
students but they too could only find decent jobs abroad. 
In the early 1990s, the support provided by the Soros 
Foundation was of great help but gradually it became 
clear that fundamental research and science in general 
are by no means a priority of the new Russian authori-
ties.

During these years, Faddeev travelled a lot but his fun-
damental desire was to stay at home. He declined, in par-
ticular, an invitation to head the Institute of Theoretical 
Physics at Stony Brook after the retirement of C. N. Yang. 
His constant preoccupation was to save mathematics in 
Russia, keeping afloat both the Steklov Institute and the 
Mathematics Division of the Russian Academy of Sci-
ences. Over the years, this task was getting more and 
more painful, causing much distress and disillusionment. 
He largely returned to a more solitary style of work char-
acteristic of his younger years, in contrast to the team 
style of the 1980s. Still, some new fruitful collaborations 
emerged during this period, along with quite a few old 
ones. Among his important discoveries of this period, 
one should mention the concept of modular duality for 
quantum groups. This concept, which emerged from the 
study of integrable quantum models in discrete space-
time, opened a totally new and very promising chapter 
in representation theory of quantum groups. While early 
work focused mainly on the highest weight representa-
tions of quantum groups, Faddeev’s work started the 
study of principal series representations, which proved 
to be extremely rich in various interdisciplinary connec-
tions, with links to non-commutative geometry, finite dif-
ference operators, new classes of special functions, etc. 
Research in this area is now actively pursued by Fad-
deev’s pupils.

Faddeev’s work in mathematics and physics won him 
wide international recognition. He has been awarded 
many prestigious awards, among them the Dirac Medal 
(1995), the Max Planck Medal (1996), the Euler Medal 
(2002), the Henri Poincaré Prize (2006), the Shaw Prize 
(jointly with V. Arnold, 2008) and the Lomonosov Med-
al (2014). He was elected to leading academies includ-
ing the Royal Academy of Sweden (1989), the National 
Academy of the USA (1990), the French Academy of 
Sciences (2000) and the Royal Society (2010). Since 1976, 
he has been a full member of the Soviet (now, Russian) 
Academy of Sciences. In 1986–1990, he served as Presi-
dent of the International Mathematical Union.

Faddeev’s legacy retains all its importance for current 
research as well as for the future of mathematical phys-
ics. One striking example of this is given by the recent 
discovery of unexpected links between Yang–Mills the-
ory and the quantum inverse scattering method. In the 
early years of gauge fields theory, there existed a some-
what romantic hope that Yang–Mills theory itself was 

An excursion to the French Alps. Aiguille du Midi, March 2015.
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integrable. This proved to be false but one of its versions, 
supersymmetric Yang–Mills theory, is indeed close to 
integrability or exact solvability. As discovered recent-
ly by Shatashvili and Nekrasov, the description of the 
vacuum sector in supersymmetric Yang–Mills theory (in 
dimension 4) directly leads to quantum integrable sys-
tems (both of standard and of new types). All the main 
ingredients of the quantum inverse scattering method 

are naturally incorporated into this new approach. This 
fascinating link between the seemingly very remote 
aspects of Faddeev’s legacy is a spectacular confirma-
tion of its depth and vitality. Our feelings now may be 
expressed by the line of an old Roman poet: letum non 
omnia finit. Faddeev’s works and ideas remain a source 
of inspiration for all of us and are destined for a long and 
fruitful life in posterity.

Irina Aref’eva has worked in the Labora-
tory of Mathematical Physics of the Len-
ingrad Branch of Steklov Mathematical 
Institute since 1970. Since 1977 she is a sci-
entific researcher and later Professor at the 
Departement of Theoretical Physics of the 
Steklov Mathematical Institute in Moscow. 

Her research areas are non-perturbative approaches in 
Quantum Field Theory and Superstring theories.

Michael Semenov-Tian-Shansky has 
worked in the Laboratory of Mathemati-
cal Problems of Physics of the Leningrad 
(now, St.Petersburg) Branch of Steklov In-
stitute since 1972. He heads this Laboratory 
since 2016. Since 1993 he was Professor at 
the Université de Bourgogne (since 2016, 

Professor Emeritus). His research area is Representation 
Theory of Lie Groups and the Theory of Classical and 
Quantum Integrable Systems.

Leon Takhtajan has worked in the Labora-
tory of Mathematical Problems of Physics 
of the Steklov Institute since 1973. Since 
1992 he is Professor of Mathematics at 
Stony Brook University, Stony Brook, NY, 
USA. He is also working at the Euler In-
ternational Mathematical Institute. His re-

search area is the Theory of Classical and Quantum Inte-
grable Systems with application to complex and algebraic 
analysis.

Steklov Institute, St. Petersburg, September 2010. From left to right:  
I. Aref’eva, S. Shatashvili, P. Kulish, L. Faddeev, L. Takhtajan,  
A. Volkov.

At a workshop in Chamonix, March 2015. From left to right:  
L. Faddeev, A. Volkov, L. Takhtajan, A. Alexeev, M. Semenov-Tian-
Shansky.
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Mathematics AND Music?1,2
Personal Views on a Difficult Relationship

Christian Krattenthaler (Universität Wien, Austria)3

Preamble

〈 Robert Schumann (1810–1856): “Aveu” from  
Carnaval op. 9 〉 4

Mathematics and music – stress on “AND” – question 
mark, this is our topic today. In order to enter the subject: 
when I am involved in a conversation, and the person 
with whom I am talking discovers that, on the one hand, I 
am professor of mathematics at the University of Vienna 
and, on the other hand, have been a concert pianist in a 
previous life, then it happens frequently that this person 
spontaneously exclaims:

“Mathematics and Music – they are so close to each 
other!” 

To which I reply: 

“Is that really so?” 

What do I want to say? Frankly, I have always had big 
troubles with the topic “Mathematics AND Music”, 
namely when mathematics and music are brought 
together, are set in relation to each other, or when one 
merely searches for connections between them. Yes, it 
is correct, tones and intervals obey strict mathematical 
rules, due to laws of physics; but does this establish a con-
nection between mathematics and music? Yes, it is also 
true that Johann Sebastian Bach frequently wove num-
bers into his compositions.5 But is this mathematics? It 

is also correct that compositions are often built in rather 
complex ways, that they have complicated forms. But is 
this mathematics in music? Conversely, if mathematics – 
here I mean structure – becomes too dominant in music, 
as for example in serialism, where all parameters – pitch, 
rhythm, volume, etc. – are subject to strict rules, is the 
result still music?

Without further ado, I confess: I cannot see any direct, 
substantial connections between mathematics and music. 
In particular, I never have understood what mathematics 
has to do with, say, that touching confession, declaration 
of love6 from Robert Schumann – I suppose dedicated to 
his beloved Clara –, which I played at the beginning. If 
you had come to hear my answer to the question of the 
title of my talk: here it is! You could then safely go home. 
Of course, that would be too cheap, and, moreover, we 
would not have addressed a further question. 

Let me rst take a step back. Not very long ago, a 
prominent visitor said to the Dean of the Fakultät für 
Mathematik of the University of Vienna:

“I hear that you are chairing a department of pianists!” 

What did this visitor want to say? If you go through the 
list of members of the Fakultät für Mathematik – myself 
among them7 –, then it is indeed remarkable how many 
of them are enthusiastic pianists. (The dean I refer to is 
one of them, by the way.) Moreover, there are others who 
play other instruments, there are those who are passion-
ate choir singers, and there are others who do not play 
an instrument or sing but instead are devoted opera- and 

1 This is the English translation of the (slightly extended) 
script of a talk-performance that the author gave on May 16, 
2013 in the math.space in the museums’ quarter in Vienna. 
Since the author’s performances of the piano pieces cannot 
be reproduced on printed paper, for each piece he provides a 
hint for an excellent performance.

2 The German original appeared in Int. Math. Nachr. 224 
(2013), 29–60. The English translation appears here with the 
kind permission of the Austrian Mathematical Society.

3 I am deeply indebted to Theresia Eisenkölbl, who designed 
the computer presentation for this talk, parts of which have 
been incorporated into this article. I also thank Reinhard 
Winkler, for a careful reading of a rst version of the manu-
script, and for numerous corrections and insightful com-
ments. Last, but not least, I am extremely grateful to Tomack 
Gilmore for signicant and essential help with the English 
translation of the German original.

4 I did not find anything on YouTube which really convinces 
me. Tal-Haim Samnon’s performance (http://www.youtube.
com/watch?v=EN2gUDaHqvo) matches the character, but 
drawls sometimes too much.

5 It is well documented, for instance (see, for example, Ludwig 

Prautzsch, Die verborgene Symbolsprache Johann Sebastian 
Bachs, Band 1: Zeichen- und Zahlenalphabet der kirchen-
musikalischen Werke. Merseburger, Kassel 2004), that Bach 
put numbers of psalm verses into his passions, at the places 
where these are cited. However, this remains concealed from 
a listener since this cannot be “extracted” by just listening; 
it can only be discovered and substantiated through a care-
ful study of the score. This was an extraneous task that Bach 
chose to take upon himself.

 The number that plays the biggest role in Bach’s work is the 
number 14. In a sense, it is Bach’s signature mark (in the 
same way as painters sign their paintings by putting their sig-
nature marks on them). In order to understand this, one has 
to observe that the number 14 is the sum of the positions 
of the letters B, A, C, and H in our alphabet (to be precise, 
2+1+3+8=14). To mention an example, the number of pieces 
in the “Musicali sches Opfer” (“Musical Offering”) is exactly 
14 (if one counts correctly, of course, as one of the canons can 
be performed in two different ways).

6 “Confession”, “declaration of love” – this is the meaning of 
the French word “aveu”.

7 I was not dean then…
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about them. So, what is the definition of mathematics, 
what is the definition of music? 

Music is … arises … comes about, when tones are pro-
duced … when tones and noise are produced (I must 
not forget noise!). So, if these tones and noise sound, 
together … 

I am sorry, I see that this does not really work. Let us try 
something easier! Mathematics – this is very simple: 

Mathematics is … art of calculation. Mathematics deals 
with numbers, … geometric objects, … more abstract 
objects – such as for instance algebraic structures and 
such – and … 

No, no, this makes no sense! 
Actually, what I am doing here is completely stupid. 

Today one no longer racks one’s brains, today one has 
Wikipedia! So, what does Wikipedia say about music?8 

Music is an art form and cultural activity whose medi-
um is sound and silence, which exist in time. The com-
mon elements of music are pitch (which governs melo-
dy and harmony), rhythm (and its associated concepts 
tempo, meter, and articulation), dynamics (loudness 
and softness), and the sonic qualities of timbre and 
texture (which are sometimes termed the “color” of a 
musical sound). 

Well … I would say: not completely wrong … But I don’t 
think that this is convincing. What does Wikipedia say 
about mathematics?9 

Mathematics is the study of topics such as quantity 
(numbers), structure, space, and change. 

Is this really mathematics? 
What do I want to prove via this somewhat clumsy exer-

cise? Of course, it is impossible to precisely say, to precisely 
define what music is, and it is equally impossible to pre-
cisely define what mathematics is (even if this may seem 
a little strange to the mathematical layman). Very good!

Nevertheless, I can precisely say what I mean when 
I talk here of music, when I talk here of mathematics. 
When I talk here of music, then I mean the art form 
music; art wants to express something, music wants to 
convey something to the listener with the help of tones 
and noise, it wants to give something to the audience to 

concert goers. In other words, the proportion of mem-
bers of the Fakultät who have a great affinity for music is 
much higher than average. The same holds if one looks at 
other mathematics departments.

On the other hand, it is also surprising to see how 
many musicians also have an affinity for mathematics. 
A prominent example is the young pianist and com-
poser Kit Armstrong, who, as is well known, studied with 
Alfred Brendel in London, but, on the side, also com-
pleted a mathematics degree at the Université “Pierre et 
Marie Curie” in Paris. 

Hence, the question that presents itself at this point 
is: 

“Why are there so many mathematicians who also 
have a strong affinity for music, and why are there so 
many musicians who also have a strong affinity for 
mathematics?” 

On a superficial level, we could phrase this question as 
follows: 

“How do we imagine the typical mathematician – I 
mean, the typical sharp thinker, the typical intellectual?” 

I would say that the portraits in Figure 1 match this image 
perfectly. You agree, don’t you? We can cross-check: 

“How do we imagine the typical musician – I mean, the 
typical sensitive artist?” 

Exactly like the portraits in Figure 2, right? 
For those who are not so familiar with the names 

“Wiles” and “Perelman”, I should perhaps explain: 
Andrew Wiles, a British mathematician, is famous for 
having solved a 300 year old problem that goes by the 
name of “Fermat’s Last Theorem”. We shall hear more 
about this later. On the other hand, Grigori Perelman, a 
Russian – very eccentric – mathematician, is famous for 
the proof of a 100 year old conjecture of Henri Poincaré 
on four-dimensional geometry. 

Before we attempt to answer the above question, 
we should perhaps first make precise what we are talk-
ing about. I am a mathematician, and in mathematics all 
objects must first be precisely defined before one can talk 

Figure 1. Gustav Mahler, Dmitry Shostakovich, Arnold Schönberg. Figure 2. Andrew Wiles, Grigori Perelman.

8 http://en.wikipedia.org, as of 12 November 2016.
9 http://en.wikipedia.org, as of 12 November 2016.
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“Why are there so many mathematicians who also 
have a strong affinity for music, and why are there so 
many musicians who also have a strong affinity for 
mathematics?” 

To give it away, the thesis which I shall defend here is:

Both Mathematics AND Music are food for the soul 
AND the brain. 

Maybe there is a region in our brain which resonates –
responds to – particularly when emotion and intellect 
come together, form a symbiosis. Maybe this provides the 
explanation for the phenomenon which is touched upon 
in the above question. In the following, I shall attempt to 
substantiate this thesis.

Soul in music
You will say: “This is like carrying coals to Newcastle! 
Of course, emotion plays an enormously important role 
in music.” You are obviously completely right. Neverthe-
less, I want to say a few words about this, because not 
only can it have many different facets, but also it gives me 
the opportunity to play the piano a little… 

You remember: music wants to express something, 
wants to transmit something to the audience. This may 
be many different things. For example, music may simply 
spread good cheer…

〈 Scott Joplin (1867/1868?–1917): Maple Leaf Rag 
(beginning) 〉11 

or bad…

〈 Robert Schumann (1810–1856): Pantalon et  
Colombine (beginning) from Carnaval op. 9 〉12 

Music can be heartbreakingly sad…

〈 Franz Schubert (1797–1828): Andantino (beginning) 
from the Sonata in A major, D 959 〉13 

or transcendentally joyful… 

take home. In order to make this absolutely clear: when 
I randomly press a few keys of a piano and then maybe 
bang the lid, then these were a few tones and one noise. 
This was not music; it did not say anything, and it did not 
want to say anything. 

When I talk here of mathematics, I mean the science 
of mathematics; that is, we are talking of discovering new 
grounds, of solving mathematical problems, of investi-
gating and studying mathematical phenomena, and of 
revealing the structure and connections lurking behind. 
In order to completely clarify this point: when I random-
ly type mathematical numbers and symbols on the page 
(like in Figure 3), this is not mathematics.

I can now precisely explain my difficulties with the 
topic “Mathematics AND Music”. When Bach weaves 
numbers into his compositions, then these are numbers, 
this is not mathematics. Moreover, these numbers do 
nothing for the message of the work as it is transmit-
ted to the audience. When compositions take on com-
plex forms, then, from the point of view of the science 
of mathematics, this is either trivial or completely with-
out interest. When mathematics – structure – starts to 
dominate music – when, in the extreme case, we program 
a computer to produce (“compose”) tones and then 
eagerly await the result, then out will come tones but no 
music. This will convey nothing. What music shall do for 
mathematics, is entirely unclear anyway.10 Thus for me 
the interesting question is not that of the connections 
between mathematics and music, but rather:

10  If one ignores that the reconstruction and analysis of sound 
documents pose very interesting and challenging mathemati-
cal problems; see for example: A. Boggess and F. Narcowich, 
A first course in wavelets with Fourier analysis, second edition, 
John Wiley & Sons, Inc., 2009. However, also here we are not 
talking of a true substantial relation or connection between 
mathematics and music: the substance lies entirely on the side 
of mathematics, music as an art form is not affected here.

 In this context, one could also think of some colleagues who 
have apparently better ideas if they have music playing on 
the side. I do not belong to these: bad music is annoying, and 
good music – it enthrals me, I have to listen to it, I can’t think 
about mathematics at the same time. In any case, this leads us 
somewhat off-course…

 Closest to a true connection between mathematics and music 
is research as done, for example, by Gerhard Widmer (even 
if his work rather belongs to Artificial Intelligence; see http://

Figure 3.

www.cp.jku.at/people/widmer/), who, with the help of mathe-
matical models, investigates specialities and peculiarities of in-
terpretations of pianists, or, on the other hand, tries to “teach” 
computers how to “interpret” musical scores agogically – vary-
ing the tempo as the piece moves along – “correctly” – on a 
piano. He is however well aware of the limits of such studies 
and experiments, even if it is not clear where these lie exactly.

11 Absolutely worth listening to is the pianola roll recording 
played by Scott Joplin himself: http://www.youtube.com/
watch?v=pMAtL7n_-rc.

12 Arturo Benedetti Michelangeli knows how to perfectly 
portray a squabbling couple (who then reconcile, only to 
begin squabbling again, etc.): http: //www.youtube.com/
watch?v=LgpDYQcmZB4.

13 The “measure of all things” concerning Franz Schubert’s 
work for piano is, without any doubt, Alfred Brendel: http://
www.youtube.com/watch?v=Il6-lZYDpqY.
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“nice” (as well as the word “beautiful”). On this point, I 
shall digress a little. 

Not long ago, I attended a performance of the opera 
“Mathis der Maler” by Paul Hindemith. The opera is fin-
ished, the applause has ceased and then I hear one person 
saying to her neighbour: “Very nice!” I was quite taken 
aback. What was that? One must know that “Mathis der 
Maler” is set during the peasants’ wars in Germany. This 
was a very dark epoch. The peasants revolted against the 
abuses that were visited upon them by their landlords, 
and the latter crushed this revolt mercilessly. During the 
opera, one of the leaders of the peasants’ movement is 
cruelly slaughtered openly on-stage. At the heart of the 
story lies the conflict of conscience of the artist Mathis 
over how to behave during these times. Should he con-
tinue to work on his canvases and sculptures, or should 
he “engage himself in politics”? Finally, he joins the peas-
ants’ revolt and, of course, achieves nothing. At the end 
of the opera, a voice announces that the artist should 
stick to his art, but this is not really convincing. Clearly, 
Paul Hindemith projects his own personal conflict over 
how to behave as an artist in the face of the Nazi regime 
into this opera. The music reflects all of this. It is disturb-
ing, very intelligent, but one cannot characterise it as 
“nice.” Bluntly: there are very few pure major chords in 
this opera… 

I want to drive this particular point home: 

Music does not want to be nice! 

What I mean is: music wants to say something, wants to 
express something to a listener. This may be accompa-
nied by beauty, but then beauty is not an end in itself, it 
is always a means to an end. But it need not be accom-
panied by beauty. “Sacre de Printemps” by Igor Stravin-
sky is eruptive, explosive, but it is not “nice” or “beau-
tiful”. The last movement of the “Great Sonata for the 
Hammerklavier” in B flat major, op. 106, by Ludwig van 
Beethoven, the movement containing the fugue, is many 
things – grand, bold, unprecedented –, but it is certainly 
not “nice” or “beautiful”. In fact, one has to wait for a 
hundred years until again a piece is written which con-
tains similar harmonic abrasiveness. Even in the work 
of Johann Sebastian Bach one cannot call many of his 
compositions “nice”, since frequently consistent progres-
sion of voices is more important than “nicely sounding” 
harmonies. When saying this, I have in mind some of the 
canons in the “Goldberg Variations”, each of which has 
its distinctive character, but which are not always “nice”. 

Hence, when, after a performance of “Mathis der 
Maler”, I hear: “Very nice!”, then I am strongly remind-
ed of the celebrated standard phrase of the “alte Kaiser” 

〈 Franz Schubert (1797–1828): Impromptu A flat 
major, D 899, Nr. 4 (end) 〉14 

Music may radiate elegance, and what better accomplish-
es this than a waltz by Chopin?

〈 Frédéric Chopin (1810–1849): Grande Valse  
Brillante E flat major, op. 18 (beginning) 〉15 

We come to humour in music. This is an entire topic in 
itself. The grand master of humour in music was with-
out any doubt Joseph Haydn. All of you know his most 
famous joke: that sudden fortissimo chord from the entire 
orchestra in his “Surprise Symphony”. There, as you all 
will recall, the second movement begins with the most 
trivial theme that one can imagine, and, as if that were 
not enough, this theme is repeated! It is understandable 
that one nods off a bit at this point, before, suddenly, the 
orchestra roars off completely without warning. Today, 
we are used to quite a bit, however at the time the effect 
was certainly enormous … I want to draw your atten-
tion to a little detail that is not that obvious at first sight. 
Joseph Haydn grew up in deepest Lower Austria, later 
living in Vienna and in Eisenstadt in Burgenland.16 This 
joke, however, represents17 typical British humour: it is 
told “with a straight face”. After that fortissimo chord, 
one constantly – and nervously – awaits further conse-
quences as the movement continues (for instance, in the 
form of further shock effects…). But, no: nothing happens 
at all, the music continues as if nothing had occurred… 

Normally, however, humour in music is of a finer 
nature. Usually, the expectations of the listener are led 
astray, and it is in this manner that humourous effects 
are produced. A nice example for this is the first of 
the Humoresken by Max Reger. This piece has quite a 
graceful main theme, which however cannot develop as 
it would like. This main theme dominates two short sec-
tions at the beginning and at the end that frame a middle 
section, which considers itself as slightly too important, 
and thereby also creates an amusing impression. 

〈 Max Reger (1873–1916): Humoreske D major,  
op. 20/1 〉18 

I have a final point to offer: Tour de Force! I think you 
know: the thunderous hammering of keys in the Liszt 
Sonata, for example…

〈 Franz Liszt (1811–1886): Sonata b minor (excerpt)  〉19 

If you listened attentively then you will have observed 
that I studiously avoided one word in particular: the word 

14 Alfred Brendel: http://www.youtube.com/watch?v=V0z7m 
UV5rSc

15 Inimitable in his elegant, natural style of playing is Arthur Ru-
binstein: http://www.youtube.com/watch?v=laSh3D_77ZM, 
even if he does not take “brillante” too strictly…

16 A rural region of Austria to the south-east of Vienna.
17 It is fitting that that symphony is one that Haydn wrote for 

London.

18 Marc-André Hamelin does quite well in http://www.youtube.
com/watch?v=ba5js057WGM.

19 I like a recording from the Salzburg Festival, of which I possess 
a CD and in which Emil Gilels plays extraordinarily. On You-
Tube there exists a recording in three parts that is not quite as 
good: http://www.youtube.com/watch?v=7yhGSrn3idI, http://
www.youtube.com/watch?v=gyQ-MnjRvsE, http://www.you-
tube.com/watch?v=EKUAFRosm48.
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down in order to let others read and check it – Wiles did 
that; the result was an article of 200 pages, which itself 
was based on previous work by numerous other authors 
–, and the writeup must be submitted to a scientific jour-
nal for publication – Wiles also did that –, after which 
referees carefully verify this proof. During this process, it 
was discovered after a short while that Wiles’ proof con-
tained a gap that he was unable to fill. It needed another 
two years until Wiles, in joint work with his former stu-
dent Richard Taylor, succeeded in repairing this hole. In 
a BBC documentary,24 Andrew Wiles says the following 
about the moment when he realised that now all difficul-
ties are overcome: 

[Wiles is visibly deeply moved and speaks haltingly] 
When I was sitting here, at this desk – it was a Mon-
day morning, September 19 – and I was trying con-
vincing myself that it did not work, seeing exactly what 
the problem was, when suddenly, totally unexpectedly, 
I had this incredible revelation. I realised [that] what 
was holding me up was exactly what would resolve the 
problem that I had in my Iwasawa theory attempt three 
years earlier. 
It was–. it was the most – the most important moment 
of my working life … [At this point, Wiles is finally no 
longer able to continue; the scene is faded out.] 
It was so indescribably beautiful, it was so simple and 
so elegant … – and I just stared in disbelief for 20 min-
utes …. – then during the day I walked to our depart-
ment, I keep coming back to my desk, looking to see, it 
was still there, it was still there… 

Impressive, isn’t it? Contrary to widespread perception, 
mathematics seems to be a highly emotional activity. I 
noticed various emotions, including everything from 
“heartbreakingly sad” – at the point when the construc-
tion of the proof was in danger of collapsing – up to 
“transcendently joyful” – at the point when Wiles real-
ised that he has now mastered all difficulties. You may 
argue that Wiles is so moved because it was him who first 
solved this famous problem. This is certainly a compo-
nent. However, it falls short of the full truth. Wiles also 
says: “This was so indescribably beautiful, so elegant!”. 
Mathematics must have other qualities than just being 
“dust-dry” and “abstract”. We should hence discuss some 
of these qualities in greater depth.

As I have already said, once a mathematician has 
proved a fantastic theorem, then this proof must be writ-
ten down and be submitted for publication, whereupon 
the corresponding article is examined. The referees do 

Franz Joseph,20 who used to apply it whenever he was 
confronted with cultural intrusions: 

“Es war sehr schön, es hat mich sehr gefreut!”21 

For somebody, who apparently did not have any affin-
ity for culture, this was seemingly the best he could say 
about it… 

Let us return to the actual subject of this essay. 

Soul in mathematics 
For non-mathematicians, this will look like a pretty 

difficult topic. After all, we have all learned in high school 
that mathematics is a dust-dry, abstract matter, which is 
about applying recipes that have been known for centu-
ries to more or less intelligent exercises, and hoping that 
one has selected the correct recipe… (For the vindica-
tion of my mathematics teacher, I must say that I did not 
learn this in high school.) Anyhow, I believe that on the 
topic of “soul in mathematics” we should hand over to 
the earlier mentioned Andrew Wiles.

As I have already said, Wiles is famous for having 
proved “Fermat’s Last Theorem.” The statement of this 
theorem can be understood by any high school student, 
and I shall therefore present it here.

Theorem (Wiles, Taylor 1995). (Fermat’s Last Theorem) 
Let n be a natural number which is at least 3. Then there 
are no natural numbers22 x; y; z such that 

xn + yn = zn. 

Pierre de Fermat scribbled this assertion over 300 years 
ago into the margin of a page of an exemplary of Dio-
phantos’ book “Arithmetica”.23 In order to increase the 
suspense, he also added that he has found a “truly won-
derful” proof of this, but that the page margin was not 
wide enough to hold this proof. Since then, many very 
clever people racked their brains about this problem. As 
a matter of fact, much of number theory ignited itself 
on exactly this problem. However, for over 300 years 
nobody could find a proof of Fermat’s assertion. We may 
therefore safely assume that Fermat did not really have 
a proof, in any case not something that we would accept 
as a proof nowadays. It was a big sensation when Andrew 
Wiles announced at the end of a series of lectures that he 
gave at the Isaac Newton Institute in Cambridge in 1993 
that he had found a proof. Now, in mathematics it is not 
sufficient to just announce that one has found the proof 
of a theorem (as Fermat did). The proof must be written 

20 Franz Joseph I. (1830–1916), Emperor of Austria 1848–1916.
21 It was very nice! I enjoyed it very much!
22 In order to avoid any misunderstanding, when I speak of 

“natural” numbers, I mean the numbers 1, 2, 3,…, which 
corresponds to the original meaning of the word “natural”. 
Nowadays, unfortunately, one learns in school that the “natu-
ral numbers” consist of the numbers 0, 1, 2,… This may in-
deed be handy in some situations but it is simply a perver-
sion of the word “natural”, since 0 is without any doubt not a 
natural number.

23 The background/context of this assertion is the sharp con-
trast to the situation for n = 2: in that case, there are infinitely 
many solutions to the equation x2 + y2 = z2 in the natural 
numbers x, y, z, which can be precisely characterised and 
which are known as “Pythagorean triples”. Two of these we 
know from high school: 32 + 42 = 52 and 52 + 122 = 132.

24 The complete documentary can be seen at http://www.you-
tube.com/watch?v=7FnXgprKgSE. The cited passage ap-
pears roughly 5 minutes before the end. The very beginning 
of the documentary is also remarkable…
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the one hand, divide this number and, on the other hand, 
must appear among the prime numbers 2, 3, 5, 7, 11, 13, …, 
1031. (Remember that we assumed that these are all the 
prime numbers!) Let p be such a prime factor. p cannot 
equal 2 since the above number is visibly an odd num-
ber. But p can also not equal 3 since 3 does not divide a 
number of the form 3X + 1, of which the above number 
is an example. For an analogous reason, the prime fac-
tor cannot equal 5,…, and it cannot equal 1031. Hence, 
this cannot have been all the prime numbers.   

Now you will object: “This is all fine, however this is not 
a rigorous – valid in generality – mathematical proof.” 
After all, 1031 is just one special prime number. You are 
right, but the rigorous proof looks exactly the same. The 
only thing that needs to be done is to replace 2, 3, 5, …, 
1031 by symbols: p1, p2, p3, … , pn. 

Proof. Let us suppose that there are only finitely many 
prime numbers, say, p1, p2, p3, p4, p5, p6, … , pn. 

We now consider 

p1 · p2 · p3 · p4 · p5 · p6 · … · pn + 1: 

This (huge) number can be decomposed into a prod-
uct of prime factors. Each of these prime factors must, 
on the one hand, divide this number and, on the other 
hand, must appear among the prime numbers p1, p2, 
… , pn. (Remember that we assumed that these are 
all the prime numbers!) Let p be such a prime factor. 
p cannot equal p1 since p1 does not divide the num-
ber above. But p can also not equal p2 since p2 does 
not divide the above number. For the same reason, 
the prime factor cannot equal p3, …, and pn. Hence, 
this cannot have been all the prime numbers.  

We come to Humour in Mathematics. Can there really be 
humour, or indeed jokes, in mathematics? Well, this must 
be the case, since sometimes we may read in a reviewer’s 
report: 

“This is a funny construction!” 

How does humour appear in mathematics? Humour in 
mathematics is – as in music – normally of a finer nature. 
Also here, the expectations of the reader of a proof are 
led astray before, suddenly, a little detail surfaces, which 
we had not noticed earlier, but it is exactly this little detail 
which is the last (but decisive!) little brick that is needed 
to complete the argument. At this point, a mathematician 
must smile (how could (s)he have overlooked this?), and 
it delights her/his soul. 

I shall try once more to give an example, this time 
extracted from the work of the celebrated Indian mathe-
matician Srinivasa Ramanujan (see Figure 4). Born in 1887 
in the vicinity of Madras (today Chennai), Ramanujan had 
a very modest upbringing. He had only a basic school edu-
cation, but had always been interested in mathematics and 
mathematical problems. After finishing school, he worked 
as a clerk in the Madras Port trust, but in his leisure time 

not only judge correctness of proofs but also the other 
qualities of the article. A standard phrase that a referee 
might use to show that they like the article is:

“This is a very nice paper!” 

In view of the previous digression on “beauty” of music: 
funny, isn’t it? Mathematicians also don’t know anything 
better than saying “nice”… However, if the referee pro-
vides a sound opinion then they would also tell more spe-
cifically what they like about the article. Then we may 
sometimes read:

“This is a very elegant proof!” 

What is an “elegant proof”? In other words, what is a 
“mathematical waltz by Chopin”? Usually, we are talk-
ing about the situation where – in a proof – the math-
ematician is facing a seemingly insurmountable obstacle. 
With the help of a relatively simple, but not at all obvious, 
idea, the mathematician succeeds however to – elegant-
ly – circumnavigate this obstacle. I shall try to give an 
example, the theorem, known to everybody, that there 
are infinitely many prime numbers. 

Theorem. There are infinitely many prime numbers. 

Proof. If one looks at this assertion, what would we have 
to do in order to prove it? It seems that we would have 
to construct infinitely many primes. We would do even 
better if we could find a formula which gives us all prime 
numbers (or at least infinitely many). This is pretty hope-
less.25 

However, there is an – elegant – way around this. Let 
us suppose that there are only finitely many prime num-
bers. If, under this assumption, we succeed in deriving a 
contradiction, then our original assumption must have 
been wrong. Thus, we would have shown that there are 
indeed infinitely many prime numbers.

So, let us suppose that there are only finitely many 
prime numbers; say, 2, 3, 5, 7, 11, 13, … , 1031. 

We now consider 

2 · 3 · 5 · 7 · 11 · 13 · … · 1031 + 1: 

This (huge) number can be decomposed into a product 
of prime factors. Each of these prime factors must, on 

25 Mathematics offers plenty of incredibly fascinating, respec-
tively absurd, facts – depending on which point of view one 
is willing to take… the Russian mathematician Yuri Matiya-
sevich proved that there exist polynomials in several vari-
ables whose positive values – if the variables are specialised 
to concrete natural numbers – run through all prime num-
bers; see Dokl. Akad. Nauk SSSR 196 (1971), 770–773; Soviet 
Math.\ Dokl. 12 (1971), 249–254. Such polynomials have in-
deed been constructed explicitly. Not only do they have the 
“annoying” property that they attain (some) negative values, 
but in particular this property is satisfied most of the time… 
Hence, they are today just a curiosity, since, aside from their 
existence, they do not seem to be good for anything.
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at the same time an eminent mathematician then, had 
calculated the numbers p(n) up to n = 200.26 The first few 
numbers p(n) are shown here: 

Ramanujan studied MacMahon’s tables intensively, and 
made remarkable observations. One of these is made 
explicit in the theorem below. It says that every fifth par-
tition number is divisible by 5; see the bold face entries 
in the above table.27 

Theorem (“Ramanujan’s most beautiful theorem” 1919). 
p(5n + 4) is always divisible by 5. 

This theorem acquired the byname “Ramanujan’s most 
beautiful theorem”,28 since it is so simple and elegant 
to formulate, and at the same time it is so unexpected. 
Moreover, Ramanujan himself found a proof for it. 
Here, I want to discuss a proof taken from a paper of 
Hirschhorn and Hunt,29 which is very much in the spirit 
of Ramanujan. I am fully aware that the following is 
(mathematically) more demanding than everything else 
we have discussed so far. If you should not understand 
everything (or understand almost nothing…), this is 
fine. My point here is to indicate what “humour” may 
mean in mathematics. 

The proof is based on an old result of Leonhard Eul-
er. It says that the power series, in which the numbers 
p(n) appear as coefficients, can be written in terms of an 
infinite product. 

Theorem (Euler). We have 

Proof. It is quite possible that you feel uneasy when 
looking at these infinite sums and products. You may 
ask: “Does this really converge?”30 But this is the wrong 
question! The above expressions should be regarded as 
formal expressions, which are added, multiplied, etc., 
naively.31 

Let us adopt this formal point of view. Then, Euler’s 
formula can be proved in the following way. The prod-
uct on the right side consists throughout of factors of the 

he constantly worked on mathematical problems. At the 
age of 25, he sent his mathematical results to eminent 
mathematicians of the time. One of them, Godfrey Har-
old Hardy, Professor at the University of Cambridge, 
indeed read Ramanujan’s letter and recognised the genius 
of the unknown author. He invited Ramanujan to come 
to Cambridge, and to study and work with him. Benefac-
tors in India succeeded in collecting the money necessary 
to finance the journey to England, thus Ramanujan spent 
some years at the University of Cambridge. During this 
time, he wrote several very famous articles, often in col-
laboration with Hardy. Unfortunately, Ramanujan could 
not bear the British climate (as well as British nutrition…) 
and was frequently ill; within a year of returning to India 
he passed away at the age of only 32 years. 

One of the objects that were very dear to Ramanujan 
in his mathematical work was (integer) partitions. A par-
tition of a number n is the representation of this number 
as a sum of other natural numbers, where the summands 
are arranged in (weakly) increasing order. For n = 1, 
there is exactly one such representation, namely, 

1

For n = 2, there are two, namely, 

2, 1 + 1, 

For n = 3, there are three partitions, 

3, 1 + 2, 1 + 1 + 1,  

For n = 4, we already have five, 

4, 1 + 3, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1, 

and, for n = 5, we have 

5, 1 + 4, 2 + 3, 1 + 1 + 3, 1 + 2 + 2, 1 + 1 + 1 + 2,  
1 + 1 + 1 + 1 + 1. 

Let p(n) denote the number of partitions of n. Percy 
Alexander MacMahon, Major of the British army and 

Figure 4. Srinivasa Ramanujan, Godfrey Harold Hardy.

26 And he did this without making a single mistake! Even if he 
did not accomplish this by listing all partitions of numbers up to 
200, but rather by using a recurrence relation due to Euler, this 
constitutes – at a time that knew of no “computing machines” 
except paper and pencil – an extraordinary achievement!

27 Ramanujan made similar observations for the prime num-
bers 7 and 11. Together with the theorem discussed in the 
text, these founded the research area of “partition congru-
ences”, which has witnessed important breakthroughs during 
the past few years; see page 1525 in the survey article “Srini-

vasa Ramanujan: Going Strong at 125, Part I”, that appeared 
in the Notices of the American Mathematical Society, vol. 59, 
Nr. 11, 2012, edited by Krishnaswami Alladi, and is available 
at http://www.ams.org/notices/201211/rtx121101522p.pdf.

28 Strictly speaking, it is the identity (*) below, which Hardy se-
lected as “Ramanujan’s most beautiful identity.”

29 J. reine angew. Math. 326 (1981), 1–17.
30 It does for |q| < 1.
31 All this can be made rigorous by the theory of so-called for-

mal power series.

For n = 4, we already have five,

4, 1 + 3, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1,

and, for n = 5, we have

5, 1 + 4, 2 + 3, 1 + 1 + 3, 1 + 2 + 2,
1 + 1 + 1 + 2, 1 + 1 + 1 + 1 + 1.

Let p(n) denote the number of partitions of n. Percy Alexan-
der MacMahon, then a Major in the British army and an
eminent mathematician, calculated the numbers p(n) up to
n = 200.23 The first few numbers p(n) are shown here:

p(1) = 1 p(2) = 2, p(3) = 3, p(4)p(4)p(4) = 5,= 5,= 5, p(5) = 7

p(6) = 11 p(7) = 15, p(8) = 22, p(9)p(9)p(9) = 30,= 30,= 30, p(10) = 42

p(11) = 56 p(12) = 77, p(13) = 101, p(14)p(14)p(14) = 135,= 135,= 135, p(15) = 176

p(16) = 231 p(17) = 297, p(18) = 385, p(19)p(19)p(19) = 490,= 490,= 490, p(20) = 627

Ramanujan studied MacMahon’s tables intensively and made
remarkable observations. One of these is made explicit in the
theorem below. It says that every fifth partition number is di-
visible by 5 (see the bold entries in the table above).24

Theorem (“Ramanujan’s most beautiful theorem” 1919).
p(5n + 4) is always divisible by 5.

This theorem acquired the nickname “Ramanujan’s most
beautiful theorem”,25 since it is so simple and elegant to for-
mulate and, at the same time, so unexpected. Moreover, Ra-
manujan himself found a proof for it. Here, I want to discuss
a proof taken from a paper of Hirschhorn and Hunt,26 which
is very much in the spirit of Ramanujan. I am fully aware
that the following is (mathematically) more demanding than
everything else we have discussed so far. If you do not un-
derstand everything (or understand almost nothing . . . ), that
is fine. My point is to indicate what “humour" may mean in
mathematics.

The proof is based on an old result of Leonhard Euler. It
says that the power series, in which the numbers p(n) appear
as coefficients, can be written in terms of an infinite product.

Theorem (Euler). We have

1 + p(1)q + p(2)q2 + p(3)q3 + p(4)q4 + · · ·

=
1

(1 − q)(1 − q2)(1 − q3)(1 − q4) · · · .

Proof. It is quite possible that you feel uneasy when looking
at these infinite sums and products. You may ask: “Does this
really converge?"27 But this is the wrong question! The above

expressions should be regarded as formal expressions, which
are added, multiplied, etc., naively.28

Let us adopt this formal point of view. Then, Euler’s for-
mula can be proven in the following way. The product on the
right side consists throughout of factors of the form 1

1−qk . In
high school, we learned that the infinite geometric series can
be summed:29

1 + Q + Q2 + Q3 + Q4 + · · · = 1
1 − Q

.

We may apply this summation formula to each of the factors
(reading it backwards, so to speak):

1
(1 − q)(1 − q2)(1 − q3)(1 − q4) · · ·

=
1

1 − q
· 1

1 − q2 ·
1

1 − q3 ·
1

1 − q4 · · ·

= (1 + q1 + q1+1 + q1+1+1 + · · · )
· (1 + q2 + q2+2 + q2+2+2 + · · · )

· (1 + q3 + q3+3 + q3+3+3 + · · · ) · · · · .

Now, we must imagine what happens if we expand this last
product. Each term in the result arises by selecting one term
from each factor and multiplying these terms. For example, if
we select the term q1+1 from the first factor, the term q2+2+2

from the second, the term q3 from the third factor and the term
1 from all remaining factors then we obtain

q1+1+2+2+2+3

upon multiplication of these terms. Now it costs just a few
moments to convince oneself that the exponents of the ex-
pressions one obtains in this manner run through all parti-
tions. Thus, the above product is indeed equal to the left side
of Euler’s theorem. �

We are now in the position to embark on the proof of Ra-
manujan’s “most beautiful theorem”.

Proof of Ramanujan’s most beautiful theorem. In order to
have a compact notation,30 we abbreviate the product (1 −
q)(1 − q2)(1 − q3)(1 − q4) · · · by (q; q)∞. More generally, we
write

(α; q)∞ = (1 − α)(1 − αq)(1 − αq2)(1 − αq3) · · · .

The proof is based on several auxiliary results. These auxil-
iary results can be derived by means of elementary (but tricky)

23 And he did this without making a single mistake! Even if he did not accomplish this by listing all partitions of numbers up to 200 but rather by using a
recurrence relation due to Euler, this constitutes – at a time of no “computing machines” except paper and pencil – an extraordinary achievement!

24 Ramanujan made similar observations for the prime numbers 7 and 11. Together with the theorem discussed in the text, these founded the research area of
“partition congruences", which has witnessed important breakthroughs over the past few years; see page 1525 in the survey article “Srinivasa Ramanujan:
Going Strong at 125, Part I”, which appeared in the Notices of the American Mathematical Society, vol. 59, Nr. 11, 2012, edited by Krishnaswami Alladi,
and is available at http://www.ams.org/notices/201211/rtx121101522p.pdf.

25 Strictly speaking, it is the identity (∗) below, which Hardy selected as “Ramanujan’s most beautiful identity".
26 J. reine angew. Math. 326 (1981), 1–17.
27 It does for |q| < 1.
28 All this can be made rigorous by the theory of so-called formal power series.
29 The formula is also valid in the theory of formal power series.
30 Ramanujan did not know this notation and did not use any other short notation. Consequently, to read notes of Ramanujan constitutes a certain challenge.

For n = 4, we already have five,

4, 1 + 3, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1,

and, for n = 5, we have

5, 1 + 4, 2 + 3, 1 + 1 + 3, 1 + 2 + 2,
1 + 1 + 1 + 2, 1 + 1 + 1 + 1 + 1.

Let p(n) denote the number of partitions of n. Percy Alexan-
der MacMahon, then a Major in the British army and an
eminent mathematician, calculated the numbers p(n) up to
n = 200.23 The first few numbers p(n) are shown here:

p(1) = 1 p(2) = 2, p(3) = 3, p(4)p(4)p(4) = 5,= 5,= 5, p(5) = 7

p(6) = 11 p(7) = 15, p(8) = 22, p(9)p(9)p(9) = 30,= 30,= 30, p(10) = 42

p(11) = 56 p(12) = 77, p(13) = 101, p(14)p(14)p(14) = 135,= 135,= 135, p(15) = 176

p(16) = 231 p(17) = 297, p(18) = 385, p(19)p(19)p(19) = 490,= 490,= 490, p(20) = 627

Ramanujan studied MacMahon’s tables intensively and made
remarkable observations. One of these is made explicit in the
theorem below. It says that every fifth partition number is di-
visible by 5 (see the bold entries in the table above).24

Theorem (“Ramanujan’s most beautiful theorem” 1919).
p(5n + 4) is always divisible by 5.

This theorem acquired the nickname “Ramanujan’s most
beautiful theorem”,25 since it is so simple and elegant to for-
mulate and, at the same time, so unexpected. Moreover, Ra-
manujan himself found a proof for it. Here, I want to discuss
a proof taken from a paper of Hirschhorn and Hunt,26 which
is very much in the spirit of Ramanujan. I am fully aware
that the following is (mathematically) more demanding than
everything else we have discussed so far. If you do not un-
derstand everything (or understand almost nothing . . . ), that
is fine. My point is to indicate what “humour" may mean in
mathematics.

The proof is based on an old result of Leonhard Euler. It
says that the power series, in which the numbers p(n) appear
as coefficients, can be written in terms of an infinite product.

Theorem (Euler). We have

1 + p(1)q + p(2)q2 + p(3)q3 + p(4)q4 + · · ·

=
1

(1 − q)(1 − q2)(1 − q3)(1 − q4) · · · .

Proof. It is quite possible that you feel uneasy when looking
at these infinite sums and products. You may ask: “Does this
really converge?"27 But this is the wrong question! The above

expressions should be regarded as formal expressions, which
are added, multiplied, etc., naively.28

Let us adopt this formal point of view. Then, Euler’s for-
mula can be proven in the following way. The product on the
right side consists throughout of factors of the form 1

1−qk . In
high school, we learned that the infinite geometric series can
be summed:29

1 + Q + Q2 + Q3 + Q4 + · · · = 1
1 − Q

.

We may apply this summation formula to each of the factors
(reading it backwards, so to speak):

1
(1 − q)(1 − q2)(1 − q3)(1 − q4) · · ·

=
1

1 − q
· 1

1 − q2 ·
1

1 − q3 ·
1

1 − q4 · · ·

= (1 + q1 + q1+1 + q1+1+1 + · · · )
· (1 + q2 + q2+2 + q2+2+2 + · · · )

· (1 + q3 + q3+3 + q3+3+3 + · · · ) · · · · .

Now, we must imagine what happens if we expand this last
product. Each term in the result arises by selecting one term
from each factor and multiplying these terms. For example, if
we select the term q1+1 from the first factor, the term q2+2+2

from the second, the term q3 from the third factor and the term
1 from all remaining factors then we obtain

q1+1+2+2+2+3

upon multiplication of these terms. Now it costs just a few
moments to convince oneself that the exponents of the ex-
pressions one obtains in this manner run through all parti-
tions. Thus, the above product is indeed equal to the left side
of Euler’s theorem. �

We are now in the position to embark on the proof of Ra-
manujan’s “most beautiful theorem”.

Proof of Ramanujan’s most beautiful theorem. In order to
have a compact notation,30 we abbreviate the product (1 −
q)(1 − q2)(1 − q3)(1 − q4) · · · by (q; q)∞. More generally, we
write

(α; q)∞ = (1 − α)(1 − αq)(1 − αq2)(1 − αq3) · · · .

The proof is based on several auxiliary results. These auxil-
iary results can be derived by means of elementary (but tricky)

23 And he did this without making a single mistake! Even if he did not accomplish this by listing all partitions of numbers up to 200 but rather by using a
recurrence relation due to Euler, this constitutes – at a time of no “computing machines” except paper and pencil – an extraordinary achievement!

24 Ramanujan made similar observations for the prime numbers 7 and 11. Together with the theorem discussed in the text, these founded the research area of
“partition congruences", which has witnessed important breakthroughs over the past few years; see page 1525 in the survey article “Srinivasa Ramanujan:
Going Strong at 125, Part I”, which appeared in the Notices of the American Mathematical Society, vol. 59, Nr. 11, 2012, edited by Krishnaswami Alladi,
and is available at http://www.ams.org/notices/201211/rtx121101522p.pdf.

25 Strictly speaking, it is the identity (∗) below, which Hardy selected as “Ramanujan’s most beautiful identity".
26 J. reine angew. Math. 326 (1981), 1–17.
27 It does for |q| < 1.
28 All this can be made rigorous by the theory of so-called formal power series.
29 The formula is also valid in the theory of formal power series.
30 Ramanujan did not know this notation and did not use any other short notation. Consequently, to read notes of Ramanujan constitutes a certain challenge.
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This lemma entails two further lemmas. 

Lemma. We have 

where R is a power series in q5.34 

Lemma. We have 

Now, we may combine these lemmas35 in order to find the 
following expression for the so-called “generating func-
tion” for the partition numbers: 

By this time, we have certainly lost sight of our overall 
goal. Why do we write such a complicated expression for 
the generating function of the partition numbers? What 
did we actually want to prove? It is at this point that the 
punch line reveals itself! We are actually only interested 
in the partition numbers p(4), p(9), p(14), p(19), etc., that 
is, in 

p(4)q4 + p(9)q9 + p(14)q14 + p(19)q19 + · · ·.

Let us look at the right-hand side of the above compli-
cated expression: there we see the series R, which accord-
ing to the lemma contains only powers of q5. Also, the 
products (q5; q5)∞ and (q25; q25)∞ consist only of powers 
of q5. At the front of this expression, there is the factor 
q4. So, inside the big parentheses, the only terms that are 
of interest for us are powers of q5; everything else can be 
neglected. However, if one actually looks inside carefully 
(the reader should recall that the series R only contains 
powers of q5!) then the only term that is relevant is the 
lonely 5! In other words, from the horrendous formula 
above (the reader should concentrate on the terms in 
bold face), one can immediately extract that: 

The point here is: on the right-hand side everything 
gets multiplied by 5! Consequently, all coefficients on 
the left-hand side – that is, p(4), p(9), p(14), p(19), etc. 

form  11–qk . In high school, we learned that the infinite geo-
metric series can be summed:32 

We may apply this summation formula to each of the fac-
tors (so-to-speak: reading it backwards): 

Now we must imagine what happens if we expand this 
last product. Each term in the result arises by selecting 
one term from each factor, and by multiplying these 
terms. For example, if we select the term q1+1 from the 
first factor, the term q2+2+2 from the second, the term q3 
from the third factor and the term 1 from all remaining 
factors, then we obtain 

q1+1+2+2+2+3

upon multiplication of these terms. Now it costs just a few 
moments to convince oneself that the exponents of the 
expressions one obtains in this manner run through all par-
titions. Thus, the above product is indeed equal to the left-
hand side of Euler’s theorem..     

We are now in the position to embark on the proof of 
Ramanujan’s “most beautiful theorem”. 

Proof of Ramanujan’s most beautiful theorem. In order 
to have a compact notation,33 we abbreviate the product 
(1 – q)(1 – q2)(1 – q3)(1 – q4) by (q; q)∞. More generally, we 
write 

(a;q)∞ = (1 – a)(1 – aq)(1 – aq2)(1 – aq3) · · ·.

The proof is based on several auxiliary results. These 
auxiliary results can be derived by means of elementary 
(but tricky) manipulations of power series and by the use 
of Jacobi’s triple product formula 

It would however go definitely beyond the scope of this 
discussion to explain this in detail here. 

Lemma. Let w 5= 1, w ≠ 1. Then

32 The formula is also valid in the theory of formal power series.
33 Ramanujan did not know this notation, and did not use any 

other short notation. Consequently, to read notes of Ra-
manujan constitutes a certain challenge.

34 There also exists an explicit formula for the series R.
35 The identity from the last lemma is “divided” by the one from 

the previous lemma, and then one substitutes Euler’s theo-
rem.

For n = 4, we already have five,

4, 1 + 3, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1,

and, for n = 5, we have

5, 1 + 4, 2 + 3, 1 + 1 + 3, 1 + 2 + 2,
1 + 1 + 1 + 2, 1 + 1 + 1 + 1 + 1.

Let p(n) denote the number of partitions of n. Percy Alexan-
der MacMahon, then a Major in the British army and an
eminent mathematician, calculated the numbers p(n) up to
n = 200.23 The first few numbers p(n) are shown here:

p(1) = 1 p(2) = 2, p(3) = 3, p(4)p(4)p(4) = 5,= 5,= 5, p(5) = 7

p(6) = 11 p(7) = 15, p(8) = 22, p(9)p(9)p(9) = 30,= 30,= 30, p(10) = 42

p(11) = 56 p(12) = 77, p(13) = 101, p(14)p(14)p(14) = 135,= 135,= 135, p(15) = 176

p(16) = 231 p(17) = 297, p(18) = 385, p(19)p(19)p(19) = 490,= 490,= 490, p(20) = 627

Ramanujan studied MacMahon’s tables intensively and made
remarkable observations. One of these is made explicit in the
theorem below. It says that every fifth partition number is di-
visible by 5 (see the bold entries in the table above).24

Theorem (“Ramanujan’s most beautiful theorem” 1919).
p(5n + 4) is always divisible by 5.

This theorem acquired the nickname “Ramanujan’s most
beautiful theorem”,25 since it is so simple and elegant to for-
mulate and, at the same time, so unexpected. Moreover, Ra-
manujan himself found a proof for it. Here, I want to discuss
a proof taken from a paper of Hirschhorn and Hunt,26 which
is very much in the spirit of Ramanujan. I am fully aware
that the following is (mathematically) more demanding than
everything else we have discussed so far. If you do not un-
derstand everything (or understand almost nothing . . . ), that
is fine. My point is to indicate what “humour" may mean in
mathematics.

The proof is based on an old result of Leonhard Euler. It
says that the power series, in which the numbers p(n) appear
as coefficients, can be written in terms of an infinite product.

Theorem (Euler). We have

1 + p(1)q + p(2)q2 + p(3)q3 + p(4)q4 + · · ·

=
1

(1 − q)(1 − q2)(1 − q3)(1 − q4) · · · .

Proof. It is quite possible that you feel uneasy when looking
at these infinite sums and products. You may ask: “Does this
really converge?"27 But this is the wrong question! The above

expressions should be regarded as formal expressions, which
are added, multiplied, etc., naively.28

Let us adopt this formal point of view. Then, Euler’s for-
mula can be proven in the following way. The product on the
right side consists throughout of factors of the form 1

1−qk . In
high school, we learned that the infinite geometric series can
be summed:29

1 + Q + Q2 + Q3 + Q4 + · · · = 1
1 − Q

.

We may apply this summation formula to each of the factors
(reading it backwards, so to speak):

1
(1 − q)(1 − q2)(1 − q3)(1 − q4) · · ·

=
1

1 − q
· 1

1 − q2 ·
1

1 − q3 ·
1

1 − q4 · · ·

= (1 + q1 + q1+1 + q1+1+1 + · · · )
· (1 + q2 + q2+2 + q2+2+2 + · · · )

· (1 + q3 + q3+3 + q3+3+3 + · · · ) · · · · .

Now, we must imagine what happens if we expand this last
product. Each term in the result arises by selecting one term
from each factor and multiplying these terms. For example, if
we select the term q1+1 from the first factor, the term q2+2+2

from the second, the term q3 from the third factor and the term
1 from all remaining factors then we obtain

q1+1+2+2+2+3

upon multiplication of these terms. Now it costs just a few
moments to convince oneself that the exponents of the ex-
pressions one obtains in this manner run through all parti-
tions. Thus, the above product is indeed equal to the left side
of Euler’s theorem. �

We are now in the position to embark on the proof of Ra-
manujan’s “most beautiful theorem”.

Proof of Ramanujan’s most beautiful theorem. In order to
have a compact notation,30 we abbreviate the product (1 −
q)(1 − q2)(1 − q3)(1 − q4) · · · by (q; q)∞. More generally, we
write

(α; q)∞ = (1 − α)(1 − αq)(1 − αq2)(1 − αq3) · · · .

The proof is based on several auxiliary results. These auxil-
iary results can be derived by means of elementary (but tricky)

23 And he did this without making a single mistake! Even if he did not accomplish this by listing all partitions of numbers up to 200 but rather by using a
recurrence relation due to Euler, this constitutes – at a time of no “computing machines” except paper and pencil – an extraordinary achievement!

24 Ramanujan made similar observations for the prime numbers 7 and 11. Together with the theorem discussed in the text, these founded the research area of
“partition congruences", which has witnessed important breakthroughs over the past few years; see page 1525 in the survey article “Srinivasa Ramanujan:
Going Strong at 125, Part I”, which appeared in the Notices of the American Mathematical Society, vol. 59, Nr. 11, 2012, edited by Krishnaswami Alladi,
and is available at http://www.ams.org/notices/201211/rtx121101522p.pdf.

25 Strictly speaking, it is the identity (∗) below, which Hardy selected as “Ramanujan’s most beautiful identity".
26 J. reine angew. Math. 326 (1981), 1–17.
27 It does for |q| < 1.
28 All this can be made rigorous by the theory of so-called formal power series.
29 The formula is also valid in the theory of formal power series.
30 Ramanujan did not know this notation and did not use any other short notation. Consequently, to read notes of Ramanujan constitutes a certain challenge.
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manipulations of power series and by the use of Jacobi’s triple
product formula

∞∑
n=−∞

(−1)nqn(n−1)/2xn = (q; q)∞ (x; q)∞ (q/x; q)∞.

It would, however, go beyond the scope of this discussion to
explain this in detail here.

Lemma. Let ω5 = 1, ω � 1. Then,

(q; q)∞ (ωq;ωq)∞ (ω2q;ω2q)∞ (ω3q;ω3q)∞ (ω4q;ω4q)∞

=
(q5; q5)6

∞
(q25; q25)∞

.

This lemma entails two further lemmas.

Lemma. We have

(q; q)∞
q(q25; q25)∞

= q−1R − 1 − qR−1,

where R is a power series in q5.31

Lemma. We have

q−5R5 − 11 − q5R−5 =
(q5; q5)6

∞
q5(q25; q25)6

∞
.

Now, we may combine these lemmas32 in order to find the
following expression for the so-called “generating function"
for the partition numbers:

1 + p(1)q + p(2)q2 + p(3)q3 + p(4)q4p(4)q4p(4)q4+p(5)q5

+p(6)q6 + p(7)q7 + p(8)q8 + p(9)q9p(9)q9p(9)q9+p(10)q10

+p(11)q11 + p(12)q12 + p(13)q13 + p(14)q14p(14)q14p(14)q14 + · · ·

= q4 (q25; q25)5
∞

(q5; q5)6
∞

q4 (q25; q25)5
∞

(q5; q5)6
∞

q4 (q25; q25)5
∞

(q5; q5)6
∞
· (q−4R4 + q−3R3 + 2q−2R2 + 3q−1R + 555

−3qR−1 + 2q2R−2 − q3R−3 + q4R−4). (∗)

By this time, we have certainly lost sight of our overall goal.
Why do we write such a complicated expression for the gener-
ating function of the partition numbers? What did we actually
want to prove? It is at this point that the punchline reveals it-
self! We are actually only interested in the partition numbers
p(4), p(9), p(14), p(19), etc., that is, in

p(4)q4 + p(9)q9 + p(14)q14 + p(19)q19 + · · · .

Let us look at the right side of the complicated expres-
sion above: there we see the series R, which, according to
the lemma, contains only powers of q5. Also, the products
(q5; q5)∞ and (q25; q25)∞ consist only of powers of q5. At the
front of this expression, there is the factor q4. So, inside the
big parentheses, the only terms that are of interest for us are
powers of q5; everything else can be neglected. However, if

Figure 5. Doron Zeilberger

one actually looks inside carefully (the reader should recall
that the series R only contains powers of q5!) then the only
term that is relevant is the lonely 5! In other words, from the
horrendous formula above (the reader should concentrate on
the terms in bold face), one can immediately extract that:

p(4)q4 + p(9)q9 + p(14)q14 + · · · = q4 (q25; q25)5
∞

(q5; q5)6
∞
×5×5×5 .

The point here is: on the right side everything gets multiplied
by 5 ! Consequently, all the coefficients on the left side – that
is, p(4), p(9), p(14), p(19), etc. – are divisible by 5. This is
exactly the desired assertion that we wanted to prove. �

I do not know how you were doing while going through
this proof. Every time I present it during a lecture course,
there are always a few students who cannot help but smile
when the punchline is revealed.

We come to the Tour de Force! Of course, what Andrew
Wiles has accomplished is an incredible tour de force. Since
this requires, however, large chunks of modern number theory
and algebra, in a few minutes I can say exactly nothing about
it. Therefore, I have chosen a different example for illustra-
tion from my own research area, namely, Doron Zeilberger’s
(see Figure 5) theorem on alternating sign matrices. First of
all, we need to know what an alternating sign matrix is. An
alternating sign matrix is a square arrangement of 0’s, 1’s and
(−1)’s that satisfies the following rule: if one reads along rows
or columns and ignores the 0’s then one reads alternatingly 1,
−1, 1, . . . , 1. In order to avoid any misunderstanding: one
starts and ends with a 1. Here is an example of an alternating
sign matrix:

0 0 1 0 0 0
0 1 −1 0 1 0
0 0 1 0 −1 1
1 0 −1 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0 .

You may well ask why mathematicians are interested in alter-
nating sign matrices. I cannot say too much here for the sake
of brevity. Alternating sign matrices arose originally in a nat-
ural fashion around 1980 in the work of David Robbins and
Howard Rumsey on generalisation of determinants. Later, it

31 There also exists an explicit formula for the series R.
32 The identity from the last lemma is “divided” by the one from the previous lemma and then one substitutes Euler’s theorem.
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I do not know how you were doing while going through
this proof. Every time I present it during a lecture course,
there are always a few students who cannot help but smile
when the punchline is revealed.

We come to the Tour de Force! Of course, what Andrew
Wiles has accomplished is an incredible tour de force. Since
this requires, however, large chunks of modern number theory
and algebra, in a few minutes I can say exactly nothing about
it. Therefore, I have chosen a different example for illustra-
tion from my own research area, namely, Doron Zeilberger’s
(see Figure 5) theorem on alternating sign matrices. First of
all, we need to know what an alternating sign matrix is. An
alternating sign matrix is a square arrangement of 0’s, 1’s and
(−1)’s that satisfies the following rule: if one reads along rows
or columns and ignores the 0’s then one reads alternatingly 1,
−1, 1, . . . , 1. In order to avoid any misunderstanding: one
starts and ends with a 1. Here is an example of an alternating
sign matrix:

0 0 1 0 0 0
0 1 −1 0 1 0
0 0 1 0 −1 1
1 0 −1 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0 .

You may well ask why mathematicians are interested in alter-
nating sign matrices. I cannot say too much here for the sake
of brevity. Alternating sign matrices arose originally in a nat-
ural fashion around 1980 in the work of David Robbins and
Howard Rumsey on generalisation of determinants. Later, it

31 There also exists an explicit formula for the series R.
32 The identity from the last lemma is “divided” by the one from the previous lemma and then one substitutes Euler’s theorem.

manipulations of power series and by the use of Jacobi’s triple
product formula

∞∑
n=−∞

(−1)nqn(n−1)/2xn = (q; q)∞ (x; q)∞ (q/x; q)∞.

It would, however, go beyond the scope of this discussion to
explain this in detail here.
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This lemma entails two further lemmas.
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Lemma. We have
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Now, we may combine these lemmas32 in order to find the
following expression for the so-called “generating function"
for the partition numbers:

1 + p(1)q + p(2)q2 + p(3)q3 + p(4)q4p(4)q4p(4)q4+p(5)q5
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∞
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∞
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∞
· (q−4R4 + q−3R3 + 2q−2R2 + 3q−1R + 555

−3qR−1 + 2q2R−2 − q3R−3 + q4R−4). (∗)

By this time, we have certainly lost sight of our overall goal.
Why do we write such a complicated expression for the gener-
ating function of the partition numbers? What did we actually
want to prove? It is at this point that the punchline reveals it-
self! We are actually only interested in the partition numbers
p(4), p(9), p(14), p(19), etc., that is, in

p(4)q4 + p(9)q9 + p(14)q14 + p(19)q19 + · · · .

Let us look at the right side of the complicated expres-
sion above: there we see the series R, which, according to
the lemma, contains only powers of q5. Also, the products
(q5; q5)∞ and (q25; q25)∞ consist only of powers of q5. At the
front of this expression, there is the factor q4. So, inside the
big parentheses, the only terms that are of interest for us are
powers of q5; everything else can be neglected. However, if
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one actually looks inside carefully (the reader should recall
that the series R only contains powers of q5!) then the only
term that is relevant is the lonely 5! In other words, from the
horrendous formula above (the reader should concentrate on
the terms in bold face), one can immediately extract that:

p(4)q4 + p(9)q9 + p(14)q14 + · · · = q4 (q25; q25)5
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The point here is: on the right side everything gets multiplied
by 5 ! Consequently, all the coefficients on the left side – that
is, p(4), p(9), p(14), p(19), etc. – are divisible by 5. This is
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I do not know how you were doing while going through
this proof. Every time I present it during a lecture course,
there are always a few students who cannot help but smile
when the punchline is revealed.

We come to the Tour de Force! Of course, what Andrew
Wiles has accomplished is an incredible tour de force. Since
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and algebra, in a few minutes I can say exactly nothing about
it. Therefore, I have chosen a different example for illustra-
tion from my own research area, namely, Doron Zeilberger’s
(see Figure 5) theorem on alternating sign matrices. First of
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(−1)’s that satisfies the following rule: if one reads along rows
or columns and ignores the 0’s then one reads alternatingly 1,
−1, 1, . . . , 1. In order to avoid any misunderstanding: one
starts and ends with a 1. Here is an example of an alternating
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0 1 −1 0 1 0
0 0 1 0 −1 1
1 0 −1 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0 .

You may well ask why mathematicians are interested in alter-
nating sign matrices. I cannot say too much here for the sake
of brevity. Alternating sign matrices arose originally in a nat-
ural fashion around 1980 in the work of David Robbins and
Howard Rumsey on generalisation of determinants. Later, it
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I do not know how you were doing while going through
this proof. Every time I present it during a lecture course,
there are always a few students who cannot help but smile
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Wiles has accomplished is an incredible tour de force. Since
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starts and ends with a 1. Here is an example of an alternating
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1 0 −1 1 0 0
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one actually looks inside carefully (the reader should recall
that the series R only contains powers of q5!) then the only
term that is relevant is the lonely 5! In other words, from the
horrendous formula above (the reader should concentrate on
the terms in bold face), one can immediately extract that:

p(4)q4 + p(9)q9 + p(14)q14 + · · · = q4 (q25; q25)5
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(q5; q5)6
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The point here is: on the right side everything gets multiplied
by 5 ! Consequently, all the coefficients on the left side – that
is, p(4), p(9), p(14), p(19), etc. – are divisible by 5. This is
exactly the desired assertion that we wanted to prove. �

I do not know how you were doing while going through
this proof. Every time I present it during a lecture course,
there are always a few students who cannot help but smile
when the punchline is revealed.

We come to the Tour de Force! Of course, what Andrew
Wiles has accomplished is an incredible tour de force. Since
this requires, however, large chunks of modern number theory
and algebra, in a few minutes I can say exactly nothing about
it. Therefore, I have chosen a different example for illustra-
tion from my own research area, namely, Doron Zeilberger’s
(see Figure 5) theorem on alternating sign matrices. First of
all, we need to know what an alternating sign matrix is. An
alternating sign matrix is a square arrangement of 0’s, 1’s and
(−1)’s that satisfies the following rule: if one reads along rows
or columns and ignores the 0’s then one reads alternatingly 1,
−1, 1, . . . , 1. In order to avoid any misunderstanding: one
starts and ends with a 1. Here is an example of an alternating
sign matrix:

0 0 1 0 0 0
0 1 −1 0 1 0
0 0 1 0 −1 1
1 0 −1 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0 .

You may well ask why mathematicians are interested in alter-
nating sign matrices. I cannot say too much here for the sake
of brevity. Alternating sign matrices arose originally in a nat-
ural fashion around 1980 in the work of David Robbins and
Howard Rumsey on generalisation of determinants. Later, it
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If we denote the number of all alternating sign matrices 
consisting of exactly n rows by A(n) then the following 
table 

shows the first values of the sequence. Mills, Robbins and 
Rumsey studied these numbers carefully and made a 
remarkable discovery. 

Conjecture (Mills, Robbins, Rumsey ∼ 1980). We have

where m! = m · (m – 1) · (m – 2) · · · · · 2 · 1. 

This is extremely surprising. If a mathematician learns 
about the above question, then the immediate reaction 
would be that there cannot be any reasonable formula 
for the number of all alternating sign matrices consisting 
of exactly n rows. But, no! It seems that there is even an 
elegant, compact product formula!

But how to prove this? For more than 10 years, math-
ematicians did not even know how to attack this con-
jecture. Everybody was therefore very surprised when 
Doron Zeilberger announced in 1993 that he had found 
a proof. Along with the announcement, he distributed a 
25-page article which contained that proof. 

As you know, it is not sufficient to announce that 
one has proved something. The proof must be written 
down and submitted for publication, after which the cor-
responding article is refereed. Zeilberger submitted his 
article for publication and – you guess it – the referee 
found gaps in the proof. So, the article went back to Dor-
on Zeilberger with the request to fill the gaps. Zeilberger 
did some repair work and resubmitted the article, and 
the referee found new gaps. The article went again back 
to Zeilberger, he did more modifications, resubmitted, 
and the article went back and forth in this manner sever-
al times, until the referee lost patience. He probably told 
Zeilberger roughly the following: “Dear Doron! Before 
you resubmit the article, please do something. Read your 
proof carefully from the very beginning to the end. If you 
should not be able to do that, then give the article to a 
student to check the proof; but, please, do something!” 

Doron Zeilberger did do something. First of all, he 
read and checked his article carefully. Furthermore, he 
structured the proof completely hierarchically, so that the 
article could be read “locally”; in the sense that each part 

– are divisible by 5. This is exactly the desired asser-
tion that we wanted to prove.     

I do not know how you were doing while going 
through this proof. Every time, I present it during a lec-
ture course, there are always a few students who cannot 
help but smile when the punch line is revealed. 

We come to the Tour de Force! Of course, what 
Andrew Wiles has accomplished is an incredible tour de 
force. Since this requires however large chunks of mod-
ern number theory and algebra, in a few minutes I can 
say exactly nothing about it. Therefore, I have chosen a 
different example for illustration – from my own research 
area –, namely Doron Zeilberger’s (see Figure 5) theo-
rem on alternating sign matrices. First of all, we need to 
know what an alternating sign matrix is. An alternating 
sign matrix is a square arrangement of 0’s, 1’s and (–1)’s 
which satisfies the following rule: if one reads along rows 
or columns and ignores the 0’s then one reads alternat-
ingly 1, –1, 1, … , 1. In order to avoid any misunderstand-
ing: one starts and ends with a 1. Here is an example of 
an alternating sign matrix: 

You may well ask why mathematicians are interested 
in alternating sign matrices. I cannot say too much here 
for the sake of brevity. Alternating sign matrices arose 
originally in a natural fashion around 1980 in work of 
David Robbins and Howard Rumsey on a generalisa-
tion of determinants. Later, it was discovered that the 
same objects also appear in Theoretical Physics, albeit in 
different guise, namely as configurations in an – admit-
tedly somewhat simplistic – model for the formation of 
ice. William Mills, David Robbins and Howard Rumsey 
asked themselves how many alternating sign matrices 
there are. More precisely:

How many alternating sign matrices with exactly n 
rows are there? 

Apparently there exists exactly one alternating sign 
matrix consisting of one row, namely 

1. 

There are two alternating sign matrices with two rows: 

And there are 7 alternating sign matrices with three rows: 
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was discovered that the same objects also appear in theoret-
ical physics, albeit in a different guise, namely, as configu-
rations in an admittedly somewhat simplistic model for the
formation of ice. William Mills, David Robbins and Howard
Rumsey asked themselves how many alternating sign matri-
ces there are. More precisely:

How many alternating sign matrices with exactly n rows are
there?

There exists exactly one alternating sign matrix consisting of
one row, namely,

1.

There are two alternating sign matrices with two rows:

1 0
0 1

0 1
1 0 .

And there are 7 alternating sign matrices with three rows:

1 0 0
0 1 0
0 0 1

1 0 0
0 0 1
0 1 0

0 1 0
1 0 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

0 0 1
0 1 0
1 0 0

0 1 0
1 −1 1
0 1 0 .

If we denote the number of all alternating sign matrices con-
sisting of exactly n rows by A(n) then the following table

Table 1

n 1 2 3 4 5 6
A(n) 1 2 7 42 429 7436

shows the first values of the sequence. Mills, Robbins and
Rumsey studied these numbers carefully and made a remark-
able discovery.

Conjecture (Mills, Robbins, Rumsey ∼ 1980). We have

A(n) =
1! · 4! · 7! · · · · · (3n − 2)!

n! · (n + 1)! · (n + 2)! · · · · · (2n − 1)!
,

where m! = m · (m − 1) · (m − 2) · · · · · 2 · 1.

This is extremely surprising. If a mathematician learns
about the above question then the immediate reaction would
be that there cannot be any reasonable formula for the number
of all alternating sign matrices consisting of exactly n rows.
But no! It seems that there is even an elegant, compact prod-
uct formula!

But how to prove this? For more than 10 years, mathe-
maticians did not even know how to attack this conjecture.
Everybody was therefore very surprised when Doron Zeil-
berger announced in 1993 that he had found a proof. Along
with the announcement, he distributed a 25-page article that
contained the proof.

As you know, it is not sufficient to announce that one has
proven something. The proof must be written down and sub-
mitted for publication, after which the corresponding article is

refereed. Zeilberger submitted his article for publication and
– you guessed it – the referee found gaps in the proof. So, the
article went back to Doron Zeilberger with a request to fill the
gaps. Zeilberger did some repair work and resubmitted the ar-
ticle and the referee found new gaps. The article went back to
Zeilberger again, he did more modifications, resubmitted and
the article went back and forth in this manner several times,
until the referee lost patience. He probably told Zeilberger
roughly the following: “Dear Doron! Before you resubmit the
article, please do something. Read your proof carefully from
the very beginning to the end. If you should not be able to do
that then give the article to a student to check the proof; but
please, do something!”

Doron Zeilberger did do something. First of all, he read
and checked his article carefully. Furthermore, he structured
the proof completely hierarchically so that the article could
be read “locally", in the sense that each part could be read
independently of the rest if one assumed that everything that
appeared lower in the hierarchy was correct. Subsequently,
he asked about 80 colleagues to check the article. He as-
signed to each of them 2 to 3 pages, and the task was to
check these pages under the assumption that everything that
appeared lower in the proof hierarchy was correct. So it hap-
pened. A few minor deficiencies were discovered in that way,
which could be easily repaired, but nothing dramatic surfaced
anymore and the article was eventually published in 1995.33

In Figure 6, we see the first page of the article. After the ti-
tle, the aforementioned colleagues (the “checkers”, totalling
around 80) are listed. The article is no longer 25 pages long
but rather 85. As I said, the proof is structured completely hi-
erarchically. The actual main theorem of the article is called
Lemma 1 (see Figure 7). This is based on Sublemma 1.1
and Sublemma 1.2. The latter in turn are based on Subsub-
lemma 1.1.1, Subsublemma 1.1.2, . . . , Subsublemma 1.2.1,
Subsublemma 1.2.2, . . . , which in turn are based on Subsub-
sublemma 1.1.1.1, . . . , and so forth, up to Sub6, that is, up to
Subsubsubsubsubsublemma, one of which we see in Figure 8.

You get the impression – we are talking about a real tour
de force. There is one thing, however, that cannot be said
about it. One cannot claim that this is a “nice” proof, an ele-
gant proof. In order to defend this, the same Doron Zeilberger
– in a different context – went as far as to exclaim:34

“Extreme UGLINESS is new BEAUTY!”

I think we let this stand as it is. Those who are naturally
sarcastic would say: “Yes, I always had the impression that
this is exactly the idea of many modern composers.” I would
counter that, at all times, there have existed better and worse
composers. Once time passes, the worse ones tend to be for-
gotten and only the outstanding composers remain. One can
verify the latter phenomenon very well if one asks how many
composers there were when Beethoven was a celebrity. An-
swer: innumerably many! If, however, one asks which of them
are still known today, which ones are still performed today,
then Franz Schubert comes immediately to one’s mind (who
was “ironically” largely unknown at the time) and also Carl
Maria von Weber and the Italian opera composers Gioachino

33 Electron. J. Combin. 3 (no. 2, “The Foata Festschrift”) (1996), #R13, 84 pp.
34 Excerpt from a talk at the Third International Conference on “Formal Power Series and Algebraic Combinatorics", Bordeaux, 4 May 1991.
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able discovery.

Conjecture (Mills, Robbins, Rumsey ∼ 1980). We have

A(n) =
1! · 4! · 7! · · · · · (3n − 2)!

n! · (n + 1)! · (n + 2)! · · · · · (2n − 1)!
,

where m! = m · (m − 1) · (m − 2) · · · · · 2 · 1.

This is extremely surprising. If a mathematician learns
about the above question then the immediate reaction would
be that there cannot be any reasonable formula for the number
of all alternating sign matrices consisting of exactly n rows.
But no! It seems that there is even an elegant, compact prod-
uct formula!

But how to prove this? For more than 10 years, mathe-
maticians did not even know how to attack this conjecture.
Everybody was therefore very surprised when Doron Zeil-
berger announced in 1993 that he had found a proof. Along
with the announcement, he distributed a 25-page article that
contained the proof.

As you know, it is not sufficient to announce that one has
proven something. The proof must be written down and sub-
mitted for publication, after which the corresponding article is

refereed. Zeilberger submitted his article for publication and
– you guessed it – the referee found gaps in the proof. So, the
article went back to Doron Zeilberger with a request to fill the
gaps. Zeilberger did some repair work and resubmitted the ar-
ticle and the referee found new gaps. The article went back to
Zeilberger again, he did more modifications, resubmitted and
the article went back and forth in this manner several times,
until the referee lost patience. He probably told Zeilberger
roughly the following: “Dear Doron! Before you resubmit the
article, please do something. Read your proof carefully from
the very beginning to the end. If you should not be able to do
that then give the article to a student to check the proof; but
please, do something!”

Doron Zeilberger did do something. First of all, he read
and checked his article carefully. Furthermore, he structured
the proof completely hierarchically so that the article could
be read “locally", in the sense that each part could be read
independently of the rest if one assumed that everything that
appeared lower in the hierarchy was correct. Subsequently,
he asked about 80 colleagues to check the article. He as-
signed to each of them 2 to 3 pages, and the task was to
check these pages under the assumption that everything that
appeared lower in the proof hierarchy was correct. So it hap-
pened. A few minor deficiencies were discovered in that way,
which could be easily repaired, but nothing dramatic surfaced
anymore and the article was eventually published in 1995.33

In Figure 6, we see the first page of the article. After the ti-
tle, the aforementioned colleagues (the “checkers”, totalling
around 80) are listed. The article is no longer 25 pages long
but rather 85. As I said, the proof is structured completely hi-
erarchically. The actual main theorem of the article is called
Lemma 1 (see Figure 7). This is based on Sublemma 1.1
and Sublemma 1.2. The latter in turn are based on Subsub-
lemma 1.1.1, Subsublemma 1.1.2, . . . , Subsublemma 1.2.1,
Subsublemma 1.2.2, . . . , which in turn are based on Subsub-
sublemma 1.1.1.1, . . . , and so forth, up to Sub6, that is, up to
Subsubsubsubsubsublemma, one of which we see in Figure 8.

You get the impression – we are talking about a real tour
de force. There is one thing, however, that cannot be said
about it. One cannot claim that this is a “nice” proof, an ele-
gant proof. In order to defend this, the same Doron Zeilberger
– in a different context – went as far as to exclaim:34

“Extreme UGLINESS is new BEAUTY!”

I think we let this stand as it is. Those who are naturally
sarcastic would say: “Yes, I always had the impression that
this is exactly the idea of many modern composers.” I would
counter that, at all times, there have existed better and worse
composers. Once time passes, the worse ones tend to be for-
gotten and only the outstanding composers remain. One can
verify the latter phenomenon very well if one asks how many
composers there were when Beethoven was a celebrity. An-
swer: innumerably many! If, however, one asks which of them
are still known today, which ones are still performed today,
then Franz Schubert comes immediately to one’s mind (who
was “ironically” largely unknown at the time) and also Carl
Maria von Weber and the Italian opera composers Gioachino

33 Electron. J. Combin. 3 (no. 2, “The Foata Festschrift”) (1996), #R13, 84 pp.
34 Excerpt from a talk at the Third International Conference on “Formal Power Series and Algebraic Combinatorics", Bordeaux, 4 May 1991.
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proof, an elegant proof. In order to defend this, the same 
Doron Zeilberger – in a different context – went as far 
as to exclaim:37 

“Extreme UGLINESS is new BEAUTY!” 

I think we let this stand as it is. The sarcasts among you 
will say: “Yes, I always had the impression that this is 
exactly the idea of many modern composers.” I would 
counter that at all times there existed better and worse 
composers. Once time passes, the worse ones tend to be 
forgotten, and only the outstanding composers remain. 
One can verify the latter phenomenon very well if one 
asks how many composers there were when Beethoven 
was a celebrity. Answer: innumerably many! If, however, 
one asks which of those are still known today, which ones 
are still performed today, then Franz Schubert comes 
immediately to one’s mind (who “ironically” was largely 
unknown at the time), also Carl Maria von Weber and 
the Italian opera composers Gioachino Rossini and 
Gaetano Donizetti. This is it! The same thing will apply 
for us in 100 or 200 years from now. Most composers will 
be completely forgotten, and only the outstanding ones 
will survive. If I may make a personal comment on this 

could be read independently of the rest if one assumed 
that everything which appeared lower in the hierarchy 
was correct. Subsequently, he asked about 80 colleagues 
to check the article. He assigned to each of them 2 to 3 
pages, and the task was to check these pages under the 
assumption that everything which appeared lower in the 
proof hierarchy was correct. So it happened. A few minor 
deficiencies were discovered in that way, which could be 
easily repaired, but nothing dramatic surfaced anymore, 
and the article was eventually published in 1995.36 In Fig-
ure 6, we see the first page of the article. After the title, 
the aforementioned colleagues (the “checkers”, totalling 
around 80) are listed. The article is no longer 25 pages 
long, but rather 85. As I said, the proof is structured com-
pletely hierarchically. The actual main theorem of the 
article is called Lemma 1 (see Figure 7). This is based 
on Sublemma 1.1 and Sublemma 1.2. The latter in turn 
are based on Subsublemma 1.1.1, Subsublemma 1.1.2, 
… , Subsublemma 1.2.1, Subsublemma 1.2.2, … , which 
in turn are based on Subsubsublemma 1.1.1.1, … , and 
so forth, up to Sub6, that is, up to Subsubsubsubsubsub-
lemma, one of which we see in Figure 8. 

You get the impression: we are talking about a real 
tour de force. There is one thing, however, that cannot 
be said about it. One cannot claim that this is a “nice” 

36 Electron. J. Combin. 3 (no. 2, “The Foata Festschrift”) (1996), 
#R13, 84 pp.

37 Excerpt from a talk at the Third International Conference on 
“Formal Power Series and Algebraic Combinatorics”, Bor-
deaux, 4 May 1991.
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Rossini and Gaetano Donizetti. That is it! The same thing will
apply for us in 100 or 200 years from now. Most composers
will be completely forgotten and only the outstanding ones
will survive. If I may make a personal comment on this mat-
ter from a local, patriotic view: I am convinced that Friedrich
Cerha will be one of those composers whose music will still
be performed in 100 or 200 years. His powerful, expressive
musical language is impressive and also clearly present in
pieces that I like less.

Figuratively – not literally – the above statement is es-
sentially what Arnold Schönberg and the composers around
him have done. The romantic sound idiom, after it had also
moved into expressionism, was exhausted at its end. No fur-

ther development was possible. What Arnold Schönberg did
then, when he turned to the twelve-tone technique, was radi-
cally rupture all common habits and rules. He based his music
on a completely new foundation, with completely new rules.
He believed – hoped – that in this way a new musical aes-
thetic would emerge. I, personally, regard this experiment as
a failure. As I already said on a different occasion, I under-
stand that a genius such as Arnold Schönberg tried this path
but I do not understand why he did not find an escape from
this (as I see it) dead-end of musical history. (That Schönberg
was a musical genius is single-handedly proved by his string
sextet “Verklärte Nacht”.35 This is such an incredibly touch-
ing, moving and, at the same time, complex piece, which only

35 “Transfigured Night”.

Figure 6.

[In order to view all of them type ‘GOG(3,5):’ in ROBBINS.]

On the TSSCPP side, it was shown in [MRR3] that TSSCPPs whose 3D Ferrers graphs lie in the

cube [0, 2n]3 are in trivial bijection with triangular arrays ci,j , 1 ≤ i ≤ n, 1 ≤ j ≤ n − i + 1,

of integers such that: (i) 1 ≤ ci,j ≤ j, (ii) ci,j ≥ ci+1,j , and (iii) ci,j ≤ ci,j+1. We will call

such triangles n-Magog triangles, and the corresponding chopped variety, with exactly the same

conditions as above, but ci,j is only defined for 1 ≤ i ≤ k rather than for 1 ≤ i ≤ n, n × k-Magog

trapezoids. For example the following is one of the 429 5−Magog triangles:

1 2 3 3 5
1 2 2 3
1 2 2
1 2
1

.

[In order to view all of them type ‘MAGOG(5,5):’ in ROBBINS.] Retaining only the first three rows of the

above Magog-triangle, yields one of the 387 5 × 3-Magog trapezoids:

1 2 3 3 5
1 2 2 3
1 2 2

.

[ In order to view all of them type ‘MAGOG(3,5):’ in ROBBINS.]

Our goal is to prove the following statement, conjectured in [MRR3], and proved there for k = 2.

Lemma 1: For n ≥ k ≥ 1, the number of n× k-Gog trapezoids equals the number of n× k-Magog

trapezoids.

[ The number of n by k Magog trapezoids, for specific n and k, is obtained by typing b(k,n); while the number of

n by k Gog trapezoids is given by m(k,n);. To verify lemma 1, type S1(k,n):.]

This would imply, by setting n = k, that,

Corollary 1’: For n ≥ 1, the number of n-Gog triangles equals the number of n-Magog triangles.

Since n-Gog triangles are equi-numerous with n × n alternating sign matrices, and n-Magog tri-

angles are equi-numerous with TSSCPPs bounded in [0, 2n]3, this would imply, together with

Andrews’s[A2] affirmative resolution of the TSCCPP conjecture, the following result, that was

conjectured in [MRR1].

The Alternating Sign Matrix Theorem: The number of n × n alternating sign matrices, for

n ≥ 1, is:

1!4! . . . (3n− 2)!

n!(n + 1)! . . . (2n− 1)!
=

n−1∏

i=0

(3i + 1)!

(n + i)!
.

5

Figure 7.
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Brains in mathematics 
You may argue that there is little to say on this topic. 
Obviously, reason and thought are the essentials in math-
ematics. You are right, of course. Hence, we may consider 
this topic as checked… 

Brains in Music 
This is again an entire topic in itself. There is the wide-
spread naive idea, concerning pianists, that a pianist must 
practise diligently, and in the evening of the concert he 
storms onto the stage, sits down at the piano, and cuts 
loose. Yes, this is a possibility, but this is not how it works.
The audience will notice39 that not much thought went 
into that interpretation. It will not really make sense, it 
will remain inconclusive. Indeed, if one looks at the great 
pianists, one will notice that emotion and thought always 
go together – form a symbiosis – certainly with different 
weighting in each individual case. The prototypical exam-
ple is Alfred Brendel, where it is amply established by his 
books just how much thought went into his interpreta-
tions, and where simply watching him play was sufficient 
to understand what a sensitive and emotional artist he 
was. 

Concerning composers, there is a similar widespread 
conception that it is most important to have good melod-
ic ideas. Everything else just works by itself. In response 
to this, I can only say that at all times there are and have 
been many more composers with good melodic ideas 
than good (or even outstanding) composers. The great art 
is in bringing to bear the melodic ideas, the themes, and 
in building, forming, and developing the pieces. Here too 
the following applies: if one looks at the great composers, 
then emotion and thought always go hand in hand. For 
composers such as Bach, Beethoven, or Brahms, this is 
obvious anyway. However, it also applies to composers 
who are not really under suspicion of having approached 
composition in a particularly intellectual manner. In 
this latter category, I would see Franz Schubert, Anton 
Bruckner, or also Modest Mussorgsky. One will be sur-
prised how much thought went into the compositions 
of even these composers. For Mussorgsky, it suffices to 
consider his “Pictures at an Exhibition,” how the prom-
enades keep the work artfully together, how the theme 
of the last picture, the “Great Gate of Kiev” is extracted 
from the theme of the promenade, which is itself formed 
in a self-referential way. Bruckner’s scores are highly 
complex anyway. Even in the work of Schubert the role 
of reason and thought is much bigger than one would 
commonly believe. I want to give a glimpse of an idea 
here. The example I have chosen is the Great Sonata in A 
major, D 959, from Schubert’s last year of life. This sona-
ta has four movements. A broad first movement, whose 
proud opening theme is the following: 

matter from a local patriotic view: I am convinced that 
Friedrich Cerha will be one of those composers whose 
music will still be performed in 100 or 200 years. His pow-
erful, expressive musical language is impressive and also 
clearly present in pieces which I like less.

Figuratively – not literally – the above statement is 
essentially what Arnold Schönberg and the composers 
around him have done. The romantic sound idiom was, 
after it had also moved into expressionism, exhausted, 
at its end. No further development was possible. What 
Arnold Schönberg did then, when he turned to the 
twelve-tone technique, was radically rupture all common 
habits and rules. He based his music on a completely 
new foundation, with completely new rules. He believed 
–hoped – that in this way a new musical aesthetic would 
emerge. I, personally, regard this experiment as a failure. 
As I already said at a different occasion: I understand 
that a genius such as Arnold Schönberg tried this path, 
but I do not understand why he did not find an escape 
from this – as I see it – dead end of musical history. 
(That Schönberg was a musical genius is single-handedly 
proved by his string sextet “Verklärte Nacht”.38 This is 
such an incredibly touching and moving, and at the same 
time complex piece as only a genius can write. To me, it 
belongs to the greatest compositions ever.) 

38 “Transfigured Night”.

39 Singular exception is presumably Martha Argerich, whose 
interpretations do not seem to be very reflective. Instead, 
she proceeds rather spontaneously when playing. I have 
the greatest respect for Martha Argerich. Her musicality is 
marvellous. I did however also listen to pieces played by her 
which, due to her spontaneous approach, – so-to-speak – dis-
integrated under her fingers…

We now need the following (sub)6 lemma:

Subsubsubsubsubsublemma 1.2.1.2.1.1.1: Let Uj , j = 1, . . . , l, be quantities in an associative

algebra, then:
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Proof: The series on the right telescopes to the expression on the left. Alternatively, use increasing

induction on l, starting with the tautologous ground case l = 0.

Using (sub)6lemma 1.2.1.2.1.1.1 with
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We can split (Marvin′) yet further apart, with the aid of the following (sub)6lemma:

Subsubsubsubsubsublemma 1.2.1.2.1.1.2: Let Uj , (j = K, . . . , L), be quantities in an asso-

ciative algebra, then:
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Proof: The sum on the right telescopes to the expression on the left. (Note that it is in the

opposite direction to the way in which it happened in 1.2.1.2.1.1.1.) Alternatively, the identity is

tautologous when K = L + 1, and follows by decreasing induction on K. This completes the proof

of (sub)6 lemma 1.2.1.2.1.1.2. .

Going back to (Marvin′), we use the last (sub)6lemma (1.2.1.2.1.1.2), with K = rj−1 + 2, L = rj ,

and Ui := (x̄i−1xi), to rewrite:
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at the great pianists, one will notice that emotion and thought
always go together – form a symbiosis – certainly with dif-
ferent weightings in each individual case. The prototypical
example is Alfred Brendel, where it is amply established in
his books just how much thought went into his interpretations
and where simply watching him play was sufficient to under-
stand what a sensitive and emotional artist he was.

Concerning composers, there is a similar widespread idea
that it is most important to have good melodic ideas and that
everything else just works by itself. In response to this, I can
only say that, at all times, there are and have been many
more composers with good melodic ideas than there have

been good (or even outstanding) composers. The great art is in
bringing to bear the melodic ideas, the themes, and in build-
ing, forming and developing the pieces. Here, too, the fol-
lowing applies: if one looks at the great composers then emo-
tion and thought always go hand-in-hand. For composers such
as Bach, Beethoven and Brahms, this is obvious. However,
it also applies to composers who are not really under suspi-
cion of having approached composition in a particularly intel-
lectual manner. In this latter category, I would include Franz
Schubert, Anton Bruckner and also Modest Mussorgsky. One
would be surprised at how much thought went into the com-
positions of even these composers. For Mussorgsky, it suf-

Figure 8.
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Differences between mathematics and music 
So far, I have talked a lot about parallels between math-
ematics and music. I should perhaps also address the dif-
ferences between them. In short, there are many. Here, 
I only want to work out the most significant difference. 

This begins with another parallel. When a composer 
has the great inspiration and a composition materialis-
es in his/her head, then it must now be written down in 
order to be performed. This may then look as in Figure 9. 

When a mathematician has a brilliant idea and proves 
a great new theorem, then it must now be written down 
in order for others to be able to study it. This may then 
look as in Figure 10. 

If somebody cannot read scores and also does not 
understand anything of mathematics: I would say, there 
is no discernible difference between the two; each is as 
incomprehensible as the other…

Let us return to the score. It must now be brought to 
life. In the case of the “Appassionata”, we need a pianist. 
This pianist must carefully study and practise the piece, 
and then perform it. And this performance – this is it! 
This is the complete composition! Nothing was added, 
nothing was omitted (if we neglect that the pianist stum-
bles possibly here and there…). And everybody can sit 
down and listen to it. No prior education is required for 
that. If one has an affinity with the musical language of 
Beethoven, then one will be captivated by the dark, tense 
atmosphere of the Appassionata. 

Now you may object: but at the university, in the 
mathematics courses, there mathematics is “performed.” 
Somehow, yes. However, this is actually different. You 
cannot simply sit down in a course and delight in the vari-
ous qualities of the “performed” mathematics. Depend-
ing on how advanced a course is, it requires more or less 
prior knowledge from the listener in order to understand 
at all what is being discussed. (Even the courses in the 
first semester require certain prior knowledge, without 
which it is not advisable to attend such a course. Unfor-
tunately, every year there arrive more freshmen than we 
would like for whom this is apparently not so clear…). In 
the courses, it is common practise to build on this prior 
knowledge, and to not repeat what is (should be) already 

We already know the heartbreakingly sad theme of the 
second movement: 

There follows a playful Scherzo, which also contains 
Ländler40 elements: 

The concluding melodious Rondo begins as follows:

You will not have noticed, but maybe you sensed it: these 
four themes, so different in character, are bound together 
by a hidden brace. This is what I now want to expose. 

If one looks at the opening theme of the first move-
ment more closely, then one recognises that (in the upper 
voice) the note a is at first repeated several times, before 
it is “resolved” to a g sharp in the end, which is also orna-
mented by an f sharp. Thus, if one reduces the theme to 
its nucleus then it becomes clear that we are talking of a 
largely blown up suspension a–g sharp: 

How does the second movement begin? The answer is: 
a–g sharp. How does the Scherzo fit in? This is more hid-
den. Here, one must look at the lower voice in order to 
discover a–g sharp again! The theme of the last move-
ment even contains the suspension a–g sharp twice 
(namely in the second and in the fourth bar, both times 
in the upper voice). 

Sure, these fine points are not consciously noticed by 
the listener, nonetheless, they do have an unconscious 
effect. In our concrete case, they contribute to the great 
unity of the sonata. It is, among other things, these details 
that make the difference between a masterpiece and 
compositions of average quality. 

40 A “Ländler” is a rural dance in Austria. The German transla-
tion of “rural” is “ländlich”.

Figure 9.
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newest composition, so to speak – in front of a wide 
audience. However, because of the earlier described 
difficulties, it is impossible! In order to avoid any mis-
understanding: I am not saying that one should not talk 
about mathematics. On the contrary! What I am doing 
here is, in a sense, also to talk about mathematics. How-
ever, if it comes to current research, then one will have 
to take recourse to metaphors, then one will only be able 
to vaguely indicate what is really going on. As I said: the 
performance of mathematics does not exist, and thus a 
mathematician will never be able to convey to a wide 
audience what (s)he experiences when (s)he deals with 
mathematical problems and their solutions. Here, math-
ematicians are always at a disadvantage when compared 
to musicians – and to researchers in other disciplines; 
music speaks directly to the listener, no “translation”, no 
further explanation is necessary, and this is in sharp con-
trast to mathematics.42 

Personal notes 
What do mathematics and music mean to me? A lot, 
obviously. First of all, there is the inexplicable, magi-
cal component. If I am asked why I went for music and 
mathematics: I do not know. I remember very well that, 
as a 6–7-year old, I used to sing along with great passion. 
Why? I do not know. I also remember very well that, as a 
13–14-year old, I was burningly interested in how big the 
probability is that, by throwing a given number of dice, 
one scores a certain total; so, for example, how likely it 
is to score 36 by throwing 10 dice. I computed (by hand) 
long tables, and I studied the numbers in these tables. 
After work of several years, I was indeed able to find a 
formula for this probability. Obviously, at the time, I did 
not have the slightest idea how to prove it.43 Why was I 
so fascinated by this? I do not know. 

What fascinates me today in mathematics and music? 
When it comes to mathematics, there is for one the chal-
lenge to “crack” open problems as they constantly arise 
in physics, in computer science, and also in mathematics 
itself. Interestingly, in my research work, in order to solve 
a problem, I frequently study long tables (nowadays 
computed by using a computer, of course), subsequently 
I try to guess a mathematical formula for the numbers in 
these tables (also partially with the help of a computer), 
and then – if successful – try to prove this newly discov-

known. Moreover, for conclusions which are somehow 
“obvious”, it is left to the listener to fill in the details. In 
this sense, also in courses at the university there is no 
(complete) performance of mathematics.

You will insist: okay, but at mathematics conferences, 
there mathematicians present their latest results in front 
of their colleagues, there mathematics is “performed”! 
The former is certainly correct, but here as well there is 
no “performance” of mathematics which takes place in 
the same sense as music is performed. At a conference, 
you may have maybe 30 minutes, maybe an hour to pre-
sent your latest result. What is presented the lecturer has 
thought about for weeks, months, sometimes years. This 
cannot be presented in all detail within 30 minutes or an 
hour. What one therefore does is explain the assertion 
of the newest theorem, and subsequently indicate which 
ideas go into the proof. If a listener wants to completely 
work through the proof, respectively wants to completely 
check the proof in all detail, then (s)he must study the 
article in which this proof is written down. So, also here, 
there is no “performance” of mathematics.

This has a very lamentable consequence for mathe-
maticians: I would say that – very roughly estimated – 90 
percent of the population are amenable to music. If one 
subtracts popular music, then there remain still – con-
servatively estimated – 10 percent who are addressable 
by – let me say – expressive music. 41 

How are matters with mathematics? I would formu-
late it as follows. You may perhaps remember from high 
school that mathematicians have a special symbol for 
infinitely small quantities: the e! So, I would say that – 
roughly – e percent of the population are amenable to 
the manifold qualities of the science of mathematics. 

This is very grievous for mathematicians. Frequently, 
mathematicians are reproached for not stepping out of 
their ivory tower and not explaining a wide audience 
what they are doing. As a matter of fact, mathematicians 
would love to do exactly that: with great excitement, they 
would present and explain their newest theorem – their 

Figure 10.

41 I never knew what to do with the labels “classical music” and 
“light music”.

42 Consequently, Cédric Villani, in his remarkable and contro-
versial book “Théorème vivant” (in the English translation: 
“Birth of a Theorem”) – in which he describes how the proof 
of the theorem emerged that significantly contributed to the 
award of the Fields Medal to him in 2010 – does not even try 
to explain the mathematics behind, but on the contrary inten-
tionally remains often incomprehensible even to mathemati-
cians who are not experts in the field of partial differential 
equations, in order to entirely concentrate on the emotional 
side of the involvement with mathematics. Villani is highly 
successful doing this, but – seen plainly – he does not talk 
about mathematics.

43 Today I know that this formula can be easily proved with the 
help of generating functions or with the help of the principle 
of inclusion-exclusion.
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Conclusion 
Thus, I arrive at the end of my discourse on “Mathemat-
ics AND Music?”. To tell you a secret: it is absolutely 
allowed to remain largely incomprehensible during 
a mathematical talk; there is but one condition (in the 
words of the influential Italian/American mathematician 
Gian-Carlo Rota as a postulation of the audience to the 
speaker 45): 

“Give us something to take home!” 

In this sense, I hope that I was not too incomprehensible, 
and that there was something for you to take home. On 
this point, I have one thing further to offer, a piece of 
music at the end. Obviously, it must suit our motto “Soul 
AND Brains”. Clearly, one could find many natural can-
didates, for example, in the work of Johann Sebastian 
Bach, or of Ludwig van Beethoven. However, this would 
be too simple, too conventional. Instead, I chose the 
Sonata Opus 1 by Alban Berg. He wrote this sonata at 23 
years of age. It is, in a sense, the final “paper” of his music 
studies, which he mainly undertook under Arnold Schön-
berg. If you wish, it is Alban Berg’s musical “thesis,” in 
order to stress another analogue with mathematics. It fits 
excellently with our motto “Soul AND Brains”. I would 
say that the musical language of this sonata can be classi-
fied as expressionistic. It is thus highly emotional. On the 
other hand, it is an incredibly dense musical construction, 
in which the complete piece of approximately 10 minutes 
is extracted from one nucleus – namely the theme at the 
beginning.

Enough of explanations. I will now play the Sonata 
Opus 1 by Alban Berg. I shall directly adjoin a prayer 
by Johannes Brahms. “Intermezzo” is the original title by 
Brahms, from the last piano pieces that he wrote. I have 
always liked to do this, since, first of all, the two pieces 
fit so well together, and, second, if one listens, then one 
understands where the musical language of Berg comes 
from.

〈 Alban Berg (1885–1935): Sonata op. 1 〉46   

〈 Johannes Brahms (1833–1897): Intermezzo in  
b minor, op. 119/1 〉47

Christian Krattenthaler studied mathemat-
ics at the University of Vienna and piano 
at the Vienna University of Music and Per-
forming Arts. After finishing his studies 
(mathematics 1984, piano 1986), he pur-
sued both careers (lecturer at the University 
of Vienna and concert pianist) for a while. 

He terminated his activities as a concert pianist in 1991 
because of an incurable ailment of both hands. After hold-
ing a position as a professor at the Université “Claude 
Bernard” Lyon-I from 2002 to 2005, he was appointed as 
a professor of discrete mathematics at the University of 
Vienna. For his scientific achievements, he was awarded 
the Wittgenstein-Prize in 2007.

ered conjecture. Moreover, I am of course fascinated by 
searching and discovering hidden structures and connec-
tions behind the problems and their solutions. Clearly, 
the aesthetic component in mathematics plays a big role 
for me as well. 

Also in music, I am fascinated by fathoming new ter-
ritory. It is extremely interesting to take a new44 piece, 
and now start working on it. As we already discussed: a 
score must be brought to life. When one starts studying a 
piece, one often does not know which are the important 
points within it, how to understand the structure of the 
piece, and how the piece should develop when played. I 
remember very well the situation when I, together with 
my trio partners, started to prepare the third movement 
of Mozart’s piano trio in C major, KV 548, for an encore 
of a concert evening. Each of us had – individually –pre-
pared and practised one’s own part, but the first “read-
ing” of the movement ended up in a complete disaster: 
nothing made any sense at all. The violinist immediately 
pled that we choose a different piece as an encore … 
I insisted to give the piece a chance. So, we started to 
work on it, and, lo and behold, this “ugly duckling” slow-
ly transformed itself into a lively, witty piece of music, 
which was a great pleasure to play for all of us.

Another important point is that, once one has 
worked out an interpretation of a piece, to present this 
– own – view of the composition in front of an audience. 
Each time, this is a tremendously interesting and excit-
ing experience. One never knows in advance how this is 
going to develop, but the more this is tantalising, and the 
more this can be enriching.

In any case, for me, mathematics and music always 
have been two very different things that complement 
each other. And it is exactly this complementary aspect 
that I have always found so interesting and appealing. 
It is perhaps unhealthy to become obsessed with just 
one matter. When I am trying to solve a mathematical 
problem and I arrive at a dead end where I do not know 
how to proceed, then I may sit down at the piano and 
concentrate on something completely different, and in 
this way clear my mind. Maybe upon returning to the 
mathematical problem, I will have a new, fresh view of 
things, which allows me to progress again. 

44 Meaning: “not yet studied”.
45 The citation is from the talk “Ten Lessons I wish I had been 

Taught”, which Rota delivered on 20 April 1996 at the oc-
casion of a birthday conference in his honour at the Massa-
chusetts Institute of Technology in Boston. It can be read in 
the Notices of the American Mathematical Society, vol. 44, Nr. 
1, 1997, pp. 22–25 (see http://www.ams.org/notices/199701/
comm-rota.pdf).

46 In danger of exhibiting a certain bias, Alfred Brendel’s won-
derfully balanced view can be enjoyed on YouTube in two 
parts: http://www.youtube.com/watch?v=PlV-ksfS7F8, http://
www.youtube.com/watch?v=QxBGG74ztVo.

47 An old concert recording of this piece with the author him-
self at the piano can be found at http://www.mat.univie.
ac.at/~kratt/klavier/brahms119-1.html.



Young Mathematicians’ Column (YMCo)

EMS Newsletter June 2017 55

On 13–18 March 2017, Maykop (Republic of Adygea, 
Russian Federation) hosted the Second Caucasus Math-
ematical Olympiad (an International Olympiad for sec-
ondary school students).

The first Olympiad was held in the 2015–16 academic 
year at the “Sirius” Educational Centre (Sochi, Russia), 
with students participating from 15 regions of Southern 
Russia. 

It was only in 2017 that the Caucasus Mathematical 
Olympiad accomplished its original intention, bringing 
together school students and representatives of various 
regions of Southern Russia and becoming international. 
From 15 southern regions of Russia and countries of the 
South Caucasus: Armenia, Abkhazia, and South Ossetia, 
110 students took part in the Olympiad.

The creators of the Olympiad set the humanistic 
objective of contributing to the formation of a unified cul-
tural and educational space, which would unite regions of 
Southern Russia, the Caucasus and countries from the 
Black Sea region, and strengthening ties between school 
students keen on mathematics from these regions. One 
of the main goals of the Olympiad is to prepare students 
for the final stages of the National Olympiads in the par-
ticipating countries. 

The Coordination Council oversaw the development 
of the Olympiad and its preparation. The Coordination 
Council of the Olympiad included Daud Mamiy, initia-
tor of the Olympiad, Nazar Agahanov, member of the 
Coordination Council of the International Mathematical 
Olympiad, and Nikolai Andreev, Head of the Laboratory 
of Popularization and Promotion of Mathematics of the 
Steklov Mathematical Institute of the Russian Academy 
of Sciences. 

In 2017, the members of the central committee of the 
Russian Mathematical Olympiad responsible for subject-
specific methods of teaching formed the Problem Selec-
tion Committee of the Olympiad. Pavel Kozhevnikov 
served as the Chairman of the Problem Selection Com-
mittee. Kozhevnikov himself was a Gold Medallist of the 
International Mathematical Olympiad in 1992 (currently 
he is at the Moscow Institute of Physics and Technology, 
Laboratory of Popularization and Promotion of Mathe-
matics of the Steklov Mathematical Institute of the Rus-
sian Academy of Sciences). 

The Jury of the Caucasus Mathematical Olympiad 
consisted of members of the Jury of the Russian Math-
ematical Olympiad, who were previous winners of Rus-
sian and International Olympiads. 

The Olympiad was held in two age groups: Junior 
League for students of Grades 8–9 and Senior League 
for students of Grades 10–11 (last two years of high 
school). The Coordination Council invited the winners of 
the regional and final rounds of the national Mathemati-
cal Olympiads of the participating countries to enter the 

Caucasus Mathematical Olympiad
Daud Mamiy (Adyghe State University, Maykop, Russia)

competition. The Olympiad was held over two rounds in 
which the participants were asked to solve four problems. 

The organisers tried to create an atmosphere that real-
ised the intent of the Olympiad; the entire programme 
aimed to create a friendly and creative atmosphere. 
The organisers provided consultants who discussed and 
reviewed the problems of the previous rounds with the 
delegations from any regions where the level of math-
ematical training is not high enough. 

In the evenings, volunteers from Maykop schools and 
students of Adyghe State University organised guitar 
and music concerts. Without doubt, the Olympiad partic-
ipants and the members of the jury enjoyed the informal 
gatherings, where they talked about the problems, their 
preparation for Olympiads and anything else that was of 
interest. 

The programme of the Olympiad was also designed to 
introduce the guests of Adygea to the local history, cul-
ture and traditions. The contestants visited the National 
Museum of the Republic of Adygea and the Northern 
Caucasus branch of the State Museum of Oriental Art, 
travelled to the foothills of the Western Caucasus, attend-
ed lectures on the history and culture of a local ethnic 
group called Circassians and became familiar with Circas-
sian cuisine. Every night, dancers from the Dance Ensem-
ble “Nart” of Adyghe State University taught everybody 
who was interested how to dance Caucasian dances. 

The members of the Coordination Council were 
very involved during the Olympiad, attending numer-
ous meetings with teachers of mathematics, university 
students and schoolchildren from almost all districts 
of the Republic of Adygea. Schoolteachers gathered at 
roundtables to discuss problems of student training for 
Olympiads. Teachers also attended lectures on how to 
engage students in mathematics, while young mathemat-
ics enthusiasts had the chance to attend lectures on pop-
ular mathematics that were taking place in all districts of 
the Republic of Adygea for three days. 

The Olympiad events were updated on its website 
(http://cmo.adygmath.ru/en) and on the social network 
“VKontakte” (https://vk.com/cmo.adygmath). Volunteer 
students of Adyghe State University formed the press 
centre for the Olympiad and uploaded more than 1000 
photos (http://cmo.adygmath.ru/node/31) of the most 
interesting moments of the Olympiad, as well as short 
videos and dozens of posts.

The opening and closing ceremonies of the Olym-
piad were very impressive and reflected the diversity of 
the cultures of people living in the Caucasus. It is not a 
coincidence that the closing ceremony ended with a song 
“Our Caucasus”, beautifully performed by the soloists of 
the Adyghe State University musical theatre “Art Rhy-
ton”. The Olympiad closing ceremony was held in the 
Main Hall of the State Philharmonic of Adygea. 
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It should be added that the emblem of the Caucasus 
Mathematical Olympiad is the Caucasian tree of math-
ematical knowledge, designed by a talented Maykop 
painter Tatiana Vaganova. At the opening ceremony of 
the Olympiad, the delegates lit their symbolic signs on 
the branches of this tree and later, during the closing 
ceremony, they put the lights out. Most of the audience 
could not hold back their tears because they had made 
great friends and did not want to part from each other. 

The jury awarded various diplomas and gifts to 72 
participants from the regions and participating countries 
for their achievements. Forty-one of these participants 
were Olympiad champions and prize winners. The over-
all winners of the Olympiad were three students from 
Armenia and six students from regions of Russia (Ady-
gea, Dagestan and the Krasnodar region). 

Apart from the diplomas and prizes, each of the win-
ners of the Olympiad received a pendant in the shape of 
a blade. The pendants were created by the famous Cir-
cassian jeweller and gunsmith, Asiya Eutykh, who made 
them from a unique alloy used by Circassians in ancient 
times. 

Four winners of the Olympiad who succeeded in 
solving all eight problems got special prizes from Murat 
Kumpilov, the Head of the Republic of Adygea. 

The second and third place winners were participants 
from the Republic of Armenia and from eight regions of 
Southern Russia: the Astrakhan region, the Republic of 
Adygea, the Volgograd region, the Republic of Dagestan, 
the Rostov region, the Krasnodar region, the Republic 
of Crimea and the Republic of Kalmykia. All winners 
received memorable prizes and gifts. 

The organisers of this Olympiad were the Ministry of 
Education and Science of the Republic of Adygea and 
Adyghe State University. The idea of hosting the Olym-
piad in Adygea was actively supported by the authori-
ties of the Republic, who helped cover the major cost of 

the Olympiad. The sponsor of the Olympiad was an ITV 
company, a Russian market leader in video-editing.

The success of the Olympiad is largely linked to the 
activity of the Adygea Regional School of Mathematics 
and Natural Sciences, which has extensive experience in 
hosting mathematical competitions and conferences at 
the highest level. 

The Caucasus Mathematical Olympiad of 2017 
achieved its objectives and goals. Apart from the math-
ematical contest experience, schoolchildren from differ-
ent regions of the Caucasus got to know each other and 
made new friends. The results of the Second Caucasus 
Mathematical Olympiad highlight the necessity of car-
rying it forward into subsequent years. To maintain the 
current format, the Olympiad of 2018 will take place in 
Adygea again. We hope that the participants from other 
countries of the Caucasus and the Black Sea region will 
attend this event in the future. We will be happy to wel-
come students of Azerbaijan, Bulgaria, Georgia, Roma-
nia, Turkey, Ukraine and other countries. The Olympiad 
is further expected to be held under the direction of the 
Coordination Council in other countries of the Caucasus, 
the Black Sea region and Southern Russia. 

Daud Mamiy (dmami@yandex.ru) is the 
Initiator of the Caucasus Mathematical 
Olympiad and Head of its Coordination 
Council. He received his degree in math-
ematics at Lomonosov Moscow State Uni-
versity in 1987 and his PhD in mathemat-
ics in 1991 also from Lomonosov Moscow 

State University. Daud Mamiy is the Dean of the Faculty 
of Mathematics and Computer Science of Adyghe State 
University. He is the Director of the ASU School for math-
ematically gifted students.
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IMPA, Instituto de Matematica Pura e 
Aplicada 
Henrique Bursztyn and Roberto Imbuzeiro Oliveira (both Instituto de Matematica Pura e Aplicada, Rio de Janeiro, 
Brasil)

The “Instituto de Matemática Pura e Aplicada” (IMPA) 
is a research centre for mathematics situated in Rio de 
Janeiro, Brazil. It was created 65 years ago with the mis-
sion of pursuing high-level research in pure and applied 
mathematics, training new researchers and disseminating 
mathematics at all levels. IMPA has been pivotal in the 
development of mathematics in Latin America, particu-
larly through the training of leading professionals work-
ing in the region.

The institute has recently gained wider international 
recognition due to the 2014 Fields Medal awarded to 
Artur Ávila, a former PhD student and current faculty 
member of the institute.

IMPA’s location in the hills of the Tijuca Forest in Rio 
de Janeiro provides scenic and tranquil surroundings, 
which contrast with the vibrant and stimulating scientific 
environment of the institute. Every year, IMPA gathers 
prominent mathematicians from around the world for 
short- and long-term visits, offering ideal conditions for 
scientific collaboration.

IMPA is also a leading centre for graduate studies in 
Latin America. It runs a PhD programme in mathematics 
and offers a number of options for Master’s degrees. The 
institute hosts around 150 graduate students and nearly 
half of them come from abroad, contributing to the cul-
tural diversity of IMPA’s atmosphere. Postdoctoral pro-
grammes have also helped attract young international 
talent to the institute.

IMPA plays an active role in disseminating mathemat-
ics. A significant proportion of existing Portuguese math-
ematical literature (used in universities throughout the 
Portuguese speaking world) comes from IMPA’s publish-
ing house. IMPA runs Summer programmes that have up 
to 700 participants and organises a dozen international 
conferences every year. It hosts training programmes for 
high school teachers and is responsible for the Mathe-

matics Olympiad for Public Schools (OBMEP), a nation-
al competition that involves 18 million pre-college chil-
dren every year, discovering many new talents.

Brief history
IMPA was founded in 1952 as the first research centre 
affiliated with CNPq, the Brazilian National Council for 
Scientific and Technological Development. The institute 
started with only two researchers, Leopoldo Nachbin and 
Mauricio Peixoto, both mathematicians of international 
renown at the time. A few years later, topologist Elon 
Lima and number-theorist Paulo Ribemboim joined 
IMPA’s research staff.

IMPA started its activities in the premises of CBPF 
(Brazilian Center for Research in Physics) in Urca, Rio 
de Janeiro, and moved to two other locations before set-
tling, in 1981, in its current headquarters in the forest 
hills above Rio de Janeiro’s botanical garden.

Master’s and PhD programmes at IMPA started in 
1962, through a cooperation agreement with the Federal 
University of Rio de Janeiro. IMPA underwent a major 
expansion in its research activities after 1970, upon the 
return of a new generation of Brazilian mathematicians 
who had completed their PhD degrees in distinguished 
foreign universities. This allowed IMPA to make a quali-
tative leap forward and widen its research and train-
ing activities. At that time, some of the most traditional 
research groups at IMPA were established, such as the 
groups on dynamical systems and differential geometry. 
The growth of IMPA’s scientific staff gave new impetus 
to its Master’s and PhD programmes, which became 
internationally recognised and responsible for the train-
ing of leading mathematicians in the region.

Over the last three decades, IMPA’s scientific staff 
have increased in number to nearly 50 researchers, cover-
ing a wide array of areas in pure and applied mathematics.

IMPA’s entrance. IMPA’s location is in the right bottom corner of the image.
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Governance and funding
For nearly 50 years, IMPA was a public research institu-
tion under the auspices of the Brazilian Ministry of Sci-
ence and Technology. This changed in 2001 when it tran-
sitioned to a new legal status as an “organização social” 
(OS). IMPA is now a private non-profit organisation of a 
special kind. Its aims and goals are specified by a contract 
with Brazil’s Federal Government that is renewed every 
five years, contingent on good performance in the previ-
ous period.

The OS model has made the institute more dynamic 
and flexible. A streamlined hiring process has helped 
IMPA attract and retain talent. Institutional funding now 
combines private as well as public sources. Many new 
programmes and activities have been made feasible by 
the OS system. Of course, all of this has been possible 
only because IMPA has consistently surpassed its con-
tractual goals.

IMPA’s OS structure also specifies a governance 
structure with two main administrative bodies: the Board 
of Trustees and the Scientific Committee. The Board of 
Trustees supervises and regulates all of the institute’s 
activities. It includes members of IMPA’s faculty, external 
mathematicians, representatives from scientific societies 
and members from Government and society. The Scien-
tific Committee, for its part, focuses on academic matters, 
such as hirings and scientific activities. It is composed of 
seven members from IMPA and five external members 
from the scientific community.

Research at IMPA
IMPA’s raison d’étre was 
to produce and promote 
mathematical research in 
Brazil and abroad. Found-
ing members Leopoldo 
Nachbin and Maurício 
Peixoto were Brazil’s first 
speakers at the Inter-
national Congresses of 
Mathematicians (in 1962 
and 1975 respectively). 
Faculty such as Jacob Pal-
is, Welington de Melo and 
Ricardo Mañé in dynami-
cal systems, César Cama-
cho in complex geometry 
and foliations and Man-
fredo do Carmo in differ-

ential geometry helped propel their respective areas in 
South America and beyond.

IMPA’s current faculty continues to play a leading 
role both regionally and globally. The institute has 40 
regular professors (tenured and tenure-track), two spe-
cial visiting professors (Etienne Ghys and Bruce Reed), 
two extraordinary professors (Artur Ávila and Harold 
Rosenberg) and five emeriti. Current research areas 
include: analysis and partial differential equations; alge-
braic geometry and representation theory; combinato-
rics; complex geometry and foliations; computer graphics; 

differential and symplectic geometry; dynamical systems; 
fluid mechanics; mathematical economics; mathemati-
cal finance; optimisation; and probability and statistics. 
IMPA’s high profile in worldwide research is attested by 
the many recent distinctions received by its professors, 
including Ávila’s Fields Medal and four invited talks at 
the 2014 International Congress of Mathematicians.

IMPA’s visitors and postdoctoral researchers are 
another major factor in making IMPA an exciting 
research environment. In 2016, we hosted the equiva-
lent of 324 months of visits and postdocs. Researchers 
are attracted by the opportunity to collaborate with 
locals and other visitors in friendly, informal surround-
ings, with the stunning scenery of Tijuca Forest and the 
many attractions of Rio de Janeiro. A large number of 
visits to IMPA happen through cooperation agreements 
with international institutions, including CNRS (of 
which IMPA is a “Unité Mixte Internationelle”); École 
Normale Superieure, École Polytechnique, Brown Uni-
versity, Université Pierre et Marie Curie and Montréal’s 
Centre de Recherche Mathématique.

Laboratories for applied research are another impor-
tant aspect of IMPA’s research life. The Fluid Dynam-
ics Lab is devoted to fluid mechanics and its applica-
tions in the oil industry, LAMCA (the Laboratory for 
Mathematical Analysis in the Applied Sciences) pursues 
a range of projects in applied and industrial mathemat-
ics and VISGRAF is dedicated to research in computer 
graphics and vision.

Graduate studies
IMPA is one of Latin America’s leading centres for grad-
uate education in mathematics.

After an initial period of cooperation with the Fed-
eral University of Rio de Janeiro, IMPA’s graduate 
programme was accredited by Brazil’s Federal Council 
of Education in 1971 and it has been running regularly 
ever since. The programme has been instrumental in the 
development of mathematics in the region. Its alumni 
work in a large number of universities throughout Bra-
zil and abroad. Through these alumni, many new centres 
for graduate studies have been created and consolidated 
around Brazil in recent years.

IMPA has granted over 450 PhD degrees in math-
ematics to date, with an average of 17 new doctors per 

IMPA’s previous facilities in down-
town Rio de Janeiro.

IMPA’s current location.
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year over the past 10 
years. Besides its PhD 
degree in mathematics, 
IMPA offers four streams 
of academic Master’s 
degrees: pure mathemat-
ics, mathematical econom-
ics, computational math-
ematics and modelling, 
and computer graphics. As 
of 2008, IMPA started a 
professional Master’s pro-
gramme on mathematical 
methods in finance, with 
a focus on quantitative 
finance, financial instru-
ments and risk analysis, 

that is geared towards quali-
fied professionals holding non-academic positions.

Besides receiving students from all over Brazil, 
IMPA’s international projection has had a direct impact 
on the diversity of its graduate students. Currently, 
nearly half of the institute’s students come from abroad, 
mostly from other countries in Latin America but also 
from various places in Europe, Africa and Asia. Marce-
lo Viana, IMPA’s current director, came to the institute 
as a PhD student in the mid 1980s after completing his 
undergraduate degree at the University of Porto in Por-
tugal:  “I was attracted by IMPA’s international repu-
tation, especially in dynamical systems. Here I found a 
lively and stimulating environment, ideal for the devel-
opment of my research. In time, I realised there were 
plenty of opportunities for extending even more the 
scope of my work as a mathematician. This is an institu-
tion like no other.” Viana was a plenary speaker at the 
1998 ICM in Berlin and is the recipient of many interna-
tional prizes, most recently the Grand Prix Scientifique 
Louis D., one of France’s most prestigious scientific 
awards.

Other distinguished alumni of IMPA’s PhD pro-
gramme include 2014 Field’s Medallist Artur Ávila, who 
first came to the institute as a high school student, after 
outstanding performances in mathematics Olympiads. 
Avila, who completed his PhD degree at the age of 19, 
was one of many students to profit from IMPA’s flexibili-
ty in absorbing and training young talents. Avila’s advisor 
Welington de Melo was himself a PhD student at IMPA 
in the 1970s under Jacob Palis.

Incoming classes for IMPA’s PhD programme typi-
cally number around 20 students. A similar number of 
students start the Master’s programmes every year. All 
students have financial support through scholarships 
provided by the national funding agencies CNPq and 
Capes, as well as Rio de Janeiro’s agency Faperj. Further 
Information on how to apply can be found at http://www.
impa.br/opencms/en/ensino/index_geral/index.html.

Programmes and events
IMPA’s many events and programmes are a key aspect 
of its contribution to mathematics at the regional and 

global levels. In fact, it could be said that IMPA acts as 
a hub for mathematics in South America and (increas-
ingly) worldwide.

The institute regularly organises 14 conferences each 
year. These events range from small workshops to area 
schools and the 1000-plus-participant Brazilian Math-
ematical Colloquium, which is held at IMPA every two 
years.

Longer thematic programmes, each lasting between 
two and four months, are a recent addition to the insti-
tute’s roster of events. Upcoming programmes are on 
parameter identification in mathematical models (Octo-
ber–November 2017) and graph theory (January–March 
2018).

Lastly, IMPA has a well known Summer Programme, 
during the Southern Hemisphere Summer months of Jan-
uary and February. The importance of this programme for 
South American mathematics can hardly be overstated. 
Each year, the programme supports between 120 and 180 
undergraduates and postgraduates for intensive classes. 
This has had a major impact on regional mathematical 
culture and many of the region’s best mathematicians are 
alumni of this school. The programme also hosts a large 
number of visitors at the postdoctoral and senior levels, 
who come to take part in seminars, watch mini-courses 
on cutting edge research and collaborate with local and 
visiting colleagues.

Outreach and mathematical education
IMPA goes well beyond its role as a premier research 
centre in its efforts to disseminate mathematics. Brazil’s 
best known books for college mathematics have main-
ly come from IMPA’s publishing house. Lecture notes 
from the Brazilian Mathematical Colloquium have 
helped promote novel research directions throughout 
the country. IMPA has also promoted high school math-
ematics through the Brazilian Mathematical Olympiad 
(OBM).

In recent years, IMPA has become more involved 
with efforts to improve pre-college mathematical educa-
tion in Brazil. Early initiatives include a series of books 
for high school mathematics as well as the PAPMEM 

IMPA’s library. VISGRAF Lab.
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teacher recycling programme. The PROFMAT Master’s 
programme, which trains over 2,500 teachers around 
Brazil, was also started by the IMPA faculty.

IMPA’s best known and by far its largest activity in 
pre-college mathematics is the Brazilian Mathematics 
Olympiad for Public Schools (OBMEP). Around 18 mil-
lion children register for the OBMEP competition each 
year. Medal awardees are eligible for special training 
programmes and scientific initiation scholarships when 
they reach college. These have provided life-changing 
opportunities for many of the students involved, who 
often come from underprivileged backgrounds.

OBMEP has also had an impact beyond the competi-
tion winners. In fact, the competitive aspect is but one 
facet of a multipronged initiative that includes special 
training programmes for teachers, freely available teach-
ing and study materials and a series of videos on You-
Tube. Detailed studies have shown OBMEP’s measur-
able impact on schools nationwide.

In 2017, OBMEP and the older Olympiad OBM will 
be combined into a single competition, open to private as 
well as public school students. This will further broaden 
the impact of these initiatives.

The Mathematics Biennium: the ICM, the IMO 
and the Mathematics Festival
The years 2017 and 2018 mark a very special time for 
IMPA. In 2017, the International Mathematical Olym-
piad will be organised in Brazil for the first time. In 2018, 
the International Congress of Mathematicians will be 
held in Rio de Janeiro, the first such event to be held in 
either Latin America or the Southern Hemisphere.

IMPA is proud to be deeply involved with these two 
activities, which are landmarks for the Brazilian math-
ematical community. At the same time, these landmarks 
should not go unnoticed by society at large. On the con-

trary, the two events provide an opportunity to further 
promote mathematics in our country.

With this in mind, IMPA, the Brazilian Mathematical 
Society (SBM) and the Brazilian Academy of Sciences 
(ABC) approached Brazil’s National Congress to make 
2017 and 2018 Brazil’s Mathematical Biennium. The 
“Joaquim Gomes de Souza” Biennium, named after Bra-
zil’s first research mathematician, was introduced into 
law in 2016.

The Biennium provides a boost to IMPA’s dissemina-
tion efforts. This includes giving higher visibility to the 
ICM and the IMO and also promoting further activities. 
One important event is the “Festival da Matemática” in 
late April 2017. Hosted in Rio de Janeiro but with events 
nationwide, this festival features general-audience talks, 
movies, plays, exhibits and workshops geared toward 
young students and teachers. More information about 
the festival is available from its website (in Portuguese): 
http://www.festivaldamatematica.org.br/.

Henrique Bursztyn is a full professor at 
IMPA and the current head of graduate 
studies. His research lies in the areas of dif-
ferential geometry and mathematical phys-
ics, including symplectic geometry, Poisson 
structures and Lie theory.

Roberto I. Oliveira is an associate profes-
sor at IMPA. He is also the current head for 
projects and planning at the institute. His 
research interests are in probability and re-
lated disciplines, such as statistics, quantum 
information and discrete mathematics, es-
pecially as they pertain to systems that have 
many degrees of freedom.

Heritage of European Mathematics 
This series features the selected or collected works of distinguished mathematicians. Biographies of and correspondence between outstan-
ding mathematicians, as well as other texts of historico-mathematical interest are also included. 

Della Dumbaugh (University of Richmond, USA) and Joachim Schwermer (University of Vienna, Austria)
Emil Artin and Beyond – Class Field Theory and L-Functions (Heritage of European Mathematics)

ISBN 978-3-03719-146-0. 2015. 245 pages. Hardcover. 17 x 24 cm. 68.00 Euro

This book explores the development of number theory, and class field theory in particular, as it passed through the hands of Emil 
Artin, Claude Chevalley and Robert Langlands in the middle of the twentieth century. Claude Chevalley’s presence in Artin’s 1931 
Hamburg lectures on class field theory serves as the starting point for this volume. From there, it is traced how class field theory 
advanced in the 1930s and how Artin’s contributions influenced other mathematicians at the time and in subsequent years. 
Given the difficult political climate and his forced emigration as it were, the question of how Artin created a life in America within 
the existing institutional framework, and especially of how he continued his education of and close connection with graduate 
students, is considered.

The volume consists of individual essays by the authors and two contributors, James Cogdell and Robert Langlands, and contains relevant archival ma-
terial. Taken together, these chapters offer a view of both the life of Artin in the 1930s and 1940s and the development of class field theory at that time. 
They also provide insight into the transmission of mathematical ideas, the careful steps required to preserve a life in mathematics at a difficult moment 
in history, and the interplay between mathematics and politics (in more ways than one).

European Mathematical Society Publishing House
Seminar for Applied Mathematics
ETH-Zentrum SEW A21, CH-8092 Zürich, Switzerland
orders@ems-ph.org / www.ems-ph.org
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The architecture of the European Mathematical Society 
allows for individual and corporate members; in the lat-
ter category, there is a sub-category of “full members” 
that is made up of mathematical societies of the various 
countries of the European continent (plus Israel).

Full member societies have had a presence in the 
Newsletter of the EMS since its very first issue, with infor-
mation articles about their history and activities. These 
are not just short announcements of their current initia-
tives (which are also regularly provided) but also short 
papers (typically 1–3 pages long) describing something 
of their history as well as their most important past and 
current activities. 

Unfortunately, in spite of the existence of open access 
to all Newsletter issues on the webpage of the EMS Pub-

A Survey of Articles in the Newsletter of 
the EMS about the History and  
Activities of Full Member Societies of 
the EMS (Issue 1, September 1991 – 
Issue 104, June 2017)
Fernando Pestana da Costa (Universidade Aberta, Lisboa, Portugal), Editor of the EMS Newsletter

lishing House (http://www.ems-ph.org/journals/all_issues.
php?issn=1027-488X), it is not exactly easy to check for 
published articles about EMS full members. In order to 
have a clearer idea of what has been published and so 
to be able to plan future actions, the Editorial Board 
of the Newsletter has recently compiled a survey of that 
information. We believe this survey may also be of inter-
est to all EMS members and to the general readership of 
the Newsletter, as it provides a direct pointer to reliable 
published information about mathematical societies in 
Europe that can be difficult to obtain otherwise. In Table 
1, we present the results of the survey. As part of Editorial 
Board duties, in due time and according to the planned 
Editorial Board policy, societies that have not yet been 
covered in the Newsletter will be asked to contribute.

Name of Society Country Founding 
Date

Published in
Issue Date

Armenian Mathematical Union Armenia 1901
Association for Mathematics Applied to Economics and 
Social Sciences

Italy 1976 96 06 / 2015

Association of Mathematicians of Republic of Macedonia Macedonia
Austrian Mathematical Society Austria 1903
Belarusian Mathematical Society Belarus
Belgian Mathematical Society Belgium 1921 29 09 / 1998

80 06 / 2011
Bosnian Mathematical Society Bosnia
Catalan Mathematical Society Spain 1931 93 09 / 2014
Croatian Mathematical Society Croatia
Cyprus Mathematical Society Cyprus 1983 66 12 / 2007

Survey1 2 of articles about EMS full member3 societies published in the Newsletter up to issue 104

1 Information about the founding date of some societies could not be obtained from the data in the EMS webpage and archives. 
We thank Elvira Hyvönen, secretary of the EMS, her help in procuring this information.

2  We apologize for any omission or error and thank in advance all readers that care to send us corrections.
3  To the best of our knowledge all Societies in the table were full members at the time of the published article. Some may have 

ceased to be so in the meantime.
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Czech Mathematical Society  
(Union of Czechs Mathematicians & Physicists)

Czech  
Republic

1862 1 09 / 1991
43 03 / 2002
85 09 / 2012

Danish Mathematical Society Denmark 1873 35 03 / 2000
88 06 / 2013

Edinburgh Mathematical Society UK 1883 33 09 / 1999
74 12 / 2009

Estonian Mathematical Society Estonia 1926 41 09 / 2001
Finnish Mathematical Society Finland 1868 9 09 / 1993

32 06 / 1999
French Statistical Society France 1997
German Mathematical Society Germany 1890 29 09 / 1998

82 12 / 2011
Georgian Mathematical Union Georgia 1923
Hellenic Mathematical Society Greece 1918 45 09 / 2002
Icelandic Mathematical Society Iceland 1947
Institute of Mathematics and its Applications UK 1964 91 03 / 2014
Irish Mathematical Society Ireland 1976 2 12 / 1991

94 12 / 2014
Israel Mathematical Union Israel 47 03 / 2003
Italian Mathematical Union Italy 1922 38 12 / 2000
Janos Bolyai Mathematical Society Hungary 1891 59 03 / 2006
Kharkov Mathematical Society Ukraine 1879 34 12 / 1999
Kosovar Mathematical Society Kosovo 2008
Latvian Mathematical Society Latvia 1993 48 06 / 2003
Lithuanian Mathematical Society Lithuania 1962
London Mathematical Society UK 1865 31 03 / 1999

37 09 / 2000
99 03 / 2016

103 03 / 2017
Luxembourg Mathematical Society Luxembourg 1988 34 12 / 1999
Malta Mathematical Society Malta
Mathematical Society of France France 1872 40 06 / 2001
Mathematical Society of Serbia Serbia 1948
Mathematical Society of the Republic of Moldova Moldova 1950s
Moscow Mathematical Society Russia 1864 50 12 / 2003

51 03 / 2004
Norwegian Mathematical Society Norway 1918 41 09 / 2001
Norwegian Statistical Association Norway 1919
Polish Mathematical Society Poland 1919 32 06 / 1999

54 12 / 2004
Portuguese Mathematical Society Portugal 1940 46 12 / 2002

98 12 / 2015
Romanian Mathematical Society Romania 1910 40 06 / 2001

77 09 / 2010
Royal Dutch Mathematical Society Netherlands 1778 35 03 / 2000
Royal Spanish Mathematical Society Spain 1911
Slovak Mathematical Society Slovakia
Società Italiana di Matematica Applicata e Industriale Italy 1989
Société de Mathématiques Appliquées et Industrielles France 1983 6 12 / 1992

40 06 / 2001
Society of Applied Mathematics and Mechanics Germany 1922
Society of Mathematicians and Physicists of Montenegro Montenegro 1947
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Society of Mathematicians, Physicists and Astronomers of 
Slovenia

Slovenia 1949 47 03 / 2003

Spanish Society of Applied Mathematics Spain 1991
Spanish Society of Statistics and Operations Research Spain 1962
St. Petersburg Mathematical Society Russia 1890 10 12 / 1993
Swedish Mathematical Society Sweden 1950
Swiss Mathematical Society Switzerland 1910 33 09 / 1999
Turkish Mathematical Society Turkey 1948
Ukrainian Mathematical Society Ukraine
Union of Bulgarian Mathematicians Bulgaria 1898 6 12 / 1992

31 03 / 1999

ICMI Column
Jean-Luc Dorier (University of Geneva, Switzerland)

In the most recent issue of the ICMI Newsletter (March 
2017), a double editorial was published from the new 
president Jill Adler and the former president Ferdinando 
Arzarello. With their authorisation, we re-publish this 
double editorial here today.

From the desk of the ICMI President Jill Adler

Four years ago, the immediate past 
president Ferdinando Arzarello 
wrote from the desk of the ICMI 
president about the multiple needs 
mathematics education must serve, 
where all should have opportu-
nity not only for mathematical lit-
eracy but also the adventures of 
mathematics itself. He drew on the 
2012 UNESCO booklet on basic 
mathematics education written a 

few years ago mainly by ICMI past president Michele 
Artigue, assisted by other colleagues in the ICMI. We are 
pleased to announce this has recently been translated 
into Portuguese, thanks to the work of ICMI executive 
committee member at large Yuriko Baldin (http://www.
sbm.org.br/?s=desafios+do+ensino). The description of 
basic mathematics in the booklet highlights the multiple 
demands on mathematics education and so the need for 
reform in mathematics in schools, across all levels. In a 
globalising world, we understand our cultural diversity 
and the dangers of domination and alienation up ahead 
for any consideration of common curricula or what is 
quality teaching and learning of mathematics.

The ICMI launched two studies in response to these 
challenges. Study 23 on primary mathematics, co-chaired 
by Maria Bartonini Bussi (Italy) and Xuhua Sun (China), 
is the first study devoted to early learning and its study 
volume is almost ready for printing and dissemination. 
ICMI Study 24, entitled ‘School Mathematics Curricu-

lum Reforms: Challenges and Changes’, has just been 
launched, with Renuka Vithal (South Africa) and Yoshi 
Shimizu (Japan) as the two co-chairs. The International 
Programme Committee has been finalised and will meet 
later this year to develop the discussion document that 
will frame its study conference in 2018. This is a strate-
gic moment for the ICMI to collect, analyse, synthesise 
and then communicate our collective research and prac-
tical wisdom in school mathematics curriculum reform. 
As the new ICMI executive committee prepares for its 
first meeting in June this year, a key agenda item will be 
the ongoing support for Study 24, followed by an initial 
discussion of what might be our next study, and so some 
considered directions in which to further grow the organ-
isation and its influence. 

With these introductory comments, I hope I have 
illustrated the continuity and growth that now define 
the organisation, as one executive committee and its 
new president take over from another. Thus, accompany-
ing this introductory message from the new president is 
a farewell letter from Ferdinando Arzarello. In this, he 
describes the developments and progress in the ICMI 
during his presidency and I take this opportunity, on our 
collective behalf, to thank Ferdinando and his executive 
committee for all their work. I will not refer again here 
to the ongoing continuous work of the ICMI. I will only 
say that being elected as the president of the ICMI is an 
immense honour, especially at a time when the organisa-
tion is so strong and where a critical component of our 
strength is our collaborative and increasingly productive 
relationship with the IMU and the global community of 
mathematicians. 

I will use this opportunity for my first communication 
with our ICMI community to convey my greetings to 
you all, each and every participant in all ICMI activities, 
and to invite you all to participate with me and the new 
executive committee in ongoing communication about 
our work – past, present and future. 
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In particular, I wish to welcome all national repre-
sentatives into your roles if you are new this year and to 
thank those who are continuing in their roles for their 
ongoing work. We have 94 member countries and each 
has a representative through whom there is a formal line 
of communication to and from the executive committee. 
If you were at ICME13 in Hamburg in July, you would 
know from Ferdinando’s presentation during the open-
ing ceremony that we have numerous member countries 
and therefore national representatives across some con-
tinents but not others. We hope in our term of office over 
the next few years to enable greater representation and 
participation from countries in Africa, South and Cen-
tral America, Eastern Europe and parts of Asia. We are, 
of course, only too aware of the challenges facing us all 
with this, as our world seems to have become increasing-
ly unequal and fragmented. You have been introduced 
to the nine members of the executive committee (http://
www.mathunion.org/icmi/icmi/icmi/executive-commit-
tee/ec-2017-2020/) and you can see that we are spread 
across continents and so hopefully in a good position for 
this task.

The ICMI executive committee is currently prepar-
ing the agenda for our first meeting in June and so, right 
here, right now, we invite you to communicate with us, 
with ideas that you would like us to take forward and, of 
course, concerns with the organisation or its work. For-
mally, such communication should happen through the 
national representative in your country. If you are not 
aware who this is, the list is available at http://www.mat-
hunion.org/icmi/icmi/members/icmi-representatives/. We 
hope, over the next four years, to strengthen these lines 
of communication. Of course, you could write directly 
to me (icmi_president@mathunion.com), to our secre-
tary general Abraham Arcarvi, (Abraham.Arcavi@weiz-
mann.ac.il), to our administrator Lena Koch (icmi.cdc.
administrator@mathunion.org) or to any of the execu-
tive committee members. 

Of course, we have been thinking about our growth. 
You will all know, and Ferdinando’s letter provides detail 
on this, that a key direction for growth for some time now 
has been what can be described as a development agenda. 
Expanding the ICMI’s reach into new communities has 
been a key concern. The Capacity and Networking Pro-
ject (CANP), and substantial solidarity grants to support 
participation at the ICME, demonstrate our growing suc-
cess. In my recent work in South Africa, I have been chal-
lenged by how reform ideas in mathematics education 
are taken up (or not), particularly in developing country 
contexts, and thus contexts of educational disadvantage. 
The 2015 millennium goals for universal primary educa-
tion are becoming a reality. Coupled with this, however, 
is a concern that while most might now have access to 
school, in many areas this has not come with quality 
education. In 2012, the Conference of Commonwealth 
Education Ministers described this situation as “educa-
tion for all, learning for some” (www.cedol.org). Just as 
we confront diversity as we study curriculum reform, so 
there are different orientations to what is quality math-
ematics teaching and quality mathematics learning. 

I have been stimulated by recent literature and 
research related to educational development and com-
parative studies. There has been provocative debate in 
leading journals (the International Journal of Education 
Development and COMPARE) on pedagogy promoted 
in development projects and interventions, particularly 
in contexts where socio-economic conditions deny qual-
ity education to the majority of students in school. The 
current UNESCO goal is for sustainable development 
and while this is not specific to mathematics education, 
it is a programme we in the ICMI can think about, stim-
ulate interest in and contribute to. The goal of sustain-
able development is shared with the IMU and the CDC 
(Commission for Developing Countries) and also carried 
out through its work with the ICSU, the International 
Council of Scientific Unions. At this moment, we are 
collaborating with the project Mathematics for Planet 
Earth, with a new project inviting modules that specifi-
cally speak to the African context. 

We in the executive committee have also been inspired 
by the talk entitled Mathematics for Human Flourish-
ing given to the Mathematics Association of America 
(MAA) by its outgoing president Francis Su in January 
this year. He framed his eloquent and passionate talk 
with the question: “How can the deeply human themes 
that drive us to do mathematics be channelled to build a 
more beautiful and just world in which all can truly flour-
ish?” He suggests these themes are fun, beauty, truth, jus-
tice and love. These are sustainable development goals 
crafted in a different form for mathematics and so too 
for mathematics education (https://mathyawp.wordpress.
com/2017/01/08/mathematics-for-human-flourishing/).

Being elected as president of the ICMI is thus not 
only an honour but also a huge responsibility, to ensure 
the continuing strength of the institution. This is a turbu-
lent period in the world and there are increasing threats 
to collaboration and social justice and thus flourishing 
for all. However, as a South African, I have learned over 
and again how turbulence brings opportunities. During 
my mandate, and with a wonderful executive committee 
elected to support the ICMI’s work over the next four 
years, we will work to maximise these opportunities.    

Jill Adler, President of the ICMI 
(ICMI_President at mathunion.org)

Farewell letter from ICMI Past President  
Ferdinando Arzarello 

Dear Friends,
At the end of my term as ICMI 
president, I wish to thank you so 
much for the strongly collaborative 
spirit with which we have been able 
to work together in order to pursue 
the aims of our joint endeavour. For 
me, it has been an exciting period: 
ICMI programmes have allowed 
me to engage in wonderful chal-
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lenges, whose results I do hope have been useful for sup-
porting and improving mathematics education in many 
parts of the world.

In this mission, I was strongly sustained by the whole 
executive committee, whom I thank so much; I am par-
ticularly grateful to the secretary general and to the two 
vice-presidents for their precious advice in many circum-
stances. In the case of Abraham, the continual interac-
tions have also developed a deep friendship: many times 
I realised that we were sharing a common interpretation 
of circumstances even before discussing them. I think 
that these peculiar interactions have also been useful for 
ICMI policy.  

A special thank you must also go to Lena Koch, whose 
help, collaboration and suggestions incessantly support-
ed and encouraged me in my day-to-day work as presi-
dent. I think that the whole ICMI family, not only our 
executive committee, owes her a lot. Thank you Lena!

Usually, custom dictates that at the end of their term 
people should carry out an analysis of their activity. I do 
not wish to break this tradition but I also do not like to 
bore people with long inventories, so I will limit myself 
to listing some of the ICMI courses of actions that, as far 
as I can see, are worthwhile underlining.

I consider first the issues that pertain to the ICMI “by 
default”. I will only sketch some of them since the secre-
tary general has given detailed reports on all such activi-
ties on many occasions where all of us have been present 
(e.g. in his report at the last general assembly or in his 
speech at the ICME closing ceremony: https://lecture2go.
uni-hamburg.de/l2go/-/get/v/19779). Because of this, I 
will limit myself to recalling the huge efforts that many 
of us have made in ICME events, through our participa-
tion in the scientific work of the IPC and the important 
decisions about support to participants from developing 
countries, and through the careful choice of the country 
that will host the next ICME. The competition among 
three top-level contenders like Australia, China and the 
USA (Hawaii) for hosting ICME 14 shows the increasing 
relevance that our organisation has for people working 
in mathematics education.

Another significant activity has concerned the organ-
isation of the general assembly, where the main items 
of ICMI policy and institutional life are presented, dis-
cussed and approved: the minutes of its Hamburg meet-
ing show the relevant contributions of the ICMI Affiliat-
ed Organisations (http://www.mathunion.org/icmi/icmi/
icmi-as-an-organisation/general-assembly/) and the high 
participation of the country representatives. We have 
taken care, as far as possible, of the links with them and 
this systematic task has been fruitful. Also, the wide par-
ticipation of members of the executive committee in the 
activities of the ICMI regional conferences and other rel-
evant regional events all over the world shows the vital-
ity of our institution.

Another important issue I am happy to mention 
here concerns the relationship between the ICMI and 
the IMU: it has improved greatly in recent years, main-
ly thanks to the intelligent policy of former presidents 
in that direction, which has continued in these last few 

years. I wish to thank the current and past presidents and 
secretaries of the IMU, Ingrid Daubechies and Martin 
Grötschel, and Shigefumi Mori and Helge Holden, for 
their support and help. The collaboration with them in 
everyday activities, as well as in specific programmes, has 
been wonderful and productive. Moreover, the support 
of the IMU secretariat, with its distinguished head Alex-
ander Mielke and excellent team (Sylwia Markwardt, 
Lena Koch, Anita Orlowsky, Birgit Seeliger, Gerhard 
Telschow and Ramona Keuchel) has always been a pre-
cious concrete help for all our activities.

I will finish my farewell with some more “political” 
thoughts that I have progressively elaborated during my 
work in the ICMI, thanks to crucial interactions with 
the members of the executive committee and with many 
people of the wider ICMI family.

I think that, while designing our programmes, we 
have reflected extensively on the meaning of mathemat-
ics teaching/learning in the era of globalisation: curric-
ula, teachers, classroom practices and cultural, political 
and social issues. The world frame in this matter (and not 
only in this) is full of contradictions, which have consti-
tuted a challenge for us and I should think a challenge 
for all, mathematicians, mathematics educators, policy-
makers and mathematical education societies alike. As 
pointed out in an important UNESCO document, on 
the one hand the universality of technological develop-
ment and related needs for manpower skills are play-
ing the role of strong historical motivation for reform 
that should lead to unified standards for mathematics in 
school. But, on the other hand, for real success in math-
ematics education it is crucial to avoid both the cultural 
distance of some proposed curricular reforms from the 
mathematical culture of the different countries, as well 
as students’ alienation from their cultural environment, 
which can inhibit them from engaging in learning in a 
productive way.

Based on the inspiring experiences of previous ICMI 
executive committees, we have devoted many resources 
and much energy to some projects that we think are cru-
cial for featuring our own policy; among them I recall the 
four I like the most:

- CANP activities, and how these have improved through 
the publication of their volumes at an international 
level, and a scientific survey of CANPs conducted by 
Lena Koch (her detailed and informative review will 
be uploaded to the ICMI website in the near future; 
in the meantime, a long summary is available at http://
www.mathunion.org/fileadmin/ICMI/files/CANP/PP_
CANP_ICMI_ICME_CANP_WORKSHOP.pdf).

- The ICMI Study 24 on ‘School Mathematics Curricu-
lum Reforms: Challenges and Changes’, whose launch-
ing document, because of its complexity, required a lot 
of discussion within the executive committee.

- The new Emma Castelnuovo Award, which underlines 
the relevance of practices in addition to research in 
mathematics education (according to the ICMI spirit).

- The Klein project, which aims to bridge the gap be-
tween the mathematics traditionally taught in second-
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ary school and its most recent results through vignettes 
that can inspire teachers in their daily activities.   

From these experiences, some particularly significant 
aspects have emerged as major challenges for mathemat-
ics education at the beginning of the new millennium 
and, as is sometimes the custom of people who finish 
their term, I dare to leave them as a small legacy.

I think that the main fresh challenges concern:

- The education of younger pupils.
- Teacher training.
- The gender gap in mathematics learning.
- The use of internet technologies n.0 (n > 1) for math-

ematics teaching and learning.

For some of these, the ICMI has already done interest-
ing things but I think the ICMI could do even more. For 
example, with Study 23, the ICMI has started to extend 
its concerns to primary education. This study focuses on 
a segment of students that were traditionally not a core 
concern. I think this most worthwhile new trend will 
continue in some way. Moreover, the publication of the 
Study 22 volume on Task Design certainly constitutes an 
important tool for researchers and practitioners.

Other challenges at the moment are at the stage of 
promising beta-projects: e.g. the organisation of a MOOC 
for researchers and teachers as a resource of high-level 
lectures given by ICME awardees. Others concern the 
work of specific IMU commissions (where the ICMI has 
its representing member), which are carrying out projects 
where the ICMI can provide a relevant contribution.

A last word on what I call the “sleep of reason”, 
rephrasing the title of a well known F. Goya etching 

(Capricho 43: “El sueño de la razón produce monstru-
os”): ‘The ongoing tremendous events in many parts of 
the world seem produced in fact by monsters that such 
a sleep generates. I think that we can react against this 
sleep, trying to realise another meaning of the Spanish 
word “sueño”, or “dream”: hence, let us struggle for a 
“dream of reason”. Our contribution to this dream can 
be pursued by supporting and strengthening the diffu-
sion of a solid mathematical education, rooted in the 
cultural contexts of the different countries but universal 
in its final content. It will contribute by helping people 
think for themselves and understand one another. It will 
only be a drop in the ocean but not a useless one and it is 
important that all of us do our best in this.’

This is the legacy I leave to the next ICMI execu-
tive committee, which will start its task on 1 January. I 
wish all its members and particularly Jill Adler (the new 
president) and Abraham Arcavi (the re-elected secretary 
general) all my best wishes for continuing and enhancing 
the ICMI mission over the next four years. As the past 
president, I will be an ex-officio member of the execu-
tive committee and I will have the privilege of continuing 
to work for the ICMI and collaborate with them in this 
exciting enterprise.

Dear Friends, 
Our common work over these four years has been a really 
exciting human and cultural experience: apart from our 
realised programmes, of which all of us are justly proud, 
our mutual knowledge and friendship is one of the most 
solid results we achieved. Thank you again!

Torino, 30 Dec 2016
Ferdinando Arzarello, Past President of the ICMI

IRMA Lectures in Mathematics and Theoretical Physics 
This series is devoted to the publication of research monographs, conferences or workshops originating from the Institut de Recherche 
Mathématique Avancée (Strasbourg, France). The goal is to promote recent advances in mathematics and theoretical physics and make 
them accessible to a wide circle of professional and aspiring mathematicians and physicists. 

Handbook of Teichmüller Theory, Volume VI (IRMA Lectures in Mathematics and Theoretical Physics Vol. 27)
Athanase Papadopoulos (Université de Strasbourg, France), Editor

ISBN 978-3-03719-161-3. 2016. 652 pages. Hardcover. 17 x 24 cm. 88.00 Euro

This volume is the sixth in a series dedicated to Teichmüller theory in a broad sense, including various moduli and deformation 
spaces, and the study of mapping class groups. It is divided into five parts: Part A: The metric and the analytic theory; Part B: 
The group theory; Part C: Representation theory and generalized structures; Part D: The Grothendieck–Teichmüller theory; Part 
D: Sources.
The topics surveyed include Grothendieck’s construction of the analytic structure of Teichmüller space, identities on the geodesic 
length spectrum of hyperbolic surfaces (including Mirzakhani’s application to the computation of Weil–Petersson volumes), mo-
duli spaces of configurations spaces, the Teichmüller tower with the action of the Galois group on dessins d’enfants, and several 

others actions related to surfaces. The last part contains three papers by Teichmüller, translated into English with mathematical commentaries, and a 
document that contains H. Grötzsch’s comments on Teichmüller’s famous paper Extremale quasikonforme Abbildungen und quadratische Differentiale.
The handbook is addressed to researchers and to graduate students.

European Mathematical Society Publishing House
Seminar for Applied Mathematics
ETH-Zentrum SEW A21, CH-8092 Zürich, Switzerland
orders@ems-ph.org / www.ems-ph.org
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tion of over 13% from the U.S. and 10% from South 
America; Asia was the only large region relatively under-
represented. While more than 60% of the participants 
held professorships, there was also broad participation 
from postdoctoral and doctoral researchers, students and 
mathematicians holding other positions. Also, the subject 
areas (according to the MSC) turned out to be as broad 
as one could reasonably expect.

The first questions were directed to search customs. 
On a general level, arguably the most significant result is 
that a majority of mathematicians rely on maths-specific 
services (arXiv, MathSciNet, zbMATH) in comparison to 
generic providers like ISI, Scopus and Google Scholar.  
From a zbMATH perspective, the most positive results 
are that this service is today used more frequently by 
48% of users compared to five years ago (38% use it at 
about the same level and 14% use it less).

The preferred search topics are quite diverse and 
often specific: while author is by a slight margin the most 
preferred aspect, title comes in a close second, while 
more specific facets like MSC or even formulae are con-
sidered relevant by a majority. Even more surprising was 
the extensive use of free-text feedback for this question. 
Almost half of all respondents indicated the use of some-
times quite sophisticated combinations of search aspects. 
The option of extensive logical combinations, which has 
been additionally supported by filters for some years, is 
obviously heavily used. Likewise, basically all aspects of 
the search results (metadata, full text links, reviews, cita-
tions, profiles) are considered almost equally important.

Further questions were specifically concerned with 
new developments. Concerning the zbMATH author 
database, 52% of the answers confirm that it has 

Results of the 2016 EMS User Survey 
for zbMATH
Ingo Brüggemann (Max Planck Institute for for Mathematics in the Sciences, Leipzig, Germany), Klaus Hulek 
(Gottfried Wilhelm Leibniz Universität Hannover, Germany) and Olaf Teschke (FIZ Karlsruhe, Berlin, Germany)

In 2005, the European Mathematical Society took the ini-
tiative to appoint a Scientific User Committee (SCUC) 
of zbMATH (then Zentralblatt MATH). The main intent 
was to actively involve the scientific community in a num-
ber of developments that were felt to be both necessary 
and important. Jean-Pierre Bourguignon, who had been a 
driving force for the creation of the SCUC, also assumed 
the duties of the first chair. The most urgent issues at the 
time were the lack of appropriate author identification, 
the question of use and misuse of reference data and cita-
tion measures, and interface functionality. Further devel-
opments since then have been the interlinking with open 
sources like EuDML and arXiv, the database of math-
ematical software swMATH and formula search.

In 2012, the SCUC (most notably by the efforts of 
its then chair, Stephan Klaus, from the Oberwolfach 
Research Institute for Mathematics) prepared a user sur-
vey to gather information on the priorities for zbMATH 
developments from a user perspective. The survey was 
distributed at the 6th ECM at Kraków on both paper and 
online forms. Four years later, during the 7ECM at Ber-
lin, a renewed survey was conducted with the main aim 
of evaluating recent developments but also identifying 
future directions. At the same time, the results also served 
as a report on the perception of zbMATH developments 
under more than a decade of guidance by the SCUC.

While the 7ECM was one of the main dissemination 
channels for the survey, others (like the zbMATH entry 
page and reviewer and EMS member mailings) ensured 
survey participation that reflected diverse usage quite 
well. Though 66% of the 209 respondents were from 
Europe (and 22% from Germany), indicating a slight 
conference participation bias, there was also participa-

Survey responses concerning search 
customs of mathematicians.
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(3.9/5), research data information like swMATH (3.2/5) 
or institution codes (3.5/5) to areas like full-text formula 
search (3.4/5), where technology is still under develop-
ment.

Finally, zbMATH offers many freely accessible fea-
tures. Recently, free author and journal profiles have 
been added to the traditional three free hits, as well as 
free EMS member accounts, the swMATH facet and for-
mula search. It is perhaps not surprising that all of these 
have been quite well received (with marks from 3.6/5 to 
4.2/5) and several comments suggest that further steps 
would be welcomed in this direction. While such efforts 
are still limited by the need to maintain the resources for 
zbMATH production and development, we can promise 
to pursue all feasible solutions. This may also be illustrat-
ed by a free referencing tool recently made available to 
MathOverflow users (with hopefully more to come).

Overall, the survey supports the statement that the 
SCUC has accompanied a decade of exciting develop-
ments for zbMATH. It was decided at the last CC meeting 
that the duties of the SCUC will, in future, be transferred 
to the newly formed EMS Committee for Publications 
and Electronic Disseminations. We would like to take 
this occasion to thank all the SCUC members for their 
valuable contributions over the years!

Ingo Brüggemann (Ingo.Brueggemann@
mis.mpg.de) is head librarian of the Max 
Planck Institute for Mathematics in the Sci-
ences, and served in this function during two 
terms in the SCUC of zbMATH, bringing 
into it a certain complementary viewpoint 
of an in-between. In his role of a Vice-Chair, 

he coordinated the EMS survey on behalf of the SCUC.
His favourite zbMath feature, by the way, is the formula 
search: math texts are the most formalized of the sciences 
and this kind of search hints at a way to get a grip on really 
making the texts’ contents machine readable.

Klaus Hulek studied mathematics at the 
University of Munich and the University of 
Oxford. He completed his PhD in Erlangen 
in 1979 and spent the academic year 1982/83 
at Brown University, Providence, RI, USA. 
He received his habilitation in Erlangen in 
1984. Klaus Hulek was a professor of math-

ematics in Bayreuth from 1985 to 1990, when he moved 
to Hanover. He held the position of Vice-President of 
Research of Leibniz Universität Hannover from 2005 
to 2014, and from 2007 to 2014 he represented the Ger-
man Rectors’ Conference (HRK) at the Research Policy 
Working Group of the European University Association 
(EUA). Klaus Hulek was a member of the Institute for 
Advanced Study (IAS) in Princeton in 2015. His field of 
research is algebraic geometry.

Olaf Teschke [olaf.teschke@fiz-karlsruhe.de] is a member 
of the Editorial Board of the EMS Newsletter, responsible 
for the zbMATH Column. 

improved significantly (41% of the participants agree 
with this statement in principle). On this matter, the 
quality of the information is, in general, much more high-
ly valued than the quantity – the most important aspects 
are correct author disambiguation, comprehensive infor-
mation and clean attribution. More specifically, for exam-
ple, precise author disambiguation was considered much 
more important (more than 85%) than author citation 
statistics (30%). The SCUC also included here a question 
directly comparing to the MathSciNet author database, 
which was preferred by 25%, while 22% found zbMATH 
more reliable. The majority (53%) voted that both ser-
vices have their strengths and weaknesses. 

A second large development has been the gradual 
inclusion of reference data and profiles, which is current-
ly available for a third of recent publications. A difficult 
aspect here is that this is an ongoing process, and data 
and profiles are therefore necessarily incomplete. An 
overwhelming majority (80%) understood this and agree 
with the inclusion of this feature at an early stage, while 
less than 2% were against this and would have preferred 
to omit potentially incomplete citation information. A 
general fear connected to the integration of reference 
data into documents and profiles was that this may give 
quantitative measures an unjustified prevalence over 
individual quality assessment (as provided by, for exam-
ple, reviews). The survey does not yet support this – a 
large majority (about 75%) of users use citations to dis-
cover other interesting work rather than using them as a 
tool to assess impact. The general experience that math-
ematicians are quite aware of the fallacies connected to 
superficial use of statistics seems to prevail.

Several further functions have been implemented in 
the service, like filters, profiles, a software database and 
formula search. The functionality is generally appreciat-
ed (with average marks ranging from 3.5/5 for bibtex to 
>4/5 for the search function) and 86% of the respondents 
think that the service has improved decisively since 2011.

Completeness of entries and quality of reviews are 
issues for a service like zbMATH that require continued 
efforts and are naturally always a subject of discussion. 
While the completeness is generally viewed favourably 
(4.2/5, with some limitations for very recent articles) and 
reviews are usually considered as correct (4/5), there is 
room for improvement regarding the frequency (3.6/5), 
timeliness (3.7/5) and quality (3.8/5) of reviews, as well as 
for the suitability of reviewers (3.8/5). Since the decisive 
factor here is the availability of reviewers, we take the 
opportunity to encourage the reader to join the reviewer 
community to facilitate further improvements here.1  

The question of possible future developments was 
naturally one of the most interesting ones for us. The 
diverse answers of fields that were considered relevant 
left no doubt that there will be an ample amount of work 
ahead of us in the years to come! User priorities ranged 
from aspects of historical importance like the digitisation 
of scans (considered highly desirable with 4/5), gradual 
improvements like further integration of full text links 

1 https://zbmath.org/become-a-reviewer/
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opposing, for instance, Euler as a utilitarian man of the 
Enlightenment to “Romantic” mathematicians like Abel 
or Galois.

By thoroughly analysing and putting together numer-
ous writings that, after Klein, aimed to document one 
aspect or another of this supposed rupture, Gilain and 
Guilbaud are able to display the contradictions of what 
now appears as much too simple a vision. For instance, 
they show that different authors associate the same math-
ematician to one or other side of the break (key exam-
ples are Lagrange, Fourier and Gauss); or that essential 
aspects of mathematical development, in particular those 
connected to the mathematisation of natural phenome-
na, are twisted or even ignored to fit this rough picture; or 
that theoretical discussions on the foundation of certain 
concepts reveal strong continuities from the mid 18th 
century up to the 1850s, an example being the concept of 
a function; or finally that institutional change, the crea-
tion of the Polytechnique being one example, is some-
times presented as the cause of the wider change, some-
times as its consequence and sometimes only as one of 
its components. Changes, then, often appear as local and 
specific to a certain aspect, each with its own chronol-
ogy; they do not mesh globally into a supposed explosive 
birth of modernity.

The second part of the book then enlarges the time-
line to a full century (centred on 1800) in order to cap-
ture, through detailed examination of original sources, 
exactly what sort of continuities and discontinuities can 
be traced through the period, and where and how they 
operate. This part comprises 14 chapters by 18 authors; 
it addresses four key issues raised in the first part: the 
shaping of mathematics through institutional change, 
the relations between mathematics and its applications, 
foundational questions in mathematics, and the bal-
ance between computational and formal aspects of the 
field. By focusing in each chapter on specific examples, 
the authors are able to precisely locate the effect on 
mathematics of certain changes: some come from the 
subdisciplines involved, some from what counts as an 
acceptable answer and some simply from the changes 
in the nature of publishing, etc. One will find, for exam-
ple, in-depth studies on: the so-called secular equation 
(that is, for us, the characteristic equation of a system of 
linear differential equations with constant coefficients), 
migrating from mechanics to astronomy to matrix alge-
bra; a certain dice problem (the probability of obtain-
ing a given sum when one throws n f-faced dice) using 
various tools (combinatorial, analytical and so on); the 
multiple 18th century origins of the early 19th century 
foundation of projective geometry or of a Diophantine 
problem; and the effects on mathematics of various 
educational reforms in German-speaking countries. All 
the chapters display a much richer, more complex pic-
ture of mathematics around 1800 and its diffusion, as 

Christian Gilain &
Alexandre Guilbaud, eds.

Sciences mathématiques  
1750–1850
Continuités et ruptures

CNRS Editions, 2015
560 p.
ISBN 978-2-271-08295-4

Reviewer: Catherine Goldstein

In the last few decades, the internet has provided us with 
almost unlimited access to thousands of the mathemati-
cal texts of the past, which can be used in a pedagogical 
environment or for popularising mathematics or even 
as a direct source for research. Meanwhile, though per-
haps less conspicuously, the history of mathematics has 
flourished as an autonomous discipline, with its own key 
problems. Its objective is not to simply look back, search-
ing in old texts for traces of current results, but to pro-
vide compelling answers to specific questions about the 
nature and the dynamics of the development of math-
ematics. The book under review is a good example of this. 
Despite its somewhat deceptive title, it is not an over-
view of simply what happened in mathematics between 
1750 and 1850 but a state of the art example of historical 
research around a particular question: was there, as tradi-
tional historiography tends to state, a radical and global 
rupture in the way of doing mathematics around 1800?

The first part of the book, written by the two editors 
C. Gilain and A. Guilbaud, summarises this traditional 
point of view, tracing it back to Felix Klein’s early 20th 
century Vorlesungen über die Entwicklung der Mathema-
tik im 19. Jahrhundert (the first part of which was translat-
ed into English in 1979). In this still influential, although 
historiographically now dated, synthesis, Klein describes 
the early 1800s as the moment of a deep rupture in math-
ematics (implicitly restricted to what occurred in West-
ern Europe) and this point of view has more or less pre-
vailed since then. In this view, 18th century mathematics 
is seen as being non-rigorous and computational, primar-
ily directed toward uses and applications and linked to 
and supported by monarchical institutions, in particular 
royal academies of science. Mathematics of the 19th cen-
tury, on the other hand, is seen as  becoming rigorous and 
increasingly specialised, with a keen interest in the foun-
dations of mathematics and an emphasis on pure math-
ematics; it would develop in a democratic or meritocratic 
system, in universities or in new types of schools such as 
the French Polytechnique. Klein, and those who wrote 
after him, linked this change to the French Revolution 
and its new values; some authors have even incarnated 
the two sides of this break in individual mathematicians, 
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well as a convincing refutation of the thesis of a global 
rupture at this time. 

Besides this main axis, there are several interesting 
features in these contributions. For instance, they show 
that what counts as a mathematician – and even as math-
ematics – has no straightforward answer. Coulomb is 
usually considered more of an engineer-physicist than a 
mathematician and thus not taken into account in most 
histories of mathematics. However, his work on the math-
ematisation of electricity in the 1780s displayed new rela-
tions between theoretical laws, numerical approximations 
and the search for an agreement with precise, experimen-
tal measurements, which would subsequently inspire the 
19th century’s well known representatives of mathemati-
cal physics like Poisson and Fourier. Besides the usual 
stars of the period – Laplace, Cauchy and Gauss – a pro-
fusion of not so well known figures whose contributions 
are shown to be decisive appear in the pages of this book 
(as witnessed by a 12-page index of people!). The same 
is true for mathematical topics: finite difference equa-
tions and astronomical techniques provide illuminating 
insights into the development of the concept of computa-
tion or that of a “rigorous” solution of an equation.

What counts as social or cultural factors is also 
revisited in some of the contributions. One chapter, 
for instance, carefully links the crushing defeat of the 
French navy in 1763 to a deep reform of the curriculum 
of the officers and then to the writing of new textbooks 
and finally to the development of innovative algebraic 
tools and results. Two other chapters present very inter-
esting surveys of the history of mathematical publishing 
during this period, including the typographical prob-
lems raised by formulas. Matching this systematic meth-
odology in the use of sources, the book also offers useful 

tables and graphs, for instance on journals and textbook 
authors.

As explained in the final remarks by the two editors, 
extending both the period and the mathematics taken 
into account show, on the one hand, different, asynchro-
nous breaks and, on the other, many localised continui-
ties and traditions. In order to be able to reach a more 
balanced, synthetic and accurate picture of the period, 
the editors therefore plead for more detailed studies on 
18th century mathematics, a subject they consider as 
still the poor sibling in the historiography of Western 
mathematics. The various chapters, however, point to a 
variety of phenomena contributing to the diffusion and 
evolution of mathematics; not only continuity and rup-
tures are at work but also oblivion, rediscovery, parallel 
developments, etc. One might perhaps regret that the 
book does not address the terms in which a new synthe-
sis on the studied period could be written. Still, it cer-
tainly provides a variety of new material and key lines 
of thought, which will have to be integrated into any 
such synthesis.

Catherine Goldstein is Directrice de re-
cherche at the CNRS (Institut de Mathéma-
tiques de Jussieu-Paris Gauche, Paris). Her 
research interests lie in the history of num-
ber theory and in the history of mathemati-
cal practices, combining close readings and 
a network analysis of texts. She has recently 

co-edited A War of Guns and Mathematics (AMS, 2014) 
and Les travaux combinatoires en France (1870–1914) et 
leur actualité (PULIM, 2017).

Reviewer: Olav Nygaard (Kristiansand)

The Newsletter thanks zbMATH and Olav Nygaard 
for the permission to republish this review, originally 
appeared as Zbl 1348.46001.

At long last, the main results and techniques in the field 
of lineability have now become available in a book. Even 
more, it has turned out an extremely nice book, which 
is really written as an invitation for more researchers to 
enter the field.

Richard M. Aron, Luis Bernal-
González, Daniel M. Pellegrino and 
Juan B. Seoane Sepúlveda

Lineability. The Search for  
Linearity in Mathematics

CRC Press, 2016
xix, 308 p.
ISBN 978-1-4822-9909-0

Lineability, spaceability or algebrability of a set M in 
a Banach space X means that M ∪ {0} contains a linear 
space, a closed linear space or even an algebra. Naturally, 
these concepts have to be quantified in some measure of 
bigness, like dimension or cardinality.

When we study some set M ⊂ X, we of course check 
if it has an algebraic structure. And if not, what is a more 
natural question than looking for an algebraic struc-
ture inside M? However, as we know in general, asking 
is easier than answering, and reading the book under 
review teaches us that deciding whether M contains an 
algebraic substructure is really a non-trivial task. Practi-
cally every example of the book serves as a proof of that 
statement.

Let me describe two, to me very appetizing, examples 
before turning to the organization of the book:

Example 1: Let X = C [0, 1] and recall Banach’s beau-
tiful result that the subset M consisting of nowhere dif-
ferentiable functions is residual. So M is huge. We note 
that kf ∈ M if f ∈ M and k ≠ 0. But 0 ∉ M, so M is not linear. 
Now, if we add the origin to M, can we find an algebraic 
structure inside? In 1966, Vladimir Gurariy proved that 
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In Chapter 2, M is a subset of a space of complex func-
tions, mostly holomorphic and defined on some subset of 
C. This chapter counts around 40 pages and contains 6 
core sections.

The “universe” of the set M in Chapter 3 is some 
sequence space or space of integrable functions. Here we 
find six core sections and the whole chapter has approxi-
mately 30 pages.

Chapter 4 is called “Universality, hypercyclicity and 
chaos”. It has almost 50 pages and consists of eight core 
sections devoted to lineability, spaceability and algebra-
bility in various classes of hypercyclic vectors.

In Chapter 5, M is the set of zeros of some polynomial 
defined on some Banach space. This is a 20 pages long 
chapter with only one core section.

Chapter 6 contains eight short core sections (typi-
cally 1–2 pages long) with results that do not fit naturally 
elsewhere. As an example, one will find an elaboration of 
Example 2 above as Section 6.4.

There are indeed some techniques that are used again 
and again throughout the text in Chapters 1–6. There are 
also some general principles, like Theorem 7.4.1 due to N. 
Kalton: If Y is a closed linear subspace of a Fréchet space 
X, then X \Y is spaceable if and only if Y has infinite codi-
mension. The objective of the final Chapter 7 is to pre-
sent general techniques and results, in general settings, 
concerning lineability, spaceability and algebrability.

A reference list of 387 items surely indicates how big 
this field has grown, and thus the value of collecting the 
main results of the field in a book. Being in addition so 
tastefully written, and as a bonus containing the very 
valuable general introductory chapter, I recommend it 
for the bookshelf of any researcher and supervisor in 
mathematical analysis as well as for the graduate student 
interested in lineability.

Olav Nygaard is a professor of mathematics 
at the University of Agder, Norway. He was 
born in 1967 in the village of Vegusdal, 60 
km north of Kristiansand. After receiving 
his Master’s degree in applied mathematics 
at the University of Bergen in 1991 he went 
into teacher education. He obtained his 

PhD in functional analysis in 2001, entitled “Approxima-
tion, Boundedness, Surjectivity” under the supervision of 
Åsvald Lima and Arne Stray. His main interests are geom-
etry of Banach spaces, measure theory and mathematics 
teaching.

M ∪ {0} contains an infinite-dimensional linear space [Sov. 
Math., Dokl. 7, 500–502 (1966); translation from Dokl. 
Akad. Nauk SSSR 167, 971–973 (1966; Zbl 0185.20203)]. 
In the 1990s Gurariy, together with Vladimir Fonf and 
Mikhail Kadets, showed that M ∪ {0} contains an infinite-
dimensional Banach space Z [C. R. Acad. Bulg. Sci. 52, 
No. 11–12, 13–16 (1999; Zbl 0945.26010)]. But there is 
not only one such Z; L. Rodríguez-Piazza [Proc. Am. 
Math. Soc. 123, No. 12, 3649–3654 (1995; Zbl 0844.46007)] 
showed that Z can be chosen to be any separable Banach 
space (here recall that C [0,1] contains all separable 
Banach spaces as subspaces)! Have a look at pp.24–25 to 
learn even more.

Example 2: Let X be the dual of some Banach space 
Y and let M consist of the functionals in X = Y* that 
attain their norm, i.e., f ∈ M if and only if there exists 
some norm-one element xf ∈ Y such that f (xf) = || f ||. A 
celebrated theorem of R. C. James says that M is not all 
of X unless Y is reflexive (and then, of course, M = X). 
The Bishop–Phelps theorem tells us that M is, however, 
always norm-dense in X. So, somehow M is big. This time 
0 belongs to M. Sometimes M is linear, as in the case 
Y = c0 (then M is simply the 1-elements with finally many 
non-zero coordinates). But, in general, M is not linear, as 
for Y = 1  (add (1, 1/2, 2/3, 3/4,…) and (−1, 0, 0,…)). We see 
that when Y = c0, M is lineable, but not spaceable. Today 
we know, courtesy of a subtle example due to M. Rmoutil 
[“Norm-attaining functionals and proximinal subspaces” 
Preprint (2015), arXiv:1503.06112] that M need not even 
contain a two-dimensional linear space.

Let me now say a little about the content of each 
chapter, just to indicate the structure of the book.

A 20 page introductory chapter serves to prepare us 
with basic knowledge of cardinality, algebra and Baire 
category before it turns to formal definitions of quanti-
fied lineability, spaceability and algebrability. Its short 
and enormously informative style makes this chapter 
very valuable on its own, as this is knowledge needed for 
many directions of (functional) analysis.

The following chapters starts with a section called 
“What one needs to know” and ends with a “Notes and 
remarks” section after an “Exercises” section. I will not 
comment further on these sections except remarking 
that starting by a “What one needs to know” section is 
something many authors could learn from!

Chapter 1 is of 60 pages length and consists of seven 
core sections. In this chapter M is always a subset of a 
space of real-valued functions, mostly also defined on a 
subset of R.
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Personal Column

Deaths
We regret to announce the deaths of:

Javier Peralta Coronado (6 December 2016, Madrid, Spain)
Petr Hájek (26 December 2016, Prague, Czech Republic)
Bohuslav Balcar (17 February 2017, Prague, Czech Republic)
Igor R. Shafarevich (19 February 2017, Moscow, Russia)
Jiří Kopáček (22 February 2017, Prague, Czech Republic)
Ludwig D. Faddeev (26 February, 2017, St. Petersburg, Russia)
Peter Gruber (7 March 2017, Vienna, Austria)
Komaravolu Chandrasekharan (13 April, 2017, Zürich, 
   Switzerland)
Vicente R. Varea Agudo (8 May 2017, Zaragoza, Spain)
Hans-Otto Georgii (16 May 2017, Munich, Germany)

Please send information on mathematical awards and 
deaths to newsletter@ems-ph.org.

Awards

Michele Stecconi is the winner of the 2016 Tricerri Prize.

Alberto Cogliati is the winner of the UMI-SISM Prize 2016 and 
Erika Luciano received honourable mention. 

The 2016 Federigo Enriques Prize has been awarded to Rob-
erto Svaldi and the 2016 Stefania Cotoneschi Prize has been 
awarded to Stefania Castellini.

Marta Macho Stadler (Universidad del País Vasco, Spain) is the 
winner of the Emakunde Prize 2016 from the Basque Institute 
for Women.

Martino Lupini has been awarded the 2017 Franco Montagna 
Prize for his Ph.D. thesis “Operator Algebras and Abstract 
Classification”.

Timothy Gowers (Cambridge University) and Eva Miran-
da (UPC Barcelona) have been awarded with a Chaire 
d’Excellence de la Fondation Sciences Mathématiques de Paris.

The 2017 Breakthrough Prize in Mathematics has been award-
ed to Jean Bourgain (Institute for Advanced Study) for “com-
bining deep theoretical insights with ingenious problem-solv-
ing ability” and for “an enormous impact on mathematics over 
the past forty years”. 

The 2017 New Horizons in Mathematics Prize was awarded to 
Mohammed Abouzaid (Columbia University), Hugo Duminil-
Copin (University of Geneva), and jointly to Benjamin Elias 
(University of Oregon) and Geordie Williamson (Kyoto Uni-
versity). Duminil-Copin and Williamson were among the win-
ners of the EMS prizes earlier this year.

The Abel Prize 2017 was awarded to Yves Meyer (École nor-
male supérieure Paris-Saclay, France) “for his pivotal role in 
the development of the mathematical theory of wavelets”. 

The Royal Dutch Mathematical Society (KWG) has awarded 
the 2017 Brouwer Medal to Kenneth A. Ribet (University of 
California, Berkeley) for “his contributions to number theory, 
in particular for the groundbreaking work in which he applies 
methods of algebraic geometry to number theoretical prob-
lems”.

The Fields Institute announced that Henri Darmon (McGill 
University) is the winner of the 2017 CRM-Fields-PIMS Prize.

Christophe Breuil (CNRS and Université Paris-Sud Orsay) 
has been awarded the Médaille d’argent 2017, and Béatrice de 
Tilière (CNRS, Université Paris-Est Créteil, Université Paris-
Est Marne-la-Vallée) is the winner of the Médaille de bronze 
2017.

Martin Hairer (FRS, University of Warwick) has been awarded 
an Honorary Knight Commander of the Order of the British 
Empire for “contributions to the arts and sciences, work with 
charitable and welfare organisations, and public service outside 
the Civil Service”. 

Gerd Faltings will be awarded the Cantor Medal of the Ger-
man Mathematical Society (DMV).

Eva Miranda (UPC Barcelona) has been awarded with an 
ICREA Academia Prize in Experimental Sciences and Math-
ematics.

Roger Casals (Department of Mathematics, MIT) has received 
the RET (Spanish Network in Topology) Award 2017 for the 
best thesis in topology.

The Richard-von-Mises-Prize in acknowledgment of their sci-
entific achievements in the area of applied mathematics and 
mechanics was awarded to Benjamin Klusemann (Leuphana) 
and to Christian Kuehn (TU München).

Dr.-Klaus-Körper Awardees 2017 in appreciation for an excel-
lent dissertation in Applied Mathematics and Mechanics are 
Christoph Anton Meier (MIT), Philipp Christian Petersen (TU 
Berlin), Ronny Behnke (TU Dresden) and Patrick Kürschner 
(MPI Magdeburg).

The CNRS Innovation Medal 2017 is awarded to Raphaèle 
Herbin, Jean-Pierre Nozières, Jean-Marie Tarascon and Jamal 
Tazi. The CNRS Innovation Medal is awarded for exceptional 
research in applied mathematics leading to a technological, 
therapeutic or social breakthrough, thereby enhancing French 
scientific research.

Maurice Duits (KTH, Stockholm) is the winner of the Wallen-
berg Prize 2017, awarded by the Swedish Mathematical Society, 
for important contributions to the analysis of random matrices 
and related stochastic models.

The Show Prize in Mathematical Sciences 2017 is awarded to 
Claire Voisin (Collège de France).
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A CONVERSATIONAL INTRODUCTION TO ALGEBRAIC NUMBER THEORY
Arithmetic Beyond 
Paul Pollack, University of Georgia
An introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational 
number field . Originating in the work of Gauss, the foundations of modern algebraic number theory are due 
to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three 
“fundamental theorems”: unique factorization of ideals, finiteness of the class number, and Dirichlet’s units theorem.

Student Mathematical Library, Vol. 84
Sep 2017 311pp 9781470436537 Paperback €59.00 

AN ILLUSTRATED THEORY OF NUMBERS
Martin H. Weissman, University of California
Provides a comprehensive introduction to number theory, with complete proofs, worked examples, and exercises. 
Its exposition reflects the most recent scholarship in mathematics and its history. Almost 500 sharp illustrations 
accompany elegant proofs, from prime decomposition through quadratic reciprocity. Geometric and dynamical 
arguments provide new insights, and allow for a rigorous approach with less algebraic manipulation. The final 
chapters contain an extended treatment of binary quadratic forms, using Conway’s topograph to solve quadratic 
Diophantine equations (e.g. Pell’s equation) and to study reduction and the finiteness of class numbers.
Aug 2017 321pp 9781470434939 Hardback €78.00 

MODERN CRYPTOGRAPHY AND ELLIPTIC CURVES
A Beginner’s Guide
Thomas R. Shemanske, Dartmouth College
Offers the beginning undergraduate student some of the vista of modern mathematics by developing and 
presenting the tools needed for an understanding of the arithmetic of elliptic curves over finite fields and their 
applications to modern cryptography. This gradual introduction also makes a significant effort to teach students how 
to produce or discover a proof by presenting mathematics as an exploration.

Student Mathematical Library, Vol. 83
Aug 2017 261pp 9781470435820 Paperback €59.00 

MODULAR FORMS
A Classical Approach
Henri Cohen, Université Bordeaux & Fredrik Strömberg, University of Nottingham
This comprehensive textbook, which includes numerous exercises, gives a complete picture of the classical aspects of 
the subject, with an emphasis on explicit formulas. The heart of the book is the classical theory developed by Hecke 
and continued up to the Atkin-Lehner-Li theory of newforms and including the theory of Eisenstein series, Rankin-
Selberg theory, and a more general theory of theta series.

Graduate Studies in Mathematics, Vol. 179
Jul 2017 699pp 9780821849477 Hardback €105.00 

Free delivery worldwide at eurospanbookstore.com/ams
AMS is distributed by Eurospan|group
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Andrzej Skowroński (Nicolaus Copernicus University, Toruń, Poland) and Kunio Yamagata (Tokyo University of Agriculture and 
Technology, Japan)
Frobenius Algebras II. Tilted and Hochschild Extension Algebras (EMS Textbooks in Mathematics)

ISBN 978-3-03719-174-3. 2017. 629 pages. Hardcover. 17 x 24 cm. 58.00 Euro

This is the second of three volumes which will provide a comprehensive introduction to the modern representation theory of Frobenius 
algebras. The first part of the book is devoted to fundamental results of the representation theory of finite dimensional hereditary alge-
bras and their tilted algebras, which allow to describe the representation theory of prominent classes of Frobenius algebras.
The second part is devoted to basic classical and recent results concerning the Hochschild extensions of finite dimensional algebras by 
duality bimodules and their module categories. Moreover, the shapes of connected components of the stable Auslander-Reiten quivers 
of Frobenius algebras are described.
The only prerequisite in this volume is a basic knowledge of linear algebra and some results of the first volume. It includes complete 
proofs of all results presented and provides a rich supply of examples and exercises.
The text is primarily addressed to graduate students starting research in the representation theory of algebras as well mathematicians 
working in other fields.The book is accessible to advanced students and researchers of complex analysis and differential geometry.
The first volume (ISBN 978-3-03719-102-6) has appeared under the title Frobenius Algebras I. Basic Representation Theory.

Functional Analysis and Operator Theory for Quantum Physics. The Pavel Exner Anniversary Volume
Jaroslav Dittrich (Czech Academy of Sciences, Rez-Prague, Czech Republic), Hynek Kovařík (Università degli Studi di Brescia, Italy)
and Ari Laptev (Imperial College London, UK), Editors

ISBN 978-3-03719-175-0. 2017. 597 pages. Hardcover. 17 x 24 cm. 98.00 Euro

This volume is dedicated to Pavel Exner on the occasion of his 70th anniversary. It collects contributions by numerous scientists with 
expertise in mathematical physics and in particular in problems arising from quantum mechanics. The questions addressed in the contri-
butions cover a large range of topics. A lot of attention was paid to differential operators with zero range interactions, which are often 
used as models in quantum mechanics. Several authors considered problems related to systems with mixed-dimensions such as quantum 
waveguides, quantum layers and quantum graphs. Eigenvalues and eigenfunctions of Laplace and Schrödinger operators are discussed 
too, as well as systems with adiabatic time evolution. Although most of the problems treated in the book have a quantum mechanical 
background, some contributions deal with issues which go well beyond this framework; for example the Cayley–Hamilton theorem, ap-
proximation formulae for contraction semigroups or factorization of analytic operator-valued Fredholm functions. As for the mathematical 
tools involved, the book provides a wide variety of techniques from functional analysis and operator theory.
Altogether the volume presents a collection of research papers which will be of interest to any active scientist working in one of the 
above mentioned fields.

Walter Schachermayer (Universität Wien, Austria)
Asymptotic Theory of Transaction Costs (Zürich Lectures in Advanced Mathematics)

ISBN 978-3-03719-173-6. 2017. 160 pages. Hardcover. 17 x 24 cm. 34.00 Euro

A classical topic in Mathematical Finance is the theory of portfolio optimization. Robert Merton’s work from the early seventies had 
enormous impact on academic research as well as on the paradigms guiding practitioners.
One of the ramifications of this topic is the analysis of (small) proportional transaction costs, such as a Tobin tax. The lecture notes pre-
sent some striking recent results of the asymptotic dependence of the relevant quantities when transaction costs tend to zero.
An appealing feature of the consideration of transaction costs is that it allows for the first time to reconcile the no arbitrage paradigm 
with the use of non-semimartingale models, such as fractional Brownian motion. This leads to the culminating theorem of the present 
lectures which roughly reads as follows: for a fractional Brownian motion stock price model we always find a shadow price process for 
given transaction costs. This process is a semimartingale and can therefore be dealt with using the usual machinery of mathematical 
finance.

Hans Triebel (University of Jena, Germany)
PDE Models for Chemotaxis and Hydrodynamics in Supercritical Function Spaces (EMS Series of Lectures in Mathematics)

ISBN 978-3-03719-171-2. 2017. 138 pages. Hardcover. 17 x 24 cm. 32.00 Euro

This book deals with PDE models for chemotaxis (the movement of biological cells or organisms in response of chemical gradients) 
and hydrodynamics (viscous, homogeneous, and incompressible fluid filling the entire space). The underlying Keller–Segel equations 
(chemotaxis), Navier–Stokes equations (hydrodynamics), and their numerous modifications and combinations are treated in the context 
of inhomogeneous spaces of Besov–Sobolev type paying special attention to mapping properties of related nonlinearities. Further 
models are considered, including (deterministic) Fokker–Planck equations and chemotaxis Navier–Stokes equations.
These notes are addressed to graduate students and mathematicians having a working knowledge of basic elements of the theory of 
function spaces, especially of Besov–Sobolev type and interested in mathematical biology and physics.
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