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authors: the current Editor-in-Chief of the Newsletter 
of the European Mathematical Society is a woman. Au-
thors’ denial of this fact reveals itself in two ways. I was 
already quite familiar with the first one: male colleagues 
addressing me with that “pleasant” linguistic register 
that those who consider themselves important use to 
talk to ‘small’ people, like secretaries and housekeepers. 
The second one surprised me: I regularly receive emails 
from colleagues that call me by masculine names, such as 
Luca, Lucio or Luciano. I’m not a sociologist and I can-
not make serious inquiries into this phenomenon but a 
dear friend of mine, whose name is also Lucia and who 
is an electronic engineer and works for a Nordic multi-
national, told me that she also gets a lot of “Dear Lucio”. 
I’m not quite reassured to know that the problem is not 
limited to mathematics. I also talked to some male col-
leagues who tried to explain to me that my irritation was 
unjustified. Indeed, their names were often mismatched 
with feminine ones when they were not in their countries. 
I consider that asking yourself whether a name is mascu-
line or feminine and picking the wrong one by mistake is 
very different to having a subconscious remembering of 
a masculine name when you have read a feminine one. 
However, while some are still in denial, it is clear that 
many women have infiltrated the mathematical commu-
nity.

Another group of people that work hard for the 
Newsletter are the Editorial Board. The 60 to 70 pages 
that you receive every three months cannot be anything 
but the result of the work of a competent team. I’ve had 
the chance of working in a friendly atmosphere for all 
this time. I want to thank all the former and present 
members for their enthusiastic work, their inexhaustible 
quest for new topics and articles, the many pieces of ad-
vice and the many discussions.

The most important novelties that we have intro-
duced are the change of the cover, the new section YMCo 
(Young Mathematicians Column) and the debut of the 
EMS on social media.1 All of them have proven to be 
challenging in different ways. The presence of the EMS 
on social media started as an activity of the Newsletter 
and has progressively become an activity of the EMS. 
Richard Elwes, the publicity officer, is now in charge of 
this aspect of the communication with members and, 
more generally, with the mathematical community.

We have tried to make the Newsletter a place of 
debate and exchange. It is not for me to say if we have 
succeeded but I can say that the difference between 
political correctness and a flat interest level of content 

Dear Members of the EMS and Dear Readers,

Here I am with my farewell editorial. Even though I will 
still be Editor-in-Chief for one more issue, I feel more 
comfortable saying goodbye before the formal ceremony 
for the old lady Newsletter starts. 

I have a dreadful memory of writing the editorial of 
my first issue. I remember Vicente Munoz, the former 
Editor-in-Chief, telling me: “You will get use to it!” Well, 
I did not get used to it. I’ve read the editorials of my pre-
decessors to seek inspiration; nonetheless, I have been 
carefully avoiding the action of actually sitting down and 
writing. The reason is that I was looking for some formal 
and public expression of my feelings about this experi-
ence, which was neither formal nor public but so private 
and personal. Being Editor-in-Chief of the Newsletter 
means dealing with authors, editors, readers, members of 
the EMS and staff of the publishing house, i.e. people, 
and actually many more people than you can imagine. 
For me, the link that one establishes with other people 
cannot be anything other than personal, even when it is 
only professional. So let’s talk about people.

The Newsletter would not exist without authors; they 
do the hard work. Although there are a minority of im-
polite authors, most of them are very nice and interesting 
– but they are not very good with deadlines. Authors have 
excellent reasons for that. For instance, I have received a 
lot (literally a lot) of “I’m on a trek in Nepal. I can hardly 
find an internet connection in this small village so I will 
be out of email contact for 2 weeks”, or some variant of 
this sentence. I know for a fact that mountains and de-
serts are full of mathematicians walking around.

Some authors simply live in another spacetime. I once 
received an email submitting an article, the author saying 
with some triumphalism: “I’m two weeks in advance of 
the deadline!” He was 50 weeks late and he was answer-
ing a 14 month old email from me. I’m always grateful to 
people who make me laugh so everything was forgiven 
for this author, who actually wrote one of the best papers 
we have published recently.

Of course, life happens to authors as it does to eve-
rybody else and sometimes good and bad events come, 
as they should, before the Newsletter. I’ve been happy 
to renounce an article when I’ve learnt that a child that 
was supposed to arrive into this world after their father’s 
article deadline actually came three weeks in advance, 
but that everybody was well and happy.

Finally, I was touched by one author who wrote me 
a poem (a sonnet to be precise) of totally professional 
content! 

When I started working on the Editorial Board, I 
could not even imagine that I would feel the need to 
say what I’m about to say. Indeed, I have to highlight 
a coming out that will come as shocking news to some 

Editorial
Lucia Di Vizio (Editor-in-Chief EMS Newsletter; Université de Versailles-St Quentin, France)

1 Among many useful services that the EMS provides to the 
mathematical community, I’d like to note the Twitter account 
@EuroMathJobs, which is exclusively dedicated to European 
mathematical job announcements.
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is sometimes subtle and difficult to discern. One of the 
very rare aggressive complaints that we have received 
in the last four years was about an interview. A reader 
asked the Editorial Board how the interviewee could ac-
cept answering such offensive questions. All interviews 
in the Newsletter receive a final validation from the 
inter viewee. In this specific case, the interviewed math-
ematician said many politically incorrect but interesting 
opinions and did not want them to be published, so the 
interviewer agreed to endorse the statements as his own 
to keep the interest level of the content. Sometimes, a 
debate needs a small provocation to ignite and perhaps it 
is difficult for readers to realise the ease of the relations 
with contributors to the Newsletter (in 99.9% of cases).

I cannot cite everyone individually but I shall explicit-
ly thank the two former Editors-in-Chief Vicente Muñoz  
and Martin Raussen, who have been a good source of 
advice on many occasions.

Backlog has been a good friend over these years, the 
kind of friend whose presence allows you to sleep as a 
child and to smile at adversity. He has disappeared twice 
and I had to go through some tough quarter hours. It is a 
great pleasure to thank the friends of the Newsletter who 
have helped me on these occasions, always at quite short 
notice. Valentin Zagrebnov, who is going to be the next 
Editor-in-Chief, is one of them; I know that the Newslet-
ter is in good hands. The others are Gert-Martin Greuel  
and the staff of Imaginary, who have contributed more 
than once to the Newsletter, and with whom I have to 
apologise for a regrettable omission. In fact, we are in-
debted to them since they were at the origin of the pub-
lication of “Problems for children from 5 to 15” by V. I. 
Arnold in the last issue of the Newsletter. The book is 
actually available in several languages on their website 
https://imaginary.org/, so as many young, enthusiastic 
mathematicians as possible can profit by reading it.

The Newsletter is published by the EMS Publishing 
House. Three members of staff contribute to its produc-
tion: Chris Nunn, our copy-editor, is in charge of trans-

forming the English soup that many foreigners, includ-
ing myself, speak into the English language; Christoph 
Eyrich  is in charge of TeX-editing the mathematical pa-
pers; and Sylvia Fellmann is in charge of the composi-
tion. I’m citing them in the order in which they work on 
the files. Their professionalism has been precious to me, 
including their advice on more technical editorial mat-
ters, copyrights and many other problems. Because of the 
nature of her work, Sylvia has been the member of the 
staff with whom I have had more regular contact and I’d 
really like to thank her for her excellent work and a very 
pleasant collaboration. 

I’d like to thank Thomas Hintermann, Director of the 
Publishing House, who has supported the changes and 
the improvements that the Editorial Board has sought 
to implement. I think we are an even match in the deter-
mination of our discussions and the result is the best that 
we could hope for in improving the Newsletter with the 
means available.

The Editor-in-Chief of the Newsletter is permanent-
ly invited to the meeting of the Executive Committee. 
I’ve appreciated these meetings, which have been very 
interesting and fruitful for the Newsletter but also the 
occasion for pleasant exchanges. In particular, I’d like 
to thank the present and former Presidents of the EMS, 
who have supported me in many ways: Marta Sanz-Solé, 
who was in office when I started, and Pavel Exner.

I sincerely feel that the Executive Committee has 
granted me a privilege, giving me the possibility of ob-
serving and interacting with the European mathematical 
community through the loop of the Newsletter, and I’d 
like to express my deep gratitude for this opportunity.

I apologise in advance for the many I have forgotten 
to thank here.

To all our readers, I say that without members, both 
individual and institutional (but also member-societies), 
the EMS, with all its committees and the Newsletter, 
would not exist.

Farewell within the Editorial Board  
of the EMS Newsletter
In December 2015, the term of office ended for Eva Maria Feichtner. Eva Maria has been in charge of the Re-
search Centres column for the last 4 years, introducing us to European and non-European research centres.  The 
Editorial Board express their deep gratitude for the work she has carried out with great competence and thank 
her for contributing to a friendly and productive atmosphere.

One new member has rejoined the Editorial Board in January 2015. It is a pleasure to welcome Valentin Zagrebnov , 
who has already been appointed by the Executive Committee of the EMS as the next Editor-in-Chief of the News-
letter, starting from the September 2016 issue. 
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The most recent meeting of the Executive Committee 
was generously hosted by the Steklov Mathematical In-
stitute of the Russian Academy of Sciences. On Friday it 
was greeted by Victor Vasiliev, Victor Buchstaber, Sergey 
Lando (President and Vice-Presidents respectively of 
the Moscow Mathematical Society), and Anatoly Ver-
shik (former President of St. Petersburg Mathematical 
Society). On Saturday it was welcomed by Dmitri Orlov, 
Deputy Director of the Steklov Institute.

Officers’ Reports
The President welcomed the Executive Committee and 
discussed his recent activities (many of which feature as 
separate items below).

The Treasurer reported on the 2015 EMS accounts, 
and recorded a surplus. As a consequence, it was agreed 
to increase the society’s 2016 budget for scientific pro-
jects. Meanwhile, the Treasurer will seek expert advice on 
the appropriate balance between budget, assets, and in-
vestments. Discussion of financial strategy will continue 
at the next committee meeting.

With the contribution of the Department of Math-
ematics at the University of Helsinki now explicitly re-
corded in the budget, the committee took the opportu-
nity to express its ongoing gratitude to the University of 
Helsinki for its support of the EMS Office.

Membership
The status of the Armenian Mathematical Union’s appli-
cation for Class 1 Membership will be reviewed, with the 
intention of inviting them to present their application at 
the 2016 Council Meeting for approval.

The Executive Committee approved a list of 160 new 
members, and was pleased to note that this represents 
an increase on the corresponding period last year (po-
tentially influenced by the forthcoming ECM in Berlin).

Scientific Meetings
The Executive Committee discussed the report from 
Volker Mehrmann on preparations for the 7th Euro-
pean Congress of Mathematics (ECM) in Berlin (18-22 
July 2016). The meeting’s finances and the funding of 
EMS prizes were also considered. The committee ex-
pressed confidence in the congress’s success and appre-
ciation for the excellent work of the local organisers.

The 8th ECM will be held in 2020, in either Portorož 
(Slovenia) or Sevilla (Spain). The President presented a 
summary of recent site visits to the two locations. The 
committee will encourage both parties to improve their 
bids, and will invite small delegations to the next EC 
meeting. The final decision will be taken by the EMS 
Council in Berlin (July 2016).

Given the healthy state of the EMS finances (above), 
the committee resolved to sponsor seven EMS Summer 
Schools in 2016:  

- 3rd Barcelona Summer School on Stochastic Analysis, 
June 27–July 1, 2016

- European Summer School in Modelling, Analysis 
and Simulation: Crime and Image Processing, Oxford 
(UK), July 4–8, 2016 

- Building Bridges: 3rd EU/US Summer School on Au-
tomorphic Forms and Related Topics, Sarajevo (Bos-
nia & Herzogovina), July 4–9, 2016 

Valentin A. Zagrebnov graduated 
from Moscow State University and 
received his PhD and Habilitation 
in the USSR. He is actually a mem-
ber of the Analysis-Geometry-
Topology group at the Institut de 
Mathématiques de Marseille. His 
research interests are functional 
analysis, operator theory and prob-
ability theory with applications in 

mathematical physics and statistical mechanics. He is 
the author of two books: on the Approximation Hamil-
tonian Method in quantum statistical mechanics and on 
the theory of Gibbs semigroups. He is also a member of 
the editorial boards of several journals in mathematics 
and mathematical physics and former Editor-in-Chief 
(2009–2015) of the News Bulletin of the International 
Association of Mathematical Physics. He has been an 
emeritus professor at the mathematics department of 
Aix-Marseille University since September 2015. 

New Editor Appointed

Report from the EMS Executive  
Committee Meeting in Moscow,  
27th–29th November 2015
Richard Elwes (EMS Publicity Officer; University of Leeds, UK)
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- 14th Workshop on Interactions between Dynamical 
Systems and PDEs (JISD 2016), Barcelona, July 11–15, 
2016

- EMS-IAMP Summer School in Mathematical Physics 
on “Universality, Scaling Limits and Effective Theo-
ries”, Rome (Italy), July 11–15, 2016

- European Summer School in Mathematical Modeling 
of Tissue Mechanics, Lorentz Center, Leiden (The 
Netherlands), July 25–29, 2016 

- European Summer School in Multigraded Algebra and 
Applications, Moieciu (Romania), August 17–24, 2016

EMS involvement in other upcoming events was also 
discussed, including the forthcoming UMALCA (Unión 
Matemática de América Latina y el Caribe) Congress 
where the EMS will be pleased to support a European 
plenary speaker.

The committee chose to sponsor Ernest B. Vinberg as 
EMS Distinguished Speaker at the 50th Seminar ‘Sophus 
Lie’ (25 Sept–1 Oct 2016, Będlewo, Poland).

Society Meetings
The preparations for the 2016 EMS Council (July 2016, 
Berlin) are underway. One task will be the replenish-
ment of the Executive Committee and its officers. It was 
agreed to approach member societies for proposals for 
prospective committee members, to be discussed at the 
next EC meeting in advance of the elections at Council.

The President then reported back from the Meeting 
of Presidents of Member Societies (Innsbruck, 28–29 
March 2015) where the practice of political lobbying was 
debated.

Standing Committees
With several EMS committees due for renewal, the Ex-
ecutive Committee had pleasure in making the following 
appointments: Giulia Di Nunno as Chair of the Devel-
oping Countries Committee, Adolfo Quirós as Chair of 
the Ethics Committee (each for the term 2016-2017), and 
Beatrice Pelloni as Chair of the Women in Mathematics 
Committee (for the term 2016–2019).

The committee additionally approved appointments 
to the Education, Ethics, Publications, and Raising Public 
Awareness committees (all for the term 2016–2019).

It then considered reports from the Chairs of the 
Committees on Applied Mathematics, Developing 
Countries, Education, Electronic Publishing, ERCOM, 
Ethics, European Solidarity, Raising Public Awareness of 
Mathematics, and Women in Mathematics.

Projects
The performance of EU-MATHS-IN (European Service 
Network of Mathematics for Industry and Innovation) 
was due for evaluation, with two years having passed 
since its inception as a joint venture between the EMS 
and ECMI (European Consortium for Mathematics in 
Industry). The committee concluded that EU-MATHS-
IN has played an effective coordinating role linking ap-
plied mathematics with industry, and that its lobbying 
activities in Brussels have yielded valuable results. The 

committee therefore approved its continuation and con-
gratulated the EU-MATHS-IN board on its success. Ma-
ria Esteban was re-appointed as EMS representative to 
the EU-MATHS-IN board.

Other projects with EMS involvement were dis-
cussed, including the European Digital Mathematics Li-
brary and Encyclopedia of Mathematics.

Publishing, Publicity, and the Internet
The Executive Committee continued its deliberations 
about the direction of the EMS Publishing House. It 
was pleased to hear that the Scientific Advisory Board is 
functioning well.

With her term coming to an end in 2016, the commit-
tee thanked Lucia Di Vizio for her excellent work as Ed-
itor-in-Chief of the EMS Newsletter, and looked forward 
to working with the incoming Editor-in-Chief, Valentin 
Zagrebnov from June 2016.

The committee discussed the report of Gert-Martin 
Greuel, Editor-in-Chief of Zentralblatt, and heard that 
from 1st April 2016, Klaus Hulek will succeed him in that 
role. 

Reports from the web-team (led by Martin Raussen) 
and Publicity Officer (Richard Elwes) were discussed, 
along with future plans for EMS Publicity, including its 
social media, E-news, and website.

Relations with Political and Funding Bodies
The President reported on the new legal status of the 
Initiative for Science in Europe (ISE). With the EMS’s 
membership fee set to increase from € 1500 to € 3000, 
ongoing membership required careful consideration. 
The Executive Committee agreed to remain a member 
of the ISE for two further years, at which time the rela-
tive costs and benefits of membership will again be re-
evaluated.

On behalf of the EMS, the President congratulated 
Cédric Villani on his appointment as member of the High 
Level Group of Scientific Advisors of the EC Scientific 
Advice Mechanism. The President also reported on the 
latest developments for Horizon 2020 and its proposed 
cuts. The committee’s attention was also drawn to the 
new COST (European Cooperation in Science and Tech-
nology) action call.

Recent developments at the Engineering Research 
Council were also discussed.

Relations with Other Mathematical Bodies
The committee considered the EMS’s relations with 
bodies, including ICIAM (the International Council for 
Industrial and Applied Mathematics) and the Interna-
tional Mathematical Union. It expressed the desire that 
the 2022 International Congress of Mathematicians take 
place in Europe. The EMS will therefore support Euro-
pean bids to host this event.

The committee was pleased to note that Sara van de 
Geer will deliver the 2016 EMS-Bernoulli Society Joint 
Lecture at the Nordic Congress of Mathematics in Stock-
holm in March. Developments within various research 
institutes and prize-committees were also noted.
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Submission of ERC Grant Proposals
The 2016 calls for ERC grants are approaching. The dead-
line for advanced grants is 1 Sept 2016. From this year, 
the funding for the different fields (e.g. PE1 Mathemat-
ics) will depend strongly on the number of applications 
for the field. Unfortunately, in the last calls, the number 
of applications significantly decreased and this will have 
a negative effect on the funding for mathematics. If the 
situation continues like this then a drastic reduction of 
the budget for funding in mathematics is to be expected 
in the coming years. So what should be done?

1.  Those that have a good idea for a proposal should 
definitely apply.

2.  You should apply for the full grant if the project real-
ly has the potential and need for such a large amount.

3.  Most research projects in mathematics can get along 
with much smaller grants.

4.  Do not follow the requests of university administra-
tors if they urge you to go for the maximum possible 
grant sum.

Following his meeting with the President of the Math-
ematical Society of Japan, the President presented agree-
ments for collaboration and reciprocal membership be-
tween our societies. The Executive Committee will be 
delighted to sign these agreements.

Conclusion 
Finally the President expressed the committee’s grati-
tude to the Moscow Mathematical Society and to the 

Steklov Institute for its warm hospitality, and to commit-
tee member Armen Sergeev for the faultless organiza-
tion. The participants especially enjoyed their visit to the 
Institute’s Laboratory for Popularization of Mathemat-
ics, headed by Nikolai Andreev.

The next Executive Committee meeting will be at 
Mittag-Leffler Institute in Stockholm, 18th–20th March 
2016.

DO NOT PRINT THIS INFORMATION        NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY       MARCH 2016       16-343 

Mathematical Knowledge 
and the Interplay 

of Practices
José Ferreirós

Offering a wealth of philosophical 
and historical insights, Mathematical 

Knowledge and the Interplay of 
Practices challenges us to rethink 

some of our most basic assumptions 
about mathematics, its objectivity, and 
its relationship to culture and science.

Cloth  $45.00

Magical Mathematics
The Mathematical Ideas 

That Animate Great 
Magic Tricks

Persi Diaconis & Ron Graham
With a foreword by Martin Gardner

Magical Mathematics reveals the 
secrets of fun-to-perform card tricks—
and the profound mathematical ideas 
behind them—that will astound even 

the most accomplished magician.

Paper  $19.95

An Imaginary Tale
The Story of √-1

Paul J. Nahin

Today, complex numbers have such 
widespread practical use—from electrical 

engineering to aeronautics—that few 
people would expect the story behind them 

to be filled with adventure and enigma. 
In An Imaginary Tale, Paul Nahin tells the 
2000-year history of one of mathematics’ 
most elusive numbers, the square root of 

minus one, also known as i. 

Paper  $16.95

See our E-Books at 
press.princeton.edu
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First edition of the  
Barcelona Dynamical Systems Prize
Amadeu Delshams (Scientific Manager of the BDSP 2015; Universitat Politècnica de Catalunya, Barcelona, Spain)

In July 2014, the first edition of the Barcelona Dynami-
cal Systems Prize was announced. This is an international 
prize awarded by the Societat Catalana de Matemà-
tiques, under the patronage of Professor Carles Simó, to 
the author or authors of a paper, written in English, in 
the area of dynamical systems.

For this first edition, the paper was required to be 
published between 1 May 2013 and 30 April 2015 and the 
authors were invited to send their submission letters no 
later than 30 May 2015. 

The prize is open to all kinds of dynamical systems 
and the following aspects are rated: global rather than 
particular descriptions of dynamics, new theoretical ap-
proaches, new computational tools and relevant appli-
cations. The prize award is 4000 euros, subject to local 
withholding tax.

The sponsor of this award is Carles Simó, who, after 
receiving the National Research Award of Catalonia in 
2012, decided to share it with researchers of dynamical 
systems worldwide.

The jury, which was not made public until after the 
resolution, was formed by Henk Broer, Bob Devaney, 
Yulij Ilyashenko, Richard Montgomery and Marcelo 
Viana. The prize received quite a number of submission 
letters and after long deliberations, in October 2015, the 
decision of the jury was to award the prize to 

Alberto Enciso and Daniel Peralta-Salas, 

as the authors of the paper “Existence of knotted vortex 
tubes in steady Euler flows”, Acta Math. 214 (2015), no. 
1, 61–134, 

and ex aequo to 

Marcel Guardia, Pau Martin and Tere M. Seara, 

as the authors of the paper “Oscillatory motions for the 
restricted planar circular three body problem”, Invent. 
Math. 203 (2016), no. 2, 417–492.

The resolution included the following arguments:
In the paper by Alberto Enciso and Daniel Peralta-

Salas, the authors construct, for any given knot or link 
type, a particular type of static solution to the inviscid 
Euler equation on Euclidean 3-space (a “Beltrami flow”) 
which has among its integral curves one which realises 
this knot or link type. As a result, they get a single flow 
which contains all knot types, which is a special form of 
Lord Kelvin’s conjecture.

In the paper by Marcel Guardia, Pau Martin and Tere 
M. Seara, the authors prove the existence of oscillatory 
solutions in the restricted planar circular 3-body problem 
for any value of the mass ratio of the primaries, which 
had been open since Chazy’s 1920s work pointed out os-
cillatory motion as one possible final behaviour of the 
motion of the 3-body problem.

The award ceremony took place at the Institut 
d’Estudis Catalans on 12 November 2015.
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Fermat Prize 2015
The laureates of the Fermat Prize 2015 are:

- Laure Saint-Raymond (École Normale Supérieure, 
Paris) for the development of asymptotic theories of 
partial differential equations, including the fluid limits 
of rarefied flows, multiscale analysis in plasma physics 
equations and ocean modelling, and the derivation of 
the Boltzmann equation from interacting particle sys-
tems.

- Peter Scholze (Universität Bonn) for his invention of 
perfectoid spaces and their application to fundamental 
problems in algebraic geometry and in the theory of 
automorphic forms.

The prize-giving ceremony took place on Tuesday 22 
March 2016 in Toulouse.

The award amounts to a total of 20,000 Euros granted 
every two years by the Conseil Régional Midi-Pyrénées. 
The recipients are required to publish, in the mathemati-
cal journal Annales de la Faculté des Sciences de Tou-
louse, an article summarising their findings and aiming 
to explain the significance of the results of their research 
to professional mathematicians who are not necessarily 
experts in the subject.

The EMS, as well as the French Académie des Scienc-
es, the Société Mathématique de France and the Société 
de Mathématiques Appliquées et Industrielles, contrib-
ute to the composition of the committee of the Fermat 
Prize by appointing one of its members.

Recently, BGSMath has been recognised (in 2015) as 
a María de Maeztu Excellence Unit by the Spanish gov-
ernment. This label carries a grant for the period 2015-
2019, which is mainly allocated to international calls for 
PhDs and postdoctoral positions. We plan to make an 
open call for positions each year from 2015 to 2019 in all 
areas of mathematics. Candidates with strong motivation 
and qualifications for research are invited to apply.

Many international mathematical events take place 
in the Barcelona area. In addition to these, BGSMath 
will start running monthly Research Programmes in 2016 
(CRM has been running quarterly Intensive Research 
Programmes for some time). These offer opportunities 
for researchers to come to Barcelona and collaborate 
with BGSMath groups. 

BGSMath is run by a Governing Board consisting of 
Marc Noy (UPC, Director), Natàlia Castellana (UAB), 
Lluís Alsedà (CRM) and Núria Fagella (UB), with the 
help of an Advisory Scientific Committee consisting 
of Marta Sanz-Solé (UB, Committee Chair), Tomás 
Alarcón (CRM), Franco Brezzi (CNR Pavia), Harry 
Buhrman (CWI Amsterdam), Tere Martínez-Seara 
(UPC), Joaquim Ortega-Cerdà (UB), Joan Porti (UAB), 
Pere Puig (UAB), Jean-Michel Roquejoffre (Paul Saba-
tier University, Toulouse), Víctor Rotger (UPC), Oriol 
Serra (UPC), Ulrike Tillmann (Oxford University) and 
Carlos Vázquez (Universidade da Coruña). 

Barcelona Graduate School of  
Mathematics BGSMath
Marc Noy (Director of BSGMath; Universitat Politècnica de Catalunya, Barcelona, Spain) 

The Barcelona Graduate School of Mathematics (BGS-
Math) is a collaborative initiative of the research groups 
in mathematics of four main universities located in the 
Barcelona area and an international research centre: Uni-
versitat de Barcelona (UB), Universitat Autònoma de 
Barcelona (UAB), Universitat Politècnica de Catalunya 
(UPC), Universitat Pompeu Fabra (UPF) and Centre de 
Recerca Matemàtica (CRM). Its primary goal is to pro-
vide PhDs and postdoctoral training at the highest level in 
an international environment.

BGSMath is associated to PhD programmes in math-
ematics and statistics in the universities of Barcelona, as 
well as several Master’s degrees, ranging from core math-
ematics to statistics, mathematical engineering and finan-
cial mathematics. The Barcelona area therefore provides a 
very attractive environment for carrying out Master’s and 
PhD studies in mathematics and its applications, and for 
postdoctoral research visits. BGSMath research groups 
cover most areas of mathematics and its applications.
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An Introduction to
Geometric Complexity Theory
J. M. Landsberg (Texas A&M University, College Station, TX, USA)

This article will survey methods from differential geometry,
algebraic geometry and representation theory relevant for the
permanent vs. determinant problem from computer science,
an algebraic analogue of the P vs. NP problem.

1 Introduction

The purpose of this article is to introduce mathematicians to
uses of geometry in complexity theory. It will focus on a cen-
tral question: the Geometric Complexity Theory version of L.
Valiant’s conjecture comparing the complexity of the perma-
nent and determinant polynomials, which is an algebraic vari-
ant of the P � NP conjecture. Other problems in complex-
ity such as matrix rigidity (see [KLPSMN09, GHIL, Alu15])
and the complexity of matrix multiplication (see, for example,
[Lan08]) have been treated with similar geometric methods.

2 History

1950s Soviet Union
A travelling saleswoman needs to visit 20 cities: Moscow,
Leningrad, Stalingrad, etc. Is there a route that can be taken
travelling less than 10,000 km?

Essentially, the only known method to determine the an-
swer is a brute force search through all possible paths. The
number of paths to check grows exponentially with the num-
ber of cities to visit. Researchers in the Soviet Union asked:
‘Is this brute force search avoidable?’ I.e. are there any algo-
rithms that are significantly better than the naïve one?

A possible cause for hope is that if someone proposes a
route, it is very easy to check if it is less than 10,000 km (even
pre-Google).

1950s Princeton NJ
In a letter to von Neumann (see [Sip92, Appendix]), Gödel at-
tempted to quantify the apparent difference between intuition
and systematic problem solving. For example, is it really sig-
nificantly easier to verify a proof than to write one?

1970s: precise versions of these questions
These ideas evolved to a precise conjecture posed by Cook
(preceded by work of Cobham, Edmonds, Levin, Rabin,
Yablonski and the question of Gödel mentioned above):

Let P denote the class of problems that are “easy” to
solve.1

Let NP denote the class of problems that are “easy” to
verify (like the travelling saleswoman problem).2

1 Can be solved on a Turing machine in time polynomial with respect to
the size of the input data.

Conjecture 1. [Coo71, Kar72] P � NP.

Late 1970s: L. Valiant, algebraic variant
A bipartite graph is a graph with two sets of vertices and
edges joining vertices from one set to the other. A perfect
matching is a subset of the edges such that each vertex shares
an edge from the subset with exactly one other vertex.

A standard problem in graph theory, for which the only
known algorithms are exponential in the size of the graph, is
to count the number of perfect matchings of a bipartite graph.

A B C

Figure 1. A bipartite graph. Vertex sets are {A, B,C} and {α, β, γ}.

A B C C

Figure 2. Two perfect matchings of the graph from Figure 1

This count can be computed by evaluating a polynomial
as follows. To a bipartite graph Γ, one associates an incidence
matrix XΓ = (xi

j), where xi
j = 1 if an edge joins the vertex i

above to the vertex j below and is zero otherwise. For exam-
ple, the graph of Figure 1 has incidence matrix

XΓ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 0
0 1 1
0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

A perfect matching corresponds to a set of entries {x1
j1
, . . . , xn

jn
}

with all xi
ji
= 1 and ( j1, . . . , jn) is a permutation of (1, . . . , n).

Let Sn denote the group of permutations of the elements
(1, . . . , n).

Define the permanent of an n × n matrix X = (xi
j) by

permn(X) :=
�
σ∈Sn

x1
σ(1) x

2
σ(2) · · · xn

σ(n). (1)

Then, perm(XΓ) equals the number of perfect matchings of Γ.

For example, perm3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 0
0 1 1
0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 2.

2 A proposed solution can be verified in polynomial time.

An Introduction to  
Geometric Complexity Theory
J. M. Landsberg (Texas A&M University, College Station, TX, USA)
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A fast algorithm to compute the permanent would give a
fast algorithm to count the number of perfect matchings of a
bipartite graph.

While it may not be easy to evaluate, the polynomial
permn is relatively easy to write down compared with a ran-
dom polynomial of degree n in n2 variables in the following
sense.

Let VNP be the set of sequences of polynomials that are
“easy” to write down.3 Valiant showed [Val79] that the per-
manent is complete for the class VNP, in the sense that VNP
is the class of all polynomial sequences (pm), where pm has
degree m and involves a number of variables polynomial in m,
such that there is a polynomial n(m) and pm is an affine linear
projection of permn(m) as defined below. Many problems from
graph theory, combinatorics and statistical physics (partition
functions) are in VNP. A good way to think of VNP is as the
class of sequences of polynomials that can be written down
explicitly.4

Let VP be the set of sequences of polynomials that are
“easy” to compute.5 For example, one can compute the deter-
minant of an n×n matrix quickly, e.g. using Gaussian elimina-
tion, so the sequence (detn) ∈ VP. Most problems from linear
algebra (e.g. inverting a matrix, computing its determinant,
multiplying matrices) are in VP.

The standard formula for the easy to compute determinant
polynomial is

detn(X) :=
�
σ∈Sn

sgn(σ)x1
σ(1) x

2
σ(2) · · · xn

σ(n). (2)

Here, sgn(σ) denotes the sign of the permutation σ.
Note that

perm2

�
y1

1 y1
2

y2
1 y2

2

�
= y1

1y2
2 + y1

2y2
1

= det2

�
y1

1 −y1
2

y2
1 y2

2

�
.

On the other hand, Marcus and Minc [MM61], building on
work of Pólya and Szegö (see [Gat87]), proved that one could
not express permm(Y) as a size m determinant of a matrix
whose entries are affine linear functions of the variables yi

j
when m > 2. This raised the question that perhaps the perma-
nent of an m×m matrix could be expressed as a slightly larger
determinant. More precisely, we say p(y1, . . . , yM) is an affine
linear projection of q(x1, . . . , xN) if there exist affine linear
functions xα(Y) = xα(y1, . . . , yM) such that p(Y) = q(X(Y)).
For example, B. Grenet [Gre14] observed that

perm3(Y) = det7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 y1
1 y2

1 y3
1 0 0 0

0 1 0 0 y3
3 y2

3 0
0 0 1 0 0 y1

3 y3
3

0 0 0 1 y1
3 0 y2

3
y2

2 0 0 0 1 0 0
y3

2 0 0 0 0 1 0
y1

2 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

3 Such sequences are obtained from sequences in VP (defined in the fol-
lowing paragraph) by “projection” or “integration over the fiber”, where
one averages the polynomial over a subset of its variables specialised to
0 and 1.

4 Here, one must take a narrow view of explicit, e.g. restrict to integer co-
efficients that are not “too large”.

5 Admit a polynomial size arithmetic circuit and polynomially bounded
degree (see, for example, [BCS97, §21.1]).

Recently [ABV15], it was shown that perm3 cannot be re-
alised as an affine linear projection of detn for n ≤ 6, so (3) is
optimal.

Valiant showed that if n(m) grows exponentially with re-
spect to m then there exist affine linear functions xi

j(y
s
t ) such

that detn(X(Y)) = permm(Y). (Grenet strengthened this to
show explicit expressions when n = 2m − 1 [Gre14]. See
[LR15] for a discussion of the geometry of these algorithms
and a proof of their optimality among algorithms with sym-
metry.) Valiant also conjectured that one cannot do too much
better:

Conjecture 2 (Valiant [Val79]). Let n(m) be a polynomial of
m. Then there exists an m0 such that, for all m > m0, there do
not exist affine linear functions xi

j(y
s
t ) such that permm(Y) =

detn(X(Y)).

Remark 3. The original P � NP is viewed as completely out
of reach. Conjecture 2, which would be implied by P � NP,
is viewed as a more tractable substitute.

To keep track of progress on the conjecture, for a poly-
nomial p = p(Y), let dc(p) denote the smallest n such that
there exists an affine linear map X(Y) satisfying p(Y) =
detn(X(Y)). Then, Conjecture 2 says that dc(permm) grows
faster than any polynomial. Since the conjecture is expected
to be quite difficult, one could try to prove any lower bound
on dc(permm). Several linear bounds on dc(permm) have been
shown [MM61, vzG87, Cai90], with the current world record
the quadratic bound dc(permm) ≥ m2

2 [MR04]. (Over finite
fields, one has the same bound by [Cai90]. Over R, one has
dcR(permm) ≥ m2 − 2m + 2 [Yab15].) The state of the art
was obtained with local differential geometry, as described in
Section 3.

Remark 4. There is nothing special about the permanent for
this conjecture; it would be sufficient to show that any ex-
plicit (in the sense of VNP mentioned above) sequence of
polynomials pm has dc(pm) growing faster than any polyno-
mial. The dimension of the set of affine linear projections of
detn is roughly n4 but the dimension of the space of homoge-
neous polynomials of degree m in m2 variables grows almost
like mm so a random sequence will have exponential dc(pm).
Problems in computer science to find an explicit object satis-
fying a property that a random one satisfies are called trying
to find hay in a haystack.

Coordinate free version
To facilitate the use of geometry, we get rid of coordinates.
Let End(Cn2

) denote the space of linear maps Cn2 → Cn2
,

which acts on the space of homogeneous polynomials of de-
gree n on Cn2

, denoted S nCn2∗ (where the ∗ is used to indicate
the dual vector space to Cn2

), as follows: for g ∈ End(Cn2
) and

P ∈ S nCn2∗, the polynomial g · P is defined by

(g · P)(x) := P(gT x). (4)

Here, gT denotes the transpose of g. (One takes the transpose
matrix in order that g1 · (g2 · P) = (g1g2) · P.)

In [MS01], padding was introduced, i.e. adding a ho-
mogenising variable so all objects live in the same ambient
space, in order to deal with linear functions instead of affine
linear functions. Let � be a new variable, so �n−m permm(y) ∈
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S nC(m2+1)∗. Then, permm(y) is expressible as an n×n determi-
nant whose entries are affine linear combinations of the yi

j if
and only if �n−m permm is expressible as an n × n determinant
whose entries are linear combinations of the variables yi

j, �.

Consider any linear inclusion C(m2+1)∗ → Cn2∗, so, in par-
ticular, �n−m permm ∈ S nCn2∗. Then,

dc(permm) ≤ n⇔ �n−m permm ∈ End(Cn2
) · detn . (5)

Conjecture 2 in this language is:

Conjecture 5 (Valiant [Val79]). Let n(m) be a polynomial
of m. Then, there exists an m0 such that, for all m > m0,
�n−m permm � End(Cn2

) · detn. Equivalently,

End(Cn2
) · �n−m permm � End(Cn2

) · detn .

3 Differential geometry and the state of the art
regarding Conjecture 2

The best result pertaining to Conjecture 2 comes from local
differential geometry: the study of Gauss maps.

Gauss maps
Given a surface in 3-space, form its Gauss map by mapping a
point of the surface to its unit normal vector on the unit sphere
as in Figure 3.

Figure 3. The shaded area of the surface maps to the shaded area of the
sphere.

A normal vector to a surface X at x is one perpendicular to
the tangent space TxX ⊂ R3. This Gauss image can be defined
without the use of an inner product if one instead takes the
union of all conormal lines, where a conormal vector to X ⊂
R3 is one in the dual space R3∗ that annihilates the tangent
space TxX. One loses qualitative information. However, one
still has the information of the dimension of the Gauss image.

This dimension will drop if, through all points of the sur-
face, there is a curve along which the tangent plane is con-
stant. For example, if M is a cylinder, i.e. the union of lines in
three space perpendicular to a plane curve, the Gauss image
is a curve.

The extreme case is when the surface is a plane. Then, its
Gauss image is just a point.

A classical theorem in the geometry of surfaces in three-
space classifies surfaces with a degenerate Gauss image. It is
stated in the algebraic category for what comes next (for C∞
versions, see, for example, [Spi79, vol. III, chap. 5]). One may
view projective space P3 as affine space with a plane added at
infinity. From this perspective, a cylinder is a cone with its
vertex at infinity.

Figure 4. Lines on the cylinder are collapsed to a point.

Theorem 6 (C. Segre [Seg10]). If X2 ⊂ P3 is an algebraic
surface whose Gauss image is not two-dimensional then X is
one of:
• The closure of the union of points on tangent lines to a

space curve.
• A generalised cone, i.e. the points on the union of lines

connecting a fixed point to a plane curve.

Notice that, in the first picture, the tangent plane along
a ray of the curve is constant and, in the second picture, the
tangent plane is constant along the lines through the vertex.

One can extend the notion of Gauss maps to hypersurfaces
of arbitrary dimension and to hypersurfaces defined over the
complex numbers. The union of tangent rays to a curve gen-
eralises to the case of osculating varieties. One can also take
cones with vertices larger than a point.

What does this have to do with complexity theory?
The hypersurface {detn(X) = 0} ⊂ Cn2

has a very degenerate
Gauss map. To see this, consider the matrix

z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ {detn = 0}.

The tangent space to {detn = 0} at z and the conormal space
(in the dual space of matrices) are, respectively,

Tz{detn = 0} =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗
...
. . .

...
...

∗ ∗ ∗ ∗
∗ ∗ ∗ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

N∗z {detn = 0} =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
...
. . .

...
...

0 0 0 0
0 0 0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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But any rank n − 1 matrix whose non-zero entries all lie in
the upper left (n − 1) × (n − 1) submatrix will have the same
tangent space! Since any smooth point of {detn = 0} can be
moved to z by a change of basis, we conclude that the tangent
hyperplanes to {detn = 0} are parametrised by the rank one
matrices, the space of which has dimension 2n − 1 (or 2n − 2
in projective space) because they are obtained by multiply-
ing a column vector by a row vector. In fact, {detn = 0} may
be thought of as an osculating variety of the variety of rank
one matrices (e.g. the union of tangent lines to the union of
tangent lines . . . to the variety of rank one matrices).

On the other hand, a direct calculation shows that the
permanent hypersurface {permm = 0} ⊂ Pm2−1 has a non-
degenerate Gauss map (see Section 5). So, when one includes
Cm2 ⊂ Cn2

, the equation {permm = 0} becomes an equation
in a space of n2 variables that only uses m2 of the variables
and one gets a cone with vertex Pn2−m2−1 corresponding to the
unused variables. In particular, the Gauss image will have di-
mension m2 − 2.

If one makes an affine linear substitution X = X(Y), the
Gauss map of {det(X(Y)) = 0} will be at least as degenerate
as the Gauss map of {det(X) = 0}. Using this, one obtains:

Theorem 7 (Mignon-Ressayre [MR04]). If n(m) < m2

2 then
there do not exist affine linear functions xi

j(y
s
t ) such that

permm(Y) = detn(X(Y)). I.e. dc(permm) ≥ m2

2 .

4 Algebraic geometry and Valiant’s conjecture

A possible path to show permm(Y) � detn(X(Y)) is to look for
a polynomial whose zero set contains all polynomials of the
form detn(X(Y)) and show that permm is not in the zero set.

Polynomials
Algebraic geometry is the study of zero sets of polynomials.
In our situation, we need polynomials on spaces of polynomi-
als. More precisely, if

P(x1, . . . , xN) =
∑

1≤i1≤···≤id≤N

ci1,...,id xi1 · · · xid

is a homogeneous polynomial of degree d in N variables, we
work with polynomials in the coefficients ci1,...,id , where these
coefficients provide coordinates on the vector space S dCN of
all homogeneous polynomials of degree d in N variables.

The starting point of Geometric Complexity Theory is the
plan to prove Valiant’s conjecture by finding a sequence of
polynomials Pm vanishing on all affine-linear projections of
detn(m) when n is a polynomial in m such that Pm does not
vanish on permm.

Disadvantage of algebraic geometry?
The zero set of all polynomials vanishing on

S :=
{
(z,w) | w = 0, z � 0

} ⊂ C2

is the line {
(z,w) | w = 0

} ⊂ C2.

That is, if we want to use polynomials, we may need to
prove a more difficult conjecture, in the sense that we will
need to prove non-membership in a larger set.

Given a subset Z of a vector space U, the ideal of Z, de-
noted I(Z), is the set of all polynomials vanishing at all points
of Z. The Zariski closure of Z, denoted Z, is the set of u ∈ U
such that P(u) = 0 for all P ∈ I(Z). The common zero set of
a collection of polynomials (such as Z) is called an algebraic
variety.

Conjecture 8 (Mulmuley-Sohoni [MS01]). Let n(m) be a
polynomial of m. Then there exists an m0 such that, for all
m > m0, �n−m permm � End(Cn2 ) · detn.

How serious a problem is the issue of Zariski closure?
Does it really change Valiant’s conjecture?

Mulmuley conjectures [MN] that indeed it does. Namely,
he conjectures that there are sequences in the closure of the
sequences of spaces End(Cn2

) · detn that are not in VP.

Example 9. Let P = x3
1 + x2

2 x3 + x2x2
4 ∈ S 3C4. Then, P �

End(Cn2
) ·detn for n < 5 [ABV15]. However, End(C9) · det3 ⊃

S 3C4, i.e. every homogeneous polynomial of degree 3 in 4
variables is in the Zariski closure of degenerations of det3
(see, for example, [Bea00]).

However, Mulmuley also conjectures [MN] that any path
to resolving Valiant’s conjecture will have to address “wild”
sequences in the closure, so that the stronger conjecture is the
more natural one. Moreover, Grochow makes the case [?] that
essentially all lower bounds in algebraic complexity theory
have come from algebraic geometry.

Advantage of the stronger conjecture: representation theory
Representation theory is the systematic study of symmetry in
linear algebra.

The variety End(Cn2 ) · detn may be realised as an orbit
closure as follows. Let GLN denote the group of invertible
N × N matrices. It acts on the space of polynomials S dCN by
(4). Any element of End(CN) may be described as a limit of
elements of GLN , so the Euclidean closure of End(CN) · detn
equals the Euclidean closure of GLN · detn. In general, Eu-
clidean and Zariski closure can be quite different (e.g. the
Zariski closure of {(z,w) | z = 0, w ∈ Z} ⊂ C2 is the line but
this set is already Euclidean closed). However, in this situa-
tion, Euclidean closure equals Zariski closure (see [Mum95,
Thm. 2.33]), so we have the following equality of Zariski clo-
sures:

GLn2 · detn = End(Cn2 ) · detn.

Substantial techniques have been developed to study orbits
and their closures.

Let

D̂etn := GLn2 · detn

and let

P̂erm
m
n := GLn2 · �n−m permm.

Conjecture 10. [MS01] Let n = mc for any constant c. Then,
for all sufficiently large m,

P̂erm
m
n � D̂etn.
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Conjecture 10 would imply Conjecture 2. The programme
to use representation theory to prove Conjecture 10 is de-
scribed in Section 7.

5 State of the art for Conjecture 10: Classical
algebraic geometry

Classical algebraic geometry detour: B. Segre’s dimension
formula
In algebraic geometry, it is more convenient to work in pro-
jective space. (From a complexity perspective, it is also nat-
ural, as changing a function by a scalar will not change its
complexity.) If W is a vector space then PW is the associated
projective space of lines through the origin: PW = (W\0)/ ∼
where w1 ∼ w2 if w1 = λw2 for some nonzero complex num-
ber λ. Write [w] ∈ PW for the equivalence class of w ∈ W\0
and if X ⊂ PW, let X̂ ⊂ W denote the corresponding cone in
W. Define X = π(X̂), the Zariski closure of X.

If X ⊂ PW is a hypersurface, let X∨ ⊂ PW∗ denote its
Gauss image, which is called its dual variety. If X is an irre-
ducible algebraic variety, X∨ will be too. More precisely, X∨
is the Zariski closure of the set of conormal lines to smooth
points of X. Here, if T̂xX ⊂ W denotes the tangent space to
the cone over X, the conormal space is N∗x X = (T̂xX)⊥ ⊂ W∗.

Proposition 11 (B. Segre [Seg51]). Let P ∈ S dW∗ be irre-
ducible and let d ≥ 2. Then, for a Zariski open subset of points
[x] ∈ Zeros(P),

dim Zeros(P)∨ = rank
�
Hess(P)(xd−2)

� − 2.

Here, (Hess(P)(xd−2)) ∈ S 2W∗ is the Hessian matrix of
second partial derivatives of P evaluated at x. Note that the
right side involves second derivative information and the left
side involves the dual variety (which is first derivative in-
formation from Zeros(P)) and its dimension, which is a first
derivative computation on the dual variety and therefore a sec-
ond derivative computation on Zeros(P).

Proof. For a homogeneous polynomial P ∈ S dW∗, write P
when we consider P as a d-multi-linear form. Let
x ∈ Ẑeros(P) ⊂ W be a smooth point, so P(x) = P(x, . . . , x) =
0 and dPx = P(x, . . . , x, ·) � 0. Take h = dPx ∈ W∗, so
[h] ∈ Zeros(P)∨. Consider a curve ht ⊂ Ẑeros(P)∨ with
h0 = h. There must be a corresponding curve xt ∈ Ẑeros(P)
such that ht = P(xt, . . . , xt, ·) and thus its derivative is h�0 =
P(xd−2, x�0, ·). The dimension of T̂hZeros(P)∨ is then the rank
of Hess(P)(xd−2) = P(xd−2, ·, ·) minus one (we subtract one
because x�0 = x is in the kernel of Hess(P)(xd−2)). Finally,
dim X = dim T̂xX − 1. �

First steps towards equations
Segre’s formula implies, for P ∈ S dW∗, that dim Zeros(P)∨ ≤
k if and only if, for all w ∈ W, letting G(q,W) denote the
Grassmannian of q-planes through the origin in W,

P(w) = 0 � detk+3(Hess(P)(wd−2)|F) = 0 ∀F ∈ G(k+3,W).
Equivalently (assuming P is irreducible), for any F ∈ G(k +
3,W), the polynomial P must divide
detk+3(Hess(P)|F) ∈ S (k+3)(d−2)W∗.

Thus, to find polynomials on S dW∗ characterising hyper-
surfaces with degenerate duals, we need polynomials that de-

tect if a polynomial P ∈ S dW∗ divides a polynomial Q ∈
S eW∗. Now, P divides Q if and only if Q ∈ P · S e−dW∗, i.e.
letting xIj be a basis of S e−dW∗ and ∧ denote exterior (wedge)
product,

xI1 P ∧ · · · ∧ xID P ∧ Q = 0. (6)

Let dim W = N and let Dk,d,N ⊂ PS dW∗ denote the
zero set of the equations (6) in the coefficients of P taking
Q = detk+3(Hess(P)|F). By our previous discussion, [detn] ∈
D2n−2,n,n2 .

The lower bound on dc(permm)
When

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − m 1 · · · 1
1 1 · · · 1
...

... · · · ...
1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

a short calculation shows that Hess(permm)(xm−2) is of max-
imal rank. This fills in the missing step of the proof of The-
orem 7. Moreover, if one works over R then the Hessian has
a signature. For detn, this signature is (n − 1, n − 1) but, for
the permanent, the signature on an open subset is at least
(m2 − 2m + 1, 2m − 3), thus:

Theorem 12 (Yabe [Yab15]). dcR(permm) ≥ m2 − 2m + 2.

Were we to just consider permm as a polynomial in more
variables, the rank of the Hessian would not change. How-
ever, we are also adding padding, which could a priori have a
negative effect on the rank of the Hessian. Fortunately, as was
shown in [LMR13], it does not and we conclude:

Theorem 13. [LMR13] Permm
n � D2n−2,n,n2 when m < n2

2 . In
particular, when m < n2

2 , Permm
n � Detn.

On the other hand, since cones have degenerate duals,
�n−m permm ∈ D2n−2,n,n2 whenever m ≥ n2

2 .
In [LMR13], it was also shown that Dk,d,N intersected

with the set of irreducible hypersurfaces is exactly the set (in
PS dW∗) of irreducible hypersurfaces of degree d in PW with
dual varieties of dimension k, which solved a classical ques-
tion in algebraic geometry.

6 Necessary conditions for modules of
polynomials to be useful for GCT

Fixing a linear inclusion Cm2+1 ⊂ Cn2
, the polynomial

�n−m permm ∈ S nCn2
has evident pathologies: it is padded,

that is, divisible by a large power of a linear form, and its
zero set is a cone with an n2 − m2 − 1 dimensional vertex,
that is, it only uses m2 + 1 of the n2 variables in an expression
in good coordinates. To separate �n−m permm from detn, one
must look for modules in I(Detn) that do not vanish automat-
ically on equations of hypersurfaces with these pathologies. It
is easy to determine such modules with representation theory.
Before doing so, the irreducible representations of the general
linear group will be reviewed below.

GL(V)-modules
Let V be a complex vector space of dimension v. The irre-
ducible representations of GL(V) are indexed by sequences
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of integers π = (p1, . . . , pv) with p1 ≥ · · · ≥ pv and the cor-
responding module is denoted S πV . The representations oc-
curring in the tensor algebra of V are those with pv ≥ 0, i.e.
by partitions. For a partition π, let �(π) denote its length, the
smallest s such that ps+1 = 0. In particular, S (d)V = S dV , and
S (1,...,1) =: S (1d )V = ΛdV ⊂ V⊗d, the skew-symmetric tensors.

One way to construct S πV , where π = (p1, . . . , pv) and its
conjugate partition is π� = (q1, . . . , qp1 ), is to form a projec-
tion operator from V⊗|π| by first projecting toΛq1 V⊗ · · · ⊗ Λqp1 V
by skew-symmetrising and then re-ordering and projecting
the image to S p1 V⊗ · · · ⊗ S pv V . In particular, if an element
of V⊗|π| lies in some W⊗|π| for some W ⊂ V with dim W < q1
then it will map to zero.

Polynomials useful for GCT
To be useful for GCT, a module of polynomials should not
vanish identically on cones or on polynomials that are di-
visible by a large power of a linear form. The equations for
the variety of polynomials whose zero sets are cones are well
known – they are all modules where the length of the parti-
tion is longer than the number of variables needed to define
the polynomial.

Proposition 14. [KL14] Necessary conditions for a module
S πCn2 ⊂ Id(Detn) to not vanish identically on polynomials in
m2 variables padded by �n−m are:
1. �(π) ≤ m2 + 1.
2. If π = (p1, . . . , pt) then p1 ≥ d(n − m).
Moreover, if p1 ≥ min{d(n − 1), dn − m} then the necessary
conditions are also sufficient. In particular, for p1 sufficiently
large, these conditions depend only on the partition π and not
on how the module S πCn2

is realised as a space of polynomi-
als.

7 The programme to find modules in I[Detn] via
representation theory

The programme initiated in [MS01] and developed in
[BLMW11, MS08] to find modules in the ideal of Detn will
be presented in this section.

Preliminaries
Let W = Cn2

and consider detn ∈ S nW∗. Define C[Detn] :=
S ym(S nW)/I(Detn), the homogeneous coordinate ring of
D̂etn. This is the space of polynomial functions on D̂etn in-
herited from polynomials on the ambient space S nW.

Since S ym(S nW) and I(Detn) are GL(W)-modules, so is
C[Detn] and, since GL(W) is reductive (a complex algebraic
group G is reductive if U ⊂ V is a G-submodule of a G-
module V and there exists a complementary G-submodule Uc

such that V = U ⊕ Uc), we obtain the splitting as a GL(W)-
module:

S ym(S nW) = I(Detn) ⊕ C[Detn].

In particular, if a module S πW appears in S ym(S nW) and it
does not appear in C[Detn], it must appear in I(Detn).

For those not familiar with the ring of regular functions
on an affine algebraic variety, consider GL(W) ⊂ Cn2+1 as
the subvariety of Cn2+1, with coordinates (xi

j, t) given by the
equation t det(x) = 1 and C[GL(W)] defined to be the re-
striction of polynomial functions on Cn2+1 to this subvariety.

Then, C[GL(W) · detn] = C[GL(W)/Gdetn ] can be defined as
the subring of Gdetn -invariant functions C[GL(W)]Gdetn . Here,
Gdetn := {g ∈ GL(W) | g · detn = detn} � S Ln × S Ln � Z2. A
nice proof of this result (originally due to Frobenius [Fro97])
is due to Dieudonné [Die49] (see [Lan15] for an exposition).
It relies on the fact that, in analogy with a smooth quadric
hypersurface, there are two families of maximal linear spaces
on the Grassmannian G(n2 − n,Cn⊗Cn) with prescribed di-
mensions of their intersections. One then uses that the group
action must preserve these intersection properties.

There is an injective map

C[Detn]→ C[GL(W) · detn]

given by restriction of functions. The map is an injection be-
cause any function identically zero on a Zariski open subset of
an irreducible variety is identically zero on the variety. The al-
gebraic Peter-Weyl theorem below gives a description of the
G-module structure of C[G/H] when G is a reductive alge-
braic group and H is a subgroup.
Plan of [MS01, MS08]: Find a module S πW not appearing
in C[GL(W)/Gdetn ] that does appear in S ym(S nW).

By the above discussion, such a module must appear in
I(Detn).

One might object that the coordinate rings of different or-
bits could coincide, or at least be very close. Indeed, this is
the case for generic polynomials but, in GCT, one generally
restricts to polynomials whose symmetry groups are not only
“large” but they characterise the orbit as follows:

Definition 15. Let V be a G-module. A point P ∈ V is char-
acterised by its stabiliser GP if any Q ∈ V with GQ ⊇ GP is of
the form Q = cP for some constant c.

One can think of polynomial sequences that are complete
for their complexity classes and are characterised by their sta-
bilisers as “best” representatives of their class. Corollary 17
will imply that if P ∈ S dV is characterised by its stabiliser, the
coordinate ring of its G-orbit is unique as a module among or-
bits of points in V .

The algebraic Peter-Weyl theorem
Let G be a complex reductive algebraic group (e.g. G =

GL(W)) and let V be an irreducible G-module. Given v ∈ V
and α ∈ V∗, define a function fv,α : G → C by fv,α(g) =
α(g · v). These are regular functions and it is not hard to see
that one obtains an inclusion V⊗V∗ ⊂ C[G]. Such functions
are called matrix coefficients because, if one takes bases, these
functions are spanned by the elements of the matrix ρ(g),
where ρ : G → GL(V) is the representation. In fact, the matrix
coefficients span C[G]:

Theorem 16. [Algebraic Peter-Weyl theorem] Let G be a re-
ductive algebraic group. Then, there are only countably many
non-isomorphic, irreducible, finite dimensional G-modules.
Let Λ+G denote a set indexing the irreducible G-modules and
let Vλ denote the irreducible module associated to λ ∈ Λ+G.
Then, as a G ×G-module,

C[G] =
⊕
λ∈Λ+G

Vλ⊗V∗λ.

For a proof and discussion, see, for example, [Pro07].
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Corollary 17. Let H ⊂ G be a closed subgroup. Then, as a
G-module,

C[G/H] = C[G]H =
�
λ∈Λ+G

Vλ⊗(V∗λ)
H =
�
λ∈Λ+G

V⊕ dim(V∗λ )
H

λ .

Here, G acts on the Vλ and (V∗λ)
H is just a vector space

whose dimension records the multiplicity of Vλ in C[G/H].
Corollary 17 motivates the study of polynomials charac-

terised by their stabilisers: if P ∈ V is characterised by its
stabiliser then G · P is the unique orbit in V with coordinate
ring isomorphic to C[G ·P] as a G-module. Moreover, for any
Q ∈ V that is not a multiple of P, C[G · Q] � C[G · P].

Schur–Weyl duality
The space V⊗d is acted on by GL(V) and Sd (permuting the
factors) and these actions commute so we may decompose it
as GL(V) ×Sd-module. The decomposition is

V⊗d =
�
π||π|=d

S πV⊗[π],

where [π] is the irreducibleSd-module associated to the parti-
tion π (see, for example, [Mac95]). This gives us a second def-
inition of S πV when π is a partition: S πV = HomSd ([π],V⊗d).

The coordinate ring of GL(W) · detn
Let E, F � Cn. We first compute the S L(E)×S L(F)-invariants
in S π(E⊗F), where |π| = d. As a GL(E) × GL(F)-module,
since (E⊗F)⊗d = E⊗d⊗F⊗d,

S π(E⊗F) = HomSd

�
[π], E⊗d⊗F⊗d

�

= HomSd

⎛⎜⎜⎜⎜⎜⎜⎝[π], (
�
|μ|=d

[μ]⊗S μE)⊗(
�
|ν|=d

[ν]⊗S νF)

⎞⎟⎟⎟⎟⎟⎟⎠

=
�
|μ|=|ν|=d

HomSd ([π], [μ]⊗[ν])⊗S μE⊗S νF

The vector space HomSd ([π], [μ]⊗[ν]) simply records the
multiplicity of S μE⊗S νF in S π(E⊗F). The integers
kπμν = dim HomSd ([π], [μ]⊗[ν]) are called Kronecker coef-
ficients.

Now, S μE is a trivial S L(E) module if and only if μ = (δn)
for some δ ∈ Z. Thus, so far, we are reduced to studying the
Kronecker coefficients kπδnδn . Now, take theZ2 action given by
exchanging E and F into account. Write [μ]⊗[μ] = S 2[μ] ⊕
Λ2[μ]. The first module will be invariant under Z2 = S2

and the second will transform its sign under the transposi-
tion. So, define the symmetric Kronecker coefficients skπμμ :=
dim(HomSd ([π], S 2[μ])). For a GL(V)-module M, write Mpoly

for the submodule consisting of isotypic components of mod-
ules S πV , where π is a partition.

We conclude with:

Proposition 18. [BLMW11] Let W = Cn2
. The polynomial

part of the coordinate ring of the GL(W)-orbit of detn ∈ S nW
is

C[GL(W) · detn]poly =
�
d∈Z+

�
π | |π|=nd

(S πW∗)⊕skπdndn .

8 Asymptotics of plethysm and Kronecker
coefficients via geometry

The above discussion can be summarised as:

Goal: Find partitions πwhich have mult(S πW, S d(S nW)) � 0,
skπdndn = 0 and have few parts, with a first part large.

Kronecker coefficients and the plethysm coefficients
mult(S πW, S d(S nW)) have been well-studied in both geom-
etry and combinatorics literature. Here, a geometric method
will be discussed of L. Manivel and J. Wahl [Wah91, Man97,
Man98, Man15], based on the Borel-Weil theorem that re-
alises modules as spaces of sections of vector bundles on ho-
mogeneous varieties. Advantages of the method are: (i) the
vector bundles come with filtrations that allow one to organ-
ise information, (ii) the sections of the associated graded bun-
dles can be computed explicitly, giving one upper bounds
for the coefficients, and (iii) Serre’s theorem on the vanish-
ing of sheaf cohomology tells one that the upper bounds are
achieved asymptotically.

A basic, if not the basic problem in representation theory
is: given a group G, an irreducible G-module U and a sub-
group H ⊂ G, decompose U as an H-module. The determi-
nation of Kronecker coefficients can be phrased this way with
G = GL(V⊗W), U = S λ(V⊗W) and H = GL(V) × GL(W).
The determination of plethysm coefficients may be phrased as
the case G = GL(S nV), U = S d(S nV) and H = GL(V).

Focusing on plethysm coefficients, we want to decom-
pose S d(S nV) as a GL(V)-module or, more precisely, to ob-
tain qualitative asymptotic information about this decompo-
sition. Note that S dnV ⊂ S d(S nV) with multiplicity one. Let
x1, . . . , xv be a basis of V , so ((x1)n)d is the highest weight
vector in S d(S nV). (A vector v ∈ V is a highest weight vector
for GL(W) if B[v] = [v], where B ⊂ GL(W) is the subgroup
of upper triangular matrices. There is a partial order on the
set of highest weights.) Say S πV ⊂ S d(S nV) is realised with
highest weight vector

�
I

cI(xi11 · · · xi1n ) · · · (xid1 · · · xidn )

for some coefficients cI , where I = {is,α}. Then,
�

I

cI(x1)n(xi11 · · · xi1n ) · · · (xid1 · · · xidn ) ∈ S d+1(S nV)

is a vector of weight (n) + π and is a highest weight vector.
Similarly,

�
I

cI(x1xi11 · · · xi1n ) · · · (x1xid1 · · · xidn ) ∈ S d(S n+1V)

is a vector of weight (d) + π and is a highest weight vector.
This already shows qualitative behaviour if we allow the first
part of a partition to grow:

Proposition 19. [Man97] Let μ be a fixed partition. Then,
mult(S (dn−|μ|,μ), S d(S nV)) is a non-decreasing function of both
d and n.

One way to view what has just been done is to write V =
x1 ⊕ T , so

S n(x1 ⊕ T ) =
n�

j=0

xn− j
1 ⊗S jT. (8)

Then, decompose the d-th symmetric power of S n(x1 ⊕ T )
and examine the stable behaviour as we increase d and n.
One could think of the decomposition (8) as the osculating se-
quence of the n-th Veronese embedding of PV at [xn

1] and the
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further decomposition as the osculating sequence of the d-th
Veronese re-embedding of the ambient space refined by (8).

For Kronecker coefficients and more general decomposi-
tion problems, the situation is more complicated in that the
ambient space is no longer a projective space but a homo-
geneous variety and, instead of an osculating sequence, one
examines jets of sections of a vector bundle. As mentioned
above, in this situation, one gets the bonus of vanishing the-
orems. For example, with the use of vector bundles, Propo-
sition 19 can be strengthened to say that the multiplicity is
eventually constant and state for which d, n this constant mul-
tiplicity is achieved.

Acknowledgements
I thank Jesko Hüttenhain for drawing the pictures of surfaces
and H. Boas and J. Grochow for extensive suggestions for
improving the exposition.

Note
While this article was in press, the Goal stated on p. 17 was
proven to be unachievable in [IP15]. Nevertheless there con-
tinues to be substantial work towards Conjecture 8 using other
geometric approaches.
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Non-Integrable Distributions
and the h-Principle
Francisco Presas (ICMAT, Madrid, Spain)

Topologically stable distributions were locally classified by
E. Cartan. He showed that they corresponded to four classes
of “non-integrable” distributions, giving rise to four different
geometries. This article reviews their history. Special care is
devoted to the latest developments of Engel geometry.

1 Introduction

Fix a smooth n-dimensional manifold M. An r-dimensional
distribution over M is a rank r vector bundleD → M together
with a monomorphism of vector bundles

D ��

��

T M

��
M id �� M.

It is simple to give a topological classification of these objects.
Two distributions D0 and D1 are equivalent if they represent
the same abstract vector bundle D0 � D1 � D and there is
a homotopy of monomorphisms it : D → T M connecting
the two monomorphisms. The existence and classification of
distributions is an obstruction theory problem, lying in the
realm of algebraic topology. Let us briefly explain it.

Realise that distributions are in 1-to-1 correspondence
with sections of a fiber bundle G → M with fiber over a point
p equal to Gp = Gr(r, TpM) � O(n)/(O(r)×O(n− r)). There-
fore, classical obstruction theory tells us that the obstruction
for a section to exist is measured by a sequence of cohomol-
ogy classes in the groups

H j+1(M, π j(Gp)), j = 0, . . . , n − 1.

Each class controls the extension of the section from the
( j − 1)–skeleton to the j–skeleton of the manifold with re-
spect to some fixed CW–decomposition. Here is an example.
Assume that r = n − 1 and that orientations have been fixed
both in the manifold and in the vector bundles. The fiber Gp

is diffeomorphic to the sphere Sn−1. This implies that all the
cohomology groups are trivial, except the last one, so the sec-
tion can always be extended to the (n − 1)–skeleton; the only
obstruction lies in Hn(M, πn−1(Sn−1)) = Hn(M,Z) and it is
easily identified as the Euler class e(M) of the tangent bundle
of the manifold M. This is just telling us that the necessary
and sufficient condition for an oriented manifold to admit a
codimension 1 distribution is to have vanishing Euler charac-
teristic.

After the existence question has been answered, we study
how many homotopy classes of k–dimensional distributions

Non-Integrable Distributions  
and the h-Principle
Francisco Presas (ICMAT, Madrid, Spain)
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there are on M. In this case, the obstruction for a pair of sec-
tions of G → M to be homotopic is controlled by a sequence
of cohomology classes in

o j ∈ H j(M, π j(Gp)
)
, j = 0, . . . , n.

We compute the obstructions for r = n − 1 in the oriented
setting. In that case, there are two of them. The first one ap-
pears with j = n − 1: the class on−1 ∈ Hn−1(M, πn−1(Sn−1)) =
Hn−1(M,Z). For instance, for n = 3, o2 = e(D0) − e(D1).
That is, the condition for the two distributions to be de-
formable over the 2-skeleton is that they possess the same
Euler class as abstract vector bundles. The last obstruction
lies in Hn(M, πn(Sn−1)) and it is an Hopf invariant.

We have solved a purely topological problem. However,
we can impose “geometrical” conditions to the distributions.
The most classical one is the integrability condition. We say
that a distributionD is integrable at a point p ∈ M if

[Dp,Dp] ⊂ Dp. (1)

The reason for the name is the following result.

Theorem 1 (Frobenius). A distribution defines a foliation if
and only if it is everywhere integrable.

We need to introduce what a foliation is. Abusing lan-
guage, a distribution D defines a foliation if for any point
p ∈ M it admits a foliated chart in a neighbourhood of the
point. A chart φp : Up → Vp ⊂ Rn is called foliated if
(φp)∗D = D0, where D0 = R

k ⊕ {0} ⊂ Rk ⊕ Rn−k = Rn,
using the usual identification between Rn and the fiber of its
tangent bundle at each point.

Define the space

Dist(k,M) = {k−dimensional distributions},
endowed with the compact–open topology. In the previous
discussion, we understood some of its global topology: the
number of connected components it has. Similar arguments
provide information about its higher homotopy groups. On
the other hand, we can define

F ol(k,M) = {k−dimensional foliations},
which is a more geometric entity, since its elements are de-
fined by the partial differential equation (1). One of the goals
of the theory of foliations is to understand the topology of the
natural inclusion map

ι : F ol(k,M)→ Dist(k,M). (2)

The initial dream was to show that the map was a homo-
topy equivalence and hence that the classification of foliations
up to deformation was purely topological. In codimension
greater than one, it was fairly simple to produce connected
components of the distribution space that did not possess a
foliation representing them [8]. However, the codimension 1
case was completely different. First of all, there is the follow-
ing theorem.

Theorem 2 ([41]). For codimension 1 distributions, the map
π0(ι) is surjective in any manifold.

On the other hand, the injectivity of π0(ι) has remained
an important open problem for many years. Quite recently
(2014), the following result has been proven by Hélène
Eynard-Bontemps.

Theorem 3 ([20]). For codimension 1 distributions, the map
π0(ι) is injective in any 3–manifold.

There is a chance that the result may be true in all dimen-
sions. These results give a topological flavour to codimension
1 foliation theory.

The goal of this note is to discuss some other classes of
distributions possessing a local model and also defined by a
geometric condition. We will show that we have to go to the
opposite end of the spectrum: maximally non-integrable dis-
tributions.

2 Local theory

Definition 4. An open subset O ⊂ Dist(k,M) is called topo-
logically stable if, ∀p ∈ M, the germs of distributions of O at
p act transitively by the group of germs of diffeomorphisms
at p.

An obvious corollary is that such a class has to be Diff–
invariant. A way of rephrasing it is to say that anyD ∈ O has
a local canonical model.

Let us study the case k = 1 (line fields). The germs of
diffeomorphisms act locally transitively in Dist(1,M). Thus,
if there is a topologically stable class, it has to be O =
Dist(1,M). This is indeed the case.

Lemma 5 (Flow-box Theorem). Let l be a germ of a line field
at the origin of Rn. There exists a chart at the origin ϕ : U ⊂
Rn → V ⊂ Rn such that ϕ∗l = 〈∂x1〉.

The informal classification of topologically stable classes
of distributions goes back to Cartan and is summarised in the
following.

Theorem 6. ([43]) Any class of topologically stable distribu-
tions belongs to one of the following families:
1. n arbitrary, k = 1; O = Dist(1,M).
2. n odd, k = n−1; O � Dist(n−1,M). O even-contact class.
3. n even, k = n − 1; O � Dist(n − 1,M). O contact class.
4. n = 4, k = 2; O � Dist(2,M). O Engel class.

Sketch of the proof.
The space of k–dimensional distributions in Rn is defined as
the space of maps ϕ : Rn → Gr(k,Rn).

Fixing a distribution at the origin D(0) ∈ Gr(k,Rn), we
can take a chart of the Grassmannian around it ψ : UD0 →
Rk(n−k). Therefore, a germ of distribution is given by ψ ◦ ϕ :
Rn → Rk(n−k) (in other words, by k(n − k) local functions).

Now, a germ of diffeomorphism is given by a map F :
Rn → Rn, i.e. F = ( f1, · · · , fn) (n local functions). If the
diffeomorphisms act transitively on the distribution, we need
this “functional dimension” to be bigger than or equal to the
one of the space of distributions. We deduce that

n ≥ k(n − k).

Solving this equation in the natural numbers provides a
necessary condition for the existence of a topologically stable
class. Note that the solution pairs (k, n) correspond to the four
cases in the statement.

We need to find sufficient conditions. As has already been
stated, Lemma 5 concludes the result for k = 1, n arbitrary.
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For k = n− 1, the generic situation for a generic point p ∈
M is that [Dp,Dp] = TpM. Moreover, we have, generically,
that the morphism

φp := [·, ·] : Dp ×Dp → TpM/Dp (3)

is a bilinear skew-symmetric form of maximal rank.
For n odd, maximal rank implies that φp is a non-

degenerate bilinear skew-symmetric form. If we impose this
non-degeneracy condition at a given point, we say thatD is a
contact distribution at p. The contact condition is dense and
open. Moreover, it is a Diff–invariant condition. This implies
that any candidate class O has to contain the set of contact
distributions. The following lemma is well known.

Lemma 7 (Darboux). Let (M, ξ2n) be a contact manifold.
Then, for any p ∈ M,

∃ϕp : Up → R2n+1(z, x1, y1, · · · xn, yn)

such that (ϕp)∗ξ = ker(dz +
∑

xidyi).

This concludes the proof of the second case.
For n even, maximal rank implies that φp is a bilinear

skew-symmetric form with 1–dimensional kernelWp ⊂ Dp.
Under this maximal rank hypothesis we say that the distri-
bution is even-contact. Being open, dense and Diff–invariant
implies that any topologically stable class needs to contain
the even-contact distributions. To conclude, we use another
lemma.

Lemma 8 (Darboux). Let (M, ξ2n−1) be an even-contact man-
ifold. Then, for any p ∈ M,

∃ϕp : Up → R2n(z, x1, y1, · · · xn−1, yn−1, t)

such that (ϕp)∗ξ = ker(dz +
∑

xidyi).

We are left with the case (k = 2, n = 4). Again, a
generic distribution at a generic point is not integrable, i.e.
[Dp,Dp] = Ep, where Ep is a 3–dimensional vector space.
But now, we can further apply the Lie bracket and again,
generically, [Ep,Ep] = TpM. We say that if the two previous
conditions are met at p thenD is Engel at p.

Any sensible choice of topologically stable class needs to
contain the Engel distributions. They owe their name to F.
Engel, who proved the canonical local model theorem.

Lemma 9 ([18]). Let (M,D2) be a distribution that is Engel
everywhere. Then, for any p ∈ M,

∃ϕp : Up → R4(z, x, y, t)

such that (ϕp)∗D = ker(dz + xdy) ∩ ker(dx + tdy).

This concludes the proof. �

We have isolated the four classes of distributions that do
not possess local geometry. Therefore, any non–trivial phe-
nomenon they might display must be of a global nature. The
reader is surely familiar with the first case: dynamical systems
– the study of the global properties of line fields. The sec-
ond case relates to contact topology, a rapidly growing area
within differential topology. We will discuss some of its his-
tory. Finally, we will show what can be expected from global
even-contact geometry and global Engel geometry.

3 The h-principle

The next aim is to understand inclusions like the one given in
(2). There will be a set of objects whose nature is topologi-
cal (e.g., distributions) and, within it, a subset of objects for
which a certain geometric condition holds (e.g., foliations, as
in the example above). This is the mantra behind Gromov’s
h-principle.

Jet spaces
Let f : Rn → Rq be a smooth map. The r–jet of f at v ∈ Rn

is Jr
f (v) = (v, f (v), f (1)(v), . . . , f (r)(v)) ∈ Rn+N , where N =

q (n+r)!
n!r! .

The r-jet space of maps from Rn to Rq is defined to be
Rn × RN .

Fix a locally trivial smooth fibration X → V with
dim(V) = n and dim(X) = n + q. For a given section
s : V → X, fix a fibration chart at (v, xv) ∈ X, i.e. a couple of
neighbourhoods Ux of xv and Uv of v and diffeomorphisms
ϕx : Ux → Rn+q, ϕv : Uv → Rn, making the following dia-
gram commute:

X ⊃ Ux → Rn+q

↓ ↓
V ⊃ Uv → Rn.

We say that s, σ : V → X are r-tangent at (v, xv) if the r-jets
associated to (ϕx)∗s and (ϕx)∗σ at (ϕv(v), ϕx(xv)) are the same.
The relation is well-defined independently of the choice of
charts. We define X(r) as the set of r-tangency classes. There
is a natural chain of projections:

X(r) ��

��

X(r−1) ��

��

· · · �� X(0) = X

��
V

Given a section σ : V → X, we can build a section jrσ : V →
X(r) that is called the associated r-jet. A section F : V → X(r)

is called holonomous if ∃ f : V → X such that jr f = F.

Classical h-principle
A subset R ⊂ X(r) is called a partial differential relation. De-
note by Sec(R) the space of sections of the fibration X(r) → V
such that s(v) ∈ R, ∀v ∈ V . Denote

Hol(R) = {s ∈ Sec(R) such that s is holonomous} .
Examples:
1. V arbitrary, X = V × W. A section is just a pair (id, f ) :

V → V × W, where f is a differentiable map. Rimm ⊂
X(1) is defined as the set (v,w, A) ∈ X(1), where A ∈
End(TvV, TwW) has rank n. A holonomous section j1σ :
V → Rimm ⊂ X(1) is an immersion andHol(R) is the space
of immersions.

2. V arbitrary, X → V the fibration with fiber Xv = Gr(n −
1, TvV) at v ∈ V . A section of X is nothing but an
(n−1)-dimensional distribution. Being contact (resp. even-
contact) is a relation Rcont ⊂ X(1) (resp. Reven−ct) and a
contact (resp. even-contact) distribution is an element of
Hol(Rcont) (resp.Hol(Reven−ct)).

3. V a 4-dimensional manifold, X → V the fibration with
fiber Xv = Gr(2, TvV). A section of X is a 2-distribution.



Feature

EMS Newsletter March 2016 21

The Engel condition is a relation REng ⊂ X(2) and an Engel
distribution is an element ofHol(REng).

A fibration X → V is said to be natural if there is a lift of
the group Diff(V) to X. A relation R is Diff(V)-invariant if
it is invariant under the action of this lift. The three previous
examples are both natural and Diff(V)-invariant.

Theorem 10 (Holonomous Lemma [30, 17]). If X → V is
natural, V is open and R ⊂ X(r) is open and Diff(V)-invariant
then the inclusion

Hol(R)→ S ec(R)

is a weak homotopy equivalence.

In other words, under the hypothesis, topology controls
geometry.

Applications
Immersion theory
If n ≤ q, Rimm satisfies the holonomous lemma. This says
that the topology of the space of immersions between two
differentiable manifolds (the source being open) can be de-
rived from the space of formal immersions and, therefore, it
is an obstruction theory problem. In particular, one immedi-
ately recovers Smale’s eversion of the sphere theorem.

Contact geometry
We did not explicitly describe the relation Rcont. It suffices to
say that if (v, ξv, Av) ∈ Rcont then the 1-jet component equips
ξv with a bilinear skew-symmetric non-degenerate form1 (a
symplectic form). So any formal solution induces a “sym-
plectic distribution” by (3). From a topological point of view,
since Sp(2n) retracts to U(n), this is completely equivalent to
the distribution being complex.

Therefore, a more elegant way of stating the result is to
say that the natural inclusion

Cont
(
M2n+1)→ DistC

(
2n,M2n+1) (4)

of the space of contact distributions into the space of complex
distributions is a weak homotopy equivalence as long as M
is an open manifold. A complex distribution will be called a
formal contact structure and their classification is fully under-
stood in terms of obstruction theory.

Even-contact geometry
A similar discussion in the even-contact case leads to the fol-
lowing definition. A formal even-contact structure in M2n is a
flag of distributions W1 ⊂ ξ2n−1 and a fixed complex struc-
ture in ξ/W. There is a natural inclusion map

ECont(M)→ F ECont(M) (5)

from the space of even-contact structures into the space of
formal even-contact structures and Theorem 10 implies that
this is a weak homotopy equivalence whenever M is open.

Engel geometry
Fix an Engel distributionD2 ⊂ T M4. Recall that [D,D] = E3

is a rank 3 vector bundle and so we have an isomorphism of

1 Being precise up to a positive scalar multiple, it therefore defines a con-
formal class.

line bundles

[·, ·] :
2∧
D → E/D. (6)

The second non-integrability condition states that [E,E] =
T M and thus it induces a bilinear skew-symmetric morphism

[·, ·] : E × E → T M/E.
Recall that its kernel is a line bundleW and so we obtain a
second isomorphism of line bundles

[·, ·] :
2∧

(E/W)→ T M/E. (7)

Moreover, a linear algebra computation shows thatW ⊂ D.
As in the contact and even-contact cases, REng does not

intersect all the connected components of the space of sec-
tions X(2) → M4, only a few components are touched by
REng and their elements are called formal Engel structures.
More explicitly, a formal Engel structure is a complete flag
W1 ⊂ D2 ⊂ E3 ⊂ T M4 together with a fixed pair of isomor-
phisms as in (6) and (7). Again, we have the natural inclusion

Eng(M4)→ F Eng(M4) (8)

of the space of Engel structures into the space of formal En-
gel structures. Theorem 10 implies that the inclusion is a
weak homotopy equivalence whenever M is open. Recall that
the elements in Eng(M) are given by a geometric condition,
whereas the ones in F Eng can be fully understood in terms
of algebraic topology.

Closed manifolds
The previous discussion shows that the study of maximally
non-integrable distributions is not very exciting when the
manifold is open. Still, even though Theorem 10 does not
apply to closed manifolds, another method of proof for h-
principles called convex integration (also introduced by Gro-
mov) does. It goes back to methods applied in PDEs and anal-
ysis.

Convex integration deals with a class of first order partial
differential relations called ample. Gromov’s work shows that
the h-principle holds for ample relations in closed manifolds
and, unfortunately for even contact geometry, Reven is one of
them. Therefore, we have the following theorem.

Theorem 11 ([32]). For any even dimensional closed mani-
fold, the inclusion (5) is a weak homotopy equivalence.

Thus, there is no global even-contact geometry, since all
meaningful questions about even-contact structures reduce to
studying their formal counterparts.

Fortunately for us, contact and Engel structures are not
defined by an ample partial differential relation. In fact, the
last 30 years of contact geometry have been a tour de force
to show that the h-principle simply breaks down for those
distributions. The beauty of the theory lies in the interplay
between the failure of the h-principle (rigidity in contact ge-
ometry) and the testing of the limits of this failure (flexibility
in contact geometry). This will be explained in Section 4.

Engel structures are still quite mysterious. They will be
discussed in Section 5.
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4 Flexibility in contact geometry

Gromov proved in the late 1960s that the map (4) is a weak
homotopy equivalence whenever the ambient manifold is
open. For many years, the closed case was studied mainly
in three dimensions. In the 1970s, the existence of a contact
structure on any closed 3-manifold [34] was proven followed
by the surjectivity of the map at π0 level [31]. The birth of
modern contact geometry can be considered to be the paper
in which Bennequin proves that the map (4) fails to be injec-
tive in π0 for some closed 3-manifolds [4].

The introduction of pseudo-holomorphic curves by Gro-
mov [29] allowed for a deeper understanding of the failure of
the h-principle in contact geometry, since they form the basis
for many of the constructions of global invariants for contact
distributions [16]. Pseudo-holomorphic curves have brought
us examples of the lack of injectivity of the homotopy maps
induced by (4): one particular instance of this is the fact that
some formal classes admit infinitely many contact represen-
tatives [42]. Furthermore, [28] and [7] give examples of man-
ifolds in which (4) is not injective at π1 level.

However, some flexibility remains. In dimension 3, Eliash-
berg [14] proved that the map (4) induces surjections in ho-
motopy. In fact, he proved much more: he was able to define
a special subclass of contact distributions that he called over-
twisted, such that the inclusion

Contot(M3) ↪→ Cont(M3)→ Dist(2,M3) (9)

induces a weak homotopy equivalence. The overtwisted con-
dition was given by the existence of a particular local model of
contact distribution in a ball: the overtwisted disc. The over-
twisted class became a test for exotic behaviours in contact
structures. Remarkably enough, all the classical constructions
of contact distributions arising from physics (e.g., the space of
contact elements over a differentiable manifold [2], the con-
tact connection associated to a prequantum bundle [5] and a
regular level of a plurisubharmonic function in a Stein do-
main [15]) are not overtwisted. The main reason is that over-
twisted contact manifolds cannot be the boundary of a sym-
plectic manifold.

Definition 12. A contact manifold (M, ξ) is said to be fillable
if there exists a symplectic manifold (W, ω) satisfying:
1. ∂W = M.
2. There is a vector field X in a collar around M, positively

transverse to M, such that the 1-form

iXω = λ

satisfies ker λ|M = ξ and ω = dλ.

A direct consequence of [29] is the following proposition.

Proposition 13. Overtwisted contact manifolds are not fill-
able.

The classification of tight (i.e., non-overtwisted) contact
3-manifolds became a hot topic in the 1990s. This has pro-
duced a rich literature (see [25, 26, 12, 13] and the references
within).

Higher dimensional contact geometry
In the last 25 years, there have been some attempts to gen-
eralise the overtwisted class to higher dimensions. One task

was to study the map (4) in the 5 dimensional case. There is
a sequence of articles that solve this question: simply con-
nected 5-folds [21], with some specific finite fundamental
group [24], etc. The most advanced result in this prehistory
is the following theorem.

Theorem 14 ([10]). For any 5-fold, the map (4) induces a
surjection at π0 level.

Another goal of this prehistory was the attempt to gener-
alise the notion of overtwisted. K. Niederkrüger introduced a
definition built over the fillability property. Using Proposition
13 as the property to be generalised, he introduced a class of
contact structures showing the following.

Proposition 15 ([36]). PS-overtwisted contact manifolds are
not fillable.

Examples of such structures were immediately constructed.

Theorem 16 (see [40, 38, 19]). For any contact manifold
(M, ξ), there exists a PS-overtwisted contact structure ξ̃ on
M representing the same formal class as ξ. (M, ξ̃) is hence
non-fillable.

More attempts of capturing the notion of overtwisted in
higher dimension were made, in particular through the notion
of adapted open book [27] and by measuring the size of the
normal neighbourhoods of overtwisted contact submanifolds
[37]. However, none of those exotic classes were shown to
satisfy an h-principle.

Building upon flexibility phenomena detected for higher
dimensional Legendrian embeddings, Borman, Eliashberg
and Murphy have found the right notion of high dimensional
overtwisted contact structure [6]. Again, it is done by impos-
ing a particular contact distribution in a ball of the manifold:
the overtwisted disc model. They prove that the inclusion

Contot
(
M2m+1) ↪→ Cont

(
M2m+1)→ DistC

(
2m,M2m+1)

(10)
induces a weak homotopy equivalence. Moreover, most of the
prehistoric notions of overtwistedness (PS-overtwisted, open
book based definition and size of neighbourhoods) has been
shown to be equivalent [9]. This links the prehistory and the
future of the area in a very satisfying way.

Now, the interplay that occurred between the flexible side
and the rigid side of contact geometry in dimension 3 has be-
gun to be replicated in higher dimension because, finally, we
know what a flexible contact structure is.

5 Engel geometry

We are left with the most intriguing class. We have explained
that even-contact structures are boring and contact structures
are much deeper and very much explored. However, Engel
structures have remained a mystery till very recently. Let us
summarise what is known.

There is a classical construction of Engel distributions due
to Cartan: the prolongation of a contact structure. For many
years, this was the only known construction of Engel distribu-
tions for a reasonably ample class of closed 4-manifolds. Fix
a contact 3-manifold (N3, ξ). Construct the circle fiber bun-
dle M = P(ξ)

π→ N. Define the prolongation D(ξ) of ξ as
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follows: a vector v ∈ TpM belongs to D(ξ)p if and only if
dπp(v) ∈ 〈v〉 ⊂ Tπ(p)N. A simple computation shows that

E = [D(ξ),D(ξ)
]
= π∗ξ,

where π∗ξ is a rank 3-bundle, the inverse image of ξ, defined
as

π∗ξ(p) =
{
v ∈ TpM : π∗v ∈ ξπ(p)

}
.

The contactness of ξ immediately implies that [E,E] = T M
and so D(ξ) is an Engel distribution. Observe that W =

ker(dπ). This construction was quite well understood and was
an early example of developing Engel geometry [35].

The next existence result was largely unnoticed: H. Geiges
was able to produce an Engel structure in a mapping torus of a
3-manifold [22]. It was the first modern construction that im-
plicitly related the geometry of families of convex curves in
the 2-sphere with the study of Engel structures (see Lemma
26 below). We say modern because there was another con-
struction, going back to E. Cartan, that had been forgotten
(see Corollary 28 below).

Still, the topological properties of the map (8) remained
unknown.

Vogel’s result
For a simpler description, let us assume that our formal En-
gel structure over the 4-manifold, that is, the flag, is ori-
entable and oriented. Then, after a choice of metric, it in-
duces a global orthonormal framing and we deduce that the
4-manifold is parallelisable. Then, the non-emptiness of the
space FEng(M4) is equivalent to the parallelisability of M.
Now, the meaning of the following result is clear.

Theorem 17 ([44]). Any parallelisable 4-manifold admits an
Engel structure.

Stated in the language of the map (8), the result just says
that whenever there is a formal Engel structure, there is an
Engel structure. However, there is no control on the formal
class of the produced Engel structure.

Vogel’s proof is based on the notion of Engel cobordism.
Let (M,D) be an Engel structure and (W ⊂ D ⊂ E ⊂ T M) its
associated flag. Assume that H is a 3-dimensional embedded
submanifold of M such thatW is transverse to it. Then, the
2-distribution T H

⋂E ⊂ T H is contact over H.

Definition 18. A 4-dimensional manifold M is an Engel
cobordism if it admits an Engel structure D such that W is
transverse to the boundary of M.

An Engel cobordism has a canonical contact boundary.
Vogel starts by using D. Asimov’s theorem [3] on the ex-

istence of a round handle decomposition for manifolds with
Euler characteristic zero. Using the extra assumption on par-
allelisability, the round handles are formally Engel with W
transverse to their boundaries. Vogel then defines model En-
gel structures in each round handle. Finally, he is left with the
task of gluing the contact boundaries. For this, he uses many
of the known flexibility properties for contact structures in di-
mension 3.

Existence h-principle
The first classification result for Engel structures is the fol-
lowing.

Theorem 19 ([11]). The map (8) induces surjections in ho-
motopy groups π j for all j ≥ 0.

This, in particular, proves that given a full flag in the 4-
manifold, there is a deformation through full flags such that
the final flag is the flag associated to an Engel structure. The
argument does not extend to prove injectivity. In fact, an over-
twisted class might exist. The discovery of such a class would
officially begin Engel topology as a sensible area of differ-
ential topology. On the other hand, if injectivity holds then
the theory will be completed. I do not dare state a conjecture
about what will be the answer.

Let us briefly explain the state of the art for a related prob-
lem in which the picture is somewhat clearer. The inspira-
tion comes from contact geometry: there is a well developed
branch that classifies n-dimensional embedded submanifolds
tangent to a fixed rank 2n contact distribution. They are called
Legendrian knots. As with contact distributions, their study
can be formulated in terms of an h-principle. Again, they do
not quite satisfy it. But there is a sub-class of them that does:
the loose Legendrian knots [33]. There is a deep relationship
between Legendrian knot theory and contact geometry. What
is the equivalent notion in Engel geometry?

Definition 20. Fix an Engel distribution (M,D). An Engel
knot2 is an embedding γ : S1 → M satisfying γ′(t) ∈ Dγ(t).

Realise that the non-integrability of the Engel condition
allows us to C0-approximate any smooth knot by an Engel one
and therefore this class of objects is non–trivial. Moreover, we
have an invariant by deformation. In order to define it, recall
that the bundle D is canonically trivialised by W (oriented
case).

Definition 21. The rotation number r(γ) associated to an En-
gel knot γ is the degree of the map

r(γ) : S1 → S1 ⊂ R2 � γ∗D,
t → γ′(t)
||γ′(t)|| .

Definition 22. A formal Engel knot is a pair of maps γ :
S1 → M and Fs : S1× [0, 1]→ Tγ(t)M such that F0(t) = γ′(t),
F1(t) ∈ Dγ(t) and Fs(t) � 0 for all (t,s).

The map F1 is called the formal derivative of γ and we
are just asking the formal derivative to be tangent to the Engel
distribution in the spirit of the h-principle. There is an anal-
ogous definition of rotation invariant for formal Engel knots.
As usual, we have a natural inclusion

ιK : K(M,D)→ FK(M,D) (11)

from the space of Engel knots into the space of formal Engel
knots. Realise that the connected components of the space of
formal knots are completely characterised by the class of γ as
an element of π1(M) and the rotation number r(F1).

Theorem 23 ([1, 23]). The homotopy classes of Engel knots
in (R4,Dstd) are determined by the rotation number.

2 They are usually called in the literature horizontal knots but I do not par-
ticularly like the name.
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In other words, the map (11) is an isomorphism at π0-level
for standard R4. Two remarks are in order:
1. This sharply contrasts with the theory of Legendran knots

in (R2m+1, ξstd), where the injective h-principle strongly
fails.

2. The proof does not completely adapt to the case of a gen-
eral Engel manifold. The problem has to do with the esti-
mate of the size of the Engel charts. My intuition is that it
should be true but the proof needs to be detailed.

Out of Geiges’ proof, one can easily guess the following con-
jecture.

Conjecture 24. There is a 1-parametric family of Engel
knots on R4 standard, γθ, θ ∈ S1, such that it defines a non–
trivial element of π1(K(R4,Dstd)) and [γθ] ∈ ker ιK .

This would provide the first example of rigidity in Engel
topology.

6 Convex curves and Engel geometry

Let us explain the key geometric idea behind Theorem 19.
Instead of sketching its proof, we will prove a related result
that showcases the mantra behind the whole theory.

Theorem 25 ([39]). Let ξ0 and ξ1 be two co–oriented contact
distributions representing the same formal contact class on
M3. Then, its Cartan extensions (X = P(ξ0),D0) and (X =
P(ξ1),D1) are in the same connected component of the space
of Engel structures on X.

We are just showing that the lack of injectivity of the map
(4) partially disappears when we lift it to Cartan extensions.
Realise that this is still far away from proving injectivity of
the map (8), since Cartan extensions are a very special type
of Engel structures and, even in the manifold X, Theorem 19
provides Engel structures very different from a Cartan exten-
sion.

We want to understand an Engel distributionD in a small
4-ball. Choose coordinates (p, t) ∈ D3 × (0, 1) such that
∂t ∈ D; this can be done without loss of generality thanks
to Lemma 5. Thus, the 2–distribution D is 〈∂t, X〉 for some
vector field X. The behaviour of X determines whether D is
Engel.

Without loss of generality, the vector field X can be cho-
sen to lie in S2 × {t} ⊂ D3 × {t}. The first non-integrability
condition reads asD not being involutive, i.e.

[∂t, X] =
∂X
∂t
= Ẋ � D.

Then, E = 〈∂t, X, Ẋ〉. Geometrically, the condition says that
for each fixed p0 ∈ D3 the curve X(p0, t) ∈ S2 is immersed.

The second non-integrability condition reads as [E,E] =
T M. There are three vectors generating E and we may choose
any pair of them to try to escape E. The possible choices are
1. [∂t, X] = Ẋ ∈ E.
2. [∂t, Ẋ] = Ẍ.
3. [X, Ẋ].
Thus, for the second non-integrability condition to hold, ei-
ther the curve X is convex at the given time t (choice 2) or the
span 〈X, Ẋ〉, for t fixed, is a contact distribution in a neigh-
bourhood of p (choice 3) (See Figure 1). We summarise with

Sp
2

ξ

X

X

Figure 1. A curve X(p0, t) generating an Engel structure

the following lemma.

Lemma 26. A sufficient condition for a 2-distribution D =
〈∂t, X(p, t)〉 in D3 × [0, 1](p, t) to be Engel at (p0, t0) is that
X(p0, t) is an immersed curve at t0 and either X(p0, t) is con-
vex at t0 or the 2-plane 〈X, Ẋ〉 is contact around p0 for t0 fixed.

Corollary 27. The prolongation of a contact structure is En-
gel.

Proof. Fix ∂t ∈ ker π. Then, the curve X(p0, t) follows the
equator defined by the intersection of the contact plane ξp and
S2

p ⊂ TpM. The second hypothesis of Lemma 26 applies ev-
erywhere. �

Fix a Lorentzian (1, 2)-metric h in a 3-fold N. Denote
its light cone by C → N. Construct the circle fiber bundle
M = P(C)

π→ N. Define the extension D(h) of h on M as
follows: a vector v ∈ TpM belongs to D(h)p if and only
if π∗v ∈ v ⊂ Tπ(p)N. This is called the prolongation of a
Lorentzian manifold (its definition goes back to E. Cartan).

Corollary 28. The prolongation of a Lorentzian structure is
Engel.

Proof. Fix ∂t ∈ ker π. Then, the curve X(p0, t) follows the
non–maximal circle defined by the intersection of the light
cone and S2

p0
⊂ Tp0 M. The curve is everywhere convex and so

the first hypothesis of Lemma 26 applies (see Figure 3). �
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2

ξ

L1
L2

X

X

Figure 2. A contact prolongation
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Sp
2

P1

P2

X

X N

X

Figure 3. A Lorentzian prolongation
.

Proof of Theorem 25.
Since ξ0 and ξ1 are in the same formal class, there is a fam-
ily of co–oriented 2-planes ξt connecting them. Fix an aux-
iliary Riemannian metric g. Construct a bi–parametric fam-
ily of Lorentzian metrics ht,s, (t, s) ∈ [0, 1] × (0, 1]. We de-
clare ht,s(v1, v2) = s · g(v1, v2) for all v1, v2 ∈ ξt. Define Rt

to be the unitary, positively oriented (with respect to the co–
orientation) vector field orthogonal to ξt with respect to g. De-
fine ht,s(Rt,Rt) = −1 and ht,s(Rt, v) = 0 for all v ∈ ξt. Check
that ht,s degenerates for s = 0 and its light cone converges to
ξt. We have that the family of Lorentzian prolongations

Du =


D(h0,3u) u ∈ (0, 1/3],
D(h3u−1,1) u ∈ [1/3, 2/3],
D(h1,3−3u) u ∈ [2/3, 1),

connects D(ξ0) and D(ξ1). Figure 4 pictorially presents the
construction. �

Sp
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L0
i L0

Sp
2

ξ1

L1

i L1

Sp
2

L0

iL0

N

1. Deform maximal circles into non maximal ones

Sp
2

L1

iL1

N

2. Deform through Lorentzian prolongations

3. Deform non maximal circles into maximal ones

Figure 4. The deformation fromD(ξ0) toD(ξ1)
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Geometry of Polynomial
Ordinary Differential Equations
Sergei Yakovenko (Weizmann Institute of Science, Rehovot, Israel)

Algebraic varieties defined by polynomial equations over real
or complex numbers admit explicit upper bounds for their
topological complexity (e.g. Betti numbers). These bounds de-
pend on the dimension and the degree of the equations. In
this survey, we identify a few cases where similar bounds can
be established if the polynomials are replaced by solutions of
differential equations (ordinary or Pfaffian) with polynomial
right sides.

1 Introduction and motivation: Hilbert’s 16th
problem

In 1900, David Hilbert presented his famous list of problems
(parts of them very concrete, other parts rather loosely formu-
lated), which played a prominent role in the development of
mathematics in the 20th century. Almost all problems from
this list have been solved in one way or another, with only a

couple of die hards left open, one of them the Riemann hy-
pothesis.

The problem listed as number 16 consisted of two parts.
The first part was the question about the number and relative
position of real algebraic ovals, i.e. compact connected com-
ponents of the set defined by the equation {H(x, y) = 0} ⊂ R2,
H ∈ R[x, y]. The second part asked “the same” question about
limit cycles, i.e. isolated closed compact solutions of the ordi-
nary differential equation P(x, y) dx + Q(x, y) dy = 0 (in Pfaf-
fian form) defined by two real polynomials P,Q ∈ R[x, y].

The algebraic part of the problem had already seen sub-
stantial progress by the time it was formulated. A. Harnack
obtained a sharp bound for the maximal possible number of
algebraic ovals; the question remained about their mutual po-
sition and the way these ovals can be nested into each other.
In the specific case of sextics (curves of degree 6), two con-
figurations, one constructed by Harnack, the other by Hilbert
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Ordinary Differential Equations
Sergei Yakovenko (Weizmann Institute of Science, Rehovot, Israel)
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himself, were discovered and Hilbert conjectured that there
were no more possibilities. It took almost 70 years until a third
configuration was found by D. Gudkov, who showed that this
new list was indeed exhaustive. Since then, the emphasis has
shifted to the general study of the interplay between real al-
gebraic geometry and its proper complexification. A paper by
O. Viro [21] describes the spectacular achievements of this
programme.

All the way through, the progress with the transcendental
part of the question has been formally rather unimpressive.
The only general result is the finiteness theorem due (indepen-
dently) to Yu. Ilyashenko [12] and J. Ecalle [7], which asserts
that any polynomial differential equation has at most finitely
many limit cycles. It is not even known whether this finite
number is uniformly bounded over, say, differential equations
of degree 2 (equations of degree 1 cannot have limit cycles
at all). The historical survey [11] paints a dramatic story of
discoveries and overturns in this area.

One can speculate about general reasons why the two
parts differ so strikingly. One clear distinction is that the tran-
scendental part lacks appropriate complexification. While the
notion of a planar polynomial differential equation can be nat-
urally complexified to that of a singular holomorphic foliation
on CP2, the natural complex analogues of limit cycles gener-
ically coexist in infinite numbers.

Arguing more broadly, one could question the mere possi-
bility of generalising the counting problems, which is so nat-
ural for algebraic objects (real or complex) and their charac-
teristics, for similarly looking transcendental objects defined
by differential equations. In a nutshell, tallying the roots of a
polynomial is a meaningful problem while counting the roots

(a)

(b)

(b)

Figure 1. Sine near (a) generic and (b) inflection points

of the sine, a transcendental solution of a second order differ-
ential equation, is not.

The goal of this text is to describe several results show-
ing that counting problems sometimes admit finite and ex-
plicit solutions, if the problem is considered locally. In other
words, objects defined by polynomial differential equations
locally behave as if they are algebraic (compare with Exam-
ple 6 below) and their “geometric complexity” can be explic-
itly estimated in terms of the dimension and the degree of the
equations.

By the geometric complexity of (singular) analytic vari-
eties, one can understand various numeric characteristics (e.g.
Betti numbers) but most of these characteristics can be es-
timated from above by the number of isolated intersection
points of certain auxiliary varieties in a standard way, e.g.
using Morse theory (see the foundational work in [15]). To
simplify our task, in the text below, we will focus exclusively
on the isolated intersections between invariant subvarieties of
polynomial differential equations (e.g. the integral curves of
polynomial vector fields) and algebraic subvarieties in the am-
bient space (most often affine subspaces of complimentary
dimension). We will show that sometimes an explicit upper
bound for the number of such intersections is possible.

2 Oscillation of linear equations and
trajectories of polynomial vector fields

The sine as a paradigm
The simplest manifestation of the feature above is the func-
tion y = sin x on the real line. Having infinitely many real iso-
lated roots, it is obviously non-algebraic. Moreover, adding
an extra parameter λ � 0, we may squeeze any number of
real roots of the function sin(λx) on any finite open interval
(−r, r). However, for any finite λ and any point a ∈ R, the
graph of sine restricted to a sufficiently small neighbourhood
of a is indistinguishable from the graph of a polynomial of
degree � 3. More precisely, there exists r > 0 (depending
on a, λ) such that the equation sin(λx) = px + q, describing
the intersection of the graph y = sin x with an arbitrary line
y = px + q, has no more than 3 solutions on (a − r, a + r).
This result can be improved: if a is not an inflection point on
the graph then the number of intersections is no greater than
2. Both bounds follow from the Rolle theorem on interlacing
between roots of a function and its derivative and the fact that
the second derivative of sin x vanishes only at the inflection
points where the third derivative is nonzero.

Solutions of linear ordinary differential equations
This example is a manifestation of the general fact about so-
lutions of arbitrary homogeneous linear ordinary differential
equations with bounded coefficients. Consider the equation
on the real interval [0, r] with, say, real analytic coefficients,

a0(t) y(n) + a1(t) y(n−1) + · · · + an−1(t) y′ + an(t) y = 0. (1)

If the leading coefficient a0(t) is nonvanishing on [0, r], one
can divide by it and assume that a0 ≡ 1. This case is nonsin-
gular and zeros of nontrivial solutions to (1) are subject to the
de la Vallée Poussin theorem (see [22] for the short proof via
Rolle theorem).
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Theorem 1. If the length r of the interval is sufficiently small
compared to the magnitude of the coefficients then any solu-
tion of the nonsingular equation (1) may have no more than
n − 1 isolated roots on the interval.

Remark 2. The bound n − 1 is sharp: an equation of order n
always has a nontrivial solution with roots at arbitrarily placed
n − 1 points of any interval.

The smallness condition above is completely explicit:
n∑

i=1

Ai
ri

i! < 1, where Ai = sup
t∈[0,r]

|ai(t)|
|a0(t)| < +∞.

The assertion of Theorem 1 remains true if, instead of real
equations on the interval, we consider equations with com-
plex coefficients a1, . . . , an ∈ O(U) holomorphic in a convex
domain U ⊂ C of diameter � r.

Trajectories of polynomial vector fields
Given a smooth real analytic parametrised curve γ : (−r, r)→
Rn, γ(0) = 0, the question about its intersection with hy-
perplanes passing through the origin can be reduced to that
about roots of solutions of a linear nth order homogeneous
differential equation. Indeed, each such intersection corre-
sponds to zeros of a linear combination 〈c, γ(t)〉 = 0 for some
c = (c1, . . . , cn) ∈ Rn. All such combinations form a linear n-
dimensional subspace in the space of real analytic functions
on (−r, r). By the standard arguments using Wronskians, such
a subspace coincides with the space of solutions of a certain
linear differential equation with real analytic coefficients. Yet
this equation may well be singular, with the leading coeffi-
cient vanishing at some points.

One can, however, construct a nonsingular linear differ-
ential equation satisfied by an arbitrary affine function f =
〈c, x〉+ c0 restricted on γ, assuming that γ is a nonsingular in-
tegral trajectory of a polynomial vector field P in Rn. Suppose
that P is defined in Rn by a system of polynomial differential
equations

ẋi = Pi(x1, . . . , xn), i = 1, . . . , n, deg Pi � δ. (2)

Denote by fk ∈ R[x1, . . . , xn] the sequence of iterated Lie
derivatives,

fk+1 =

n∑
i=1

∂ fk
∂xi

Pi, k = 0, 1, 2 . . . , f0 = f , (3)

and the associated ascending chain of ideals in the ring of
polynomials R[x1, . . . , xn],

I0 ⊂ I1 ⊂ I2 ⊂ · · · , Ik = 〈 f0, . . . , fk〉 . (4)

Because of the Noetherianity of the ring, the chain must sta-
bilise at a certain moment N < +∞, meaning that the last Lie
derivative fN is a combination of the preceding derivatives
fN =

∑N−1
k=1 aN−k fk. Restricting this identity on the integral

curve γ, we obtain a linear differential equation of order N
with real analytic coefficients. This allows for the application
of Theorem 1. The following result was proved in [19]. Let
a ∈ Rn be a nonsingular point, P(a) � 0.

Theorem 3. Let a be a nonsingular point of the vector field
(2). Then, there exists r > 0 such that any integral curve γ of
(2) intersects any affine hyperplane Π =

{∑n
1 pixi = q

}
inside

the small ball Br = {|x − a| < r} by no more than N points:
#(γ ∩ Π ∩ Br) � N.

Here, N = N(n, δ) is an explicit bound, polynomial in
δ and growing no faster than δ2

O(n2 ln n)
(double exponentially)

as n → ∞. The radius r > 0 depends on the field (2) and
the choice of the point a and is also explicitly bounded from
below.

In other words, small pieces of integral curves of a poly-
nomial vector field of degree δ from the point of view of in-
tersection theory behave as algebraic curves defined by poly-
nomial equations of the same degree δ, yet in a much higher-
dimensional fictitious space Rν, ν = ν(n) � 2O(n2 ln n).

This result also holds (with the same estimates) for inte-
gral curves of polynomial vector fields in Cn.

Remark 4. It is important to note that the size r of the ball Br

in which the bound established in Theorem 3 holds is explicit.
In addition to the parameters n, d, it depends polynomially
on the norm |a| and the magnitude of the coefficients of the
polynomials Pi defining the field (2).

This is, very roughly, where the “genuine” counting of so-
lutions reaches its current frontier. For instance, the following
statement is only conjectural. Consider two polynomial com-
muting vector fields P,Q in Rn of degree δ, n � 4 and assume
that a point a ∈ Rn is nonsingular: (P ∧ Q)(a) � 0.

Conjecture 5. There exists r > 0 depending on P,Q, a
such that any intersection between any integral 2-dimensional
manifold Γ and any affine subspace Π of codimension 2 in-
side the ball Br = {|x− a| < r}, if isolated, consists of no more
than M points, #(Γ ∩ Π ∩ Br) � M, where M = M(n, d) is an
explicit bound, polynomial in δ.

3 Multiplicity estimates

Let f1, . . . , fn be n germs at the origin x = 0 of holomorphic
functions of n variables x = (x1, . . . , xn) and I = 〈 f1, . . . , fn〉
the ideal generated by them in the ring O(Cn, 0) of such func-
tions. One of the basic results of singularity theory is as fol-
lows: the ideal I has finite codimension

µ = µ f = dimCO(Cn, 0)/I < +∞ (5)

if and only if the intersection X0 =
⋂n

i=1{ fi = 0} is an isolated
point (at the origin) in Cn as a germ of an analytic variety.
This number µ is called the multiplicity of intersection (and
sometimes the Milnor number of the tuple fi). If µ f is finite,
the number of solutions of the system Xc = { fi(x) = ci, i =
1, . . . , n} ⊆ Cn is equal to µ (if counted with multiplicities) for
all sufficiently small values of c1, . . . , cn ∈ C (we abuse the
notation, identifying the germs fi with their representatives
defined in a small ball in Cn). However, when the multiplicity
is infinite, no conclusion on the number of points in Xc can be
made.

Example 6. The classical Bézout theorem implies that, for
polynomial germs fi ∈ C[x1, . . . , xn], the multiplicity of the
intersection, if finite, is less than or equal to dn, where d =
maxi degx fi. The bound is polynomial in d and exponential
in n.



Feature

EMS Newsletter March 2016 29

Isolated intersections
Instead of counting the number of intersections between a
subvariety defined by a differential equation and an affine sub-
space, one can attempt to estimate the maximal multiplicity
of the intersection, assuming that the latter is finite. This task
turns out to be much more amenable. For instance, the most
direct counterpart of Theorem 3, achieved by A. Gabrielov in
[9], improves1 the double exponential bound to a single expo-
nential.

Theorem 7. The multiplicity of the intersection between the
trajectory of a polynomial vector field (2) and an affine hyper-
plane Π at a nonsingular point a, if finite, is no greater than
23nd2n.

Noetherian functions
In fact, a much more general fact can be proved. Assume
that a tuple of germs of complex analytic functions F =

{ f1(x), . . . , fν(x)} in (Cn, 0) satisfies a system of polynomial
Pfaffian equations of the form

dzi =

n∑
j=1

Pi j(z, x) dx j, i = 1, . . . , ν, zi = fi(x). (6)

Here, Pi j ∈ C[z, x] are polynomials of degree � δ ∈ N. Then,
one can define the ring of F -Noetherian germs as the subring
C[x, f (x)] of functions in O(Cn, x) that are polynomials in x
and z = f (x). This ring is filtered by the degree d = degx,z.
The dimension ν = dim z and the degree δ = maxi, j deg Pi j

are parameters of the ring.
It turns out that the Noetherian germs behave similarly

to polynomials. The following result was achieved by A.
Gabrielov and A. Khovanskii [10]. It can be considered to be
an infinitesimal version of the Bézout theorem for Noetherian
functions (see Example 6).

Theorem 8. If q1, . . . , qn ∈ C[x, f ] are Noetherian germs,

qi = Qi
(
x, f (x)

)
, deg Qi � d,

then the multiplicity of the intersection is either infinite or
explicitly bounded,

µ = dimCO(Cn, 0)/ 〈q1, . . . , qn〉 � Cn,ν,δ d2(n+ν),

where Cn,ν,δ is some explicitly given expression, polynomial
in δ and exponential in n, ν.

Sharpening the bounds
The Gabrielov–Khovanskii bound is polynomial in d, δ and
single exponential in n, ν. A simple comparison with the Bé-
zout bound dn suggests that it has a right asymptotic be-
haviour. However, being a function of several arguments, it
allows a certain measure of trade-off.

For instance, for applications in transcendental number
theory, it is very important to study and sharpen asymptotics
of the bound of contact between a fixed trajectory of a poly-
nomial vector field (2) of degree δ in Cn and an arbitrary al-
gebraic hypersurface of degree d as a function of d with the
remaining parameters (n, δ) being less important. In [9], it is

1 In fact, both Theorems 7 and 8 have been proved with slightly better
estimates than stated but the precise expressions are much more involved
while being of the same growth rate.

Xε

X0

X´

Figure 2. Multiplicity of non-isolated intersections

shown that the multiplicity of an isolated intersection in this
case does not exceed

22n−1
n∑

i=1

[
d + (i − 1)(δ − 1)

]2n
. (7)

This bound, however, is insufficient for the purposes of prov-
ing transcendence results in analytic number theory (see
[18]): one needs a bound of the form C(n, δ) dn. Such a bound
was achieved very recently by G. Binyamini [3]: by refine-
ment of the Gabrielov–Khovanskii methods, he proved that
the multiplicity does not exceed 2n+1[d+ (n− 1)(δ− 1)]n, thus
closing the gap asymptotically as d → ∞. In fact, in [3], he
gives the answer in terms of the Newton polytope of the poly-
nomial that is to be restricted on the integral curve.

Nonisolated intersections
In the case of a nonisolated intersection, one can also find
interesting points to count. In the simplest case, the problem
is as follows.

Let X ⊂ (Cn, 0) be an analytic Noetherian variety (defined
by Noetherian functions of known complexity). Assume that
another Noetherian function f does not vanish identically on
X. Then, it may well happen that, for all sufficiently small
ε � 0, the intersection Xε = X ∩ { f = ε} is zero-dimensional,
that is, it consists of a finite number of isolated points that
converge to the origin as ε → 0. Geometrically, this means
that the closure of the difference X′ = X � X0 is a (singular)
curve whose intersection with the hypersurface { f = 0} ⊂
(Cn, 0) is isolated.

The question about the number of solutions of the system

x ∈ X, f (x) = ε, (8)

that converge to x = 0 as ε → 0 has been addressed in the
works of G. Binyamini and D. Novikov [1, 2].

Theorem 9. If f1, . . . , fn are Noetherian functions then the
number of confluent solutions of (8) can be explicitly bounded.
The bound is polynomial in d + δ and double exponential in
the dimension n + ν.

Clearly, this result implies an explicit upper bound for so-
lutions of any one-parametric system of equations fi(x, ε) =
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0, i = 1, . . . , n, provided that the functions fi depend on the
one-dimensional parameter ε in a Noetherian way.

The main difficulty of the proof consists of the estimate
of the intersection complexity of the curve X′ = X � X0. For
algebraic varieties, there exists a well developed technique of
decomposition into irreducible components that gives an ex-
plicit bound on the degree degC X′ and hence on the multiplic-
ity of the isolated intersection X′ ∩ { fn = 0}. For Noetherian
functions and the Noetherian varieties (null sets of the corre-
sponding functions), there is no similar technique, hence one
has to develop ad hoc tools.

4 Singular case

All previous results on multiplicity explicitly or implicitly as-
sume nonsingularity of the system of differential equations
defining the “transcendental variables”, and for good reason.

Example 10. Consider a planar linear vector field ẋ = ax+by,
ẋ = cx + dy, with the real matrix

(
a b
c d

)
having two non-real

eigenvalues. The integral curves of this field are spirals that
intersect any line passing through the origin infinitely many
times.

Of course, integral curves of this field are not analytic at
the origin.

Example 11. The planar vector field associated with the sys-
tem of equations ẋ = x, ẏ = py, p ∈ N (“the resonant node”),
apart from the coordinate axes x = 0 and y = 0, has a one-
parametric family of invariant curves of the form y = cxp.
These curves intersect the line y = 0 with multiplicity p,
which can be arbitrarily large, whereas the degree of all equa-
tions δ = d = 1 and the dimension ν = 2 stay constant (and
rather small).

In the other case, the need to address the singular case
is rather pressing. Indeed, consider the situation described
in Conjecture 5, where one is required to count intersections
between a common 2-dimensional integral surface S of two
commuting vector fields P,Q and an algebraic subvariety X
defined by polynomial equations { f = g = 0} in Rn or Cn.
One might hope to reduce the problem to the case of one
vector field and one hypersurface as follows. The vector field
R = uP + vQ, where u = Q f , v = −P f are polynomials (the
Lie derivatives of f along the fields P,Q), is tangent to all
level surfaces { f = const} and hence the intersection S ∩ X
coincides with the intersection of trajectories of the field R
with the hypersurface {g = 0}. Unfortunately, the polynomial
vector field R is usually singular (i.e. vanishes at some points),
which renders Theorem 3 inapplicable.

Multiplicity estimates (singular case)
It turns out that if γ is a smooth analytic separatrix (analytic
curve through the origin) of a polynomial vector field and it
is “sufficiently non-algebraic” then one can still estimate its
order of contact with an algebraic hypersurface of degree d
even when the vector field is singular.

Assume first that the curve γ is totally transcendental,
that is, does not belong to any proper algebraic subvariety of
(Cν, 0). Then, one should expect that a polynomial hypersur-
face of degree d will have the multiplicity of isolated intersec-

tion with γ at least cγ dν. Indeed, the monomials of degree � d
after restriction on γ are linearly independent (because of the
transcendence), hence there must exist a linear combination
with vanishing order at least dim P(ν, d) − 1, where P(ν, d)
is the linear C-space of polynomials in ν variables of degree
� d.

The corresponding upper bound for the multiplicity of
the isolated intersection between γ and a polynomial hyper-
surface was achieved by Yu. Nesterenko in [17] in exactly
the same exponential form. For that purpose, the condition of
transcendence imposed on γ should be reinforced: Nesterenko
introduced the so-called D-property in [16]. The curve γ is
said to satisfy the D-property with an exponent κ ∈ N if its or-
der of tangency with any algebraic invariant subvariety of the
vector field through the singular point is less than or equal to
κ. The D-exponent depends only on the curve and enters ex-
plicitly into the multiplicity bounds. For curves satisfying the
D-property, the multiplicity of the isolated intersection with
hypersurface of degree d can be at most c′γ dν (with a differ-
ent constant c′γ, double exponential in the dimension ν). G.
Binyamini improved these results in [4] by reducing this con-
stant to single-exponential size.

Fuchsian singularities
Let us return to the study of roots of solutions of linear dif-
ferential equations (see §2). This time, we assume that the
origin t = 0 is a singular point of equation (1), that is, one of
the ratios ai(t)/a0(t) has a pole at the origin.

The simplest examples show, in this case, that Theorem 1
no longer holds and solutions may have an infinite number
of isolated roots accumulating at the singular point. However,
under certain rather natural extra assumptions, one can still
guarantee existence of finite and explicit bounds.

The first assumption requires the singularity at the origin
to be relatively mild so that solutions of equation (1) grow at
most polynomially in |t|−1 as t → 0. This condition, called
regularity, is equivalent to the requirement that equation (1)
is Fuchsian. The latter condition means that it can be put in
the form

εny + b1(t) εn−1y + · · · + bn−1(t) εy + bn(t) y = 0, (9)
with real analytic coefficients b1, . . . , bn ∈ O(C, 0), written
with respect to the Euler derivation ε = t d

dt . In other words,
the equation is Fuchsian if it becomes nonsingular after ex-
pansion in the iterated Euler derivatives εky rather than the
usual derivatives y(k) =

( d
dt
)ky.

Another condition refers to the roots of the characteristic
equation

zn + β1zn−1 + · · · + βn−1z + βn = 0, βi = bi(0). (10)
If all the roots of equation (10) are real then one can produce
an explicit upper bound for the number of isolated roots of
any solution of (9) (see [20] for the real case and [5] for the
complex version).

Theorem 12. If all roots λ1, . . . , λn of equation (10) are real
then there exists r > 0 such that any solution of the Fuchsian
equation (9) has no more than (2n + 1)(2L + 1) isolated roots
on the interval (0, r), where L = maxi |λi|.

As in the nonsingular case, the size r of the interval is
explicit and depends on the magnitude of the coefficients
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Figure 3. Geometric Rolle theorem in Rn

B = maxi maxt∈[0,r] |bi(t)|. The claim remains valid for Fuch-
sian equations with complex analytic coefficients if the inter-
val (0, r) is replaced by a sector {0 < |z| < r, | arg t| < π}. Note,
in this case, that the bound on the number of roots (even very
close to the singularity) depends not only on the order of the
equation but also on the magnitude of its coefficients. This is
a new but unavoidable phenomenon.

5 Global bounds

Local complexity estimates under certain assumptions can be
aggregated into global bounds, provided the necessary local
conditions are satisfied “at infinity” (recall that polynomial
differential equations can be naturally extended onto projec-
tive spaces that are compact).

Example 13. The equation y′′ + y = 0 has a non-Fuchsian
singular point at infinity: written with respect to the variable
s = 1

t , it takes the form s4y′′ + 2s2y′ + y = 0 (the prime now
stands for d

ds ). Thus, Theorem 12 is not applicable and cannot
prevent the sine from having infinitely many isolated zeros
accumulating at the infinite point s = 0.

On the other hand, if a linear equation with rational co-
efficients has only Fuchsian singular points on the Riemann
sphere CP1 = C∪{∞} and all characteristic roots for all points
are real then the number of isolated roots of any solution is fi-
nite, and one may hope to obtain an explicit bound.

Pfaffian intersections
One approach to counting intersections globally was discov-
ered by A. Khovanskii by generalising the Descartes rule and
is known by the name Fewnomials theory [13]. It applies to
submanifolds in Rn, defined by systems of Pfaffian equations,
rather than to trajectories of vector fields.

The simplest example (actually, a version of the Rolle the-
orem) is as follows. Assume that Γ is an integral hypersur-
face of a polynomial Pfaffian 1-form ω =

∑n
i=1 Pi(x) dxi in

Rn, such that Rn � Γ consists of two connected components
(we say that Γ is a separating solution of the Pfaffian equation
ω = 0).

Consider a real algebraic curve γ ⊂ Rn, assuming for sim-
plicity that it is a smooth complete intersection (i.e. defined

by n − 1 polynomial equations Q1(x) = 0, . . . ,Qn−1(x) = 0).
This curve consists of several compact components (ovals)
and several non-compact components diffeomorphic to the
real line R1. Each component can be oriented, which means
that the points of its intersection with Γ are ordered (possibly
cyclically). Assume (again only for simplicity) that all inter-
sections are transversal, that is, the 1-form ω takes nonzero
value on the tangent vector γ̇(ai) to the curve at all intersec-
tion points ai ∈ Γ ∩ γ.

Then, the topological conditions imposed on Γ imply that
the signs ω(γ̇(ai)) are alternating along each component of
γ: the curve must enter and then leave the respective half-
spaces into which Γ separates Rn. Looking at the continuous
functionω(γ̇(a)) along each component, we conclude that, be-
tween any two consecutive intersections γ ∩ Γ, there must be
at least one point of contact where the value ω(γ̇) vanishes.
The vanishing condition is polynomial:

ω(γ̇(a)) = 0 ⇐⇒ (
dQ1 ∧ · · · ∧ dQn−1 ∧ ω)(a) = 0. (11)

By the Rolle theorem, this implies that the number of isolated
intersections #γ ∩ Γ does not exceed the number of solutions
of (11) plus the number of non-compact components of γ.
The first number does not exceed the product of degrees of
deg dQi and degω. To estimate the second number, note that
each non-compact component must twice intersect any suf-
ficiently big sphere

∑n
1 x2

i = R, R � 1, so the number is
at most 1

2 · 2
∏n−1

i=1 deg Qi. These estimates yield an explicit
Bézout-type bound for the number of intersections between
γ ∩ Γ. The simplifying assumptions can actually be replaced
by deformation-type arguments which admit generalisation
for the complex case [8].

Example 14. Consider the common integral surface Γ of two
commuting polynomial vector fields u, v of degree d in R3

(compare with Conjecture 5). This surface locally separates a
neighbourhood of a nonsingular point and can be defined by
the Pfaffian form ω = dV(u, v, ·), where dV is the Euclidean
volume 3-form. The 1-form ω is polynomial of degree � d2

and, by the Pfaffian elimination above, it can intersect any line
(of degree 1) in R3 by no more than d2 + 1 isolated points.

The above construction allows one to reduce the study of a
“mixed” system of n − 1 polynomial equations and one Pfaf-
fian equation to that of two systems of n polynomial equa-
tions. Under certain assumptions, it can be iterated.

Let U ⊆ Rn be a domain. An (ordered) tuple of real ana-
lytic in U functions P(U) = { f1, . . . , fν} is called a Pfaffian
chain if they satisfy a system of polynomial Pfaffian equations
(6) with an additional property: the polynomials Pi j(z, x) on
the right side do not depend on the variables zk for k > i:

dz1 =

n∑
j=1

P1 j(z1, x) dx j,

dz2 =

n∑
j=1

P2 j(z1, z2, x) dx j,

· · ·

dzν =
n∑

j=1

Pν j(z1, . . . , zν, x) dx j.

(12)

The triangular structure of the equations (12) allows one to
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apply Pfaffian elimination inductively as explained in [13] and
produce explicit bounds for the number of solutions for sys-
tems of equations of the form

Q1(x, f ) = 0, . . . ,Qn(x, f ) = 0, x ∈ U, f = ( f1, . . . , fν).

Unfortunately, the Fewnomials theory can only partially
be complexified, the main obstruction being the absence of a
suitable analogue of the Rolle theorem (see [8, 14]).

Fuchsian equations on RP1 and CP1

One context in which the problem of counting complex in-
tersections can be fully globalised is that of Fuchsian equa-
tions on CP1, i.e. linear equations with rational coefficients
and with only Fuchsian singular points (compare with §4).
Because of the homogeneity, any linear equation with ratio-
nal coefficients can be put in the form where the coefficients
are polynomial:

a0(t) y(n) + · · · + a1(t) y′ + an(t) y = 0,
a0, . . . , an ∈ C[t], gcd{a0, . . . , an} = 1.

(13)

The roots t1, . . . , tµ of the leading coefficient a0 and possibly
the point t = ∞ are singular for (13). The assumption that all
these points are Fuchsian imposes additional constraints on
the polynomials ai.

Theorem 12 implies (by compactness of the real projec-
tive line) that if equation (13) has real coefficients ai ∈ R[t]
and all its real singular points ti ∈ R have only real char-
acteristic roots then the number of isolated zeros of any real
solution of this equation on any real interval free from sin-
gularities is finite. To find an explicit bound for this number,
one has to identify parameters on which the answer might de-
pend. Apart from the order n of the equation and the degree
d of the coefficients, the answer must necessarily depend on
the “magnitude of the coefficients”, i.e. the numeric measure
of how large non-principal coefficients a1(t), . . . , an(t) ∈ C[t]
are compared to the principal one a0(t).

The string of polynomials {a0, a1, . . . , an} in (13) is de-
fined modulo a common scalar factor. To normalise it, let ‖ · ‖
be an l1-norm on the C-space of polynomials C[t] (the sum
of absolute values of all coefficients). Then, the expression
S = maxi=1,...,n

‖ai‖
‖a0‖ may be considered as the natural measure

of the “magnitude of the coefficients” of equation (13), (com-
pare with the parameters A = maxi=1,...,n Ai from Theorem 1
and B from Theorem 12). We call the value S the slope of the
differential equation (13). Clearly, any bound on the number
of isolated roots of solutions of (13), besides the order of the
equation and the degree of its coefficients maxi deg ai, must
depend on S , explicitly or implicitly.

It turns out that the order, degree and slope of the equa-
tion alone are insufficient to explicitly majorise the number of
roots of its solutions. The “hidden” parameter is the configu-
ration of the singularities. In [5], one can find a discussion of
what may happen with roots of solutions in a parametric fam-
ily of equations with confluent singularities: without knowing
a lower bound on the distance |ti − tk | between different sin-
gular points, one cannot achieve any bound on the number
of roots of solutions, even in the case where each singularity
by itself has a real spectrum and is hence covered by Theo-
rem 12. On the other hand, the collection of the discrete (n
and d = max deg ai) and continuous data (the slope S and

ρ = mini, j |ti − t j| > 0) are sufficient to produce an explicit
global upper bound for the number of real roots of solutions
of (13) (see [5]).

The above phenomenon does not exclude the possibility
that there are certain families of equations of the form (13)
that admit explicit upper bounds for the number of zeros, uni-
form over all configurations of singularities. It turns out that if
the family is isomonodromic in the complex domain2 then one
can obtain uniform bounds for the number of isolated complex
roots of solutions. Such families are most conveniently repre-
sented by systems of linear Pfaffian equations with rational
coefficients.

Remark 15. If instead of the real roots of solutions to (13)
we decide to count complex isolated roots then it is necessary
to address the ramification of solutions over the singular lo-
cus Σ ⊂ CP1. Indeed, after analytic continuation of a given
solution y = f1(t), one obtains another solution y = f2(t) and
so on; the total number of different branches obtained by an-
alytic continuation is in general infinite. Even in the “good”
case where each branch has only a limited number of roots in
a simply connected domain, all branches together in general
would have infinitely many such roots. Thus, the problem of
counting of roots should be restricted to all simply connected
subsets of CP1�Σ. Yet, if such a domain spirals around a sin-
gular point, the above phenomenon may still be possible. The
correct method is to consider only subdomains of the simplest
form, e.g. triangles (in the affine chart t). For a given linear
equation Ly = 0, as in (13) with the singular locus Σ(L), de-
note by N (L) the supremum (finite or not):

N (L) = sup
T⊂C�Σ

sup
f : L f=0

# {t ∈ T : f (t) = 0} ,

taken over all open triangles T ⊂ C free from singular points
(including those with one vertex at infinity) and all solutions
of the equation.

Integrable linear systems on CPm

Consider a matrix-valued rational 1-form Ω on the complex
projective m-space CPm: such a form is defined by n2 ratio-
nal 1-forms ωi j, i, j = 1, . . . , n. Denote by d the maximal de-
gree maxi, j degωi j. This form defines a vector Pfaffian equa-
tion dx = Ωx or an equivalent system dxi − ∑n

j=1 x jωi j = 0,
i = 1, . . . , n, of Pfaffian equations linear with respect to n de-
pendent variables x1, . . . , xn.

Denote by Σ the polar divisor of the form Ω (the union of
polar divisors of the entries ωi j). We consider only integrable
Pfaffian systems which admit holomorphic solutions in CPm�
Σ ramified over the polar divisor Σ. The condition dΩ = Ω ∧
Ω is necessary and sufficient for integrability. The system is
called regular if its solutions grow at most polynomially near
Σ (compare with §4).

For any oriented closed loop γ : [0, 1]→ CPm�Σ, γ(0) =
γ(1) = a, the result of analytic continuation along γ defines an
automorphism Mγ of the n-space of solutions of the Pfaffian

2 A parametric family of linear differential equations or their systems is
called isomonodromic if the result of analytic continuation of any fun-
damental system of its solutions along a loop avoiding singular points
locally does not depend on the parameters, in particular when singulari-
ties inside the loop collide.
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Figure 4. Singular Pfaffian system on CPm with singular locus Σ and its
restriction on a line �

system, as any solution x(t) is locally uniquely determined by
its value x(a) ∈ Cn. The correspondence γ �→ Mγ is called the
monodromy of the system; it is a linear representation of the
fundamental group π1(CPm � Σ, a).

Definition 16. A small loop around a point a ∈ Σ is the image
of a sufficiently small circle {|z| = r} by a map (holomorphic
curve) χ : (C, 0)→ (CPm, a) such that χ(z) � Σ for z � 0. This
loop is well defined as a free homotopy class. If a is a smooth
point on the polar divisor Σ then the small loop also does
not depend (again as a free homotopy class) on the choice of
χ. Consequently, the monodromy operator Mγ along a small
loop γ is well defined modulo conjugacy in GLn(C).

For any 1-dimensional line � ⊂ CPm, not entirely lying in
Σ and equipped with an affine chart t, the system dX = ΩX
can be restricted on � and reduced to a system of ordinary lin-
ear differential equations ẋ = A(t)x with some rational matrix
function A(t). If we consider a pencil of lines passing through
a fixed point in CPm, the corresponding restrictions can be
considered as a parametric family of linear systems, analyti-
cally depending on an (m − 1)-dimensional parameter. If the
initial system was integrable then the corresponding family
will be isomonodromic: the result of analytic continuation of
solutions along a path avoiding the singular locus is indepen-
dent of the parameter.

Solutions of this system are ramified over the locus Σ� =
Σ ∩ � and one can attempt to count zeros of arbitrary linear
combinations yc(t) =

∑
cixi(t) “globally” on � exactly as de-

scribed in Remark 15. Define the number N (Ω) as the supre-
mum of the number of isolated zeros of all linear combina-
tions in all open triangles:

N (Ω) = sup
T⊂CPm�Σ

sup
x : dx=Ωx

sup
c∈Cn

# {t ∈ T :
∑

cixi(t) = 0} .
(14)

We will specifically consider the linear systems of the
form dx = Ωx, defined over Q: this means that in some affine
chart (t1, . . . , tm) on CPm, each of the rational forms ωi j has

coefficients from the field Q(t1, . . . , tm). In other words, the
matrix 1-form Ω can be explicitly written using the variables
ti, their differentials and natural numbers. This allows one to
introduce the “magnitude-like” parameter of the linear sys-
tem: its size S (Ω), as the maximal natural number required
to write Ω down explicitly.

Quasialgebraic systems
The principal result can be formulated as follows: an inte-
grable regular Pfaffian system admits a uniform upper bound
on the number of roots of its solutions if the monodromy op-
erators along all small loops only have modulus one eigen-
values. For systems defined over Q, this bound is explicitly
double exponential. A more precise formulation follows (see
[6]).

Theorem 17. Consider an integrable Pfaffian n-dimensional
system dx = Ωx with rational coefficients of degree � d on
the projective space CPm. Assume that:
1. The system is regular, i.e. all its solutions grow at most

polynomially when approaching the singular locus Σ.
2. Each monodromy operator Mγ along any small loop γ has

its spectrum on the unit circle |λ| = 1.
Then, the supremum defined in (14) is finite: N (Ω) < ∞. If,
in addition,
3. Ω is defined over Q and has known size S (Ω) � s
then the supremum (14) is explicitly bounded:

N (Ω) � s2Poly(n,m,d)
, (15)

where Poly(n,m, d) is some explicit polynomial of degree �
20 in the parameters n,m, d.

Applications
In practice, Theorem 17 is applied in the cases where a tuple
of solutions is given initially and the Pfaffian system appears
only a posteriori as a differential identity satisfied by these so-
lutions (see [6, Appendix A]). The principal application con-
cerns periods or (complete) abelian integrals. These are inte-
grals of rational 1-forms over cycles on algebraic curves, and
vanishing of periods is a condition describing appearance of
limit cycles in the perturbation of planar integrable polyno-
mial vector fields.

A general planar algebraic curve Ct of degree � k + 1 on
the (X, Y)-plane is defined by the equation

∑k+1
i+ j=0 ti jXiY j = 0.

The nonzero string of coefficients {ti j}k+1
i+ j=0 defined modulo a

common factor parametrises the space of all such curves by
points of the projective space CPm, m = 1

2 (l+1)(k+2). Gener-
ically, the monomial forms αi j = XiY j dX, 0 � i, j � k, gen-
erate the cohomology of Ct and the tuple of periods xi j(t) =∮

Ct
αi j satisfies a system of Pfaffian equations of dimension

n = k2, known as the Picard–Fuchs system or, more geomet-
rically, the Gauss–Manin connection. The polar locus Σ of
this system consists of several components but one can easily
see that integrals grow at most polynomially as the parame-
ters t approach Σ. The monodromy condition follows from the
Picard–Lefschetz formulas and the Kashiwara theorem. Thus,
the only nontrivial things left to do are to verify the fact that
the Picard–Fuchs system is defined over Q and then to esti-
mate its size. Application of Theorem 17 allows one to prove
the following result.
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Corollary 18. The integral of a polynomial 1-form of degree
� k over ovals (compact closed components of level curves)
of a polynomial of degree k + 1 may vanish no more than
22P(k)

times unless it vanishes identically. Here, P is an explicit
polynomial of degree no greater than 61.

By the classical Poincaré–Pontryagin criterion, this im-
plies that a perturbation of the polynomial Hamiltonian sys-
tem Ẋ = ∂H

∂Y , Ẏ = − ∂H
∂X , with a polynomial Hamiltonian

H ∈ R[X, Y] of degree k + 1 by polynomial non-conservative
perturbation of degree k, may produce no more than double
exponential in a k number of limit cycles. This brings us back
to Hilbert’s 16th problem discussed in the introduction.
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On the Mathematical Works of
Pierre Dolbeault
Christine Laurent-Thiébaut (CNRS/Université Grenoble Alpes, France)

Pierre Dolbeault was born on 10 October 1924 and died on 12
June 2015. After his secondary education in Paris, he was ac-
cepted as a student at the Ecole Normale Supérieure for three
years starting in 1944, following which he obtained a posi-
tion as a researcher (attaché de recherche) with the CNRS
(Centre National de la Recherche Scientifique) from 1947
to 1953. During that time, he was given a grant to spend
the academic year 1949–1950 at Princeton University, where
he met Kodaira and Spencer and started learning the tech-
niques and tools used in research in complex analysis. On
his return to Paris, he attended Henri Cartan’s Ecole Normale
Supérieure seminar and began preparing his French “Thèse
d’Etat” under his supervision. He defended his thesis, entitled
“Formes différentielles et cohomologie sur les variétés analy-
tiques complexes”, in Paris in 1955, and the results were pub-
lished in the Annals of Mathematics ([3, 4]) in 1956 and 1957.
From 1953 onwards, Pierre Dolbeault held positions at sev-
eral French universities, such as Montpellier and Bordeaux;
in 1960, he became a professor at the University of Poitiers
and finally moved to Paris 6 (Université Pierre et Marie Curie)
in 1972, where he stayed until his retirement in 1992. His in-
tense mathematical activity continued after retirement, both
through participation at international conferences and work-
shops and through the publication of papers. He submitted his
last paper for publication in January 2015, only six months
before his death.

During his stay in Poitiers, he developed a school of com-
plex analysis, supervising the French Thèses d’Etats of Jean-
Louis Cathelineau, Joseph Le Potier and Jean Poly. Arriving
in Paris in 1972, he joined Pierre Lelong and Paul Malliavin
in organising the Seminar of Complex Analysis, founded by
Pierre Lelong in the 1960s, which took place every Tuesday
at the Institut Henri Poincaré in Paris. He also created a work-
ing group in Paris 6 where residue theory, the complex Plateau
problem and many other questions were studied.

Alongside Pierre Lelong and Paul Malliavin, Pierre Dol-
beault was one of the founders of the Institute of Complex
Analysis and Geometry in Paris, which was at the origin of
the current Institute of Mathematics of Jussieu. He was its di-
rector from the creation of the institute in 1974 until 1982.

Pierre Dolbeault was my advisor in Paris from 1975 until
the defence of my French Thèse d’Etat in June 1985. Initially,
he gave me some pointers but I quickly escaped and went by
my own road. He always respected that and I am very grateful
for the autonomy he gave me. I will never forget that he was
always there to answer my mathematical questions when I
needed him.

At the beginning of the 1990s, the European Commission
created the European Human Capital and Mobility networks
to promote the mobility of researchers through the different

countries of the European community. European mathemati-
cians working in the field of complex analysis and geome-
try decided to submit an application and Pierre Dolbeault was
naturally the leader of this project. The project was successful
for the first time in 1994 and was renewed in 1998 by Henri
Skoda. The network connected centres in France (Paris and
Grenoble), Germany (Wuppertal and Berlin), Italy (Firenze)
and Sweden (Göteborg) and the administration by Pierre Dol-
beault was very efficient.

Pierre Dolbeault was a lovely man. The mathematicians
he met all over the world will remember him as a very dis-
crete and kind colleague, always ready to help and to discuss
mathematics. He had a deep understanding of the fields to
which he contributed and a very wide mathematical culture
around them, as is obvious from the fine survey papers he
wrote throughout his life ([9, 11, 15, 17, 19, 24]). Let us now
continue to develop the work of Pierre Dolbeault, which is
involved with the origins of modern complex analysis.

1 The Dolbeault–Grothendieck lemma and the
Dolbeault isomorphism

The main results
The very important results that are today called the Dolbeault–
Grothendieck lemma and the Dolbeault isomorphism are part
of Pierre Dolbeault’s thesis that he prepared under the super-
vision of Henri Cartan and defended in 1955. These results
were announced in 1953 in two Notes aux Comptes Rendus
de l’Académie des Sciences de Paris [1] and [2], presented by
Jacques Hadamard and published in the Annals of Mathemat-
ics in 1956 [3].

Let V be a complex manifold of complex dimension n.
Then, for p, q ≥ 0, we denote byΩp the sheaf of holomorphic
p-forms on V , Ep,q the sheaf of germs of smooth differen-
tial forms of bidegree (p, q) and (D�)p,q the sheaf of germs of
currents of bidegree (p, q). For a family Φ of supports in V
(the most common families of supports are the family of all
closed subsets of V and the family of all compact subsets of
V), we consider, on one hand, the Čech cohomology groups
Hq
Φ

(V,Ωp), q ≥ 0, of the sheaf Ωp with support in the family
Φ and, on the other hand, the cohomology groups, denoted
respectively by Hp,q

Φ,∞(V) and Hp,q
Φ,cur(V), of the differential

complexes of sections with support in Φ, (ΓΦ(V,Ep,•), ∂) or
(ΓΦ(V, (D�)p,•), ∂), where ∂ is the Cauchy–Riemann operator.

The main result of the first part of Pierre Dolbeault’s thesis
is the following.

Theorem 1. Let V be a complex manifold. For any p, q ≥
0 and any family of support in V , the cohomology group
Hq
Φ

(V,Ωp) is canonically isomorphic to Hp,q
Φ,∞(V) and Hp,q

Φ,cur(V).

On the Mathematical Works of  
Pierre Dolbeault
Christine Laurent-Thiébaut (CNRS/Université Grenoble Alpes, France)



36 EMS Newsletter March 2016

Obituary

This isomorphism is called the Dolbeault isomorphism.
The Dolbeault isomorphism says that a global problem in
complex analytic geometry involving the cohomology of the
sheaf of holomorphic functions can be solved using global ∂-
equations on the complex manifold. It makes a link between
complex analytic geometry and the theory of partial differen-
tial equations.

The first application is a vanishing result for the cohomol-
ogy of the sheaf Ωp on V in large degrees.

Corollary 2. Let V be a complex manifold. If q is an in-
teger strictly greater than the complex dimension of V then
Hq
Φ

(V,Ωp) = 0.

The proof of Theorem 1 is based on the following result
of sheaf theory and cohomology from the early 1950s.

Proposition 3. Let X be a topological space, Φ a family of
supports in X and F a sheaf on X. If F admits a resolution R

0→ F → R0 → R1 → · · · → Rp → . . . ,
such that Hk

Φ
(X,Rp) = 0, for all k > 0 and all p ≥ 0, the

canonical homomorphism

δq : Hq(ΓΦ(X,R))→ Hq
Φ

(X,F p)

is an isomorphism.

The idea of Pierre Dolbeault was to introduce a new
tool, ∂-cohomology, today called Dolbeault cohomology of
a complex manifold, to describe the cohomology of the
sheaf Ωp on V via the cohomological result from Proposi-
tion 3. The ∂-cohomology is the cohomology of the com-
plexes (ΓΦ(V,Ep,•), ∂) or (ΓΦ(V, (D�)p,•), ∂); it is the holomor-
phic analogue of the de Rahm cohomology in real differen-
tiable manifolds.

To derive Theorem 1 from Proposition 3, it is sufficient
to prove that the sequence of sheaves Ep,• or (D�)p,•, with
the Cauchy–Riemann operator ∂, defines a resolution of fine
sheaves of the sheaf Ωp.

The sheaves Ep,q or (D�)p,q are sheaves of E-modules, so
they are fine and the hypothesis of Proposition 3 on the van-
ishing of the cohomology with support in a family of support
Φ is satisfied as soon as a resolution of Ωp is defined. There-
fore, it remains to prove that the sequences

0→ Ωp → (D�)p,0 → (D�)p,1

and
(D�)p,q−1 → (D�)p,q → (D�)p,q+1

are exact sequences of sheaves.
The first sequence is exact since the restriction of any ∂-

closed (p, 0)-current to a coordinates chart is harmonic, so it
is a smooth, ∂-closed (p, 0)-form, hence an holomorphic p-
form. The exactness of the second sequence follows from the
Dolbeault–Grothendieck lemma.

Lemma 4. Let T be a germ of ∂-closed (p, q)-current (resp.
smooth differential form), q > 0, on a complex manifold V .
Then, there exists a germ of (p, q − 1)-current (resp. smooth
differential form) S such that T = ∂S .

This lemma was proved independently by Pierre Dol-
beault and Alexander Grothendieck. Grothendieck’s proof is
an inductive process on the dimension based on the non-
homogeneous Cauchy formula in complex dimension 1. In

Pierre Dolbeault’s thesis, an argument of potential theory due
to Henri Cartan reduces the proof of the lemma to the real
analytic case.

Lemma 5. Let ϕ be a germ of ∂-closed, real analytic (p, q)-
form, q > 0, on a complex manifold V . Then, there exists a
germ of real analytic (p, q − 1)-form ψ such that ϕ = ∂ψ.

Lemma 5 was proved by homotopy, by Pierre Dolbeault,
in the spirit of the proof of the Poincaré lemma for the opera-
tor d.

Some applications
Let us describe some applications of Theorem 1 given by
Pierre Dolbeault in his thesis.

First, he considered the classes, modulo isomorphism,
of holomorphic principal bundles over a complex manifold
V , with fiber a complex abelian Lie group G. Let G be the
sheaf of germs of holomorphic functions on V with values in
G. He proved that there exists a one-to-one correspondence
between these classes and the elements of the cohomology
group H1(V,G).

In the special case when G = C, G = Ω0 is nothing other
than the sheaf of germs of holomorphic functions on V and,
by Theorem 1, the cohomology group H1(V,G) is isomorphic
to the group H0,1(V). In particular, for such a bundle to have
an holomorphic section, it is necessary and sufficient that the
associated cohomology class vanishes. Therefore, if the man-
ifold V satisfies H0,1(V) = 0 then all holomorphic principal
bundles over V with fiber C are trivial.

For G = C∗, he analysed the topological and analytical
obstructions for a principal bundle to be trivial. Once again,
they are given in terms of differential forms.

Another application is the first Cousin problem. Let V be
a complex manifold and Mp be the sheaf of germs of mero-
morphic p-forms on V , p ≥ 0. We get the exact sequence of
sheaves

0→ Ωp → Mp → Mp/Ωp → 0,

from which we can derive the long exact sequence of coho-
mology

· · · → H0(V,Mp)→ H0(V,Mp/Ωp)→ H1(V,Ωp)→ . . . .
An element t of H0(V,Mp/Ωp) is called Cousin data of de-
gree p. Solving the first Cousin problem means, given Cousin
data t, finding a meromorphic function on V whose image in
H0(V,Mp/Ωp) is t. If there is a solution, the data t is called
solvable. It follows from Theorem 1 that the obstruction to
the solvability of the first Cousin problem is an element of
Hp,1(V). In the case when V is such that Hp,1(V) = 0, all
Cousin data are solvable. Thanks to the Dolbeault isomor-
phism, solving the first Cousin problem can be reduced to
solving a ∂-equation.

2 The residue theory

The residue theory in several complex variables was founded
by Poincaré in 1887 and continued by Picard at the very be-
ginning of the 20th century. In the 1930s, de Rham’s currents
where introduced in residue theory and then used more sys-
tematically through the Cauchy principal value in the 1950s.
Cohomological residue theory takes its origin in the seminal
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work of Leray from 1959 and was completed by Norguet the
same year.

The one-dimensional case
Let X be a Riemann surface and g a meromorphic function
defined on an open subset U in X, such that g has only one
pole at a point P in U. If z is an holomorphic coordinate on
U such that z(P) = 0, the coefficient a of 1

z in the Laurent
series is called the Cauchy residue of g at P. In fact, a is an
invariant of the closed meromorphic (1, 0)-form ω = g(z) dz.
The smooth differential form ω defines a current on U \ P,
which can be extended to U as a current, denoted vp(ω) – the
principal Cauchy value of ω – and defined by

< vp(ω), ψ >= lim
ε→0

∫

|z|≥ε
ω ∧ ψ,

where ψ ∈ D0,1(U) is a smooth (0, 1)-form with compact sup-
port in U. Moreover, since ω is ∂-closed in U \ P, the current
∂ vp(ω) is supported by {P} and satisfies

∂ vp(ω) = 2iπaδP + ∂B,

where δP is the Dirac measure at P and B a current supported
by {P}. In particular, B = 0 if the pole P is simple.

Consider now a general meromorphic form ω and denote
by S = {Pl | l ∈ I} the set of poles of ω (it is a discrete subset
of points in X). Let resP j (ω) be the Cauchy residue of ω at P j.
Let J ⊂ I be a finite subset of I and, for each j ∈ J, let D j be
a disc centred at P j such that D j ∩ S is reduced to P j and let
γ j be the boundary of D j. If (n j) j∈J is a family of elements in
Z, R or C then we have the residue formula∫

∑
j∈J n jγ j

ω =
∑
j∈J

2iπ n jresP j (ω).

Moreover, if X is compact and connected, the residue theorem
holds: for any discrete (hence finite) set S = {Pl | l ∈ I} of X
and any meromorphic 1-form ω whose set of poles is S , we
have ∑

l∈I
resPl (ω) = 0.

Conversely, for any such subset S of X and any subset (α j) j∈I
of complex numbers such that

∑
j∈I α j = 0, there exists a

meromorphic 1-form ω on X having simple poles exactly on
S and such that, for any j ∈ I, α j = resP j (ω).

Cauchy principal values and residue currents
In general, if X is a complex manifold of arbitrary com-
plex dimension n, a differential form ω on X is called semi-
meromorphic if any point x in X admits a neighbourhood U
such that ω|U =

α
f , where α is a smooth form and f an holo-

morphic function that does not vanish identically on U. The
set S = {x ∈ U | f (x) = 0} is the polar set of ω on U.

If ω is a closed form (dω = 0), the idea is to associate to
ω a current supported by S corresponding to the current aδP

when n = 1, which will be called the residue current of ω.
We say that a differential operator D is semi-holomorphic

if, for any x ∈ X, there exists a neighbourhood U of x and
holomorphic coordinates (z1, . . . , zn) such that, on U,

D =
∑

i1,...,in

αi1,...,in (z)
∂i1

∂zi1
1

. . .
∂in

∂zin
n
,

where the αi1,...,in are smooth functions. This definition is in-
dependent of the choice of coordinates. The set of semi-
holomorphic differential operators in X is a ring denoted
by Δ(X). Schwartz proved in 1953 that the space of semi-
meromorphic forms on X is a Δ(X)-module.

Following the one dimensional case, to define the residue
current associated to a semi-meromorphic form ω, whose po-
lar set is contained in the analytic subset S of X, the idea is
first to extendω as a current T (corresponding to the principal
Cauchy value) to X, which satisfies T (Dω) = DT (ω) for any
D ∈ Δ(X).

When the set S is a complex manifold, this was done by
Schwartz in 1953. In the second part of his thesis [4], Pierre
Dolbeault considered the case of semi-meromorphic p-forms,
whose polar set S admits special singularities; in particular,
the singular set S � of S has to be a manifold and some other
regularity conditions are added. Under these conditions on S ,
he proved that there exists a current vp(ω), which canonically
extends ω such that vp(ω) = ω, when ω is a smooth form on
X and Dvp(ω) = vp(Dω) for any D ∈ Δ(X). If ω is closed, he
defined the residue current of ω by ∂ vp(ω). He also proved
that if S = ∪kS k, with S k the irreducible components of S in
a neighbourhood of a point x ∈ S , then

∂ vp(ω) = 2iπ
∑

k

vpS k
uk + ∂B, (1)

where the uk are closed meromorphic (p − 1)-forms on S k

with polar set S k ∩ S � and B a (p− 1, 1)-current supported by
S and ∂-closed on S \S �. He also gave necessary and sufficient
conditions for a closed current of the form (1) with B = 0 to
be the residue of a meromorphic form on X with polar set S
of multiplicity 1.

At the end of the 1960s (see [5] and [7]), Pierre Dolbeault
considered polar sets with normal crossings and, when X is an
irreducible, projective algebraic variety, using Hironaka’s res-
olution of singularities reducing general singularities to nor-
mal crossings, he solved the problem in the general case.

Later in 1972 [8], using the Cauchy principal value de-
fined by Herrera and Lieberman in reduced complex spaces,
he obtained an axiomatic definition of the canonical extension
of a semi-meromorphic p-form defined on a reduced complex
space proving the uniqueness of the Cauchy principal values.

Theorem 6. Let X be a reduced complex space, S•(X) be the
space of semi-meromorphic differential forms and Δ(X) be
the ring of semi-holomorphic differential operators in X. Let
TX be a map from S•(X) into the space D�•(X) of currents on
X such that:
(1) If X is a manifold and ω a semi-meromorphic form on

X with polar set with normal crossings and with locally
integrable coefficients then TX(ω) coincides with the cur-
rent defined by the L1

loc-form ω.
(2) If X is a manifold, the restriction of TX to the subspace of
S•(X) of semi-meromorphic forms with given polar set
with normal crossings is Δ(X)-linear.

(3) Let X� be another reduced complex space. For any mor-
phism Φ : X� → X, there exists a map

∗Φ : Im TX → Im TX� ,

with the following property: for any ω ∈ S•(X), we have
∗ΦTX(ω) = TX�(Φ∗ω).
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(4) For any ω ∈ S•(X) whose polar set S contains the singu-
lar set of X and for any resolution of singularities π such
that X� is a manifold and S � = π−1(S ) has normal cross-
ings, we have

TX(ω) = π∗ ∗π TX(ω).

The TX is unique and coincides with the Cauchy principal
value.

Moving to differential forms with more general singulari-
ties, in 1977, he considered, with Jean Poly [10], the case of
subanalytic singularities.

In 1978, Coleff and Herrera generalised the notion of
Cauchy principal value and residue current in relation to com-
posed residues. These new currents are called residual cur-
rents. Later, in the middle of the 1980s, a new definition of
residual currents was given by Passare. In 1988-89, Pierre
Dolbeault decided to study the structure of residual currents
in analogy with the structure theorem for holomorphic chains
by Harvey and Shiffman. After considering the normal cross-
ings [13], in a collaboration with Letellier around 1990 [16],
he described the local structure of the first residual current in
the general case in terms of holomorpic differential operators
and Cauchy principal values on the irreducible components of
the polar set.

At last, in 2009, Pierre Dolbeault proved a generalisa-
tion of a theorem by Picard, characterising residues of closed
meromorphic p-forms [23]. For p = 1, the theorem is as fol-
lows.

Theorem 7. Let X be a Stein manifold or a compact Kähler
manifold. Then, the following conditions are equivalent:
(i) The locally rectifiable closed current T of bidimension

(n − 1, n − 1) is exact.
(ii) The current T is the residue current of a closed mero-

morphic 1-form on X having the support of T as a polar
set with multiplicity 1.

Residue theory and homology
Consider the case when S is a polar set of a closed semi-
meromorphic p-form ω with multiplicity k. Then, locally, S
is the zero set of an holomorphic function s on an open subset
U of X such that ds � 0 andω = ds

s ∧ψ+d( θsk−1 ) on U, where ψ
and θ are smooth forms on U. In fact, ψ|S is a smooth, globally
defined, closed (p − 1)-form on S , called the residue form of
ω.

From the cobord homomorphism δ∗ of the exact coho-
mology sequence with complex coefficients and compact sup-
ports associated to the closed subset S of X

· · · → Hr
c(X)→ Hr

c(S )
δ∗−→ Hr+1

c (X \ S )→ Hr+1
c (X)→ . . . ,

(2)
the duality isomorphism of Poincaré defines the homology
cobord

δ : Hc
2n−r−2(S )→ Hc

2n−r−1(X \ S ).

Then, since the vector space of cohomology of degree q with
closed support is the dual of the vector space of homology of
degree q with compact support, Leray could define the residue
homomorphism

Res : H2n−r−1(X \ S )→ H2n−r−2(S )

as the transposed homomorphism of δ. This allows one to as-
sociate to each p-class of cohomologyω of X \ S a cohomol-
ogy class Res[ω] of Hp−1(S ) (in the case when ω is a closed
semi-meromorphic form, the image of the cohomology class
of ω by the residue homomorphism is nothing other than the
cohomology class of the residue form of ω) and the pairing of
these two morphisms gives the residue formula∫

γ

ω = 2iπ
∫

h
Res[ω],

with h ∈ Hp−1(S ), ω ∈ Hp(X \ S ) and γ ∈ δ(h).
Leray also proved that, given a class c ∈ Hp(X \ S ), there

exists a semi-meromorphic closed p-form with polar set S of
multiplicity 1, whose restriction to X \ S belongs to c and
whose residue form is Res[c].

In [6], Pierre Dolbeault considered the Borel-Moore ho-
mology, whose groups are canonically isomorphic to the ho-
mology groups of singular locally finite chains, and the asso-
ciated exact sequence

· · · ← Hr(X)← Hr(S )← Hr+1(X \ S )← Hr+1(X)← . . .
(3)

is the dual of the exact sequence of cohomology with com-
pact support (2). Its connection morphism δ∗ : Hr+1(X\S )→
Hr(S ) comes from the residue homomorphism Res by compo-
sition with the Poincaré isomorphisms for homology and co-
homology with closed supports of S and X \ S . It is called the
homological residue homomorphism and is defined in much
more general situations than Res, in particular when S is no
longer a complex manifold but a complex analytic subset of
X of codimension 1.

3 Boundary problems

Let X be a complex manifold of complex dimension n. The
boundary problems are geometric extension problems. Given
an odd real-dimensional compact submanifold M of X with
negligible singularities in the sense of the Hausdorff mea-
sure Hdim M and satisfying the necessary conditions to be the
boundary of a complex manifold in X, can we extend M as a
complex manifold whose boundary is M?

Another natural question is: when is a 2-codimensional
real compact submanifold S of X the boundary of a compact
real hypersurface M such that M \ S is Levi-flat?

In both cases, these problems can also be considered as
Plateau problems, i.e. the search of manifolds with prescribed
boundary and minimal volume, since, if X is a Kähler mani-
fold, complex varieties and Levi-flat hypersurfaces minimise
the volume among even dimensional manifolds or foliated
manifolds.

Pierre Dolbeault began to be interested in these problems
after hearing Harvey’s talk on the joint work with Lawson
on boundaries of complex varieties during the conference on
complex analysis organised in Williamstown in 1975. Back in
France, he decided that the working group he used to organ-
ise each year in Paris 6 would study Harvey’s and Lawson’s
papers to form a complete understanding of their works.

The complex Plateau problem
Let X be a complex Hermitian manifold of complex dimen-
sion n and M a smooth oriented closed real manifold of real
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dimension 2p − 1, 0 < p ≤ n. We denote by [M] the integra-
tion current on the manifold M. Then, [M] has locally finite
mass and d[M] = 0. The complex Plateau problem consists
of looking for necessary and sufficient conditions on M such
that there exist holomorphic p-chains T of X \ M of locally
finite mass in the neighbourhood of M with dT = [M].

For example, consider the case when X = V × C, with
V a Stein manifold of complex dimension p ≥ 2. Let D be
a relatively compact domain in V with smooth boundary and
f be a smooth CR function on ∂D (i.e. the differential of f ,
restricted to the complex subspace to the tangent space to ∂D,
at each point, is C-linear). Then, the graph M of f defines a
smooth closed real (2p − 1)-dimensional submanifold of X.
By the Hartogs-Bochner theorem, the function f extends as
an holomorphic function F to D. Then, taking the graph of F
in X, we get a complex hypersurface of X whose boundary is
M, so it solves the complex Plateau problem for M.

The study of the complex Plateau problem was initiated
by Wermer in 1958 for X = Cn, p = 1 and M an holomor-
phic image of the unit circle of C. For X = Cn, the complex
Plateau problem has been solved by Harvey and Lawson in
1975 with M an oriented C1 compact manifold with negligi-
ble singularities. The necessary and sufficient condition on M
for the existence of a solution is: M is maximally complex for
p ≥ 2 and the moment condition

∫
M ϕ = 0 for every holomor-

phic 1-form ϕ on Cn for p = 1. For p = n − 1, the method,
inspired from the above example with good choices of projec-
tions, consists of building T as a graph, with multiplicities on
the irreducible components, of an holomorphic function with
a finite number of determinations. For the other p, it is re-
duced to the previous case using projections. Two years later,
in 1977, they considered the case when X = CPn \ CPn−r for
compact M. In both cases the solution is unique.

The main contributions of Pierre Dolbeault in this field
are the joint works with Henkin on the complex Plateau prob-
lem for X = CPn and, more generally, a q-linearly concave
domain X of CPn, i.e. a union of projective subspaces of di-
mension q (for p = 1 in [18] and for general p in [20]). The
boundary problem in CPn was set up for the first time by King
in 1979. In that case, uniqueness no longer holds, since two
solutions differ by an algebraic p-chain. The necessary and
sufficient condition for the existence of a solution is an ex-
tension of the moment condition: it uses a Cauchy residue
formula in one variable and a nonlinear differential condition
that appears in many questions of geometry and mathemati-
cal physics. In the simplest case, p = 1 and n = 2, this is
the shock wave equation for a local holomorphic function of
2 variables ξ and η: f ∂ f

∂ξ
=
∂ f
∂η

.

Levi flat hypersurfaces with prescribed boundaries
Let S be a smooth 2-codimensional real submanifold of Cn,
n ≥ 2. The problem of finding a Levi-flat hypersurface M ⊂
Cn with boundary S has been extensively studied for n = 2
(during the 1980s and the 1990s), when S is contained in the
boundary of a bounded, strictly pseudoconvex domain. In two
joint works with Tomassini and Zaitsev ([21] and [25]), Pierre
Dolbeault proved some results for n > 2. The situation is quite
different from how it is in C2, since a submanifold of real
codimension 2 in general position is no longer totally real if
n > 2. They first studied the necessary local conditions to

ensure S bounds a Levi-flat hypersurface at least locally. They
observed that, near a CR point, S has to be nowhere minimal,
i.e. all local CR orbits must be of positive codimension, and
some flatness condition has to occur at complex points. In
[25], the following theorem is proved.

Theorem 8. Let S ⊂ Cn, n > 2, be a compact connected
smooth real 2-codimensional submanifold such that the fol-
lowing holds:
(i) S is nonminimal at every CR point.
(ii) Every complex point of S is flat and elliptic and there is

at least one such point.
(iii) S does not contain complex submanifolds of dimension

n − 2.
Then, S is a topological sphere with two complex points and
there exists a smooth submanifold S̃ and a Levi-flat (2n − 1)-
subvariety M̃ in R × Cn (i.e. M̃ is Levi-flat in C × Cn), both
contained in [0, 1] × Cn such that S̃ = dM̃ in the sense of
currents, and the natural projection π : [0, 1] × Cn → Cn

restricts to a diffeomorphism between S̃ and S .

They first proved the existence of a foliation of class C∞
with 1-codimensional CR orbits as compact leaves and then
reduced the problem to a complex Plateau problem with pa-
rameter to get the result. To complete the proof, they extended
to the smooth case the analytic solution of the boundary prob-
lem for an analytic Levi-flat subvariety in a real hyperplane of
Cn studied by Pierre Dolbeault in [12].

When S is a smooth graph over the boundary of a strictly
convex domain Ω in Cn × R, M is the graph of a Lipschitz
function defined on the closure of Ω [26].

In a later paper [22], Pierre Dolbeault studied the case
when S admits one hyperbolic point and then, in [27], he gave
examples of 2-codimensional submanifolds bounding a Levi-
flat hypersurface with one special 1-hyperbolic point. He first
considered a sphere with two horns that has one special hyper-
bolic point and three special elliptic points, then a torus with
two special hyperbolic points and two special elliptic points
and then other elementary models and their gluing to get more
complicated examples.

4 Quaternionic analysis

Beside classical complex analysis, Pierre Dolbeault was also
interested in the study of quaternionic analysis, mostly after
2000 and until the end of his life. On the setH � C2 of quater-
nionic numbers, he considered the modified Cauchy-Fueter
operator, which was introduced in 2007 by a group of Italian
and Mexican mathematicians: Colombo, Luna-Elizarraras,
Sabadini, Shapiro and Struppa. The elements of the kernel
of this operator, inside the space of smooth H-valued func-
tions, are called hyperholomorphic functions. In contrast to
the classical Cauchy-Fueter operator, this kernel contains all
holomorphic maps from an open subset of C2 into C2 and
in particular all C-valued holomorphic functions of two vari-
ables.

In a first paper [28], Pierre Dolbeault characterised the
quaternionic functions that are almost everywhere hyperholo-
morphic and whose inverses, with respect to right side mul-
tiplication, are also hyperholomorphic almost everywhere on
an open subset U of H, as the solutions of a system of two
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nonlinear partial differential equations. These functions are
called weak-hypermeromorphic functions. The subspace of
the set of weak-hypermeromorphic functions that is stable
by sum and product is also characterised by nonlinear par-
tial differential equations. It contains the space of meromor-
phic functions and is called the space of hypermeromorphic
functions. In this setting, he extended the notion of Cauchy
principal value and of residue to quaternionic 1-forms.

In a second paper he submitted for publication six month
before his death [29], he defined Hamilton 4-manifolds as the
analogue to Riemann surfaces of complex analysis. To do this,
he followed the lines of construction of Riemann surfaces de-
veloped in his book [14].
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The fact that most of my female colleagues of a similar 
age to me (around 30) and typically holding non-perma-
nent positions have made the choice of not having a baby 
or planning to postpone the event has never weakened or 
delayed in me the idea of becoming a mum. I have always 
optimistically thought that being a mum and a postdoc 
couldn’t be, in the end, so difficult. At least, that’s what I 
thought before my child was born… The aim of this short 
article is to report my experience and that it was, indeed, 
difficult for me, even if my institution (SISSA, Trieste) 
gave support in helping me to survive.

In October 2014, I started my postdoc at SISSA, 
whose scope is contributing to the mathematical mod-
elling of some active materials in the framework of the 
ERC grant “Micromotility” held by Professor A. DeSi-
mone. Just a few months later, my maternity leave began, 
which in Italy covers a period of five months, one month 
or two before the birth of the baby plus, respectively, 
four or three after. Among the adversities that an Ital-
ian mum-postdoc encounters, the financial one is prob-
ably at the top. In this respect, the economic treatment 
of SISSA is 100% satisfying. And not only satisfying but 
also quite singular in the Italian panorama. To explain 
this, let me first recall that Italian maternity leave for 
postdocs is meant to be an interruption of the period of 
the contract, to which five months are then added at the 
end. At the same time, INPS (the Italian Social Security 
Service) pays 80% of the salary during the interruption 
(usually many months later and with many bureaucratic 
disruptions). Well, SISSA covers the part of the salary 
that is not covered by INPS so that, during the months of 
leave, one can count on a full salary. In my case, SISSA’s 
contribution to maternity leave was even more relevant 
because the INPS regulations stipulate that a postdoc is 
entitled to 80% of the salary during maternity leave only 
if they have paid contributions for at least two months in 
the two years before the leave starts. Otherwise, nothing! 
Well, I didn’t fulfil the requirement since I had been a 
postdoc for two years in Oxford before my Italian con-
tract started and SISSA on their own covered my entire 
salary during the leave. Note that if I didn’t work at SIS-
SA but, for example, in an arbitrary Maths Department 
of some Italian University, the state wouldn’t have given 
any economic support to me. And all this in a period 
where the need for a salary is more urgent than ever.

Exactly four months after my baby’s birth, I am, at 
9 am, in my office. From that point on, a very very hard 
period begins for me, in family as well as at work. Usual-
ly, in order to maximise the working time, I hardly find a 
moment to breathe during my office hours. This is due to 
many facts coming together: (1) I am working on a very 
hot topic and I need to proceed quickly, also to recover 
some of the “time lost” during the leave, this not only be-
cause I am required to produce some results during my 

Mum and Postdoc at SISSA 
Virginia Agostiniani (SISSA, Trieste, Italy)

present post but also in view of my overall career, since 
my position is not permanent; (2) My husband works 
and lives for most of the time in another town, situated 
four to five hours by train away from Trieste; and (3) Nei-
ther my family nor my husband’s family live in Trieste or 
close to it. Here, again, SISSA’s regulation helps but in 
this respect its help is less incisive. Here, we deal with a 
KINDERGARTEN. I feel the need to write this word in 
capital letters because it represents a dream for me (not 
for a few weeks yet, though). The fact is that SISSA has 
a very nice kindergarten situated in the beautiful park 
surrounding the main building. It is also highly ranked 
as a kindergarten for the activities undertaken and the 
overall organisation and concept; it is far from being a 
simple “baby parking”. Moreover, SISSA provides eco-
nomic support for childcare, so that the monthly rate is 
approximately 300 euros, which is a very good rate. The 
drawback is that the kindergarten only accepts babies 
who are older than 13 months. But this is a problem be-
cause most of the people working at SISSA, excluding 
admin people, are people whose families live far away 
and are therefore unable to offer their help when a baby 
arrives. So, I am sure that when my baby is finally ac-
cepted at the kindergarten, he will be superhappy and 
the teachers will prove to be supergood and trained, but 
arriving at that moment has been so difficult, for me as 
well as for my little son!! Just to give an idea, we spent 
the last nine months – between the end of the leave and 
now – finding and changing temporary and private (and 
bad) kindergartens, together with carefully scheduling 
grandparents’ humanitarian visits.

Apart from SISSA’s regulations concerning materni-
ty leave and childcare, I have to say that the first year of a 
baby’s life requires specific attention towards them and, 
even if I have had to renounce some conferences and 
some occasions to make progress in my job, I feel hap-
py for not having deprived my baby of all my attention 

and support. We cannot 
have everything at the 
same time (at least, we 
mums) and the first year 
of a son happens once 
in a life. Also, carrying 
him to some confer-
ences with me so as not 
to interrupt the breast-
feeding – with the key 
aid of my husband – has 
been doubly stressing in 
terms of preparation for 
the conference but also 
doubly rewarding: my 
little son, in his official 
role of little mascot, has 
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The London Mathematical Society’s 
150th Anniversary 
Stephen Huggett (University of Plymouth, UK)

been many times the subject of amusement for the con-
ference participants, making social dinners and coffee 
breaks less conventional!

Virginia Agostiniani, after obtaining a BSc and a Master’s 
degree in mathematics at the University of Florence, ob-

As this is a personal account of the LMS’s 150th birth-
day I will start with the thing which most pleased me 
and, I admit, surprised me. Among all the many and var-
ied things which we did to celebrate the anniversary, it 
was our work with the arts which stands out for me as 
the most intriguing. We commissioned a painter, Mark 
Francis  (see a detail of his abstract painting on the cover 
of this Newsletter) and an architect, George Legendre, to 
be our artists-in-residence, and we commissioned the art-
ist Heidi Morstang to make a film called Thinking Space.

Our interactions with these three people have been 
curious and thought-provoking for us, and will bring 
mathematical thinking to new audiences. Of course we 
are not the only people working at the arts/mathematics 
interface, and indeed it is almost part of the zeitgeist, but 
it was a new experience for me, anyway. All three artists 
have engaged very deeply with the project and produced 
beautiful work. The Society is very grateful to them.

Why does one celebrate an anniversary such as this? 
Most important is to reinforce the sense of community 
which holds us together and inspires us to work for the 
Society. That is not all, of course: it is also a great oppor-
tunity to try new things, especially things which increase 
the appreciation of mathematics among new audiences. 
Here, it begins to feel that we are pushing at an open 
door: in contrast to a decade or two ago, mathematicians 
are now acknowledged in polite society.

Exactly 150 years after the first meeting of the Soci-
ety, we launched our celebrations on the 16th of January 
2015 at Goldsmiths Hall, London, with an afternoon of 
short talks including several describing how mathemat-
ics is used in various ways, such as the making of special 
effects in films. There was a substantial online audience 
(and the talks are still available online) but only those 
physically present were able to enjoy the reception af-
terwards.

Of course we also continued with our usual activities 
during 2015, but tried to make them special somehow. 
One of these was the Mary Cartwright Lecture, given on 
the 27th of February in De Morgan House, which was 
certainly enhanced by the lecturer, Maria Esteban, who 
spoke on Eigenvalue problems in relativistic Quantum 
Mechanics, theory and applications.

tained her PhD at SISSA under the supervision of Gianni  
Dal Maso and Antonio DeSimone. She has been a post-
doctoral research associate at the Oxford Centre for non-
linear PDE for two years and has had a postdoc position 
at SISSA since October 2014.

Similarly, the LMS meeting on the 1st of April at the 
joint British Mathematical Colloquium/British Applied 
Mathematics Colloquium in Cambridge was made very 
special by lectures from Robert Calderbank on The art 
of measurement and Andrew Wiles On the arithmetic of 
ideal class groups, followed by an excellent reception and 
dinner.

The Women in Mathematics Committee of the LMS 
has been holding extremely successful annual meetings 
designed to encourage and inspire young female math-
ematicians to stay in the subject, but this year they really 
went overboard and held a spectacular event from the 
14th to the 17th of April in Oxford, called “It all adds 
up: celebrating women across the mathematical scienc-
es”. The first two days were devoted to mathematically 
inclined schoolgirls, while the second two days were for 
female mathematicians at all stages of their university 
careers. There were talks, discussions, workshops, and 
poster displays. It was a huge success, and the Society is 
very grateful to the Mathematical Institute at Oxford for 
its big contribution.

On the 9th of May we held a joint meeting with the 
British Society for the History of Mathematics in De 
Morgan House, and on the subject of De Morgan. It in-
cluded a talk by John Heard on Augustus De Morgan 

Penrose Lantern, by George Legendre.
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and the early history of the London Mathematical Society, 
about which I will say more later.

The artists-in-residence scheme was officially 
launched at our Anniversary Dinner, which we held on 
the 18th of June, again in Goldsmiths Hall. This is also 
where we had held the anniversary dinner on our 100th 
birthday, but even more significant for us was that Mi-
chael Atiyah was present on both occasions, and it was 
a very great pleasure to hear him give us a short speech. 
The main after-dinner speaker, though, was Jim Simons, 
who was both fascinating and very entertaining.

In a normal year we invite two mathematicians to 
give our Popular Lectures in London and to repeat them 
in Birmingham. This year we added Glasgow and Leeds 
to the venues, and invited six mathematicians to speak 
(two on each occasion): Hannah Fry on Patterns in hu-
man behaviour, Ben Green on A good new millennium 
for prime numbers, Martin Hairer on The mathematics 
of randomness, Ruth King on Epidemics and viruses: the 
mathematics of disease, Joan Lasenby on The mathemat-
ics of processing digital images, and Colva Roney-Dougal 
on Party hard! The mathematics of connections. So the 
whole programme was significantly bigger. As with many 
of our events this year, we wish we could continue at this 
higher level.

Somewhat to my embarrassment the first European 
Mathematical Society Joint Mathematical Weekend ever 
to be held in the UK was the one held in Birmingham 
with the LMS on the 18th, 19th, and 20th of September. 
But it was of such high quality that I hope we are now 
forgiven for the delay! There was a very impressive list 
of speakers from many countries on algebra, analysis, 
and combinatorics, together with a special lecture from 
Niccolò Guicciardini on Reading the Principia with the 
help of Newton. The weekend was a fitting way simulta-
neously to celebrate the LMS anniversary and the 25th 
anniversary of the EMS.

Another highly significant birthday was the centenary 
of Einstein’s field equations for general relativity. Our 
joint meeting with the Institute of Physics and the Royal 
Astronomical Society on the 28th and 29th of November 
at Queen Mary College, University of London, was one 
of many such celebrations across Europe of Einstein’s 
beautiful work. Our final joint meeting of the year was 
with the Edinburgh Mathematical Society, on the 10th 
and 11th of December at the ICMS in Edinburgh, on 
mathematical aspects of big data. This was yet another 
highly successful meeting, and we are very grateful to our 
hosts in Edinburgh for their warm welcome.

These are just the highlights: there were many more 
events. Our regional meetings, our research schools, and 
our Hardy Lectures were all enhanced or made special 
in some way. There were departmental celebrations, a 
display of LMS archival material in the Library at Uni-
versity College London, a Computer Science colloquium 
at the Royal Society, and several “local heroes” events at 
museums across Britain.

We started work on a new web page of case studies 
of the impact of mathematics, we prepared a new Hand-
book and “who’s where” for our members, we designed 

an “infographic” on mathematics in Britain over the last 
150 years, and we facilitated the publication (by CUP) 
of a new book by John Heard on the history and role of 
the LMS from its foundation up until just after the First 
World War.

In addition to our usual portfolio of research grants, 
we for the first time awarded a series of postdoctoral 
mobility grants, and we started a series of undergraduate 
summer schools. We awarded new prizes, for original and 
innovative work in the history of mathematics, and for 
excellence in communication of mathematical ideas. We 
also elected six new honorary members (instead of two, 
as has become the norm).

I would like to end this account by describing an event 
we held at the Science Museum in London in Novem-
ber. It consisted of a four-day festival, in which several 
research groups interacted with the public, mediated by 
the interactive theatre company non zero one. Also, on 
the 25th, there was a special evening in which Roger Pen-
rose gave a talk on Einstein’s amazing theory of gravity: 
black holes and novel ideas in cosmology, followed by the 
premiere screening of Thinking Space, the film directed 
and produced by Heidi Morstang.

Even by his standards Roger’s talk was a superb com-
bination of brilliant exposition and beautiful mathemati-
cal ideas. Heidi’s utterly captivating film featured nine 
UK-based mathematicians offering insights into their 
mathematical thinking across a broad range of math-
ematical research fields. Together, the talk and the film 
summed up the entire year for me.

In order not to try your patience, dear reader, I have 
of course omitted a great deal of detail here, but the LMS 
web site has more information. In spite of this being a 
personal account, I am sure that my fellow LMS Trustees 
would want to join with me in thanking everybody, LMS 
members and staff, who worked so hard for our celebra-
tions, and all our friends across the world who wished us 
such a happy birthday.

Stephen Huggett is a Professor in Pure 
Mathematics at the University of Plymouth, 
and the General Secretary of the London 
Mathematical Society. His research interests 
are in polynomial invariants of knots and 
graphs, and in twistor theory.

Still image from the film Thinking Space, by Heidi Morstang.
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How Mercator did it in 1569:
From Tables of Rhumbs to
a Cartographic Projection
Joaquim Alves Gaspar and Henrique Leitão
(Centro Interuniversitário de História das Ciências e da Tecnologia, University of Lisbon)

In 1569, the Flemish cartographer Gerardus Mercator (1512–
1594), his name being a Latinised version of Gerard de Kre-
mer, presented to the world a large printed planisphere with
the title Nova et aucta orbis terrae descriptio ad usum nav-
igantium emendate accomodate, that is, ‘New and enlarged
description of the world properly adapted for use in naviga-
tion’ (Figure 1). On this map, meridians are equally spaced
and form, with the parallels, a rectangular mesh, in which the
spacing between adjacent parallels increases with latitude in
such a way that the proportion between the lengths of the par-
allel and meridian segments is everywhere equal to the one on
the spherical surface of the Earth. This property implies that
linear scale at every point does not vary with direction and that
angles are conserved, making the projection conformal. An

additional feature of extraordinary importance to marine nav-
igation is that all rhumb lines – the curved tracks of constant
course followed by ships at sea – are represented by straight
segments making true angles with the meridians, a property
that allows rhumb line courses to be directly read, traced and
transported on a chart using a simple protractor and a ruler.
Mercator’s projection was a major achievement destined to
change the history of cartography and navigation.

In the present day, deriving an expression for the spac-
ing of parallels in the Mercator projection is straightforward.
Consider a map projection in which meridians are represented
by equidistant segments north-south oriented and aligned
with the y-direction of a Cartesian coordinate system, and par-
allels perpendicular to the meridians. The problem consists of

Figure 1. World map of Mercator (1569), Nova et aucta orbis terrae descriptio ad usum navigantium emendate accomodate. The map depicts the world
as it was known in the middle of the 16th century. Notice the Organum Directorium abacus in the bottom left corner of the map.
Bibliothèque nationale de France, GE A-1064 (RES).

How Mercator Did It in 1569:  
From Tables of Rhumbs to  
a Cartographic Projection
Joaquim Alves Gaspar and Henrique Leitão (Centro Interuniversitário de História das Ciências e da Tecnologia, 
University of Lisbon)
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finding a general expression for the ordinate y = y (ϕ) of a
parallel of latitude ϕ, measured from the equator, so that the
proportion between the lengths of a parallel and a meridian
arc on the spherical surface of the Earth is conserved in the
projection. It can be shown that such an expression is the so-
lution of the equation ([1], 49–51):

dy
dϕ
= µ secϕ, (1)

where µ is an arbitrary linear scale. That is,

y (ϕ) = µψ (ϕ) , (2a)

ψ(ϕ) = ln
[
tan
(
π

4
+
ϕ

2

)]
. (2b)

In one of the Latin legends of the map, Mercator shows that
he is fully aware of the mathematical nature of the problem
by stating that he has ‘increased the length of the degrees
of latitude in proportion with the lengthening of the parallels
relative to the equator’, which is exactly what is expressed
by equation (1). However, he could do no better than resort-
ing to some kind of empirical solution in order to accomplish
such requirements because both calculus and logarithms had
not been introduced at that time. But how did he actually do
it? This is a question that had been open since Mercator’s
achievement until very recently. In two articles published in
the prestigious journal Imago Mundi ([3, 4]), we believe we
have finally solved the enigma. In these papers, we demon-
strate that the method most certainly used by Mercator in
1569 is not only deceptively simple – as a matter of fact, the
simplest possible at the time – but also the one that would
come naturally to the mind of a cosmographer aware of the
contributions of his contemporaries.

No explanations were given by Mercator about how the
projection was calculated, aside from his statement about the
proportion between the lengths of meridians and parallels.
Some 30 years later, the young English mathematician Ed-
ward Wright (1561–1615) presented a table of meridional
parts (that is, a list of latitude ordinates) from which a Mer-
cator graticule could be accurately drawn. This table was cal-
culated by iteratively summing the secants of the latitudes in
one-minute intervals, from the equator to 89º 50’, an empiri-
cal approach that solved, with remarkable accuracy, the theo-
retical formulation in equation (1). Although Wright admitted
that his work was inspired by Mercator’s, he clarified in the
preface of his book that the ‘way how this should be done, I
learned neither from Mercator nor anyone else’ [10]. The rele-
vant point to recall here is that the method used by Mercator to
construct his projection was unknown to his contemporaries
and remained unknown up to modern day.

Two types of method have been proposed in the literature
over the last 125 years (starting with the one by Finish geog-
rapher Nils Adolf Erik Nordenskjöld in 1889): (i) those based
on a formula and (ii) those based on a graphical construc-
tion (a review of the methods proposed in the literature, from
1889 to 2003, has been made by Raymond D’Hollander [2],
85–106). Most of the methods in the first group were iterative
solutions of the formula

y(ϕ) = ∆ϕ
∑

secϕ, (3)

derived directly from condition (1), where the value of the lat-
itude increment ∆ϕ and the argument of the secant can vary.

For example, Nordenskjöld used ∆ϕ = 10◦ and the alternative
formulation y(ϕ) = ∆ϕ

∑
sec (ϕ + ∆ϕ/2), where the secant in

each interval [ϕ,ϕ + ∆ϕ] is calculated for the middle latitude
value. A few methods used non-iterative expressions based on
some kind of ad hoc formulation. One type of graphical so-
lution [9] consisted of transferring the coordinates of rhumb
lines previously traced on a globe (specifically the globe made
by Mercator in 1541, which depicts a dense mesh of rhumb
lines) to the plane of the projection.

1 Error assessment

The first step in our study was to assess the accuracy of the
cartographic projection in Mercator’s map, that is, the accu-
racy of its mesh of meridians and parallels. Two unrelated and
independent types of errors affect the graticule of the map: (i)
those associated with the method used to calculate the ordi-
nates of the parallels, as measured from the equator; and (ii)
those related to the physical distortion suffered by the sheets
after printing. In order to correctly identify the construction
method used by Mercator, it was absolutely necessary to sep-
arate these two components. The obvious way of assessing
physical distortion is to compare some simple forms depicted
on the map (circles, squares, etc.) with their theoretical shapes
and then use the differences to correct all coordinate values.
However, no adequate forms are depicted in the area of the
map that can be used effectively to assess distortion of the
main latitude scale (for a detailed description of this part of
the research, see [3], 2–8).

In the bottom right corner of the map is an abacus
entitled Organum Directorium, composed of a graduated

Figure 2. The Organum Directorium of Mercator’s world map of 1569.
The original ordinate of the 40º parallel (Yα) is estimated from the polar
coordinates of its intersection with the lower quarter circle (reproduced
from [3], 3).
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Figure 3. The error signature derived from the Organum Directorium (dashed line) compared to the errors derived from direct ordinate measure-
ments made in three different exemplars of Mercator’s world map: Bibliothèque nationale de France (BNF), University Library of Basel (BAS) and
Maritime Museum of Rotterdam (ROT). The dashed line is a smooth quadratic interpolation through the measured error values, represented by the
open circles. Notice how physical distortion affected the three copies differently (reproduced from [3], 5).

graticule of meridians and parallels for the Northern Hemi-
sphere, which matches the one of the map (Figure 2). Accord-
ing to one of the Latin legends, the Organum was intended to
help in solving simple problems of navigation, such as finding
the course and distance between two points or determining
the coordinates of the point of arrival given the course and
distance from some point of departure. Seven straight lines,
representing the seven classical rhumbs (counted from north
and south to east and west): 11¼º; 22½º, 33¾º, etc., radiate
from the bottom left and top left corners of the abacus. Two
graduated quarter circles centred on the same two points are
shown, each with a radius of a little less than 90 equatorial
units. The important point to note is that it is possible to re-
trieve the original ordinates used to draw the parallels on the
abacus by reading the polar coordinates of their intersections
with the circles. This fact, which remained hitherto unnoticed
by all historians studying the map, was a critical landmark in
our study. For example (Figure 2), the polar coordinates of
the intersection between the lower quarter circle and the 40º
parallel are α = 60.8º and � = 88.95 (the radius of the cir-
cle in equatorial units). Thus, the corresponding ordinate will
be Yα(40) = ρ cosα = 43.4. It is important to stress that this
value is independent of any physical distortions affecting the
sheets of the Organum after they were printed and is the same
for all extant copies of the map. Alternatively, if one directly
measures the ordinate of ϕ = 40º in the latitude scales of each
Organum, different values are obtained for each of them.

The next step in our analysis involved determining the
original ordinates Y of the parallels in the Organum Direc-
torium and comparing them with the theoretical ordinates of
the Mercator projection ψ, as given by equation (2). We called
the distribution of the differences ε(ϕ) = Y − ψ with latitude,
illustrated in Figure 3 (open circles and dashed line), the error
signature of the chart. Notice how different this distribution is
from the ones derived from the direct ordinate measurements
made in the three extant copies of the map.

This error signature was then compared to the errors pro-
duced by the various empirical procedures that Mercator may
have used to calculate the projection, which have been pro-
posed in the literature since the end of the 19th century (Fig-
ure 4). The one closest to the error signature is the iterative so-
lution described by Müller-Reinhardt (1914), which is a direct
application of equation (3) for ∆ϕ = 1º [5]. The maximum
deviation is one third of a degree, at latitude 60º, which cor-
responds to about 0.7 millimetres measured on the Organum.
However, this was a purely conjectural hypothesis that did
not take into consideration any measurements made on the
map or any assessment of distortion. Thus, we were forced to
conclude that none of the methods proposed in the literature
reproduced Mercator’s result and we were back to the initial
question: how did Mercator calculate his projection? The only
possible way to shed some light on this issue was to look at it
historically, trying to better understand how his achievement
related to the contemporary know-how on the subject.

2 The pre-history of the Mercator projection

When Mercator started working on his map, mathematicians
and cosmographers had been addressing the mathematical
problems underlying navigation for some three decades. This
historical background is an indispensable prerequisite to the
understanding of how he came to his solution (for a detailed
description of the historical background underlying the con-
struction of Mercator projection in 1569, see [4]).

In 1537, the Portuguese mathematician Pedro Nunes
(1502–1578) published a collection of works, two of them
discussing the mathematical problems related to navigation
and nautical cartography: Treatise on certain doubts of navi-
gation and Treatise in defence of the nautical chart ([6], 105–
119; 120–141). In those two works, Nunes introduced, for the
first time, the concept of a rhumb line, that is, the line on the
surface of the sphere that intersects all meridians with a con-
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Figure 4. Distribution of the errors associated with five methods proposed in the literature, compared with the error signature of the chart (ORG,
dashed line): Nordenskjöld (1889), Breusing (1892), Müller-Reinhardt (1914), Krücken & Milz (1994) and Krücken (2012). Each degree of error
translates to a length of about 2 millimetres on the Organum (reproduced from [3], 9).

stant angle. This curve was later called a loxodromic curve
or loxodrome (terms that are still in use today). Nunes care-
fully distinguished between navigation with a constant rhumb
(that is, along a rhumb line) and navigation along the shortest
distance (that is, along a great circle). While only the basic
concepts and minimal remarks about the properties of the two
curves were given in the two treatises, it is obvious that what
he had in mind was the drawing of rhumb lines on a globe.

Immediately after Nunes published his works, a scholar
(today unidentified) countered with a refutation, to which
Nunes replied, first with a lengthy defence of his initial ideas
and later (before 1541) with a treatise on how to draw rhumb
lines on a globe. Pedro Nunes’ reply, which may have been
written in the late 1530s, is a manuscript now kept in Flo-
rence (BNCF, Cod. Palatino 825). The treatise on how to draw
rhumb lines on a globe is referred to in a later work of Pe-
dro Nunes but was probably never printed. The texts of this
polemic circulated only in manuscript and most of them are
lost today. From what has reached us, it is clear that one of the
issues at stake was the correct way to mathematically define
a rhumb line and how to construct what was called a ‘table of
rhumbs’: a set of coordinates (latitude vs. longitude) defining
a rhumb line for a specific course on a sphere. These tables
were typically made for each of the seven classical rhumbs
(in 11¼º intervals), starting at the equator and progressing
towards the pole. News about Nunes’ original works – and
possibly also about the polemic that ensued – travelled fast.
Several authors in Europe became familiar with the new con-
cept in the subsequent years. In 1541, Mercator drew rhumb
lines on his well known globe; in 1545, in the Low Countries,
Gemma Frisius (1508–1555) referred to rhumb lines and re-
vealed that he had already represented them on his world map
of 1540 (now lost). In the mid 1550s, the English cosmogra-
pher and mathematician John Dee (1527–1608/9) was deeply
interested in problems of navigation and was corresponding
with Pedro Nunes, having calculated a table of rhumbs that
he called Canon Gubernauticus [8]. Nunes continued to work

on the problem and finally, in his Opera of 1566, published a
detailed study of the mathematical properties of rhumb lines
together with a complete set of instructions on how to cal-
culate tables of rhumbs. He also clarified the asymptotic be-
haviour of rhumb lines near the pole ([7], 214–224). The sim-
plest form of calculating a table of rhumbs for a given rhumb
R is to iteratively solve a series of plane triangles along the
corresponding line on the sphere. Departing from a point on
the equator, one possible way is to choose some constant lat-
itude interval ∆ϕ, trace a segment making an angle R with
the meridian and successively find the coordinates of the next
point on the line. This is done by solving the right-angled
triangle whose hypotenuse is the segment with direction R
and whose catheti are the arc of meridian with length ∆ϕ
and the arc of parallel with length ∆s = ∆ϕ tan R, where
∆λ = ∆s sec ϕ. Variants of this method consist of adopting
constant intervals of longitude (instead of latitude) and in us-
ing the middle latitude ϕ + ∆ϕ/2 as the argument for the se-
cant function. At the time that Mercator engraved his world
map, at least three different tables had been calculated in Eu-
rope: one by the unknown Portuguese scholar around 1540,
one by John Dee – who used the middle latitude as argument
for the secant – (the Canon Gubernauticus) around 1558, and
one formally described by Pedro Nunes in his Opera of 1566,
who adopted a more complex solution involving arcs of great
circle [7].

3 The solution

Constructing a Mercator’s graticule with a table of rhumbs is
an intuitive and straightforward process. For a table contain-
ing the coordinates (ϕ, λ) of a series of points located on a
loxodrome of rhumb R, separated by equal intervals of lati-
tude, the procedure is (Figure 5):
• On squared paper draw: a horizontal line (the equator)

and graduate this line in degrees of longitude; a series of
equally spaced meridians, perpendicular to the equator; and



48 EMS Newsletter March 2016

Raising Public Awareness

Figure 5. Constructing a Mercator graticule with a table of rhumbs, taking the fifth rhumb (56¼º) as an example. Two methods are illustrated accord-
ing to the type of table: tables with constant intervals of latitude (points P1, P2, etc.) and tables with constant intervals of longitude (points M1, M2,
etc.). The ordinate of a parallel of latitude ϕ is found at an intersection of the meridian of longitude λ (dashed lines) with the oblique rhumb, where ϕ
and λ are the coordinates of a point taken from the table of rhumbs (reproduced from [3], 12).

a series of equally spaced parallels perpendicular to the
meridians, forming a square grid with them.
• Choose one of the traditional rhumbs (R) and represent it

as a straight segment passing through the bottom left corner
of the graticule and making an angle R with the meridians.
• From the table of rhumbs, take a point P1 with coordinates

(ϕ1, λ1) and mark it on the segment representing the rhumb,
according to its longitude. The horizontal line containing
this point will be the parallel of latitude ϕ of the projec-
tion. Do the same with all points P2, P3, etc., in the table of
rhumbs.

When all latitudes have been dealt with, the graticule is com-
plete. For a table with constant intervals of longitude, the pro-
cedure will be slightly different owing to the necessity of in-
terpolating, as illustrated in the figure. Assuming that the table
of rhumbs is exact, the choice of a particular rhumb is a ques-
tion of practical convenience because all of them will produce
the same result. Instead of finding the ordinates of the paral-
lels graphically, as illustrated in the figure, a more convenient
and accurate way would be to use the analytical equivalent
y(ϕ) = λ cot(R).

Tables for several different rhumbs and intervals of lati-
tude and longitude were tested in our study, with the purpose
of finding the one whose associated errors were closest to the
error signature of the chart, as determined in the previous part
(for a complete description of this phase of the study, see [3],
10–14). The best match was found to be a table for the sec-
ond rhumb (22½º), using constant intervals of one degree of
longitude, whose error curve has a maximum difference of
one fifth of a degree to the error signature (Figure 6). This is,
by far, the method producing the results closest to Mercator’s
original ordinates, as determined from the Organum Directo-
rium. An argument of a different nature makes this solution
even more historically plausible, which is the fact that tables

with constant increments of longitude produce rhumb lines
that never reach the pole – a feature previously explained by
Pedro Nunes and to which Mercator was certainly sensitive.

4 Final remarks

Our study has shown that Mercator, both for historical and
numerical reasons, most certainly used a table of rhumbs for
calculating his projection in 1569. This settles a century-old
debate about the issue. Mathematicians may be pleased to
know that, in the conception of the most important carto-
graphic projection of all time, the best mathematicians and
mathematics of the time were involved.

Finally, it is interesting to note that Mercator, according
to his biographer Walter Ghim, considered his invention to
‘correspond to the squaring of the circle in a way that noth-
ing seemed to be lacking save a proof’. The reference to the
old puzzle (unsolved at the time) is either an analogy between
the two problems or, as is often suggested, a metaphor em-
phasising the difficulty of the task. But the most important
point here is the statement about the completeness of the so-
lution (‘nothing seemed to the lacking . . . ’) and the lack of a
proof (‘. . . save a proof’). In our view, this further confirms
that Mercator used a table of rhumbs to construct his projec-
tion. Suppose that the latitude scale was calculated in such
a way that a certain rhumb R was represented as a straight
segment making an angle R with the meridians. In that case,
the completeness of the solution would consist: firstly, in all
other rhumbs (and not only the one used in the construction)
also being represented by straight segments; and secondly, in
the proportion between the lengths of meridians and parallels
being conserved as well, as mentioned by Mercator in one
of the map’s legends. One important point to stress is that he
was doubtless aware that the observance of the first require-
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Figure 6. Error signature of the chart (dashed line) compared with those associated with the use of a table of rhumbs for the second rhumb and
increments of one degree of longitude (solid line). The maximum difference between the two error curves is one fifth of a degree (at 75 degrees of
latitude), which corresponds to a length of about 0.4 millimetres measured on the Organum. The upper line, reproduced from Figure 4, refers to the
method proposed by Müller-Reinhardt (1914) [9] based on a secant formula.

ment would lead automatically to the observance of the other.
Thus, the proof to which he was likely referring was that ‘in a
projection depicting rhumb lines as correctly oriented straight
segments, the proportion between the lengths of meridians
and parallels is also conserved, and vice versa’. The formal
demonstration of this property was beyond the reach of math-
ematics in Mercator’s time.
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The 2015 ICMI Awards Felix Klein and  
Hans Freudenthal Medals

The ICMI is proud to announce the seventh awardees of 
the Klein and Freudenthal medals.

The Felix Klein Medal for 2015 is awarded to Alan J. 
Bishop, Emeritus Professor of Education, Monash Uni-
versity, Australia. 
The Hans Freudenthal Medal for 2015 is awarded to Jill 
Adler, University of the Witwatersrand, Johannesburg, 
South Africa.

The ICMI Awards, given in each of the odd-numbered 
years since 2003, are the two prizes created by the ICMI 
to recognise outstanding achievement in mathematics 
education research. They respectively honour a life-
time achievement (Felix Klein Award, named after the 
first president of the ICMI: 1908–1920) and a major 
cumulative programme of research (Hans Freudenthal 
Award, named after the eighth president of the ICMI: 
1967–1970). By paying tribute to outstanding scholar-
ship in mathematics education, the ICMI Awards serve 
not only to encourage the efforts of others but also to 
contribute to the development of high standards in the 
field through the public recognition of exemplars. The 
awards consist of a medal and a certificate, accompanied 
by a citation.

The ICMI Awards represent the judgement of an 
anonymous jury of distinguished scholars of internation-
al stature. The jury for the 2015 awards was chaired by 
Professor Carolyn Kieran, Université du Québec à Mon-
tréal, Canada.

We give some key biographical elements below whilst 
full citations of the work of the two 2015 medallists can be 
found at http://www.mathunion.org/icmi/activities/awards/
introduction/.

Presentation of the medals and invited addresses 
of the 2013 and 2015 medallists and of the 2014 Emma 
Castelnuovo award (attributed for the first time to Hugh 
Burkhardt and Malcolm Swan, University of Notting-
ham, UK) will occur at the ICME-13 opening ceremony, 
to be held in Hamburg, 25 July 2016.

The following table gives a list of all the previous 
awardees since the creation of the medals in 2003:

Felix Klein Medal Hans Freudenthal Medal
2003 Guy Brousseau Celia Hoyles
2005 Ubiratan D’Ambrosio Paul Cobb
2007 Jeremy Kilpatrick Anna Sfard
2009 Gilah Leder Yves Chevallard
2011 Alan Schoenfeld Luis Radford
2013 Michèle Artigue Frederick Leung

ICMI Column
Jean-Luc Dorier (University of Geneva, Switzerland)

Alan Bishop’s early re-
search on spatial abilities 
and visualisation was trans-
formed during sabbatical 
leave in 1977 to Papua New 
Guinea, where he began to 
think about the process of 
mathematical enculturation 
and how it is carried out in 
different countries. His sub-
sequent book, Mathemati-
cal Enculturation: A Cul-

tural Perspective on Mathematics Education, published 
in 1988, was groundbreaking in that it developed a new 
concept of mathematics – the notion of mathematics as a 
cultural product and the cultural values that mathemat-
ics embodies. Further evolution of this notion occurred 
as a result of co-organising a special day-long event 
during the 1988 Sixth International Congress on Math-
ematical Education devoted to “Mathematics, Education 
and Society”, which eventually led to successive confer-
ences on the political and social dimensions of math-
ematics education. Alan Bishop has been instrumental 
in bringing the political, social and cultural dimensions 
of mathematics education to the attention of the field. 
Alan Bishop succeeded Hans Freudenthal, founding edi-
tor of Educational Studies in Mathematics, with Volume 
10 in 1979, ending with Volume 20 in 1989. In 1980, he 
founded and became the series editor for Kluwer’s (now 
Springer’s) Mathematics Education Library, which cur-
rently comprises 63 volumes. He was the chief editor of 
the International Handbook of Mathematics Education 
(1996) and the Second International Handbook of Math-
ematics Education (2003) and he continued as an editor 
for the Third International Handbook (2013). Through 
his tireless and scholarly work in the area of publication, 
Alan Bishop has enabled research in mathematics edu-
cation to become an established field. He is therefore an 
eminently worthy recipient of the Felix Klein Medal for 
2015.

Professor Jill Adler led 
an outstanding research 
programme dedicated to 
improving the teaching 
and learning of mathemat-
ics in South Africa – from 
her 1990s groundbreak-
ing, sociocultural research 
on the inherent dilemmas 
of teaching mathematics 
in multilingual classrooms 
through to her subsequent 
focus on problems related 
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qualify for the study of mathematics-related courses at 
university. This ongoing research and development pro-
ject is a further testament to Jill’s unstinting efforts to 
face head-on the challenges of improving mathematics 
teaching in post-apartheid South Africa – efforts that 
have been recognised by several awards over the years, 
including the University of the Witwatersrand Vice Chan-
cellor’s Research Award for 2003, the FRF Chair of Math-
ematics Education in 2009, the Gold Medal for Science 
in the Service of Society from the Academy of Science 
of South Africa in 2012, and the Svend Pedersen Lecture 
Award in Mathematics Education from Stockholm Uni-
versity in 2015. For the inspiring, persistent and schol-
arly leadership that Jill Adler has provided to the field 
of mathematics education research and practice in South 
Africa and beyond, she is truly deserving of the Hans 
Freudenthal medal for 2015.

to mathematical knowledge for teaching and mathemat-
ics teacher professional development. Her research of 
multilingual classrooms during a period of change in 
South Africa puts into stark relief the tensions involved 
in teaching and learning mathematics in classrooms 
where the language of instruction is different from the 
language of teachers’ and students’ everyday lives. In her 
2001 book, Teaching Mathematics in Multilingual Class-
rooms, she displays the strong theoretical grounding that 
has served to advance the field’s understanding of the 
relationship between language and mathematics in the 
classroom. From 1996 onward, Jill has spearheaded sev-
eral large-scale teacher development projects. The most 
recent one, begun in 2009, called the Wits Maths Connect 
Secondary project, aims to further develop mathemat-
ics teaching practice at the secondary level so as to en-
able more learners from disadvantaged communities to 

ERME Session at ICME-13
ICME-13 (24–31 July 2016 in Hamburg, Germany) is 
an outstanding opportunity to promote and strengthen 
communication, cooperation and collaboration between 
researchers in mathematics education from Europe and 
around the world. In this spirit, ERME invites attendants 
in two parallel sessions to gain firsthand insights into the 
work and philosophy of European research and ways of 
promoting young researchers.

The session “Voices from a CERME Working Group 
experience – From a study of mathematics teaching to 
issues in teacher education and professional develop-
ment” is coordinated by Stefan Zehetmeier (Austria), 
Despina Potari (Greece) and Miguel Ribeiro (Norway). 
It will give insights into the academic work conducted 
within and between Thematic Working Groups at the 
bi-annual ERME conference (CERME). The study of 
mathematics teacher education and professional devel-
opment is prominent in Europe and has been addressed 
in three different Thematic Working Groups, which will 
collaborate for the ICME session: “Mathematics teacher 
education and professional development”, “Mathemat-
ics teacher and classroom practices” and “Mathematics 
teacher knowledge, beliefs and identity”. The session 
will not only allow insights into the topics that have been 
raised in previous CERMEs and activities that have tak-
en place but also highlight recent developments in Euro-
pean research. It will also provide invited presentations 
and potential for small group work and discussions. The 
session aims to enable collaborative work and further 
elaboration of emerging issues in the field with research-
ers from all over the world. 

The session “Young Researchers in Mathematics 
Education – Building bridges between Europe and the 

ERME Column
Cristina Sabena (University of Torino, Italy) and Susanne Schnell (University of Cologne, Germany) 

world” will be hosted by YERME (Young Researchers 
in the European Society for Research in Mathemat-
ics Education) with support from the German Young 
Researchers Group (Nachwuchsvertretung der GDM). 
It will be coordinated by Susanne Schnell (Germany), 
Jason  Cooper (Israel), Cristina Sabena (Italy), Raja Her-
old (Germany) and Angel Mizzi (Germany). This session 
will focus on introducing the work and structure of the 
YERME (Young Researchers in ERME) and also high-
light ERME offers for young researchers (YERME day, 
YESS Summer School). Furthermore, presentations and 
discussions will give insights into the situation of young 
researchers in mathematics education in Germany and 
Europe and look at implications for the future of the 
young scientific community. All participants will be in-
vited to share and discuss their experiences. 

Both sessions are scheduled for Saturday 30 July, 
16:30–18:00, and will include a short presentation about 
the society, held by the President of ERME (Viviane 
Durand-Guerrier) and the Vice-President (Susanne Pre-
diger).

YESS-8
The 8th YERME Summer School (YESS-8) will take 
place 13–20 August 2016 in Poděbrady, Czech Republic, 
with the support of the local committee chaired by Nad’a 
Vondrová. Young Researchers in ERME (YERME), 
especially PhD students and postdocs in mathematics 
education, are invited to participate in a rich programme 
of workshop sessions, lectures and Thematic Working 
Groups. The latter represent the heart of the summer 
school, allowing approximately 20 hours of work with 
peers from similar fields of research, guided by interna-
tionally renowned experts. In accordance with the spirit 
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of ERME, YESS-8 promotes collaboration, cooperation 
and communication among young scholars but also ena-
bles exchanges with more experienced researchers. Past 
experience shows that the working groups not only pro-
vide profound opportunities to discuss research related 
issues in depth but also provide the foundation for work 
collaborations and friendships among the participants 
which continue long after the summer schools are over. 

Proposed topics for the Thematic Working Groups at 
YESS-8 are: 

- Teacher knowledge and practice; teacher education 
and professional development.

- Teaching and learning mathematics at primary level.
- Teaching and learning mathematics at secondary and 

advanced level.
- Information technologies in mathematics teaching and 

learning (software, internet, etc.).
- Cognitive and affective factors in learning and teach-

ing mathematics.
- Theoretical perspectives, linguistic and representation-

al aspects of teaching and learning mathematics.

Participants are asked to prepare and present a paper 
concerning the current status of their research, e.g. pre-
liminary results, work in progress or comprehensive in-
formation about graduate studies and/or future research 
plans. This paper will be the basis to compare, integrate 
and define their own research within the group of other 
young researchers, as well as in the broad field of math-
ematics education research.

YESS is a well-established ERME institution, which 
has taken place in Klagenfurt (Austria, 2002), Poděbrady 
(Czech Republic, 2004), Jyväskylä (Finland, 2006), Trab-
zon (Turkey, 2008), Palermo (Italy, 2010), Faro (Portugal, 
2012) and Kassel (Germany, 2014).

The international programme committee is formed 
of Paolo Boero, Jason Cooper, João Pedro da Ponte, Su-
sanne Schnell, Konstantinos Tatsis and Nad’a Vondrová. 
Paolo Boero is the scientific coordinator.

More details can be found on the YESS-8 website: 
http://ocs.pedf.cuni.cz/index.php/YESS/YESS8, and the 
YERME website: http://www.mathematik.uni-dort-
mund.de/~erme/index.php?slab=yerme.

The deadline for applications for admission was 20 
January 2016.

Cristina Sabena [cristina.sabena@uni-
to.it] is currently an associate profes-
sor at the Department of Philosophy 
and Science of Education, University 
of Torino. She has been an ERME 
Board Member since 2013.

Susanne Schnell [susanne.schnell@
uni-koeln.de] is currently a substitute 
professor at the Institute for Didac-
tics of Mathematics, University of Co-
logne. She has been an elected repre-
sentative of young researchers on the 
ERME Board since 2013.

Practices for Identifying, Supporting 
and Developing Mathematical Gifted-
ness in Schoolchildren: The Opener 
for a Series of Country Reports
EMS Education Committee

gifted is aligned to the well-recognised need to increase 
the number of STEM1 students in Europe. Additionally, 
this topic is of importance to many members of the EMS 
community, who themselves have had experience of be-
ing “the gifted” in particular education systems before 
later becoming involved in gifted education.

The committee recognises that there is not a unani-
mous approach to defining what it means to be mathe-
matically gifted, as well as the related concepts of high 

The EMS Education Committee has begun publishing a 
series of reports about practices for identifying, support-
ing and developing mathematical giftedness in school 
children who reside in countries represented within the 
EMS. The idea to report on the respective scenarios with-
in different countries in the pages of the newsletter was 
suggested by the President of the EMS Pavel Exner at 
the meeting of the committee in Prague in February 2015. 
The committee further discussed this idea at the meeting 
in Sienna in October 2015 and the discussion converged 
to the opinion that the idea is timely and important. It is 
timely because a topic of nurturing the mathematically 

1 STEM stands for Science, Technology, Engineering and 
Mathematics. 
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1 This is an abridged version of the article published on the 
website of the EMS Education Committee: http://www.euro-
math-soc.eu/ems_education/education_homepage.html.

2 See http://cms.education.gov.il/EducationCMS/Units/Gifted/
English. 

mathematical ability, mathematical talent and mathemati-
cal promise. Mönks and Pflüger’s (2005) inventory of 
gifted education in Europe refers to giftedness as “the in-
dividual potential for high or outstanding achievements 
in one or more areas of ability” (p. 3). Accordingly, math-
ematical giftedness can be referred to as the individual’s 
potential for high or outstanding achievements in math-
ematics. 

It is relatively easy to characterise the mathemati-
cally gifted a posteriori, if and when they produce results 
that are acknowledged by the mathematics community 
as outstanding. The main challenge of gifted education 
is to recognise and nurture the gifted before they have 
a chance to demonstrate outstanding achievements (i.e. 
while they in kindergarten or in school). 

Different education systems deal with this challenge 
in different ways and, as a rule, these are driven by the 
equity principle. This principle states that each student 
should be provided with equal opportunities to fulfil their 
potential in accordance with their special characteristics 
and needs, and that excellence in mathematics requires 
high expectations and worthwhile opportunities for all. 

The principle applies, among others, to those students 
who show signs of being insufficiently challenged by op-
portunities provided by a country’s regular mathematics 
curriculum or show interest in mathematics beyond the 
regular curriculum. 

Practices of identifying and supporting such students, 
some of whom will constitute the next generation of 
mathematicians, will be presented in the current series of 
country specific reports. The reports are intended to be 
of different formats but, generally speaking, each report 
will provide: (1) a brief historical account of a country’s 
approach to gifted education; (2) background informa-
tion on regular mathematics education; (3) an overview 
of the range of the country’s educational activities that 
aim to enrich or deepen the regular mathematics curricu-
lum (this is the main part); and (4) trends. We begin by 
presenting the scene in Israel.

References
Mönks, F. J., Pflüger, R., & Radboud Universiteit Nijmegen. (2005). 

Gifted education in 21 European countries: Inventory and perspec-
tive. Radboud University Nijmegen.

Practices for elementary school students 
(Grades 1–6)
Israeli first graders are enrolled in elementary school by 
their place of residence and study mathematics in hetero-
geneous classes. In Grades 2 or 3, all Israeli children take 
an examination for determining eligibility for accept-
ance onto two special governmental programmes. About 
1% of the children are enrolled in special classes for the 
gifted that operate in selected elementary and second-
ary schools (Grades 3–12) around the country. The top 
5% are eligible for acceptance onto a weekly enrichment 
day programme, which operates at 52 regional centres 
(Grades 3–6). The students leave their regular school to 
go to one of these centres for one day a week in order 
to study a variety of scientific topics, from medicine to 
mathematics. 

In addition, interested parents can easily find after-
school mathematics clubs, forums and circles for their 
children, operated by universities or public associations. 
Recently, the Math-by-mail programme for students of 

Practices for Identifying, Supporting 
and Developing Mathematical Gifted-
ness in Schoolchildren: The Scene in 
Israel1
Boris Koichu (Technion, Haifa, Israel, on behalf of the EMS Education Committee)

Guiding principles
The education of gifted students in Israel relies on the fol-
lowing positions (e.g. Leikin & Berman, 2016): the equity 
principle (refers to equal opportunities for students with 
different needs), the diversity principle (refers to the di-
versity of fields in which human talent can be manifested), 
dynamic perspective (acknowledges that cultivating hu-
man talents requires designing unique learning environ-
ments, distinct study tracks, and appropriate teachers and 
curricula) and holistic approach (acknowledges the range 
of instructional approaches for promoting a range of abili-
ties and skills). These positions reflect and stipulate the Is-
raeli scene, where various in-school programmes and out-
of-school activities for mathematically promising students 
are conducted in different forms and formats.2
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Grades 3–9 has received a good response all over the 
country.3 

Practices for junior high school students 
(Grades 7–9)
There is a one-level mathematics curriculum for junior 
high school but many schools split their students into 
A-stream and B-stream classes in mathematics lessons. 
Additionally, the Ministry of Education, in cooperation 
with the Technion and the Hebrew University of Jeru-
salem, conducts a programme that gives an equal num-
ber of extra hours to low-achieving and high-achieving 
mathematics students. There also exist special mathemat-
ics classes, at different levels of inclusiveness, in which 
mathematics is studied 7–9 hours a week, compared to 
the regular 5 hours a week. 

The most prestigious programme is the four-year Fu-
ture Scientists and Inventors programme4 for exception-
ally gifted mathematics students (beginning in Grade 9). 
The participants of the programme attend one of the par-
ticipating universities two days a week in order to take 
academic courses, listen to lectures by distinguished pro-
fessors and experience laboratory work.

Practices for senior high school students 
(Grades 10–12)
Israeli 10th graders are enrolled in mathematics study at 
one of three levels: low, regular or high. Currently, 8% of 
senior high school students study mathematics at the high 
level. Needless to say, there are students who need more 
advanced opportunities to study mathematics than even 
the high level curriculum can provide. Some of the above 
mentioned programmes begin in elementary and junior 
high school and continue up to senior high school. Those 
not yet mentioned include integration of school students in 
university courses. The participants in these programmes 
pass the matriculation exams in Grades 10 or 11 and begin 
studying academic courses toward a BSc degree. 

In addition, in-school and out-of-school programmes 
aimed at engaging students in research are in the main-
stream of Israeli education for the gifted. For example, 
each summer the Technion organises a two-week Num-
ber Theory Camp for 9th–12th grade students. At the 
camp, the students cope with challenging problems re-
quiring exploration. The Technion also runs an interna-
tional summer research programme for high school stu-
dents called SciTech. 

Mathematics competitions
The oldest mathematics competitions in Israel are the 
Grossman Olympics (which started in 1960) and the Gil-
lis Olympics (which started in 1968). The Gillis Olympics 
begins with a test sent to all interested schools and con-
tinues with a competition conducted at the Davidson In-
stitute of Science Education. This competition serves as a 
tool for choosing an Israeli team for the IMO. It is worth 

mentioning that Israel does not make the shortlists at the 
IMOs; the country’s best results have been 11th place 
in 2000 and 13th place in 2013. The main mathematics 
competition for junior high school students is the Zuta 
Olympiad (Mini Olympics). There are also mathematics 
competitions “for all”, e.g. the Open Competition (since 
1989) and the Kangaroo (since 2013). 

Thus, the main types of mathematics competition are 
represented in Israel but the mathematics competition 
movement is less extensive than in some other countries.

Trends 
Mathematics education is high on society’s agenda now-
adays. Preparation of sufficient numbers of teachers who 
can teach the high level mathematics curriculum and 
work on the special programmes for the gifted is the bot-
tleneck of the system. The emerging trend is a greater 
involvement of the public sector and IT industry. Obtain-
ing an additional BSc degree in STEM education has be-
come popular among middle-aged IT specialists looking 
for a second career or a way to contribute to the educa-
tional system while continuing to work in industry.5

Another trend is integrating distance learning into 
regular school timetables. The Virtual High School6 has 
recently become a reality for hundreds of students in pe-
ripheral schools. The best teachers reach these students 
by means of an interactive digital platform.

Finally, efforts are made to address the needs of ex-
ceptionally gifted students within the regular school sys-
tem. In 2015, a new high school curriculum containing 
four levels of mathematics study was launched. The new 
advanced high level is for about 1% of students who as-
pire to become mathematicians, whereas the high level 
remains for those who strive for careers in the IT indus-
try (currently 8% of high school students, while the Min-
istry’s goal is for it to reach 15% in 2020). It is planned 
that the Virtual High School will also operate at the new 
advanced high level of mathematics study.

References
Leikin, R., & Berman, A. (2016). Mathematics for students with high 

mathematical potential in Israel. In Vogeli, B. (Ed.), Special sec-
ondary schools for the mathematically talented: An international 
panorama (pp. 117–144). New Jersey & Singapore: World Scientific.

5 An example is the Technion VIEWS programme. See http://
www.focus.technion.ac.il/Jan15/education_story2.asp.

6 See http://jtec.macam.ac.il/portal/ArticlePage.aspx?id=1431.

3 See http://davidson.weizmann.ac.il/en/mbm.
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Matching the arXiv and zbMATH
During the course of 2015, zbMATH released its new 
citation matching interface.5 Here, users can enter a ci-
tation string, which will be matched to a zbMATH da-
tabase entry if possible.6 Due to several factors, such as 
the wealth of different citation formats and norms, the 
possibility of misspellings and the existence of different 
competing transcription systems for non-English author 
names, this cannot be done in a completely rigorous fash-
ion. Instead, the algorithm must allow for a certain de-
gree of variation.

In the general case, where a user just enters a citation 
string without any formatting information, the first step 
is to determine which parts of that string constitute an 
author’s name, a title, a page number and so on. Methods 
from Natural Language Processing – specially adapted to 
the problem domain – are used to accomplish this. Once 
this information is obtained, a specialised search index 
is used to make a fuzzy search, which tries to match this 
data as accurately as possible before returning a list of 
results, each result having a matching score that meas-
ures the degree of agreement with the search query.

The question then becomes at what point the match-
er should be trusted, i.e. what should be the minimum 
value for the matching score in order to accept the result 
as a valid match. To determine this, a test dataset (gold 
standard) was collected from about 4,800,000 references 
matched via DOI (Digital Object Identifier), which im-
plies a large degree of confidence, as well as overlap with 
articles from the computer science bibliography dblp.7

The same algorithm can be used to match zbMATH 
entries to arXiv articles, whose metadata can be harvest-
ed using the OAI (Open Archives Initiative) standard, 
which is supported by the arXiv and several other large 
institutional repository providers.8 While the biblio-
graphic information in this case is already split into au-
thor and title, the matching is made more difficult due to 
the common lack of journal source and pagination data. 
There are about 60,000 articles in the arXiv maths set 
with a DOI supplied (of which 45,000 have correspond-
ing entries in zbMATH), from which another reliable 
test dataset was created and used to again compute a 
minimum matching score appropriate to this use case. 
This made it possible to match more than 75,000 further 

Will All Mathematics Be on the arXiv 
(Soon)?
Fabian Müller and Olaf Teschke (both FIZ Karlsruhe, Berlin, Germany)

Introduction
For about 25 years, the arXiv has become established 
as an efficient tool for rapid research dissemination. 
Initially a service to cater for the needs of high-energy 
physics, it was soon adapted in related research areas 
(e.g. in mathematics on a broad scale by algebraic ge-
ometers since 1998). Perhaps the most common use is 
still as a notification tool about recent developments, 
though it increasingly serves other functions (e.g. archi-
val/repository).

In order to fulfil these functions, a natural question 
is that of completeness. What share of recent research 
can one expect to be covered in a framework based on 
voluntary contributions by individuals? Personal expe-
rience gives very different answers, depending on the 
subject of research, from “almost everything I need” to 
“only a small part”. Some years ago, a study analysing 
a sample of several thousand articles1 by hand obtained 
very different ratios for several areas in physics. Given 
the possibility of bias for certain samples, it would cer-
tainly be desirable to have results on a larger scale; but 
it is obviously non-trivial to obtain reliable data due to 
inherent effects like the delay of publications, different 
area definitions, etc. 

A first rough approximation – relating 34,797 submis-
sions in 2015 in arXiv:math/math-ph (including cross-
lists)2 to about 120,000 new entries indexed in MathSci-
Net3 or zbMATH during the same period – would lead 
one to deduce that almost 30% of the recent mathemati-
cal literature is freely available on the arXiv, with a still 
growing share. However, it is not clear at all to what ex-
tent these collections overlap.

As mentioned earlier in this column,4 a recently in-
troduced feature of zbMATH, in the effort to connect 
the various digital resources in mathematics, is the inte-
gration of links to arXiv versions of zbMATH documents 
via matching heuristics. Besides the obvious benefits of 
providing an alternative free source, this also allows for 
a more detailed analysis of the questions mentioned 
above, though the inherent inaccuracies due to heuris-
tics, submission behaviour and indexing policies need to 
be taken into account. 

1 T. Ingoldsby, “Physics Journals and the arXiv: What is Myth 
and What is Reality?”, Technical Report, American Institute 
of Physics (2009).

2 http://arxiv.org/year/math/15.
3 See also E. Dunne, MathSciNet: Digital Guide to the Math-

ematical Literature, 2015 SIAM-OPSA, Gaithersburg.
4 O. Teschke, zbMATH as a Hub Connecting Digital Sources, 

Eur. Math. Soc. Newsl. 98, 61–62, 2015.

5 Available at https://zbmath.org/citationmatching/; at times 
affectionately called zbMATcH.

6 An interface for processing BibTeX files and an API for use 
in scripts are available as well.

7 http://dblp.uni-trier.de/.
8 See https://arxiv.org/help/bulk_data and links therein.
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mission year. On average, the publication delay is about 
1.5 years. It should be noted that there is a significant 
bias here due to the Journal of High Energy Physics – its 
considerable bulk of papers (basically all of which are 
on the arXiv) in some years accounts for almost 10% of 
the arXiv/zbMATH overlap and, for a large proportion 
of them, the time gap between submission and publica-
tion is only about two months. This accounts for a large 
proportion of the same-year publications and decreases 
the total average by almost two months overall. It should 
also be kept in mind that this is an ongoing process and 
some research might be published with a huge delay that 
is not yet visible.12

Growth rates and missing papers
Whilst the amount of new mathematical research avail-
able via various platforms is growing all the time, it does 
so at various rates. Over the last decade, the number of 
mathematical articles added to zbMATH every year has 
grown by (only) about 4%, whilst yearly submissions to 
arXiv:math/math-ph have increased by 11% (the overlap 
of the arXiv with zbMATH has grown even a bit faster). 
If this momentum is maintained, one could expect that, 
within 20 years, recent mathematical research (at least) 
would be almost completely available via the arXiv; on 
the other hand, the extremely low rate of retroarchiving 
submissions makes it highly unlikely that a complete cor-
pus will be achieved (in the sense of the envisioned Global 
Digital Mathematics Library13) in this way. However, there 
is no reason for pessimism in overcoming this obstacle – it 
just shows that retroarchiving by mathematicians may not 
be an effective approach. Frameworks like the European 
Digital Mathematics Library,14 relying on suitable moving 
wall policies, seem to be more adequate solutions.

Whilst the amount of research available in zbMATH 
but not on the arXiv may be explained by subject spe-
cifics (see below), the question remains about arXiv 
submissions that do not seem to make it to publication. 

zbMATH articles to their corresponding arXiv preprints 
with a precision of 97.0%, bringing the total number of 
articles with an arXiv link to over 120,000.

Exploring some general figures on submission 
and publication behaviour 
On this basis, we can employ zbMATH rather easily to 
create some interesting statistics. The reader is invited 
to try out some examples of their own – simply adding 
arxiv* before a query will restrict the search to articles 
with an arXiv link.9 As an overview, searching for arXiv* 
alone currently provides about 125,000 results, which 
makes up 3.5% of mathematics literature since 1868. Per-
haps more interesting is the share of recent publications. 
These figures can be directly read from the zbMATH fil-
ter (which also offers a breakdown by publication year). 
Starting with an almost negligible ratio of 0.05% in 1991, 
the overall share of mathematics publications available 
via the arXiv has recently approached almost 20% – a 
quite impressive development. For a number of subject 
areas, the ratio is much higher still (see the last section 
of this article). 

In principle, these figures could be increased further 
by retroarchiving efforts. However, a second look indi-
cates that this option is rarely used. There are certainly 
prominent examples, including the arXiv version of 
SGA1.10 However, refining the zbMATH search to arXiv 
submission years (e.g. “arXiv:11*” in the new enumera-
tion or “arXiv:math/06*” in the old pattern) shows that 
the dominating use case is still the preprint function of 
the arXiv. For less than 5%,11 the publication year pre-
dates the submission. On the other hand, the distribution 
also provides some figures about the publication delay 
(counted as the difference between the submission date 
and the publication date; naturally, this only makes sense 
for non-retroarchived papers). 

Overall, the figures show an approximately Poisson 
distribution, with a clear peak in the year after submis-
sion, followed by the year after that and then the sub-

9 Cum grano salis, since the phrase may also appear in the 
search index via the review text – but this concerns less than 
5000 documents, or 0.15% of the database.

10 A. Grothendieck, M. Raynaud, Revêtements étales et groupe 
fundamental. Lecture Notes in Mathematics 224 (1971; 
Zbl 0234.14002); arXiv:math/0206203; currently the math pa-
per on arXiv with the earliest publication year.

11 Precise figures can not be given reliably since matching inac-
curacy may influence this significantly.

arXiv versions available for zbMATH documents in relation to their 
publication year.

Publication delay and retroarchiving figures for three arXiv submis-
sion years.

12 The most extreme case so far seems to be Alfredo Poirier, 
Hubbard forests. Ergodic Theory Dyn. Syst. 33, No. 1, 303–
317 (2013), arXiv:math/9208204, with a delay of no less than 
21 years.

13 Th. Bouche, Update on recent Global Digital Mathematics 
Library (GDML) developments. Eur. Math. Soc. Newsl. 94, 
41–42 (2014).

14 Th. Bouche, Introducing EuDML, the European Digital 
Mathematics Library. Eur. Math. Soc. Newsl. 76, 11–16 (2010); 
J. Rákosník, O. Teschke, EuDML: the prototype and further 
development. Eur. Math. Soc. Newsl. 85, 57–58 (2012).
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There are a surprisingly large number of them: overall, 
there are more than 280,000 arXiv:math/math-ph sub-
missions since 1991 compared to only about 125,000 pub-
lished in a source indexed in zbMATH. There is no easy 
answer to explain this gap, since the difference between 
published mathematics and arXiv submissions includes 
such diverse contributions as Perelman’s work on the 
Geometrisation Conjecture alongside frequent submis-
sions of elementary proofs of Fermat’s Last Theorem 
or the Riemann Hypothesis. Whilst the latter may even 
succeed in getting published occasionally, journals con-
taining them will usually not be indexed in zbMATH.15 

On the other hand, the scope differs (certain math-ph 
submissions may very well be beyond the scope of zb-
MATH) and there is also a possible contribution by an 
indexing delay in zbMATH.16 These two effects can be 

roughly estimated by comparing the DOI figures above 
– since 60,000 arXiv submissions with DOI match to 
45,000 in zbMATH, one may expect that about 166,000 
arXiv:math/math-ph articles have been published. A 
further effect comes from the publication delay – from 
the figures above, one may reasonably expect that about 
40,000 recent arXiv submissions are currently still being 
processed. That leaves about 70,000 arXiv submissions, 
or 25%, which do not make it to publication at all.

Different cultures in different areas
zbMATH also allows for a further analysis according 
to subject area, as encoded in the Mathematics Subject 
Classification. By employing the filters again, one sees 
immediately that the proportion of publications with 
arXiv versions available varies dramatically with field: 
from almost a third of the publications in algebraic ge-

ometry since 1991 or almost 30% in algebraic topology 
and K-Theory, to only about 2% in numerical mathemat-
ics and less than 0.1% in mathematics history. This pat-
tern still prevails for recent publications, though some 
changes are certainly visible, e.g. for the publication year 
2014, about 55% of research in algebraic geometry, al-
gebraic topology and K-Theory is available through the 
arXiv but only about 10% in numerical mathematics and 
1% in mathematics history or mathematics education. 

These figures make it a bit less likely that one may 
reach reasonably complete coverage of recent research 
via preprint repositories soon, since the areas very ac-
tive on the arXiv seem to be approaching a level of satu-
ration, while for others its use is still rather uncommon. 
But, as can be seen from the diagrams, the behaviour can 
also change quickly. 

Overall, the analysis shows that there are promising 
approaches to preserve the mathematical research in the 
public domain – for more recent publications this is more 
and more the arXiv and for mathematical heritage this 
is digital libraries like EuDML17. While there is no hope 
that a general solution will work for the whole corpus, 
the joint forces of different approaches may eventually 
prevail, and the main task will be to ensure a sustainable 
framework to connect the different services and make 
them work well together.

Fabian Müller [fabian.mueller@fiz-
karlsruhe.de] studied mathematics 
and computer science at Humboldt-
Universität, Berlin. After finishing 
his doctoral studies in algebraic ge-
ometry in 2013, he started working at 
zbMATH, where he is responsible for 
coordinating IT development efforts. 

Olaf Teschke [olaf.teschke@fiz-karlsruhe.de] is a member 
of the Editorial Board of the EMS Newsletter, responsi-
ble for the Zentralblatt Column. Currently, he also serves 
as a member of the GDML working group and as acting 
Editor-in-Chief of zbMATH.

15 See also G.-M. Greuel, D. Werner, in: Open access – four 
opinions. Eur. Math. Soc. Newsl. 91, 39–43 (2014).

16 Caused, e.g., by the necessary selection process for sources 
which contain not only mathematics, or by print-only publi-
cations, like several conference proceedings.

17 Both services – almost 125,000 publications available via 
arXiv and more than 240,000 via EuDML, with an overlap 
(according to zbMATcH) of about 4000 – already ensure free 
access to more than 10% of the math corpus.

Percentage of arXiv coverage 
for main MSC subject classes.
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Book Reviews

Frédéric Paugam

Towards the Mathematics of
Quantum Field Theory

Springer, 2014, xvi + 487 pp.
ISBN print: 978-3-319-04563-4
ISBN e-book: 978-3-319-04564-1

Reviewer: Hirokazu Nishimura (Tsukuba, Japan)

Quantum Field Theory (or QFT) is a splendid hybrid of three
major themes of modern physics: quantum theory, the field
concept and special relativity. Although many mathemati-
cians are quite afraid of it, the central concepts and technicali-
ties of QFT are easy to grasp. In particular, many daily tools of
working quantum field theorists, such as Feynman diagrams
and renormalisation group flows, are even picturesque. It is
pleasing to live in a universe where low energy physics is de-
coupled from high energy physics, the former surely being
described by quantum field theories and the latter being de-
picted, possibly, by string theories or similar. Contemporary
mathematicians are no longer allowed to boast of the bliss of
their ignorance of QFT. Recall, by way of example, how Wit-
ten’s supersymmetric QFT of U (1) gauge symmetry (leading
to Seiberg-Witten theory) replaced Donaldson’s topological
QFT of S U (2) gauge symmetry, which could be called a rev-
olution.

This book is by no means a textbook on QFT. Techni-
cal results are usually presented without proofs, for which the
reader is referred to appropriate references. Even technical
terms are often introduced without palpable definitions. It is
very difficult to imagine a novice in category theory not be-
ing swallowed up by the flood of jargon of higher category
theory. The book should be regarded as a rough design of
the author’s grandiose approach to QFT. For a good textbook
on QFT for contemporary mathematicians, Zeidler’s ongoing,
all-inclusive, six volume (when complete) textbook [Quan-
tum Field Theory, Springer] is recommended. The first three
volumes [27], [28] and [29] are already available, the fourth
is supposed to deal with quantum mathematics in general and
the sixth is intended to cover quantum gravity and string the-
ory. All mathematicians and physicists are awaiting the re-
maining three volumes with a lot of enthusiasm. If the author
had wanted to write a textbook on QFT along these lines, it
would have been at least as voluminous as Zeidler’s.

The main bulk of this book is divided into three parts:
Part 1 (Mathematical Preliminaries) from Chapter 2 to Chap-
ter 13 over about 280 pages, Part 2 (Classical Trajectories and
Fields) from Chapter 14 to Chapter 16 over about 40 pages,

and Part 3 (Quantum Trajectories and Fields) from Chapter
17 to Chapter 24 over about 100 pages. The first chapter is an
introduction of about 30 pages. The remarkably unique con-
tents of Part 1 (covering mathematical tools found in books
oriented towards QFT) are Chapter 2 (A Categorical Tool-
box), Chapter 3 (Parametrized and Functional Differential
Geometry), Chapter 9 (Homotopical Algebra), Chapter 10 (A
Glimpse at Homotopical Geometry) and Chapter 13 (Gauge
Theories and Their Homotopical Poisson Reduction).

Chapter 2 consists of five sections, with a sequel in Chap-
ter 9. The first section § 2.1 (Higher Categories, Doctrines
and Theories) introduces higher categories, doctrines such
as (n + 1)-categories, theories and models such as objects
of the same doctrine. Adjunctions, (left and right) Kan ex-
tensions, limits and colimits (such as special cases of right
and left Kan extensions) are dealt with from the stand-
point of higher categories. The Yoneda dual n-categories
C∨ and C∧ of an n-category C are defined and the higher
Yoneda lemma is stated as an hypothesis. Even Ehresmann’s
sketches, as a natural generalisation of algebraic theories
in the sense of Lawvere [14], are touched upon from the
standpoint of higher categories. The book uses a presenta-
tion based upon the setting of doctrines and higher categor-
ical logic. With the advantage of a direct homotopical gen-
eralisation, § 2.2 (Monoidal Categories) gives monoidal cat-
egories in a doctrinal guise, while symmetric monoidal cat-
egories are introduced in § 2.3 (Symmetric Monoidal Cate-
gories) equivalently to how the traditional one is introduced
by generalising Segal’s theory of Γ-spaces. The next sec-
tion § 2.4 (Grothendieck Topologies) is a succinct review.
The final section § 2.5 (Categorical Infinitesimal Calculus)
gives Quillen’s tangent category [20] for a genuinely cat-
egorical treatment of differential calculus, with the advan-
tage of allowing one to deal simultaneously with all geo-
metric structures in the book as well as generalising directly
to the higher categorical setting of doctrines and theories.
Grothendieck connections introduced in this section subse-
quently play a unifying role in Chapter 7 (Connections and
Curvature).

Chapter 3, consisting of three sections, gives appro-
priate tools for differential geometry on spaces of fields,
which are directly susceptible to homotopical generalisa-
tions in Chapter 10. Roughly speaking, there are two ap-
proaches: parametrised and functional. The parametrised ap-
proach is appropriate for treating differential forms, while the
functional one is good for dealing with vector fields. The
parametrised approach can be seen in [4] and [1] in the arena
of algebraic geometry and in [8] in the terrain of differential
geometry. Synthetic differential geometry (see [13]) is an ad-
equate mixture of both approaches. After § 3.1 (Parametrized
Geometry) and § 3.2 (Functional Geometry), § 3.3 is devoted
to showing how the categorical infinitesimal calculus depicted
in § 2.5 will be applied to differential geometry.

Most problems one encounters in physics and mathemat-
ics carry obstructions with them and Chapter 9, consisting of
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11 sections, gives the main tools for general obstruction the-
ory. All the obstructions considered in the book can be defined
as some kind of higher Kan extension of models of theories
within a given doctrine. Nobody would expect a full treat-
ment of homotopical algebra in only 40 pages or so and one
is referred to [5], [2], [11], [3] and [7] for a full treatment of
axiomatic homotopy theory and other intimately related top-
ics. The principal objective in homotopical algebra is the lo-
calisation of categories. While § 9.6 (∞-Categories) gives an
elementary presentation of∞-categories, § 9.10 (Higher Cat-
egories) gives their advanced presentation based upon Rezk
(see [21] and [22]). The next section § 9.11 (Theories up to
Homotopy and the Doctrine Machine) is concerned with ho-
motopical doctrines and homotopical theories based upon the
homotopical higher categories discussed in § 9.10.

Homotopical geometry, a rigorous device intended for
studying obstruction theory problems in geometry from a gen-
uinely geometric standpoint, started with [23], [9], [10], [20]
and others in the latter half of the previous century. Roughly
speaking, it is obtained from the parametrised and functional
geometry discussed in Chapter 3 by simply replacing the cate-
gory Sets of sets and maps by the category sSets of simplicial
sets and simplicial maps endowed with the standard model
category structure or the homotopical ∞-category ∞GRPD
of ∞-groupoids, in the author’s terminology (Theorem 9.5.1
and Definition 9.5.5). We have to produce a kind of differen-
tial calculus up to homotopy, carrying a well-behaved notion
of higher stack in the formalisation of quotients and mod-
uli spaces in covariant gauge theory. In Yang-Mills theory,
we have to deal with a variable principal G-bundle P over
a given spacetime M, which can be reformulated as a map
P : M → BG, with BG being the smooth classifying space for
principal G-bundles. It is the derived geometry that provides
the proper setting for differential calculus on spaces like BG.
It is interesting to note that, as is often the case, physicists
have encountered similar mathematical structures, indepen-
dently of mathematicians, in endeavours related to BRST-BV
formalism. Quantisation can be regarded as a kind of defor-
mation and the modern theory of deformation has a great deal
to do with homotopical geometry.

Homotopical algebraic geometry is now a well-
established branch of mathematics, for which the reader is
referred to [15], [25] and [26]. Homotopical differential ge-
ometry is by no means settled (in fact, it is currently in a
mess). For the first attempts at homotopical differential ge-
ometry, the reader is referred to [24] and [12]. This stark
contrast between homotopical algebraic geometry and ho-
motopical differential geometry comes simply from the fact
that algebraic geometry, as such, is completely axiomatised
or conceptually purified due to Grothendieck’s revolution in
this arena in the middle of the previous century, while dif-
ferential geometry has not yet been addressed in this way.
For the burgeoning axiomatic approach to differential geom-
etry inspired by synthetic differential geometry, the reader
is referred to [16], [17] and [18]. In Chapter 10, the author
gives a systematic construction of homotopical spaces based
upon the doctoral approach to categorical logic depicted in
Chapter 2. Homotopical or derived geometry gives a natural
setting for non-abelian cohomology. Following § 10.3 (Non-
abelian Cohomology) and § 10.4 (Differential Cohomology),

§ 10.5 (Geometric Stacks) gives a short account of geometric
higher stacks as in [6]. The next section § 10.6 (Homotopical
Infinitesimal Calculus) explains how to adapt the methods
in § 2.5 to the ∞-categorical setting. Then, § 10.7 (Derived
Symplectic Structures) sketches the notion of a closed form
and a derived symplectic form on a derived stack. A striking
difference between the classical and derived settings is that
a differential form being closed is not an intrinsic property
but an exotic structure in the latter setting. The final section
§ 10.8 (Deformation Theory and Formal Geometry) is de-
voted to the derived deformation theory programme due to
Deligne, Drinfeld and Kontsevich.

Chapter 13 is an expansion of [19], defining gauge the-
ories and investigating their classical aspects. The problems
considered in this chapter are called local variational prob-
lems, and their equations of motion, expressed by Euler-
Lagrange equations, are studied in the use of the non-linear
algebraic analysis depicted in Chapter 12 (Algebraic Analy-
sis of Non-Linear Partial Differential Equations).

Note
A longer version of this review is available at http://tinyurl.
com/zja7f3d
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Reviewer: Jean-Paul Allouche

The title of this book is illuminated by its subtitle “Help-
ing children learn and love mathematics”. 

This looks like a doubly ambitious project but, after 
reading the book, one sees that it seems quite doable. 
The author, inspired by what he has seen and learned in 
Great Britain and in the US, presents several chapters 
explaining his point of view. The introduction’s title “Un-
derstanding the urgences” and the first sentence “Far too 
many students hate mathematics” give the general tone.

After the first chapter “What is maths, and why do 
we all need it?”, the author tries to establish what goes 
wrong in classrooms: in particular, labelling children by 
assigning them a level, transforming teaching into a can-
or-can’t-do exercise, prioritising immediately applicable 
formulas and hints rather than thought, and learning 
without talking and without reality. Then, the author tries 
to give a “vision for a better future”: keeping children 
interested with projects and teaching by communicating 
rather than dumping one-way lectures on them, replacing 
the present form of assessments with “assessments for 

learning” and avoiding the classification of children very 
early into good-at-maths and not-good-at-maths. The au-
thor then explains how girls and women are kept out of 
maths and science, in relation to the difference between 
trick-learning and deep understanding. The last chapters 
are devoted to strategies and ways of working and ad-
vice for parents (e.g. giving children a good mathematical 
start in life with, for example, games and puzzles, avoid-
ing praising children with sentences like “you are smart” 
but praising them about what they have done, never shar-
ing personal stories of maths failures or dislike, encour-
aging children to work on challenging problems and to 
learn from their mistakes, avoiding leading them through 
work step-by-step and encouraging drawing and figures). 
The book ends with an appendix giving solutions to the 
delicious exercises suggested in all the chapters.

I do not know whether every teacher, every parent 
and – most importantly – every pupil or student will 
quickly know how to learn mathematics, or whether they 
will all love mathematics, but, without doubt, this book 
can really help to form a “different” and better vision of 
mathematics; it might even be inspiring for the teaching 
(and research activities) of professional mathematicians.

Jo Boaler

The Elephant in the Classroom: 
Helping Children Learn and Love 
Maths

Souvenir Press, 2nd ed. 2015
288 p.
ISBN 978-0285-63847-1
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Richard Evan Schwartz

Really Big Numbers

AMS, 2014
192 p.
ISBN 978-1-4704-1425-2

Reviewer: Jean-Paul Allouche

As explained on the back cover of this delicious book, 
“This book talks about really big numbers in terms of 
everyday things, such as the number of basketballs need-
ed to cover New York City…”. But this book also goes 
far beyond this. Written in a language quite accessible to 
children, it also shows how notation permits one to name 
huge numbers. Remember when you were a child: you 
were first extraordinarily proud to count from 1 to 16, 
say, and then from 1 to 99… At some point you essen-
tially understood that you could count from 1 to virtually 
any number. But was it really true? Did you know, for 
example, that a 1 followed by 78 zeros is called a “quin-
quavigintillion”?

So it is possible to name really big numbers without 
even really conceiving of how big they are and without 
being quite sure of how to count from 1 to say 1078…

The next idea is to build up towers of symbols (the 

simplest being abc···
, to invent an abbreviation for such a 

tower with a given number of floors and then to consider 
towers of towers, etc., in other words using recursion (in 
the sense of starting from a simple rule and applying it 
again and again). 

Children (and also less young people) will love this 
book, especially the attractive colour pictures accompa-
nying the short sentences on every single page. I cannot 
resist quoting some sentences from the end of the book: 
“Each new addition to the language is a chariot moving 
so quickly it makes all the previous ones seem to stand 
still”, “We skip from chariot to chariot, impatient with 
them almost as soon as they are created”, “Unhindered 
by any ties to experience, giddy with language, we race 
ever faster through the number system”, “Now and then 
we pluck numbers from the blur … numbers which have 
no names except the one we might now give them … sou-
venirs from alien, unknowable worlds”, and lastly “IN-
FINITY is farther away than you thought”.

The European Mathematical Society hosts a book review page on its website. A large number of book reviews have 
been collected since 2011 and they can be browsed by subject (see http://www.euro-math-soc.eu/book-reviews). 

Martina Bečvářová (Czech Technical Univ., Prague, Czech Republic) and Ivan Netuka (Charles Univ., Prague, Czech Republic)
Karl Löwner and His Student Lipman Bers – Pre-war Prague Mathematicians (Heritage of European Mathematics)

ISBN 978-3-03719-144-6. 2015. 310 pages. Hardcover. 17 x 24 cm. 78.00 Euro

K. Löwner, Professor of Mathematics at the German University in Prague (Czechoslovakia), was dismissed from his position because he 
was a Jew, and emigrated to the USA in 1939. Earlier, he had published several outstanding papers in complex analysis and a master-
piece on matrix functions. In particular, his ground-breaking parametric method in geometric function theory from 1923, which led to 
Löwner’s celebrated differential equation, brought him world-wide fame and turned out to be a cornerstone in de Branges’ proof of the 
Bieberbach conjecture. Löwner’s differential equation has gained recent prominence with the introduction of the so-called stochastic 
Loewner evolution (SLE) by O. Schramm in 2000. L. Bers was the final Prague Ph.D. student of K. Löwner. His dissertation on potential 
theory (1938), completed shortly before his emigration and long thought to be irretrievably lost, was found in 2006. It is here made 
accessible for the first time, with an extensive commentary, to the mathematical community.

Della Dumbaugh (University of Richmond, USA) and Joachim Schwermer (University of Vienna, Austria)
Emil Artin and Beyond – Class Field Theory and L-Functions (Heritage of European Mathematics)

ISBN 978-3-03719-146-0. 2015. 245 pages. Hardcover. 17 x 24 cm. 68.00 Euro

This book explores the development of number theory, and class field theory in particular, as it passed through the hands of Emil Artin, 
Claude Chevalley and Robert Langlands in the middle of the twentieth century. Claude Chevalley’s presence in Artin’s 1931 Hamburg 
lectures on class field theory serves as the starting point for this volume. From there, it is traced how class field theory advanced in the 
1930s and how Artin’s contributions influenced other mathematicians at the time and in subsequent years. 
The volume consists of individual essays by the authors and two contributors, James Cogdell and Robert Langlands, and contains rele-
vant archival material. Taken together, these chapters offer a view of both the life of Artin in the 1930s and 1940s and the development 
of class field theory at that time. They also provide insight into the transmission of mathematical ideas, the careful steps required to pre-
serve a life in mathematics at a difficult moment in history, and the interplay between mathematics and politics (in more ways than one).

European Mathematical Society Publishing House
Seminar for Applied Mathematics
ETH-Zentrum SEW A27, CH-8092 Zürich, Switzerland
orders@ems-ph.org / www.ems-ph.org



Problem Corner

62 EMS Newsletter March 2016

Solved
and Unsolved
Problems
Themistocles M. Rassias (Athens, Greece)

Do not worry about your difficulties in mathematics.
I can assure you mine are still greater.

Albert Einstein (1879–1955)

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.

155. Let f : I ⊂ R → R be a convex function on the interval I,
with a, b ∈ I̊ (interior of I), a < b and ν ∈ [0, 1] . Show that

(0 ≤)ν(1 − ν)(b − a)
�
f �+((1 − ν)a + νb) − f �−

�
(1 − ν)a + νb�� (1)

≤ (1 − ν) f (a) + ν f (b) − f
�
(1 − ν)a + νb�

≤ ν(1 − ν)(b − a)
�
f �−(b) − f �+(a)

�
,

where f �± are the lateral derivatives of the convex function f .
In particular, for any a, b > 0 and ν ∈ [0, 1] , show that the follow-
ing reverses of Young’s inequality are valid:

(0 ≤)(1 − ν)a + νb − a1−νbν ≤ ν(1 − ν)(a − b)(ln a − ln b) (2)

and

(1 ≤)
(1 − ν)a + νb

a1−νbν
≤ exp

�
4ν(1 − ν)

�
K
�a
b

�
− 1
��
, (3)

where K is Kantorovich’s constant defined by

K(h) :=
(h + 1)2

4h
, h > 0. (4)

(Sever S. Dragomir, Victoria University,
Melbourne City, Australia)

156. Evaluate

lim
n→∞

⎡⎢⎢⎢⎢⎢⎣
(1 + 1

n2 )(1 + 2
n2 ) · · · (1 + n

n2 )√
e

⎤⎥⎥⎥⎥⎥⎦
n

.

(Dorin Andrica, Babeş-Bolyai University of Cluj-Napoca,
Romania)

157. Let X be a compact space and f : X → X be continuous
and expansive, that is,

d
�
f (x), f (y)

� ≥ d(x, y) ∀ x, y ∈ X .

What can be said about the function f ?

(W. S. Cheung, University of Hong Kong, Pokfulam, Hong Kong)

158. Find all differentiable functions f : R → R which satisfy
the equation

x f �(x) + k f (−x) = x2 ∀ x ∈ R,
where k > 0 is an integer.

(Ovidiu Furdui, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania)

159. Let f : I ⊂ R→ R be a twice differentiable function on the
interval I̊ (interior of I). If there exist the constants d, D such that

d ≤ f �� (t) ≤ D for any t ∈ I̊, (5)

show that

1
2
ν (1 − ν) d (b − a)2 ≤ (1 − ν) f (a) + ν f (b) − f

�
(1 − ν) a + νb

�

≤ 1
2
ν (1 − ν) D (b − a)2 (6)

for any a, b ∈ I̊ and ν ∈ [0, 1] .
In particular, for any a, b > 0 and ν ∈ [0, 1] , show that the follow-
ing refinements and reverses of Young’s inequality are valid:

1
2
ν (1 − ν) (ln a − ln b)2 min {a, b}

≤ (1 − ν) a + νb − a1−νbν (7)

≤ 1
2
ν (1 − ν) (ln a − ln b)2 max {a, b}

and

exp
⎡⎢⎢⎢⎢⎣12 ν (1 − ν)

�
1 − min {a, b}

max {a, b}
�2⎤⎥⎥⎥⎥⎦ ≤ (1 − ν) a + νb

a1−νbν
(8)

≤ exp
⎡⎢⎢⎢⎢⎣12 ν (1 − ν)

�
max {a, b}
min {a, b} − 1

�2⎤⎥⎥⎥⎥⎦ .

(Sever S. Dragomir, Victoria University,
Melbourne City, Australia)

160. Let p be the partition function (counting the ways to write
n as a sum of positive integers), extended so that p(0) = 1 and
p(n) = 0 for n < 0. Prove that, for n � 0,

1 �
2p(n + 2) − p(n + 3)

p(n)
�

3
2
.

(Mircea Merca, University of Craiova, Romania)

II Two new open problems

161*. For c > 0, n ∈ N, x ≥ 0, if we define the m-th order
moment as

T c
n,m(x) =

∞�
k=0

� c
1 + c

�ncx (ncx)k

k!(1 + c)k

�
k
n

�m
,

where (a)k = a(a+ 1) . . . (a+ k− 1), examine whether one can find
a recurrence relation between T c

n,m+1(x) and T c
n,m(x)?

(Vijay Gupta, Netaji Subhas Institute of Technology,
New Delhi, India)

Solved  
and Unsolved 
Problems
Themistocles M. Rassias (National Technical  
University, Athens, Greece)
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162*. Does there exist an harmonic homeomorphism of the open
unit ball B in R4 onto R4?

(Themistocles M. Rassias, National Technical University of
Athens, Greece)

III Solutions

147. Prove or disprove the following. If f : R → R has both a
left limit and right limit at every point then f is continuous, except
perhaps on a countable set.

(W. S. Cheung, The University of Hong Kong,
Pokfulam, Hong Kong)

Solution by the proposer. True!

Define ϕ : R→ R by

ϕ(x) := max
{| f (x) − f (x+)| , | f (x) − f (x−)|} .

Observe that ϕ ≥ 0 and ϕ(x) > 0 exactly when x is a point at which
f is discontinuous.

For any n ∈ N, define

S n :=
{
x ∈ R : ϕ(x) ≥ 1

n

}
.

Then, {
x ∈ R : f is discontinuous at x}

=
{
x ∈ R : f (x) > 0

}

=

∞⋃
n=1

S n .

For any n ∈ N and any t ∈ S n, since f (t+) = lim
x→t+

f (x), ∃ δ > 0 such

that ∣∣∣ f (x) − f (t+)
∣∣∣ < 1

4n
∀ x ∈ (t, t + δ) .

Hence, for any x ∈ (t, t + δ),

ϕ(x) ≤ ∣∣∣ f (x) − f (x+)
∣∣∣

≤ ∣∣∣ f (x) − f (t+)
∣∣∣ + ∣∣∣ f (x+) − f (t+)

∣∣∣
<

1
4n
+
∣∣∣∣ lim

y→x+
y∈(t,t+δ)

f (y) − f (t+)
∣∣∣∣

≤ 1
4n
+

1
4n

=
1
2n

and so x � S n. Similarly, ∃ δ > 0 such that no point in (t − δ, t) lies
in S n. Therefore, points in S n are isolated points and so it is at most
countable. Hence,

⋃∞
n=1 S n is also countable.

Also solved by Vincenzo Basco (Universita degli Studi di Roma “Tor
Vergata”, Italy), Mihaly Bencze (Brasov, Romania), Soon-Mo Jung
(Hongik University, Chochiwon, Korea), Socratis Varelogiannis (Na-
tional Technical University of Athens, Greece)

148. Let (an)n≥1 and (bn)n≥1 be two sequences of positive real
numbers. If
1. (an)n≥1 and (bn)n≥1 are both unbounded; and
2. lim supn→∞

an+1
an
= 1,

prove that the set M =
{

an
bm

: m, n ≥ 1
}

is everywhere dense in the
interval [0,∞).

(Dorin Andrica, Babeş-Bolyai University of Cluj-Napoca,
Romania)

Solution by the proposer. Let z ∈ [0,∞) and let V be a neighbourhood
of z in R. There exists an interval [x, y) ⊂ V , with x ≤ z < y.

When z = 0, we have x = z = 0 and, from hypothesis 1, it
follows that there is a positive integer m with bm > a1/y such that
a1/bm ∈ M ∩ V .

When z > 0, we suppose that 0 < x < z. Let ε = (x − y)/x > 0.
From hypothesis 2, it follows that there is a positive integer n0 such
that, for every n > n0,

an

an−1
< 1 + ε. (9)

From hypothesis 1, it follows that there is a positive integer m with
bm ≥ an0/x. Define the positive integer n by n = min{k : k > n0, ak >
xbm}. Then, it satisfies

an−1

x
≤ bm <

an

x
. (10)

Therefore, for n > n0, by (1), we get

x
an

an−1
< x + εx = y. (11)

From (10) and (11), we have

x <
an

bm
≤ x

an

an−1
< y,

hence an/bm ∈ M ∩ (x, y) ⊂ M ∩ V .

In both cases, we have obtained z ∈ M̄, the closure of M, and we
are done.

Remark. Taking an = pn, n ≥ 1, where pn is the nth prime, and us-
ing the well known result limn→∞

pn+1
pn
= 1, from the property proved

above, it follows that for every unbounded sequence (bn)n≥1 of posi-
tive real numbers the set

M =
{

pn

bm
: m, n ≥ 1

}

is everywhere dense in the interval [0,∞).

Also solved by Vincenzo Basco (Universita degli Studi di Roma “Tor
Vergata”, Italy), Mihaly Bencze (Brasov, Romania), Soon-Mo Jung
(Hongik University, Chochiwon, Korea), Socratis Varelogiannis (Na-
tional Technical University of Athens, Greece)

149. (a) Prove that

lim
n→∞

(
2ζ(3) + 3ζ(4) + · · · + nζ(n + 1) − n(n + 1)

2

)
= 0.

(b) An Apéry’s constant series. Calculate

∞∑
n=2

(
n(n + 1)

2
− 2ζ(3) − 3ζ(4) − · · · − nζ(n + 1)

)
,

where ζ denotes the Riemann zeta function.

(Ovidiu Furdui, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania)
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Solution by the proposer.

(a) We have

xn = 2ζ(3)+3ζ(4)+· · ·+nζ(n+1)− n(n + 1)
2

=

n�
k=2

k (ζ(k + 1) − 1)−1

and this implies that

lim
n→∞

xn =

∞�
k=2

k (ζ(k + 1) − 1) − 1

=

∞�
k=2

∞�
i=2

1
ik+1 − 1

=

∞�
i=2

1
i

∞�
k=2

k
�

1
i

�k
− 1

=

∞�
i=2

1
i

�
i

(i − 1)2 −
1
i

�
− 1

=

∞�
i=2

�
1

(i − 1)2 −
1
i2

�
− 1

= 0.

(b) The series equals 2ζ(3)− 1.We need in our analysis Abel’s sum-
mation by parts formula [1, p. 258], which states that if (an)n≥1 and
(bn)n≥1 are two sequences of real numbers and An =

�n
k=1 ak then�n

k=1 akbk = Anbn+1+
�n

k=1 Ak (bk − bk+1). The equality can be proved
by elementary calculations. Also, we will be using, in our calcula-
tions, the infinite version of the formula above:

∞�
k=1

akbk = lim
n→∞

(Anbn+1) +
∞�

k=1

Ak (bk − bk+1) . (12)

Now, we are ready to calculate our series. We apply formula (12),
with ak = 1 and

bk =
(k + 1)(k + 2)

2
− 2ζ(3) − 3ζ(4) − · · · − (k + 1)ζ(k + 2),

and we get that

∞�
n=2

�
n(n + 1)

2
− 2ζ(3) − 3ζ(4) − · · · − nζ(n + 1)

�

=

∞�
n=1

�
(n + 1)(n + 2)

2
− 2ζ(3) − 3ζ(4) − · · · − (n + 1)ζ(n + 2)

�

= lim
n→∞ n

�
(n + 2)(n + 3)

2
− 2ζ(3) − 3ζ(4) − · · · − (n + 2)ζ(n + 3)

�

+

∞�
n=1

n(n + 2) (ζ(n + 3) − 1)

=

∞�
n=1

n(n + 2) (ζ(n + 3) − 1)

=

∞�
n=1

n(n + 2)
∞�

i=2

1
in+3

=

∞�
i=2

∞�
n=1

n(n + 2)
�

1
i

�n+3

=

∞�
i=2

3i − 1
i2(i − 1)3

= 2ζ(3) − 1,

since

lim
n→∞

n
�

(n + 2)(n + 3)
2

− 2ζ(3) − 3ζ(4) − · · · − (n + 2)ζ(n + 3)
�
= 0.

We also used in this calculation the power series formula

∞�
n=1

n(n + 2)xn+3 =
x4(3 − x)
(1 − x)3 for |x| < 1.

The preceding limit can be proved using the 0/0 case of Cesaro–
Stolz’s lemma ([1, p. 265]). The problem is solved. �

Remark. It appears that this series is new in the mathematical liter-
ature.

[1] Ovidiu Furdui, Limits, Series and Fractional Part Integrals.
Problems in Mathematical Analysis, Springer, London, 2013.

Also solved by Mihaly Bencze (Brasov, Romania), Soon-Mo Jung
(Hongik University, Chochiwon, Korea), Sotirios E. Louridas
(Athens, Greece), Socratis Varelogiannis (National Technical Uni-
versity of Athens, Greece)

150. We say that the function f : I ⊂ R \ {0} → R is HA-convex
if

f
�

xy
tx + (1 − t) y

�
≤ (1 − t) f (x) + t f (y) (13)

for all x, y ∈ I and t ∈ [0, 1].
Let f , h : [a, b] ⊂ (0,∞) → R be such that h (t) = t f (t) for
t ∈ [a, b] . Show that f is HA-convex on the interval [a, b] if and
only if h is convex on [a, b] .

(Sever S. Dragomir, Victoria University, Melbourne, Australia)

Solution by the proposer. Assume that f is HA-convex on the interval
[a, b] . Then, the function g :

�
1
b ,

1
a

�
→ R, g (t) = f

�
1
t

�
is convex on�

1
b ,

1
a

�
. By replacing t with 1

t , we have f (t) = g
�

1
t

�
.

If λ ∈ [0, 1] and x, y ∈ [a, b] then, by the convexity of g on�
1
b ,

1
a

�
, we have

h
�
(1 − λ)x + λy

�
=
�
(1 − λ)x + λy

�
f
�
(1 − λ)x + λy

�

=
�
(1 − λ)x + λy

�
g
� 1
(1 − λ)x + λy

�

=
�
(1 − λ)x + λy

�
g
� (1 − λ)x 1

x + λy
1
y

(1 − λ)x + λy

�

≤ �(1 − λ)x + λy
� (1 − λ)xg( 1

x ) + λyg( 1
y )

(1 − λ)x + λy

= (1 − λ)xg
�1

x

�
+ λyg

�1
y

�

= (1 − λ)x f (x) + λy f (y) = (1 − λ)h(x) + λh(y),

which shows that h is convex on [a, b] .

We have f (t) = h(t)
t for t ∈ [a, b] . If λ ∈ [0, 1] and x, y ∈ [a, b]

then, by the convexity of h on [a, b] , we have

f
�

xy
λx + (1 − λ) y

�
=

h
�

xy
λx+(1−λ)y

�
xy

λx+(1−λ)y

=
λx + (1 − λ) y

xy
h
�

xy
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�

=
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=
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≤ λx + (1 − λ) y
xy

(1 − λ) 1
x h (x) + λ 1

y h (y)

(1 − λ) 1
x + λ

1
y

= (1 − λ) 1
x

h (x) + λ
1
y

h (y)

= (1 − λ) f (x) + λ f (y) ,

which shows that f is HA-convex on the interval [a, b].

Also solved by Soon-Mo Jung (Hongik University, Chochiwon, Ko-
rea), Panagiotis T. Krasopoulos (Athens, Greece), John N. Lillington
(Wareham, UK), Socratis Varelogiannis (National Technical Univer-
sity of Athens, Greece)

151. Let f : [a, b] ⊂ (0,∞) → R be an HA-convex function on
the interval [a, b] . Show that we have

f
(

a + b
2

)
≤ 1

ln b − ln a

∫ b

a

f (t)
a + b − t

dt

≤ a f (a) + b f (b)
a + b

. (14)

(Sever S. Dragomir, Victoria University, Melbourne, Australia)

Solution by the proposer. Since the function h (t) = t f (t) is convex,
we have

x + y
2

f
( x + y

2

)
≤ x f (x) + y f (y)

2
for any x, y ∈ [a, b] .

If we divide this inequality by xy > 0, we get

1
2

(
1
x
+

1
y

)
f
( x + y

2

)
≤ 1

2

(
f (x)

y
+

f (y)
x

)
, (15)

for any x, y ∈ [a, b] .

If we replace x by (1 − t) a+ tb and y by ta+ (1 − t) b in (15), we
get

1
2

(
1

(1 − t) a + tb
+

1
ta + (1 − t) b

)
f
(

a + b
2

)

≤ 1
2

(
f ((1 − t) a + tb)

ta + (1 − t) b
+

f (ta + (1 − t) b)
(1 − t) a + tb

)
(16)

for any t ∈ [0, 1] .

Integrating (16) on [0, 1] over t, we get

1
2

(∫ 1

0

1
(1 − t) a + tb

dt +
∫ 1

0

1
ta + (1 − t) b

dt
)

f
(

a + b
2

)

≤ 1
2

(∫ 1

0

f ((1 − t) a + tb)
ta + (1 − t) b

dt +
∫ 1

0

f (ta + (1 − t) b)
(1 − t) a + tb

dt
)
. (17)

Observe that, by an appropriate change of variable,
∫ 1

0

1
(1 − t) a + tb

dt =
∫ 1

0

1
ta + (1 − t) b

dt

=
1

b − a

∫ b

a

du
u

=
ln b − ln a

b − a
and ∫ 1

0

f ((1 − t) a + tb)
ta + (1 − t) b

dt =
∫ 1

0

f (ta + (1 − t) b)
(1 − t) a + tb

=
1

b − a

∫ b

a

f (u)
a + b − u

du

and, by (17), we get the first inequality in (14).

From the convexity of h, we also have
(
(1 − t)a + tb

)
f
(
(1 − t)a + tb

) ≤ (1 − t)a f (a) + tb f (b)

and
(
ta + (1 − t)b

)
f
(
ta + (1 − t)b

) ≤ ta f (a) + (1 − t)b f (b)

for any t ∈ [0, 1] .

Add these inequalities to get
(
(1 − t)a + tb

)
f
(
(1 − t)a + tb

)
+
(
ta + (1 − t)b

)
f
(
ta + (1 − t)b

)
≤ a f (a) + b f (b)

for any t ∈ [0, 1] .

If we divide this inequality by ((1 − t)a + tb)(ta + (1 − t)b), we
get

f
(
(1 − t)a + tb

)
ta + (1 − t)b

+
f
(
ta + (1 − t)b

)
(1 − t)a + tb

≤ a f (a) + b f (b)(
(1 − t)a + tb

)(
ta + (1 − t)b

)
(18)

for any t ∈ [0, 1] .

If we integrate the inequality (18) over t on [0, 1] , we obtain
∫ 1

0

f
(
(1 − t)a + tb

)
ta + (1 − t)b

dt +
∫ 1

0

f
(
ta + (1 − t)b

)
(1 − t)a + tb

dt (19)

≤ [a f (a) + b f (b)
] ∫ 1

0

dt(
(1 − t)a + tb

)(
ta + (1 − t)b

) .

Since
∫ 1

0

dt(
(1 − t)a + tb

)(
ta + (1 − t)b

) = 1
b − a

∫ b

a

du
u(a + b − u)

and
1

u(a + b − u)
=

1
a + b

(
1
u
+

1
a + b − u

),

we have
∫ b

a

du
u(a + b − u)

=
1

a + b

∫ b

a
(
1
u
+

1
a + b − u

)du

=
2

a + b
(ln b − ln a).

By (19), we then have

2
b − a

∫ b

a

f (u)
a + b − u

du ≤ 2
[
a f (a) + b f (b)

a + b

]
ln b − ln a

b − a
,

which proves the second inequality in (14).

Also solved by Soon-Mo Jung (Hongik University, Chochiwon, Ko-
rea), Panagiotis T. Krasopoulos (Athens, Greece), John N. Lillington
(Wareham, UK).

Notes

1. John N. Lillington (Wareham, UK) also solved problems 143 and
144.

2. G. C. Greubel (Newport News , Virginia, USA) also solved prob-
lems 139, 140 and 153*.

3. Ovidiu Furdui (Technical Univeristy of Cluj-Napoca, Romania)
solved problem 154*.

We wait to receive your solutions to the proposed problems and
ideas on the open problems. Send your solutions both by ordi-
nary mail to Themistocles M. Rassias, Department of Mathematics,
National Technical University of Athens, Zografou Campus, GR-
15780, Athens, Greece, and by email to trassias@math.ntua.gr.
We also solicit your new problems with their solutions for the next
“Solved and Unsolved Problems” column, which will be devoted to
real analysis.
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“On jugera”

Equal standards are a necessity for fair evaluation and 
for excellence in research. Publication in journals with 
an editorial board or committee review is a principal el-
ement in the development of a professional career, for 
hiring, promotions, salary increases, invitations, prize 
awards, etc., in particular for young researchers. Unfortu-
nately, the standards for publication of some supposedly 
reputed editorial boards are not equal for everyone. The 
chances of an article being accepted by some journals de-
pends crucially on who the author is and, more precisely, 
to which “group” they belong (in the wide sense research 
group and national group but unfortunately sometimes 
also religious or ethnic group) and their connections with 
the editors. If you are not “connected”, it is very likely 
that you will get the typical dry and brief two line re-
jection letter without any congruent reason, for example 
stating that your paper is not interesting enough, that 
it is too long or too short, that it is not general enough 
(or too general!), etc., without going any deeper into the 
mathematics of the paper that probably nobody has read. 

Throughout time, fundamental results have been rejected 
without serious grounds, starting with Galois’ fundamen-
tal paper rejected by Poisson… “On jugera” (E. Galois). 

But it is the perception of the author that this prob-
lem is becoming much worse in our time. I have recently 
experienced the arrogant behaviour of an editorial board 
when an article I originally submitted in 1997 to the An-
nals of Mathematics was rejected without any reason 18 
(eighteen) years later in 2015, after going though the 
hands of two editors, Professor Fefferman (10 years) and 
Professor Sarnak (8 years). It is the same reputed journal 
that publishes fundamentally flawed articles, such as “The 
dynamics of the Hénon map” paper from 1991, just to cite 
one example from the same field where the review stand-
ards were not the same.1 This happens in all fields. We 
should pay a special tribute to the late Abbas Bahri who 
courageously wrote a paper “Five gaps in mathematics”.2 

Unfortunately, this is not limited to the publication sys-
tem. It is amusing to see how the same families of people 
award each other prizes and distinctions in turn, and invi-
tations to international congresses, etc., how some editors 
get invitations because of their powerful positions to ac-

Abdus Salam Shield of Honour

Speedy publication of relatively trivial research articles 
in mathematics in journals with so-called high impact fac-
tors has set a rather dangerous trend of research in most 
of the world’s developing nations. These journals usually 
publish quite superficial research and this is a trend that 
may, in the long run, be a threat to the global research 
community, substituting “good research” for “popular 
research”. However, this is not, at present, the most dan-
gerous part of the system. The real threat is something 
more fundamental, associated with this kind of research 
publication.

In an effort to encourage research in mathematics, 
governments in numerous developing countries are giv-
ing awards, prizes and various financial incentives to their 
researchers. But not knowing how to evaluate the quality 
of research, the governmental bodies in these developing 
countries have found a very easy way out. They just add 
up the impact factors of the publications of the research-
ers applying for some national award or prize. The persons 
with the highest sums of impact factors are declared to be 
the winners. This process provides strong encouragement 
for publishing large number of trivial papers in journals 
with positive impact factors. Research performance in 
such countries has taken on a very different meaning, a 
meaning that honours triviality and mediocrity. 

If the Pakistani criteria for honouring research per-
formance had been applied globally then most of the 
Fields medallists and Abel laureates would never have 
received any award.

In order to bring the Pakistani mathematical com-
munity back on the track of quality research, the Abdus 
Salam Shield of Honour (ASSH) was created in April 
2015. This is an initiative of the National Mathematical 
Society of Pakistan. 

The first Shield of Honour goes to 

Professor Hassan Azad

a Pakistani national. The evaluation committee, chaired 
by Professor Cédric Villani, had the following members:     
Professor Juergen Herzog, Professor Stefano Luzzatto 
and Professor Ioan Tomescu.

The main research interest of the first recipient of 
ASSH, Professor Hassan Azad, is Lie groups and alge-
braic groups, and algorithms related to these fields. Cur-
rently, he is working on real algebraic groups and con-
structive procedures for computing their invariants, with 
a view toward their applications in symmetry methods in 
differential equations.

Professor Cédric Villani wrote in the final report of 
the committee: “It was our unanimous vote, indepen-
dently of each other, that Hassan Azad is the most de-
serving candidate. He did not sacrifice the quality for the 
quantity. This is exactly the kind of example that we wish 
to promote.”

The award ceremony will take place on 16 March in 
Lahore, Pakistan.

Alla Ditta Raza Choudary,
Government College University, Lahore, Pakistan
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the way to a new science, initiating the algebraic approach 
to quantum field theory – an alternative (or complemen-
tary) to the Wightman formulation – and equally inspired 
to a mathematical rigour otherwise mostly unknown in 
those times.

The motivation of our paper was the hope of control-
ling the spectrum condition in the algebraic approach to 
quantum field theory.

Derek Robinson contributed with a rather uncorre-
lated final section, where, independently of the parallel 
work by David Ruelle at the time, the notion of asymp-
totic abelianness was introduced.

The possibility of applications to statistical mechan-
ics lit Daniel’s enthusiasm as a spark in a haystack. This 
resulted in a series of papers he wrote in various com-
binations with Derek Robinson, Dick Kadison, Erling 
Stormer and me.

Daniel Kastler (1926–2015) – Memories of a friend

Memories of my first collaboration with Daniel, in the 
Autumn of 1965, are intertwined with the colours of 
Provence and with the dark blue of its sea. We would 
work in Daniel’s living room in Bandol, writing with 
chalk on the window panes so that we were staring at our 
C*-algebras as they floated over a landscape spanned by 
the Mistral.

Lisl, Daniel’s wife, would not complain; rather, she 
would find our dusty traces decorative and would keep us 
at dinner after each session.

But another Mistral blows through those memories of 
50 years ago and continued to blow along the decades: 
Daniel’s inextinguishable enthusiasm, whose frequent 
bursts kept everybody’s spirits up. Between those bursts, 
he would move to the piano to try out the opening of 
Beethoven’s third concerto, interrupting the nap of one 
of his many cats sleeping on the scores.

After those few unforgettable years I spent in Ban-
dol, the passing of time has seen many things change, ex-
cept one: Daniel’s incredible enthusiasm, which always 
seemed more fresh and lively.

As a child wondering on each little pretty stone he 
collects on the seashore – as Newton said about himself, 
a comparison once extended to Daniel by our late friend 
Gert Pedersen – Daniel would light up with joy at each fur-
ther idea of new question or path, no matter how realistic 
or promising. And that was contagious in a marvellous way.

In the collaboration I mentioned, we introduced co-
variance algebras (later called crossed products); we were 
fascinated by our new concept in operator algebras but 
motivated by the historical paper that Daniel had written 
with Rudolf Haag a couple of years earlier, which opened 

Daniel and Lisl Kastler, probably 
early 50ies.  
Courtesy of Nora Kastler.

Daniel Kastler, probably early 
60ies.  
Courtesy of Nora Kastler.

cept or reject papers, and how favours are exchanged and 
bargained. It is a shame to see this happening and allowed 
by a silent majority. There is no mafia without omerta.

Because some of us decided to be mathematicians 
and remain faithful to mathematics, and because we val-
ue most our freedom to voice our mathematical opinions 
without compromise, we believe it is our duty to break 
and not collaborate with a corrupt publication system. 
A centralised authoritarian review system only makes 
sense if it functions in an honest, transparent, fair and 
equal way. Otherwise, we learned from Thoreau that we 
have a duty of “journal publication disobedience”. 

An open publication system, such as the preprint 
server repository arXiv, and an open review system, such 
as the one used in other disciplines on the site pubpeer, 
should be the way to go. An open decentralised version 
that guarantees continuity over time will render the tra-
ditional publication system obsolete. 

And never forget what we learned from Ramanujan 
… we only need a notebook …

Ricardo Perez-Marco, 
Université Paris 13, Villetaneuse, France 

1 As is recognised by subsequent literature that tries to fix the 
problem, the parameter selection has a hole since, in the in-
ductive procedure, only the measure and not the geometry of 
the “good parameters” are considered. Indeed, at each stage 
of the induction, one needs connected components of good 
parameters of minimal size, depending on the rate of expan-
sion of the iterate to mimic the one dimensional argument as 
the authors pretend. That this rate of expansion overcomes 
the combinatorial explosion of the bad parameters is a math-
ematical miracle for which we can’t find a proof in the litera-
ture (one would need to compare the “constants” in some of 
the subsequent papers ... but these constants are never esti-
mated).

2 Incidentally, we can find an excellent review of his article on 
the site pubpeer.com. From Peer 1: “It may come as a sur-
prise to non-mathematicians, but the level of proof required 
for the acceptance of a mathematical theorem has a strong 
social element. Contributing factors include how surprising 
the result is, how it fits within the reigning beliefs of the field, 
the status of the author, as well as the general culture of rig-
our within the community. Mathematics, as a human activity, 
is as open to distortion and fraud as any area of science.

 This uncomfortable fact is largely ignored by working math-
ematicians, although most have anecdotal evidence of incor-
rect results being waved through peer-review by ‘friendly’ 
editors.”
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In those years at the end of the 1960s, Bandol was a 
natural place to visit for scientists working on operator 
algebras and on mathematical problems of quantum field 
theory and statistical mechanics; the “Bandol Institute”, 
of course, did not exist as such but many talks took place, 
sometimes even on the tiny benches of the elementary 
school.

The first account I heard of the Atiyah-Singer Index 
Theorem, at that point unpublished (except for Palais’ 
lecture notes), was expounded by Isy Singer in Daniel’s 
living room, in the Summer of 1966, again writing with 
chalk on the window glass. 

At the start of the 1970s, during a memorable visit to 
Bandol, Alain Connes exposed the essentials of his Clas-
sifications of AFD Factors to Daniel, Dick and me, again 
in Daniel’s living room sitting with teacups in our hands 
but this time without writing anything, just with words, 
slowed down by the re-expression of each sentence in 
crystal clear terms by Dick (or at least a slower rephras-
ing, giving us more time to grasp the meaning). An unfor-
gettable session!

After the late 1960s, I still had frequent scientific con-
tact with Daniel and, of course, the friendship could only 
grow. And it did continue to grow all life long but our col-
laborations relaxed. While I got engaged in a collabora-
tion on algebraic quantum field theory with Rudolf Haag, 
starting in the Autumn of 1967 and joined in the Summer 
of 1968 by John Roberts, Daniel was more and more en-
gaged in basic questions of quantum statistical mechanics.

Marvellous results emerged: the mathematical basis 
of the structure of states on funnels of type I factors in 
a paper by Daniel with R. Haag and R. V. Kadison; the 
stability of properties of von Neumann algebras under 
perturbations, studied with R. V. Kadison; the basis of the 
KMS conditions in the stability of equilibrium states, dis-
covered with R. Haag and E. B. Trych-Pohlmeyer; and the 
algebraic foundations of the notion of chemical potential, 
developed with H. Araki, R. Haag and M. Takesaki.

Soon, the enthusiasm of Daniel was lit by another fire, 
which thereafter kept burning all his life. This was Alain 
Connes’ noncommutative geometry and the related foun-
dations of the Standard Model, proposed by Connes and 
Lott and developed to include the gravitational forces 
in the classical form of the Action by Chamseddine and 
Connes. Daniel gave relevant contributions to the field 
with many expositions of noncommutative geometry, cy-
clic cohomology and the theory of the Standard Model, 
with several research papers, alone and in collaborations 
(notably, with Thomas Schucker, Bruno Iochum and Rob-
ert Coquereaux).

In 1984, Daniel was awarded the Prix Ampère de 
l’Académie des Sciences of France and was a correspond-
ing member of the Göttingen Academy of Sciences and 
of the Austrian Academy of Sciences, and a member of 
the German National Academy of Sciences Leopoldina.

But many other aspects of Daniel’s personality have to 
be mentioned. First of all, there was his passionate dedica-
tion to developing an important scientific centre in Mar-
seille-Luminy, to which he devoted an enormous propor-
tion of his time and energy, with unselfish sacrifice of his 

own research activity, starting with the famous May 1968 
in which he was involved hand-in-hand with the students.

But his thoughts were not only devoted to mathemat-
ics and mathematical physics; he strongly desired a mod-
ern school of music and musical research, the central 
personality of which he saw in Jean-Claude Risset, whose 
appointment was obtained as a professor at the Univer-
sity of Aix-Marseille in 1979.

At the same time, he devoted much energy into the 
promotion of a painter living in Bandol, behind the hill 
in a place from where the sea was not visible, a place not 
visible to the flaw of Summer tourists. That painter was 
Roger van Rogger, who unfortunately died in 1983, prob-
ably poisoned by the colours he would prepare himself 
and use to paint with bare hands for many years. But he 
remained all those years working in his country house, 
largely built with his own hands (as was the case for his 
atelier in the middle of his lands). It was Daniel’s activity 
in avoiding the realisation of destructive projects, like the 
choice of route threatened for the construction of a high-
way, as well as the new location of Bandol’s cemetery, that 
prevented the destruction of Roger’s atelier.

Instead, in that location, a “Fondation van Rogger” 
exists and can be visited, with the astonishing collection 
of Roger’s paintings, and this is certainly due, to a large 
extent, to the efforts of Daniel; time will eventually place 
that unfortunate painter at the high rank that he deserved.

Daniel’s conversations were intertwined with splendid 
sentences that one could often not understand, whether 
they were his own thoughts or quotes. Maybe, if asked, he 
would not always have been able to explain himself, since 
his culture really became his flesh and blood. Quotes, for 
instance, went from Blaise Pascal to Denis Diderot to 
Paul Valery to Albert Einstein. 

And he loved to tell stories about famous scientists 
– living or of the past – but also lovely anecdotes about 
himself and about his father, the physicist Nobel Laureate 
Alfred Kastler. He was a delightful person, as was Dan-
iel’s father-in-law, a professor in mineralogy and petrog-
raphy called Bruno Sander from Innsbruck. About him, 
too, Daniel had many interesting stories, besides those I 
had heard from Sander himself.

Many of his personal and original thoughts are col-
lected in a little book, which is half joking and half serious, 
“Éphémérides de Kashtlerus”, Société des Écrivains, 2005. 
We like to remember him lit by his enthusiasm and his 
love for science, his marvellous interest for scientific intel-
ligence as well as for the human richness of other people, 
his immense generosity, yet always half joking, with ideas, 
science and culture, and the way he liked to smile in the 
company of friends and his beloved family, his children 
Nora, Danielle (Poppi) and Bruno, and his adored wife 
Lisl especially (to whom many of his elegant, delicate and 
deeply heartfelt unpublished poems were dedicated).

Dear Daniel. Nothing can ever fill the huge empty 
space you have left; we will have to live with that but also 
with the vivid memory of your precious friendship. 

Sergio Doplicher,
Università di Roma “La Sapienza”, Italy
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co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various 
applications to analysis, PDE, stochastic processes, and representation theory.

AMS Chelsea Publishing, Vol. 378

Apr 2016

Free delivery worldwide at www.eurospanbookstore.com/ams
AMS is distributed by Eurospan|group

Volume 1: Properties and Operations
423pp 9781470426583 Hardback €58.00 

Volume 2: Spaces of Fundamental and 
Generalized Functions
261pp 9781470426590 Hardback €58.00 

Volume 3: Theory of Differential Equations
222pp 9781470426613 Hardback €58.00 

Volume 4: Applications of Harmonic Analysis
384pp 9781470426620 Hardback €58.00 

Volume 5: Integral Geometry and Representation 
Theory
449pp 9781470426637 Hardback €58.00 

Volume 6: Representation Theory and 
Automorphic Functions
426pp 9781470426644 Hardback €58.00 

6 Volume Set 
9781470428853 Hardback €290.00

PROBABILITY AND STATISTICAL PHYSICS IN ST. PETERSBURG
Edited by V. Sidoravicius, Courant Institute and NYU–Shanghai & S. Smirnov, University of Geneva and St. Petersburg 
State University 
Brings the reader to the cutting edge of several important directions of the contemporary probability theory, which in many cases 
are strongly motivated by problems in statistical physics. The authors of these articles are leading experts in the field and the reader 
will get an exceptional panorama of the field from the point of view of scientists who played, and continue to play, a pivotal role 
in the development of the new methods and ideas, interlinking it with geometry, complex analysis, conformal field theory, etc., 
making modern probability one of the most vibrant areas in mathematics. 

Proceedings of Symposia in Pure Mathematics, Vol. 91

Apr 2016 478pp 9781470422486 Hardback €140.00 



Handbook of Teichmüller Theory, Volume V (IRMA Lectures in Mathematics and Theoretical Physics, Vol. 26)
Athanase Papadopoulos (Université de Strasbourg, France), Editor

ISBN 978-3-03719-160-6. 2016. 596 pages. Hardcover. 17 x 24 cm. 88.00 Euro

This volume is the fifth in a series dedicated to Teichmüller theory in a broad sense, including the study of various deformation spaces 
and of mapping class group actions. It is divided into four parts: Part A: The metric and the analytic theory; Part B: The group theory; 
Part C: Representation theory and generalized structures; Part D: Sources.
The topics that are covered include identities for the hyperbolic geodesic length spectrum, Thurston’s metric, the cohomology of moduli 
space and mapping class groups, the Johnson homomorphisms, Higgs bundles, dynamics on character varieties, and there are many 
others.
Besides surveying important parts of the theory, several chapters contain conjectures and open problems. The last part contains two 
fundamental papers by Teichmüller, translated into English and accompanied by mathematical commentaries.
The chapters, like those of the other volumes in this collection, are written by experts who have a broad view on the subject. They 
have an expository character (which fits with the original purpose of this handbook), but some of them also contain original and new 
material.
The Handbook is addressed to researchers and to graduate students.

Dietmar A. Salamon (ETH Zürich, Switzerland)
Measure and Integration (EMS Textbooks in Mathematics)

ISBN 978-3-03719-159-0. 2016. 363 pages. Hardcover. 16.5 x 23.5 cm. 48.00 Euro

The book is intended as a companion to a one semester introductory lecture course on measure and integration. After an introduction 
to abstract measure theory it proceeds to the construction of the Lebesgue measure and of Borel measures on locally compact Haus-
dorff spaces, Lp spaces and their dual spaces and elementary Hilbert space theory. Special features include the formulation of the Riesz
Representation Theorem in terms of both inner and outer regularity, the proofs of the Marcinkiewicz Interpolation Theorem and the 
Calderon–Zygmund inequality as applications of Fubini’s theorem and Lebesgue differentiation, the treatment of the generalized 
Radon–Nikodym theorem due to Fremlin, and the existence proof for Haar measures. Three appendices deal with Urysohn’s Lemma, 
product topologies, and the inverse function theorem.
The book assumes familiarity with first year analysis and linear algebra. It is suitable for second year undergraduate students of math-
ematics or anyone desiring an introduction to the concepts of measure and integration.

Individual members of the EMS, member  
societies or societies with a reciprocity agree-
ment (such as the American, Australian and 
Canadian Mathematical Societies) are entitled 
to a discount of 20% on any book purchases, if 
ordered directly at the EMS Publishing House.

European Mathematical Society Publishing House
Seminar for Applied Mathematics, ETH-Zentrum SEW A27

Scheuchzerstrasse 70
CH-8092 Zürich, Switzerland

orders@ems-ph.org
www.ems-ph.org
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Free Loop Spaces in Geometry and Topology. Including the monograph Symplectic cohomology and Viterbo‘s 
 theorem by Mohammed Abouzaid (IRMA Lectures in Mathematics and Theoretical Physics, Vol. 24)
Janko Latschev (University of Hamburg, Germany) and Alexandru Oancea (Université Paris 6, France), Editors

ISBN 978-3-03719-153-8. 2015. 500 pages. Hardcover. 17 x 24 cm. 78.00 Euro

One of the main purposes of this book is to facilitate communication between topologists and symplectic geometers thinking about free 
loop spaces. It was written by active researchers coming to the topic from both perspectives and provides a concise overview of many 
of the classical results, while also beginning to explore the new directions of research that have emerged recently. As one highlight, it 
contains a research monograph by M. Abouzaid which proves a strengthened version of Viterbo’s isomorphism between the homology 
of the free loop space of a manifold and the symplectic cohomology of its cotangent bundle, following a new strategy.
The book grew out of a learning seminar on free loop spaces held at Strasbourg University and should be accessible to a graduate 
student with a general interest in the topic. It focuses on introducing and explaining the most important aspects rather than offering 
encyclopedic coverage, while providing the interested reader with a broad basis for further studies and research.

Takashi Shioya (Tohoku University, Sendai, Japan)
Metric Measure Geometry. Gromov’s Theory of Convergence and Concentration of Metrics and Measures  
(IRMA Lectures in Mathematics and Theoretical Physics, Vol. 25)

ISBN 978-3-03719-158-3. 2016. 194 pages. Hardcover. 17 x 24 cm. 42.00 Euro

This book studies a new theory of metric geometry on metric measure spaces, originally developed by M. Gromov in his book “Metric 
Structures for Riemannian and Non-Riemannian Spaces” and based on the idea of the concentration of measure phenomenon due to Lévy 
and Milman. A central theme in this text is the study of the observable distance between metric measure spaces, defined by the difference 
between 1-Lipschitz functions on one space and those on the other. The topology on the set of metric measure spaces induced by the ob-
servable distance function is weaker than the measured Gromov–Hausdorff topology and allows to investigate a sequence of Riemannian 
manifolds with unbounded dimensions. One of the main parts of this presentation is the discussion of a natural compactification of the 
completion of the space of metric measure spaces. The stability of the curvature-dimension condition is also discussed.
This book makes advanced material accessible to researchers and graduate students interested in metric measure spaces.
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