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The cover drawing is an azimuthal
equidistant spherical perspective (“360-
degree fisheye”), representing four
stacks of identical cube pairs floating
over a uniform grid. This perspective
projects the set of rays from the eye
onto a closed disc. It captures every-
thing around the viewer, and renders
every line with exactly two vanishing points. The golden disc in the
picture has half the radius of the full perspective disc and represents
the frontal half of the view. Some types of spherical perspectives,

such as this one, can be efficiently drawn by hand using ruler and
compass operations. The method for thus drawing the 180-degree
fisheye perspective was first described in Barre and Flocon’s 1968
book “La perspective curviligne”. The generalization to 360 de-
grees was described in “Ruler, compass, and nail: constructing
a total spherical perspective” [J. Math. Arts 12, 2–3, 2018]. This
perspective superficially resembles a reflection on a sphere, but it
verifies radial occlusion (the main axiom of Euclid’s optics) while a
spherical reflection does not.

António B. Araújo
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A message from the president

Dear members of the EMS,
There is a light on the horizon: the

hope that the vaccination campaign will
normalize the way we do our research
and teaching, getting us out of the video
conferences and back into the classroom.
But there is still a long way to go, and it is
possible that our mathematical life may
continue to be different from before.

The EMS needs to find new post-pandemic procedures, and
learn how to perform research and communication within the math-
ematics community of the future. The virtual European Congress
8ECM in Portorož will be a major test case for these new pro-
cedures. Although we will certainly miss the aspects of personal
meeting and communication, it will also open new possibilities, in
particular the opportunity for young mathematicians everywhere
to participate in the online community life. I am looking forward
to the congress, and hope that many of you will join us online.

One of the new initiatives that the EMS executive committee
hopes to pursue in the future is the creation of an EMS Youth
Academy. The idea is that each year, member societies will propose
excellent young mathematicians just before and after their Ph.D.,
from among which a committee will then select young academy
members for a period of four years. The members of the Youth
Academy will then organise themselves, initiating new activities
and also participating in the already-established EMS committees.
This idea will be discussed in detail at the EMS president’s meeting
on May 29, 2021, and hopefully approved at the next EMS council
in 2022.

Let us make the best out of the terrible pandemic experience
and move the EMS forward.

Volker Mehrmann
President of the EMS

Brief words from the editor-in-chief

Dear readers of the EMS Magazine,
In this issue of the EMS Magazine

you can find two more articles written
by 2020 EMS Prize winners, this time by
Alexander Efimov and Joaquim Serra. Ad-
ditionally, as usual, there are articles on
a variety of topics, for instance: the one
by Emmylou Haffner on the edition of
Riemann’s collected works, or the article

by Quentin Mérigot and Boris Thibert about mirrors, lenses and
Monge–Ampère equations, amongmany other contributions to the
usual columns on societies, research centres, or maths education.

The current issue is also the first with Donatella Donatelli as
the new editor for book reviews, substituting in this role Jean-Paul
Allouche who completed his second term as editor at the end of
2020.

Finally, you may have noticed that the first two issues of the
EMS Magazine (Issue 119 and the current one, 120) have arrived
to your mail box later than expected. I apologize for this delay and
assure you that we (the editors and the EMS Press staff) are doing
our best to smooth processes so that the Magazine reaches you
on time in future.

Fernando Pestana da Costa
Editor-in-chief
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Categorical smooth compactifications and neighborhoods of infinity

Alexander I. Efimov

In this note we give a short overview of some of our results on
derived categories of coherent sheaves, in particular on smooth
categorical compactifications and on the formal punctured neigh-
borhoods of infinity.

Introduction

This note is devoted to a short overview of some results on derived
categories of coherent sheaves concerning smooth categorical
compactifications and the formal punctured neighborhoods of
infinity.

In Section 1, we discuss the conjecture of Bondal and Orlov
about the categorical properties of the resolution of singularities
of an algebraic variety with rational singularities (Conjecture 1.1).
This conjecture states that the derived pushforward functor on
the derived categories of coherent sheaves is a quotient functor
(that is, a localization). The conjecture is difficult and still open in
general. It turns out that it is possible (Theorem 1.2) to prove a
version of such statement for an arbitrary separated scheme of
finite type over a field of characteristic zero (the reader may safely
assume that we are dealing with quasi-projective schemes). The
methods make it possible to prove Conjecture 1.1 for a cone over
a projective embedding of a smooth Fano variety (that is, a smooth
projective variety with an ample anti-canonical line bundle).

In Section 2, we consider DG categorical smooth compactifica-
tions. Here DG stands for “differential-graded”. This is a straight-
forward generalization of the usual algebro-geometric smooth
compactification. The following natural question was formulated
by B. Toën (Question 2.3 below): is it true that any smooth DG
category “of finite type” admits a smooth categorical compactifica-
tion? The question was considered to be difficult, but most experts
expected that the answer should be “yes”. However, in [4] we
gave a negative answer, obtained by disproving a closely related
conjecture of Kontsevich (Conjecture 2.5 below) on the generalized
version of the degeneration of the Hodge-to-de-Rham spectral se-
quence. We also obtained a dual version of these results, in which
smooth DG categories are replaced by proper DG categories, and

a smooth compactification is replaced by a categorical resolution
of singularities.

In Section 3 we outline a certain construction called a “cate-
gorical formal punctured neighborhood of infinity”. For a smooth
algebraic variety X this is obtained as follows: take some smooth
compactification sX, consider the formal completion at the infinity
locus sX − X, and then take the corresponding punctured formal
scheme. The resulting object X

p∞ (considered for example as an
adic space) is independent of the compactification, as is the cate-
gory of perfect complexes on it. In [3] we give a purely categorical
construction of Perf(X

p∞) which generalizes to arbitrary smooth
DG algebras and DG categories. A curious special case is the alge-
bra of rational functions on a smooth projective curve. There, our
construction gives exactly the ring of adeles.

1 Rational singularities and a conjecture of Bondal and
Orlov

Let X be an algebraic variety over a field of characteristic zero.
Recall that X has rational singularities if for some (and then any)
resolution of singularities 𝜋 ∶ Y → X we have R𝜋∗𝒪Y ≅ 𝒪X . Equiv-
alently, the pullback functor 𝕃𝜋∗ ∶ Dperf(X) → Dperf(Y) is fully
faithful. The following conjecture is still open.

Conjecture 1.1 ([1]). With the above notation, the functor R𝜋∗ ∶
Db
coh(Y) → Db

coh(X) is a localization. That is, the induced functor
Db
coh(Y)/ ker(R𝜋∗) → Db

coh(X) is an equivalence.

The following result is a version of such statement which holds
in a much more general framework.

Theorem 1.2 ([5]). Let X be a separated scheme of finite type
over a field k of characteristic zero. Then there exist a smooth
projective variety Y and a functor Φ ∶ Db

coh(Y) → Db
coh(X) such

that the induced functor Db
coh(Y)/ ker(Φ) → Db

coh(X) is an equiv-
alence. Moreover, the triangulated category ker(Φ) is generated
by a single object.
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This theorem in particular confirms a conjecture of Kontsevich
on the homotopy finiteness of the DG category Db

coh(X). The proof
is based on a certain construction of a categorical resolution of
singularities, due to Kuznetsov and Lunts [8].

The methods developed to prove Theorem 1.2 actually also
work to prove Conjecture 1.1 in a certain class of cases. In particular,
the following result holds.

Theorem 1.3 ([5]). Let X ⊂ 𝔸n be a cone over a smooth Fano vari-
ety in ℙn−1. Let 𝜋 ∶ Y → X be the resolution given by the blow-up
of the origin point. Then the induced functor Db

coh(Y)/ ker(R𝜋∗) →
Db
coh(X) is an equivalence.

2 Categorical smooth compactifications

Theorem 1.2 deals with a special case of a categorical smooth
compactification. We first recall some basic definitions.

Definition 2.1 ([7]). 1. A small DG category 𝒞 over k is smooth if
the diagonal 𝒞-𝒞-bimodule is perfect.

2. 𝒞 is called proper if for X, Y ∈ 𝒞 the complex 𝒞(X, Y) is perfect
over k.

In particular, we have the notions of smoothness and proper-
ness for DG algebras (a DG algebra can be considered as a DG
category with a single object). When X is a separated scheme of
finite type over a field k, then X is smooth (resp. proper) if and only
if the DG category Perf(X) is smooth (resp. proper) ([11, Proposi-
tion 3.30], [10, Proposition 3.13]). Hence, these basic geometric
properties of X are reflected by the DG category Perf(X).

We recall the following definition.

Definition 2.2. For a pre-triangulated DG category 𝒜, a categor-
ical smooth compactification is a DG functor F ∶ 𝒞 → 𝒜, such
that:

1. 𝒞 is a smooth and proper pre-triangulated DG category;
2. the induced functor 𝒞/ ker(F) → 𝒜 is fully faithful;
3. every object x ∈ 𝒜 is a direct summand of some F(y), y ∈ 𝒞.

The basic geometric example of a categorical smooth com-
pactification is given by the usual one. Namely, let X be a smooth
algebraic variety over k, and let j ∶ X ↪ sX be an open embed-
ding, where sX is smooth and proper. Then the restriction functor
j∗ ∶ Perf(sX) → Perf(X) is a categorical smooth compactification.

Theorem 1.2 provides a categorical smooth compactification
of the DG categories of the form Db

coh(X), where X is a separated
scheme of finite type over a field of characteristic zero.

There is a notion of a homotopically finitely presented (hfp) DG
category which should be thought of as a smooth DG category

”of finite type” (we refer to [14] for the precise definition). The
following general question was formulated by Bertrand Toën.

Question 2.3 (Toën). Is it true that any homotopically finitely pre-
sented DG category over a field of characteristic zero has a smooth
compactification?

The question is difficult, but the general consensus was that
the answer should be “yes”. However, in [4] the author gave a
negative answer to this question. Here we explain the rough idea
of the results of [4].

It turns out that Question 2.3 is closely related with the non-
commutative (categorical) Hodge-to-de Rham degeneration. Recall
that the classical Hodge theory implies (via GAGA) the following
algebraic statement: for any smooth algebraic variety X over a field
k of characteristic zero the spectral sequence

Epq2 = Hq(X,Ωp
X) ⇒ Hp+q

DR (X)

degenerates.
The following categorical generalization was conjectured by

Kontsevich and Soibelman [7], and proved by Kaledin [6].

Theorem 2.4 ([6, Theorem 5.4]). Let A be a smooth and proper
DG algebra over a field of characteristic zero. Then the Hochschild-
to-cyclic spectral sequence degenerates, so that we have an iso-
morphism HP•(A) ≅ HH•(A)((u)).

In the special case when Perf(A) ≃ Perf(X) for a smooth and
proper variety X, Theorem 2.4 gives exactly the usual (commutative)
Hodge-to-de Rham degeneration.

The following two conjectures were formulated by Kontsevich
for smooth and for proper DG algebras.

Conjecture 2.5 (Kontsevich). Let A be a smooth DG algebra over
a field of characteristic zero. Then the composition

K0(A ⊗ Aop)
ch
−−→ (HH•(A) ⊗ HH•(Aop))0

id⊗𝛿−
−−−−−→ (HH•(A) ⊗ HC−

• (Aop))1

vanishes on the class [A] of the diagonal bimodule.

Here 𝛿− ∶ HH•(Aop) → HC−
• (Aop)[−1] denotes the boundary

map, see [2, Section 3].

Conjecture 2.6 (Kontsevich). Let B be a proper DG algebra over a
field k of characteristic zero. Then the composition map

(HH•(B) ⊗ HC•(Bop))[1]
id⊗𝛿+
−−−−−→ HH•(B) ⊗ HH•(Bop) → k

is zero.

EMS MAGAZINE 120 (2021) 5



Here 𝛿+ ∶ HC•(Bop)[1] → HH•(Bop) denotes the boundary
map, see [9, Section 2.2].

Both conjectures 2.5 and 2.6 hold, roughly speaking, for all
DG categories coming from (commutative) algebraic geometry.

Conjecture 2.5 is related to Question 2.3 as follows. Suppose
that we have a smooth compactification 𝒞 → 𝒜 (hence 𝒜 is
smooth). Then we have the following commutative diagram:

HH•(𝒞) ⊗ HH•(𝒞op) HH•(𝒞) ⊗ HC−
• (𝒞op)[−1]

HH•(𝒜) ⊗ HH•(𝒜op) HH•(𝒜) ⊗ HC−
• (𝒜op)[1].

id⊗𝛿−

id⊗𝛿−

The left vertical map sends ch(I𝒞) to ch(I𝒜). Hence, applying
Kaledin’s Theorem 2.4, we obtain that Conjecture 2.5 holds for 𝒜.

A dual argument implies that Conjecture 2.6 holds for proper
DG categories which can be fully faithfully embedded into a smooth
and proper DG category (such an embedding is called a categorical
resolution in the terminology of Kuznetsov and Lunts [8]).

However, in [4] we disproved both conjectures.

Theorem 2.7 ([4, Theorem 4.5, Theorem 5.4]). 1. There exists a
homotopically finitely presented DG algebra A for which Con-
jecture 2.5 does not hold. In particular, A gives a negative
answer to Question 2.3: the DG category Perf(A) does not
have a smooth categorical compactification.

2. There exists a proper DG algebra B for which Conjecture 2.6
does not hold. In particular, the category Perf(B) does not have
a categorical resolution of singularities.

The DG algebra B from part 2 is quasi-isomorphic to a certain
explicit 10-dimensional A∞-algebra for which the supertrace of m3

on the second argument is non-zero.

3 Categorical formal punctured neighborhood of infinity

Another subject related to the notion of a smooth categorical
compactification is that of a formal punctured neighborhood of
infinity. Suppose that we have a usual smooth compactification
j ∶ X ↪ sX of a smooth algebraic variety X. Then one can take
the formal neighborhood sX

pZ , and then “remove” Z. The resulting
object sX

pZ − Z (the so-called generic fiber, considered as an adic
space) does not depend on the choice of the compactification sX.
Let us set X

p∞ ∶= sX
pZ − Z. The corresponding category of perfect

complexes Perf(X
p∞) also does not depend on Z and it is therefore

an invariant of X.
The natural question arises: can we describe the category

Perf(X
p∞) purely in terms of Perf(X)? This question is partially mo-

tivated by mirror symmetry since an analogue of Perf(X
p∞) exists

in symplectic geometry in the framework of Fukaya categories. It

turns out that the purely categorical construction is possible, and
it was described by the author in [3]. Here we give an outline.

First, we describe a “non-derived” version of the construction.
Let A be an associative algebra over a field k. Then one can describe
the algebra H0(A

p∞) as follows.

H0(A
p∞) = {𝜑 ∈ Endk(A) ∣ ∀a ∈ A, rk[𝜑, Ra] < ∞}/(A∗ ⊗ A).

Here Endk(A) is the algebra of k-linear endomorphisms of A (as
a vector space) and A∗ ⊗ A ⊂ Endk(A) is the two-sided ideal of
operators of finite rank. The commutator is the additive one (the
Lie algebra bracket) and Ra ∶ A → A, Ra(b) = ba, is the operator
of right multiplication by a.

Example 3.1. It is a pleasant exercise to check that for A = k[t]
we have H0(A

p∞) ≅ k((t−1)). A similar computation shows that
H0(k[x±]

p∞) ≅ k((t)) × k((t−1)).

Example 3.2. A less trivial example is the following: let X be
a smooth projective connected curve over k. Then we have
H0(k(X)

p∞) ≅ 𝔸X , where 𝔸X is the ring of adeles on X. Recall
that 𝔸X ⊂

∏
x ∈Xcl

̂Kx is the subring of the product of complete
local fields, consisting of elements (ax)x ∈Xcl such that ax ∈ ̂𝒪x for
all but finitely many x.

Now let A be a smooth DG algebra. The DG algebra A
p∞ is

defined by the formula

A
p∞ ∶= C•(A, Endk(A)/A∗ ⊗ A).

Here C•(A, −) denotes the Hochschild cochain complex. The prod-
uct on A

p∞ comes from the product on Endk(A)/A∗ ⊗ A.
To describe the DG algebra A

p∞ more conceptually, we recall
the following notion.

Definition 3.3. 1. Let k be a field. The Calkin (DG) category
Calkk is defined as the quotient Mod -k/ Perf(k). More explic-
itly, the objects of the DG category Calkk are complexes of
k-vector spaces, and the morphisms are given by Calkk(V ,W) =
Homk(V ,W)/V ∗ ⊗W .

2. More generally, for a DG algebra A the Calkin category CalkA is
defined as the quotient Mod -A/ Perf(A).

We can consider A (and any other right A-module) as an object
of Rep(Aop,Calkk) – suitably defined category of representations
of Aop in Calkk. Note that

A
p∞ ≃ EndRep(Aop,Calkk)(A).

The DG category of topological perfect complexes over A
p∞ is de-

fined as follows.

Definition 3.4. For a smooth DG algebra A we define

Perftop(A p∞) ≃ ker(Rep(Aop,Calkk) → Perf(A ⊗ Calkk) → CalkA).

6 EMS MAGAZINE 120 (2021)



Here the embedding Rep(Aop,Calkk) ↪ Perf(A⊗Calkk) comes
from the assumption that A is smooth. The functor Perf(A ⊗
Calkk) → CalkA is given by the tensor product: (A,V) ↦ V ⊗A for
V ∈ Calkk.

Theorem 3.5 ([3]). Let X be a smooth algebraic variety over a
field k, and assume that X has a smooth compactification. Let
A be a DG algebra such that Perf(A) ≃ Perf(X). Then we have
an equivalence Perf(X

p∞) ≃ Perftop(A p∞) such that the following
diagram commutes:

Perf(X) Perf(A)

Perf(X
p∞) Perftop(A p∞).

∼

∼

Remark 3.6. It is possible to obtain an extended version of Theo-
rem 3.5 where the category Perf(X

p∞) is replaced by the category
of nuclear modules in the sense of Clausen and Scholze [12, Defini-
tion 13.10]). This is more involved (and unpublished), and we will
not cover this in the present note.

Remark 3.7. The construction of the DG algebra A
p∞ and the DG

category Perftop(A p∞) is very much in the spirit of Tate’s paper on
residues of differential on curves [13].
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The geometric structure of interfaces and free boundaries

Joaquim Serra

Interfaces are surfaces that separate two regions of space with
different physical properties: molecule A/molecule B, ice/water,
charges/void, etc. The understanding of their geometric structure
has boosted the development of Nonlinear Elliptic PDEs during
the second half of the 20th century, and continues to do so at the
beginning of the 21st.

1 Background: Minimal surfaces

Plateau’s problem. Given a curve in ℝ3, is there a surface with
minimal area having this curve as boundary? This question, raised
by Joseph-Louis Lagrange in 1760, is one of the most classical and
influential problems in the Calculus of Variations. It is known as
Plateau’s problem, after the 19th century Belgian physicist Plateau,
who experimented with soap films. Due to surface tension, soap
films provide natural examples of area minimizing surfaces.

In 1930, Douglas and Radó gave the first solutions of Plateau’s
problem in the context of immersions. Later, other notions of solu-
tion were proposed by De Giorgi, Federer and Fleming, Reifenberg,
and Almgren, among others. Heuristically, the weaker a notion
of solution is, the easier it becomes to prove its existence. But
solutions of Plateau’s problem fail to be unique, so how can we
be sure of not finding spurious solutions? Are all weak solutions
“genuine” ones? Regularity theory gives detailed answers to this
sort of question.

The regularity theory of area minimizing hypersurfaces. Let
Ω ⊂ ℝn be some bounded domain, n ≥ 2. We say that a hyper-
surface1 S ⊂ ℝn is area minimizing2 in Ω if the following holds:

• The boundary of S ∩Ω is contained in 𝜕Ω.
• For every hypersurface S′ such that the boundaries of S′∩Ω and

of S ∩Ω coincide, we have area(S′ ∩Ω) ≥ area(S ∩Ω).

Throughout the 20th century, many outstanding geometers and
analysts worked on the following question: Are area minimizing
hypersurfaces smooth, or might they have “singularities”? They ar-
rived at a detailed and complete answer which can be summarized
as follows:

(i) Any area minimizing hypersurface is smooth (analytic) in di-
mensions n ≤ 7 (Fleming [24], De Giorgi [14, 15], Almgren
[2], and Simons [40]).

(ii) In dimensions n ≥ 8 the Simons cone {x21 + x22 + x23 + x24 =
x25 + x26 + x27 + x28} ⊂ ℝn is an example of area minimizing hy-
persurface with a (n − 8)-dimensional singular set (Bombieri,
De Giorgi, and Giusti [7]).

(iii) In dimensions n ≥ 8 area minimizing hypersurfaces are
smooth (analytic) outside of a closed singular set of Hausdorff
dimension ≤ n − 8 (Federer [19]).

The earlier regularity theory, together with Almgren’s [3] prodi-
gious extension of it to m-surfaces in ℝn with 2 ≤ m ≤ n − 2,
inspired several other theories for geometric variational problems,
interfaces, and free boundaries. We will refer to it a few times in
what follows.

Stable minimal surfaces. Consider a soap film between two par-
allel circles of diameter 1, at small distance. We obtain a catenoid
as in the left picture of Figure 1. When the separation (distance)
between the two circles is small, the catenoid is an area mini-
mizing surface. However, as we separate the circles more and
more, we will reach a first critical separation, after which the
area of the catenoid will be greater than 2𝜋. Now the catenoidal
soap films are no longer minimizers of the area (two flat disks
joined with a thin neck would outperform them) but this does
not cause any instability. Then, if we continue separating the
circles, we reach a second critical separation, after which the
soap film breaks into two disconnected disks, as shown in Fig-
ure 1.

1 (n − 1)-dimensional surface.
2 This is an intentionally imprecise notion: more rigorously, S can be the boundary of a set of minimal perimeter, or a mass minimizing integer rectifiable current.
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Figure 1. Unstabilizing a soap-film catenoid: Pictures from [25], reproduced with the authors’ authorization

What happens between the two critical separations? The an-
swer is given by the notion of stable minimal surface: although
these catenoids are not “absolute” minimizers of the area, they
still have a lesser area than any small variation of them. And this is
enough to stabilize them.

As the previous example shows, not only energyminimizers are
found in nature. Also stable solutions, i.e., those outperforming
any small perturbation of them, are of physical interest. How-
ever, for Plateau’s problem, as well as for several other important
non-convex variational problems, fundamental questions that are
well-understood in the case of minimizers remain completely open
in the case of stable solutions. We next give a concrete example
that will motivate some of our results described later.

A priori curvature bounds. The nowadays standard regularity
theory for area minimizers – see (i) above – implies the following:

Theorem 1. Let n ≤ 7 and S ⊂ ℝn be an area minimizing hyper-
surface in the unit ball B1 ⊂ ℝn. Then the curvatures of S inside
the half ball B1/2 are bounded by dimensional constants.

It has long been conjectured3 that

Conjecture 2. Theorem 1 holds replacing “area minimizing hyper-
surface” by “stable minimal hypersurface”.

By a simple (though clever) scaling and compactness argument
of White (see [44]), Conjecture 2 is equivalent to

Conjecture 3. Let n ≤ 7 and S ⊂ ℝn be a connected, complete,
stable minimal hypersurface. Then S is an hyperplane.

The previous conjectures have been proved only in the case
n = 3 (surfaces in ℝ3); the earliest proofs date from the 1970’s,

see [12]. But, unfortunately, their beautiful and relatively short
proofs are extremely specific to the case of minimal surfaces in ℝ3:
they cannot be extended to higher dimensions, nor even to other
interface models in ℝ3 which are very similar to minimal surfaces.

2 Interfaces in phase transitions

The Allen–Cahn equation. Consider a binary fluid, i.e., a mixture
containing two types of molecule: A and B (like oil and water).
In many cases, these molecules have an energetic preference to
be surrounded by others of their same kind. It undergoes phase
separation into A-rich and B-rich regions.

Phase transition and phase separation phenomena – such as
the previous one – are modelled by means of the scalar Ginzburg–
Landau energy:

J𝜀(v) ∶=
ż

Ω
( 1

2
|∇v| + 1

4𝜀2
W(v)) dx, 𝜀 > 0,

defined on scalar fields v ∶ Ω → [−1, 1], where Ω ⊂ ℝn. Here
W(v) is a so-called double-well potential with “wells” (i.e., minima)
at ±1. Typically one takes W(v) = (1 − v2)2.

Scalar fields u𝜀 ∶ ℝn → [−1, 1] satisfying
d
dt

|
|t = 0

J𝜀(u𝜀 + t𝜉) = 0

for all 𝜉 ∈ C∞
c (Ω) are called critical points (in Ω) of J𝜀. They solve

the Allen–Cahn equation: −Δu𝜀 =
1

𝜀2
(u𝜀 − u3𝜀). A critical point u𝜀 is

called a minimizer (in Ω) if J𝜀(u𝜀 + 𝜑) ≥ J𝜀(u𝜀), for all 𝜑 ∈ C∞
c (Ω).

Let us come back to the binary fluid example to see how the
scalar fields u𝜀 encode A-rich and B-rich regions. The idea is to inter-
pret

1

2
(u𝜀(x)+1), a number in the interval [0, 1], as the relative den-

sity of molecules of type A at x. In other words, u𝜀(x) ∈ (0.99, 1]
means that x belongs to a A-rich region while u𝜀(x) ∈ [−1, −0.99)
means that x belongs to a B-rich region.

3 In the case n = 4 this is Schoen’s conjecture (see [12, Chapter 2]).
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When the parameter 𝜀 > 0 is small the potential
1

4𝜀2
W(v)

strongly penalizes intermediate states v ∈ (−0.99, 0.99) and the
space essentially splits into two regions, {u𝜀 > 0.99} (A-rich re-
gion) and {u𝜀 < −0, 99} (B-rich region), which are separated by an
interface {|u𝜀| < 0.99} (mixture of both molecules). The interface is
a “fat surface” of thickness ≤ C𝜀. On the other hand, the Dirichlet
term of the energy

ş

ℝn

1

2
|∇v|2 makes transitions between ±0.99

costly, so interfaces are energetically expensive.
The zero level set {u𝜀 = 0} can be thought as the surface which

best approximates the interface {|u𝜀| < 0.99}.
An important family of explicit solutions to the Allen–Cahn

equation is given by

Ue,b
𝜀 (x) = tanh(e ⋅ x − b

‘

2 𝜀
), (2.1)

where e ∈ 𝕊n−1 and b ∈ ℝ. Via a calibration argument [4], one
can see that Ue,b

𝜀 are minimizers of J𝜀 in all of ℝn.

Connection with minimal surfaces. By the results in [10, 30], if
u𝜀k is a sequence of minimizers of J𝜀k , then the surfaces {u𝜀k = 0}
converge locally uniformly4, as 𝜀k → 0, towards area minimizing
hypersurfaces.

It is then natural to ask if the surfaces {u𝜀 = 0} inherit the
regularity properties of the area minimizing hypersurfaces to which
they converge. In other words:

Is {u𝜀 = 0} smooth in dimensions n ≤ 7, with robust estimates as
𝜀 → 0?

This delicate question is nowadays completely understood in the
case of energy minimizers. Indeed, Savin established in 2009 the
following celebrated result.

Theorem 4 ([36]). Assume that n ≤ 7. Let u𝜀 be a minimizer of
J𝜀 in B1 ⊂ ℝn with u𝜀(0) = 0. Then {u𝜀 = 0} ∩ B1/2 is a C1,𝛼

hypersurface, with robust estimates as 𝜀 ↓ 0.

A “famous” consequence of Theorem 1 and scaling is that any
minimizer of J1 in all of ℝn must be either ±1 or of the form (2.1)
with 𝜀 = 1.

Combining Savin’s result with the recent C2,𝛼 estimates of
Wang and Wei [42] we obtain:

Theorem 5 ([36,42]). Assume that n ≤ 7. Let u𝜀 be a minimizer
of J𝜀 in B1 ⊂ ℝn with u𝜀(0) = 0. Then, the curvatures of the
hypersurface {u𝜀 = 0} are bounded by dimensional constants in
B1/2.

Conjectures on stable solutions. As in the case of soap films, it is
very natural to ask:

Does Theorem 5 hold when “minimizer” is replaced by “stable
critical point” (i.e., minimizer among small perturbations)?

Like for minimal surfaces, thanks to the striking results from
[42], the previous question can be reduced to the following long-
standing

Conjecture 6. Assume that n ≤ 7. Let u be a stable critical point
of J1 in the whole space ℝn different from ±1. Then u must be of
the form (2.1) with 𝜀 = 1.

Even in the case of ℝ3, Conjecture 6 is a very challenging and
completely open problem (although the analogous result for mini-
mal surfaces in ℝ3 is known, its very rigid proof does not generalize
to stable critical points of J𝜀). The case of n = 2, which is already
nontrivial, was proven by Ambrosio and Cabré [4] in 2000.

Interestingly, Conjecture 6 is known to imply a famous
1979 conjecture of De Giorgi [16]: for all n ≤ 8 (one dimension
more than before) any solution of the Allen–Cahn equation in the
whole space ℝn satisfying 𝜕xnu > 0must be of the form (2.1), with
𝜀 = 1 and e ⋅ en > 0.

“Counterexamples” to Theorem 5 and Conjecture 6 for n ≥ 8,
and to De Giorgi’s conjecture for n ≥ 9 were obtained – via very
delicate and involved constructions – in [17,29].

The Peierls–Nabarro equation. Introduced in the early 1940’s
in the context of crystal dislocations [32,33], the Peierls–Nabarro
equation also models phase transitions with line-tension effects [1]
and boundary vortices in thin magnetic films [27]. It concerns the
energy functional

I𝜀(v) ∶=
ĳ

ℝn×ℝn

|
|v(x) − v( ̄x)

|
|
2

|x − ̄x|n+1 dx d ̄x +1𝜀

ż

ℝn

W(v) dx .

As in the previous section, v ∶ ℝn → [−1, 1] is a scalar field and
W(v) is a double-well potential.

In this context a natural double-well potential is W(v) ∶=
1+ cos(𝜋v), and for this choice ofW an explicit family of solutions
is given by

Ue,b
𝜀 (x) = 2

𝜋arctan(
e ⋅ x − b

𝜀 ). (2.2)

The two functionals J𝜀 and I𝜀 behave similarly, and there is an al-
most perfect parallel between their interface regularity theories.
To start with, by [1, 38], if u𝜀k is a sequence of minimizers of I𝜀k
then the interfaces {u𝜀k = 0} converge locally uniformly as 𝜀k → 0
towards area minimizing hypersurfaces, just as they do for J𝜀.

In this context the analogue of Theorem 4 – i.e., a local C1,𝛼

estimate for {u𝜀 = 0} in the case of energy minimizers – was
obtained in [37], also by Savin, using similar techniques.

Given the parallel between J𝜀 and I𝜀, it is conjectured that for
3 ≤ n ≤ 7 all stable critical points of I1 in the whole space ℝn must

4 In the sense of the Hausdorff distance and up to subsequences.
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be of the form (2.2) with 𝜀 = 1 (in other words that the analogue
of Conjecture 6 replacing J𝜀 by I𝜀 holds).

While Conjecture 6 (for J𝜀 ) remains completely open in dimen-
sions 3 ≤ n ≤ 7, Figalli and the author [23] were able to establish
it for I𝜀 in dimension n = 3.

Theorem 7 ([23]). Let u be a stable critical point of I1 in the whole
space ℝ3. Then u must be of the form (2.2) with 𝜀 = 1.

This result finally broke the parallel of known results for J𝜀 and
I𝜀, in favour of I𝜀. Its proof exploits the “long-range interactions”
from the term

ĳ

ℝn×ℝn

|u(x) − u( ̄x)|2
|x − ̄x|n+1 dx d ̄x,

borrowing ideas from a paper of Cinti, the author, and
Valdinoci [11] on nonlocal minimal surfaces.

3 The obstacle problem and Stefan’s problem

Pushing an elastic membrane with an obstacle. Given some
smooth domain Ω ⊂ ℝn, 𝜑 ∶ Ω → ℝ and g ∶ 𝜕Ω → ℝ, both
smooth and satisfying g ≥ 𝜑|𝜕Ω, consider the convex minimization
problem

min{
ż

Ω
|∇v|2dx ∶ v ≥ 𝜑, v = g on 𝜕Ω}.

For n = 2, one can think of x3 = v(x1, x2) as the equilibrium posi-
tion of an elastic membrane whose boundary is held fixed while it
is pushed from below by an obstacle (the hypograph of 𝜑).

The function u ∶= v − 𝜑 ≥ 0 can be shown to satisfy
Δu = (−Δ𝜑)𝜒{u> 0} inΩ. In the “model case”Δ𝜑 ≡ −1 one obtains

u ≥ 0, Δu = 𝜒{u> 0} in Ω. (3.1)

In other words, the domain Ω is split into two subdomains {u > 0}
and {u = 0} and inside the first one we have Δu = 1. The un-
known interface between the two subdomains, denoted 𝜕{u > 0},
is called the free boundary. Since u must satisfy (3.1) (in the sense
of distributions) in Ω, not only u but also |∇u| must vanish continu-
ously on 𝜕{u > 0}. In this “double constraint” (3.1) encodes the
geometric information about the free boundary.

As an interesting fact, solutions u of (3.1) minimize the follow-
ing convex energy functional:

ż

Ω
( 1

2
|∇u|2 +max(0, u)) dx. (3.2)

A potential theoretic motivation of the obstacle problem. Imag-
ine a cloud made of a very large number of identical point charges
in ℝ3. They interact through the standard Coulomb potential, re-
pelling each other. In absence of external forces the cloud would
expand indefinitely, but inside some exterior potential the cloud
will reach an equilibrium, occupying only a bounded region of the
space. This motivates the introduction of the so-called (Frostman)
equilibrium measure for Coulomb interactions with an external
“field” V (growing at infinity), defined as the unique probability
measure 𝜇 on ℝ3 which minimizes

ĳ

ℝ3×ℝ3

1
|x − y|d𝜇(x) d𝜇(y) +

ż

ℝn

V(x)d𝜇(x). (3.3)

Denoting by v(x) ∶=
ş

ℝ3

d𝜇(y)
|x−y|

the potential generated by 𝜇, the
equilibrium measure 𝜇 is compactly supported and uniquely charac-
terized by the fact that there exists a constant c such that v ≥ c − V

2
in ℝ3 and v = c − V

2
on the support of 𝜇. In other words u solves

the obstacle problem in the whole space with obstacle 𝜑 = c − V

2
.

Ice melting in water. Dating back to the 19th century, Stefan’s
problem [41] aims to describe the temperature distribution in a
homogeneous medium undergoing a phase change, typically a
body of ice at zero degrees centigrade submerged in water.

Its most classical formulation is as follows: let Ω ⊂ ℝ3 be some
bounded domain, and let 𝜃 = 𝜃(x, t) denote the temperature of
the water at the point x ∈ Ω at time t ∈ ℝ+ ∶= [0, +∞). We
assume that 𝜃 ≡ 0 on the ice and 𝜃 > 0 in the water. The tem-
perature satisfies the heat equation 𝜕t𝜃 = Δ𝜃 inside the water
{𝜃 > 0} and the Stefan condition5 𝜕t𝜃 = c|∇𝜃|2 on the inter-
face 𝜕{𝜃 > 0}.

Baiocchi and Duvaut [5, 18] introduced the transformation
u(x, t) ∶=

şt

0
𝜃(x, 𝜏)d𝜏 and showed that the new scalar field u

satisfies6

u ≥ 0, 𝜕tu ≥ 0, and (Δ − 𝜕t)u = 𝜒{u> 0}. (3.4)

In addition, by definition of u we have {u > 0} ≡ {𝜃 > 0} and

𝜕tu > 0 inside {u > 0}. (3.5)

Interestingly, the evolution (3.4) is the gradient flow of the convex
functional (3.2). Thanks to this convex structure, some basic ques-
tions such as existence and well-posedness of Stefan’s problem
– which would be very non-obvious in the original formulation –
can be shown via standard Functional Analysis methods.

Other motivations. Stefan’s and obstacle problems have other
well-known applications in physics, biology, or financial mathemat-
ics. Some examples are: the dam problem, the Hele–Shaw flow,

5 The normal velocity V⃗ of 𝜕{𝜃 > 0} is proportional to the flux of heat (which is used to melt the ice). By Fourier’s law this flux is proportional to the gradient of
temperature, hence V⃗ = −c∇𝜃. But, since 𝜃 ≡ 0 on the moving interface we obtain 𝜕t𝜃 + V⃗ ⋅ ∇𝜃 = 0 on 𝜕{𝜃 > 0}, from which Stefan’s condition follows.

6 Near points that were inside the ice at initial time and for c = 1.
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pricing of American options, quadrature domains, randommatrices,
etc.

Regularity of free boundaries: Main questions and difficulties.
Any solution u of (3.4) can be shown to be of class C1,1 in space
and C0,1 in time. This regularity is optimal because the right hand
side 𝜒{u> 0} in (3.4) forces (Δ − 𝜕t)u to be discontinuous across
𝜕{u > 0}.

The most interesting regularity questions concern the free
boundary 𝜕{u > 0}:

• Is the free boundary a smooth hypersurface, or may it have
singularities?

• If the singular set is nonempty, how “large” can it be?

Classical examples by Lévy and Schaeffer (some known from be-
fore the 1970’s) show that solutions of the obstacle problem with
non-smooth free boundaries exist already in the smallest nontrivial
dimension n = 2; see [26]. Hence, any positive regularity result on
the free boundary must be “conditional”.

It was not until 1977, with the groundbreaking paper of Caf-
farelli [8], that a regularity theory for the free boundaries of so-
lutions of (3.4) was established. Since (3.1) is a particular case
of (3.4) – that of constant in time solutions – Caffarelli’s results
apply at the same time to both the obstacle problem and Stefan’s
problem.

Caffarelli’s breakthrough. The approach of Caffarelli to the regu-
larity of free boundaries of (3.4) – or of (3.1) – has some similarities
with the regularity theory of area minimizing hypersurfaces de-
scribed in Section 1. In Caffarelli’s regularity theory (as in minimal
surfaces) blow-ups are very important actors. Informally speaking,
one looks at the free boundary through a microscope, and then
tries to infer its “macroscopic properties” from its “microscopic”
ones.

For (3.4) the scaling of the problem suggests considering, for
given (x∘, t∘) ∈ 𝜕{u > 0} and r > 0,

ux∘, t∘, r(x, t) ∶= 1
r2
u(x∘ + rx, t∘ + r2t).

It is easy to see that ux∘, t∘, r is again a solution of (3.4). Blow-ups
are defined as accumulation points of ux∘, t∘, r as r ↓ 0.

The main results from [8] (combined with [26], [9] and [6]) can
be summarized as follows:

Theorem 8. LetΩ ⊂ ℝn×ℝ and u ∶ Ω → ℝ be a solution of (3.4).
For every (x∘, t∘) belonging to the free boundary 𝜕{u > 0} one of
the following two alternatives holds:

(a) ux∘, t∘, r → 1

2
(max(0, e ⋅ x))2 as r ↓ 0, for some e ∈ 𝕊n−1; and

the free boundary is a (moving) analytic embedded (n − 1)-
surface near (x∘, t∘).

(b) ux∘, t∘, r → 1

2
x ⋅ Ax as r ↓ 0, for some nonnegative definite

matrix A with trace equal to 1; and the free boundary has a
singularity7 at (x∘, t∘).

Further known results on singular points. After the results of
Caffarelli [8], a natural question is: what else can be said about
singular points?

For the obstacle problem (3.1) in dimension n = 2, Sakai [34,35]
used methods in complex analysis to give an extremely accurate
description of the possible singularities. In particular, the results
of Sakai imply that at every singular free boundary point x∘ of a
solution of (3.1) in ℝ2 we have

u(x∘ + x) = 1

2
x ⋅ Ax + 𝜔(x). (3.6)

with |𝜔(x)| ≤ C|x|3. This significantly improved the qualitative de-
scription of Theorem 8(b), which is equivalent to 𝜔(x) = o(|x|2),
and entailed some interesting consequences. Unfortunately, Sakai’s
complex analysis methods cannot work in higher dimensions, nor
for Stefan’s problem (not even for n = 2). Thus, improving Caf-
farelli’s result for (3.1) in dimensions n ≥ 3 required new ideas.

Understanding singularities better. The first new result in this
direction for n ≥ 3 was established by Colombo, Spolaor, and
Velichkov in 2017 [13]. By improving and refining the methods of
Weiss [43], they proved that at every singular point, the expan-
sion (3.6) holds with explicit logarithmic modulus of continuity
|𝜔(x)| ≤ C|x|2(log |x|)−𝛾, where 𝛾 > 0. Independently and with dif-
ferent methods, Figalli and the author proved in [22] the following:

Theorem 9 ([22]). Let u be a solution of the obstacle problem (3.1)
with Ω ⊂ ℝn. For all singular points outside some “anomalous”
set of Hausdorff dimension ≤ n−3, (3.6) holds with |𝜔(x)| ≤ C|x|3.
Moreover, there exist examples in ℝ3 of isolated singular points
for which |𝜔(x)| ≫ |x|2+𝜀 as |x| → 0 for all 𝜀 > 0.

The previous theorem suggests, for one thing, that we may
be able to give a very precise quantitative description of most sin-
gularities. However, the existence – already in ℝ3 – of singular
points for which |𝜔(x)| ≫ |x|2+𝜀 for all 𝜀 > 0 tells us that we can-
not hope for some analytic structure of singularities as in Sakai’s
result for ℝ2: in higher dimensions some singularities may be very
complicated.

Another insightful result from [22] is that, for all singular points
outside some (n − 2)-dimensional set we have, after rotation, the

7 For the evolutionary problem (3.4) singularities are associated to changes of topology of the ice {u = 0}. For instance, the ice may develop a very thin shrinking neck
which eventually breaks into two pieces after producing a singular point.
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improved expansion u(x∘ + x) = 1

2
x2n + xnQ(x) + o(|x|3), where Q

is some quadratic polynomial satisfying Δ(xnQ) = 0. This invites us
to investigate higher order expansions that hold at most singular
points (although proving this turned out to be quite a delicate task,
and the tools needed to complete it were only developed later
in [20]).

It is interesting to notice that the methods introduced in [22]
for the obstacle problem are closely connected with Almgren’s
regularity theory [3] for mass minimizing m-surfaces in ℝn with
n ≥ m + 2. In particular, Almgren’s frequency formula plays an
important (and unexpected) role.

The size of the singular set. An important consequence of The-
orem 8 is that, in both the obstacle and Stefan’s problems, the
singular sets enjoy spatial C1-regularity, in the sense that they can
be covered by (n − 1)-manifolds of class C1 (see [6,9]). Note, how-
ever, that this is not a very useful piece of information on the size
of the singular set, since the regular part of the free boundary is
also (n − 1)-dimensional and thus, a priori, the singular part could
be as large as the regular one.

As explained above, Theorem 8 applies at the same time to
both the obstacle problem and Stefan’s problem, since (3.1) is a
particular case of (3.4). However, when we seek to obtain improved
bounds on the size of their singular sets, the two problems need
to be treated in completely different ways. On the one hand, in
Stefan problem it is natural to try to exploit (3.5) – which was not
used in Caffarelli’s theory – and to ask if the free boundary is free of
singularities most of the time. On the other hand, for the stationary
problem (3.1), the previous evolutionary point of view makes no
sense. In the absence of time, the only thing one can hope to prove
is that for “generic” boundary values, solutions of (3.1) do not have
singular points. This is actually something that has been expected
to be true since the 1970’s [39]:

Conjecture 10 (Schaeffer, 1974). Generically, solutions of the ob-
stacle problem have smooth free boundaries.

Until recently Conjecture 10 was only known to hold in the
plane ℝ2 (see [31]).

Generic regularity for the obstacle problem. Building on themeth-
ods initiated in [22] we were recently able to obtain a positive
answer to Schaeffer’s conjecture in low dimensions:

Theorem 11 ([20]). Conjecture 10 holds in ℝ3 and ℝ4.

Our strategy towards this theorem is reminiscent of Sard’s the-
orem in analysis. By adding 𝜏 ∈ ℝ to the boundary values we

produce a monotone 1-parameter family of solutions. We then
prove that the set of “singular values” of 𝜏 has measure zero by
improving the order of approximation of certain polynomial ex-
pansions at most singular points. This is a long and delicate proof
because the singular sets need to be split into several different
strata, and in each of them the corresponding singular values have
measure zero for very different reasons.

The singular set in Stefan’s problem. As said above, in order to
investigate the size of the singular set in Stefan’s problem, we
will use (3.5). In particular, from now on solutions will never be
stationary.

FixΩ ⊂ ℝn×ℝ and let u ∶ Ω → ℝ be a solution of (3.4)–(3.5). It
will be useful to define the spatial and time projections 𝜋x(x, t) ∶= x
and 𝜋t(x, t) = t.

Let us denote by Σ ⊂ ℝn ×ℝ the set of all singular free bound-
ary points of u.

Caffarelli’s regularity theory implies (see [6,9]) that every “time
slice” of Σ∩𝜋−1

t ({t∘}) can be locally covered by (n− 1)-manifolds
of class C1. This may not seem like a very strong piece of informa-
tion, since the regular part of the free boundary is also (n − 1)-
dimensional. However, it is not difficult to construct solutions of
(3.4)–(3.5) with rotational symmetry u(x, t) = U(|x|, t) such that
for countably many times ti the time slice Σ ∩ 𝜋−1

t ({ti}) contains
some (n − 1)-sphere 𝜕BRi(0) × {ti}.

The previous examples show that even for countably many
times, the singular set can have positive (n − 1)-dimensional mea-
sure. At those times, the singular set is as large as the regular
part of the free boundary. Still, inspection of explicit examples
suggests that Σ should be smaller in some sense than the regular
part of the free boundary, perhaps as a subset of the “space-time”
ℝn × ℝ.

Until recently, the best results available in this direction, such
as [28], could not even rule out Σ ∩ 𝜋−1

t ({t∘}) being (n − 1)-
dimensional for every time t∘!

In the forthcoming article [21], we are able to prove a much
stronger result, which gives a precise structure and sharp dimen-
sional bounds on the singular set of Stefan’s problem.

Theorem 12 ([21]). There exist Σ∞ ⊂ Σ such that the following
holds:

(i) dimpar(Σ ⧵ Σ∞) ≤ n − 2, where dimpar denotes the parabolic
Hausdorff dimension;8

(ii) 𝜋x(Σ∞) ⊂ ℝn can be covered by countably many C∞ (n−1)-
manifolds;

(iii) 𝜋t(Σ∞) ⊂ ℝn has zero Hausdorff dimension.

8 For E ⊂ ℝn × ℝ and 𝛽 ≥ 0, we say that dimpar(E) ≤ 𝛽 if, for all 𝛽′ > 𝛽 , E can be covered by countably many parabolic cylinders Bri(xi) × (ti − r2, ti + r2i ) making
∑i r

𝛽′

i arbitrarily small. This notion of Hausdorff dimension is well-adapted to the parabolic scaling (rx, r2t) under which (3.4) is invariant.
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This is a very precise result. Recall that in radial examples the
singular set can contain some (n−1)-sphere countably many times.
Such spheres would be covered by the set Σ∞ in Theorem 12. Now,
we cannot prove that in general 𝜋t(Σ∞) is countable as it is in
such examples, but we do show that it is a 0-dimensional set (and
Hausdorff dimension cannot distinguish between countable and 0-
dimensional sets, so the result is sharp in this sense). However, the
complement of Σ∞ inside Σ is a set of “bad” singular points. These
“bad” points do not a priori enjoy any extra spatial regularity, but
in exchange they are lower-dimensional: their parabolic Hausdorff
dimension is bounded by n − 2. This bound is also optimal, as can
be shown by considering any radial solution in ℝ2 with a singular
point at (0, 0).

An important consequence of Theorem 12 is the following:

Corollary 13 ([21]). The set of singular times for Stefan’s problem
in ℝ3 has Hausdorff dimension at most 1/2. In particular, it has
measure zero.

Also, Theorem 12 implies that in ℝ2 the set of singular times
for Stefan’s problem has zero Hausdorff dimension (prior to our
results it was not even known that in ℝ2 the set of singular times
had measure zero).
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Mirrors, lenses and Monge–Ampère equations

Quentin Mérigot and Boris Thibert

Is it possible to shape a piece of glass so that it refracts and concen-
trates sunlight in order to produce a given image? The modelling
of this kind of problem leads to nonlinear second-order partial dif-
ferential equations, which belong to the family of Monge–Ampère
equations. We will see how semi-discrete methods, that can be
traced back to Minkowski’s works, allow us to numerically solve
such equations.

1 Anidolic optics and Monge Ampère type equations

In anidolic optics, or non-imaging optics, one studies the design of
devices that transfer light energy between a source and a target.
The general problem is to design the shape of a mirror (or a lens)
that reflects (or refracts) the light emitted from a given source
towards a target whose geometry and intensity distributions are

prescribed (see Figures 1 and 2). Applications of anidolic optics
include the design of solar ovens, public lighting, car headlights,
and more generally the optimization of the use of light energy and
the reduction of light pollution.

Near-field and far-field light sources
There exists many different problems in anidolic optics, depending
for instance on the geometry of the light source, the type of optical
component, and the target to be illuminated. These problems are
distinguished in particular by the spatial position of the target illu-
mination. A problem is called near-field when the target is located
within a finite distance, i.e., when one wishes to illuminate an area
of space such as a screen. In Figures 1 and 2, the target illumination
is on a wall, making the problem near-field. Most of the illustrations
in this article correspond near-field targets. However, we will first
consider the far-field case, which is mathematically simpler, and

Figure 1. Mirror transforming a parallel, uniform light source into the shape of a train
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Figure 2. Lens transforming a parallel light source into a hikari

in which the target lies “at infinity”, in the space of directions. In
practice, this means that when light is reflected or refracted from a
point of the optical component, we can forget the spatial position
of the reflected or refracted ray, keeping only its direction, which
can then be encoded by a unit vector. Note that if the near-field
target illumination is far away from the optical component, each
point of the target almost corresponds to a direction, so that the
far-field problem is a good approximation of the near-field one
in this situation. We will see in Section 4.2 that one can solve a
problem involving a near-field target by iteratively solving problems
with far-field targets.

We will first present two far-field mirror problems in their
continuous form, as illustrated in Figure 3. Then, we will explain
how these continuous problems can be approached by discrete
problems, following the so-called supporting quadric method in-
troduced by Luis Caffarelli and Vladimir Oliker. This method can
be traced back to work of Hermann Minkowski and Aleksandr
Aleksandrov in convex geometry.

Mirror ℛ

Tar
get

𝕊2,𝜈

(𝕊2,𝜇)0

Point source

Mirror ℛ

Ta
rg
et

𝕊2,𝜈

(ℝ2 × {0},𝜇)

Collimated source

Figure 3. Mirror transforming light from a point source (left) or collimated
light (right)

1.1 Mirror for a point light source
In this first problem, light is emitted from a point O, which we
assume to be located at the origin of the space ℝ3. The intensity of
the light source is modeled by a probability density 𝜇 on the sphere
of directions 𝕊2. Let X ⊂ 𝕊2 denote the support of the measure 𝜇.
For example, if the light is emitted in a solid cone, then X is a disc
on the sphere. The quantity of light emanating from a measurable
set of directions A ⊂ X is given by 𝜇(A). For the far-field problem,
the target is described by a probability measure 𝜈 on the sphere of
directions 𝕊2, which then represents the directions “at infinity”, i.e.,
after reflection. Let Y ⊂ 𝕊2 denote the support of the measure 𝜈.

The inverse problem considered here consists in constructing
the surface ℛ of a mirror which will transport the intensity 𝜇 of
the light source to the desired light distribution 𝜈 at infinity using
Snell’s law of reflection. For example, if the target measure is a
Dirac mass 𝛿y, meaning that we want to reflect all the light in
a single direction y, then the shape of the mirror is given by a
paraboloid of revolution.

Let ⟨⋅ | ⋅⟩ denote the Euclidean scalar product on ℝ3. An in-
cident ray x ∈ 𝕊2 is reflected by a surface ℛ in the direction
R(x) = x − ⟨x | n(x)⟩n(x), where n(x) is the unit vector normal to
the surface ℛ at the point touched by the direction x and oriented
so that ⟨x | n(x)⟩ ≤ 0. The surface ℛ solves the inverse mirror prob-
lem if R transports the source measure 𝜇 to the target measure 𝜈,
in the sense that for any measurable subset B of the sphere one
has

∀B ⊆ 𝕊2, 𝜈(B) = 𝜇(R−1(B)).

Note that the preservation of overall light quantity was already
ensured by having chosen probability measures, i.e., 𝜇(𝕊2) =
𝜈(𝕊2) = 1. Now assume that 𝜇 and 𝜈 are absolutely continuous
measures with respect to the area measure on the sphere. Let
𝜇(x) = 𝜌(x)dx and 𝜈(x) = 𝜎(x)dx, where 𝜌 and 𝜎 are the densi-
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ties of 𝜇 and 𝜈 respectively. The previous equation then reads

∀B ⊆ 𝕊2,
ż

B

𝜎(x)dx =
ż

R−1(B)
𝜌(x)dx. (1)

Suppose furthermore that the densities 𝜌 et 𝜎 are continuous
and that R is a diffeomorphism from X to Y . By the change
of variable y = R(x), the last equation is then equivalent to
𝜎(R(x)) det(DR(x)) = 𝜌(x) for any x ∈ X.

Since the mirror reflects rays emitted from the origin, we will
assume that the surface ℛ is radially parametrized by x ∈ 𝕊2 ↦
u(x)x, where u ∶ 𝕊2 → ℝ+ is a positive function that must be
determined. The unit normal to the surface ℛ at the point xu(x)
and the direction of the reflected ray can both be expressed as a
function of x and of the gradient ∇u(x) ∈ Tx𝕊2:

Ru(x) = x−⟨x | nu(x)⟩nu(x) and nu(x) =
∇u(x) − u(x)x

b‖
‖∇u(x)

‖
‖
2 + u(x)2

.

This allows us to formulate the problem as a system of partial dif-
ferential equations, i.e., the problem of finding a positive function
u ∶ 𝕊2 → ℝ+ of class 𝒞2 which satisfies

⎧
⎨⎩

𝜎(Ru(x)) det(DRu(x)) = 𝜌(x),
Ru be a diffeomorphism from X to Y .

(Mir-Ponc-C)

The first line of equation (Mir-Ponc-C) involves the determinant
of a quantity which depends on the second derivatives of u. This
equation belongs to the family of Monge–Ampère equations. Note
that the requirement that Ru is a diffeomorphism is non-standard
and difficult to handle. In practice, it is replaced by a condition on
u which is akin to convexity, and by the so-called second boundary
condition Ru(X) = Y . These two conditions ensure the ellipticity
of the problem. Caffarelli and Oliker proved in 1994 [1] the ex-
istence of weak solutions to this equation, i.e., the existence of
a locally Lipschitz function u such that the application R defined
by the last two lines of (Mir-Ponc-C) satisfies (1). The existence of
regular solutions to the problem (Mir-Ponc-C) is due to Wang and
Guan [2,6].

1.2 Mirror for a collimated light source
We now present a second inverse problem arising in anidolic op-
tics. This time the light source is collimated, which means that all
the rays of light emitted by the source are parallel. We further-
more assume that they are positively collinear to the vertical vector
ez = (0, 0, 1) and emitted from a domain of the horizontal plane
X ⊂ ℝ2 × {0}. For convenience, we will identify ℝ2 and ℝ2 × {0}.
We assume that the surface of the optical component is smooth
and parametrized by a height function u ∶ X → ℝ. The intensity
of the light source is modeled by a probability measure 𝜇 on X.
As in the previous case, the intensity of the target illumination is
modeled by a probability measure 𝜈 on the sphere of directions

at infinity. At each point (x, u(x)) of the optical component, the
gradient ∇u(x) encodes the direction of the normal to the surface
and we denote by F(∇u(x)) ∈ 𝕊2 the direction of the ray reflected
by Snell’s law. The reflector defined by u solves the inverse mirror
problem between 𝜇 and 𝜈 if for any measurable set B ⊂ 𝕊2 one
has

𝜈(B) = 𝜇((F ∘ ∇u)−1(B)).

Let us introduce the measure ̃𝜈 defined by ̃𝜈(B) = 𝜈(F(B)), which
is supported on ℝ2. We assume that 𝜇 and ̃𝜈 are absolutely con-
tinuous with respect to the Lebesgue measure, with continuous
densities 𝜌 and 𝜎, and that x ↦ ∇u(x) is a diffeomorphism on its
image. Then, with the change of variable y = ∇u(x), the inverse
mirror problem for a collimated source can also be phrased as a
partial differential equation:

⎧
⎨⎩

𝜎(∇u(x)) det(D2u(x)) = 𝜌(x),
F ∘ ∇u is a diffeomorphism from X to Y .

(Mir-Coll-C)

We finally note that if u is smooth and strongly convex (or strongly
concave), the application ∇u is a diffeomorphism on its image.

1.3 Lenses
The construction of lenses that transform a light source into a target
illumination prescribed at infinity are similar and are also described
by Monge–Ampère type equations. As with mirrors, when the light
is emitted from a point, the equation to be solved is on the sphere
and when the light source is collimated, it is on the plane. In these
problems, the light source passes through the surface of one side
of the lens, either flat or spherical, and the aim is to construct the
surface of the other side of the lens such that it refracts the light
onto a prescribed target illumination at infinity. We do not detail
the modelling of these problems here, but we will show results
with lenses at the end.

2 Geometric discretization of Monge–Ampère equations

The two inverse problems in anidolic optics described in the previ-
ous section each involve two sets X and Y , on which we have two
probability measures 𝜇 and 𝜈 respectively, representing the light
source and the desired target illumination. We saw that when these
measures are absolutely continuous, the problems of construction
of optical components correspond to partial differential equations
of Monge–Ampère type.

The most direct method to solve a partial differential equation
numerically is to approximate the domain X with a discrete grid and
to replace the partial derivatives with differences of the values of
the function at the points of the grid divided by the grid step. In the
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case of Monge–Ampère equations, the application of these meth-
ods is made difficult by the non-linearity of the Monge–Ampère
operator and by the diffeomorphism condition. We refer to the
work of Adam Oberman, Brittany Froese, Jean-David Benamou and
Jean-Marie Mirebeau for this line of research.

In recent years, alternative methods, called semi-discrete meth-
ods, have been used to discretize and numerically solve Monge–
Ampère type equations arising from optimal transport. In order
to apply this method, one assumes that one of the two mea-
sures 𝜇 or 𝜈 is absolutely continuous, while the other is finitely
supported. Here we assume that 𝜇 has a density 𝜇(x) = 𝜌(x)dx
on the space X and that 𝜈 is a discrete measure on the space
Y = {y1,…, yN}, i.e., 𝜈 = ∑1≤ i≤N 𝛿yi𝜈i where 𝛿yi is the Dirac mass
in yi.

In this section, we describe the semi-discrete variant of the
two far-field mirror problems seen in the previous section, leaving
aside the problem of convergence of the solutions to the discrete
problems towards those to the continuous problems. These con-
structions give rise to equations which can naturally be seen as
discrete Monge–Ampère equations. We also propose an economic
interpretation by addressing the bakeries problem.

2.1 Mirror for a point light source
Let us go back to the problem of constructing mirrors that trans-
form the light emitted by a point light source (see Section 1.1). As
in the previous section, the light source is modeled by a continuous
probability density 𝜌 on the sphere of directions 𝕊2, whose support
X𝜌 ∶= {x ∈ 𝕊2, 𝜌(x) > 0} corresponds to the set of directions in
which light is emitted. This time we assume that the desired target
illumination is described by a probability measure 𝜈 = ∑1≤ i≤N 𝛿yi𝜈i
supported on a set Y = {y1,…, yN} ⊂ 𝕊2 of distinct directions.
The problem is still to find the mirror surface ℛ that will reflect the
measure 𝜇 onto the measure 𝜈 under Snell’s law, but this time the
target measure 𝜈 is discrete.

Mirror composed of paraboloid pieces
We use the method of supporting paraboloids proposed by Caf-
farelli and Oliker in 1994 [1], which was originally developed to
show the existence of weak solutions in the case where both
measures are absolutely continuous. Caffarelli and Oliker’s idea
is based on a well-known property of paraboloids of revolution:
a paraboloid of revolution with focal point O and direction y re-
flects any ray coming from point O to the direction y. It is thus
natural to seek to construct a mirror whose surface is composed
of pieces of paraboloids, each paraboloid illuminating a direc-
tion yi.

More precisely, we take 𝜓 = (𝜓1,…,𝜓N) ∈ ℝN and denote by
P(yi,𝜓i) the solid (i.e. filled) paraboloid of direction yi, with focal
point at the origin O and focal distance 𝜓i. This means that

1

2
𝜓i is

the distance between O and the paraboloid’s closest point to O.

We define by ℛ𝜓 the surface bordering the intersection of the solid
paraboloids P(yi,𝜓i):

ℛ𝜓 = 𝜕⎛
⎝

⋂

1≤ i≤N

P(yi,𝜓i)⎞
⎠
.

For each i ∈ {1,…,N} we denote by Vi(𝜓) the set of rays x ∈ 𝕊2

emitted by the light source and reflected by Snell’s law in the
direction yi. This set is called the i-th visibility cell of the mirror
ℛ𝜓. By construction, it corresponds to the radial projection of
ℛ𝜓 ∩ 𝜕P(yi,𝜓i) onto the sphere (see Figure 4).

A simple calculation shows that the intersection of two con-
focal paraboloids 𝜕P(yi,𝜓i) and 𝜕P(yj,𝜓j) is included in a plane
curve. Projecting radially onto the unit sphere, this implies that
the intersection of two visibility cells Vi(𝜓) ∩ Vj(𝜓) is included in a
curve on the sphere. We deduce that the set of visibility cells forms
a partition of the sphere 𝕊2, up to a set of measure zero.

The paraboloid of revolution 𝜕P(yk,𝜓k) can be parametrized
radially by the function x ∈ 𝕊2 ↦ x𝜌k(x), where 𝜌k(x) =
𝜓k/(1 − ⟨x | yi⟩) ∈ ℝ. We deduce that x belongs to the visibil-
ity cell Vi(𝜓) if and only if the distance 𝜌i(x) is smaller than the
distances 𝜌j(x) for j ∈ {1,…,N}. Composing with the logarithm
to linearize the expression in 𝜓, we obtain an explicit expression
for the visibility cells

Vi(𝜓) = {x ∈ 𝕊2 ∣ ∀j, c(x, yi) + ln(𝜓i) ≤ c(x, yj) + ln(𝜓j)},

where c(x, y) = − ln(1 − ⟨x | y⟩).
By construction, each ray emitted by the point source and be-

longing to the cell Vi(𝜓) hits the mirrorℛ𝜓 at a point which belongs
to the paraboloid 𝜕P(yi,𝜓i) and which is reflected in the direction
yi. The quantity of light received in the direction yi is therefore
exactly the quantity of light emanating from the visibility cell Vi(𝜓),
i.e., 𝜇(Vi(𝜓)). The desired quantity of light in the direction yi is
𝜈i. The equation to be solved is therefore 𝜇(Vi(𝜓)) = 𝜈i for any
i ∈ {1,…,N}. Moreover, note that a paraboloid of revolution is
only determined by its focal point, its direction and its focal dis-
tance. The free parameter remaining for each paraboloid 𝜕P(yi,𝜓i)
is the focal distance 𝜓i.

y1
𝜕P3

V3(𝜓)

y2
0𝜕P2 𝜈 = 𝛿y1𝜈1 + 𝛿y2𝜈2 + 𝛿y3𝜈3
(𝕊2,𝜇)

(𝕊2,𝜈)𝜕P1

y3

Figure 4. Mirror composed of three pieces of paraboloides reflecting in three
directions
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Formulation of the problem
The semi-discrete far-field mirror problem for a point source can
be formulated as the problem of finding focal distances 𝜓 =
(𝜓1,…,𝜓N) ∈ ℝN that satisfy

∀i, 𝜇(Vi(𝜓)) = 𝜈i (Mir-Ponc-SD)

where c(x, y) = − ln(1 − ⟨x | y⟩) and where

Vi(𝜓) = {x ∣ ∀j, c(x, yi) + ln(𝜓i) ≤ c(x, yj) + ln(𝜓j)}.

We will see in Section 3 how to solve such systems of equations.
Note that if 𝜓 ∈ ℝN is a vector of focal distances solving the mirror
problem for a point-like source, then the surface of the mirror is
parametrized by

ℛ𝜓 ∶ x ∈ 𝕊2 ↦ min
i

𝜓i

1 − ⟨x | yi⟩
x.

In the numerical experiments, we assume that the target illumina-
tion 𝜈 is included in the half-sphere 𝕊2

− ∶= {x ∈ 𝕊2, ⟨x | ez⟩ ≤ 0},
that the support X𝜌 of 𝜌 is included in the half-sphere 𝕊2

+ ∶= {x ∈
𝕊2, ⟨x | ez⟩ ≥ 0}, and that the mirror is parametrized above the
domain X𝜌.

Remark 2.1. The mirror surface is by construction the bound-
ary of a convex set, i.e., the intersection of the solid paraboloids
P(y1,𝜓1),…, P(yN,𝜓N). It is also possible to construct a mirror
contained in the boundary of the union of solid paraboloids rather
than an intersection. This produces mirrors that are somewhat less
interesting in practice, as they are neither convex nor concave.

2.2 Mirror for a collimated light source
Let us now consider the mirror problem for a collimated light source,
already seen in Section 1.2. As before, the probability measure mod-
elling the light source has a density 𝜌 with respect to the Lebesgue
measure on the plane. However the probability measure modelling
the target illumination intensity is discrete 𝜈 = ∑1≤ i≤N 𝛿yi𝜈i, sup-
ported on a finite set Y = {y1,…, yN} ⊂ 𝕊2 of distinct directions.
The problem is, again, to find the surface ℛ of a mirror which
reflects the measure 𝜇 to the measure 𝜈.

Mirror with planar faces
We choose to construct the mirror surface ℛ as the graph of affine
height functions of the form x ∈ ℝ2 ↦ maxi⟨x | pi⟩ − 𝜓i (see Fig-
ure 5). The vector pi is chosen so that the plane Pi = {(x, ⟨x | pi⟩) ∣
x ∈ ℝ2} reflects vertical rays, i.e., with direction ez, into the direc-
tion yi ∈ 𝕊2. We need to determine the heights 𝜓i of those planes.
Given a family of heights 𝜓 ∈ ℝN, we define the i-th visibility cell
as

Vi(𝜓) = {x ∈ ℝ2 × {0} ∣ ∀j, −⟨x | pi⟩ + 𝜓i ≤ −⟨x | pj⟩ + 𝜓j}.

surface ℛ plane with slope pi

X𝜌 Vi(𝜓)

̇x yi

Figure 5. Convex mirror for a collimated light source

By construction, for each i ∈ {1,…,N}, any vertical ray emitted
from a point x ∈ Vi(𝜓) hits the mirror ℛ at a height ⟨x | pi⟩−𝜓i and
is reflected in the direction yi. Thus, the amount of light reflected
in the direction yi is equal to 𝜇(Vi(𝜓)).

Formulation of the problem
Solving the semi-discrete far-field mirror problem for a collimated
light source amounts to finding the heights 𝜓 ∈ ℝN that satisfies

∀i, 𝜇(Vi(𝜓)) = 𝜈i (Mir-Colli-SD)

where c(x, y) = −⟨x | y⟩ and

Vi(𝜓) = {x ∣ ∀j, c(x, yi) + 𝜓i ≤ c(x, yj) + 𝜓j}.

A solution of the equation (Mir-Colli-SD) induces a parametrization
of the convex mirror ℛ that reflects 𝜇 onto 𝜈:

ℛ𝜓 ∶ x ∈ ℝ2 ↦ (x,max
i
⟨x | pi⟩ − 𝜓i) ∈ ℝ3.

In practice, we only consider the part of the mirror located above
the domain X𝜌 ∶= {x ∈ ℝ2 × {0}, 𝜌(x) ≠ 0}.

Remark 2.2. The function ℛ𝜓 being the maximum of affine func-
tions, it is convex. The optical component which is parametrized
by the graph of this application is also convex. Note that one could
have the same construction by replacing the max in the formula by
a min. This would result in a concave function ℛ𝜓 and a concave
mirror.

Remark 2.3. Problem (Mir-Colli-SD) is very similar (but not equiv-
alent) to Minkowski’s problem in convex geometry which is also
an inverse problem. Given a set of unit vectors yi and real num-
bers 𝜈i > 0, this problem consists in building a convex polyhedron
whose i-th facet has normal yi and area 𝜈i – which is possible only
under some assumptions on the directions and areas. We also note
that Oliker, who was the first to introduce semi-discrete methods
for the numerical resolution of Monge–Ampère equations, was
a doctoral student of the famous geometer Aleksandrov who is
known (among other) for introducing and studying the “continu-
ous” formulation of Minkowski’s problem.
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2.3 The bakeries problem
We now present an economic analogy which leads to an equa-
tion having the same structure as in the two optical problems
presented above. We assume that X represents a city whose popu-
lation density is described by a probability density 𝜌, that the finite
set Y = {y1,…, yN} represents the locations of the city’s bakeries
and that 𝜈i represents the quantity of bread available in bakery
yi. Customers living at a location x in X naturally will look for the
bakery minimizing the cost of walking from x to yi, denoted c(x, yi).
This leads to a decomposition of the city space into Voronoi cells,

Vori ∶= {x ∈ ΩX ∣ ∀j, c(x, yi) ≤ c(x, yj)}.

The number of customers going to a bakery yi is equal to the inte-
gral of the density 𝜌 over Vori. Suppose that a bakery yi receives
too many customers in comparison to its bread’s production ca-
pacity 𝜈i – this could be the case in Figure 6 for the downtown
bakery y1 where the population density is high. This means we have
𝜇(Vor1) > 𝜈1, where we denote 𝜇(x) = 𝜌(x)dx. The baker y1 will
then seek to increase the price of his bread. This will reduce the
number of potential customers, but will increase the baker’s profit
as long as he manages to sell all his stock. We write 𝜈i ≥ 0 for the
proportion of the population that the bakery yi is able to serve, and
𝜓i the price of the bread in the bakery yi. If we assume that the
customers living at point x make a compromise between walking
cost and price of bread by minimizing the sum (c(x, yi) + 𝜓i), the
city is then decomposed into Laguerre cells

Lagi(𝜓) = {x ∈ X ∣ ∀j, c(x, yi) + 𝜓i ≤ c(x, yj) + 𝜓j}.

Note that we do not necessarily have yi ∈ Lagi(𝜓), and that it is
even possible to have Lagi(𝜓) = ∅: indeed, if the bread is very
expensive in a certain bakery, even people living next door may
prefer going to a more distant one.

Problem formulation
The bakeries problem therefore boils down to finding a price vector
𝜓 ∈ ℝN such that each bakery sells all its stock of bread 𝜈i. This is

described by the system of equations

𝜇(Lagi(𝜓)) = 𝜈i ∀i ∈ {1,…,N},

This equation has exactly the same structure as (Mir-Ponc-SD)
and (Mir-Colli-SD). We will see in the next section how to solve this
class of equations.

3 Numerical resolution

The discrete problems mentioned in the previous section all show
the same structure; our focus will now be on their numerical
resolution. We start by introducing the semi-discrete Monge–
Ampère equation, and show that its solution is equivalent to finding
the maximum of a concave function. Subsequently, we present
a Newton method that allows us to solve these equations effi-
ciently.

3.1 Semi-discrete Monge–Ampère equation
Let X be a compact subset of the space ℝ2 or of the sphere 𝕊2,
let Y = {y1,…, yN}, and let c ∈ 𝒞1(X × Y) be a cost function.
The Laguerre cell (which corresponds to a visibility cell in optics)
associated with a family of real numbers 𝜓 = (𝜓1,…,𝜓N) ∈ ℝN is
given by

Lagi(𝜓) = {x ∈ X ∣ ∀j, c(x, yi) + 𝜓i ≤ c(x, yj) + 𝜓j}.

Suppose that the cost function satisfies the Twist condition

∀x ∈ X, y ↦ ∇xc(x, y) is injective, (Twist)

which ensures that the Laguerre cells form a partition of the domain
X up to a negligible set.

X
Y

y1 y1 y1

Figure 6. Bakeries: The city X with its boundary drawn in blue is endowed with a probability density
pictured in grayscale representing the population density. The set Y (in red) represents the location
of bakeries. Here, X, Y ⊆ ℝ2 and c(x, y) = |x − y|2. We see the Voronoi tessellation of the city (in
the middle, uniform price) as well as its Laguerre tessellation (on the right, only the bread price 𝜓1

has increased).
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Semi-discrete Monge–Ampère equation
Let 𝜇 be a probability measure on X with density 𝜌 with respect to
the area measure, and let 𝜈 = ∑i 𝜈i𝛿yi be a probability measure on
Y . In the following equation, the discrete probability measure 𝜈 is
conflated with the vector 𝜈 = (𝜈i)1≤ i≤N. We are seeking 𝜓 ∈ ℝN

satisfying
G(𝜓) = 𝜈, (MA)

where the function G ∶ ℝN → ℝN is defined by

G(𝜓) = (G1(𝜓),…,GN(𝜓)) and Gi(𝜓) = 𝜇(Lagi(𝜓)).

Remark 3.1. The visibility cells used in optics in (Mir-Ponc-SD) and
(Mir-Colli-SD) are Laguerre cells, with

c(x, y) = − log(1 − ⟨x | y⟩) and c(x, y) = −⟨x | y⟩

respectively. Equation (MA) is a reformulation of equa-
tions (Mir-Ponc-SD) and (Mir-Colli-SD). Note that the Laguerre
cells are invariant under addition of a constant to 𝜓, and that the
solution of (MA) is therefore defined up to an additive constant.
Optical problems have a similar invariance: for example, if a surface
ℛ is a solution of the mirror problem for a point source, then so is
𝜆ℛ for all 𝜆 > 0.

3.2 Variational formulation
The following theorem shows that the function G in the semi-
discrete Monge–Ampère equation is the gradient of a concave
function.

Theorem 3.1. We assume that the cost function c satisfies (Twist).
Then the function 𝒦 ∶ ℝN → ℝ defined by

𝒦(𝜓) = ∑
1≤ i≤N

ż

Lagi(𝜓)
(c(x, y) + 𝜓i)𝜌(x)dx − ∑

1≤ i≤N

𝜓i𝜈i

is concave, of class 𝒞1 and with gradient

∇𝒦(𝜓) = G(𝜓) − 𝜈 = (𝜇(Lagi(𝜓)) − 𝜈i)1≤ i≤N
.

As we will see in the next paragraph, the function 𝒦 is related
to the Kantorovitch duality in optimal transport theory, and we
will therefore call it the Kantorovitch functional. Moreover, since
a concave function of class 𝒞1 reaches its maximum exactly at its
critical points, we obtain the following corollary:

Corollary 3.2. Under the assumptions of Theorem 3.1, a vector
𝜓 ∈ ℝN is a solution to equation (MA) if and only if 𝜓 is a maximizer
of 𝒦.

Since the function 𝒦 is invariant under addition of a constant,
one can choose to work on the set ℳ0 of vectors whose coordi-
nates sum to zero. It can be shown that the function 𝒦 is proper
on ℳ0, i.e., lim

‖
‖𝜓

‖
‖→+∞,𝜓∈ℳ0

𝒦(𝜓) = −∞, which ensures that it
reaches its maximum: the problem (MA) thus admits a solution.

3.3 Relation to optimal transport
The variational formulation of the Monge–Ampère equation, i.e.,
the search for a maximizer of the Kantorovitch functional, corre-
sponds in fact to the dual of the Monge–Kantorovitch problem in
optimal transport theory. We discuss this link in detail below in the
semi-discrete case. The reader interested in the proofs may refer
for instance to the book chapter [4].

Monge’s problem
The image of a probability measure 𝜇 on X under a measurable
application T ∶ X → Y is the measure T#𝜇 on Y defined by
T#𝜇(B) = 𝜇(T−1(B)). If T#𝜇 = 𝜈, we say that T transports 𝜇 to
𝜈. Since the set Y is finite, we have T#𝜇 = ∑1≤ i≤N 𝜇(T

−1(yi))𝛿yi .
Monge’s optimal transport problem consists in finding a transport
map T that transports 𝜇 to 𝜈 and that minimizes the total cost
ş

X
c(x, T(x))d𝜇(x). If the cost function c satisfies the Twist condi-

tion, Brenier and Gangbo–McCann, relying on Kantorovich duality,
proved the existence of a minimizer for this problem when the
source 𝜇 is absolutely continuous. For example, one can state the
following:

Theorem 3.3 (Kantorovitch duality). Suppose that c satisfies the
condition (Twist) and that 𝜇 is absolutely continuous. Then

min
T ∶X→Y
T♯𝜇=𝜈

ż

X

c(x, T(x))d𝜇(x) = max
𝜓∈ℝN

𝒦(𝜓).

If moreover 𝜓 is a maximizer of 𝒦, then the function T𝜓 ∶ X → Y
defined 𝜇-a.e. by T𝜓|Lagy(𝜓) = y realizes the minimum in Monge’s
problem.

Remark 3.2. Not all Monge–Ampère equations derive from an
optimal transport problem and not all of them admit a variational
formulations. These two strong properties come in fact from the
very particular structure of Laguerre cells, which follows from the
functions 𝜓 ↦ c(x, y) + 𝜓(y) being affine.

We saw that the far-field optics problems presented in Sec-
tion 2 possess this structure. On the other hand, if we consider
the mirror construction problems for a target illumination in the
near-field (i.e., we are illuminating points in ℝ3 and not directions
at infinity), we still have semi-discrete Monge–Ampère equations
to solve, but the Laguerre cells are of the form

Lagi(𝜓) = {x ∈ X ∣ ∀j, G(x, yi,𝜓i) ≤ G(x, yj,𝜓j)},

where the function G is nonlinear in 𝜓. These equations do not
derive from the optimal transport problem and in fact do not ad-
mit a variational formulation. They are called prescribed Jacobian
equations by Trudinger, and are the subject of recent research both
in analysis and in more applied fields (optics, economics).
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3.4 Laguerre cells and derivatives
Before applying Newton’s method to solve the equation G(𝜓) = 𝜈,
we need to show that the function G is of class 𝒞1 (or equivalently
that 𝒦 is of class 𝒞2), calculate its partial derivatives and study the
(strict) concavity of 𝒦. To do this, we need a genericity assumption
which is somewhat technical, but which is natural and not restric-
tive in practice. In the optical cases mentioned in this paper, this
assumption is satisfied if the intersection of three distinct Laguerre
cells is finite and if the intersection of two Laguerre cells with the
boundary of X is also finite. For more details, the reader may refer
to the book chapter [4].

Theorem 3.4 (Differental of G). Suppose that the cost satisfies
(Twist), that Y is generic (see above), and 𝜌 is continuous. Then
the application G ∶ ℝN → ℝN is of class 𝒞1 and

∀j ≠ i, 𝜕Gi

𝜕𝜓j
(𝜓) =

ż

Lagij(𝜓)

𝜌(x)‖
‖∇xc(x, yi) − ∇xc(x, yj)

‖
‖
dx,

∀i, 𝜕Gi

𝜕𝜓i
(𝜓) = −∑

j≠ i

𝜕Gi

𝜕𝜓j
(𝜓),

where Lagij(𝜓) = Lagi(𝜓) ∩ Lagj(𝜓).

The formula for the partial derivatives of G has a geometric
interpretation. In the following two figures, which are obtained for
the cost c(x, y) = ‖x − y‖2 on ℝ2, we explain why the formula for
partial derivatives involves integrals over the interfaces between La-
guerre cells and how the singularities of DG may occur depending
on the geometry of the points yi.

Figure 7 illustrates that the partial derivative 𝜕Gi/𝜕𝜓j(𝜓) is an
integral over the interface Lagij(𝜓): the value Gi(𝜓) is an integral
over the Laguerre cell Lagi(𝜓) (in grey on the left); we increase
the value 𝜓j by 𝜀 > 0 considering 𝜓 + 𝜀ej; the rate of increase
(Gi(𝜓) − Gi(𝜓 + 𝜀ej))/𝜀 is proportional to an integral over the
symmetric difference between two Laguerre cells (in grey in the
middle); passing to the limit we obtain an integral over the green
segment Lagij(𝜓). The signs that occurs in the formula for the par-
tial derivatives can also be interpreted with the bakeries metaphor:
when the price of bread 𝜓i increases, the number of customers of
the bakery yi decreases (i.e., the Laguerre cell Lagi(𝜓) shrinks) and
the number of customers for the other bakeries increases, so that
𝜕Gi/𝜕𝜓i(𝜓) ≤ 0 and 𝜕Gi/𝜕𝜓j(𝜓) ≥ 0 for j ≠ i.

In Figure 8, the genericity condition is not satisfied because
y1, y2 and y3 are aligned, and there exists 𝜓 ∈ ℝN for which
Lag1(𝜓)∩ Lag2(𝜓)∩ Lag3(𝜓) is a line segment. The partial deriva-
tive 𝜕G2/𝜕𝜓3(𝜓) is an integral on the (green) segment Lag23(𝜓).
If we simultaneously decrease 𝜓1 and 𝜓2 by the same amount,
we can see that the segment Lag23(𝜓) varies continuously and
then suddenly becomes empty when the cell Lag2(𝜓) gets empty
(bottom right of Figure 8). Thus, 𝜕G2/𝜕𝜓3(𝜓) is not continuous.
Newton’s method requires a certain regularity, and we will see
below that it converges under the above genericity assumptions.

yi yj yi yj yi yj

Gi(𝜓)
Gi(𝜓+𝜀ej)−Gi(𝜓)

𝜀
−−−−→
𝜀→ 0

𝜕Gi

𝜕𝜓j

(𝜓)

Figure 7. The partial derivatives are boundary integrals

y1 y2 y3 y1 y2 y3

y1 y3 y1 y2 y3

Figure 8. Non-continuous partial derivative: 𝜕G2/𝜕𝜓3 is an integral on the green
segment Lag23 which is discontinuous.

To establish the convergence of Newton’s method, we also
need to study the concavity of the Kantorovitch functional 𝒦, or
equivalently the monotonicity of its gradient ∇𝒦 = G − 𝜈. The
functions 𝒦 and G are invariant by addition of a constant vector
(i.e., 𝒦(𝜓 + C(1,…, 1)) = 𝒦(𝜓)), which can be seen in the defini-
tion of Laguerre cells. Thus, we can only hope to establish strong
concavity of 𝒦 in the directions orthogonal to constant vectors,
i.e., belonging to the set

ℳ0 ∶= {v ∈ ℝN ∣ ∑
1≤ i≤N

vi = 0}.

Another reason for the lack of strong concavity of 𝒦 is that if 𝜓i is
very large, then Lagi(𝜓) is empty and remains empty in a neighbor-
hood of 𝜓. In this case, Gi(𝜓) is constant equal to zero, and the
Hessian matrix D2G(𝜓) = DG has a row of zeros. We can therefore
hope to establish strong concavity only if 𝜓 belongs to the set

𝒞+ ∶= {𝜓 ∈ ℝN ∣ ∀i, Gi(𝜓) > 0}.

The next theorem shows, in a nutshell, that these are the only two
obstructions to strong concavity.
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Theorem 3.5 (Strict concavity). We assume the hypotheses of
the previous theorem hold. If the set {𝜌 > 0} is connected, the
function 𝒦 is locally strongly concave on 𝒞+ in the direction ℳ0:

∀𝜓 ∈ 𝒞+, ∀v ∈ ℳ0 ⧵ {0}, ⟨DG(𝜓)v | v⟩ < 0.

Remark 3.3 (Uniqueness). We saw above that the function 𝒦 has
a maximum, and thus equation (MA) has a solution. The previous
theorem implies that this maximum is unique if we impose that
𝜓 ∈ ℳ0, i.e., 𝜓 has zero average, since a strictly concave function
admits at most one local maximum.

We will see in the next paragraph how these results of regular-
ity and monotonicity allow us to iteratively construct a sequence
(𝜓(k))k ≥ 0 converging to the unique zero-average 𝜓∗ satisfying
G(𝜓∗) = 𝜈.

3.5 Newton’s method
Newton’s method in 1D
We begin by recalling Newton’s method for solving the equa-
tion g(x) = 0, where g ∶ ℝ → ℝ is a real function. New-
ton’s method starts from x0 ∈ ℝ and constructs the sequence
xk+1 = xk − g(xk)/g′(xk) by induction. If we assume that g is
of class 𝒞1 and that there exists a ∈ ℝ such that g(a) = 0 and
g′(a) ≠ 0, then one can show, using Taylor–Lagrange formulas,
that for x0 sufficiently close to a, the sequence (xk)k ≥ 0 converges
to a. The convergence is then said to be local. Thus, under a
regularity hypothesis (g ∈ 𝒞1) and monotonicity (g′ has constant
sign in a neighborhood of a), Newton’s method converges lo-
cally.

Newton’s method (local)
Assume that we are given a zero-average vector 𝜓0 ∈ ℳ0 such
that the mass of all Laguerre cells is strictly positive:

𝜀0 ∶=
1
2
min[min

y ∈ Y
Gi(𝜓0), min

1≤ i≤N
𝜈yi] > 0.

We define 𝜓k+1 in the following way: we start by calculating the
Newton direction dk, i.e., the vector dk satisfying

DG(𝜓k)dk = −(G(𝜓k) − 𝜈) and dki ∈ ℳ0,

which exists and is unique by according to Theorem 3.5. The sec-
ond equation enables us to overcome the invariance of G and thus
the non-invertibility of DG(𝜓k). We then define 𝜓k+1 = 𝜓k +dk. As
in the 1D case, it can be shown that the method converges locally:
if 𝜓0 is chosen close enough to the 𝜓∗ solution, then the sequence
(𝜓k) converges to 𝜓∗.

Globally convergent Newton’s method
However, the condition 𝜓0 is close to the solution 𝜓∗ is impossible
to fulfill in practice. Fortunately, a very simple modification of the
method allows to ensure a global convergence, allowing us to drop
this closeness assumption. To do this, one must construct 𝜓k+1

in such a way that the kernel of the Jacobian DG(𝜓k+1) remains
equal to constant vectors, so that the system defining the direction
dk+1 admits a unique solution. For this purpose, we define the
step 𝜏k as the largest real of the form 2−ℓ (with ℓ ∈ ℕ) such that
𝜓k,ℓ ∶= 𝜓k + 2−ℓdk satisfies

⎧
⎨⎩

∀i ∈ {1,…,N}, Gi(𝜓k,ℓ) ≥ 𝜀0,‖
‖G(𝜓k,ℓ) − 𝜈

‖
‖ ≤ (1 − 2−(ℓ +1))

‖
‖G(𝜓k) − 𝜈

‖
‖.

Finally, we define 𝜓k+1 = 𝜓k + 𝜏kdk.
By using the regularity and concavity results on 𝒦, the step 𝜏k

can be bounded from below, thus ensuring the convergence of the
sequence constructed above to a solution of the optimal transport
problem [4]:

Theorem 3.6. Under the assumptions of Theorem 3.5, there exists
𝜏∗ > 0 such that

‖
‖G(𝜓k+1) − 𝜈

‖
‖ ≤ (1 − 𝜏⋆

2
)
‖
‖G(𝜓k) − 𝜈

‖
‖.

In particular, the sequence (𝜓k)k ≥ 0 converges to the unique solu-
tion 𝜓∗ of (MA) satisfying ∑i 𝜓

∗
i = 0.

Remark 3.4 (Quadratic convergence). The above theorem shows
that the convergence of Newton’s method is globally exponential.
This convergence is actually called linear convergence in optimiza-
tion. When the cost c satisfies the Ma–Trudinger–Wang (MTW)
condition that appears in the theory of optimal transport regularity,
and the density 𝜌 is Lipschitz, then the convergence is even locally
quadratic [3]: for sufficiently large k, we have

‖
‖G(𝜓k+1) − 𝜈

‖
‖ ≤ 1

2

‖
‖G(𝜓k) − 𝜈

‖
‖
2.

In practice, the convergence is very fast and the basin where
quadratic convergence occurs seems to be quite large. This last
observation is empirical, and not mathematically explained yet.
In Figure 9, X = [0, 1]2 is the large white square and Y is a set
of points in the lower left corner and c(x, y) = ‖x − y‖2. With
N = 100 points, after three iterations the error ‖G(𝜓3) − 𝜈‖1 is
already of order 10−9. Even difficult examples of size N = 107 in
dimension d = 3 can be solved to high numerical precision with
less than 20 iterations!

4 Applications to anidolic optics

In this section we present the adaptation of semi-discrete methods
to the practical resolution of inverse problems in optics. These
results were obtained in the PhD thesis of Jocelyn Meyron and the
images are taken from the article [5].

24 EMS MAGAZINE 120 (2021)



Step 1:
‖G(ψ1)− ν‖1 ' 0.6

Step 3:
‖G(ψ3)− ν‖1 ' 10−9

X

Y
Initialization: 𝜓0 ≡ 0
‖G(𝜓0) − 𝜈‖1 ≃ 1.8

Y Initialization: ψ0 ≡ 0

X

‖G(ψ0)− ν‖1 ' 1.8

Step 1:
‖G(𝜓1) − 𝜈‖1 ≃ 0.6

Step 3:
‖G(𝜓3) − 𝜈‖1 ≃ 10−9

Figure 9. Convergence of the sequence (𝜓k). On images 2, 3 and 4 we see the
Laguerre cells Lagi(𝜓

k) for k=0,1,3.

4.1 Far-field problems
We saw in Section 2 that in several far-field problems, i.e., when
the target illumination is at infinity, solving the Monge–Ampère
equation (MA) allows us to construct an optical component. This
involves modelling mirrors or lenses, with a point or collimated
light source, and in each case there are two components that
may be produced (one of which is convex), so that in all we have
formulated eight different near-field optical problems.

The main difficulty in implementing Newton’s algorithm to
solve (MA) lies in the evaluation of the function G and its differ-
ential DG at point 𝜓k, and more precisely in the calculation of the
set of Laguerre cells Lagi(𝜓

k). For cells from non-imaging optics
problems, also called visibility cells, it is possible to perform this
calculation in almost linear time in the number N of Dirac masses.
Take for example the mirror problem for a point source. The visi-
bility cells are obtained by projecting radially onto the sphere an
intersection of “solid” confocal paraboloids, and we have already
seen that the intersection of two confocal paraboloids is included
in a plane. Another simple calculation shows that the radial projec-
tion of such an intersection is also included in a (different) plane.
This shows that the visibility cells are separated by hyperplanes. In
fact, it can be shown that there exists a partition of ℝ3 into convex
polyhedra P1,…, PN – called a power diagram in computational ge-
ometry – such that each visibility cell is of the form Vi(𝜓) = 𝕊2∩ Pi
(Figure 10). A similar property holds for each of the eight problems.
The point of this reformulation is that there are powerful libraries –
for example Cgal or Geogram – that allow us to compute power
diagrams in dimensions 2 and 3, and thus also the Laguerre cells
associated with the optics problems. It is therefore possible to im-
plement the damped Newton algorithm, and to use it to construct
– numerically and even physically – mirrors and lenses for far-field
targets in anidolic optics.

Pi

Vi(𝜓)

X

Collimated source Point source

Figure 10. Visibility cell structure

4.2 Near-field problems
It is also possible to deal with more realistic target illuminations in
the near-field – i.e., when illuminating points at a finite distance
rather than directions – with an iterative method that solves a
far-field solution at each step [5]. The convergence is very fast,
requiring only a few iterations, as illustrated in Figure 11.

In all the experiments presented below, the light source is as-
sumed to be uniform, so that the light source 𝜇 has a constant
density on its support. The reflection or refraction of this light
on a wall is simulated in the computer by the physically realistic
rendering software LuxRender.

Generic method
The different problems of anidolic optics having the same structure
(point or collimated light sources, mirrors or lenses, convex or
concave components, near-field or far-field), it is possible to solve
them in a unified, precise and automatic manner with the same

Target Iter. 1

Iter. 2 Iter. 6

Figure 11. Convergence of far-field mirrors to near-field mirrors
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Figure 12. Mirrors for collimated (top) and point (bottom) light; visibility cells
(left), component mesh (middle) and rendering with LuxRender (right)

Figure 13. Lenses for collimated (top) and point (bottom) light; visibility cells
(left), component mesh (middle) and rendering with LuxRender (right)

Figure 14. A point light (not visible) is placed in front of the mirror and the path
of the light is simulated by the computer using the physically realistic renderer
LuxRender

Figure 15. Concave and convex lenses

algorithm (Figures 12, 13 and 14). In Figures 12 and 13, the visibility
cells on the sphere or plane are shown on the left, above which is
the surface of the optical component. Each surface is represented
in the computer by a mesh (a set of triangles) which is shown in
the middle. The simulation of the reflected or reflacted light with
LuxRender is on the left.

Convexity/concavity of the components
Some applications require the construction of optical components
with convexity properties. This is the case in the automotive indus-
try for the construction of mirrors and/or lenses. The reason for this
is both practical, as it is easier to build a convex component, and
aesthetic. In the case of collimated light sources, mirrors or lenses
can always be convex or concave, as can be seen in Figure 15.

Singularity of solutions
The optical components are by construction objects with only a 𝒞0

regularity. Indeed, they are surfaces composed of pieces of planes,
paraboloids or ellipsoids (in the case of a mirror for a point light
source) which are joined together in a manner that is continuous
but not 𝒞1. However, as the discretization of the target illumina-
tion becomes finer and finer, the surface tends towards an object
that has greater regularity. In Figure 16, we observe a 𝒞1 regular-
ity, except at points on the surface that correspond to black areas in

mirror mesh of the mirror

Singularity

Image rendered with LUXRENDER

Figure 16. Singularity and meshing (surface singularities correspond to black
areas)
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the target image. Intuitively, the lack of regularity comes from the
fact that the light must avoid the black areas, which results in a
jump in the vector field normal to the surface.

Pillows
The inner part of a car headlamp is typically made up of “pillows”,
i.e., several small components. Each patch is intended to illuminate
a fairly wide range of directions, and the lights sent out by each
pillow overlap. This ensures a certain robustness in the lighting. If
for instance a bird flies past the headlights, not too close, it does
not obstruct all the light and the road remains fully illuminated.
In Figure 17, the target illumination for each pillows is the cam-
eraman’s image. When the calculations are done in the far-field,
i.e., when illuminating directions, the images are superimposed,
but with an offset due to the size of the pillows. To obtain a clear
image, it is necessary to make the calculations in the near-field, so
as to illuminate exactly the desired points. Note that the target is
always illuminated even if an obstacle, for example a red monkey
head, is placed in front of some of the pillows.

Colored target illumination
Similarly, solving the near-field problem makes it possible to illumi-
nate a target in color. Indeed, one can build an optical component
for each channel (red, green and blue). Then each of the three
lights is sent to its associated component and the colors are added
to the target to form a color image. This is done in Figure 18 with
three lenses.

Construction of mirrors and lenses
We also built optical components. The lenses and mirrors in Fig-
ures 19, 2 and 21 were milled by the GINOVA technology platform
in Grenoble on a 3-axis CNC (computer numerical control) machine
with 10mm radius milling cutters. The path of the milling cutter
creates irregularities on the optical components (Figure 22). Note
that the convexity of the optical components allows the use of
arbitrarily large milling radii, which reduces machining irregularities.
In any case, it is necessary to grind under water and then polish the
optical components (Figure 23). Of course, this affects the optical
quality and tends to whiten the black areas in the target image.
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Figure 17. Lens composed of 9 pillows: In the far-field (top); in the near-field
(middle); with obstacle (bottom)

Figure 18. Color image

Figure 19. Lens transforming collimated light into the picture of a train
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Figure 20. Lens transforming collimated light into the picture of a cameraman

Figure 21.Mirror transforming collimated light into the picture of a cameraman

Figure 22. Mirrors and lenses after machining

Figure 23. Sanding and polishing by hand
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The edition of Bernhard Riemann’s collected works: Then and now

Emmylou Haffner

Bernhard Riemann’s collected works were published for the first
time in 1876 by Richard Dedekind and Heinrich Weber. The editors’
correspondence and the available archive tell us that the process
of editing Riemann’s collected works was a hands-on process,
which is itself of historical and mathematical significance. In this
paper, we show how the editors shaped the published texts, and
how this can influence our reading of them.

A complex history and a wealth of archive

In 1876 were published Bernhard Riemann’s (1826–1866) Gesam-
melte mathematische Werke und wissenschaftlicher Nachlass (Col-
lected mathematical works and scientific archive). These collected
works were edited by Heinrich Weber (1842–1913) and Richard
Dedekind (1831–1916) and published by B. G. Teubner.1

Riemann and Dedekind met while they were Gauss’ students in
Göttingen. They defended their doctoral dissertation within a year
of each other (Riemann in 1851 and Dedekind in 1852), and their
respective Habilitation with only a few days difference in 1854.
Following this, they both worked as Privatdozenten in Göttingen,
during which time Dedekind followed Riemann’s classes. In 1858
Dedekind was offered a position in Zürich and Riemann a post
in Göttingen, and they remained friends until Riemann’s untimely
death in 1866.

It was Riemann’s wish that Dedekind would be the editor of
his collected works and in charge of his scientific archive after
his death. Struggling with this difficult editorial enterprise, in early
1872, Dedekind accepted to work with Alfred Clebsch (1833–1872),
who had taken Riemann’s chair in Göttingen. Seven of the most
complete of Riemann’s unpublished works were first published
posthumously in various mathematical journals.2 Clebsch did not
wish to publish more of Riemann’s manuscripts as he felt the edi-
tion, as he wanted it to be, was nearing completion (according
to his letters to Dedekind, published in [8], and to Dedekind’s first
letter to Weber in [32]). Clebsch’s sudden death in 1872 put the
edition in some difficulty. Dedekind’s teaching duties kept him from
handling the project by himself. Eventually, upon meeting Heinrich
Weber in Zürich in 1873,3 Dedekind offered him the responsibility
of the edition, which he accepted. At this stage, Dedekind wished
to retreat from the project, but eventually became more involved in
the edition of some of the manuscripts. Both Weber and Dedekind
wished to publish more of Riemann’s unpublished archive, and it
took them two additional years to complete the edition, during
which time they also had help from Hermann Schwarz (1843–1921)
in working on [20].

The final product of this ten-year editorial endeavour, Rie-
mann’s Gesammelte mathematische Werke und wissenschaftlicher
Nachlass, is one volume divided into three parts and two appen-
dices: the first part contains the 11 papers published by Riemann
in his lifetime; the second part contains the 7 papers published

1 At this time, a considerable number of projects of publishing collected works were launched in France, Germany, Italy, the United Kingdom … The publisher
B. G. Teubner, created in 1811 in Leipzig, which specialised in scientific editions (broadly construed, i.e., philology, history, mathematics, physics, etc.), was one of the
leading publishers for this type of book in Germany. – Steven W. Rockey from Cornell University published a very complete list of collected works in mathematics:
mathematics.library.cornell.edu/about-collected-works/.

2 [22] was edited by Karl Hattendorff (1834–1882), [21] by Ernst Schering (1824–1889) and Friedrich Henle (1809–1885), the other texts presumably by Dedekind. – A
note on the dates of the publications: when it is possible to date Riemann’s texts, these are the given dates; when it is not, the dates are that of the first publication.

3 Maybe a less famous name than Riemann, Clebsch and Dedekind, Heinrich Weber was a prominent mathematician throughout his career. He studied in Heidelberg,
Leipzig and Königsberg. He taught in Heidelberg, Zürich, Königsberg (where he taught number theory to Hilbert and Minkowski), Berlin, Marburg, Göttingen, and
Strasbourg. He worked extensively on complex function theory, number theory, and algebra. Among several important contributions to the latter, his Lehrbuch der
Algebra was to be the main reference for teaching algebra in the German speaking world until the publication of Van der Waerden’s Moderne Algebra in 1930. He
also made contributions to mathematical physics, and published Die partiellen Differentialgleichungen der mathematischen Physik nach Riemann’s Vorlesungen,
which was, for a long time, the only reference for Riemann’s mathematical physics. Weber was also actively involved in the mathematical community, for example he
was a member of the editorial committee of the Mathematische Annalen and a founding member of the Deutsche Mathematiker-Vereinigung.
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posthumously in journals as mentioned above; and the third part
contains 12 unpublished texts from Riemann’s archive. The two
appendices are a selection of Riemann’s philosophical writings,
and a biography written by Dedekind on the basis of letters from
Riemann’s widow, Elise Riemann.

Riemann’s collected works were republished in 1892, by Weber.
In the preface, he explained that Riemann’s texts were still very
relevant in 1892. Two important changes in the edition should be
mentioned. Firstly, the text Verbreitung der Wärme im Ellipsoid
(Diffusion of heat in an ellipsoid) [28], which was briefly discussed
and eventually excluded from the 1876 edition, was published.
There are no indications or correspondence that indicate why it
was initially excluded (in fact, the letters suggest that it was going
to be published in 1876), nor why it was finally published in 1892.
Secondly, the notes and commentaries by the editors were revised
(following feedback on the first edition) and completed. In 1876, 4
texts were commented (30 pages of commentaries), while in 1892,
10 texts were commented (for a total of 60 pages of commen-
taries). A third edition was published in 1902 by Max Noether and
Wilhelm Wirtinger. The sole but very notable change here is the
addition of over a hundred pages of notes from Riemann’s lectures
(on Abelian, elliptic, hyperelliptic functions, hypergeometric series,
etc.) which had only recently become known.4

Only for the 1876 edition do we have, rather exceptionally,
extensive documentation on the process of editing Riemann’s col-
lected works. This is one reason why my focus in this paper will be
this first edition.5 A second reason is that a core interest, here, is
how the editorial work shaped Riemann’s text, which was largely
accomplished in the first edition.

Dedekind and Weber’s editorial work was meticulous, mindful
and even devoted, according to Elise Riemann. Their collabora-
tion for this publication, which marked the beginning of almost
forty years of friendship, was largely carried out in letters written
from November 1st 1874 to the end of 1876. These letters have
been preserved in Riemann’s archive (Cod. Ms. Bernhard Riemann,
Niedersächsische Staats- und Universitätsbibliothek Göttingen) and
in Dedekind’s (Cod. Ms. Richard Dedekind, Niedersächsische Staats-
und Universitätsbibliothek Göttingen, and G 98:11–13, Archiv der
Universitätsbibliothek Braunschweig),6 and published in 2014 [32].
As most of their discussions appear in these letters, we have an
extensive and detailed vision of the editorial process. Weber and
Dedekind discussed every aspect of the edition, from the practical
(e.g., the contract with Teubner, the copyrights, the advertisement

of the book) to the scientific and philological (e.g., the choice of
which texts to publish, their difficulties in understanding Riemann’s
manuscripts, what kind of corrections or completions should be
made before the publication). Indeed, a number of modifications
were made to Riemann’s texts, from orthographical and typograph-
ical changes to the redaction of missing passages.

The process of editing Riemann’s Werke was thus a hands-on
process, in which the editors were deeply involved in both the
mathematical and philological aspects. Weber and Dedekind – and
Hattendorff and Schwarz for some texts – engaged in a systematic
verification of each and every one of Riemann’s texts, including
those that had already been published. Some texts were, in fact,
written by several hands: Riemann’s and the editor’s (for exam-
ple, some parts of [20] are marked as being explicitly written by
Schwarz). This raises questions on the genesis of the text and on
the authorship.

After the publication of the Dedekind-Weber correspondence,
it became clear to me that there was, here, material to study how
the edition of Riemann’s collected works was crafted. It also pro-
vides an opportunity to unfold parts of their mathematical activity
which have been largely overlooked (until now!), and indeed to
understand important aspects of Riemann’s influence on bothmath-
ematicians.7 It also allows us to make connections with research
in the history of text – how did the editing process shape the texts
published? how did it shape the book itself? – and with the history
of mathematical publishing.

Common interests in these questions led to collaboration be-
tween the History of Science, History of Text research group in the
Laboratoire SPHERE (Université de Paris) and the Interdisziplinäre
Zentrum für Wissenschafts- und Technikforschung (Bergische Uni-
versität Wuppertal) with the organisation of an ongoing series of
workshops and seminars on the history of collected works as an
editorial and scientific practice. Among our observations (some
of which I will return to towards the end of this paper), the most
relevant to the case of the Riemann edition are the following: texts
published in collected works often bear the traces of the editorial
work – maybe in more ways than we would expect – and for the
editors, this was not solely an editorial or philological undertaking,
but also a scholarly endeavour, and indeed one we seem to have
overlooked so far.

The ongoing analysis of the edition of Riemann’s collected
works is made possible by the documents available in Riemann’s
archive,8 whose origins are described in [14], and in which most

4 In 1990, the 1902 edition was reprinted along with additions. A French translation appeared in 1898, translated by Léonce Laugel and published by Gauthiers-Villars
(see p. 37). The first English translation appeared in 2004 [29].

5 Unless stated otherwise, “edition” will refer to the first edition, from now on.
6 Heinrich Weber’s archive seem, however, to have been lost [32, p. 16].
7 In 1882, Dedekind and Weber published Theorie der algebraischen Funktionen einer Veränderlichen (Theory of algebraic functions of one complex variable) in which
they transfer Dedekind’s concepts of field, module and ideal from number theory to function theory to give a new definition of the Riemann surface and related
notion, such as the genus.

8 The catalog is available here: hans.sub.uni-goettingen.de/nachlaesse/Riemann.pdf
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Figure 1. Cod. Ms. Riemann 34 I, p. 4r: extract from the manuscript on minimal surfaces
(Niedersächsische Staats- und Universitätsbibliothek Göttingen)

of the documents used by Weber and Dedekind are available.9

The only exception are the manuscripts that were the basis
for [24,27] which are in Schwarz’ archive at the Archiv der Berlin-
Brandenburgischen Akademie der Wissenschaften. Dedekind’s
archive also contains interesting material on his work as an editor
(see below).

Since the 1970s and the great work done by Erwin Neuen-
schwander, many interesting historical works have been published
using Riemann’s archive, a number of which will certainly be useful
to the present project. The goal of this project is solely a criti-
cal analysis of the process of editing Riemann’s collected works,
which comes along with a comparison of the original manuscripts

9 See [30] for details on the development of Göttingen as an archive center.
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and the published texts. The files in Riemann’s archive relating
to the published texts contain thousands of pages (and around
500 pages in Dedekind’s archive). Most of the files contain sev-
eral copies of the texts (usually by the editors, more rarely by
Riemann), Riemann’s original texts and many of his drafts. Using a
(semi-)automated approach to the transcription and comparison
of the manuscripts with digital tools for handwritten text recogni-
tion and the tools developed by the CollEx-Persée project AMOr
(www.collexpersee.eu/projet/amor/) should help manage these rel-
atively large files.10 In some of these files, the most challenging
task might be to identify which documents were indeed used by
the editors to produce the published text.

Shaping the individual texts

Heinrich Weber wrote an announcement of Riemann’s collected
works for Koenigsberger and Zeuner’s Repertorium der literarischen
Arbeiten aus dem Gebiete der reinen und angewandten Mathe-
matik, in which he mentions the extent of the editorial work:

We only corrected some slight inaccuracies which were
made known to the editor and could be seen as cer-
tain. Some additions, written according to Riemann’s
manuscripts, and some necessary clarifications were
placed in final notes. […] [T]he majority of [Riemann’s]
posthumous writings contain only formulae with very
little indications to find what link them. Hence, a lot
of passages written only in a very fragmentary form
had to be established as well as we could, and many
others are still buried in his archive, for want of being
deciphered. [36, pp. 7–8]

A similar statement can also be found in Weber’s preface in [25,
p. iv].

There are several types of modifications of Riemann’s original
texts: the local, more or less significant changes to the texts, e.g.,
correcting an error, which are mentioned in notes; a number of
such local changes, which are not mentioned in notes; and texts
extracted from Riemann’s archive which are completed to a greater
or lesser extent by the editor.11 While the reader could expect
to be able to identify clearly what was changed or added by the
editors, this is not always the case. A number of changes are not
clearly identified in any way, and can only be recognised as such by

reading the editors’ correspondence or comparing the published
texts with the manuscripts.12

Of course, Weber and Dedekind were cautious with their cor-
rections. In a letter from July 8, 1875, as he was proofreading
Riemann’s famous Ueber die Anzahl der Primzahlen unter einer
gegebenen Grösse (On the number of primes less than a given
magnitude) [19], Weber wrote to Dedekind:

Do you have any remarks on the work on primes? I have
come to a difference from Riemann’s formula in the
calculation, namely to the same one which Scheibner al-
ready noticed in his analysis of this work in Schlömilch’s
journal. [[33]] Despite this, I am far from taking Rie-
mann’s result to be incorrect, whose actual proof, as
can be seen from a fragment of a letter, is not contained
in the work at all. I do not dare to make any changes
or additions. [32, p. 71]

We don’t have any answer from Dedekind, but Weber later wrote
again that he was finding “− log 2 instead of log 𝜉(0)” (as Scheib-
ner had) but still didn’t dare to make any change or note, assuming
that “it is probable that Riemann is right” but that he was missing
the proof. The 1876 edition does not contain any correction or
note, but there is a note by Weber in the 1892 edition, stating that

If one continues the computation indicated by Riemann,
one finds in the formula log

1

2
instead of log 𝜉(0). It is

very likely that this is but a typographical or printing mis-
take of log 𝜉(0) in place of log 𝜁(0), indeed 𝜁(0) = 1

2
[sic].13 [25, p. 155, 2nd edition 1892]

Changes can be even more important in texts extracted from Rie-
mann’s archive. For some of them, the editors decided to write
entire paragraphs themselves to complete Riemann’s original text
before publication. Such changes raise questions as to the author-
ship of the texts, and the extent to which some of their content
could be a result of edition as a collaborative enterprise. Some
mathematicians in the years following the publication of Riemann’s
collected works seemed to keep this aspect in mind, as suggested
by a letter from Felix Klein to Henri Poincaré, sent on April 3rd,
1882, following a discussion on Riemann’s possible anticipation of
some of Friedrich Schottky’s results:14

[Regarding] Schottky, I would like to draw your atten-
tion to a posthumous essay in Riemann’s collected
works, p. 413, where exactly corresponding ideas are

10Of course, for parts of this archive, in particular the letters, transcriptions are already available.
11 I have considered these questions in [11,13]. An in-depth analysis of the edition of [17] is in progress and, as mentioned, so is a critical edition of Riemann’s texts.
12 It is the case with [18], whose edition I presented in [12].
13 This seems to be a typo correcting the typo, as log 𝜁(0) = − log 2 + 𝜋i = log

1

2
+ 𝜋i, Weber meant to write “indeed log 𝜁(0) = log

1

2
”.

14 Klein is, here, referring to [34] and which was published in 1877 in the Journal für die reine und angewandte Mathematik, 83: 300–351, in which he studied
conformal mappings of multiply connected domains, which he was the first to analyse systematically.
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Figure 2. Pages 12r, 14r and 15v of Cod. Ms. Riemann 5 (Niedersächsische Staats- und Universitätsbibliothek Göttingen)

developed. However, it will be difficult to establish how
much the editor, Prof. Weber, has put into it. Riemann’s
collected works appeared in 1876, Schottky’s disserta-
tion in 1870, later as an essay in Borchardt’s Journal,
1877. (Letter from Klein, in [15, p. 53])

Klein is referring here to Gleichgewicht der Electricität aut Cylindern
init kreisförmigem Querschnitt und parallelen Axen (Equilibrium
of electricity on cylinders with circular crosssection and parallel
axes) [26], which indeed deals with conformal mappings on a
multiply connected surface. In a footnote, Weber states that

[t]here are no completed manuscripts of this and the fol-
lowing works by Riemann. They are composed of pages
which, apart from a few hints, contain only formulae.
[25, p. 413]

Early in his correspondence with Dedekind, Weber mentioned that
he would be “very interested” in being able to “decipher” the
manuscripts on “the distribution of electricity on three spheres”
[sic], which he hoped to be able to achieve since “on one of the
sheets the results seem to be essentially in place” [32, p. 62, letter
from March 22, 1875]. As this last remark suggests, Riemann’s
manuscripts in Cod. Ms. Riemann 5 contain many sheets with vari-
ous states of development of his investigation. There are 27 pages
by Riemann’s hand, for 4 pages of text by Weber, and certainly the
material differences of each mathematician’s handwriting and use

of paper do not account for such a large difference. In fact, many
of Riemann’s notes contain similar computations, see Figure 2.

In addition, to put it bluntly, Weber’s version of Riemann’s
research contains a lot more sentences and far fewer calculations.
It is fairly easy to identify which formulae Weber included in his
text. However, the sentences present in the published text are
quite difficult to find in Riemann’s manuscripts. Thus, it seems that
most of the redaction is by Weber, who completed and clarified
Riemann’s text. He did not, here, correct or complete Riemann’s
formulae – rather, he selected the relevant ones. It is, without a
doubt, a text written by both Riemann and Weber.

In the available correspondence, Weber did not himself men-
tion Schottky’s works. However, Schwarz wrote to Weber about
Schottky’s dissertation on November 11, 1875 [32, p. 362].15 We-
ber’s letters to Schwarz have been lost, and we do not know
what he answered to this mention of Schottky’s paper. In Jan-
uary 1876, this text had, with seven others, already been sent to
Teubner [32, p. 95].

Another – and one of the most striking – examples of an ex-
tensive mathematical and editorial investment is the work done
by Dedekind on “Fragmente über die Grenzfälle der elliptischen
Modulfunctionen” (Fragments on the limit-cases of elliptic modular
functions) [17].

Dedekind started working on these manuscripts in Febru-
ary 1876. The lack of clarity of the notes, both from a material
and a mathematical viewpoint, was so bad that editing them took

15 Schwarz wrote: “On Saturday and Sunday of last week, I was in Berlin and learned from Prof. Weierstrass of the dissertation of one of his students, a certain Schottky:
‘Über die conforme Abbildung mehrfach zusammenhängender Flächen’; if you do not not already know about this dissertation, please allow me to draw your
attention to it. The results which are presented in this essay, are of great interest and scientific value; I myself will seek to obtain the dissertation in order to possess it.”
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Figure 3. Cod. Ms. Riemann 14, p. 18v: Excerpt from Riemann’s “very pale manuscript” (Niedersächsische Staats- und Universitätsbibliothek Göttingen)

Dedekind several weeks and led him to fear having nightmares
(see [32, pp. 101–104]). Over a dozen letters were exchanged be-
tween Dedekind and Weber from December 1875 to April 1876.
Dedekind confided to Weber his difficulties in understanding and
editing Riemann’s text (which he nicknamed, in his letters and
in his own archive, “sehr blasses Manuskript von Riemann”, Rie-
mann’s very pale manuscript, because it was written in pencil and
had faded badly). Eventually, Dedekind made it through his deci-
phering of the manuscript, and was able to produce a complete
transcription of Riemann’s notes. He verified each formula and
corrected them when necessary, but did not make any additions.
In addition, he wrote a 10-page commentary containing original
research [4].

These Fragments consider properties of Jacobi series in elliptic
function theory. Without entering into any detail, Dedekind inter-
preted Riemann’s formulae as the study of the logarithm of some
modular functions at the limits of their domain of definition. In the
collected works, he stated:

The time of writing of the first of the two fragments
(September 1852) makes it likely that Riemann, while

working on his memoir On the representation of a func-
tion by a trigonometric series, was looking for examples
of functions with infinitely many discontinuities in each
interval. Perhaps the second investigation, which oc-
curs on the barely legible sheet, has the same object.16

[4, p. 438]

In Cod. Ms. Riemann 14, we find the 15 pages of Riemann’s origi-
nal manuscript, two handwritten transcriptions, the handwritten
text for Dedekind’s 1876 commentary and the version sent to the
editor, some notes written by Weber, the 1876 letters between
Dedekind and Weber relating to that text, and one of Dedekind’s
early works on elliptic functions, which he intended to use to un-
derstand Riemann’s ideas and likely sent to Weber with one of his
letters.

The most exceptional documents can be found in Dedekind’s
archive. In Cod. Ms. Dedekind XI 11-1, XI 11-2, XII 4,17 we find sev-
eral hundred pages of notes written solely by Dedekind. There, we
see the progression in his understanding of Riemann’s texts and of
the writing of his 1876 and 1892 commentaries, as well as continu-
ations of his research on the subject. These pages show the breadth

16 [1] disagrees with this interpretation. Hopefully, the manuscripts hold some elements to answer this question.
17 Cod. Ms. Dedekind XII 4 is mistakenly listed as referring to [23] in the Göttingen catalog, because Dedekind refers to the text using the numbering in the table of
contents in the 1892 reedition of Riemann’s collected works. The contents of the file are, however, undoubtedly related to [17]. In exploring these documents, I have
greatly benefited from Walter Strobl’s help.
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Figure 4. Cod. Ms. B. Riemann 14, p. 12v: Riemann’s original manuscript (Niedersächsische Staats- und Universitätsbibliothek Göttingen)

Figure 5. Cod. Ms. B. Riemann 14, p. 2r: First transcription (Niedersächsische Staats- und Universitätsbibliothek Göttingen)

Figure 6. Cod. Ms. B. Riemann 14, p. 20v: Second transcription (Niedersächsische Staats- und Universitätsbibliothek Göttingen)

and depth of the mathematical reflections developed by Dedekind
for his editorial work. In addition to computations following Rie-
mann’s manuscripts and trying to obtain again Riemann’s results,
Dedekind developed his own approach to the subject, which ended
up being his only way to verify Riemann’s results. For this, he drew
comparisons between both approaches, at some points relying
only on the correspondences between numerical examples, and
eventually systematically exploring the correspondences between
his and Riemann’s results. This research was also the basis for his
commentaries, of which we find several drafts in the archive. Both
Dedekind’s commentaries, although entitled “Explanation on the
preceding fragments” do not actually explain what Riemann was
trying to do, rather they present:

a very interesting application related to the so-called
theory of the infinitely many forms of the theta-
functions, namely the determination of the constants

appearing via transformations of first degree, which as
is known, were reduced by Jacobi and Hermite to Gauss
sums, and thus to the theory of quadratic residues. The
following commentary illustrates these relationships.
[4, p. 438]

In particular, it is there that Dedekind introduced what we today
call the Dedekind eta function.18

Shaping the book and shaping the image of the editee

The way in which a book such as a mathematician’s collected works
is constructed – which texts are chosen to be in this publication;
whether unpublished manuscripts are selected and if so, which
ones, and how they are published; whether a critical apparatus is

18 The Dedekind eta function is a modular form defined on the upper-half part of the complex plane by 𝜂(𝜔) = e
𝜋i𝜔
12

∏∞
n= 1(1 − e2n𝜋i𝜔) [4, p. 438].

EMS MAGAZINE 120 (2021) 35



Figure 7. Cod. Ms. R. Dedekind XI 11-1, p. 19r: Summary of Dedekind’s comparison of Riemann’s results with his own
(Niedersächsische Staats- und Universitätsbibliothek Göttingen)

added and which one; how texts are organised and, when appli-
cable, how the multiple volumes are themselves organised, etc. –
shapes the image of the editee presented to the readers. Indeed,
such choices are a reflection of the editor’s own idea of the editee’s
work, and of what they want to showcase of it.19 The shaping of
the book is, in fact, the shaping of the vector of circulation of the
editee’s works. Without undue generalization on the possibility
of biases on the part of editors, the history of mathematics gives
us several examples in which mathematicians works were largely
reconstructed by the editors.

The selection of which texts are deemed suitable for pub-
lication plays a significant role in such a reconstruction of the
works of the editee. Through these choices, the editors impose
their own criteria and their own values on the editee’s texts.
And it is all the more pregnant regarding the choice of excerpts
from the author’s archives, as there are few ways of knowing

whether the author had any intention of publishing these texts,
or why they didn’t. As such, our vision of the editee’s work
can be restricted to the editors’ reading of it. And this con-
tributes, to a certain extent, to a mythologised history of mathe-
matics.

Let me give three examples, which are not Riemann’s collected
works, in which this happened. A first, and very striking, exam-
ple is the edition of Leibniz’s works, which was mentioned in
David Rabouin’s recent paper in the archive series on Leibniz’s
archives [16], in which he explains how “some texts edited by
Gerhardt and Couturat have turned out to be mere artefacts”. A
second example is the edition of Gauss’ collected works, a gigantic
enterprise that took several decades, first directed by Ernst Scher-
ing, then by Felix Klein (see [10, pp. 67–68] and [30]). Maarten
Bullynck showed, in a talk at the Laboratoire SPHERE (Université de
Paris), how the edition of Gauss’ collected works was one of the

19Note that this is also an important point regarding the role that individuals play in editing their own work or in supervising such an edition (e.g., Poncelet, Weierstrass).
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elements of Klein’s retrospective reconstruction of the so-called
Göttingen tradition in mathematics. My third example is the edi-
tion of Dedekind’s collected works by Emmy Noether, Øystein
Ore and Robert Fricke in 1930–1932. The three volumes are orga-
nized as follows: the first two contain Dedekind’s mathematical
papers arranged in chronological order with some extracts from
his archive, the third contains his foundational essays on real and
natural numbers, partial reproductions of his algebraic number
theory20 and more extracts from his archive. This arrangement
creates two illusions. First, that of a difference of status between
Dedekind’s ‘mathematical’ and his ‘foundational’ papers, a distinc-
tion he did not make himself. Second, the partial reproduction of
his algebraic number theory completely disconnects this research
from its number-theoretical context and, in fact, excludes its more
traditional parts. These choices were likely guided by the editors
considering Dedekind as a precursor of the modern structural al-
gebra and certainly participated in perpetuating this retrospective
reading of his work.

While in many of these cases we can only observe the choices
made by the editors and make assumptions about their intentions,
for Riemann’s collected works, the letters exchanged between
Dedekind and Weber offer us a considerable amount of informa-
tion on these questions, making it a rather exceptional case study.
Their exchanges indeed tell us which texts were dismissed as not
‘worthy’ of being published, and the criteria that presided on their
choices. Let me sum up the main criteria for Dedekind and Weber’s
choices:

• A text had to be (of course) scientifically sound and generally
correct – as correct as possible but the scientific interest came
first;

• it had to be understandable – even if this sometimes meant that
the editors had to make the text more understandable than the
way it was left by Riemann;

• it had to be representative of Riemann’s research, it had to have
a recognisable place in his overall intellectual production;

• it had to (of course) give a flattering image of Riemann;
• it had to fit into the scientific and philosophical context of the
time, to ensure that it would be well received by the scientific
community.

Any process of choice is subjective – it would be difficult to think
of any editions that are completely unbiased. But in the case of
Riemann’s collected works, we can pinpoint some of the effects
that the editors’ choices had. The question of whether the texts in
Riemann’s collected works can be attributed solely to him, raised
by Klein, is one of them.

Another issue is the extent to which the image of Riemann pro-
vided by the collected works might have been shaped by what the
editors thought it should be. Dedekind was very vocal about seeing
Riemann as the best representative of how mathematical defini-
tions and proofs should be grounded on conceptual, fundamental
characteristics rather than on computations and notations. He con-
sidered himself as following these methodological guidelines. Thus,
was born the narrative of a tradition of “conceptual mathemat-
ics” in Göttingen, which was later largely continued by Klein and
Hilbert’s group. These highly influential mathematicians developed
a culture in Göttingen which has been described as largely relying
on “nostrification” (see [2]), a tendency to reinterpret other people’s
thoughts so that they would fit their own current picture of the
domain. The desire, strongly expressed by Klein, to create a new
kind of scientific institution might have led to the reconstruction
of a history, an inheritance, which selected and overemphasized
some isolated ideas (see [10] and [31]).

This goes, of course, beyond the mere publication of collected
works. It is however tangible in the French translation of Riemann’s
collected works, published in 1898, edited and translated by Léonce
Laugel. He chose to exclude not only the papers published in French
and Latin, but also most of the papers not related to mathemat-
ics (i.e., all papers on physics and the philosophical fragments).
He replaced Weber’s preface with a preface by Charles Hermite
(1822–1901) and added the translation of a talk given by Klein,
both of which embrace the idea of Riemann as avoiding com-
putations and relying solely on concepts and a “brilliant power
of thought and [an] anticipatory imagination [which] led him fre-
quently to take very great steps that others could not so easily
follow”, as Dedekind wrote of Riemann in his biography.

Later commentators did not all agree with the image of Rie-
mann that this narrative participated in popularizing among math-
ematicians. Carl Siegel, who famously discovered the Riemann–
Siegel formula in Riemann’s archive wrote:

The legend according to which Riemann found his
mathematical results through grand general ideas with-
out requiring the formal tools of analysis, is not as
widely believed today as it was during Felix Klein’s life-
time. Just how strong Riemann’s analytic technique was
is especially clearly shown by the derivation and trans-
formation of his asymptotic series for 𝜁(s). [35, p. 276]
(translated in [9, p. 67])

This was also defended by the historian Harold M. Edwards, in [9],
who argued for a strong – albeit maybe hidden in drafts – algo-
rithmic component in Riemann’s mathematics. Edwards showed
how Riemann, while he may have been “primarily interested in

20 [3,6] which were respectively published as Supplements to the 1871 and 1894 editions of Lejeune-Dirichlet’s Vorlesungen über Zahlentheorie and [5] which was
published in French and later as a Supplement to the 1879 edition of Lejeune-Dirichlet’s Vorlesungen über Zahlentheorie. In these papers, Dedekind introduced and
developed the concepts of field and ideal.
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grand general abstract concepts,” on several occasions “did not
venture into these higher realms without doing a lot of serious
computation to lay the groundwork for his flights.” [9, p. 64].21

These observations are confirmed by Riemann’s archive, in particu-
lar by the many parts that remain unpublished – which Carl Siegel,
of course, knew very well.

This leads me to one last potential issue, or more exactly to a
limitation any editor would face with the manuscripts of a math-
ematician such as Riemann: understanding their content. As Carl
Siegel’s work on the Riemann–Siegel formula has shown, Riemann’s
archive contained, and maybe still contains, important unpublished
(even if not fully developed) results that escaped Weber’s and
Dedekind’s attention. This shows the extent to which it can be
useful and fruitful to revisit mathematicians’ archives.
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Impact factor, an inadequate yardstick

Mohammad Sal Moslehian

Our aim is twofold. On the one hand we discuss the limitations of
the impact factor as a criterion for assessing mathematical jour-
nals, and suggest substituting a set of different types of indicators
including the SCImago Journal Rank. On the other, we state that
scientometrics such as the impact factor cannot be used alone in
evaluating researchers’ work: one must have both a package of
metrics as an objective measure and peer review by human beings
as a subjective judgement.

In the 1960s, the notion of impact factor was introduced to as-
sist libraries in deciding which journals to purchase. Since the late
1990s, it has been employed as a metric for measuring the quality
of scholarly journals.

The Web of Science (WOS), a bibliographical database created
by Clarivate Analytics, computes the journal impact factor (JIF) to
recognize the relative importance of each journal. To be assigned
a JIF, a journal first needs to satisfy certain quality criteria in order
to be included in the Journal Citation Report (JCR). The JCR is a
selective list consisting of more than 11,000 journals. The (2-year-)
impact factor of a journal in a specific year measures the aver-
age number of citations from that year of the papers published
in that journal during the previous 2 years. More precisely, the
2-year-impact factor of a journal in a year n is computed by the
formula

JIFn =
Cn

Pn−1 + Pn−2
,

where Cn denotes the number of citations in the year n of papers
published in the journal in the years n− 1 and n− 2, and Pm stands
for the number of papers published in the journal in the year m. A
citation of a paper given by the author(s) of the paper is called a
self-citation.

The SCImago Journal Rank (SJR) of a journal is a 3-year-impact
factor reflecting the influence of the journal supported by Scopus.
It depends not only on the number of citations of its published
papers but also on the prestige of the journals in which the cita-
tions appeared; see [4]. A drawback, however, has been reported
regarding Scopus: namely, the database of Scopus journals with

assigned SJR includes about 30,000 journals, which is a very large
number of journals of varying quality.

Furthermore, WOS provides the indicator Eigenfactor (EF) that
ranks journals in the same manner as that used by Google to rank
websites. Based on 5-year citation data, it adjusts for citation dif-
ferences through various disciplines. Thus the SJR and EF seem to
be well-suited for evaluation of the quality of a journal; see [7].

Each subject category of JCR journals is divided into four quar-
tiles: Q1, Q2, Q3, and Q4, where Q1 denotes the top 25 percent
of all journals in terms of their JIF. There are analogous quartiles
for the journals in Scopus according to their SJRs.

Replacement for the impact factor

The JIF has received serious criticism for various reasons, such as:
lack of statistical significance [9,10], poor representativeness and
robustness [5], insensitivity to field differences [6], insensitivity to
the weight of the citing articles [2] and manipulability by edito-
rial strategies [8]. Here is a list of some of the most significant
limitations:

• it counts citations of articles that are not included in the denom-
inator of the above formula;

• its analysis period is 2 years, which is not suitable for evaluation
of mathematical research;

• it merely counts citations, without considering their quality.
Therefore the JIF may force some mathematicians to do research
in topics on which a lot of people are working, who can poten-
tially cite their papers. It is easy to find evidence that such topics
are mostly outside the mainstream of mathematics;

• it includes self-citations;
• it is relatively easy to manipulate JIFs and some other scientomet-

rics. There are “mutual citation groups” in which researchers in a
certain circle heavily cite each other’s work in order to enhance
the JIF of a certain journal and artificially inflate the impact of
their own papers.
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Table 1. Scientometrics indices as found in databases in the year 2020

JIF SJR MCQ EF
Acta Math. 2.458 5.77 3.95 0.007
Iran. J. Fuzzy Syst. 2.276 0.51 0.11 <0.001

JIF SJR MCQ EF
J. Funct. Anal. 1.496 2.42 1.61 0.035
J. Funct. Spaces 1.896 0.46 0.43 <0.001

JIF SJR MCQ EF
Amer. J. Math. 1.711 3.28 1.67 0.009
Mathematics 1.747 0.3 NA NA

The SJR aims to fix the above problems by providing a more effec-
tive computation formula, including a longer period of 3 years for
counting citations, attributing different weight to citations, and
limiting self-citations. Some studies show that using the SJR can
improve the situation to some extent. It is at any rate a first step
towards avoiding some of the limitations of JIF; see [1,3].

To illustrate the drawbacks and inadequacy of JIF in mathe-
matics, let us take a closer look at the JIF numbers. There are
mathematical journals in the 2019 list of JCR-Q1 whose impact
factors are “unexpectedly large”. For instance, the Iranian Journal
of Fuzzy Systems is ranked 15 in the category of Mathematics of
the JCR list, while the very prestigious journal Acta Mathematica,
launched in 1882, is ranked 13; also, American Journal of Math-
ematics and Transactions of the American Mathematical Society
are ranked 32 and 60, respectively.

However, the SJR for Iranian Journal of Fuzzy Systems is 0.51
but for Acta Mathematica, it is 5.77. Similarly, the Mathemati-
cal Citation Quotient (MCQ), a 5-year-impact factor computed by
MathSciNet (an online publication of the American Mathematical
Society), for Iranian Journal of Fuzzy Systems and Acta Mathemat-
ica are 0.11 and 3.95, respectively.

This pattern can be seen in other journals. For example, Journal
of Function Spaces is ranked 24, while the leading journal Journal
of Functional Analysis is ranked 47! Again both the SJR and the
MCQ of Journal of Functional Analysis are much greater than those
of Journal of Function Spaces.

There is a similar situation regarding the American Journal of
Mathematics, established in 1878, and a recently launched JCR
journal named Mathematics.

Some important reasons for such unexpected JIFs are as fol-
lows:

• a high rate of publication on a topic. For instance, “fixed point
theory” is a popular topic that a lot of mathematicians work on;

• a considerable number of researchers working on a topic. For
example, the number of mathematicians who are working on
“fuzzy mathematics” is much greater than those working on “K-
theory”, and hence the general rate of citations in such topics is
high.

• the open accessibility of a journal.
• Non-ethical ways to increase JIF used by a few journals. While

the term “predatory journal” is arguable, the mere appearance
of this term shows that the problem does exist.

The backlog between acceptance and publication in some math-
ematics journals may exceed two years. Journals with such large
backlogs, which are usually good journals, may have unexpectedly
low JIF. Nowadays, some journals have moved to the continuous ar-
ticle publishing (CAP) model in which every article, after acceptance,
is published immediately within the current issue.

We think that Clarivate Analytics should improve its formula
for computing JIF. Until then, we suggest that scientific commit-
tees should consider a package of indicators such as the JIF, SJR,
Citescore, Eigenfactor together.

The scientometric indicators developed for journals, essentially
based on citations, should not be applied as a tool to assess the
work of individual researchers. In fact, as citation occurs after re-
search, the direction of research should not be affected by any
demand for citation. The scientometric data reflect to some extent
the quality of a journal, but not so much the actual quality of a
single paper, since not all papers in a journal are cited equally.

As we explain in the next section, when a scientific commit-
tee uses only scientometric data to evaluate a mathematician’s
achievement, without any human assessment, they are using a
flawed approach that may result in an unfair judgement.

The role of human assessment

A large number of universities around the world use scientometrics
tools to evaluating the research of academic members, postdoc-
toral researchers, and Ph.D. candidates for promotion, employment,
or funding. It seems that such universities have no other reliable
sources, and possibly suffer from lack of any peer-reviewed system
in which the content of papers is expected to be evaluated by
professional mathematicians. In addition, dealing with scientomet-
ric data is much easier than reading papers and assessing their
content.

There are mathematicians who believe that scientometric data
such as the SJR are reliable instruments for judgments, since they
make assessments more objective and free them from the crude
or biased judgements of human beings. They argue that quantita-
tive indicators help funding organizations, publishers, and policy-
makers to gain strategic intelligence that leads toward fairer out-
comes and ensures that their budget is spent in the most effective
way.
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However, there are others who are against using scientometrics
to measure scientific publications, due to the lack of transparency.
Scientometrics may cause distortions that have detrimental effects
on the development of scientific fields. For example, some support-
ers of the JIF subscribe to the idea that every paper published in a
high-ranked journal must contain excellent mathematics, which is
not entirely true in general; one can easily find some counterexam-
ples in the literature. Some mathematicians propose that citations
are relevant only when dealing with large numbers. In small num-
bers, they can be a misuse of statistics. These mathematicians
continue to trust in evaluation by human beings, even though
it may be subjective in the sense that it is influenced by the hu-
man dualities of love and hate, good and bad, as well as true and
false. They believe that metrics put the worth and livelihood of our
young mathematicians at risk and have undesirable impacts on the
scientific life of all mathematicians.

Although citations do not show all the good qualities of a pa-
per, they (in particular, non-self-citations by reputed researchers
in prestigious journals) may help experts in evaluating and doc-
umentating research work. Papers with no citation over a ‘long
period of time’ cannot be regarded as high-level papers. For that
matter, not all highly cited papers are necessarily high level papers.
However, abuse of scientometric data such as the JIF and games
with numbers can happen, and may mislead people instead of
being an indicator.

Conclusion

Scientometrics tools can be used, provided that one keeps their
disadvantages and distortions in mind, and they are considered
together with the judgement of experts based on depth and extent
of papers. Such experts could be asked to look at a candidate’s
self-selected best papers, research programs, and statements of
major achievements. No assessment is complete without a peer
review. Furthermore, we need a modification of the policies of
universities, funding organizations, and so on to support human
assessments.

We hope that the various ideas discussed in this note may help
not only mathematicians but the whole of the scientific community
to improve their point of view and their assessment guidelines.
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Mathematical (online) meetings reimagined?

Ross J. Kang

In our daily professional lives, we have become accustomed to – or
wearied by – changes brought on by restrictions that started in the
spring of 2020. Many of our mathematical research meetings have
been transferred directly online, with varying degrees of success.
Could we imagine other, better ways of doing things? In this note,
I discuss an experimental initiative launched to investigate this
question, and call on others to embrace the challenge.

The enemy of art is the absence of limitations.

Orson Welles

A preface
It is clear that issues like the ones raised here are on the minds
of many. Indeed, in an earlier edition of the “Young mathemati-
cians’ column” of this periodical, we saw two related pieces from
the perspective of early-career researchers. This letter gives the
viewpoint of mid-career researchers, ones with plenty of famil-
iarity with the organisation of pre-COVID Mathematical events.
It describes early experiences in the conception and setup of an
“online research guild” devoted to bespoke, scientifically high-level,
interactive workshops, specifically designed for these times, and
perhaps beyond. Though it might require a bit of courage, the
model could be of interest to other mathematical communities.

Introduction to the issues
It’s been over a year now. With all the tragedy and turbulence
we’ve witnessed or endured, we’re keen for vaccines to bring us
back to some semblance of our previous “normality”. For many of
us, our professional lives have continued to roll along – we read,
think, write, talk, teach, advise, collaborate – albeit subject to the
rigours of social distancing.

In mid-2020, it was astonishing how rapidly subject-area semi-
nars bloomed into a dynamic panorama of ideas instantly acces-
sible from anywhere, in digital perpetuity. One might wonder if
this marks a lasting change in how we learn about, discuss, and
explore new research. (Surely yes!)

One might then also wonder if we could make better use of
the communication technologies at our fingertips. Is it enough to
do nearly exactly what we used to do, except virtually?

Over a few emails, a colleague of mine, Jean-Sébastien Sereni,
and I considered these questions and, like many, noticed some
shortcomings of the direct transition of meetings online. One, the
natural intimacy and informality in talks has become more limited.
Two, the exchange of information is now quite one-directional,
especially when talks are intended for online video clips. Three,
making new acquaintances and connections is more awkward in
large groups. Four, and most importantly, these changes have af-
fected younger, more isolated, or less established researchers more.
After all, how brave must such a researcher be to raise their voice in
a crowded, recorded, virtual seminar room shared with the world’s
foremost experts in a given topic?

Through our correspondence, the essential question we eventu-
ally arrived at was this: setting aside for a moment existing seminar/
workshop/conference series, what is the best way to set up online
mathematical meetings?

(Perhaps pause to meditate on this, before reading on about
how we analysed the question.)

An analysis and a possible approach
Let’s break the problem down. What are the main scheduling con-
straints? Rather than coordination of travel arrangements, it is the
participants’ ongoing care/service/teaching obligations and the
intersection of their timezones. Scope and scale? Rather than large
meetings covering many topics, it’s very sensible to focus on one
specialised topic at a time in smaller gatherings. Which format
encourages intimacy and multilateral interaction? Instead of only
showcasing talks with the latest technical results, we can give extra
weight to expert surveys or tutorials, and set aside time for reflec-
tion, discussion and problem-solving in small groups. How to spark
new connections? As it is more difficult to have meaningful chance
encounters online (as we used to have at coffee/drinks, over meals,
on walks), we can make use not only of common research interests
but also of our existing networks to stimulate new links.

Based on these thoughts, we decided to try the following setup.
We gathered a broad group of European researchers in our field
(graph theory, currently an online research guild of a few dozen
members, cheekily dubbed ‘A Sparse (Graphs) Coalition’), with the
shared aim of curating and organising a diverse series of small-
scale, high quality, interactive, online workshops. The goals are to
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An obligatory group photo from the first workshop

learn, prove and conjecture. The workshops have focused on open
problem-solving in loosely-organised breakout groups, with tutori-
als, surveys and update/social meetings lightly interspersed. The
meetings have deliberately been planned with current workflows
in mind, with sparing but strategic use of virtual contact time, to let
participants think about the mathematics independently according
to their personal schedules and ongoing obligations.

(The wiki at https://sparse-graphs.mimuw.edu.pl/doku.php has
more detail on the formats we tried out. By no means do we claim
to have found an optimal construction! If others have begun similar
initiatives, we’d be happy to get in contact to share best practices.)

To our delight and surprise, however, this method turned out
to be very effective. In both pilot sessions, which took place in
late-February (on generalised colouring numbers, organised by
Piotr Micek and Michał Pilipczuk) and early-March (on the entropy
compression method, organised by Jean-Sébastien and myself),
there was high interest, engagement and satisfaction. Participa-
tion, especially by younger researchers, was eager and committed:
they not only enjoyed their experiences greatly, but also learned
and achieved a great deal, while forming close new contacts. Sev-
eral of the working groups have begun preparing manuscripts for
publication – already two have been posted: arXiv:2103.17094,
arXiv:2104.09360. With all of the online tools available these days,
organisation was exceptionally light and pure, and without the
usual worries about finances, travel, bookings, and administration.

It went so well that we found ourselves asking why we hadn’t
done this years ago.

(One can even imagine, a little outside of the traditional struc-
tures, whether more creative ideas for increasing the potential of
modern internet conveniences in science generally are long overdue
– think of journals, societies, and training, for instance.)

Future work
Now this brings me to the main point.

Of course it is natural to take the stance that this is all tempo-
rary and we can soon return to our earlier, pleasant, and high-flying
ways of discussing mathematics with our distant colleagues. But
while this predicament lasts, why not creatively experiment with
and get used to something versatile and more sustainable?

There is clearly much to gain, even for when restrictions are
relaxed. If remote practices prove sufficiently effective and advan-
tageous in the long run to complement and partially replace our
earlier methods, consider the savings in research funding and car-
bon footprints, or the accessibility regardless of participants’ grant
status or childcare responsibilities, or the ease and flexibility of
organisation, or the rapid responsiveness to developments in the
field. With some extra thought on their design, could online work-
shops be a fast, cost-effective, convenient, accessible, sustainable,
engaging, and powerful mode of mathematical cooperation?

I leave this as an open problem.
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The Weierstrass Institute for Applied Analysis and Stochastics (WIAS) in Berlin

Michael Hintermüller

Motivated by current challenges in technology,
economics and business, medicine, science, and
society at large, the Weierstrass Institute for Ap-
plied Analysis and Stochastics (WIAS) conducts
project-oriented research in applied mathemat-
ics. In its daily routine, WIAS addresses the en-
tire solution cycle frommathematical modelling,

analysis, and simulation to optimization – always in close interaction
with practitioners or scientists from other disciplines. Moreover, one
of its strengths is the interplay of applied analysis and stochastics,
which puts it right at the center of the state-of-the-art in applied
mathematics. Many of the analytical findings at WIAS lead to the
development of solution algorithms and subsequently software
packages. In this respect, WIAS’s software engineering and licens-
ing strategy targets both academic partners and industry-based
users. The sustainable dedication to problem solving and software
development is only possible due to WIAS’s extraordinarily moti-
vated scientific staff with different career directions, located in a
unique working environment near the Gendarmenmarkt right in
the center of Berlin, Germany.

The various research activities of WIAS unfold around certain main
research areas, which address current societal challenges such as
the sustainable use of energy, the advance of medical technology,

the development of next-generation materials, and the reliable
extraction of information from data. Driven by its operation at the
forefront of mathematical science and in close interaction with
its scientific advisory board and other stakeholders in the German
Federal Ministry for Education and Research as well as Berlin’s Sen-
ate Chancellery, WIAS continuously scrutinizes the relevance of its
main research areas and develops adjustment strategies accordingly.
Currently, the specific focus areas are:

• Conversion, storage, and distribution of energy;
• Flow and transport;
• Material modelling;
• Nano- and optoelectronics;
• Optimization and control in technology and economics;
• Quantitative biomedicine.

The institutional scientific staff organization is structured into re-
search groups, which are typically oriented by mathematical or
physical field. Currently, eight groups are installed, with the follow-
ing respective focal points:

• Partial Differential Equations;
• Laser Dynamics;
• Numerical Mathematics and Scientific Computing;
• Nonlinear Optimization and Inverse Problems;

Shape-optimised exhaust pipe
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• Interacting Random Systems;
• Stochastic Algorithms and Nonparametric Statistics;
• Thermodynamic Modelling and Analysis of Phase Transitions;
• Nonsmooth Variational Problems and Operator Equations.

While no specific time period is fixed, these research groups are
typically expected to operate on a mid- to long-term basis. In order
to flexibly explore novel topics and to advance young scientists into
group leader positions, WIAS has installed the Flexible Research
Platform, which also helps to foster and host temporary research
projects, financed, e.g., by the European Research Council, the
Leibniz Association, or similar.

Within Berlin, WIAS has been a reliable partner for excellence
projects such as the DFG Research Center MATHEON, the Einstein
Center for Mathematics Berlin, or the current Cluster of Excellence
MATH+ financed by the German Excellence Strategy. These ac-
tivities have always been complemented by participation in DFG
collaborative research centers established for up to twelve years at
one or several of the Berlin universities or the University of Potsdam.
In addition, WIAS structurally collaborates closely with Berlin’s three
major universities, the Freie Universität, Humboldt-Universität, and
Technische Universität Berlin, for example in terms of joint appoint-
ments, supervision of students and research-oriented teaching.

On a national scale, the Institute is a member of the Leibniz
Association, an umbrella organization currently connecting 96 in-
dependent research institutions ranging from natural, engineering
and environmental sciences to economics, spatial and social sci-
ences and the humanities. Consequently, WIAS is subject to a
transparent, independent evaluation procedure installed by the
Leibniz Senate. Such evaluations take place routinely every seven
years. Among other things, the evaluation focuses on how the
institution has developed in the intervening years, in particular

in terms of overall scientific content, structure, and future plans.
Because of its importance and system-relevance for Germany and
its international competitivity, like other Leibniz institutions, WIAS
receives its core-funds jointly from Germany’s central and regional
governments. The Institute actively participates in collaborative
structures of the Leibniz Association such as the Leibniz Network
Mathematical Modelling and Simulation (coordinated by theWIAS)
or the Leibniz Research Alliance Health Technologies.

Supplementing its basic public funding, the Institute success-
fully raises funds from a variety of competitive funding programmes
as well as from industry and economy. In particular, in recent years
it won one ERC Advanced Grant, one ERC Consolidator Grant and
three ERC Starting Grant projects with the corresponding research
carried out at WIAS. Also on the national scale, the Institute is
actively involved in many special research activities, priority pro-
grammes, research training groups such as the German Research
Foundation (DFG), and programmes funded by the Federal Ministry
of Education and Research (BMBF), etc.

In addition to the actual mathematical research, the Institute
also actively engages in overarching challenges such as the han-
dling and sustainable use of mathematical research data following
the FAIR-principles. In this respect, WIAS is currently coordinating
the Mathematical Research Data Initiative which is contributing
to the German “National Research Data Initiative”.

While the FAIR (= findable, accessible, interoperable and
reusable) handling of research data is of importance for all sci-
ences dedicated to a modern open research and access policy,
WIAS will continue striving to prolong and possibly expand its
position in excellence of mathematical research. In particular, the
interplay of analysis, stochastics, simulation, and optimization in
mastering the transition from a fossil fuel-based energy system to
one with a vast portfolio of renewable energy carriers along with
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IMU President Ingrid Daubechies inaugurates the IMU Secretariat in Berlin in January 2011 (Photo: Kay Herschelmann)

optimal distribution and storage will be one of the future target
areas of WIAS. This is also true for the extraction of information
from data of various kinds and the incorporation of data-driven
models into its research workflow, as well as for challenges in quan-
titative biomedicine, in particular medical imaging. In the field of
“Material, Light and Devices”, research on quantum-technological
aspects will be pursued.

WIAS is a part of high calibre national and international institu-
tional activities. First and foremost, it proudly hosts the Secretariat
of the International Mathematical Union (IMU) as one of its program
units and supports the IMU in its globally important, fascinating
activities to the best of its abilities. The main office of the Ger-
man Mathematical Society (DMV) is located at WIAS. Within the
EMS, the Weierstrass Institute is a member of ERCOM (European
Research Centres on Mathematics). It is likewise an active member
of ECMI (European Centres on Mathematics in Industry).

Some historic facts and current figures
WIAS was established on January 1, 1992. It originated from the for-
mer Karl Weierstrass Institute for Mathematics of the GDR Academy
of Sciences. The founding committee was headed by Karl-Heinz
Hoffmann. The back-then new Institute was provisionally directed
by Herbert Gajewski until Jürgen Sprekels was appointed as its
director in April 1994. Since the beginning of 2016, it has been
headed by Michael Hintermüller. The Institute currently employs

around 150 people, among them 120 scientists at various career
levels, ranging from PhD students to senior scientists, and jointly
appointed professors. The daily work of WIAS benefits from its
well-trained administrative and IT staff.

Michael Hintermüller is the director of the WIAS and holder of the Chair
of Applied Mathematics at the Humboldt-Universität zu Berlin. For many
years, he has played a major role in shaping the international math hub
of Berlin. For example, he assumed the role of Spokesperson of the Berlin
Mathematics Research Center MATH+ in 2019. He acted as the Spokesper-
son of the Einstein Center for Mathematics Berlin (ECMath) from 2016
to 2019. He joined the Humboldt-Universität zu Berlin as a MATHEON
Research Professor in 2008, and was appointed Member of the Council of
the DFG Research Center MATHEON in 2011. The Austrian mathematician
has received multiple awards for his scientific achievements. He is a Fellow
of the SIAM (Society for Industrial and Applied Mathematics), and received
the “Start-Preis” – Austria’s most prestigious award for young scientists –
in 2005.

michael.hintermueller@wias-berlin.de
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Slovak Mathematical Society – a short overview of history and present

Martin Kalina

The Slovak Mathematical Society (SMS) is a small society with
about 150 members. Among our members, there are university
staff, academicians from the Slovak Academy of Sciences, re-
searchers from other research institutes, and also teachers at
primary and secondary schools. Our programme is focussed on
science, education, and young talents in mathematics.

Our roots
The Slovak Mathematical Society was officially founded on Jan-
uary 1, 1969, as the mathematical branch of the Union of Slovak
Mathematicians and Physicists. However, the real root of the or-
ganisation of scientific life of Slovak mathematicians lies in the
Union of Czechoslovak Mathematicians and Physicists, or, more pre-
cisely, in the Union of Czech Mathematicians which was renamed
Union of Czechoslovak Mathematicians and Physicists in 1921. The
year 1929 saw the beginning of the first regular seminar for math-
ematics and physics, at the Faculty of Medicine of the Comenius
University in Bratislava. The year 1951 was also important, mark-
ing the decision to create the Slovak Committee of the Union of
Czechoslovak Mathematicians and Physicists. The Mathematical
Olympiad has been organized in Slovakia since that time.

What we do
Among Slovak mathematicians there are research groups dealing
with

• discrete mathematics: graph theory, combinatorics, …;
• algebra: semigroups, set theory, quantum structures (i.e., ortho-

modular lattices and Hilbert spaces as the most important repre-
sentatives of orthomodular lattices);

• theory of chaos;
• mathematical and functional analysis;
• numerical analysis;
• applications of PDE in engineering and in some other areas (e.g.,

medicine);
• probability and statistics;
• uncertainty modelling: time series, fuzzy logic, aggregation of

information, generalised measure theory (capacities, i.e., mono-
tone set-functions) and integrals with respect to capacities.

Mathematics and music
The SMS organizes various series of regular seminars, each of them
devoted to a different field of mathematics, corresponding to the
research groups listed in the previous section. Among these, the
seminar on “Mathematics and Music” is particularly worth men-
tioning. In this seminar, which originated in the 1970s and lasted,
with some breaks, till the 1990s, mathematicians whose hobby
was music met with musicians – professional composers and in-
terpreters. One of the main organisers of the seminar was late
Professor Riečan (1936–2018). Music was his great passion. When-
ever he organised a mathematical conference, there would be one
evening session devoted to a concert by the participants. The first
of the three photos shows Professor Riečan performing with a Ph.D.
student during one of these concerts.

Annual conference of Slovak mathematicians
Another event that I would like to mention is the annual conference
of Slovak mathematicians. This is a conference where university
staff members and academicians meet teachers. In other words,
it is not a high-level scientific conference where the participants
present their latest results; rather, there are overview talks on a level
that is understandable even for primary school teachers. There is a
competition of young mathematicians (under 30 years of age) who
compete by submitting series of papers. The winner is awarded the
Academician Schwarz Prize (named for Štefan Schwarz 1914–1996,
whose main area of interest was the theory of semi-groups). Apart
from this, there is also the Peter Pavol Bartoš Prize for teachers and
university staff dealing with didactics of mathematics. The prize is
awarded for a nice textbook or for long-lasting excellent results in
teaching mathematics (Peter Pavol Bartoš 1901–1975 was a high
school teacher known for his textbooks and the problems he set
for the Mathematical Olympiad).

Czech-Slovak student conferences
A long-standing tradition was the organisation of student scientific
conferences in Czecho-slovakia as competitions. Nowadays, we
still have such a conference-competition, organized in cooperation
with the Czech Mathematical Society in mathematics and infor-
matics, and another one in didactics of mathematics organized
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Prof. Riečan with his PhD student during the con-
cert of participants in 2010

František Kosper, high school teacher, the winner
of the Bartoš Prize in 2013, giving his talk

Juraj Šebej, one of the participants in the Stu-
dent Conference in Mathematics and Informatics
in 2012

in cooperation with SUMA (Society of Teachers of Mathematics
of the Czech Republic). These events have a three years period –
they always take place twice at universities in the Czech Republic
and once in Slovakia. Only in 2020, due to the coronavirus pan-
demic, the conference in didactics of mathematics was taken online
and the conference in mathematics and informatics was cancelled
altogether.

Some other scientific events
Cooperation with mathematical societies of other European coun-
tries is pursued thanks to the organisation of several conference
series. Let us name a few.

Equadiff is a series of biannual conferences. Its scope is mathe-
matical analysis, numerical mathematics and applications of differ-
ential equations. The history of this series is quite long. It rotates
between the Czech Republic, Slovakia, and Western Europe. It has
already taken place 14 times in the Czech Republic and Slovakia.
In 2017, Equadiff was hosted by the SMS.

In cooperation with the Czech, Slovenian, Austrian and Cata-
lan Mathematical Societies, a series of CSASC conferences was
organized. In 2018, CSASC was hosted by the SMS. The CSASC
conference consists of several mini-symposia. The 1st CSASC was
held in Krems, Austria, in 2011.

EUROCOMB is the European Conference on Combinatorics,
Graph Theory and Applications. The 1st EUROCOMB was held in
Barcelona, Spain in 2001. In 2019, this conference was hosted by
the SMS.

Martin Kalina is a professor of applied mathematics at the Slovak University
of Technology in Bratislava, Slovakia. Since 2017 he is the president of the
Dlovak Mathematical Society and since 2008 the president of the Union of
Slovak Mathematicians and Physicists.

martin.kalina@stuba.sk
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MathsWorldUK: Creating the UK’s first National Mathematics Discovery Centre

Katie Chicot

MathsWorldUK’s mission is to create a world-class Mathematics
Discovery Centre, celebrating the mathematics at the heart of
the patterns and structures of our world. A first for the UK, the
centre will combine best practice from successful partners across
the world with ingenious new ideas and innovative environments
developed in the UK. It will be a magnet visitor attraction, drawing
visitors from across the UK and from overseas.
We aim to advance the public understanding of mathematics and
its applications so that everyone, regardless of age, gender, back-
ground and ability, can access and delight in the joy and power
of mathematics.

MathsWorldUK works with partners across the UK and internation-
ally to spark public excitement, curiosity and engagement with the
wonders of maths. We create events and challenges at science fairs,
in schools and public settings, as far afield as Greenwich (Green-
wich Maths Time), Birmingham (the Big Bang Young Scientists’
and Engineers Fair) and Bradford (International Mathematics Day
around the country), aiming to reach a range of groups including
those whom might otherwise be excluded from such opportunities.

Our approach is informal and non-threatening, playful and in-
spiring – inviting children and adults alike to discover the fun of
maths and enjoy their own inherent mathematical and problem-
solving abilities. As our project continues to develop and we have
more space for our exhibits we will offer visitors many hands-on
experiences in several different areas of mathematics – geometry,
logic, spatial awareness, statistics, mechanical paradoxes and other
cheerfully perplexing things, as well as displaying mathematical art
and aesthetics.

Our plans have the support of all professional associations in
mathematics and mathematics education in the UK and of many
Fellows of the Royal Society. Over 40 ambassadors have rallied
behind our vision including: Professor Sir David Spiegelhalter; Dr
Hannah Fry; Bobby Seagull; Professor Sir Martin Hairer; Tim Harford
OBE; and Johnny Ball.

Why do we need a Mathematics Discovery Centre in the UK?

A Mathematics Discovery Centre plays at least two important roles.
It goes without saying that the centre should celebrate the major
cultural contribution maths has made throughout human history

Families interact with the ‘Ring of Fire’ at Leeds Science Festival 2020
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Dr Katie Chicot, CEO, Geoff Wain, Co-Chair, and Prof Margaret Brown, Co-Chair (from left to right)

and how it has helped us understand our world. But there is also
an important social dimension.

Mathematics is a life skill which is central to one’s life prospects
and wellbeing. This is regarded as obvious in most countries, but
it may surprise European readers that it is not widely believed in
the UK (despite urgent government reviews and actions). The UK
has one of the lowest uptakes of mathematics post-16 of any de-
veloped nation and this is partly a reflection cultural attitudes to
mathematics, that it is boring, difficult and irrelevant.

No one doubts the necessity of being literate. We need to
generate the understanding that a lack of general mathematical
awareness has a similarly strong impact on life chances as the
abundant evidence shows.

It isn’t only the individual who is affected by a poor culture
around mathematics. Society and the economy need a strong base
of mathematically qualified citizens. The role of the mathemat-
ical sciences is increasing in the workplace. This is due, in part,
to increased computing power, big data and greater use of the
modelling of complex phenomena in decision making.

A cultural intervention is needed to address the UK’s (particu-
larly England’s) attitudinal relationship to mathematics. Looking
at the UK data we can see that a person’s and family’s culture is
having the strongest impact on their study choices which is why
our work focuses on a family-oriented visitor centre. Nevertheless,
Our centre will be of interest to all, including professional users of
mathematics, It will be an interesting, challenging and fun place
to visit, and a place to return to on many an occasion.

Who’s involved?

MathsWorldUK was established by a few enthusiastic people, en-
couraged and supported by the mathematics organizations con-

cerned with public engagement with Mathematics. It became a
registered charity (no. 1155010) in 2013.

Co-chair, Margaret Brown, OBE, is an Emeritus Professor of
Mathematics Education at King’s College London and is a previous
Head of the School of Education and member of the Senior Man-
agement Committee at King’s. She has served as President of the
British Educational Research Association and of the Mathematical
Association, and acted as chair of the Joint Mathematical Council
of the UK.

For 10 years Margaret chaired the Trustees of the School Math-
ematics Project, a charity which was concerned with provision
of school textbooks and curriculum materials, and with teacher
professional development. She was instrumental in setting up the
King’s College London Mathematics School for 16–18 year olds.
In 2013 Margaret was awarded the prestigious Kavli Medal of the
Royal Society for her services to mathematics education.

Co-chair, Geoff Wain, spent 40 years in education, as a teacher
and then a teacher trainer. For 24 years he was at the University of
Leeds in the Centre for Studies in Science and Mathematics Educa-
tion, including time as the director of teacher training and as Dean
of the Faculty of Education. Geoff was a co-director of the Pop-
Maths Roadshow, a major inter-active exhibition of mathematics
which toured 24 cities in the UK and Ireland.

CEO, Katie Chicot, is a Senior Lecturer, Staff tutor in Mathe-
matics at the Open University. Katie has used all sorts of means of
communicating mathematics, including co-creating the series Pat-
terns of life for the Open University’s YouTube channel, captaining
a team on BBC2’s Beat the Brain, as academic consultant to BBC
Radio 4’s More or Less, and the creation of a maths/brain teaser
app called Perplex, which is available on the App Store and Google
Play.

We have a dedicated executive committee behind the project
and a body of volunteers who enable us to carry out our work with
the public.
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MathsWorldUK’s touring exhibition ‘Explore Maths’ installed at Winchester Science Centre

Pre-Covid-19 strategy

ManyMathematics Discovery Centres around theworld have grown
out of touring exhibitions. These exhibitions demonstrated the
huge appetite for physical maths activities, gradually building mo-
mentum for a physical discovery centre. To date, there are over
50 such permanent maths centres around the world, but the UK
has none. MoMath, the National Museum of Mathematics in New
York has an annual footfall of about 200 000 visitors and has
changed for the better the perceptions of numerous people about
the nature and importance of mathematics. Other centres have
had similar success.

By the start of 2020 we had matched our funding offer of
£125,000 (from an anonymous American donor). With this we
created our first touring exhibition ‘Explore Maths’. We installed
exhibits in readiness for a March 2020 launch in Winchester Science
Centre (WSC); we ran a training event with the staff and prepared
accompanying materials for teachers and families. In the event,
owing to the COVID-19 crisis, Winchester Science Centre closed its
doors in March, as did attractions across the country. Lockdown
was much longer than all had anticipated, clearly putting the rest
of our planned tour under threat.

In response to the effect of the Coronavirus on our activities
we have developed new plans to maintain our momentum towards
creating the UK’s first Mathematics Discovery Centre.

Activities during Lockdown

During lockdown we wanted to continue our work with the pub-
lic and offer mathematics engagement which had an element of
delight to counteract what the world was experiencing and to
support those learning from home. We obviously couldn’t do this
in person and we didn’t want to lose any of the momentum we

had built up. We created a set of videos that have the general
title Maths at Home with MathsWorldUK and feature all the great
maths communicators that we know. The videos were directed
by Dr James Grime and are for parents, children and anyone with
a bent for exploring mathematics to while away the time spent
under Covid restrictions, lockdown or otherwise. There is a promi-
nent link to these videos on the Home Page of MathsWorldUK
mathsworlduk.com

The quality of the presenters speaks for itself. You can engage
in cutting Mobius Strips with Bobby Seagull, or colouring in ‘maps’
or regions with Katie Steckles, or learn about measuring the Earth
through looking at the historical contributions of some ancient
Greek mathematicians with Johnny Ball, or you can enjoy curious
ideas like ‘Diffy Squares’ with Rob Eastaway. You can learn some
card trick magic with Zoe Griffiths and experience many more such
delights. You can share in the enthusiasm of Nira Chamberlain,
the President of the Institute of Mathematics, as he discusses the
Gambler’s Ruin Problem. At the time of writing the latest video is an
exploration of international number systems with Alex Bellos with
Danish Numbers as the starting point (youtu.be/yHcdM2MLuLE).

Alongside theMaths at Home videos wemade a series of videos
highlighting important mathematics used to study the Coronavirus
pandemic. Our own Kit Yates, who is a mathematical biologist and
Senior Lecturer in Mathematics at the University of Bath, explains
the basic mathematics behind modelling the spread of a deadly
virus like the Coronavirus or the Zika virus, and how by looking at
members of the population who are Susceptible to the virus, those
who are Infectious and those who have Recovered, we can develop
a basic mathematical model known as the SIR model. We can then
use this model to make predictions about how the numbers in each
category compare to actual samples taken from the real world to
decide whether the SIR model is a good one or not.

David Spiegelhalter’s video is a wonderful explanation of the
concept of a false positive in a diagnostic testing regime. He ex-
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plains why even the Health Secretary dealing with the Coronavirus
pandemic became confused about how to interpret the signifi-
cance and meaning of a false positive test result. Starting with
the current pandemic, David introduces the terms prevalence (the
probability of someone having the disease), sensitivity (the prob-
ability of someone having the disease and testing positive) and
specificity (the probability of someone not having the disease test-
ing negative) and then uses a probability tree to discuss the relative
numbers of true positives of a medical test (when the test cor-
rectly indicates that you have the disease when you do) and false
positives (when the test indicates you have the disease when in
fact you do not). At the end of his exposition David also makes
reference to Breast Screening tests and Facial Recognition software
as used by the police. In each case it is essential to understand
how the number of false positives are related to the samples being
investigated.

The Government has repeatedly stressed the idea of social dis-
tancing and that the safe distance apart between two people is
2 metres. In her interesting video, Aiofe Hunt uses some famil-
iar mathematics, including the Theorem of Pythagoras, to show
that designing spaces to hold numbers of people all safely socially
distanced from each other is far from obvious and requires much
more space than most people realize.

Professor Jen Rogers was previously the Director of Statistical
Consultancy Services and an Associate Professor at the University
of Oxford She is now the Vice President for Statistical Research
and Consultancy at PHASTAR. Jen’s video gives an excellent and
reassuring look at vaccine trials and explains how the time for the
vaccine development was cut without any reduction in the robust
testing procedure or even any reduction in the actually number of
man-hours spent developing the vaccine.

Post Covid-19 strategy: MathsCity Leeds

We are now working to establish a pop-up mathematics discovery
centre in the centre of Leeds, which we are calling MathsCity. We
have the support of Leeds City Council and the Leeds Business
Improvement District. We are in talks to secure, for at least one
year, a suitable rent-free property in a popular shopping area.

MathsCity will start by housing the original touring exhibition,
with its problem-solving theme, and also a Shape and Space Zone.
One of the many benefits of this organic way of growing our mis-
sion is that we can develop the content for the future centre and
test it robustly with the public. In this way the best content will
be ready for the future National Mathematics Discovery Centre.
We will be changing the content of MathsCity in 9–12 month
intervals. The second set of contents are planned to be a Codes
and Code-breaking Zone and a Zone on the Mathematics of Pan-
demics.

It will be difficult to launch a centre under the shadow of the
pandemic, but we will be able to learn the lessons of other science
discovery centres to run a COVID safe environment. Visitors, in-
cluding school parties, will be asked to pre-book their timed visits,
and we will have gaps between visits to allow for cleaning.

Simon Norton Legacy

Our mission now has the generous support of Michael Norton who
has pledged £1.3 million to the mathematics discovery centre in
memory of his brother, the mathematician Simon Norton. Part of
this funding can be used towards the establishment of MathsCity,
but the majority is pledged towards the ultimate centre.

Simon Norton who passed away in February 2019, was a child
prodigy in mathematics. He represented Britain at the International
Mathematical Olympiads three times in the 1960s, scoring the top
grade each time, once with 100%, another time with 99%, and
winning a special prize for the elegance of his solutions.

He did his PhD under John Conway in Cambridge and with
John Conway he produced the seminal Atlas of Finite Groups.

Simon became the world expert on the Monster Group and its
connection to Modular Functions and with John Conway coined
the term Monstrous Moonshine. “I can explain what Monstrous
Moonshine is in one sentence,” said Simon. “It is the voice of God.”

Simon was fascinated by the huge number of symmetries asso-
ciated with the Monster Group. This group has order of roughly
8 × 1053, that is the number of elements in the set that defines the
group.

The Legacy left by Simon Norton is administered by his brother,
Michael Norton, and a group of Trustees. Michael Norton is now
taking an active role in helping MathsWorldUK to move towards
its ultimate goal.

Michael is the Director of the Centre for Innovation in Voluntary
Action (CIVA). Michael has decades of experience in developing
major innovative projects each of which has the theme of social
justice. We thank him for his efforts so far and know that through
his generosity we are making good progress to our ultimate goal.

Michael Norton
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MathsWorldUK at various festivals and community centres

The UK’s first National Mathematics Discovery Centre

The UK is almost alone in not having an informal maths space in
which to meet, explore and admire mathematical achievement. We
would like the entire maths community to be behind this project
and to be involved in shaping its content and direction. We have
been fortunate to have guidance from European Mathematics
Discovery Centres, most notably Mathematikum in Giessen and
MMACA in Barcelona. We would welcome further involvement
from supporters in Europe and elsewhere.

If you would like to support to our mission, then visit www.
mathsworlduk.com/join-us/ and see the ways you can get involved.
Or you can email our CEO on katie.chicot@mathsworlduk.com.
We look forward to hearing from you.

MathsWorldUK is registered in the UK as a charity (num-
ber 1155010) and as a company (number 837040).

Katie Chicot is the CEO of MathsWorldUK whose aim is to create the UK’s
first Mathematics Discovery Centre. Alongside this Katie is a Senior Lecturer,
Staff tutor in Mathematics and Statistics at the Open University. This in-
volves working with students, tutors and creating teaching materials. Both
roles involve mathematics outreach in many forms. Previous outreach has
included free courses, a maths app, competitions, videos, radio, and events.
The next step of creating a physical centre is now very close indeed.

katie.chicot@mathsworlduk.com
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Romania helps Uganda on its way to the International Mathematical Olympiad

Sergiu Moroianu

This article reports on an ongoing privately-financed project started
in 2019, promoted by members of the Romanian mathematical
community, supporting Uganda’s participation in the International
Mathematical Olympiads.1

About the IMO
The International Mathematical Olympiad (IMO) is arguably the
most prestigious scientific event for high-school students world-
wide, often copied but never surpassed. The IMO model was
adopted for other disciplines: Physics, Computer Science, Chem-
istry, and also for regional competitions: the Balkan Mathematical
Olympiad; the European Girls’ Mathematical Olympiad; Olimpiada
Iberoamericana de Matemática; the Asian Pacific Mathematics
Olympiad; the Pan-African Mathematical Olympiad (PAMO), and
many others. The IMO is an intellectual competition akin to the
athletic Olympics. It evaluates a certain ability to solve elementary
level problems quickly. Competitors fight to surpass themselves, not
against other participants. Between the ages of 12 and 18, aspiring
IMO participants dedicate most of their free time to preparing for
the IMO. They are trained by professional trainers, and their work
is mainly driven by inner motivation.

Many successful mathematicians never participated in
Olympiads, while many former IMO participants choose various
other professions later in life. Nevertheless, the IMO – and elemen-
tary math competitions in general – play an outstanding role in
raising awareness about mathematics and about our profession
among young students during the decisive years of their intellectual
formation.

A brief history of the IMO
The IMO is an Eastern European cultural product. The first IMO took
place in 1959 in the mountain resort of Sinaia, Romania, involving
students from just seven countries from the former Eastern Euro-
pean bloc.2 Since 1959, it has grown steadily to the point where

no less than 115 countries were represented at the 60th edition in
England. A notable forerunner of the IMO was the yearly competi-
tion organized by the Gazeta Matematică, the oldest periodical
publication in elementary mathematics worldwide, published un-
interruptedly in Romania since 1895, even during the two world
wars. In the first twenty years, Eastern European bloc countries
dominated the competition, but today students from Australia,
Canada, France, Iran, Italy or Vietnam compete successfully with
the Eastern European students from Bulgaria, Hungary, Poland
or Ukraine. The explanation for the continuous success of some
countries lies in the professional methods of selection and training
described below. These methods yield spectacular results wher-
ever they are adopted.3 The countries with the strongest overall
performance at the IMO are China, Russia, and the US.

Training and selection for the IMO: The case of Romania
Romania selects future IMO participants from all middle schools
around the country. Starting in fifth grade, students are encouraged
to solve four Olympiad-type problems each month from the Gazeta
Matematică. The first two stages of the annual math Olympiad
are attended by thousands of the best students in the country.
Secondary school teachers receive favorable evaluations when
their students qualify for the higher stages of the competition. In
most cities, extracurricular excellence clubs are organized weekly,
supported financially by the Ministry of Education or by private
foundations. Teachers in top schools train their gifted students far
beyond the official curriculum. Numerous training camps, clubs,
and online training programs take place every year. Coaches for the
Olympiad are often themselves former IMO participants. Through
this inclusive approach, not only do we select native talents from
the maximal pool of 200,000 students in each age group, but
we then train them over a long period of time. Participation and
training costs are covered by the state. Olympiad winners receive
prizes as well as scholarships and admission offers to universi-
ties.

1 www.imar.ro/~sergium/mathuganda/new_mU/index.html
2 imof.co/about-imo/history/
3 www.ams.org/notices/200810/fea-gallian.pdf
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Like in sports, results at the IMO are directly correlated with
the material effort invested by society in young competitors. I
need not argue here the merits of having a mathematically-literate
workforce. I only mention that in recent years a growing share of
Romania’s GDP is produced by the vibrant IT industry, made possi-
ble in part by the public’s 125-year-old obsession with elementary
math competitions.

The IMO in developing countries
Developing countries have taken a more sinuous path in adapting
to the IMO culture. Some – Thailand, Korea, Singapore, but also
Peru, Colombia or Brazil – now have a solid tradition, and their rise
in IMO rankings follows that of their GDP/capita. Others have been
less successful. Until 2010, no country from “Black Africa” – that is,
outside of the Maghreb and South Africa – had ever participated
in the IMO. Only 10 out of the 54 African countries participated
in IMO 2020, but 6 of these sub-Saharan: Nigeria, Ghana, Kenya,
Tanzania, Botswana and Uganda.

There are obstacles these days for a new country to start at-
tending the IMO. Firstly, IMO problems become harder every year.
Here is the first problem from the first IMO in 1959: Show that the
fraction (21n+ 4)/(14n+ 3) is irreducible for any natural number
n. This exercise is today accessible even to a good sixth grade
student! As years go by, it becomes more and more problematic
for a country lacking a pool of former IMO participants to obtain
good results fast enough in order to justify further participation.

Other difficulties are of a more practical nature, hard to under-
stand in privileged countries. The leadership of some poorer coun-
tries does not see any financial benefit in supporting the Olympiads;
others simply cannot afford the expense, while in some extreme
cases, there can be countries which invest in selection, train their
team, and pay for plane tickets, only to find themselves unable to
attend the IMO for administrative reasons. This was the case for
the Nigerian team, which in 2019 had a student on whom they
placed high hopes of winning at least a bronze medal. Sadly, due
to bureaucratic issues, the team’s visas for the United Kingdom
were not issued until after the competition was over.

The mathUganda project
In 2018, I was one of the coordinators at the 59th IMO in Cluj-
Napoca, Romania. I spoke to half of the team leaders from all over
the world, taking the opportunity to inquire about the Olympiads
in their countries. One of these leaders was Jasper Okello, the ini-
tiator of Uganda’s participation in the IMO. Before 2018, Uganda
had received a Honorable Mention at the IMO twice. The best
ranking of the team had been in 2017, where it was in the bottom
14.55%. I learned that the Ugandan state does not support stu-
dents’ training or participation in the IMO. I was particularly struck
by the fact that the Uganda Mathematical Society had not even
been able to obtain support for participation from any international
bodies such as the IMU. Together with Jasper, we began sending

out funding applications to various charities or learned societies. I
also contacted acquaintances in academia, but with no success. It
seemed that public funding from rich countries is simply not aimed
at talented young people in countries like Uganda.

I finally opened a private online donation list. I estimated the
total participation cost for the team as around 10,000 euros, of
which I expected to raise 10%. The response was overwhelm-
ing. Donations started to pour in from family, friends, colleagues,
and even strangers who learned about our project. We reached
the initial target in under three weeks. The Romanian Society for
Mathematical Sciences became involved in the project. Colleagues
with solid experience in IMO training offered online lessons. By
June 2019, we had transferred $8,000 to the UgandaMathematical
Society. Thanks to our help, Uganda was able to send a complete
team of six students to the IMO 2019. They purchased their plane
tickets early enough to submit visa applications on time, unlike the
less fortunate Nigerian team.

At the IMO 2019, Uganda presented a team of three girls and
three boys, which had won three bronze medals at the Pan-African
Mathematical Olympiad (PAMO). This team ranked 102nd out of
112 participating countries. Out of just 5 points obtained by Team
Uganda, 2 were due to Eva Kakyo, who was initially a reserve.
Eva’s trip to IMO 2019, and consequently the team’s result, were
possible thanks to the generosity of our Romanian sponsors.

Kampala training in 2020
Encouraged by our project, Jasper Okello applied and succeeded in
getting Uganda included in an MIT IMO-training program already
implemented in Ghana in 2019. A team of three MIT students,
including a former gold medalist at IMO 2018, conducted the IMO
selection camp in Kampala in January 2020.

In February 2020 I traveled in Uganda for two weeks at the invi-
tation of the Mathematics Department of Makerere University, the
oldest higher education institution in East Africa. I returned home
just one week before the borders closed during the pandemic.

Most of my time in Kampala training the IMO and PAMO teams
placed emphasis on synthetic geometry: similarity, the circle, cyclic
quadrilaterals, intersecting secants, polar lines. We also touched
on recurrent sequences, inequalities (Cauchy-Schwarz, AM-GM),
number theory, and functional equations.

Traditionally, geometry is Uganda’s strong field. To achieve ex-
cellence on this topic, I reviewed the whole theory starting from
the axioms – the three cases of congruence and parallelism. I had
already noticed in 2019 that students tended to learn results ”by
rote”. They needed several good minutes to re-discover the proofs
for the sum of the angles in a triangle, the properties of isosce-
les triangles and of the parallelogram, concurrence of important
lines, similarity, and the Thales theorem. We continued with the
properties of angles inscribed in a circle and with cyclic quadrilat-
erals. From that point, the students took off! We began to solve
problems in the “IMO training” format as I know it: I would hand
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Uganda’s PAMO and IMO teams, Makerere University training camp, February 2020

them a list of 2–3 problems, the student who solved one of them
had to explain it to the others, and if needed I would rephrase
the proof with more details. The first lists of problems were at the
level of middle-school Olympiads in Romania, then we advanced
to problems from PAMO, the Balkan Olympiad and even the IMO
itself. There was a moment of catharsis when I first (casually) told
them that the problem they had just solved was from some IMO
back in the 2000s. The light in their eyes was priceless!

Most of the students came from middle-class families. The
exception was Jesse Enkanya, the son of a former member of Par-
liament. At no time did I detect any attitude of superiority from
him. In fact, all the Ugandan students left a very positive personal
impression on me. It was also impressive to observe them solving
hard problems from 8 to 5 every day for two weeks in a row, with-
out ever showing any sign of fatigue. This is a most encouraging
indicator of what their younger colleagues might achieve if they
start training for the IMO at an early age.

Uganda’s results at IMO 2020
Jesse Enkanya was the first competitor from Uganda ever to place
in the second tier of competitors (i.e., better than 35,93% of the
participants). Richard Ayebare (who will attend MIT starting next

fall) and Jonathan Ngabirano also obtained Honorable Mentions.
Together, Jesse, Richard and Jonathan solved three problems, sur-
passing the cumulative performance of Team Uganda from 2012
to 2019.

The team ranked 87th out of 105 participating countries, better
than Algeria, Morocco, Chile or Costa Rica, countries significantly
richer and mathematically more advanced. Compared to 2012
or 2013, the qualitative leap is impressive.

Due to the pandemic, IMO 2020 was organized online in
September. Jesse took the exam in an accredited examination cen-
ter in the United States, where he is currently enrolled as a freshman
at the University of Illinois. The other five students attended the
competition from Kampala. I was able to use the balance of $1,500
on the project’s account to purchase surveillance equipment in line
with the security conditions imposed by the organizers.

I myself tried out Problem 1. As soon as I managed to draw an
acceptable picture, I had a happy premonition: that problem was
going to be approachable with the cyclic quadrilateral methods
we had thoroughly covered during the Kampala training camp!
From my direct experience with the team, I believed they would
be perfectly able to solve it. And indeed, the final result was in line
with what we knew about their abilities.
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Conclusions
The sine qua non success factor in any competition is participation.
Uganda’s participation in the IMO is thanks to Jasper Okello, a
mathematics teacher at Nabisunsa Girls School in Kampala. Jasper
has been the driving force behind this project for 10 years. The
first attempts were a bit frustrating, as Uganda’s team scored close
to zero points. The prohibitive cost of travel was not covered by
the state, while sponsors from a developing country are under-
standably reluctant to finance a contest where the team does not
have good prospects. But in the long run, his efforts paid off. After
ten years of hard work, Uganda established itself as a regional
powerhouse in elementary math competitions at IMO 2020.

As a former IMO participant, I know from first-hand experience
how motivating it is to compete as part of a team with a strong
track record. But how demoralizing failure can be … How tempt-
ing it is to throw in the towel, to admit that you stand no chance
against the Europeans or the Chinese, that you will make a fool
of yourself! Kudos to Jasper Okello and to Uganda’s students for
braving this risk.

I should mention the role of Andrew Tugume (honorable men-
tion at IMO 2017) in preparing the team. Andrew, currently an
Engineering student in Kampala, delivered an excellent Geome-
try lesson in my presence. He was the team’s main coach in the
months before the contest. Although Uganda cannot count on
many former IMO participants, having Andrew is precious. I hope
he will stay involved.

The mathUganda project continues. I am in contact with math-
ematicians planning to organize a joint IMO training network for
East African countries. We have already raised more than $5,000 for
the IMO 2021. Radu Bumbăcea, Dragoș Manea, Flavian Georgescu,
Liviu Păunescu and Lucian Țurea, trainers of Romania’s IMO team,
offered online lessons. I take this opportunity to thank them and
our donors for their generosity. It seems that the idea of helping
smart students from a distant country, for an intelligent purpose,
touched a secret chord in our community.

Promoting mathematical education is a credible strategy for
lifting countries like Uganda from poverty, and the IMO is an excel-
lent ambassador for our discipline among the young generations.
Our project demonstrates that Europe has the expertise and the
will to spread the passion for mathematics in developing countries.

Sergiu Moroianu is a researcher at the Institute of Mathematics of the
Romanian Academy in Bucharest, and a former IMO gold medalist. His
research interests are in Differential Geometry and Global Analysis.

sergiu.moroianu@imar.ro
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Survey on Early Childhood Mathematics Education at ICME-14

Iliada Elia, Anna Baccaglini-Frank, Esther Levenson, Nanae Matsuo and Nosisi Feza

This paper is about a survey to be presented at the 14th Interna-
tional Congress on Mathematics Education, which addresses the
latest developments on Early Childhood Mathematics Education.
The relevance of early mathematics learning and teaching in math-
ematics education research is explained and an overview of the
work done by the Survey Team on this specific theme is described.

At the 14th International Congress on Mathematics Education
(ICME-14), which will take place in Shanghai from July 11 to 18,
2021, four surveys will be presented, addressing the latest develop-
ments on four particular themes of mathematics education, which
are considered important for the ICMI community. The theme of
one of these surveys is Early Childhood Mathematics Education (up
to age 7). Our aim is to briefly present the relevance of this theme
in mathematics education research as well as an overview of the
work done by the Survey Team on this specific theme, which may
be of interest for mathematics educators and also for mathemati-
cians.

Research in early childhood mathematics education has expe-
rienced increasing growth over the last years. The interest in this
field is induced mainly by the strong emphasis given on early child-
hood education in many countries and by the well documented,
positive relation between children’s early mathematical knowledge
and their later success in mathematics learning [2]. The high impor-
tance of early childhood education is acknowledged by countries
all over the world. This is evident by the increase of their expenses
and investments in early childhood education, and by their access
to pre-primary education. The emergence of new curricula and
higher demands in the quality of early childhood education staff is
also manifest in a number of countries [4].

Regarding the association between children’s early mathemati-
cal skills and their later mathematical achievement, there is clear
evidence that when children enter school with high levels of knowl-
edge they maintain these high levels at least through the end of
primary school [5]. Research has also provided evidence for statisti-
cally significant links between mathematics ability in preschool and
mathematics performance in adolescence [7]. Thus, establishing a
solid foundation for children’s mathematical development before
they even enter school plays a crucial role in their future learning.

The quality of early childhood mathematics education also af-
fects children’s later mathematical dispositions. Particularly, when
approaches to mathematics education are meaningful and enjoy-
able for children, it is more likely that they will appreciate and
engage in mathematics education later on [6]. Considering the
decline in attitudes towards mathematics over the school years,
starting already in the first years of school, and considering the
fact that young children’s mathematical knowledge and abilities
influence their mathematical affect and dispositions [3], the need
for high quality mathematics education in the early years deserves
strong emphasis.

In the past few years, a great deal of attention within the field
of mathematics education has been given to research on learning
and teaching mathematics in early childhood. This is highlighted
by the numerous publications on early childhood mathematics
education, and by the many special interest or study groups in
international mathematics education conferences devoted to this
field that focus on the study of the learning and teaching processes
in early childhood mathematics education and the environment in
which these processes take place [1]. A vast amount of research has
been undertaken for an even longer time in the related domains
of developmental and cognitive psychology. This research has in-
vestigated early-year mathematics with a particular focus on the
relationship between children’s cognitive abilities (e.g., working
memory, visuo-spatial abilities) and their early mathematical skills.

This survey has been designed to establish an in-depth and
comprehensive review of the state-of-the-art of the most impor-
tant developments and contributions since 2012, and of current
tendencies, new perspectives and emerging challenges in early
childhood mathematics education. The survey drew from a broad
range of sources, including peer-reviewed journal articles in the
above-mentioned disciplines, as well as international peer-reviewed
conference proceedings, including ICME, the Conference of the
International Group for the Psychology of Mathematics Education
(PME), the Congress of the European Society for Research in Mathe-
matics Education (CERME), ICMI Study Conferences and prominent
research handbooks in the discipline of mathematics education.
An annotated bibliography listed the papers that have been identi-
fied as relevant, leading to a comprehensive analysis of the issues
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raised by this research literature and to a synthesis of the pertinent
findings.

The survey focuses on six major research threads that have
been identified in recent literature on early childhood mathemat-
ics education. Three of these threads are content-oriented: num-
ber sense and whole number development, geometry education,
and children’s competences in other content domains. A twofold
cognition-oriented thread focuses on cognitive skills and special
education, respectively, in early childhood mathematics. The role of
technologies in early mathematics teaching and learning is another
important research thread that is systematically reviewed. Finally,
a teacher-oriented thread presents a synthesis of results of recent
studies on early childhood teachers’ knowledge, education and
affective issues in mathematics.

The review of research on the content-oriented threads reveals
a common threefold focus across these threads: firstly, on offering
insights into young children’s competences and development in
these content domains, secondly, on identifying influences of cer-
tain abilities into children’s development, and thirdly, on proposing
and investigating the effectiveness of programs or interventions
on children’s learning. The review of literature on cognitive skills
involved in mathematical learning has a particular focus on the
learning of numbers and arithmetic from as early as toddler stage,
and reveals that processing quantities can be done very early in life
through non-verbal innate mental systems. Moreover, visuo-spatial
abilities, working memory, finger gnosis, or cognitive flexibility are
only some of the key cognitive skills in young children that have
been found to be predictive of or associated with mathematical per-
formance. The review of research on the use of technology in early
childhood mathematics education highlights how specific forms
of interactivity available in multi-touch technology or with pro-
grammable robots can be used to enhance mathematical learning.
Regarding the teacher-oriented thread, studies on the professional
development of early childhood teachers in mathematics focus on
enhancing teachers’ knowledge of children’s mathematical abilities
and reasoning, thus influencing teachers’ beliefs regarding young
children’s mathematics learning.

Overall, our work on this survey has shown that there is a
plethora of research on early childhood mathematics education
and that there will be continued growth and important progress
in this field in the years to come. Among the six threads of our
survey review, some, e.g., whole number development, cognition-
oriented threads, have been studied more extensively than others,
e.g., geometry education, other content domains, teacher-related
issues. All these threads reflect new areas of development, e.g., use
of technological tools, embodied learning, interventions for teach-
ers, comparative studies, as well as more ordinary research topics,
e.g., mathematical competences, problem solving, language. We
expect that there will be continued growth in all these areas with
specific emphasis on the under-researched and more recent areas
of study.

The findings of the survey will be presented and discussed in
more detail at ICME-14, on July 18, 2021.
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ICMI column

Frederick Leung and Susanne Prediger

Greetings from the new ICMI President, Frederick Leung

January 2021 marks the beginning of the new four-year term for
the Executive Committee (EC) and the new ICMI president. We
print here parts of his greetings to the worldwide mathematics
education community.

“May the year 2021, and the next three years, be healthy, peaceful
and productive for you! I am taking up the Presidency of ICMI
with awe and humility, fully aware of the challenges that lie ahead
of me and the rest of the international mathematics education
community. In facing these challenges, I am blessed with the firm
and sound foundation laid down by our predecessors – the past
Presidents and EC members of ICMI. […]

Let me share with you briefly my vision for mathematics ed-
ucation in the coming years. ‘The International Commission on
Mathematical Instruction is a worldwide organization devoted to
research and development in mathematical education at all levels
[and] to promoting international cooperation in mathematics’. In
achieving this mission of ICMI, I believe our first and foremost task
is to establish mathematics education more solidly as an academic
discipline. We as an organization should encourage rigorous re-
search and promote high standards in research methodology. Based
on scholarly research, we should facilitate and encourage sharing
of best practices and cross-fertilization of ideas, while focusing on
capacity building. And in the course of doing this, we should be
sensitive to contextual and cultural differences in different coun-
tries. […]

As we all know, COVID-19 is affecting school education all over
the world, and normal routine classroom teaching is seriously ham-
pered. But the pandemic also brings opportunities. Many teachers
around the globe are exploring the use of ICT for mathematics
teaching and remote learning. […] Unfortunately, the effective
use of ICT for remote teaching and learning, especially for the
underprivileged, still remains a potential at the moment. In fact,
the evidence so far is that COVID-19 has led to even greater in-
equality. […] We do not yet have much concrete data on how
mathematics education of the underprivileged has been affected
by COVID-19, and a Discussion Group in ICME-14 will be devoted

to discussing this issue. In this time of crisis, ICMI as a community
must reaffirm its mission of bringing about more equity in (mathe-
matics) education opportunities for children in all corners of the
world.

One way of achieving more equity is to support mathematics
education in disadvantaged countries, and ICMI has been attempt-
ing to do this through our Capacity and Networking Project (CANP).
One lesson we learned from COVID-19 is that we are living in an in-
terdependent world. Just as immunity in one country is not enough
to contain the pandemic, merely improving the quality (and quan-
tity) of mathematics education in our own country is not enough
for the whole of humanity to advance in mathematics learning.
And in supporting mathematics education in different countries,
we need to take their different cultural contexts into consideration.
We must understand and respect different cultural traditions: we
have much to learn and benefit from cultural diversity. […]

Another important stakeholder is of course the community of
mathematicians. I must reiterate here that ICMI is a Commission
of IMU, and we have received tremendous support from IMU in
our work, professionally, logistically and financially. In promoting
mathematics education, we have benefited immensely from the
input of mathematicians, and we are thankful to IMU for its sup-
port and input. We should consider how we can tap this source of
support from mathematicians more deeply.

I understand that serving as the President of ICMI is a huge
undertaking, but it is also an honorable and meaningful endeavor.
In fulfilling my role, I truly need your support and cooperation to
meet the challenges ahead.”

Frederick Leung

ICME-13 monographs – A window into worldwide research on
mathematics education

Only a few weeks remain until the hybrid conference ICME 14
(in Shanghai and the virtual space) in July 2021. This is the right
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moment to look back on ICME 13 in 2016, when the world met
in Hamburg to discuss research in mathematics education. What
remains after 5 years from the more than 45 topic study groups,
survey teams, many invited lectures and plenary talks?

A lot! With several special issues in international journals and
two Springer ICME-13 series, the international communication on
multiple research topics is well documented and available to all read-
ers. The series can be found here: www.springer.com/series/15585
and 14352.

Open access is granted to two main proceedings, with all ple-
nary and awardee lectures, survey teams, and invited lectures. As
the series are completed, they provide an interesting insight into
the wide range of problems and research topics in mathematics
education, including multiple research methods and theoretical
perspectives. We invite all readers to search for the topic best
matching their interests, and get the feeling before diving into
ICME 14.

Frederick Leung is chair professor and Kintoy professor in mathematics
education at the University of Hong Kong, and the new ICMI president
since January 2021. He is widely acknowledged as an expert in compara-
tive studies of mathematics education, including student achievement and
classroom practices as well as the influence of culture and language on
mathematics teaching and learning. In 2013, he received the Hans Freuden-
thal Medal, one of the ICMI awards for outstanding scientific achievements.

frederickleung@hku.hk

Susanne Prediger is full professor in mathematics education research at
TU Dortmund University and director of the DZLM network at the IPN Leib-
niz Institute for Science and Mathematics Education. Her research interests
include developing and investigating learning opportunities for secondary
mathematics education as well as mathematics teacher education.

prediger@math.uni-dortmund.de
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ERME column
regularly presented by Jason Cooper and Frode Rønning

In this issue, with a contribution by
Viviane Durand-Guerrier, Reinhard Hochmuth, Elena Nardi and Carl Winsløw

Report on the book Research and Development in University
Mathematics Education. Overview Produced by the International
Network for Didactic Research in University Mathematics.1 Edited
by V. Durand-Guerrier, R. Hochmuth, E. Nardi, and C. Winsløw

This book emerged from the activi-
ties of the research project INDRUM
(International Network for Didactic
Research in University Mathemat-
ics, hal.archives-ouvertes.fr/INDRUM).
INDRUM is a network that developed
out of ERME, and the network aims
to contribute to the development of
research in didactics of mathematics
at all levels of tertiary education, with
a particular concern for the develop-
ment of early-career researchers in
the field and for dialogue with univer-

sity mathematicians. The INDRUM network has been initiated by
scholars strongly involved in CERME conferences, and the INDRUM
conferences have been labelled ERME Topic Conferences.

The aim of the book is to provide a deep synthesis of the
research field as it appears through two INDRUM conferences,
which took place in 2016 and 2018. The book addresses seminal
theoretical and methodological issues and reports on substantial
results concerning the teaching and learning of mathematics at
university level, including the teaching and learning of specific
topics in advanced mathematics across a wide range of university
programmes.

The first part, Achievements and current challenges, contains
four chapters based on the two plenary lectures and two plenary
panels at the two conferences. Chapter 1 (Artigue) reflects achieve-
ments and challenges of research in mathematics education at

university level, pointing at the strengths of this research, and
the promising developments as well as the challenges it faces.
Chapter 2 (Lawson and Croft) presents lessons for mathematics
higher education from 25 years of mathematics support, relying
on the authors’ extensive experience in the centres for excellence
in university-wide mathematics and statistics support. Chapter 3
(Bardini, Bosch, Rasmussen, and Trigueros) presents three case
studies of interactions between mathematicians and researchers
in didactics of mathematics and points out directions that seem
important to strengthen. Chapter 4 (Winsløw, Biehler, Jaworski,
Rønning, and Wawro) focuses on the education and professional
development of university mathematics teachers. New ideas and
practices for discipline and context-specific teacher preparation
and for identifying and rewarding quality teaching are proposed.

The second part, Teaching and learning of specific topics in uni-
versity mathematics, contains five chapters. Chapter 5 (Trigueros,
Bridoux, O’Shea, and Branchetti) addresses challenging issues in the
teaching and learning of Calculus and Analysis, covering research
on one variable functions and multivariable functions as well as re-
search on more advanced topics. Chapter 6 (Vandebrouck, Hanke,
and Martinez-Planell) presents the various theoretical perspectives
which underpin studies on task design in calculus and analysis.
The authors call for further exploration, documentation and discus-
sion on assessment and for incorporation of technologies, beyond
current research, on the formalization of basic notions. Chapter 7
(Chellougui, Durand-Guerrier, and Meyer) explores the relationships
between discrete mathematics, computer science, logic and proof.
The authors demonstrate the need to deepen epistemological anal-
ysis and interdisciplinary didactical engineering in this area. Chap-
ter 8 (Hausberger, Zandieh, and Fleischmann) presents a unified
approach to the didactics of abstract and linear algebra in terms
of structural and discursive characteristics, aiming to overcome the

1 www.routledge.com/Research-and-Development-in-University-Mathematics-Education-Overview-Produced/Durand-Guerrier-Hochmuth-Nardi-Winslow/p/book/
9780367365387

64 EMS MAGAZINE 120 (2021) — DOI 10.4171/MAG-27

https://hal.archives-ouvertes.fr/INDRUM
https://www.routledge.com/Research-and-Development-in-University-Mathematics-Education-Overview-Produced/Durand-Guerrier-Hochmuth-Nardi-Winslow/p/book/9780367365387
https://www.routledge.com/Research-and-Development-in-University-Mathematics-Education-Overview-Produced/Durand-Guerrier-Hochmuth-Nardi-Winslow/p/book/9780367365387


fragmented status of current research. Chapter 9 (González-Martín,
Gueudet, Barquero, and Romo-Vázquez) focuses on mathematics
for engineers, mathematical modelling and mathematics in other
disciplines, and addresses the challenges of defining, designing,
motivating and assessing mathematics teaching and learning for
students who are not specializing in mathematics.

The third part, Teachers’ and students’ practices at university
level, contains three chapters. Chapter 10 (Hochmuth, Broley, and
Nardi) addresses issues on transition to, across and beyond uni-
versity, including the transition from university to workplace, with
an emphasis on the need for more substantial research on the
last two types of transition. Chapter 11 (Rasmussen, Fredriksen,
Howard, Pepin, and Rämö) focuses on students’ in-class and out-of-
class mathematical practices, use of resources out-of-class, roles
in assessment practices and responses to active learning initiatives,
in relation to interactions with other students, the teacher, the
mathematics, and resources. Chapter 12 (Grenier-Boley, Nicolás,
Strømskag, and Tabchi) focuses onmathematics teaching practices
at university level, with particular emphasis on teacher learning and
teacher knowledge, especially with regard to instructional design
for inquiry-based learning. The authors conclude with calling for
stronger synergy between the communities of mathematics and
mathematics education.

We hope that this book will contribute to the development and
dissemination of research in the teaching and learning of university
mathematics and to bringing together researchers in didactics of
mathematics and the whole community of university mathematics
teachers.

Viviane Durand-Guerrier is professor emerita of Didactics of Mathematics
at the University of Montpellier, France. Starting with a PhD from the Uni-
versity of Lyon (France) her research includes internationally recognized
works on argumentation, proof and proving with a focus on the teaching
and learning of logic in university mathematics education. She is a former
President of ERME (2013–2017), and the coordinator of the INDRUM Net-
work since its creation.

viviane.durand-guerrier@umontpellier.fr

Reinhard Hochmuth is professor of Mathematics Education and head of the
Institute for Didactics of Mathematics and Physics at the Leibniz University
of Hannover, Germany. Starting with a PhD, a Habilitation and following
several years of professorships in Applied Analysis, he joined the field of
didactics. He is director of the khdm (Centre for Higher Mathematics Edu-
cation), member of INDRUM’s Coordinating Committee and Editorial Board
member of IJRUME.

hochmuth@idmp.uni-hannover.de

Elena Nardi is professor of Mathematics Education at the University of East
Anglia. Her monograph Amongst Mathematicians: Teaching and Learning
Mathematics at University Level was published in 2008. She is member
of INDRUM’s Coordinating Committee, co-Editor-in-Chief of International
Journal for Research in Undergraduate Mathematics Education and Edito-
rial Board member of Educational Studies in Mathematics, Mathematical
Thinking and Learning, Journal of Mathematics Teacher Education and
Mathematics Teacher Education and Development.

e.nardi@uea.ac.uk

Carl Winsløw is professor of Didactics of Mathematics at the University of
Copenhagen, and (from 2021) president of the European society for Re-
search in Mathematics Education. His research fields include von Neumann
algebra theory (the subject of his PhD from Tokyo University, 1994) and
didactics of university mathematics, especially in the domain of Analysis.
He was among the founding members of INDRUM (International Network
for Didactical Research on University Mathematics).

winslow@ind.ku.dk
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Connecting Islands: Bridging zbMATH and DLMF with Scholix,
a blueprint for connecting expert knowledge systems

Howard S. Cohl, Moritz Schubotz and Olaf Teschke

This paper reports on the recently launched zbMATH Links API. We
discuss its potential based on the initial link partner, the National
Institute of Standards and Technology Digital Library of Mathe-
matical Functions. As the API provides machine readable data in
the links, we show how one can use data from both sources for
further analysis. To exemplify the simplicity, we also show how
one can use zbMATH’s link data in Jupyter notebooks.

1 Introduction

As reported in the last EMS Magazine (formerly Newsletter of
the European Mathematical Society) [7], zbMATH Open provides
application programming interfaces (API) to make zbMATH data
machine accessible. We described the OAI-PMH API which enables
the harvesting of zbMATH Open metadata. In contrast, this issue
focuses on links between zbMATH Open and third parties. Our
zbMATH Links API, available from http://purl.org/zb/14, provides a
machine-readable interface for links between academic literature
and other resources. To make this API interoperable with various in-
formation systems, we rely on the Scholix API standard [2]. Scholix,
which is short for A Framework for Scholarly Link eXchange, is
a long-running initiative supported by partners such as the Re-
search Data Alliance, Crossref, and DataCite amongst many others,
which aims to exchange information on research data and related
scholarly articles. By exporting our data in a Scholix-compliant man-
ner, we ensure that our data gets integrated into the worldwide
ecosystem of open data. In this regard, it is not only important to
export individual data sets, but also to explicitly annotate the links
between different data sets in a standardized, machine readable
format.

The zbMATH Open team is currently in the process of linking
zbMATH Open reviews and abstracts with various partners such as

1. NIST Digital Library of Mathematical Functions (DLMF) https:
//dlmf.nist.gov [3,5],

2. The On-Line Encyclopedia of Integer Sequences https://oeis.
org [3],

3. The arXiv https://arxiv.org1 [8],
4. MathOverflow https://mathoverflow.net [4],
5. and many others.

The first step, establishing links between zbMATH Open and DLMF
has now been completed.

In [6] we described the details of the zbMATH Links API inter-
face and analyzed the current links in the DLMF; statistical analysis
of metadata was obtained by combining both data sources. For
instance, we can analyze the distribution of Mathematics Subject
Classification (MSC) classes in DLMF chapters, or the average age
of the referenced publications. Let us now explain how one can
proceed to generate any similar analysis in a very short time, using
simple tools.

2 Jupyter notebook demonstration

One way to use data from the zbMATH Links API is via Jupyter note-
books jupyter.org. Jupyter notebooks are interactive notebooks
that can be run in the browser and thus do not require any setup or
configuration. In contrast to other interactive notebooks by com-
mercial publishers, Jupyter notebooks are based on free and open
source software, which implies that one is not bound to a spe-
cific vendor. Recently, Jupyter notebooks have become increasingly
popular and are being used to create easily reproducible scientific
workflows [1]. For this demonstration, we use Jupyter with Python
and employ the library pandas pandas.pydata.org for data aggrega-
tions as well as plotly to create plotly.com interactive visualizations.
In Figure 1, we create an interactive version of the MSC distribution
of the articles linked in the DLMF as described in [6]. As shown,
the visualization can be created in eight lines of code and fetches

1 The mention of specific products, trademarks, or brand names is for purposes of identification only. Such mention is not to be interpreted in any way as an
endorsement or certification of such products or brands by the National Institute of Standards and Technology, nor does it imply that the products so identified are
necessarily the best available for the purpose. All trademarks mentioned herein belong to their respective owners.
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Figure 1. Jupyter notebook running on https://mybinder.org fetching and visualizing data from the zbMATH Links API

data online from our API. In pandas there is built-in support to read
from our API endpoint. Thus one can use real-time results from our
API without any more effort than loading any other resource from
the local file system. The source code with additional examples
and further links to the interactive visualization is available from
https://github.com/zbMATHOpen/LinksApiJupyterDemo.

3 Conclusion and outlook

We have shown how easy it is to use the data obtained from our
zbMATH Links API. While currently, DLMF links are only accessi-
ble via this API, additional links are currently in the process of
being generated. Moreover, trusted third parties will be able to
add new links to their respective services. Additionally, conformity
with the Scholix scheme ensures that content aggregators such as
OpenAIRE, DataCite, and others can integrate our data into their
systems and workflows.

As of the publication of this article, the zbMATH Links data is
not yet displayed on the zbMATH Open user-interface. The integra-
tion of the data and the API within our user-interface is scheduled
for the second half of 2021.
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Book review

Stochastically Forced Compressible Fluid Flows by Dominic Breit,
Eduard Feireisl and Martina Hofmanová

Reviewed by Donatella Donatelli

The book is focused on systematically de-
veloping a consistent mathematical the-
ory of compressible fluids driven by ran-
dom initial data and stochastic external
forces in the context of classical contin-
uum fluid mechanics.

The theory of continuum fluid me-
chanics is derived from basic physical
principles under the assumption that all
quantities – fields – are smooth, and
the Navier–Stokes system became a well-

established model working as a reliable basis of investigation for
both theoretical and applied aspects. Built on the foundation of
conservation laws, fluid mechanics helps to describe the flow and
interactions of gases, liquids and/or plasmas, as well as the forces
acting on them. Until fairly recently, these forces have largely been
considered to be deterministic. This means that they are functions
of microscopic space and time parameters, so that at any given
instant of time the fluid position in space is expected to be known.
There are still many important open problems, but the literature
concerning the deterministic case is very well-established and ex-
tensive; see for example the monographs [E. Feireisl, Dynamics of
Viscous Compressible Fluids, Oxford Lecture Series in Mathematics
and its Applications, vol. 26, Oxford University Press, Oxford, 2004]
or [P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2:
Compressible Models, Oxford Lecture Series in Mathematics and
its Applications, vol. 10, The Clarendon Press, Oxford Science Pub-
lications, Oxford University Press, New York, 1998].

However, this description is a fairly weak idealisation, which
is obvious already from the fact that we are still unable to model
extreme fluid mechanic events like turbulence to a sufficient level
of accuracy. In fact, the modelling of turbulence can be considered
as the prime motivation for the introduction of stochasticity in
the study of fluids. Turbulence is frequently associated with an
intrinsic element of randomness, and furthermore, experimental

studies of turbulence lead more to a statistical approach than to a
deterministic one. Moreover, the addition of stochastic terms to
the basic governing equations is often used to account for other
numerical, empirical or physical uncertainties. Therefore it becomes
important, in the framework of partial differential equations, to
set up a stochastic PDE theory for fluid flow.

Nowadays there exists a large amount of literature concerning
the dynamics of incompressible fluids driven by stochastic forcing.
The first results can be found in the pioneeringwork by Bensoussan–
Temam (1973). See also the lecture notes [A. Debussche, Ergodicity
results for the stochastic Navier–Stokes equations: An introduction,
In Topics in Mathematical Fluid Mechanics, volume 2073 of Lec-
ture Notes in Math., pages 23–108, Springer, Heidelberg, 2013],
[Flandoli, An introduction to 3D stochastic fluid dynamics, In SPDE
in Hydrodynamic: Recent Progress and Prospects, volume 1942
of Lecture Notes in Math., pages 51–150, Springer, Berlin, 2008].
Nevertheless, far less is known in the case of compressible fluids.
Important questions of well-posedness and even mere existence
of solutions to problems dealing with stochastic perturbations of
compressible fluids are largely open, with only a few rigorous re-
sults available. This monograph is an exhaustive and up-to-date
overview of the most recent results by different authors on stochas-
tic compressible fluids.

The book contains eight chapters and is divided into three
parts. It starts with Part I, a very didactic introduction providing the
necessary background. In a very clear manner, Part I provides the
non-expert readers in the field with all the basic results of the theory
and, at the same time, a description of more advanced tools in the
theory of stochastic PDEs. Part II is the core of the book, containing
all that is really new and original compared to the existing literature.
The most recent existence results on compressible stochastic fluids
are described. This part consists of five chapters, which guide the
reader step by step towards the proof of the existence of solutions.
Each chapter is devoted to one of the main aspects of the existence
theory: the setup of the model, approximation schemes and their
convergence, energy inequalities, relative energy inequality, and
weak strong uniqueness. In particular, it starts with the existence of
local strong solutions defined on a maximal time interval bounded
above by a positive stopping time that may depend on the size
of the initial data; then, because all real world problems require
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solutions defined globally in time, one has to switch to the notion
of weak solutions. This approach is based on the idea of including
some form of the energy/entropy balance as an integral part of
a weak formulation, and goes back to Dafermos (1979) concern-
ing conservation laws and to Germain (2011) who introduced a
similar concept in the context of the deterministic compressible
Navier–Stokes system. Therefore, the solutions constructed in this
part of the book are the so-called dissipative martingale solutions,
which are weak martingale solutions also satisfying a variant of the
energy balance.

Finally, Part III of the book is focused on applications such as
singular limits. Indeed, by scaling the equations by means of ap-
propriately chosen reference units, the parameters determining
the behaviour of the system become evident. Asymptotic analy-
sis and/or singular limits provide a useful tool in situations where
these parameters vanish or become infinite. In this part, the au-
thors describe a rigorous mathematical approach to asymptotic
analysis in the case of incompressible and inviscid–incompressible
limits for the compressible Navier–Stokes system with stochastic
perturbations.

To conclude, this is the first book in which one can find a com-
plete description of the available theory on compressible stochastic

fluid equations. Compared to the previous literature, this is a new
point of view that makes the book original and of very high quality.
It is a really valuable and much-needed contribution to the litera-
ture in the domain. This monograph is built in a masterly manner,
in such a way as to provide not only a complete and up-to-date
overview of the problems under consideration, but also a detailed
introduction to the topic for the uninitiated reader. The book is
very well and rigorously structured, having the excellent attribute
of being valuable to both experienced researchers in the domain
and to graduate students who wish to explore the different topics
in this challenging area of research. Overall, it constitutes an ideal
book for researchers (in the broadest sense) who want to enlarge
their mathematical knowledge of fluid mechanics.

Dominic Breit, Eduard Feireisl and Martina Hofmanová, Stochastically
Forced Compressible Fluid Flows. De Gruyter Series in Applied and
Numerical Mathematics 3. De Gruyter, 2018, 330 pages
ISBN 978-3-11-049050-3. eBook ISBN 978-3-11-049255-2.

donatella.donatelli@univaq.it

New editor appointed

Donatella Donatelli is full professor in
mathematical analysis at the Department
of Information Engineering, Computer
Science and Mathematics of the Univer-
sity of L’Aquila, Italy. Her research inter-
ests cover partial differential equations
of hyperbolic type, relaxation limits for

nonlinear hyperbolic systems, incompressible and compressible
Navier–Stokes equations, and mathematical models of fluid dynam-
ical type. In particular, her main achievements are on scale limit
analysis for fluid dynamic equations with relevant results in the
related acoustic waves analysis. In 2011, Donatella was awarded
the Marisa Bellisario Prize in the section “Special recognition of
young talents in research” in Mathematical and Computer Sciences
(this is a national prize under the auspices of the Italian President,
lnx.fondazionebellisario.org/online/2011-2/).

She has been the Coordinator of the LLP-EU Intensive Programs
Fluid2Bio 2012–2011, contract N.2012-1-IT2-ERA10-38827, 2011,
contract N.2011-1-IT2-ERA10-27088 and the Scientific Coordinator
of the L’Aquila node of the European Project Marie Curie Actions-
MSCA-ITN-2014-ETN, Horizon 2020 “ModCompShock-Modelling
and Computation of Shocks and Interfaces”, 2016–2020.
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Victims of positive discrimination

Valentin Ovsienko

They will never tell you, they suffer silently.
Our colleagues, talented mathematicians, those who are willing

and able to make major achievements, are deprived of this oppor-
tunity; the only reason is that they are women. Discrimination?! Oh
yes, the “positive” one! I claim that women suffer terribly from the
thing called “positive discrimination”.

The road to hell is paved with good intentions. Howmany great
ideas produce an opposite result, as nuclear power transforms into
atomic bomb …

To be more concrete, let me give one example. I know this
example very well, because this is my very own dearest wife. She
is an actively working mathematician, she loves research, but she
is also a member of an uncountable number of committees at
her prestigious Sorbonne Université and elsewhere. She spends all
her time at meetings, evaluations, distributions of grants, primes
d’excellence et encadrement, etc. She is a member of hiring com-
mittees in Jussieu and everywhere in the large Hexagon. The major
problem is that she cannot always answer “no” when asked to
participate; she knows exactly who will be asked to do the job if
she refuses, and believe me, all of these poor ladies are already
overwhelmed with administrative tasks.

France was spared from this hysteria for a long time, but the
“thing” is contagious. The Great Idea crossed the Atlantic, and now
there is a quota in France: 1/3 of the members of every committee
must be women. As we all know, the real proportion of ladies in

mathematics is something like 1/10, so the consequence is obvious.
Of course, the “Idea” was to protect women from discrimination
but the result is exactly the opposite: many female colleagues,
active researchers, have no time to do research and high quality
teaching any more.

One of the results of the situation described above is the un-
derrepresentation of women on the Editorial Boards of scientific
journals,1 prize juries, academies, etc. Just leave them in peace, let
them work normally, and the balance will be renormalized!

Ironically, since men keep the 2/3 majority in all the commit-
tees that I know, if we make the (paranoid) assumption that the
only goal of the male members is to discriminate against female
colleagues, we can continue our dark deeds with ease – positive
discrimination is not going to stop us!

Valentin Ovsienko is Senior Researcher at the French National Center for
Scientific Research (CNRS), in the Laboratoire de Mathématiques de Reims
and Université de Reims Champagne-Ardenne.

valentin.ovsienko@univ-reims.fr

1 A popular subject, frequently discussed in politically engaged pseudo-mathematical literature. The author prefers not to give precise references here; they are
numerous and can be found easily.
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Probabilistic Structures in Evolution
edited by Ellen Baake and Anton Wakolbinger

EMS Series of Congress Reports 
ISBN print 978-3-98547-005-1, ISBN online 978-3-98547-505-6 
May 2021. Hardcover. 502 pages. € 89.00

The present volume collects twenty-one survey articles about probabilistic aspects of biologi-
cal evolution. They cover a large variety of topics from the research done within the German 
Priority Programme SPP 1590.

The collection is centred around the stochastic processes in population genetics and popu-
lation dynamics. On the one hand, these are individual-based models of predator-prey and 
of coevolution type, of adaptive dynamics, or of experimental evolution, considered in the 
usual forward direction of time. They lead to processes describing the evolution of type fre-
quencies, which may then be analysed via suitable limit theorems. On the other hand, one 
traces the ancestral lines of individuals back into the past; this leads to random genealogies. 
Beyond the classical concept of Kingman’s coalescent, emphasis is on genealogies with mul-
tiple mergers and on ancestral structures that take into account selection, recombination, or 
migration.

Partial Differential Equations, Spectral Theory, and Mathematical Physics:
The Ari Laptev Anniversary Volume
edited by Pavel Exner, Rupert L. Frank, Fritz Gesztesy, Helge Holden, and Timo Weidl

EMS Series of Congress Reports 
ISBN print 978-3-98547-007-5, ISBN online 978-3-98547-507-0 
June 2021. Hardcover. 494 pages. € 89.00

This volume is dedicated to Ari Laptev on the occasion of his 70th birthday. It collects 
contributions by his numerous colleagues sharing with him research interests in analysis and 
spectral theory.

In brief, the topics covered include Friedrichs, Hardy, and Lieb–Thirring inequalities, eigen-
value bounds and asymptotics, Feshbach–Schur maps and perturbation theory, scattering 
theory and orthogonal polynomials, stability of matter, electron density estimates, Bose–
Einstein condensation, Wehrl-type entropy inequalities, Bogoliubov theory, wave packet 
evolution, heat kernel estimates, homogenization, d-bar problems, Brezis–Nirenberg 
problems, the nonlinear Schrödinger equation in magnetic fields, classical discriminants, and 
the two- dimensional Euler–Bardina equations. In addition, Ari’s multifaceted service to the 
mathematical community is also touched upon.
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ANALYSIS AND  
LINEAR ALGEBRA
The Singular Value  
Decomposition and Applications
James Bisgard, Central Washington 
University
Provides an elementary analytically inclined 
journey to a fundamental result of linear 
algebra: the Singular Value Decomposition 
(SVD). SVD is a workhorse in many applications 
of linear algebra to data science. By combining 
analytic and linear algebraic ideas, readers 
see seemingly disparate areas interacting in 
beautiful and applicable ways.

Student Mathematical Library, Vol. 94
May 2021 217pp
9781470463328 Paperback €61.00 

BIOLOGY IN TIME AND SPACE
A Partial Differential Equation 
Modeling Approach
James P. Keener, University of Utah
How do biological objects communicate, make 
structures, make measurements and decisions, 
search for food, i.e., do all the things necessary 
for survival? Designed for an advanced 
undergraduate audience, this book uses 
mathematics to begin to tell that story.

Pure and Applied Undergraduate Texts, Vol. 50
Jun 2021 314pp
9781470454289 Paperback €102.00 

A GATEWAY TO NUMBER 
THEORY
Applying the Power of  
Algebraic Curves
Keith Kendig, Cleveland State University
Challenge: Can you find all the integers a, b, c 
satisfying 2a2 + 3b 2 = 5c2? Looks simple, and 
there are in fact a number of easy solutions. 
But most of them turn out to be anything but 
obvious! A major advance in number theory 
means this book can give an easy answer to 
this and countless similar questions.

Dolciani Mathematical Expositions, Vol. 57
MAA Press
May 2021 207pp
9781470456221 Paperback €61.00 

PERIODIC ORBITS
F. R. Moulton's Quest for a New 
Lunar Theory
Craig A. Stephenson
Offers a detailed description of the early history 
of the three-body problem and its periodic 
solutions, with chapters dedicated to the 
pioneering work of Hill, Poincaré, and Darwin. 
This is followed by an in-depth account 
of the contribution to the subject by the 
mathematical astronomer Forest Ray Moulton 
and his research students.

History of Mathematics, Vol. 45
Jun 2021 255pp
9781470456719 Paperback €124.00 

FURTHER INFORMATION:
Tel: +44 (0)20 7240 0856
Fax: +44 (0)20 7379 0609
Email: info@eurospan.co.uk

Free delivery at eurospanbookstore.com/ams

CUSTOMER SERVICES:
Tel: +44 (0)1767 604972
Fax: +44 (0)1767 601640
Email: eurospan@turpin-distribution.com

AMS is distributed by

Prices do not include local tax.
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